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A prey-predator model is used to investigate the interactions between phages and bacteria by considering
the lytic and lysogenic life cycles of phages and the prophage induction. We provide answers to the
following conflictual research questions: (1) what are conditions under which the presence of phages
can purify a bacterial infected environment? (2) can the presence of phages triggers virulent bacterial
outbreaks? We derive the basic offspring number N0 which serves as a threshold and the bifurcation
parameter to study the dynamics and bifurcation of the system. The model exhibits three equilibria: An
unstable environment-free equilibrium (EFE), a globally asymptotically stable (GAS) phage-free equi-
librium (PFE) whenever N0 < 1, and a locally asymptotically stable (LAS) environment-persistent equi-
librium (EPE) when N0 > 1. The Lyapunov-LaSalle techniques are used to prove the GAS of the PFE
and estimate the EPE basin of attraction. Through the center manifold approximation, topological types
of the PFE are precised. Existence of transcritical and Hopf bifurcations are established. Precisely, when
N0 > 1, the EPE loses its stability and periodic solutions arise. Furthermore, increasing N0 can purify an
environment where bacteriophages are introduced. Purposely, we prove that for large values of N0, the
overall bacterial population asymptotically approaches zero, while the phage population sustains. Eco-
logically, our results show that for small values of N0, the existence of periodic solutions could explain
the occurrence of repetitive bacteria-borne disease outbreaks, while large value of N0 clears bacteria
from the environment. Numerical simulations support our theoretical results.
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1. Introduction

Phages or bacteriophages are actually viruses that infect bacteria. They are obligate intracellular para-
sites which rely on the bacteria hosts in order to replicate. Phages are an essential part of the aquatic
biology because of their omnipresence in the aquatic ecosystem. They are closely linked to the bacte-
rial population. Based on their survival life strategies, phages exhibit three different life cycles which
are lytic, lysogenic and pseudo-lysogenic (see Bhandare & Sudhakar G (2005), Miller R. V., & Day
M.(2008)). In the lytic life cycle, the phage injects the bacterium cell, multiplies and progeny phages
burst from the cell killing the bacterium. In the lysogenic life cycle, the phage does not replicate but its
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genome goes into a quiescent condition and is usually integrated into the host genome or alternatively
it may be maintained as an extra chromosomal plasmid (see Bhandare & Sudhakar G. (2005), Miller R.
V., & Day M. (2008)). The integrated phage genome is called a prophage while a bacterial host with
a prophage is called a lysogen bacterium. The lysogenic life cycle allows the host cell to continue to
survive and reproduce, the virus is reproduced in all of the cell’s offsprings. In the pseudo lysogenic
life cycle, the phage does not undergo lysogeny nor does it show lytic life cycle but it remains in a non
active state. There are some phages which can enter either the lytic or lysogenic life cycle. Phages that
replicate only via the lytic life cycle are known as virulent phages while those that replicate using both
lytic and lysogenic life cycles are known as temperate phages.

In the lysogenic life cycle, upon detection of cell damage, such as UV radiation light or certain
chemical, the prophage is extracted from the bacterial chromosome in a process called prophage induc-
tion (see Bhandare & Sudhakar G. (2005)). After induction, viral replication begins via the lytic life
cycle.

The presence of phages in an environmental reservoir plays an essential role in the evolution of
bacterial species. Thus, on the one hand, the interaction between phages and bacteria can contribute
to trigger some environmental indirectly transmitted diseases by enabling the emergence of new clones
of virulent pathogenic bacteria. For instance, Vibrio cholerae, the causative agent of cholera epidemics
represents a paradigm for this process. In fact, the latter organism evolves from environmental non-
pathogenic strains to highly pathogenic species by acquisition of virulent genes through the lysogenic
life cycle in the phage-bacteria interactions (see Faruque M. & John J. (2012)). The major virulence
factors of V. cholerae which are cholera toxin (CT) and toxin coregulated pilus (TCP) are encoded by
a lysogenic phage (CTXφ ) and a pathogenicity island, respectively (see Faruque M. & John J. (2012)).
Hence, the importance of incorporating the lysogenic life cycle in the models that describe the inter-
actions between phages and bacteria in the environmental reservoir with the ultimate aim to explain
the triggering of bacterial related disease outbreaks. On the other hand, the presence of phages in an
environmental reservoir of bacteria can purify this environment by driving the population of bacteria
to extinction. Therefore, two main research questions come into play: (1) What are conditions under
which the presence of phages can purify a bacterial polluted environment? (2) Conversely, in which
situations can the presence of phages triggers virulent pathogenic bacterial disease outbreaks?

Understanding the genetic and ecological factors which support the phage-bacteria interactions and
the production of highly virulent pathogenic species is vital to develop preventive measures. In this
struggle, Mathematical Biology/Ecology is an essential tool and provides insights into the co-evolution
or extinction of bacteria and phages.

Many mathematical models have been published to study the marine phages infection and for the
most recent works among others, we refer the reader to (Beretta E.& Y. Kuang (1998), Lui F., Cortez
M.& Weitz J. (2013), Yu P., Nadeem A. & Wall L. M. (2017), Sukhita & Vidurupola W.(2018). Unlike
the large number of models describing the lytic life cycle of phage-bacterium interaction, very little ef-
fort has been devoted to the lysogenic life cycle and prophage induction and the combination of both. In
Yu P., Nadeem A. & Wall L. M. (2017), the authors proposed a model to study the impact of prophage
on the equilibria and stability of phage and bacterium host. In their model, the lysogen bacteria popula-
tion does not appear explicitly since they considered that the infected bacteria cannot reproduce. More
Recently in Xueying W. &Jin W. (2017), the deterministic and stochastic models for the within-host
dynamics of cholera with a focus on the interaction between phages and vibrio cholerae in the human
host was proposed. Contrary to Yu P., Nadeem A. & Wall L. M.(2017), an equation for the lysogen
bacteria population appeared explicitly in Xueying W. & Jin W. (2017), yet the prophage induction was
still neglected. To fill the above mentioned gaps, we extend the deterministic models of Yu P., Nadeem
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A. & Wall L. M. (2017), Xueying W. & Jin W. (2017) by considering both the lytic and lysogenic
life cycles of phages and prophage induction altogether. More precisely, since the genetic material of
phages (called prophage) can be transmitted to bacterial daughter cells at each subsequent cell division,
we propose a mathematical model that additionally takes into account the fact that in the lysogenic life
cycle, the virus reproduces in all the cell’s offsprings. The propounded model is a predator-prey like
system with Holling type functional response. We use it to provide possible responses to the above-
mentioned research questions, which are rooted on the range of the basic offspring number of phages.
The basic offspring number N0 is computed and used to examine the global dynamics and perform an
in-depth bifurcation analysis of the system and the three equilibria exhibited are topologically classified
as follows: An unstable environment-free equilibrium (EFE), a globally stable phage-free equilibrium
(PFE) whenever N0 < 1, and a unique locally stable environment-persistent (EPE) equilibrium which
exits when N0 > 1. We use a suitable Lyapunov function to estimate the basin of attraction of EPE. The
model undergoes a trans-critical forward bifurcation at N0 = 1 and a Hopf bifurcation around the EPE.
Precisely, we show that when N0 > 1, there is a critical value N c

0 such that for N0 >N c
0 , the EPE

loses its stability through the appearance of a Hopf bifurcation, given rise to periodic solutions.
The rest of the paper is organized as follows: in Section 2, the mathematical model is formulated. We

derive its basic properties, compute and perform the sensitivity analysis of the basic offspring number
N0 in Section 3. The main Section 4 is devoted to the existence of equilibria, their global stability
and the bifurcation analysis of the model based on the range of N0. Section 5 deals with the global
sensitivity analysis of the model’s variables. The last Section 6 concludes the paper and provides some
discussions on the limitations of this work and for future investigations.

2. Model derivation context

To place our model derivation in a specific context, we provide the main modeling hypotheses.
(H1) Since in the pseudo lysogenic, the phages are inactive, we neglect it and focus only on the lytic
and lysogenic life cycles.
(H2) We assume that there are enough bacteria in the aquatic environment for the phage-bacteria inter-
actions to last for sufficiently longer time.
(H3) We consider the logistic growth for the bacteria species and the Holling-type II functional response
for the interactions between phages and bacteria. This is justified by the fact many bacteria are free-
living pathogens capable of self multiplication in their biotope.
(H4) We suppose that in the presence of phages (or viruses) population P, the population of bacteria
splits into three different classes: (i) The susceptible bacteria are B (not yet attacked by the phages).
(ii) The lysogen bacteria population V (those bacteria infected by lysogenic phages), and recall that the
during the lysogenic life cycle, instead of killing the host, the phage genome integrates into the bacterial
chromosome and becomes part of the host. (iii) The population of infected bacteria Z (those bacteria
infected by lytic phages), whose equation decouples from the system as we shall see shortly.

Following assumption (H3) our model introduces a threshold for the susceptible bacteria known
as carrying capacity K, so that initially, the population grows exponentially and later stabilizes at a
constant level K > 0. Susceptible bacteria acquire infection at rate βB/(B+H) known as Holling-type
II functional response. In the latter, β stands for the contact between the susceptible bacterial cells
and phages/viruses. The bacterial mortality rate in the reservoir is µ . The dynamics of B is therefore
modeled by the following equation

dB
dt

= rB
(

1− B
K

)
−β

BP
B+H

−µB. (2.1)
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Symbols Biological definitions Baseline value Range Source
B Density of susceptible bacteria
V Density of lysogen bacteria
P Density of free phage population
Z Density of infected bacteria
r Intrinsic bacteria growth rate 0.8 0.3−14.3 (see Jensen A. (2006))
K Bacteria carrying capacity 105 105−107 (see Kong J.(2014))
H Half-saturation bacteria density 106 106−108 (see Kong J.(2014))
β Phage-bacterium contact rate 0.15 0.1−0.9 (see Jensen A. (2006))
α Prophage induction rate 0.4 0.001−0.99 assumed
φ Cell division size 80 10−100 assumed.
π Fraction of lysed bacteria 0.7 0.5−1 assumed
θ Burst size 100 80−100 (see Jensen A. (2006))
µ Bacteria death rate 0.15 0.4−0.99 assumed.
δ Phages death rate 0.5 0.5−7.9 (see Jensen A. (2006))
γ Bacteria death rate due to lysis 1 0.1−1 assumed

Table 1. Variables and parameters for model (2.4).

For Eq. (2.1) to be ecologically meaningful, and the whole interaction system to be mathematically
tractable, we assume that r > µ . Otherwise, the bacteria population B will collapse in finite time.

Phages can undergo a lytic or a lysogenic life cycle, whereas few are capable of carrying out both.
We denote by π the fraction of infected cells that burst and produce new phages, while (1−π) is the
fraction of lysogen bacteria. The lysogenic life cycle allows the bacterial host cell to continue to survive
and reproduce, the phage is reproduced in all of the cell’s offsprings and we denote the bacterial cell
multiplication size by φ . In the course of this division, the effect of UV radiations or the presence of
certain chemicals can lead to the release of prophage causing proliferation of new phages through the
prophage induction. Therefore, we denote by α the rate of lysogen bacteria who switch from a the
lysogenic life cycle to the lytic life cycle. So the dynamic of lysogen bacteria is:

dV
dt

= φ(1−π)
βBP

B+H
− (α +µ)V. (2.2)

In the lytic life cycle, bacteria cells burst (lysed) and destroyed after immediate replication of the new
phages; we denote by θ the burst size of the bacteria. Hence, the dynamic of phages is modeled by the
following equation.

dP
dt

= θπβ
BP

B+H
+θαV −δP. (2.3)

The Figure 1 describes the interactions between lytic phages, lysogenic phages, bacteria and the prophage
induction event. The parameters and variables of the model (2.4) are summarized in Table 1. Based on
the above mentioned formulation and assumptions, we schematically simplify the phage bacteria inter-
actions in Figure 2 from which we derive the following system of non-linear differential equations.
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FIG. 1. Phage-Bacteria interactions and prophage induction process.



dB
dt

= rB
(

1− B
K

)
−β

BP
B+H

−µB,

dV
dt

= φ(1−π)β
BP

B+H
− (α +µ)V,

dP
dt

= θπβ
BP

B+H
+θαV −δP.

(2.4)

It should be noted that the equation for the dynamics of the infected bacteria Z, which actually decouples
from (2.4) is given by:

dZ
dt

= πβ
BP

B+H
+αV − (µ + γ)Z. (2.5)
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FIG. 2. Schematic representation of the phage-bacteria interactions.

3. Basic mathematical properties and basic offspring number

3.1 Existence, uniqueness and positivity of solutions

For the model (2.4) to be ecologically meaningful, it is important to prove that all the state variables are
non-negative for all time t. In the other words, the solution of the model (2.4) with positive initial data
should remain positive for all t > 0. Setting

N(t) = φB(t)+V (t), ζ = min(µ,δ ), and Pmax = (θπrK +θαφrK)/(4µζ ),

we summarize these basic properties in the following result.

THEOREM 3.1 The system (2.4) is a dynamical system in

Ω =

{
(B,V,P) ∈ R3

+, N(t)6
φrK
4µ

, P(t)6 Pmax

}
.

Proof : From the first equation of (2.4), one has

dB
B

= ψ(B,P), where ψ(B,P) =
{

r−µ− rB
K
− βP

B+H

}
.

The integration of the previous equation from 0 to t gives,

B(t) = B(0)e
∫ t

0 ψ(B,P) > 0 ∀t > 0.

Considering the fact that B(t)> 0, and discarding for now the equation for the susceptible bacteria B(t),
the remaining sub-system for the compartments V and P takes the form

ẋ = Mx, (3.1)
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where, x = (V,P), and M =


−(µ +α)

φ(1−π)βB
B+H

θα θπβ
B

B+H
−δ

 .

M is a Metzler matrix and the system (3.1) is cooperative, so if V (0), P(0) > 0, then V (t), P(t) > 0
∀t > 0. Moreover,

Ṅ = φ
dB
dt

+
dV
dt

6 φrB
(

1− B
K

)
−µ(φB+V )+φ(1−π)β

BP
B+H

−φβ
BP

B+H

6 φrB
(

1− B
K

)
−µ(φB+V )

= φrB
(

1− B
K

)
−µN.

Knowing that

max
06B6K

{
B
(

1− B
K

)}
=

K
4
,

we have,

Ṅ 6 φr
K
4
−µN.

Using a Granwall lemma (see Lakshmikantham S. & Leela. M. (1989)), we show that

N(t)6 N(0)e−µt +φr
K
4µ

(1− e−µt).

Thus, if N(0)6 φrK/4µ , then N(t)6 φrK/4µ , for all t > 0.
Similarly, if we set Y = θπB+P, then

Ẏ = θπrB
(

1− B
K

)
−µπθB+θαV −δP

6
θπrK +θαφrK

4µ
−ζY.

Another application of a Gronwall lemma gives P(t) 6 Pmax for all t > 0, if P(0) 6 Pmax. Thus Ω is a
positively invariant set under the flow of system (2.4). Hence it is sufficient to consider the dynamics of
the model (2.4) in Ω . �

3.2 Basic offspring number and its sensitivity analysis

For notational simplicity, let’s denotes B0 =K(r−µ)/r, so that the PFE of model (2.4) is E1 = (B0,0,0).
Note that the disease components in model (2.4) are V and P. The matrix for the new offsprings and
that for the transition between compartments are respectively

F =


0

φ(1−π)βB0

B0 +H

0
θπβB0

B0 +H

 and W =

 α +µ 0

−θα δ

 .
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By the next generation matrix method (see Driessche P.V.D. & Wathmough J. (2002)), the basic off-
spring number is defined as the spectral radius of the next generation matrix FW−1 of the model (2.4)
which is given by

FW−1 =


θαφ(1−π)βB0

δ (µ +α)(B0 +H)

φ(1−π)βB0

δ (B0 +H)

θ

δ (µ +α)

θπβB0

B0 +H
1
δ

θπβB0

B0 +H

 .

Since FW−1 is a rank 1 matrix, the basic offspring number of the model (2.4) (i.e. the spectral radius
of FW−1) is given by its trace as follows:

N0 = ρ(FW−1) =
θπβB0

δ (B0 +H)
+

θαφ(1−π)B0

δ (µ +α)(B0 +H)
. (3.2)

REMARK 3.1 Notice that, if one uses the full model (2.4)-(2.5) to compute the basic offspring number
N0 following the approach in (Driessche P.V.D. & Wathmough J. (2002)), the variable Z should be
added to the set of disease components. As expected, the expression for the basic offspring number N0
remains unchanged. This outcome shouldn’t be surprising because the variable Z(t) does not appear in
the equations for B(t),V (t) and P(t), and therefore cannot influence their dynamics.

For the biological interpretation of the basic offspring number N0, pose

f (B) =
βB

B+H
, N0Z =

θπ f (B0)

δ
, N0V =

θφ(1−π) f (B0)

δ

α

α +µ
.

Thus, with these notations, N0 reads
N0 = N0Z +N0V . (3.3)

Different terms in N0Z and N0V given by (3.3) can be interpreted as follows:
• θπ f (B0) is the mean number of new phages released after burst of bacteria via the lytic life cycle.
• θφ(1−π) f (B0) is the mean number of new phages produced through the prophage induction process.
• α/(α+µ) is the probability that a lysogen bacterium undergoes a lytic life cycle through the prophage
induction process.
• 1/δ is the average lifespan of phages.
Thus, N0Z is the mean number of phage offsprings produced by a single phage, in the fully uninfected
bacteria population via the lytic life cycle of the phage, whereas N0V gives the mean number of phage
offsprings generated through the prophage induction process, by a single phage introduced in the fully
uninfected bacteria population. The sum N0 = N0Z +N0V is therefore the mean number of phage
offsprings generated by a single phage, either in the lytic or lysogenic life cycle, introduced into the
fully uninfected population of bacteria.

The local sensitivity analysis is based on the normalized sensitivity index of N0. The normalized
forward sensitivity index of a variable to a parameter is the number of the relative change in the variable
to the relative change in the parameter. Since the basic offspring number is a differentiable function
with respect to any of its parameters, the sensitivity indices are calculated using partial derivative of N0
(see Gjorgjieva J., Smith K., Chowell G., Sanchez F., Snyder D. & Castillo C. (2005)) and are displayed
in Table 2 below.
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Parameters Sensitivity index Value

r SN0
r +0.0277

β SN0
β

+1

µ SN0
µ -0.5372

δ SN0
δ

-1
α SN0

α +0.5709
K SN0

K +0.9248
H SN0

H -0.9248
θ SN0

θ
+1

φ SN0
φ

+0.9320

Table 2. Normalized sensitivity indexes of N0: The phage-bacteria contact rate β , the lysis burst size θ , the phage death rate δ ,
the bacteria cell division rate φ , in the decreasing order, the susceptible bacteria carrying capacity K, the half-saturation bacteria
density H, are the most influential parameters on N0. Note that the baseline values in Table 1 should have been used here to
compute the sensitivity indexes.

To this aim, denoting by ψ the generic parameter of system (2.4), we evaluate the normalized sensi-
tivity index

SN0
ψ =

ψ

N0

∂N0

∂ψ
. (3.4)

Mathematically, SN0
ψ indicates how sensitive N0 is to the change of parameter ψ . A positive (resp.

negative) index indicates that an increase in the parameter value results in an increase (resp. decrease)
in the N0 value.

It is worth noticeable that local sensitivity analysis only assesses the effects of individual parameters
at particular point in parameter space, without considering the combined variability resulting from all
input parameters simultaneously. To address the latter, we perform a global sensitivity analysis to obtain
the model response to parameter variation within a wider range in parameter space. Following the
approach Gjorgjieva J., Smith K., Chowell G., Sanchez F., Snyder D. & Castillo C. (2005) , PRCC
between N0 and each parameter are derived. The results of the PRCCs of N0 are shown in Figure 3.

REMARK 3.2 From Table 2 and Figure 3, we observe that the parameters β , α , K, θ and φ have the
most positive influence (by augmenting it) on N0, while have remarkable negative impact (by reducing
it) on N0 are δ , H and µ . For instance, the increase of β , α , K, θ and φ , say by 10%, will increase N0
by 10%, 9.2%, 10% and 9.3%, respectively.

According to the Figure 3, N0 is highly sensitive to the bacteria cell division size φ . Since the
prophage induction parameter α is central in this work, because φ and α are keys parameters charac-
terizing the prophage induction, one may wish to assess their combined influence on the basic offspring
N0, with the ultimate aim to control the growth of lysogen bacteria, which are thought to be responsible
of severe disease outbreaks. This is investigated in Figure 4. More importantly, the matching of the
local sensitivity analysis (see Table 2) and global sensitivity analysis (see Figure 3) of N0 demonstrates
its robustness to the parameters variations.

Figure 4 precisely shows that, for a large value (say, φ = 90) of the cell division size φ , N0 is always
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FIG. 3. PRCCs of N0: This global sensitivity analysis is consistent with the local sensitivity of N0, except that the bacteria burst
size θ overcome the phage-bacteria contact rate β . However, as a whole the basic offspring number N0 is highly robust to its
parameters variation.

greater than one, regardless the value of α . However, if the value of φ is halved (say, φ = 45), then
one should increase the value of α above 0.15 to bring N0 above one. This underscores the importance
of prophage induction in controlling the bacteria population, since it is only when N0 > 1 that more
phages are produced to destroy more bacteria.

FIG. 4. Graph and Contour plots of N0 versus induction rate α and cell division size φ .
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4. Equilibria and bifurcation analysis

4.1 Existence of equilibria and trans-critical forward bifurcation at N0 = 1

Clearly, if P = 0, then the model (2.4) admits two trivial equilibria: the EFE E0 = (0,0,0) and the PFE
E1 = (B0,0,0). The EPE E∗ = (B∗,V ∗,P∗) of model (2.4) satisfies the system

rB∗
(

1− B∗

K

)
−β

B∗P∗

B∗+H
−µB∗ = 0,

φ(1−π)β
B∗P∗

B∗+H
− (α +µ)V ∗ = 0,

θπβ
B∗P∗

B∗+H
+θαV ∗−δP∗ = 0.

(4.1)

From the second equation of (4.1), we have

V ∗ =
φ(1−π)β

(µ +α)

B∗P∗

B∗+H
. (4.2)

The substitution of the expression for V ∗ into the third equation of (4.1) yields(
θπβ +

θαφ(1−π)β

(µ +α)

)
B∗P∗

B∗+H
−δP∗ = 0.

Since we are looking for the positive equilibria, then P∗ > 0, we are left with the equation(
θπβ +

θαφ(1−π)β

(µ +α)

)
B∗

B∗+H
−δ = 0. (4.3)

After some computations we have the following expression of B∗

B∗ =
HB0

B0(N0−1)+HN0
. (4.4)

From the first equation of (4.1),

B∗
(

r−µ− rB∗

K

)
= β

B∗P∗

B∗+H
.

That is
r
K
(B0−B∗) = β

P∗

B∗+H
.

From equation (4.4), we have

B0−B∗ =
B0(B0 +H)(N0−1)
B0(N0−1)+HN0

. (4.5)

We note that, since the basic offspring number N0 > 1, it is clear from (4.5) that B∗ < B0, and

P∗ =
r

βK
(B0−B∗)(B∗+H).
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Using the expression of B∗ given by (4.4), and the expression (4.5) it is easy to obtain the formula for
P∗ below.

P∗ =
rH
βK

B0(B0 +H)2N0(N0−1)
(B0(N0−1)+HN0)2 . (4.6)

After the replacement of B∗ given by (4.4) and P∗ displayed in (4.6), we recover the expressions for V ∗

and Z∗ in terms of N0 as follows:

V ∗ =
φ(1−π)rH
(µ +α)K

B2
0(B0 +H)(N0−1)

(B0(N0−1)+HN0)2 (4.7)

and

Z∗ =
π(µ +α)+φ(1−π)rH

(µ + γ)(µ +α)K
B2

0(B0 +H)(N0−1)
(B0(N0−1)+HN0)2 (4.8)

Hence the existence of a unique EPE for the model (2.4), whenever N0 > 1. The following result
gives the existence of equilibria and examines the local stability of the EFE and the PFE.

PROPOSITION 4.1 The following statements hold true:
i) The EFE E0 is always unstable.
ii) The PFE E1 of the system (2.4) is LAS whenever N0 < 1, and the stable manifold of the PFE is
Ws(E1) = {(B,V,P) ∈Ω , B = B0}.
iii) The PFE is unstable whenever N0 > 1, and there exists a unique EPE E∗ of the system (2.4).

Proof : The Jacobian matrix at E0 is

J(E0) =


r
K

B0 0 0

0 −(µ +α) 0
0 θα −δ

 .

Clearly, rB0/K is a positive eigenvalue of J(E0), thus E0 is unconditionally unstable.
The Jacobian matrix at the PFE E1 is

J(E1) =


− r

K
B0 0 − f (B0)

0 −(µ +α) φ(1−π) f (B0)

0 θα θπ f (B0)−δ

 .

It is clear that −rB0/K is an eigenvalue of J(E1), the local stability of PFE is completely determined by
the determinant and the trace of the following (2×2)-matrix.

J0 =

(
−(µ +α) φ(1−π) f (B0)

θα θπ f (B0)−δ

)
.

Straightforward computations show that the determinant and the trace of J0 are respectively:

det(J0) = δ (µ +α)(1−N0), tr(J0) =−(µ +α)−δ (1−N0V ) . (4.9)

If N0 < 1, then detJ0 > 0 and N0V < 1, which implies that tr(J0) < 0. Thus the LAS of the PFE. It is
not difficult to see that the stable manifold of E1 is Ws(E1) defined above. On the other hand, if N0 > 1,
then det(J0)< 0, and the EFE is unstable. �
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We now focus on the global stability of the PFE E1. To this end, we set:

n(B) = B
{

r−µ− rB
K

}
=

r
K

B(B0−B) and f (B) =
βB

B+H
. (4.10)

PROPOSITION 4.2 The PFE is GAS in Ω \{E0} whenever N0 < 1.

Proof : We consider the following Lyapunov function

L0(B,V,P) =
(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)∫ B

B0

f (x)− f (B0)

f (x)
dx+

θα

δ (µ +α)
V +

1
δ

P. (4.11)

We now compute the derivative of L along the solution of (2.4). One has

dL0

dt
=

(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)(
1− f (B0)

f (B)

)
Ḃ+

θα

δ (µ +α)
V̇ +

1
δ

Ṗ.

Using the expressions of derivatives in (2.4) yields

dL0

dt
=

(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)(
f (B)− f (B0)

f (B)

)
(n(B)− f (B)P)

+
θα

δ (µ +α)
((1−π)φ f (B)P− (µ +α)V )+

1
δ
(θπ f (B)P+θαV −δP) (4.12)

=

(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)(
f (B)− f (B0)

f (B)

)
n(B)+

(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)
f (B0)P−P

=

(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)(
f (B)− f (B0)

f (B)

)
n(B)+

(
(1−π)φθα f (B0)

δ (µ +α)
+

θπ f (B0)

δ
−1
)

P

=
r
K

(
(1−π)φθα

δ (µ +α)
+

θπ

δ

)(
f (B)− f (B0)

f (B)

)
B(B0−B)+P(N0−1).

Since f is increasing, N0 < 1 and (B,V,P) ∈ Ω \ {E0}, we have dL0/dt 6 0. Moreover, the set in
Ω \{E0} such that dL0/dt 6 0 = 0 is E = {(B,V,P) ∈Ω \{E0};B = B0, P = 0}. Replacing P by zero
in the second equation of (2.4) leads to limt→+∞ V (t) = 0. Thus, largest invariant set contained in E is
the singleton PFE, and the application of LaSalle’s Invariant Principle (see LaSalle J. P. (1976)), proves
that the PFE is GAS in Ω \{E0}. �

4.2 Increasing the value of the basic offspring number purifies the environment

We use the expressions obtained in (4.4), (4.6) and (4.2) to investigate on the behavior of the EPE versus
the basic offspring number. First, note that whenever N0 > 1, the denominators of B∗, V ∗ and P∗ cannot
vanish. Recall from (4.4) that

B∗(N0) =
HB0

B0(N0−1)+HN0
,

so that B∗(1) = B0, limN0→∞ B∗(N0) = 0, and
∂B∗

∂N0
=− HB0(B0 +H)

((B0 +H)N0−B0)2 . Thus, B∗ is decreasing

for N0 > 1, and tends to zero whenever N0 tends to +∞.
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Similarly, from (4.7), we have

V ∗(N0) =
φ(1−π)rH
(µ +α)K

B2
0(B0 +H)(N0−1)

(B0(N0−1)+HN0)2 ,

V ∗(1)= 0, and limN0→∞ V ∗(N0)= 0, and
∂V ∗

∂N0
=

φ(1−π)rHB2
0(B0 +H)

(µ +α)K
[−(B0 +H)N0 +B0 +2H]

(B0(N0−1)+HN0)3 .

Hence, V ∗ assumes the maximum value at

N m
0 = 1+

H
B0 +H

,

giving by

V ∗max =
φ(1−π)rHB2

0(B0 +H)

4H(µ +α)K
.

Precisely, V ∗ is increasing on 16N0 < N m
0 , and decreasing whenever N0 > N m

0 and tends to zero.
Remember that from (4.6), one has

P∗(N0) =
rH
βK

B0(B0 +H)2N0(N0−1)
(B0(N0−1)+HN0)2 .

P∗(1) = 0, limN0→∞ P∗(N0) =
rHB0

βK
, and

∂P∗

∂N0
=

rB0(B0 +H)2

βKH
1

(B0(N0−1)+HN0)2 .

Consequently, P∗ is an increasing but saturated function which assumes a maximum value

P∗max =
rHB0

βK
=

(r−µ)H
β

.

On the other hand, thanks to (4.8),

Z∗(N0) =
π(µ +α)+φ(1−π)rH

(µ + γ)(µ +α)K
B2

0(B0 +H)(N0−1)
(B0(N0−1)+HN0)2 ,

so that, Z∗(1) = 0, and limN0→∞ Z∗(N0) = 0, and
∂V ∗

∂N0
=

π(µ +α)+φ(1−π)rHB2
0(B0 +H)

(µ +α)K
[−(B0 +H)N0 +B0 +2H]

(B0(N0−1)+HN0)3 .

Thus, Z∗, has a maximum value at N m
0 , giving by

Z∗max =
(π(µ +α)+φ(1−π))rHB2

0(B0 +H)

4H(µ +α)K
.

Thus, Z∗ is increasing on 1 6N0 < N m
0 , and decreasing whenever N0 > N m

0 , and finally vanishes
when N0 → +∞. From these investigations which are illustrated by Figure 5, one can derive the fol-
lowing remark.

REMARK 4.1 The threshold value N m
0 is the minimum value of the basic offspring number N0 required

to ensure exponential decrease of the all bacterial populations to zero, thus purifying the environment
by keeping alive only the population of phages. Fortunately N m

0 is small enough (1 < N m
0 < 2 ), so

that, not too much effort is needed to achieve this value in order to purify the environmental reservoir of
bacteria.
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FIG. 5. Graphs of B∗, V ∗, Z∗ and P∗ versus N0: On the left panel, one can observe that the bacteria subpopulations B∗,V ∗,Z∗ go
extinct, while the population of phages sustains for large value of the basic offspring number N0. On the right panel, we zoom
the figure in the left panel so that one can numerically see that the populations of V ∗ and Z∗ assume their maximum values at the
same threshold value N m

0 .

The following theorem specifies the type of the PFE based on the values or ranges of the basic
offspring number N0.

THEOREM 4.1 For the system (2.4), the PFE is
i) an attracting node if N0 < 1,
ii) a hyperbolic saddle if N0 > 1,
iii) a saddle-node if N0 = 1.

Proof : The characteristic polynomial of the Jacobian matrix at the PFE denoted by J(E1) has the
form

P(λ ) =
(

λ +
r
K

B0

)(
λ

2− tr(J0)λ +det(J0)
)

(4.13)

where tr(J0) and det(J0) are given in Eq. (4.9).
i) For N0 < 1, det(J0) > 0 and using the Descartes’s rule sign, the roots of (4.13) are reals and

negative. Thus the PFE in an attracting node.
ii) For N0 > 1, det(J0)< 0 , and there exists three real eigenvalues with at least one positive. Thus

the PFE is hyperbolic saddle.
iii) For N0 = 1, the eigenvalues of the Jacobian matrix of (2.4) at PFE are−rK/B0, tr(J0) and 0. Re-

calling that tr(J0) =−(µ +α)−δ (1−N0V )< 0, then, PFE is a non-hyperbolic critical point with two
negative eigenvalue and one simple zero eigenvalue. Thus, the center manifold theory approximation
applies in order to determine its stability.

Let’s adopt the change of variables U = B−B0, V =V, W = P and set X = (U,V,W )T such that the
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system (2.4) has the form
dX
dt

= AX +F(U,V,W ), (4.14)

where,

A =


−rB0/K 0 − f (B0)

0 −(µ +α) φ(1−π) f (B0)

0 θα θπ f (B0)−δ


and

F(U,V,W ) =



−rU2/K− βHU
(U +B0 +H)(B0 +H)

W

φ(1−π)
βHU

(U +B0 +H)(B0 +H)
W

θπ
βHU

(U +B0 +H)(B0 +H)
W


.

Using Taylor expansion around (0,0,0), we obtain F as follows

F(U,V,W ) =



−rU2/K− βH
(B0 +H)

UW +O(U2)

φ(1−π)
βH

(B0 +H)
UW +O(U2)

θπ
βH

(B0 +H)
UW +O(U2)


.

In order to diagonalize the linear part of the system (4.14), we set

η =
βB0K

rB0(B0 +H)−K(α +µ +δ )(B0 +H)+KθπβB0
,

and consider the matrix P of the eigenvectors of J(E1) given by

P =


1 η

βK
r(B0 +H)

0 − (µ +α)

θα

φ(1−π) f (B0)

α +µ

0 1 1

 .

Then,
P−1AP = B = diag(−rB0/K,−(µ +α)−δ (1−N0V ) ,0) .

Using the transformation Y = PX , where Y = (B,V,P)T we have

dY
dt

= BY +P−1FPY
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and the system (4.14) takes the form



dB
dt

=−rB0B/K +O(| B,V,P |2),

dV
dt

=−(µ +α +δ (1−N0V ))V +O(| B,V,P |2),

dP
dt

= 0+g3(B,V,P),

(4.15)

where,

g3(B,V,P) =
Kβ 2(µ +α)(θα(1−π)φ +θπ(µ +α))

r(B0 +H)(θα(1−π)βB0 +(α +µ)2(B0 +H))

+

(
B+

βB0
r
K B0(B0 +H)− ((α +µ)+δ (1−N0V ))

V +β
K

r(B0 +H)
P
)
(V +P).

Then the application of the center manifold theory yields the following system



dB
dt

=−rB0B/K +O(| B,V,P |2),

dV
dt

=−(µ +α +δ (1−N0V ))V +O(| B,V,P |2),

dP
dt

= ν P2 +O(P3),

(4.16)

where,

ν =
Kβ 2(µ +α)(θα(1−π)φ +θπ(µ +α))

r(B0 +H)(θα(1−π)βB0 +(α +µ)2(B0 +H))
.

Since ν > 0, the PFE is a saddle node. �
The global stability result established in Theorem 4.2 is illustrated numerically by Figure 6, where

the trajectories of the model (2.4) are plotted for different initial conditions and N0 = 0.409. We observe
that susceptible bacteria population persists, while lysogen bacteria and free phage populations vanish.

REMARK 4.2 The instability of the EFE E0 = (0,0,0) predicts that the phages and bacteria cannot
simultaneously face extinction, and justify the fact that phages feed on bacteria only and do not consume
other resources. Thus in the absence of bacteria, phages are condemned to elimination.
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FIG. 6. Global asymptotic stability of PFE E1 whenever N0 = 0,409.

4.3 Existence of Hopf Bifurcation around the EPE

Our purpose here is to determine the conditions under which model (2.4) undergoes a Hopf bifurcation
and illustrate it numerically. The Jacobian matrix of (2.4) evaluated at E∗ is

J(E∗) =



r−µ−2rB∗/K− βP∗H
(B∗+H)2 0 − βB∗

B∗+H

φ(1−π)βP∗H
(B∗+H)2 −(µ +α) φ(1−π)

βB∗

B∗+H

θπβP∗H
(B∗+H)2 θα θπ

βB∗

B∗+H
−δ


.

Knowing that at the EPE point E∗, one has

θπβB∗

B∗+H
−δ =− θα(1−π)φβB∗

(µ +α)(B∗+H)
, P∗ =

r
βK

(B0−B∗)(B∗+H), r−µ−2rB∗/K = r(B0−2B∗)/K,

J(E∗) becomes,
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J(E∗) =



r(B0−2B∗)/K− r
K
(B0−B∗)H
(B∗+H)

0 − βB∗

B∗+H

φ(1−π)
r
K
(B0−B∗)H
(B∗+H)

−(µ +α) φ(1−π)
βB∗

B∗+H

θπ
r
K
(B0−B∗)H
(B∗+H)

θα − θα(1−π)φβB∗

(µ +α)(B∗+H)


.

The characteristic polynomial of J(E∗) is

P(λ ) = λ
3 +a2(B∗)λ 2 +a1(B∗)λ +a0(B∗), (4.17)

where,

a2(B∗) =−
r
K
(B0−2B∗)+

θα(1−π)φβB∗

(µ +α)(B∗+H)
+

r
K
(B0−B∗)H
(B∗+H)

+(µ +α),

a1(B∗) =
r
K
(B0−2B∗)

(
θαφ(1−π)βB∗

(µ +α)(B∗+H)
+(µ +α)

)
+(µ +α +δ )

rH
K

(B0−B∗)
(B∗+H)

,

a0(B∗) =
rHδ (µ +α)

K(B∗+H)
(B0−B∗).

(4.18)

It follows from the Routh-Hurwitz criteria (see Birkhoff G. & Rota G.C. (1989) ) that E∗ is LAS if and
only if a2(B∗)> 0, a0(B∗)> 0 and,

Q(B∗) = a1(B∗)a2(B∗)−a0(B∗)> 0. (4.19)

Plugging (4.18) into (4.19) yields

Q(B∗) = − r
K
(B0−2B∗)

{
1+(1+µ +α)

θα(1−π)φβB∗

(µ +α)(B∗+H)
+(µ +α)(1+µ +α)

}
(4.20)

+
θαφ(1−π)βB∗

(µ +α)(B∗+H)
+

rH(B0−B∗)
K(B∗+H)

(
1+(µ +α +δ )+(µ +α)2) .

After direct but simple computations, (4.18) becomes,

a2(B∗) =
2r(µ +α)B∗

2
+
[
rH(µ +α)(N0−1)+θα(1−π)φβ +(µ +α)2K

]
B∗+(µ +α)2KH

K(µ +α)(B∗+H)
,

a1(B∗) =
r
K
(B0−2B∗)

(
θαφ(1−π)βB∗

(µ +α)(B∗+H)
+(µ +α)

)
+(µ +α +δ )

rH
K

(B0−B∗)
(B∗+H)

,

a0(B∗) =
rHδ (µ +α)

K(B∗+H)

B0(B0 +H)(N0−1)
(B0(N0−1)+HN0)

,

(4.21)
and

Q(B∗) =
B∗
(

τ3B∗
3
+ τ2B∗

2
+ τ1B∗+ τ0

)
K2(µ +α)2(B∗+H)2 , (4.22)



20 of 29 S. Bowong & al.

where,

τ3 = 4r2(µ +α)
(
θα(1−π)φβ +(µ +α)2

)
> 0,

τ2 = 2δ (µ +α)r2H
(
θα(1−π)φβ +(µ +α)2

)
−2r

[
θα(1−π)φβ +(µ +α)2

]
τ0,

τ1 = 2r2(µ +α)2δHB0 +2K(µ +α)2rH
[
θα(1−π)φβ +(µ +α)2

]
+[r(µ +α)H +Kθα(1−π)φβ − r(µ +α)B0]

×
[
r(µ +α)2H−θα(1−π)φβB0− r(µ +α)2B0− (µ +α)H

]
,

τ0 =−K(µ +α)2H
[
rH(µ +α)2 + rθα(1−π)φβB0 + r(µ +α)2B0

]
+δ (µ +α)2r2HB2

0 (1−N0) .

(4.23)
From (4.21), a2(B∗) > 0, and a0(B∗) > 0. The number and the signs of the roots of Q(B∗) depend on
the number and the signs of the following polynomial

q(B∗) = τ3B∗
3
+ τ2B∗

2
+ τ1B∗+ τ0. (4.24)

We use the Descartes’s rule of signs to investigate the number of positive roots of Eq. (4.24). We note
from Eq.(4.20) that Q(B∗)> 0 for all B∗ > B0/2, possible roots B∗c of q(B∗) lie on the interval (0,B0/2).
From Eq. (4.24) and the fact that N0 > 1 we conclude that q(0) = τ0 < 0. Using Eq. (4.20), one has
Q(B0/2) > 0, the intermediate value theorem guarantees the existence of at least one root of q(B∗) in
(0,B0/2). Moreover, τ3 > 0 and τ0 < 0 imply that τ2 > 0. Thus, regardless the sign of τ1, Descartes’s
rule of signs guarantees the existence of at most one positive root of q(B∗). Hence the existence of a
unique root B∗c of Eq. (4.24).

Moreover, note that from Eq. (4.4), one has

N0 =
B0(B∗+H)

B∗(B0 +H)
, (4.25)

so that
B∗ =

HB0

B0(N0−1)+HN0
= B∗c ⇐⇒N0 = N c

0 ,

where,

N c
0 = 1+

B0 +H
B∗c +H

. (4.26)

Furthermore,

N c
0 = 1+

B0 +H
B∗c +H

>
B0 +H
B0
2 +H

= 2+
B0

B0 +2H
.

Due to the high degree of the polynomial q(B∗), it is difficult to find the explicit value of N c
0 . Thus, for

numerical illustrations, it is impossible to use the value of N c
0 to test the stability of EPE. Alternatively

and equivalently, we will select appropriate parameter sets to obtain numerically the desired signs of
Q(B∗).

From the investigations above, it is obvious that Q(B∗) (or equivalently q(B∗)) is positive for
N0 < N c

0 and negative for N0 > N c
0 . Thus, the local stability of the EPE is summarized by the

following result:
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PROPOSITION 4.3 The EPE E∗ is LAS if and only if, 1 < N0 < N c
0 .

The fact that we have established the LAS (it is even GAS) of PFE for N0 < 1, its instability for
N0 > 1 and the existence of a positive LAS equilibrium E∗ when N0 > 1, shows that model (2.4)
presents a transcritical bifurcation at N0 = 1 as stated in the following result.

THEOREM 4.2 The model (2.4) exhibits a trans-critical bifurcation at N0 = 1.

In order to prove the occurrence of Hopf bifurcation. We note that a0(B∗), a2(B∗) and Q(B∗) can be
expressed as the functions of N0 which can be chosen as the bifurcation parameter.

THEOREM 4.3 Denote

H0 =−a2(N
c

0 )a1(N
c

0 )a′1(N
c

0 )−a′2(N
c

0 )a1(N
c

0 )+a′0(N
c

0 ). (4.27)

Then, the model (2.4) exhibits a Hopf bifurcation at N0 = N c
0 around the EPE if H0 6= 0. Moreover,

the Hopf bifurcation is supercritical if H0 > 0 and sub-critical if H0 < 0.

Proof : We use the method presented in Fahad B., Santanu R. & Ezio V. (2018) to find the analytic
conditions for the system (2.4) to undergo a Hopf bifurcation at N0 = N c

0 . We set

Q(N0) = a1(N0)a2(N0)−a0(N0). (4.28)

By the condition Q(N c
0 ) = 0, the characteristic equation (4.17) J(E∗) of takes the form(

λ
2 +a1(N

c
0 )
)
(λ +a2(N

c
0 )) = 0. (4.29)

Let ρ1, ρ2, and ρ3, denote the roots of (4.29), such that ρ3 =−a2(N
c

0 )< 0 and ρ1,ρ2 =±i
√

a1(N c
0 ).

We recall from (4.21) that a0(N
c

0 ) > 0, a2(N
c

0 ) > 0 and observe that a1(N
c

0 ) = a1(B∗c) > 0 (be-
cause B∗c < B0/2). Thus, for N0 = N c

0 , there are one negative eigenvalue and two purely imaginary
eigenvalues of J(E∗).

The general form of ρ1,ρ2 in the neighborhood of N c
0 is ρ1 = x+ iy, and ρ2 = x− iy. Based on

Chakraborty K., Jana S. & Kar T. K. (2012), we now check the following transversality conditions.

∂Reρ j(N0)

∂N0
|N0=N c

0
6= 0 j = 1,2. (4.30)

Substituting ρ j = x± iy into (4.17) and calculating the derivative gives

L1(N0)
∂x

∂N0
−L2(N0)

∂y
∂N0

+L3(N0) = 0,

L2(N0)
∂x

∂N0
+L1(N0)

∂y
∂N0

+L4(N0) = 0,

(4.31)

where,
L1(N0) = 3(x2− y2)+2a2(N0)x+a1(N0),

L2(N0) = 6xy+2a2(N0)y,

L3(N0) =
∂a2(N0)

∂N0
(x2− y2)+

∂a1(N0)

∂N0
x+

∂a0(N0)

∂N0

L4(N0) = 2
∂a2(N0)

∂N0
xy+

∂a1(N0)

∂N0
y.

(4.32)
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Straightforward computations solve system (4.31) and yield

∂Reρ j(N0)

∂N0
|N0=N c

0
=

∂x
∂N0

(N c
0 )

= −
L2(N

c
0 )L4(N

c
0 )+L1(N

c
0 )L3(N

c
0 )

L2
1(N

c
0 )+L2

2(N
c

0 )

= −
a2(N

c
0 )a1(N

c
0 )a′1(N

c
0 )+a′2(N

c
0 )a1(N

c
0 )−a′0(N

c
0 )

a1(N c
0 )+a2

2(N
c

0 )

= − H0

a1(N c
0 )+a2

2(N
c

0 )
. (4.33)

Since by hypothesis H0 6= 0, the transversality conditions (4.30) hold. Hence the existence of Hopf
bifurcation. This ends the proof of Theorem 4.3. �

To illustrate the Hopf bifurcation phenomenon in Theorem 4.3 above, we choose two suitable sets
of parameter values from Table 1, such that for the first set, Q(B∗) > 0 or equivalently N0 < N c

0 (i.e
E∗ is locally stable) and for the second set, Q(B∗)< 0 or equivalently N0 > N c

0 (i.e E∗ is unstable and
periodic solutions occur, see Figure 8). For the first set, the LAS of E∗ is guaranteed and is illustrated
in Figure 7.

FIG. 7. LAS of the EPE: N0 = 1.56, Q(B∗) = 0.17264514 > 0. The parameter set is
r = 0.8, K = 106, µ = 0.5, β = 0.75, H = 107, θ = 100, φ = 80, π = 0.7, α = 0.04 γ = 1, δ = 0.06, B0 = 8.8×107.

For the second set, Q(B∗)< 0 such that E∗ is unstable and leads to the appearance of periodic oscillations
around E∗. From Figure 8, one can easily see that a solution starting in the first orthant approaches
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the periodic orbit as time evolves. Actually, Figure 7 and Figure 8 illustrate the Hopf bifurcation at
N0 = N c

0 , around the EPE.

FIG. 8. Periodic solutions for N0 = 4.73. Q(B∗) =−0.006823032 < 0. The parameter set is
r = 0.8, K = 106, µ = 0.15, β = 0.75, H = 105, θ = 100, φ = 100, π = 0.7, γ = 1, δ = 0.06. B0 = 3.6588×107.

4.4 Estimation of the basin of attraction of the EPE

In this paragraph, an estimate of the basin of attraction of the EPE E∗ is provided. Note that the existence
of stable periodic solutions for model (2.4) precludes the global asymptotic stability of E∗ in the entire
interior of Ω . We are therefore left with the possibility of finding a subset ΩE∗ of Ω containing E∗ such
that every solution initiated in ΩE∗ converges to E∗. Let’s denote the stable manifold of E1 by Ws(E1),
define the quantity

Bm = B0−B∗ =
B0(B0 +H)(N0−1)
B0(N0−1)+HN0

> 0, (4.34)

and the subset

ΩE∗ =

{
(B,V,P) ∈Ω : Bm 6 B(t)6

φrK
4µ

}
\Ws(E1).

Recall that if one assumes 1 < N0 < N c
0 , so that B∗ ∈ΩE∗ is guaranteed, and Q(B∗)> 0, then the EPE

E∗ is LAS. This suggests that the global asymptotic stability can be investigated in ΩE∗ . Precisely, we
prove in Theorem 4.4 below that ΩE∗ is actually contained in the basin of attraction of E∗.

THEOREM 4.4 whenever 1 < N0 < N c
0 , the EPE E∗, of the system (2.4) is GAS in ΩE∗ .

Proof : Note that ΩE∗ contains, neither the EFE E0, nor the PFE E1. We follow the works in
Xiabong T. & Rui X. (2011), Berge T., Lubuma J.M.S., Moremedi G.M., Morris N. & Kondera-Shava
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R. (2016), to propose the following Lyapunov function candidate for the EPE.

L(B,V,P) = a
∫ B

B∗

f (x)− f (B∗)
f (B)

dx+b
(

V −V ∗−V ∗ ln
V
V ∗

)
+ c
(

P−P∗−P∗ ln
P
P∗

)
, (4.35)

where a, b, and c are three positive constants to be determined shortly. We now compute the derivative
of L along the solutions of (2.4).

dL
dt

= a
(

1− f (B∗)
f (B)

)
dB
dt

+b
(

1− V ∗

V

)
dV
dt

+ c
(

1− P∗

P

)
dP
dt

. (4.36)

Substituting the expressions of (2.4) in (4.36) yields

dL
dt

= a
(

1− f (B∗)
f (B)

)
(n(B)− f (B)P)+b

(
1− V ∗

V

)
((1−π)φ f (B)P− (µ +α)V )

+ c
(

1− P∗

P

)
(θπ f (B)P+θαV −δP).

Straightforward calculations give

dL
dt

= a
(

1− f (B∗)
f (B)

)
(n(B)−n(B∗)− f (B)P+ f (B∗)P∗)

+ b
(

1− V ∗

V

)(
(1−π)φ f (B)P− (1−π)φ f (B∗)P∗

V
V ∗

)
+ c

(
1− P∗

P

)(
θπ f (B)P+θαV −θπ f (B∗)P−θαV ∗

P
P∗

)
.

Further expansions yield,

dL
dt

= a
(

f (B)− f (B∗)
f (B)

)
(n(B)−n(B∗))−a f (B)P+a f (B∗)P+a f (B∗)P∗−a

f (B∗)2

f (B)
P∗

+ b(1−π)φ f (B)P−b(1−π)φ f (B∗)P∗
V
V ∗
−b(1−π)φ f (B)P

V
V ∗

+b(1−π)φ f (B∗)P∗

+ cθπ f (B)P+ cθαV − cθπ f (B∗)P− cθαV ∗
P
P∗

P− cθπ f (B)P∗− cθα
P∗

P
V

+ cθπ f (B∗)P∗+ cθαV ∗.

After grouping the terms of the above expression, we have,

dL
dt

= a
(

f (B)− f (B∗)
f (B)

)
(n(B)−n(B∗))+ f (B)P(−a+b(1−π)φ))+ f (B∗)P∗(a+b(1−π)φ)

− a
f (B∗)2

f (B)
P∗+

[
−b(1−π)φ f (B∗)

P∗

V ∗
+ cθα

]
V +

[
a f (B∗)− cθα

V ∗

P∗
− cθπ f (B∗)

]
P

− cθπ f (B)P∗− cθα
P∗

P
V + cθπ f (B∗)P∗+ cθαV −b(1−π)φ f (B)P

V
V ∗

.

Now, choose a, b, and c such that the expressions in the brackets vanish, that is

a f (B∗)− cθα
V ∗

P∗
− cθπ f (B∗) = 0,

−b(1−π)φ f (B∗)
P∗

V ∗
+ cθα = 0.

(4.37)
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Fix c > 0 and pose

a =

(
θαV ∗

f (B∗)P∗
+θπ

)
c, b =

θαV ∗

(1−π)φ f (B∗)P∗
c.

Then, the derivative of L along the trajectories of (2.4) becomes,

dL
dt

= c
(

θαV ∗

f (B∗)P∗
+θπ

)(
f (B)− f (B∗)

f (B)

)
(n(B)−n(B∗))− cθαV ∗

f (B∗)
f (B)

+ f (B∗)P∗
(

θαV ∗

f (B∗)P∗
c+θπc+

θαV ∗

f (B∗)P∗
c
)
− cθπ f (B∗)P∗

f (B∗)
f (B)

− cθπ f (B)P∗

− cθαV
P∗

P
− cθαV ∗

f (B)PV ∗

f (B∗)P∗V
+ cθπ f (B∗)P∗+ cθαV ∗

= c
(

θαV ∗

f (B∗)P∗
+θπ

)(
f (B)− f (B∗)

f (B)

)
(n(B)−n(B∗))+3cθαV ∗+2cθπ f (B∗)P∗

− cθαV ∗
f (B∗)
f (B)

− cθπ f (B∗)P∗
f (B∗)
f (B)

− cθπ f (B)P∗− cθαV
P∗

P
− cθαV ∗

f (B)PV ∗

f (B∗)P∗V
.

Further rearrangements lead us to

dL
dt

= c
(

θαV ∗

f (B∗)P∗
+θπ

)(
f (B)− f (B∗)

f (B)

)
(n(B)−n(B∗))+ cθπ f (B∗)P∗

(
2− f (B∗)

f (B)
− f (B)

f (B∗)

)
+ cθαV ∗

(
3− f (B∗)

f (B)
− f (B)PV ∗

f (B∗)P∗V
− V P∗

V ∗P

)

= c
(

θαV ∗

f (B∗)P∗
+θπ

)
β (B−B∗)2

(B+H)(B∗+H)

(
r−µ− r

K
(B+B∗)

)
+ cθαV ∗

(
3− f (B∗)

f (B)
− f (B)PV ∗

f (B∗)P∗V
− V P∗

V ∗P

)
+ cθπ f (B∗)P∗

(
2− f (B∗)

f (B)
− f (B)

f (B∗)

)
.

The gathering of some suitably selected terms yields

dL
dt

= −c
r
K

(
θαV ∗

f (B∗)P∗
+θπ

)
β (B−B∗)2

(B+H)(B∗+H)
(B− (B0−B∗))

+ cθαV ∗
(

3− f (B∗)
f (B)

− f (B)PV ∗

f (B∗)P∗V
− V P∗

V ∗P

)
+ cθπ f (B∗)P∗

(
2− f (B∗)

f (B)
− f (B)

f (B∗)

)

= −c
r
K

(
θαV ∗

f (B∗)P∗
+θπ

)
β (B−B∗)2

(B+H)(B∗+H)
(B−Bm)

+ cθαV ∗
(

3− f (B∗)
f (B)

− f (B)PV ∗

f (B∗)P∗V
− V P∗

V ∗P

)
+ cθπ f (B∗)P∗

(
2− f (B∗)

f (B)
− f (B)

f (B∗)

)
.

Finally, using the arithmetic-geometric means inequality, n−(y1+y2+ ...+yn)6 0, where y1y2...yn = 1,
and y1,y2, ...yn > 0, it follows that dL/dt 6 0. Furthermore, dL/dt = 0 is equivalent to (B,V,P) =
(B∗,V ∗,P∗). The global asymptotic stability of the EPE E∗ follows from the classical stability theorem
of Lyapunov and the LaSalle’s Invariance Principle (see LaSalle J. P. (1976)). This result shows that, as
long as 1 < N0 < N c

0 , the set ΩE∗ will never contain the periodic solutions.
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5. Global sensitivity analysis of model’s variables

We carry out sensitivity analysis to ascertain the uncertainty of the parameters to the model output. This
is vital since it enables us to identify critical output parameters. Sensitivity and uncertainty analysis
are performed using the Latin hypercube sampling (LHS) scheme, a Monte-Carlo stratified sampling
method that allows to obtain an unbiased estimate of the model output for a given set of input parameter
value. The parameter space is simultaneously sample is used to compute unbiased estimate of output
values for state variables (see Ray C., Mariano S., Hogue I.B. & Kirschner D.E. (2008) ). We use
predefined variation of the model parameters at 10% and 50% relative to the referential values. Using
algorithm from Ray C., Mariano S., Hogue I.B. & Kirschner D.E. (2008) , we compute the partial
ranking correlation coefficient (PRCC) of parameters against model’s variables B, V and P. We use
a sample of size 1000 to identify relationship between parameters and output variables. A positive
(negative) correlation coefficient corresponds to an increasing (decreasing) monotonic trend between the
model’s variable and the parameter under consideration. Note that a parameter is significantly correlate
to one state variable if the absolute value of PRCC is greater than 0.5 and p-value less than 0.001.

FIG. 9. Global sensitivity analysis (PRCCs) between B, V, P and each parameter.

REMARK 5.1 From Figure 3 and Figure 9, we can identify six parameters that strongly influence the
population dynamics, namely: the contact rate (β ), phage death rate (δ ), bacteria carrying capacity (K),
induction rate (α), burst size (θ ) and cell division size (φ ). We can then made the following suggestions:
(i) The use of more UV radiations and chemicals to increase the prophage induction could be an effec-
tive control measure against the growth of lysogen bacteria.
(ii) The use of biological control to reduce the bacteria cell division size.
(iii) The implementation of the methods proposed in Bhandare & Sudhakar G. (2005) in order to iden-
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tify/select lytic phages and release them in the environment. This leads to the increase of contacts
between bacteria and lytic phages which in turn favors the reduction of bacteria.

6. Conclusion

The objectives of this paper were fourfold:
(1) From the modeling perspective, we build a mathematical model for the phage-bacteria interac-

tions in the environmental reservoir by taking into account the prophage induction process. This work
considers three aspects of life cycles of phages and bacteria:

(a) The lytic life cycle: phages infect cells and the progeny phages are produced through lysis killing
the bacteria and producing numerous phages.

(b) The lysogenic life cycle: phages do not kill cells and support the emergence of new clones of
bacteria.

(c) The prophage induction event, that is the switching from lysogenic to lytic life cycle.
The resulted mathematical model obtained from these processes is a prey-predator like system with

Holling type II functional response and logistic growth of free bacteria.
(2) From the theoretical analysis point of view, we do an in-depth investigation of asymptotic be-

havior and bifurcation analysis of the system. In this regard, we have computed the basic offspring
number N0 and used it as the bifurcation parameter to establish the local/global stability of equilibria.
Lyapunov-LaSalle techniques were used for the global asymptotical stability results and for the estima-
tion of the basin of attraction of the locally asymptotically stable EPE. Based on the values and range
of N0, all the equilibria were topologically classified using the center manifold approximation, and the
types of bifurcation were specified accordingly. Precisely, we have shown that the system undergoes a
trans-critical bifurcation around N0 = 1 and a Hopf bifurcation around the EPE.

(3) Computationally, we used MatLab platform to perform both the global sensitivity analysis of
N0 and the model variables. The result of that sensitivity analysis suggests that, the contact rate β ,
the induction rate α , the bacteria carrying capacity K, the burst size θ and the cell division size φ are
the more influential parameters on the phage-bacteria interactions. Moreover, we have simulated the
system to illustrate our theoretical results: namely, the GAS of the PFE has been illustrated, as well
as the occurrence of periodic solutions. Epidemiologically speaking, the existence of stable periodic
solutions could explain the occurrence of repetitive outbreaks of some bacteria-borne diseases such as
cholera in Africa and Asia.

(4) Finally, ecologically and epidemiologically speaking, we have provided the following responses
to the two raised research questions in the introduction: For small values of the basic offspring number of
phages, it is possible that periodic bacterial diseases outbreak occur. On the other hand, for sufficiently
large values of the basic offspring number, the total population of bacteria go extinct and the polluted
environment is purified.

Despite the high level of complexity of our work, it still offers many opportunities for extension.
Since, it is well-documented that bacteriophages (and in particular vibriophages) can convert their bac-
terial hosts from non pathogenic strains to pathogenic strains through a process called phage conversion,
by providing the hosts with phage-encoded virulence genes (for instance, toxigenic V. Cholerae isolates
carry the ctxAB genes encoded by lysogenic phage), and that only those strains cause epidemic and
pandemic cholera (see Faruque M. & John J. (2012)); our next work is to couple the model in this work
with an epidemic cholera model in order to study the impacts of prophage induction and lysogen bacte-
ria on the cholera dynamics. Furthermore, we intend later to include the innate immune system in our
modeling framework to better investigate the perspective of phage therapy.
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