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Abstract

In this work, we assess the impact of the phage-bacteria infection and optimal control on the indirectly
transmitted cholera disease. The phage-bacteria interactions are described by predator-prey system
using the Smith functional response, which takes into account the number of bacteria binding sites. The
study is done in two steps, namely the model without control and the model with control. For the first
scenario, we explicitly compute the basic reproduction number R0 which serves as stability threshold
and bifurcation parameter. The proposed model exhibits a bi-stability phenomenon via the existence of
backward bifurcation, which implies that the classical requirement of bringing the reproduction number
under unity, while necessary, is no longer sufficient for cholera elimination from the population. We
intuitively introduce a new threshold number N0 needed for the global stability of the disease free
equilibrium point which is achieved when R0 ≤ 1 and N0 ≤ 1. It is further shown that the phage
absorption is a possible cause of bi-stability, since in its absence, the condition R0 ≤ 1 is sufficient for
cholera to die out. The existence of endemic equilibrium points depends on the range of both R0 and
N0. Regarding the model extended to an optimal control problem, which involves the use of virulent
vibriophages to reduce or eliminate the bacteria population, we use optimal control theory techniques.
We establish the conditions under which the spread of cholera can be stopped, and examine the impact
of control measures on the transmission dynamic of cholera. The Pontryagin’s maximum principle
is used to characterize the optimal control. Numerical simulations suggest that, the release of lytic
vibriophages can significantly reduce the spread of the disease. We discuss opportunities for phage
therapy as treatment of some bacterial-borne diseases without side effects.

Keywords: Bi-stability, Optimal control, Smith attachment function, Bifurcation, Virulent phage, Phage
absorption.

1. Introduction

Cholera is commonly known as the "disease of dirty hands". It is an infection of the small intestine
caused by some strains of the vibrio cholerae. The two ecological serogroups (Vibrio cholerae 01 and
Vibrio cholera 0139) have the ability to colonize the hosts small intestine. It may happen that symptoms
are not visible, but when they arise, one notices high dehydration of the infected person through watery
diarrhea that lasts a few days. This may result in sunken eyes, cold skin, decreased skin elasticity, and
wrinkling of hands and feet. Symptoms start two hours to five days after exposure. Cholera affects
an estimated 3-5 million people worldwide and causes 28,800-130,000 deaths per year [56, 57]. As of
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2010, cholera has been classified as a pandemic disease, though it is rare in developed countries. The
most affected people are children, especially in Africa and Southeast Asia. The usual fatality rate of
cholera is less than 5%, but this can dramatically reach 50% in some areas where access to treatment is
unavailable. Vibrio Cholerae can survive in some aquatic environment for three months to two years.
Typically, these viruses live in association with zoo-plankton, phytoplankton and the aquatic organism
such as bacteriophages [57].

Phages or bacteriophages, also known as viruses for bacteria, are parasites which replicate only when
they infect bacteria. They are the most populated organisms in the aquatic ecosystem and probably in
the world. As parasites, their survival and multiplication depend on the existence of specific types of
bacteria they can infect. Based on their survival strategies, phages exhibit the following three different
life cycles: lytic, lysogenic and pseudo-lysogenic [15]. In its lytic life cycle, a phage injects a bacterium
cell and multiplies such that new phages burst from the cell and kill the bacterium. In the lysogenic
cycle, the phage does not replicate but becomes a prophage whereby its genome goes into a quiescent
condition where it is usually integrated into the host genome or alternatively it is maintained as an
extra chromosomal plasmid [15]. During the lysogenic life cycle, the host cell survives and continues
to reproduce with the virus being reproduced in all daughter cells. In the pseudo-lysogenic life cycle,
the phage neither undergoes lysogeny nor shows lytic cycle; but it remains inactive. There is a class of
phages which are restricted to either the lytic or lysogenic cycle. Phages that replicate only via the lytic
cycle are known as virulent phages, while those that replicate using both lytic and lysogenic cycles are
known as temperate phages. In the lysogenic cycle, upon detection of cell damage, such as ultra-violet
radiation light or certain chemical, the prophage is extracted from the bacterial chromosome in a process
called prophage induction [7]. After induction, viral replication begins via the lytic cycle.

The presence of phages in an environmental reservoir plays an essential role in the evolution of
bacterial species. Therefore, the interaction between phages and bacteria can trigger some environmental
indirect transmitted diseases by enabling the emergence of new clones of virulent pathogenic bacteria.
For instance, when infected by temperate phages, Vibrio cholerae evolve from environmental non-
pathogenic strains to highly pathogenic species by acquisition of virulent genes through the lysogenic
cycle in the phage-bacteria interaction [15]. Furthermore, the presence or introduction of virulent phages
in the environment or in the human guts can help to combat or treat cholera. Thus, understanding the
genetic and ecological factors, which support the phage-bacteria interaction, the production of highly
virulent pathogenic species, and the presence of virulent lytic phages is essential to develop preventive
measures for environment-borne diseases such as cholera. In this regard, mathematical modeling is an
important tool to provide insights into the co-evolution or extinction of bacteria and phages.

Several studies have been carried out on the phage bacterial interactions from both the mathematical
[37, 49, 50, 51], and the biological [7, 9, 15, 20, 23, 24, 40] perspectives. The majority of these works dealt
with the description of the lytic cycle of phages and the use of virulent phages to control infection and
bacterial contamination. Few of them have been devoted to the lysogenic cycle, prophage induction
and the proliferation of pathogenic bacteria due to phage-bacteria infection. Recently, Hal Smith [49]
proposed a mathematical model of virulent phage growth with application to phage therapy. The
novelty in this work was the consideration of a new functional response, which takes into account the
number of binding sides as well as the explicit modeling of the loss of phages due to attachment.

The general setting of this paper is a cholera epidemiological model. We build on, and extend some
of the existing works in the literature in the following three directions:

(i) We consider the bacteria interaction with phages (lytic and temperate).

(ii) We use the phage-bacteria functional response similar to the one proposed by Smith [49].

(iii) In order to control the proliferation of pathogenic bacteria, the model is further extended to an
optimal control problem by adding a class of selected virulent phages that are continuously released
into the environment.
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Our methodology is twofold. Firstly, we formulate a model without control. The basic reproduction
number R0 is computed, and the existence and stability of equilibrium points are investigated. We
prove that the disease free equilibrium point (DFE) is locally asymptotically stable whenever R0 < 1.
The system exhibits a bi-stability phenomenon via the existence of backward bifurcation due to the
phage absorption. This implies that the classical epidemiological requirement for effective elimination
of cholera, R0 < 1, is no longer sufficient. Due to the existence of backward bifurcation, we determine
another thresholdN0, such that the DFE is globally asymptotically stable when both R0 andN0 are less
than one, irrespective of their order of comparison. On the other hand, depending on the range of R0
andN0, the proposed model can exhibit one or more endemic equilibrium points. In the absence of the
phage absorption, so that there is no backward bifurcation, the model exhibits a trans-critical forward
bifurcation at R0 = 1. Precisely, it is proven that there is no endemic equilibrium point whenever R0 < 1,
while there exists a unique globally asymptotically stable endemic equilibrium point whenever R0 > 1.

Secondly, we formulate an optimal control problem assuming the release of selected virulent phages
as a strategy for elimination of cholera disease. Notice that the virulent phages selection is possible using
the methods in [24, 40]. The theoretical analysis and numerical simulations of the control model show
that, in the presence of virulent phages shed into environment, the population of susceptible humans
increases, while the population of infected humans decreases significantly.

The rest of the paper is organized as follows. Section 2 is devoted to the model without control.
We formulate it, study its basic properties, the bi-stability occurrence via bifurcation analysis, and
provide the numerical simulations. While Section 3 deals with the formulation, analysis and numerical
simulations of the optimal control problem, concluding remarks and discussions are given Section 4.

2. Model without control

2.1. Model derivation
Our model is in the framework of multi-hosts modeling, whereby the dynamics of the three interact-

ing distinct populations of bacteria, phages and human beings is described, with the particularity that
phages prey on bacteria. In the presence of phages or viruses denoted by P, the bacterium population
splits into the following three classes: susceptible bacteria (not yet attacked by phages), lysogen bacteria
(bacteria infected by temperate phages) and those infected by virulent phages.

Let B denote the susceptible or uninfected bacteria. They are free-living cholera agents capable of
self multiplication in the environment. For simplicity, we assume that their growth rate is a constant
r. Following the approach in [49], we argue that the phage attack rate or the phage-bacteria functional
response and the rate of phage loss due to attachment are distinct. We recall that, the functional response
is the number of prey successfully attacked per predator as a function of prey density. We model the
phage-bacteria functional response by

h(B,P) = ε
BP

Fn(cP)
. (2.1)

Here, ε is the absorption rate, and c = ε/ρwith 1/ρ, representing the injection time, i.e. the time between
binding of phages to host bacteria and subsequent injection of genetic material into host, and n denotes
the number of binding sites for phages per host (bacterium). The function f (P)

f (P) =
P

Fn(cP)
, (2.2)

is the phage attack rate proposed in [49], where

Fn(P) = 1 +
P

1 + P
+

P2

(1 + P)(2 + P)
+ ... +

Pn

(1 + P)(2 + P)...(n − 1 + P)n
. (2.3)

The following properties of f and Fn are derived from Lemma 2.1 in [49]:
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1.
d

dP
Fn(P) > 0 and

d
dP

f (P) > 0.

2. limP→+∞ f (P) = n.

3. Fn(P) > 1.

4. F∞(P) ≤ Fn+1(P) ≤ Fn(P) ≤ F1(P) = 1 + P.

For the numerical simulations, we shall choose n = 3. This choice is not a severe limitation, as Fn(P)
depends rather weakly on n and F3(P) is a good approximation of F100(P) on 0 < P < 5 [49].

We assume that the bacteria population cannot maintain itself through growth in the environment.
Thus, the decay rate µb of bacteria is greater than r. It is known that multiple phage infection is not
possible. Thus, susceptible bacteria are infected either by temperate or virulent phages. We denote by π
the proportion of lysogen bacteria and 1 − π the proportion of bacteria infected by virulent phages.

Let BT denote the lysogen bacteria. The lysogenic cycle allows the host cell to continue to survive
and reproduce, the virus is reproduced in all of the cell’s offspring. The genetic material of phages called
prophages can be transmitted to daughter cells at each subsequent cell division [7]. We denote the cell
multiplication size by φ. In the course of cell division, the effect of ultra-violet radiations or the presence
of certain chemicals can lead to the release of prophages causing proliferation of new phages through
the process called prophage induction. Therefore, with α denoting the induction rate, αBT is the number
of lysogen bacteria that switch from a lysogenic cycle to a lytic cycle.

Let BV denote the population of bacteria infected by virulent/lytic phage. In the lytic cycle, bacteria
cells are broken (lysed) and destroyed after immediate replication of the new phages [7]. We denote by
θ, the burst size of the bacteria and γ the bacteria death due to lysis.

With P the population of phages, we associate µP, the phage decay rate. The loss of phages may be
significant during the phage-bacteria interactions. For example, if we assume that a phage cannot detect
the state (uninfected or infected) of the host cell to which it binds, then one should not ignore the loss
of the phage due to wasted attacks on already infected hosts [49]. We take into account the fact that a
host cell has a multiplicity of potential phage binding sites on its surface, higher than the one that may
be simultaneously bound by phage. Thus the rate of phage loss due to attachment can be described by
the expression

− ε(B + BT + BV)P. (2.4)

As far as the human total population at time t, N ≡ N(t) is concerned, we split it into susceptible (S ≡ S(t))
and infected (I ≡ I(t)) compartments so that N(t) = S(t) + I(t). We model the cholera epidemic by an
SIS-W system, where W stands for the density of vibrio cholerae in the environment. Note that in this
setting, vibrio cholerae play the role of bacteria and phages under consideration are those that infect
vibrio cholerae also known as vibriophages. The recruitment rate in human population is constant and
denoted by Λ. Human die naturally at the rate µh, while the death rate due to cholera is denoted by d
and the recovered rate is δ. The phages can convert their bacterial hosts from non pathogenic strains
to pathogenic strains through a process called phage conversion, by providing the hosts with phage-
encoded virulence genes. Toxigenic vibrio cholerae isolates carry the ctxAB genes encoded by lysogenic
phages. Thus, the susceptible human population acquire an infection by consuming the lysogen bacteria,
at rate βBTS where β is the contact rate with environment. On the other hand, when the susceptible vibrio
cholerae are ingested from the environment and reach the small intestine within the human body, then
complex biological interactions, chemical reactions, and genetic transduction take place, which lead to
human cholera [51]. The ingestion of susceptible vibrio cholerae can cause infection at rate βkB, where k
is the infection rate of susceptible bacteria by temperate phages in the small intestine. The ingestion of
infected bacteria BV cannot lead to the infection since they are lysed to produce phages. Unlike [49], we
have neglected the delay between the time vibrio cholera is infected and the moment it lyses. Thus, the
force of infection is given by

λ = β(BT + kB). (2.5)
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Symbols Biological definitions Baseline value Range Source
r Intrinsic bacteria growth rate 0.8 0.3 − 14.3 [28]
µb Bacteria decay rate 0.002 0-1 assumed
ω, η, ν Bacteria shedding rates 20 10-100 [38]
ε Phage absorption rate 0.0015 0-0.0025 [28, 49]
α Prophage induction rate 0.4 0.001 − 0.99 assumed
φ Cell division size 80 10 − 100 assumed
π Fraction of lysogen bacteria 0.2 0 − 1 [7]
γ Bacteria death rate due to lysis 1 0.1 − 1 assumed
θ Bacteria burst size 100 80 − 100 [28]
e Phage shedding rate 0.15 0.1 − 0.99 assumed
Λ Human recruitment rate 20 1-5000 assumed
µh Human natural death rate 0.002 0-1 [38]
d Human death rate due to cholera 0.00005 0 − 0.99 [33]
δ Human recovery rate 0.5 0-1 assumed
k Infection rate in the small intestine 0.15 0.4 − 0.99 assumed

Table 1: Variables and parameters for model system (2.6).

Human contamination of the water supply through infected feces (i.e. shedding) contributes to bacteria
levels. Therefore, the shedding rates of susceptible bacteria (B), lysogen bacteria (BT) and infected
bacteria (BV) are denoted by ω, η and ν respectively. The above discussed process of the construction of
the model is schematized in Figure 1, while Table 1 summarizes the description of the model parameters.
Based on the above formulation and assumptions, the model describing the cholera dynamics is given
by the following deterministic system of nonlinear differential equations:

dS
dt

= Λ − β(BT + kB)S − µhS + δI,

dI
dt

= β(BT + kB)S − (µh + d + δ)I,

dB
dt

= ωI + rB − εB f (P) − µbB,

dBT

dt
= ηI + φπεB f (P) − (µb + αγ)BT,

dBV

dt
= νI + (1 − π)εB f (P) − (µb + γ)BV,

dP
dt

= eI + θγBV + θαγBT − ε(BT + BV + B)P − µPP.

(2.6)

Though this model is formulated for cholera epidemics, we stress that it can apply to other bacterial-
borne diseases, for which the disease pathogen can interact with a specific phage and lyse such as E.
Coli, Q fever, Pyomysitis, Eurysipelas [24].

2.2. Analysis of the model
The model (2.6) monitors changes in the populations (humans, phages, bacteria). For it to be

epidemiologically meaningful, it is important to prove that to non-negative initial data, corresponds a
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Figure 1: Simplified schematic flow diagram for model (2.6).

unique, bounded and non-negative solution for all t ≥ 0. Set

N = S + I, M = φB + BT + φBV, Mm =
Λφ(ω + η + ν)

µbµh
, Pm =

Λe
µhµP

+
θ(γ + αγ)Mm

µbµhµp
.

Then it is not difficult to prove the following result.

Theorem 2.1. The model (2.6) is a dynamical system in the compact set

Ω =

{
(S, I,B,BT,BV,P) ∈ R6

+, N(t) ≤
Λ

µh
, M(t) ≤Mm, P(t) ≤ Pm

}
.

System (2.6) has a disease free equilibrium point given by E0 = (S0, 0, 0, 0, 0, 0) with S0 = Λ/µh. The
basic reproduction number of the model (2.6) is

R0 =
ωβkS0

(µh + d + δ)(µb − r)
+

ηβS0

(µh + d + δ)(µb + αγ)
. (2.7)

In (2.7), ωβkS0/(µh + d + δ)(µb − r) is the average number of secondary human infections produced by
susceptible bacteria in their entire lifespan, while ηβS0/(µh + d + δ)(µb + αγ) is the average number of
secondary human infections produced by lysogen bacteria in their entire lifespan.

Proposition 2.2. The diseases free equilibrium point E0 is locally asymptotically stable (LAS) whenever R0 < 1
and unstable whenever R0 > 1.

The proof of Proposition 2.2 is provided in Appendix A.
The biological implication of Proposition 2.2 is that, a sufficiently small flow of infectious individuals

will not generate outbreak of the disease unless R0 > 1. For a better control on the disease, the global
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asymptotic stability (GAS) of the DFE is needed. Note that, classically, the basic reproduction number
of (2.6) R0 is the average number of secondary human infections through environmental transmission
caused by infectious bacteria (B, BT) during their entire lifespan. However, one should notice that R0
does not depend on the parameters of phage-bacteria interaction. This is not surprising, since system
(2.6) couples an epidemic model (cholera) and a population dynamics model (predator-prey system).
Usually, the in-depth asymptotic analysis of such a coupled system involves two thresholds, which
for our model maybe: the epidemic threshold R0 and a coexistence threshold for the predator-prey
system. The existence of the latter threshold for model (2.6) is actually expected because the infected
human individuals contribute to the growth of bacteria. The threshold quantity N0 should actually be
the average offspring number of lysogen bacteria produced, by one infected human during the phage-
bacteria interaction. By inspection, we observe that, βS0/(µh +d+δ) is the average number of the infected
individuals,

(
η + ωφπ

)
is the rate of production lysogen bacteria either by shedding at rate η or by cell

division at rate φπω, and 1/(µb + αγ) is the lysogen bacteria lifespan. Therefore, we defineN0 by

N0 :=
βS0

µh + d + δ

(
η + ωφπ

) 1
µb + αγ

. (2.8)

For further investigation, the threshold quantityN0 is used in the next theorem for the global asymptotic
stability of the DFE, the proof of which is given in Appendix B.

Theorem 2.3. The diseases free equilibrium point E0 is globally asymptotically stable in Ω whenever R0 ≤ 1 and
N0 ≤ 1.

Theorem 2.3 indicates that regardless of the initial condition, cholera infection will ultimately die out as
long as both the basic reproduction numberR0 and the average offspring number of lysogen bacteriaN0
are less than or equal to unity. Hence, affordable efforts should be made to bring both thresholds below
unity. Contrary to most classical epidemiological models where, bringing only the basic reproduction
numberR0 below one is sufficient to eliminate the infection, more effort is needed here due the additional
condition N0 ≤ 1, which actually highlights the influence of the ecology of phages and bacteria on the
cholera evolution. We perform a global sensitivity analysis to examine the model response to parameter
variation within a wider range in parameter space. Following the approach in [42], Partial Rank
Correlative Coefficient (PRCC) betweenR0,N0 and each parameter are derived. The results of the PRCC
ofR0 andN0 are shown in Figure 2. We observe that the parameters Λ, β, ω and η have the most positive
influence on R0 and N0 (i.e increasing them), while those with most negative impact on R0 and N0 (i.e
decreasing them) are µh, δ, α and µb. It is worth noting that R0 andN0 are similarly influenced by all the
shared parameters.

In order to control the spread of cholera, some strategies can be implemented. For instance, it
is proposed in [47] to reduce the contact rate β by informing people, and increasing the decay rate
of bacteria µb through disinfection of contaminated environment. One may wish to assess how their
combined action influence the basic reproduction number R0 and the threshold N0. Figure 3 is a
bifurcation diagram which uses the curves of R0 = 1 andN0 = 1 to separateR2

+ into four regions. Figure
3 specifically shows that, for a couple (µb, β) ∈ D0, and fixing other parameters, cholera is eliminated.
The global asymptotic stability of the DFE established in Theorem 2.3 is illustrated numerically on
Figure 4, where the trajectories of model (2.6) are plotted for different initial conditions for R0 = 0.7756
and N0 = 0.8049. From Figure 4, we observe that the susceptible human population sustains , while
infected human and the total population of infectious bacteria disappear.

2.2.1. Existence of endemic equilibrium points
An endemic point (EE) of model (2.6) is the state where infected humans, bacteria and phages cannot

be totally eradicated but remain in the human population and environment. In this context we have three
sub-populations and several infected compartments. Thus the single threshold R0 cannot be sufficient
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to derive conditions for the existence of EE. In this section we highlight that, the existence of EE of
model (2.6) depends on the epidemiological thresholdR0 for human sub-system as well as the ecological
threshold N0 for the phage-bacteria sub-system. The precise result is stated in the next theorem which
is proved in Appendix C.

Theorem 2.4. The following statements hold true:
(i) The model (2.6) has a unique endemic equilibrium point whenever R0 > 1 andN0 > 1.
(ii) There is no endemic equilibrium point for model (2.6) whenever R0 ≤ 1 andN0 ≤ 1.
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(iii) For the other cases, the model (2.6) at least three endemic equilibrium points.

2.3. Bifurcation analysis
While parts (i) and (ii) of Theorem 2.4 are clear, the dynamics in part (iii) needs to be unpacked as it

suggests the existence of the bi-stability phenomenon. This is what we investigate in this section.

2.3.1. Backward and forward Bifurcations
To conduct the bifurcation analysis, we define the two following thresholds. The first one, β∗ is

obtained by setting R0 = 1 in (2.7)

β∗ =
(µh + d + δ)(µb − r)(µb + αγ)
ωk(µb + αγ)S0 + η(µb − r)S0

.
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The second one, χ0, is defined by

χ0 = 1 +
β∗(µh + d)

(
kω(µb + αγ) + η(µb − r)

)
(µb + γ)S0

µhθγ(µb + γ)
(
(µb + γ)α + µb + αγ)

)
+ e(µb + αγ)(µb + γ)

. (2.9)

Theorem 2.5. The model (2.6) exhibits the following types of bifurcations at R0 = 1:

i) A forward (trans-critical) bifurcation whenever 1 < N0 < χ0. That is the DFE is LAS whenever R0 < 1,
becomes unstable whenever R0 > 1, and gives rise to a LAS endemic equilibrium point.

ii) A backward (sub-critical) bifurcation whenever N0 > χ0. That is there exits a LAS endemic equilibrium
point when R0 < 1 which coexists with the LAS DFE.

The proof of Theorem 2.5 is provided in Appendix D, while the illustrative bifurcation diagrams are
shown on Figures 5. To this is added the illustration of the bi-stability phenomenon in Figure 6 whenever
R0 = 0.1711.

For the initial condition (S0, I0,B0,BT0,BV0,P0) = (1000, 100, 103, 500, 100, 400), the solution con-
verges the to disease-free equilibrium point, while for the initial condition (S0, I0,B0,BT0,BV0,P0) =
(1000, 100, 106, 5 × 104, 100, 400) the corresponding solution tends rather to the endemic equilibrium
point.

2.3.2. The cause of bi-stability
We now focus on the cause of bi-stability. Most of the mathematical models for the environmental

transmitted diseases exhibit a forward bifurcation at R0 = 1 [52, 38, 6, 11]. In the setting of our work,
the bacteria interact with phages; they are no longer free-living. Therefore, it is not surprising for our
model to undergo different dynamics. We identified the absorption rate ε to be a cause of backward
bifurcation, which is precisely the bi-stability phenomenon as articulated in the next proposition.

Proposition 2.6. In the absence of phage absorption (i.e ε = 0), the model (2.6) undergoes the following dynamics:
i) The DFE is globally asymptotically stable wheneverR0 ≤ 1. This rules out the possibility of backward bifurcation.
ii) If R0 > 1, there exists a unique endemic equilibrium which is globally asymptotically stable when δ = 0.

The proof of Proposition 2.6 is given in Appendix E. From the mathematical point of view, the simple
and classical threshold dynamics of the model as stated in Proposition 2.6, hinges on the fact that when
ε = 0, model (2.6) is dramatically simplified to a model in which the dynamics of phages is decoupled
from the rest of the model and the transmission dynamics of cholera follows the mass action principle
between humans and bacteria. As from the biologically perspective, the implication of Proposition 2.6 is
as follows: in the absence of phage absorption, it is much more easier to eliminate the cholera infection.
Indeed it is sufficient to bring the basic reproduction number below the threshold value one.

3. Optimal control

3.1. Controlled model derivation and optimal control problem
In order to reduce the proliferation of bacteria in the environmental reservoir, there are several

possible interventions such as disinfection and water sanitation [47], beside the reduction of the number
of infected humans using the therapeutic treatments and vaccination strategies [36, 39]. For instance,
disinfectants as chemical agents can be designed to inactivate or destroy microorganism such as bacteria.
Unfortunately, these chemicals are sometimes toxic to other microorganisms and they usually pollute
the environment. On the other hand, the aquatic and soil environments are highly populated by phages,
which, unlike chemicals are harmless to soil and water but interact with some bacteria to kill them. Thus
using selected virulent phages (specifically, vibriophages) can be an advantage to control the proliferation
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Figure 5: Bifurcation diagrams: Bottom (forward bifurcation in Theorem 2.5) (i). Top (backward bifurcation in Theorem 2.5 (ii)).

of bacteria. In order to control a system of differential equations (i.e. to force the solution to follow a
specific trajectory), the basic principle of optimal control is often used. The goal is to select a particular
control that maximizes or minimizes a chosen objective functional, which is typically a function of some
model variables and the control.

To reduce the proportion of lysogen after phage-bacteria interaction, one can increase the number
of virulent phages. In this section, we formulate an optimal control model with the release of virulent
phages as strategy for cholera elimination. The selection can be done using the techniques in [24, 40].
Indeed, these methods include both desirable characteristics (i.e. a relatively broad host range) and a
lacking characteristics (i.e. carrying toxin genes and the ability to form a lysogen). While phages are first
commonly isolated and subsequently characterized, it is possible to alter isolation procedures to bias
the isolation toward phages with desirable characteristics. We denote by h(t) the population of virulent
phages V shed at time t, µ is the decay rate of V. In our controlled model for cholera, we assume that
virulent vibrophages are continuously released into the environment in which vibrio cholerae live and
can infect human beings. Denoting by t f the time at the end of the control, our controlled cholera model

11
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Figure 6: Theorem 2.5 (iii): Bi-stability phenomenon when R0 = 0.1711. Initial condition 1: (S0, I0,B0,BT0,BV0,P0) =
(1000, 100, 103, 500, 100, 400), and initial condition 2: (S0, I0,B0,BT0,BV0,P0) = (1000, 100, 106, 5 × 104, 100, 400)

reads as follows:
dS
dt

= Λ − β(BT + kB)S − µhS + δI,

dI
dt

= β(BT + kB)S − (µh + d + δ)I,

dB
dt

= ωI − (µb − r)B − εB f (P) − εB f (V),

dBT

dt
= ηI + φπεB f (P) − (µb + αγ)BT,

dBV

dt
= εB f (V) + νI + (1 − π)εB f (P) − (µb + γ)BV,

dP
dt

= eI + θγBV + θαγBT − ε(BT + BV + B)P − µPP,

dV
dt

= h(t) − µV, t ∈
[
0, t f

]
.

. (3.1)

Model (3.1) is an extension of (2.6) via the inclusion of the continuous release of virulent vibriophages V.
This implies the reduction of the population of B by the quantity εB f (V) which enters the population of
BV. The objective of the control is to minimize the number of infected individuals (I) and maximize the
number of virulent vibriophages at the end of the epidemic period, while keeping the costs of the control
as low as possible. To achieve this goal, we incorporate the relative costs associate with each control
or combination of policies directed towards controlling the spread of cholera. We define the objective
function J and control set ∆ as follows:

J(h) =
1
2

∫ t f

0

(
AI + b1h2

)
dt − b2V(t f ), (3.2)

∆ =
{
h ∈ L1(0, t f ) : h ∈ [0, hm], t ∈ [0, t f ], hm > 0

}
.

In (3.2), b1 is the cost of selection and release of virulent phages and b2 is the cost related to the
management of virulent phages V after the selection, A is the social cost which depends on the number
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of cholera cases, which in turn are related directly to the number of infected bacteria (B and BT). Notice
that when we minimize the performance index J, the number of virulent phages is maximized.

It is not difficult to prove that there exists an optimal control h∗ and a corresponding solution
(S∗, I∗,B∗,B∗T,B

∗

V,P
∗,V∗) model (3.1) that minimizes the cost function J in ∆ [32]:

J(h∗) = min
h∈∆

J(h).

The mathematical characterization of the above optimal control for the model (3.1) is stated in the next
theorem, whose proof is readily achieved by applying the Pontryagin’s Maximum Principle [32].

Theorem 3.1. Given an optimal control h∗ and the corresponding solutions (S∗, I∗,B∗,B∗T,B
∗

V,P
∗,V∗), there exist

adjoint variables λi(t) for i = 1, 2, 3, 4, 5, 6, 7 satisfying the following system of linear differential equations.

dλ1

dt
= β(BT + kB)(λ1 − λ2) + λ1µh,

dλ2

dt
= −A + δ(λ2 − λ1) + λ2(µh + d) − λ3ω − λ4η − λ5ν − λ6e,

dλ3

dt
= βkS(λ1 − λ2) + λ3(µb − r + ε f (V) + ε f (P)) − ε f (P)(φπλ4 + (1 − π)λ5) + λ6εP − ε f (V),

dλ4

dt
= βS(λ1 − λ2) + λ4(µb + αγ) + λ6(εP − θαγ),

dλ5

dt
= λ5(µb + γ) + λ6(εP − θγ),

dλ6

dt
= (λ3 − φπλ4 − (1 − π)λ5)εB f ′(P) + λ6ε(B + BT + BV + µP),

λ7

dt
= λ3εB f ′(V) − λ5εB f ′(V) − µλ7 − b2,

(3.3)

and the transversality conditions
λ∗i (t f ) = 0, i = 1, ..., 7. (3.4)

Furthermore,

h∗ = min
{
1,max

(
0,
−λ7

b1

)}
.

(3.5)

3.2. Numerical simulations of the optimal control problem
The simulations are carried out using a set of parameter values giving in Table 1 with t ∈ [0, 20].

We use an iterative scheme to solve the optimality system. We first solve the state equations (3.1)
with a guess for the controls over the simulated time using fourth order Runge-Kutta scheme. This is
actually the implementation of the so-called ”forward-backward sweep method” [32]. Then, we use
the current iterative solutions of the state equation to solve the adjoint equations by a backward fourth
order Runge-Kutta scheme. The result is displayed on Figures 7 and 8. For the initial condition,
(S0, I0,B0,BT0,BV0,P0,V0) = (100, 2, 100, 3, 100, 50, 5) and the application of control in 20 days, Figure 7
(left panel) shows that the number of released virulent vibriophages is maximized. This number has
increased from 5 to 250 (i.e. 4900% increase). The right panel represents the profile of h(t): the release rate
of the virulent vibriophages is constant when t ∈ [0, 17], it decreases exponentially for t > 17 to zero at
the end of control (t f = 20). On Figure 8, one observes that the control strategy resulted in a significantly
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Figure 8: Simulation results of optimal control model (3.1) showing the effect of the released of virulent vibriophages with
initial condition (S0, I0,B0,BT0,BV0,P0,V0) = (100, 2, 100, 3, 100, 50, 5).

decrease in the number of infected humans (I), susceptible bacteria (B), and lysogen bacteria (BT) versus
a significant increase in the number of susceptible humans (S). Precisely, at the end of the control period
of 20 days, our optimal control problem show the reduction of the number infected humans from 15 to 10
cases (i.e. 33% decrease). Furthermore, the number of susceptible bacteria vanishes (i.e. 100% decrease)
and that of lysogen bacteria drops from 9 to 4 (i.e.≈ 56% decrease) cells.

4. Conclusion and discussions

The primary goal of this paper is to take the authors’ previous works on cholera (e.g. [6, 27, 37]) to
the next level. That is to add some realism to the control and management of cholera disease through
the incorporation of the full life cycle of the phages in their interaction with the vibrio cholerae. This has
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been achieved in four directions: (1) mathematical modeling, (2) theoretical, (3) optimal control, and (4)
computationally analysis.

(1) From the mathematical modeling perspective, we built a mathematical model describing the
impact of phage-bacteria infection on the indirectly transmitted cholera. The novelty includes
the use of Smith attachment function as the functional response of the phage-bacteria interaction,
the coupling of the predator-prey (phage-bacteria) model with an indirectly transmitted cholera
epidemiological model, and the extension of the model by adding a class of virulent vobriophages
to control cholera.

(2) From the theoretical point of view, we did an in-depth analysis of the asymptotic behavior of the
model without control. We computed the basic reproduction number R0. Unlike the fact that
in the absence of phage absorption, cholera can be eliminated when R0 ≤ 1, we established that
the model undergoes the backward bifurcation phenomenon at R0 = 1 in the presence of phage
absorption. We then computed an additional threshold quantity N0, which led to the following
findings: The disease free equilibrium point is globally stable whenever R0 ≤ 1 and N0 ≤ 1. The
model without control has multiple endemic equilibrium points depending on the range ofR0 and
N0.

(3) To mitigate the dynamics of cholera, we studied an optimal control problem in which the control
strategy consisted in the continuous release of lytic/virulent vibriophages into the contaminated
environment. We showed that an optimal control exists and characterized it using the Pontryagin’s
maximum principle.

(4) Computationally, we used MatLab platform, to perform global sensitivity analysis of the thresholds
numbers R0 and N0. The result showed that the contact rate β and pathogen decay rate µb are
the most influential parameters. Thus decreasing β (i.e. the improvement of the information
about contaminated environment) and increasing µb (i.e. the use of chemicals to disinfect an
environment) might help to reduceR0 andN0. Moreover, we simulated the model without control
to illustrate our theoretical results. Finally, we solved numerically the optimal control problem
by the forward-backward sweep method, to assess the role of using virulent vibriophages on the
control of cholera. The numerical result showed that, at the end of control period (20 days), the
number of virulent vibriophages is significantly maximized by 4900% and the number of infected
humans decreased by 33%. Furthermore, the number of susceptible bacteria vanished (100%
reduction) and the number of lysogen bacteria decreased by 56%.

Being an attempt to couple a cholera epidemiological model with an phage-bacteria ecological system,
the simple model setting of this work therefore offers many possibilities for extension to increase realism.
Firstly, this work can easily be applied to other bacterial-borne infections for which the disease agent
interact with a phage specific type in a predator-prey manner. Secondly, following many authors who
considered the environment as a reservoir of bacteria (i.e. the pathogen growth rate is always greater than
its decay rate), we plan to use this assumption to study the existence of periodic solutions of the model
without control [37]. This would address the fact that the continuous release of the virulent vibriophages
is not that realistic though being mathematically convenient. In practice, releases are rather periodic or
instantaneous. To increase realism, impulsive releases are even more convenient because after infection,
bacteria need about twenty minutes to burst, which makes it necessary to take a delay into account. All
these important features will be incorporated in our future works. Above all, the study of an optimal
control problem for a coupled within-host cholera epidemic model and phage-bacteria (predator-prey)
interaction model is a path of future investigations [51], including opportunities for phage therapy [49].

15



Acknowledgments

The second author (BT), acknowledges the support of the University of Pretoria Senior Postdoctoral
Program Grant (2018-2020). The authors are grateful to the Editors and the anonymous reviewers whose
valuable comments helped to improve the presentation of this manuscript.

Appendixes

Appendix A: Proof of Proposition 2.2
The Jacobian matrix at E0 is

J(E0) =



−µh δ −βkS0 −βS0 0 0
0 −(µh + d + δ) βkS0 βS0 0 0
0 ω −(µb − r) 0 0 0
0 η 0 −(µb + αγ) 0 0
0 ν 0 0 −(µb + γ) 0
0 e 0 θαγ θγ −µP


.

Clearly, −µh, −(µb + γ) and −µP are eigenvalues of J(E0). Therefore, the local stability of E0 is completely
determined by the following sub-matrix

J0 =


−(µh + d + δ) βkS0 βS0

ω −(µb − r) 0
η 0 −(µb + αγ)

 .
The characteristic polynomial of J0 is

P(λ) = λ3 + a2λ
2 + a1λ + a0, (4.1)

where 
a2 = (µh + d + δ + µb − r + µb + αγ),

a1 = (µh + d + δ)(µb − r) + (µh + d + δ)(µb + αγ) + (µb + αγ)(µb − r) − βωkS0 − βηS0,

a0 = (µh + d + δ)(µb − r)(µb + αγ)(1 − R0).

(4.2)

It follows from the Routh-Hurwitz criteria [8] that E0 is locally asymptotically stable if and only if

a2 > 0, a0 > 0, and a1a2 > a0. (4.3)

If R0 < 1, then a0 is positive and

a1a2 − a0 = a0 + (µh + d + δ)2(µb − r)
(
1 −

βkωS0

(µh + d + δ)(µb − r)

)
+ (µh + d + δ)2(µb + αγ)

(
1 −

βηS0

(µh + d + δ)(µb + αγ)

)
+ (µh + d + δ)

[
(µb − r)2 + (µb + αγ)2 + (µb + αγ)(µb − r)

]
+ (µb + αγ)2(µb − r)

≥ a0 + (µh + d + δ)2 [
(µb − r) + (µb + αγ)

]
(1 − R0)

+ (µh + d + δ)
[
(µb − r)2 + (µb + αγ)2 + (µb + αγ)(µb − r)

]
+ (µb + αγ)2(µb − r) > 0.

Thus the disease free equilibrium point E0 is locally asymptotically stable whenever R0 < 1. Conversely,
if R0 > 1, then a0 < 0 and E0 is unstable.
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Appendix B: Proof of Theorem 2.3
The proof is done in two steps

Step 1: N0 ≤ R0 ≤ 1
We consider the following Lyapunov function candidate

L = S − S0 ln S + I +
βkS0

µb − r
B +

βS0

µb + αγ
BV. (4.4)

The derivative of L alongside the trajectories is

dL
dt

=
(
1 −

S0

S

) dS
dt

+ İ +
βkS0

µb − r
dB
dt

+
βS0

µb + αγ
dBV

dt

=
(
1 −

S0

S

)
(Λ − βBTS − βkBS − µhS + δI) + (βBTS + βkBS − (µh + d + δ)I)

+
βkS0

µb − r
(ωI − (µb − r)B − εB f (P)) +

βS0

µb + αγ
(ηI + φπεB f (P) − (µb + αγ)BT).

After some computation

dL
dt

= −
µh

S
(S − S0)2 + βBTS0 + βkBS0 − (µh + d + δ)I +

βωKS0

µb − r
I − βkS0B −

βkS0

µb − r
εB f (P)

+
βηS0

µb + αγ
I +

βS0

µb + αγ
φπεB f (P) − βS0BT

= −
µh

S
(S − S0)2 + I

(
βωKS0

µb − r
+

βηS0

µb + αγ
− (µh + d + δ)

)
+ εB f (P)

(
βφπS0

µb + αγ
−
βkS0

µb − r

)
.

Knowing that
βφπS0

µb + αγ
−
βkS0

µb − r
= (N0 − R0)

µh + d + δ

ω
,

we have

dL
dt

= −
µh

S
(S − S0)2 + I(µh + d + δ)

(
βωkS0

(µb − r)(µh + d + δ)
+

βηS0

(µb + αγ)(µh + d + δ)
− 1

)
+ εB f (P)

(
βφπS0

µb + αγ
−
βkS0

µb − r

)
= −

µh

S
(S − S0)2 + I(µh + d + δ)(R0 − 1) + εB f (P) (N0 − R0) .

Since N0 ≤ R0 ≤ 1, dL/dt ≤ 0 and L is indeed a Lyapunov function. Moreover, the largest invariant set
contained in Ω such that dL/dt = 0 is {E0}. The application of LaSalle’s Invariance Principle [19] proves
that the DFE is globally asymptotically stable in Ω.
Step 2: R0 ≤ N0 ≤ 1
We consider the following Lyapunov function candidate

L = S − S0 ln S + I +
φπ(µh + d + δ)
ωφπ + η

B +
(µh + d + δ)
ωφπ + η

BV. (4.5)
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One has

dL
dt

=
(
1 −

S0

S

) dS
dt

+
dI
dt

+
φπ(µh + d + δ)
ωφπ + η

dB
dt

+
(µh + d + δ)
ωφπ + η

dBV

dt

=
(
1 −

S0

S

)
(Λ − βBTS − βkBS − µhS + δI) + (βBTS + βkBS − (µh + d + δ)I)

+
φπ(µh + d + δ)
ωφπ + η

(ωI − (µb − r)B − εB f (P)) +
(µh + d + δ)
ωφπ + η

(ηI + πεB f (P) − (µb + αγ)BT)

= −
µh

S
(S − S0)2 + B

(
βkS0 −

φπ(µb − r)(µh + d + δ)
ωφπ + η

)
+ BT

(
βS0 −

(µb + αγ)(µh + d + δ)
ωφπ + η

)
= −

µh

S
(S − S0)2 +

(µb − r)φπ(µh + d + δ)
φπω + η

B
(

βkωS0

(µb − r)(µh + d + δ)
+

βηkS0

φπ(µb − r)(µh + d + δ)
− 1

)
+

(µb + αγ)(µh + d + δ)
φπω + η

BT

(
βωφπS0

(µb + αγ)(µh + d + δ)
+

βηS0

(µb + αγ)(µh + d + δ)
− 1

)

R0 ≤ N0 ≤ 1 implies that
k

φπ(µb − r)
≤

1
µb + αγ

, hence

dL
dt

≤ −
µh

S
(S − S0)2 +

(µb − r)φπ(µh + d + δ)
φπω + η

B
(

βkωS0

(µb − r)(µh + d + δ)
+

βηS0

(µb + αγ)(µh + d + δ)
− 1

)
+

(µb + αγ)(µh + d + δ)
φπω + η

BT

(
βωφπS0

(µb + αγ)(µh + d + δ)
+

βηS0

(µb + αγ)(µh + d + δ)
− 1

)
= −

µh

S
(S − S0)2 +

(µb − r)φπ(µh + d + δ)
φπω + η

B (R0 − 1) +
(µb + αγ)(µh + d + δ)

φπω + η
BT (N0 − 1) .

Since R0 ≤ N0 ≤ 1, dL/dt ≤ 0 and L is indeed a Lyapunov function. Moreover, the largest invariant set
contained in Ω such that dL/dt = 0 is {E0}. LaSalle’s Invariance Principle [19] permits to conclude that
the DFE is globally asymptotically stable in Ω.
Combining the conclusions of step 1 and step 2, the DFE is globally asymptotically stable.

Appendix C: Proof of Theorem 2.4
Set E∗ = (S∗, I∗,B∗,B∗T,B

∗

V,P
∗) any endemic equilibrium of the model (2.6). At E∗ one has

Λ − β(B∗T + kB∗)S∗ − µhS∗ + δI∗ = 0,

β(B∗T + kB∗)S∗ − (µh + d + δ)I∗ = 0,

ωI∗ − (µb − r)B∗ − εB∗ f (P∗) = 0,

ηI∗ + φπεB∗ f (P∗) − (µb + αγ)B∗T = 0,

νI∗ + (1 − π)εB∗ f (P∗) − (µb + γ)B∗V = 0,

eI∗ + θαB∗V + θαγB∗T − ε(B∗T + B∗V + B∗)P∗ − µPP∗ = 0.

(4.6)

Set λ∗ = β(B∗T + kB∗), from the the second equation of (4.6)

I∗ =
λ∗S∗

µh + d + δ
. (4.7)
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Putting (4.7) in the first equation of (4.6) yields

S∗ =
Λ(µh + d + δ)

λ∗(µh + d) + µh(µh + d + δ)
. (4.8)

Replacing in (4.7), we have the following form

I∗ =
Λλ∗

λ∗(µh + d) + µh(µh + d + δ)
. (4.9)

From the third equation of (4.6),

B∗ =
ωI∗

µb − r + ε f (P∗)

and using (4.9) yields

B∗ =
ωΛλ∗(

µb − r + ε f (P∗)
) (
λ∗(µh + d) + µh(µh + d + δ)

) . (4.10)

By the same way, from the fourth equation of (2.4),

B∗T =

[
ε f (P∗)(η + φπω) + η(µb − r)

]
Λλ∗

(µb + αγ)(µb − r + ε f (P∗))(λ∗(µh + d) + µh(µh + d + δ))
. (4.11)

Now use the notation of λ∗, one has the following

λ∗ = β(B∗T + kB∗)

=

[
βkω(µb + αγ) + βε f (P∗)(η + φπω) + βη(µb − r)

]
Λλ∗

(µb + αγ)(µb − r + ε f (P∗))(λ∗(µh + d) + µh(µh + d + δ))
.

Since we are interested in the positive values of λ∗, after some computations we have the following form

λ∗ =
µh(µh + d + δ)

[
(µb − r)(R0 − 1) + ε f (P∗)(N0 − 1)

]
(µb − r)(µh + d) + (µh + d)ε f (P∗)

. (4.12)

Using (4.12) in (4.10) and (4.11), B∗ and B∗T become

B∗ =
ωΛ

[
(µb − r)(R0 − 1) + ε f (P∗)(N0 − 1)

]
(µh + d)(µb − r + ε f (P∗))

[
(µb − r)R0 + ε f (P∗)N0

] (4.13)

and,

B∗T =
Λ

[
η(µb − r) + (η + πω)ε f (P∗)

] [
(µb − r)(R0 − 1) + ε f (P∗)(N0 − 1)

]
(µb + αγ)(µh + d)(µb − r + ε f (P∗))

[
(µb − r)R0 + ε f (P∗)N0

] . (4.14)

On the other hand, the fifth and sixth equations of (4.6) yield,

B∗V =
Λ

[
ν(µb − r) + (ν + (1 − π)ω)ε f (P∗)

] [
(µb − r)(R0 − 1) + ε f (P∗)(N0 − 1)

]
(µb + γ)(µh + d)(µb − r + ε f (P∗))

[
(µb − r)R0 + ε f (P∗)N0

] (4.15)

and

P∗ =
θαγB∗T + θγB∗V + eI∗

ε(B∗ + B∗T + B∗V) + µP
. (4.16)

Plugging the expressions of B∗, B∗T and B∗V into (4.16) yields

Ψ(P∗) = Φ(P∗), (4.17)
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where

Ψ(P∗) = P∗
[
εΛω(µb + αγ)(µb + γ) + εΛ(µb − r)[(µb + γ)η + (µb + αγ)ν]

+ eµP(µb + αγ)(µb + γ)(µb − r)2
R0 + [εΛ(µb + γ(η + φπω) + εΛ(µb + αγ)(ν + (1 − π)ω)

+ eµP(µb + γ)(µb + αγ)(µb − r)(R0 +N0)]ε f (P∗) + eµP(µb + αγ)N0ε
2 f 2(P∗)

]
and

Φ(P∗) = θγΛ
[
(µb + γ)α(ωφπ + η) + (µb + αγ)(ν + (1 − π)ω)

]
(N0 − 1)ε f 2(P∗)

+ θγ(µb − r)Λ
[
(η(µb + γ) + ν(µb + αγ)

]
ε f (P∗)(N0 − 1)

+ θγ(µb − r)
[
(µb + γ)α(η + φπω) + (µb + αγ)(ν + (1 − π)ω)

]
ε f (P∗)(R0 − 1)

+ θγ(µb − r)2Λ(η(µb + γ) + ν(µb + αγ))(R0 − 1).

The straightforward calculations give

Ψ(0) = 0, and Φ(0) = θγ(µb − r)2Λ
[
η(µb + γ) + ν(µb + αγ)

]
(R0 − 1).

Ψ′(P∗) = εΛω(µb + αγ)(µb + γ) + εΛ(µb − r)[(µb + γ)η + (µb + αγ)ν]
+ µP(µb + αγ)(µb + γ)(µb − r)2

R0 + [εΛ(µb + γ(η + φπω) + εΛ(µb + αγ)(ν + (1 − π)ω)
+ eµP(µb + γ)(µb + αγ)(µb − r)(R0 +N0)]ε f (P∗) + µP(µb + αγ)N0ε

2 f 2(P∗)

+ P∗
[
εΛω(µb + αγ)(µb + γ) + εΛ(µb − r)[(µb + γ)η + (µb + αγ)ν]

+ µP(µb + αγ)(µb + γ)(µb − r)2
R0 + [εΛ(µb + γ(η + φπω) + εΛ(µb + αγ)(ν + (1 − π)ω)

+ eµP(µb + γ)(µb + αγ)(µb − r)(R0 +N0)]ε f ′(P∗) + eµP(µb + αγ)N0ε
22 f ′(P∗) f (P∗)

]
and

Φ′(P∗) = 2θγΛ
[
(µb + γ)α(ωφπ + η) + (µb + αγ)(ν + (1 − π)ω)

]
(N0 − 1)ε f ′(P∗) f (P∗)

+ θγ(µb − r)Λ
[
(η(µb + γ) + ν(µb + αγ)

]
ε f ′(P∗)(N0 − 1)

+ θγ(µb − r)
[
(µb + γ)α(η + φπω) + (µb + αγ)(ν + (1 − π)ω)

]
ε f ′(P∗)(R0 − 1).

Recalling that, the Smith attachment function f (P) satisfies f ′(P) > 0 and limP→+∞ f (P) = n, we conclude
that Ψ′(P) > 0, limP∗→+∞Ψ(P∗) = +∞ and limP∗→+∞Φ(P∗) = y0 with

y0 = θγΛ
{
(µb + γ)α(ωφπ + η) + (µb + αγ)(ν + (1 − π)ω)

)
εn2 + (µb − r)

(
(η(µb + γ) + ν(µb + αγ)

)
εn

}
(N0−1)

+
{
(µb − r)

(
(µb + γ)α(η + φπω) + (µb + αγ)(ν + (1 − π)ω)

)
εn + (µb − r)2(η(µb + γ) + ν(µb + αγ))

}
(R0 − 1).

Thus, Ψ is an increasing function and Φ has an horizontal asymptote y = y0. Note that the sign of
y0 depends on the values of R0 andN0.

The existence and the number of positive endemic equilibrium points of (2.6) depends on the inter-
section points of the graphs of Ψ and Φ. We proceed by inspection to investigate the number of the
positive roots of equation (4.17).

i) R0 ≤ 1, and N0 ≤ 1. In this case Φ is decreasing function and Φ(0) ≤ 0. Since Ψ is increasing and
Ψ(0) = 0. The graphs of Ψ and Φ do not intersect.

ii) R0 > 1, and N0 > 1. In this case Φ is increasing, Φ(0) > 0 and y0 > 0. Since Ψ is increasing and
Ψ(0) = 0 there is only one intersection point of graphs of Ψ and Φ.

iii) Otherwise, there is one or at least three intersections points between Ψ and Φ.
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Appendix D: Proof of Theorem 2.5
To explore the possibility of a backward bifurcation in the model (2.6), we introduce the following

notations, we re-label the variables S = x1, I = x2, B = x3, BT = x4, BV = x5, P = x6. Further, by introducing
the vector notation X = (x1, x2, x3, x4, x5, x6)T (2.6) has the form dX

dt = F(X), where F = ( f1, f2, f3, f4, f5, f6),
as follows: 

dx1
dt = f1 = Λ − β(x4 + kx3)x1 − µhx1 + δx2,

dx2
dt = f2 = β(x4 + kx3)x1 − (µh + d + δ)x2,

dx3
dt = f4 = ωx2 − (µb − r)x3 − εx3 f (x6),

dx4
dt = f5 = ηx2 + φπεx3 f (x6) − (µb + αγ)x4,

dx5
dt = f6 = νx2 + (1 − π)εx3 f (x6) − (µb + γ)x6,

dx6
dt = f7 = ex2 + θαx5 + θαγx4 − ε(x3 + x4 + x5)x6 − µPx6.

(4.18)

Theorem 4.1 in [10] will be used to determined whether or not the model (2.6) exhibits a backward
bifurcation at R0 = 1. We set β as the bifurcation parameter. Solving for β the equation R0 = 1 gives
β = β∗. The jacobian matrix of (4.21) is

J∗ =



−µh δ −β∗kS0 −β∗S0 0 0
0 −(µh + d + δ) β∗kS0 β∗S0 0 0
0 ω −(µb − r) 0 0 0
0 η 0 −(µb + αγ) 0 0
0 ν 0 0 −(µb + γ) 0
0 e 0 θαγ θγ −µP


.

After some computations, the right eigenvector of J∗ is w = (w1,w2,w3,w4,w5,w6)T, where,

w1 = −
(µh + d)
µh

, w2 = 1, w3 =
ω

µb − r
, w4 =

η

µb + αγ
, w5 =

ν
µb + γ

and

w6 =
θαγη

µP(µb + αγ)
+

θγν

µP(µb + γ)
+

e
µP(µh + d + δ)

.

The left eigenvector associated to J∗ is given by v = (v1, v2, v3, v4, v5, v6) where,

v1 = 0, v2 = 1, v3 =
β∗k
µb − r

, v4 =
β∗

µb + αγ
, v5 = 0, v6 = 0.

Now using the equality
d f
dP

(0) =
Fn(0)

(Fn(0))2 = 1,

The nonzero second partial derivatives of F are:

∂2 f2
∂x1∂x3

=
∂2 f2
∂x3∂x1

= βk,
∂2 f2
∂x1∂x4

=
∂2 f2
∂x4∂x1

= β,
∂2 f3
∂x3∂x6

=
∂2 f3
∂x6∂x3

= ε,

∂2 f4
∂x3∂x6

=
∂2 f4
∂x6∂x3

= φπε
∂2 f2
∂x3∂β∗

= βS0,
∂2 f2
∂x4∂β∗

= S0.
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Thus, we define and compute the numbersA and B as follows:

A = v2

6∑
i, j=1

wiw j
∂2 f2
∂xi∂x j

(0, 0) + v3

6∑
i, j=1

wiw j
∂2 f3
∂xi∂x j

(0, 0) + v4

6∑
i, j=1

wiw j
∂2 f4
∂xi∂x j

(0, 0)

= 2
[
w1(β∗kw3 + β∗w4) +

εw6

S0ω

(
β∗φπωS0

µb + αγ
−
β∗ωS0

µb − r

)]
= −2

µh + d
µh

(
β∗kω
µb − r

+
β∗η

µb + αγ

)
+ 2

ε
S0(µb − r)

(
θαγη

µP(µb + αγ)
+

θγν

µP(µb + γ)
+

e
µP(µh + d + δ)

) (
β∗φπωS0

µb + αγ
−
β∗ωS0

µb − r

)
.

We note that (
β∗φπωS0

µb + αγ
−
β∗ωS0

µb − r

)
=

(
β∗φπωS0

µb + αγ
+

β∗ηS0

µb + αγ
−

β∗ηS0

µb + αγ
−
β∗ωS0

µb − r

)
= (µh + d + δ) (N0 − R0) with R0 = 1
= (µh + d + δ) (N0 − 1) .

FinallyA can be rewritten in the following form

A = 2
ε(µh + d + δ)

S0(µb − r)

(
θαγη

µP(µb + αγ)
+

θγν

µP(µb + γ)
+

e
µP(µh + d + δ)

)
(N0 − χ0). (4.19)

and

B =

6∑
k,i=1

vkwi
∂2 fk
∂xi∂τ

(0, 0) =

(
ωk
µb − r

+
η

µb + αγ

)
S0 > 0.

From (4.19) one can easily make the following conclusion

i. If N0 < χ0, (or equivalently A < 0), then according to Theorem 4.1 in [10], model (2.6) exhibits a
forward bifurcation.

ii. If N0 > χ0 (or equivalently A > 0), then thanks to Theorem 4.1 in [10], model (2.6) exhibits a
bi-stability through a backward bifurcation phenomenon.

This completes the proof.

Appendix E: Proof of Proposition 2.6
i) We consider the following Lyapunov function

L0 = S − S0 ln S + I +
βkS0

µb − r
B +

βS0

µb + αγ
BV. (4.20)

From the proof of Theorem 2.3 one has

dL0

dt
= −

µh

S
(S − S0)2 + I(µh + d + δ)(R0 − 1) ≤ 0.
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Moreover, the largest invariant set such that dL0/dt = 0 is the DFE (S0, 0, 0, 0, 0, 0). Thus, by the
classical Lyapunov theorem and the LaSalle’s Invariance Principle, the global stability of the disease-free
equilibrium E0 is guaranteed. ii) From the proof of the Theorem 2.4 one easily have

S∗ =
Λ(µh + d + δ)(µb − r)(µb + αγ)

β(µh + d)
(
ηΛ(µb − r) + kω(µb + αγ)

)
(R0 − 1) + (µb + αγ)(µb − r)µh(µh + d + δ)

,

I∗ =
βΛ2 (

ηΛ(µb − r) + kω(µb + αγ)
)

(R0 − 1)
β(µh + d)

(
ηΛ(µb − r) + kω(µb + αγ)

)
(R0 − 1) + (µb + αγ)(µb − r)µh(µh + d + δ)

,

B∗ =
ωΛ (R0 − 1)

(µh + d)(µb − r)R0
,

B∗T =
ηΛ (R0 − 1)

(µh + d)(µb + αγ)R0
,

B∗V =
νΛ (R0 − 1)

(µh + d)(µb + γ)R0
,

P∗ =
Λ

(
θαγη(µb + γ) + θγν(µb + αγ)

)
(R0 − 1)(

η(µb − r)(µb + γ) + ν(µb − r)(µb + αγ)
)

(R0 − 1) + µP(µb − r)(µh + d)(µb + αγ)(µb + γ)
.

(4.21)

For the global stability of the endemic equilibrium point, we consider the following Lyapunov function

L1 = S − S∗ ln S + I − I∗ ln I +
βkS∗B∗

ωI∗
(B − B∗ ln B) +

βS∗B∗T
ηI∗

(
BT − B∗T ln BT

)
. (4.22)

The straightforward computation of the derivative of L1 alongside the trajectories of (2.6) is

dL1

dt
= −µh

(S − S∗)2

S
+ βS∗B∗T

(
3 −

S∗

S
−

B∗TI
BTI∗

−
BTSI∗

B∗TS∗I

)
+ βkS∗B∗

(
3 −

S∗

S
−

B∗I
BI∗
−

BSI∗

B∗S∗I

)
≤ 0. (4.23)

Finally, using the arithmetic-geometric means inequality, n − (y1 + y2 + ... + yn) ≤ 0, where y1y2...yn = 1,
and y1 , y2 , ...yn > 0, it follows that dL1/dt ≤ 0. Furthermore, the largest invariant such that dL1/dt = 0
is the singleton {(S∗, I∗,B∗,B∗T,B

∗

V,P
∗)}. The global stability of the endemic equilibrium point E∗ follows

from the classical stability theorem of Lyapunov and LaSalle’s Invariance Principle.

References

[1] H. Abboubakar, J.C. Kamgang, D. Tieujo, Backward bifurcation and control in transmission dy-
namics of arboviral diseases, Math. Biosc, 278 (2016) 100–129.

[2] H. Abboubakar, J.C. Kamgang, L.N. Nkamba, D. Tieudjo, Bifurcation thresholds and optimal control
in transmission dynamics of arboviral diseases, J. Math. Biol, 107 (2017) 379–427.

[3] M.E. Alexander, C. Bowman, S.M. Moghadas, R. Summers, A.B. Gumel, B.M. Sahai, A Vaccination
Model for Transmission Dynamics of Influenza, Siam J. Appl. Dyn. Syst, 10 (2004) 503–524.

[4] R. Anderson, R. May, Infectious disease of humans: Dynamics and control, Oxford university press,
Oxford, UK, 1991.

[5] E.A. Bakare, A. Nwagwo, E. Danso-Addo, Optimal control analysis of an SIR epidemic model with
constant recruitment, Int. J. Appl. Math, 3 (2014) 273–285.

23



[6] T. Berge, S. Bowong, J.M.S. Lubuma, Global stability of a two-patch cholera model with fast and
slow transmissions, Math. Comp. Simul, 241 (2014) 317–331.

[7] Bhandare, G. Sudhakar, Biocontrol of V. cholorae using bacteriophages. Phd thesis, university of
Nottingham, 2015.

[8] G. Birkhoff, G.C. Rota, Ordinary Differential Equations, 4th edition, John Wiley & Sons, Inc., New
York,1989.

[9] M. Brigid, K.W. Matthe, Fillamentous phages linked to virulence of vibrio cholerae, Curr. Opi.
Micro, 6 (2003) 35–42.

[10] C.C. Chavez, B. Song, Dynamical models of tuberculosis and their application, Math. Biosci. Eng,
12 (2004) 361–404.

[11] C.T. Codeco, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC.
Infect. Dis, 1 (2001) 1–14.

[12] C. Yang, J. Wang, On the intrinsec dynamics of bacteria in waterborne infection, Math. Biosc, 296
(2018) 338–339.

[13] E. Dangbe, D. Irephan, A. Perasso, D. Bekolle, Mathematical modelling and numerical simulations
of the infuence of hygiene and seasons on the spread of cholera, Math. Biosc, 296 (2018) 60–70.

[14] Y.M. Dessaleg, A.B. Gumel, Global asymptotic properties of an SEIRS model with multiple infectious
stages. J. Math. Anal. Appl, 366 (2010) 202–217.

[15] S.M. Faruque, M. John, Phage-bacterial interactions in the evolution of toxigenic vibrio cholerae,
Virulence, 42 (2012) 599–653.

[16] H.I. Fremann, S. Ruan, M. Tan, Uniform persistence and flows near a close positively invariant set.
J. Diff. Equ, 4 (1994) 583-600.

[17] S.M. Garba, A.B. Gumel, M.R. AbuBakar, Backward bifurcations in dengue transmission dynamics,
Math. Biosc, 215 (2008) 11–25.

[18] A.B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal. Appl,
395 (2012) 355–365.

[19] A.B. Gumel, B. Song, Existence of multistable equilibria for a multi-drug-resistant model of my-
cobacterium tuberculosis, Math. Biosc. Eng, 67 (2008) 437–455.

[20] B.R. Guttman Raya and Ekutter, Bacteriophage: Biology and application. CRC Press, USA (2005)
29–66.

[21] J. Gjorgjieva, K. Smith, G. Chowell, F. Sanchez, J. Snyder, C. Castillo-Chavez, The role of vaccination
in the control of SARS, Math. Biosc. Eng, 2 (2005) 1–17.

[22] Harris, J.B. Larocque, R.C. Quedri, E.T. Ryan, Lancet, 379 (2012) 2466-2476.

[23] E. Harrison, M.A. Brockhurst, Ecological and Evolutionary Benefits of Temperate Phage: What
Does or Doesn’t Kill You Makes Stronger, Bioessays, 39 (2017) 01–12.

[24] P. Hyman, Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth, Phar-
maceuticals (Basel), doi: 10.3390/ph12010035. (2019).

24



[25] J.C. Kamgang, G. Sallet, Computation of threshold conditions for epidemiological models and
global stability of the disease-free equilibrium (DFE), Math. Biosc, 213 (2008) 1–12.

[26] Kbenesh, W. Blayneh, A.B. Gumel, S. Lenhart, T. Clayton, Backward Bifurcation and Optimal
Control in Transmission Dynamics of West Nile Virus, Bull. Math. Biol, 72 (2010) 1006–1028.

[27] G.G. Kolaye, S. Bowong, R. Houe, M.A. Aziz-Alaoui, M. Cadivel, Mathematical assessment of the
role of environmental factors on the dynamical transmission of cholera, Com. Non. Sci. Num. Sim,
67 (2019) 203–222.

[28] J.D. Kong, W. Davis, A.H. Wang, Dynamics of a Cholera Transmission Model with Immunological
Threshold and Natural Phage Control in Reservoir, Bull. Math. Biol, 76 (2014) 2025–2051.

[29] S. Lakshmikantham, S. Leela, A.A Martynyk, stability analysis of non linear system, Marcel dekker,
Inc, New York, Basel 1989.

[30] J.P. LaSalle, The stability of Dynamical systems, Regional conference series in applied Mathemetics,
SIAM, Philadelphia 1976.

[31] J.P. LaSalle Stability theory for ordinary differential equations. J. Differ. Equ. 41 (1968) 57–65.

[32] S. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models, Mathematical and Com-
putational Biology Series, Chapman & Hall/CRM (2007).

[33] A.K. Misra, G. Alok, V. Ezio, Cholera dynamics with bacteriophage infection: A mathematical
study, Chao. Sol. Frac, 91 (2016) 610–621.

[34] R.V. Miller, M. Day, Contribution, pseudlysogeny and starvation to phage ecology. Bact. Ecol. AST,
UK Cambridge University Press (2008) 114–143.

[35] S.M. Moghadas, M.E. Alexander, Exogenous reinfection and resurgence of tuberculosis: A theoret-
ical framwork, J. Biol. Syst, 12 (2004) 231–247.

[36] A. Mwasa, J.M. Tchuenche, Mathematical analysis of a cholera model with public healh intervention,
BioSystems, 105 (3) (2011) 190–200.

[37] H.M. Ndongmo Teysta, B. Tsanou, S. Bowong, J. Lubuma, Bifurcation analysis of a phage bacteria
interaction model with prophage induction, Math. Med. Biol. 00 (2020), 1–31.

[38] J.B.H. Njagarah, F. Nyabadza, A metapopulation model for cholera transmission dynamics between
communities linked by migration, Appl. Math. Comp, 241 (2014) 317–331.

[39] J.B.H. Njagarah, F. Nyabadza, Modelling Optimal Control of Cholera in Communities Linked by
Migration, Comput. Math. Method. Med. 2015, Article ID 898264, 12 pages.

[40] N. Plaza, D. Castillo, D.P Reytor, G. Higuera, K. Garcia, R. Bastias, Bacteriophages in the control of
pathogenic vibrios, Elec. J. Biotech, 31 (2018) 24–33.

[41] P. Van Den Driessche, J. Wathmough, Reproduction number and subtrheshold endemic equilibria
for compartemental models of disease transmission, Math. Biosc, 180 (2002) 29–48.

[42] C.J. Ray, S. Mariano, I.B. Hogue, D.E. Kirschner, A methodology for performing global uncertainty
and sensitivity analysis in system biology, J. Theor. Biol, 254 (2008) 178–196. 4

[43] F. Richard, Medical Microbiology: A Guide to Microbial Infections: Pathogensis, Immunity, Labo-
ratory Diagnosis and Control,Churchill Livingstone, 16 edition , 2002.

25



[44] C.A. Roberto, H.M. Yang, L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile
insect technique and insecticide, Math. Biosc, 223 (2010) 12–23.

[45] Z. Shuiai, P. Van den Driessche, Global stability of infectious disease models using Lyapunov, Siam
J. Appl. Math 73 (2013) 1513–1532.

[46] S.L. Díaz-Muñoz, B. Koskella, Bacteria-Phage Interactions in Natural Environments, Adv. Appl.
Microbiol 89 (2014) 135–83.

[47] O.S. Sisodiya, O.P. Misra, J. Dhar, Dynamics of cholera epidemics with impulsive vaccination and
desinfection, Math. Biosc, 298 (2018) 46–57.

[48] O.S. Sisodiya, O. P. Misra, J. Dhar, Pathogen Induced Infection and Its Control by Vaccination: A
Mathematical Model for Cholera Disease, Int. J. Appl. Comp. Math, 11 (2018) 4–74.

[49] H.L. Smith, Models of virulent phage growth with application to phage therapy, Siam J. Appl.
Math, 68 (2008) 1717–1737.

[50] Sukhita, W. Vidurupola, Analysis of deterministic and stochastic mathematical models with re-
sistant bacteria and bacteria debris for bacteriophage dynamics, Appl. Math. Comp, 316 (2018)
215–228.

[51] W. Xueyung, W. Jin, Modelling the within-host dynamics of cholera: Bacteria-viral interaction.
J.Biol.Dync 11( 2017) 484–501.

[52] M.B. Yaghoub, R. Gautam , Z. Shuai, P. van den Driessche, R. Ivanek, Reproduction numbers for
infections with free-living pathogens growing in the environment, J. Biol. Dyn, 6 (2012) 923–940.

[53] C. Yang, J. Wang, On the intrinsic dynamics of bacteria in waterborne infections, Math.Biosc, 296
(2018) 71–81.

[54] C. Yang, D. Posny, F. Bao, J. Wang, A multi-scale cholera model linking between-host and within-
host dynamics, Int.J. Biomath, 3 (2018) 18–34.

[55] X. Yang, L. Chen, J. Chen, permanence and positive periodic solution for the single-species nonau-
tonomous delay diffuse models, Comp. Math. Appl, 32 (1996) 109–116.

[56] CDC, Information for public health and medical proffesionals, Center of disease control and pre-
vention, https://www.cdc.gov/cholera/healthprofessionals.html, last access 12 February 2020.

[57] GBD Mortality and causes of death collaborators ”Global, regional and national life expectancy, all-
cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a symetric analysis
for the global burden of disease study 2015” Lancet, 388 (10053): 1459–1544.

26


	Introduction
	Model without control
	Model derivation
	Analysis of the model
	Existence of endemic equilibrium points

	Bifurcation analysis
	Backward and forward Bifurcations
	 The cause of bi-stability 


	Optimal control 
	Controlled model derivation and optimal control problem
	Numerical simulations of the optimal control problem

	Conclusion and discussions

