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Abstract ii

Abstract

Order properties are normally derived from maximum principles associated with an operator,
say P , in classical formulation. This result is often formulated as a comparison theorem for
solutions of linear elliptic PDEs as it derives order in the solution space from the order in the
space of data. The solutions of the classical formulation in variational form are called weak
solutions. The variational formulation and the associated concept of weak solution is widely
used in the theory, applications and numerical analysis of elliptic and parabolic PDEs. In
practice, often the variational formulation is used in order to accommodate generalized/ weak
solutions and also to prepare for the use of numerical schemes such as finite element methods.

The space of weak solutions as well as space of data are Sobolev spaces, which are wider than
the respective spaces of solutions and data in the classical formulation. This dissertation
proves inverse monotonicity, or equivalently comparison theorems, for this much more general
formulation of the operators and respective equations. More precisely, we prove results
regarding order/comparison for the solutions of the variational problem through the concept
of inverse monotone operators, which put them in a more general framework. We specifically
discuss the case of a single equation and the case of systems of PDEs for both elliptic and
parabolic equations.
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Chapter 1

Introduction

Mathematical models of real life phenomena are commonly formulated as Partial Differential
Equations (PDEs) or systems of PDEs. Let P : M 7→ N , where M and N are partially
ordered sets. These type of models can be written in the form

P [u] = g, (1.1)

where the operator P involves both a differential operator on a function space and boundary
condition on u in the study of elliptic PDEs. Additionally the operator P involves the initial
condition on u in the case of parabolic PDEs. The operator P is called a monotone increasing
operator if for every u, v ∈M we have

u ≤ v =⇒ P [u] ≤ P [v].

The operator P is called inverse monotone if for any u, v ∈M

P [u] ≤ P [v] =⇒ u ≤ v. (1.2)

We note that if the inverse operator P−1 of P exists, then (1.2) implies that P−1 is monotone
increasing. This motivates the term “inverse monotone”, which we use in the sequel. In such
settings, statements of the form (1.2) are referred to as comparison theorems. The name
reflect the fact that (1.2) provides means of proving order relations between functions in the
solution space of equations of the form (1.1). This type of theorem is useful from both
theoretical, e.g. proving uniqueness, and practical, e.g. constructing lower/upper bounds,
applications, points of view.

Comparison theorems are typically derived from maximum principles associated with the
operator P in classical formulation, that is, the domain of P comprises of sufficiently smooth
functions so that all derivatives involved in P exist in a classical sense. For this classical
setting, there is extensive theory for elliptic and parabolic operators for both one–dimensional
(single equation) or multidimensional (systems of PDEs) cases. In practice, very often the
operator P is extended to a larger domain in order to accommodate the wider class of
physically meaningful solutions. In this dissertation, we follow one of the very popular
approaches to formulate the operator P and, respectively, equation (1.1), in variational form.
The solutions of (1.1) in variational form are called weak solutions.
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Introduction 3

Compared to the classical setting, there is little theory related to comparison theorems for
operators in variational formulation. Here we need to acknowledge two remarkable results in
[6, Chapter XVIII, Section 4, Theorem 2] and [6, Chapter XVIII, Section 4, Theorem 3].
These results provide positivity and maximum principle for the solution of a single parabolic
PDE with homogeneous boundary conditions.

In the dissertation we derive comparison theorems for elliptic and parabolic PDEs with
non-homogeneous boundary conditions which are further extended to certain classes of
systems of PDEs. The approach is similar to the approach in the book of of Walter [22],
where the inequalities are not derived for solutions of stated problems, but rather for
arbitrary functions in the space of solutions. More precisely, the obtained results derive order
in the space of solutions from the order in the space of data. In Walter [22] the obtained
results refer to the classical setting of parabolic operators.

The theory presented in the dissertation refers to elliptic and parabolic operators given in
variational form. The solutions of the respective equations or systems of equations are called
weak solutions of the associated classical problems. The space of weak solutions as well as the
space of data are Sobolev spaces, which are wider than the respective spaces in solutions and
data in the classical formulation. The main goal of the dissertation is to formulate comparison
theorems in this much more general formulation of the operators. Equivalently, this goal can
be formulated as deriving order in the domains of the operators under consideration, that is
the space of data (forcing term, boundary conditions, initial conditions). The latter property
of the operators as defined in (1.2) is called inverse monotonicity.

The method of proof of [6, Chapter XVIII, Section 4, Theorem 2] and preliminary results in
[6] are used in deriving the results presented in the dissertation. However, these results are
much wider than the mentioned theorems in [6]. The novelty in the dissertation can be
summarised as follows:

1) A comparison theorem for the operator associated with an elliptic boundary value
problem on Ω ⊂ Rn in variational form. The operator includes the boundary condition
and is defined on H1(Ω)×H1/2(∂Ω). (Section 3.4)

2) A comparison theorem for the operator in 1) extended to a weakly coupled system of
elliptic PDEs. (Section 3.6)

3) A comparison theorem for the operator associated with a parabolic initial–boundary
value problem on [0, θ]× Ω. The domain of the operator is
L2(0, θ;H1(Ω), H−1(Ω))× L2(0, θ;H1/2(∂Ω))× L2(Ω). (Section 4.3)

4) A comparison theorem for the operator in 3) extended to systems of weakly coupled
parabolic PDEs. (Section 4.5)

5) All results in 1)–4) are restated as inverse monotonicity of the respective operator, thus
providing a different point of view of the comparison theorems, namely as a
“pull–back”mechanism of the order in the target space of the operator’s domain.
(Sections 3.5, 3.6, 4.4, 4.5)
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The dissertation is structured as follows: in the next chapter we we provide mathematical
preliminaries which give basic results regarding the spaces in which weak solutions lie. We
further state the comparison theorem for systems of Ordinary Differential Equations (ODEs).
In Chapter 3, we recall the comparison theorem derived from the maximum principle for
elliptic operators. We also deal with one and multidimensional operators in variational form
related to a single elliptic PDE or a weakly coupled system of elliptic PDEs. In Chapter 4, we
extend the concept studied in the elliptic case. To be more precise, we study the operators in
variational form related to parabolic PDEs. Different assumptions on the differential operator
are explored and the appropriate comparison theorems are formulated and proved. In
Chapter 5 we give some concluding remarks as well as a discussion of possible future work.



Chapter 2

Mathematical preliminaries

In this chapter we provide mathematical preliminaries as a toolbox needed for the theory of
PDEs. The theory, that is, preliminary results given here, include Lp, Sobolev and dual
spaces. We also introduce Comparison Principles for systems of ODEs as they have a
significant role in the theory of parabolic PDEs.

2.1 Lp Spaces

In this section we introduce function spaces which are commonly used in the theory of PDEs.
The presentation of the results here follow the book of Quarteroni [17, Chapter 1.2]. Let Ω be
an open subset of Rn and in Ω we consider the Lebesgue measure. The Lebesgue measure
gives a way of describing the size of some subsets of Rn. The term “almost everywhere in Ω”,
abbreviated a.e., means everywhere in Ω except on a subset of Ω with Lebesgue measure zero.
We look at Lp spaces which belong to the family of Banach spaces. Let p ∈ [1,∞) and

Lp(Ω) = {f : Ω 7→ R| f is measurable and |f |p is measurable and integrable}
and the associated norm is given by

||f ||Lp(Ω) =

(∫
Ω

|f |pdx
)1/p

.

We also have
Lploc = {f : Ω 7→ R| f ∈ Lp(V ) for each V ⊂⊂ Ω}.

Moreover, in this dissertation our main focus is on the space L2(Ω), which is a Hilbert space
with a scalar/ inner product given by

(f, g) =

∫
Ω

fg dx (2.1)

and we see that

||f ||L2(Ω) =

(∫
Ω

|f |2dx
)1/2

.

Theorem 2.1 (Hölder’s Inequality). [9, Appendix B2] Assume 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1. Then

if u ∈ Lp(Ω), v ∈ Lq(Ω), we have∫
Ω

|uv| dx ≤ ||u||Lp(Ω) ||v||Lq(Ω). (2.2)

5



Sobolev spaces 6

2.2 Sobolev spaces

Sobolev spaces are named after a Russian mathematician Sergei Sobolev. The development of
Sobolev spaces is driven by the need to accommodate weak solutions of PDEs. In this
dissertation we study precisely solutions that belong to Sobolev spaces. The theory discussed
in this section mostly follows the book of Evans [9, Chapter 5]. Let Ω denote an open,
connected and bounded subset of Rn. Let C∞c denote the space of infinitely differentiable
functions φ : Ω 7→ R, with compact support in Ω. A function ϕ belonging to C∞c (Ω) is called
a test function which we use in the text. Let k be a positive integer and α = (α1, α2, ..., αn) be
a multi–index of order |α| = α1 + α2 + ...+ αn = k. Then we state the definition of a weak
derivative as follows:

Definition 2.1 (Weak derivative). Let u, v ∈ L1
loc(Ω), and α be a multiindex. We say that v

is the αth- weak partial derivative of u, written

Dαu = v,

provided ∫
Ω

uDαϕdx = (−1)|α|
∫

Ω

vϕdx

for all test functions ϕ ∈ C∞c (Ω).

The general definition of a Sobolev space is

Definition 2.2 (Sobolev space). The Sobolev space W k,p(Ω) consists of all summable
functions u : Ω 7→ R such that for each multiindex α with |α| ≤ k, Dαu exists in the weak
sense and Dαu ∈ Lp(Ω).

With regards to this dissertation we consider the case where k = 1 and p = 2, this space is
denoted as H1(Ω). To be more precise,

H1(Ω) = W 1,2(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂u∂xi ∈ L2(Ω), i = 1, 2, ..., n

}
. (2.3)

The inner product on H1(Ω) is defined as

(f, g)H1(Ω) =

∫
Ω

fg dx+

∫
Ω

∇f · ∇g dx,

with the associated norm

||u||H1(Ω) =

(
||u||2L2(Ω) + ||∇u||2L2(Ω)

)1/2

.

Theorem 2.2. The Sobolev space H1(Ω) is a Hilbert space.
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Let us recall the concept of trace as given in the following theorem.

Theorem 2.3 (Trace Theorem). [17, Theorem 1.3.1] Let Ω be a bounded open subset of Rn

with Lipschitz continuous boundary ∂Ω.

(a) There exists a unique linear continuous map T : H1(Ω) 7→ H1/2(∂Ω) such that
Tu = u|∂Ω for each u ∈ H1(Ω) ∩ C(Ω̄).

(b) There exists a linear continuous map T−1 : H1/2(∂Ω) 7→ H1(Ω) such that TT−1(ϕ) = ϕ
for each ϕ ∈ H1/2(∂Ω).

Using the concept of trace given in (a) we denote

H1
0 (Ω) = {u ∈ H1(Ω) : Tu = 0}.

Definition 2.3 (Convergence). Let {un}∞n=1 be a sequence in H1(Ω). We say (un) converges
to u in H1(Ω), that is

un → u in H1(Ω)

provided that
lim
n→∞

||un − u||H1(Ω) = 0.

Remark 2.1. The space C∞(Ω) is dense in H1(Ω) [15].

Remark 2.2. The space C∞c (Ω) is dense in H1
0 (Ω) with respect to the norm in H1(Ω).

The Sobolev space is a space of real valued functions and the following theorem gives an
assertion to that.

Theorem 2.4 (Sobolev space as function space). The Sobolev space H1(Ω) is a Banach space.

Theorem 2.5 (Poincaré’s Inequality). Assume Ω is a bounded, open subset of Rn and
u ∈ H1

0 (Ω). Then we have the estimate

||u||L2(Ω) ≤ C||∇u||L2(Ω) (2.4)

for the constant C depending on Ω.

Lemma 2.1. [5, Chapter IV, Section 7, Lemma 1] Let f ∈ C1(R) with f ′ ∈ L∞(R). Then for
u ∈ H1(Ω), with Ω an arbitrary open set in Rn, we have:

f ◦ u ∈ H1(Ω).

Furthermore,
grad(f ◦ u) = (f ′ ◦ u)grad u.
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2.3 Dual spaces

We briefly discuss the theory of dual spaces as given in the book of Quarteroni [17, Chapter
1.2]. Let (V, || · ||V ) and (W, || · ||W ) be normed spaces. We denote the set of linear continuous
functions from V into W by L(V ;W ).

Definition 2.4. Let L ∈ L(V ;W ) then the norm for L is defined as

||L||L(V ;W ) := sup
v∈V \{0}

||Lv||W
||v||V

. (2.5)

The expression || · ||L(V ;W ) defines a norm on L(V ;W ) so that this space is also a normed
space. If W is a Banach space, it follows that L(V ;W ) is a Banach space too.

Definition 2.5. If W = R, then the space L(V ;R) equipped with the norm (2.5) is called the
dual space of V is denoted by V ′.

Definition 2.6 (Duality Pairing). The bilinear form 〈·, ·〉 : V ′ × V 7→ R defined by
〈L, ϕ〉 := L(ϕ) is called the duality pairing between V ′ and V .

As stated before, our theory focuses on weak solutions, that is, solutions in the Sobolev space.
Hence we investigate duality of Sobolev spaces. The dual space to H1

0 (Ω) is denoted by
H−1(Ω) [9, Definition 1, Chapter 5.9.1]. Evans [9, Definition 2, Chapter 5.9.1] defines the
norm of H−1(Ω) for a function f ∈ H−1(Ω), as

||f ||H−1(Ω) = sup

{
〈f, u〉
||u||H1

0 (Ω)

∣∣∣∣ u ∈ H1
0 (Ω), ||u||H1

0 (Ω) 6= 0

}
.

If f ∈ L2(Ω) then
ϕ 7→ (f, ϕ)

is a bounded linear functional on H1
0 (Ω). In this case,

〈f, ϕ〉 = (f, ϕ)

and
||f ||H−1(Ω) = ||f ||L2(Ω).

Theorem 2.6 (Characterisation of H−1(Ω)). [9, Theorem 1, Chapter 5.9.1] Let ϕ ∈ H1
0 (Ω)

and assume f ∈ H−1(Ω). Then there exist functions f 0, f 1, ..., fn in L2(Ω) such that

〈f, ϕ〉 =

∫
Ω

f 0ϕ+
n∑
i=1

f i
∂ϕ

∂xi
dx.

Remark 2.3. If f ∈ L2(Ω) then f 0 = f and f i = 0 for i = 1, ..., n. This representation does
not contradict the fact that L2(Ω) is a subspace of H−1(Ω).

Showalter [18, Chapter 3, Section 2] gives the following result which we later make use of in
obtaining the existence and uniqueness of weak solutions of parabolic PDEs:
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Theorem 2.7. Let V be a separable Hilbert space with dual V ′, then V ≡ L2(0, θ, V ) is a
Hilbert space with dual V ′ ≡ L2(0, θ, V ′). Assume for each t ∈ [0, θ] we are given a continuous
bilinear form B(t; ·, ·) on V such that for each pair u, ϕ ∈ V the function B(·, u, ϕ) is in
L∞(0, θ,R). Then

(a) by the uniform boundedness principle we have an M > 0 for which

|B(t;u, ϕ)| ≤M ||u|| ||ϕ|| for u, ϕ ∈ V and t ∈ [0, θ];

(b) if u ∈ V and ϕ ∈ V we have that t 7→ B(t;u, ϕ) is measurable.
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2.4 Comparison theorems for systems of ODEs

In this section our aim is to provide the comparison theorem for systems of ODES as given in
the book of Walter [22]. We consider a system of non-autonomous ordinary differential
equations given by:

du

dt
= g(t, u) (2.6)

where g : U (g) 7→ Rn , U (g) ⊂ [0,∞)× U and U is an open subset of Rn.

Definition 2.7 (Class Z(g)). The function class Z(g) contains all functions u : [0,∞) 7→ Rn

which are continuous in [0,∞) and differentiable in (0,∞) and satisfy (t, u(t)) ∈ U (g) for
t ∈ (0,∞).

Definition 2.8 (Defect Q). The defect Q[u] of a function u(t) with respect to equation (2.6)
is only defined for u ∈ Z(g). and given by

Q[u](t) =
du(t)

dt
− g(t, u(t)), t ∈ (0,∞).

Note: The defect operator is applicable to all functions in Z(g).

Definition 2.9. A function φ : U 7→ Rn is called one-sided Lipschitz on U ⊂ Rn if

〈φ(u)− φ(v), u− v〉 ≤ L||u− v||2

for some positive real constant L and all u, v ∈ U where 〈·, ·〉 is a dot product on Rn.

Theorem 2.8 (Forward Uniqueness). If g is one-sided Lipschitz with respect to u ∈ U , then
any solution u of (2.6) is unique on its domain.

In Walter [22] a more general case of functions ω(t, z) for which uniqueness follows from a
one-sided condition is given as

f(t, z)− f(t, z̄) ≤ ω(t, z − z̄) for z ≥ z̄ and (t, z), (t, z̄) ∈ U . (2.7)

We show that (2.7) implies the one-sided Lipschitz condition here below. Suppose f is
Lipschitz and pick ω(t, z) = L

n
√
n
||z||. Also note that y ≤ x then

〈f(x)− f(y), x− y〉 =
n∑
i=1

(f(x)− f(y)) · (xi − yi)

≤ n
L

n
√
n
||x− y||2

n∑
i=1

(xi − yi)

≤ L√
n
||x− y||2

n∑
i=1

||xi − yi||

=
L√
n
||x− y||2 ||x− y||1

≤ L√
n
||x− y||2 (

√
n||x− y||2)

=
L√
n

√
n||x− y||22

= L||x− y||22
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Definition 2.10 (Quasi-monotone function). A vector function φ(z) = (φ1(z), φ2(z), ..., φn(z))
depending on z = (z1, ..., zn) ∈ Rn is said to be quasi-monotone increasing if for i = 1, .., n

φi(z) ≤ φi(z̄) for z ≤ z̄, zi = z̄i.

Theorem 2.9 (Comparison Theorem). Suppose the function g is quasi-monotone increasing
and satisfies the forward uniqueness condition with respect to u. Then for any u, v ∈ Z(g) we
have (

u(0) ≤ v(0)
Q[u] ≤ Q[v]

)
=⇒ u ≤ v.

As discussed in the Introduction, Theorem 2.9 can be equivalently represented by inverse
monotonicity. In our case, the operator P is defined as

P [u] =

(
u(0)
Q[u]

)
∈ Z(g).

Application to Monotone Dynamical Systems
We consider a system of ordinary differential equations given by:

du

dt
= f(u) (2.8)

where f : U 7→ Rn and U is an open subset of Rn.

Definition 2.11. Equation (2.8) defines a forward dynamical system on U if for every
u0 ∈ U there exists a unique solution of (2.8) defined on [0,∞) such that u(0) = u0.
Further, if for any two solutions u and v of (2.8) we have u(0) ≤ v(0) =⇒ u(t) ≤ v(t) for all
t ≥ 0, then (2.8) is called monotone.

Theorem 2.10 (Application of the Comparison Theorem). Let (2.8) define a forward
dynamical system on U . If f is quasi-monotone and one-sided Lipschitz on U then this
dynamical system is monotone.

If f is smooth then f(u) is quasi-monotone on u ∈ U if and only if the Jacobian of f, (Jf ),
has non-negative off-diagonal entries. Jf is a Metzler matrix, that is, there exists λ such that
Jf + λI ≥ 0 [14].
It is important to remark that the theorem of monotone dynamical systems provides order
between solutions of the respective system. This is more restrictive in application compared
to comparison principles as the latter one applies to arbitrary functions in Z(g) and not only
solutions. Specifically, one can use comparison theorems to derive lower and upper
approximations of solutions of ODEs and PDEs.



Chapter 3

Elliptic PDEs

3.1 Classical formulation

Let us recall that an operator P from a partially ordered set M to a partially ordered set N is
called monotone if it preserves order in M . Further, the operator P is said to be inverse
monotone if the order of N is preserved in the mapping as stated in (1.2). In this chapter we
are going to consider an operator which involves a second-order differential operator on C2(Ω)
given by:

L[u] ≡ −
n∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+

n∑
i=1

bi
∂u

∂xi
+ cu, (3.1)

where aij, bi, c ∈ L∞(Ω) are functions of x = (x1, x2, ..., xn) ∈ Ω with c ≥ 0 and Ω an open
bounded subset of Rn. We assume the symmetry condition, that is
aij = aji for i, j = 1, 2, ..., n. Hence, the n× n matrix

A(x) =


a11(x) a12(x) ... a1n(x)
a21(x) a22(x) ... a2n(x)

...
...

. . .
...

an1(x) an2(x) ... ann(x)

 (3.2)

is symmetric.

Definition 3.1. [16, Definition 1, Chapter 2.2] The operator L is said to be elliptic if for
every x ∈ Ω, and every ξ ∈ Rn \ {0} we have

ξ · A(x)ξ > 0.

We say that L is uniformly elliptic if there exists a constant µ0 > 0 such that

ξ · A(x)ξ ≥ µ0|ξ|2

for all x ∈ Ω and all ξ ∈ Rn.

Remark 3.1. Since A is symmetric, all its eigenvalues are real numbers. Definition 3.1
implies that L is elliptic if all the eigenvalues of A(x) are positive and that L is uniformly
elliptic if the eigenvalues of A(x) are bounded below on Ω by a positive constant µ0.

12
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For the comparison theorem of a uniformly elliptic operator we require the Maximum
Principle, which is stated here below:

Theorem 3.1 (Maximum Principle). [9, Theorem 1, Section 6.4.1] Assume
u ∈ C2(Ω) ∩ C(Ω) and c ≡ 0 in Ω. If

L[u] ≡ −
n∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+

n∑
i=1

bi
∂u

∂xi
≤ 0 in Ω, (3.3)

then
max
x∈Ω

u(x) = max
x∈∂Ω

u(x).

The maximum principle holds not only for solutions of PDEs but for all functions
u ∈ C2(Ω) ∩ C(Ω) that satisfy the differential inequality (3.3). A consequence of the
maximum principle is the Comparison Theorem stated here below:

Theorem 3.2 (Comparison Theorem). Let L be uniformly elliptic on C2(Ω). Then for every
u, v ∈ C2(Ω) ∩ C(Ω) we have L[u] ≤ L[v], u|∂Ω ≤ v|∂Ω =⇒ u ≤ v on Ω.

Proof. Let w = u− v. Since L is a linear operator we have that L[w] = L[u]− L[v]. Since
L[u] ≤ L[v], it follows that L[w] ≤ 0. Using Theorem 3.1 we have that:

max
x∈Ω

w(x) = max
x∈∂Ω

w(x)

= max
x∈∂Ω

(u(x)− v(x))

≤ 0.

(3.4)

From(3.4) we have that
u(x)− v(x) = w(x) ≤ max

x∈∂Ω
w(x) ≤ 0.

It follows that u(x)− v(x) ≤ 0 on Ω, hence u(x) ≤ v(x) on Ω.

As discussed in the Introduction, the Comparison Theorem can be represented in terms of
inverse monotonicity of an appropriate operator. And in this case we have
P : C2(Ω) ∩ C(Ω) 7→ C(Ω)× C(∂Ω) defined as

P [u] =

(
L[u]
u|∂Ω

)
. (3.5)

This operator L is related to problems of PDEs with Dirichlet boundary conditions,
homogeneous or non-homogeneous, such as:{

L[u] = f in Ω,

u = g on ∂Ω,
(3.6)

where L is given by (3.1) and f ∈ L2(Ω) and g ∈ C(∂Ω). Then (3.6) can be equivalently
written as

P [u] =

(
f
g

)
. (3.7)

Using the concept of inverse monotonicity we can reformulate the Comparison Theorem 3.2 as
follows:
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Theorem 3.3. If L is uniformly elliptic on C2(Ω), the operator P [u] =

(
L[u]
u|∂Ω

)
is inverse

monotone.

Proof. P [u] ≤ P [v]⇐⇒
(
L[u]
u|∂Ω

)
≤
(
L[v]
v|∂Ω

)
⇐⇒ (L[u] ≤ L[v], u|∂Ω ≤ v|∂Ω).

Existence and uniqueness of the solution of (3.6) implies that
P−1 : C(Ω)× C(∂Ω) 7→ C2(Ω) ∩ C(Ω) exists. In fact,

u = P−1

(
f
g

)
is the solution of (3.7).
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3.2 Variational formulation in the case of homogeneous

Dirichlet boundary conditions

Let Ω be an open, bounded subset of Rn. Assume that u ∈ C2(Ω). We consider the following
homogeneous Dirichlet boundary value problem:{

L[u] = f in Ω,

u = 0 on ∂Ω,
(3.8)

where L is given by (3.1) and f ∈ L2(Ω).
It is usually useful to write the (3.1) in the following vector form:

L[u] = −∇ · (A∇u) +~b · ∇u+ cu (3.9)

where A is defined as in equation (3.2), ~b = (b1, b2, ..., bn)′. Using the vector form (3.9), we
multiply the first equation in (3.8) by ϕ ∈ C∞c (Ω) and integrate∫

Ω

(L[u] ϕ) dx =

∫
Ω

fϕ dx∫
Ω

(−∇ · (A∇u)ϕ+~b · ∇uϕ+ cuϕ) dx =

∫
Ω

fϕ dx.

(3.10)

We focus on the left hand side of (3.10) and using Green’s formula we obtain:∫
Ω

(L[u]ϕ) dx =

∫
Ω

∇ · (A∇u)ϕ dx+

∫
Ω

~b · ∇uϕ dx+

∫
Ω

cuϕ dx−
∫
∂Ω

A∇uϕ · ~n ds.

Since u = 0 on ∂Ω and ϕ ∈ C∞c (Ω) we have that∫
Ω

(L[u]ϕ) dx =

∫
Ω

∇ · (A∇u)ϕ dx+

∫
Ω

~b · ∇uϕ dx+

∫
Ω

cuϕ dx

=

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂ϕ

∂xj
dx+

∫
Ω

n∑
i=1

bi
∂u

∂xi
ϕ dx+

∫
Ω

cuϕ dx

Let

B(u, ϕ) =

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂ϕ

∂xj
dx+

∫
Ω

n∑
i=1

bi
∂u

∂xi
ϕ dx+

∫
Ω

cuϕ dx (3.11)

where u ∈ C2(Ω) and ϕ ∈ C∞c (Ω). Then every solution u of (3.8) satisfies

B(u, ϕ) = (f, ϕ) for all ϕ ∈ C∞c (Ω), (3.12)

where (·, ·) denotes the inner product in L2(Ω).
Recall the Sobolev space

H1(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂u∂xi ∈ L2(Ω), i = 1, 2, ..., n

}
as defined in (2.3). We also remember from Remark 2.2 that the space C∞c (Ω) is dense in
H1

0 (Ω) with respect to the norm in H1(Ω) then (3.12) implies

B(u, ϕ) = (f, ϕ) for all ϕ ∈ H1
0 (Ω). (3.13)

The formulation of (3.13) does not require u ∈ C2(Ω) but only u ∈ H1
0 (Ω).
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Definition 3.2. [9] A function u ∈ H1
0 (Ω) is called a weak solution of the boundary value

problem (3.8) if
B(u, ϕ) = (f, ϕ) for all ϕ ∈ H1

0 (Ω).

It follows from Definition 3.2 that the homogeneous Dirichlet boundary value problem can be
reformulated as:

Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) such that (3.13) holds. (3.14)

This reformulation is called the variational formulation. When we reach this stage, one may
ask whether or not the solution exists for this problem that we have transformed so much. We
then use the Lax-Milgram Theorem to answer this question. It is not easy to find an explicit
formula for the solution of any given problem, therefore we need to show existence implicitly
using the Lax-Milgram theorem stated here below:

Theorem 3.4 (Lax-Milgram). [9, Theorem 1, Section 6.2.1] Let H be a Hilbert space.
Assume that B : H ×H 7→ R is a bilinear mapping, for which there exist constants α and
β ≥ 0 such that

(a) |B(u, ϕ)| ≤ α||u|| ||ϕ|| (3.15)

(b) B(u, u) ≥ β||u||2 (3.16)

where || · || is a norm in H. Let f : H 7→ R be a bounded linear functional on H. Then there
exists a unique element u ∈ H such that

B(u, ϕ) = (f, ϕ)

for all ϕ ∈ H.

For us to prove that our problem (3.8) has a unique solution, we are required to prove that
the bilinear form given in (3.11) satisfies the conditions of the Lax-Milgram Theorem, that is,
(3.15) and (3.16). We prove that these conditions are satisfied in the lemmas given below

Lemma 3.1. If the operator L is uniformly elliptic, then the bilinear form (3.11) is bounded,
that is, there exists a constant α ≥ 0 so that

|B(u, ϕ)| ≤ α||u|| ||ϕ||

for all u, ϕ ∈ H1
0 (Ω)

Proof.

|B(u, ϕ)| =
∣∣∣∣ ∫

Ω

n∑
i,j=1

aij
∂u

∂xi

∂ϕ

∂xj
dx+

∫
Ω

n∑
i=1

bi
∂u

∂xi
ϕ dx+

∫
Ω

cuϕ dx

∣∣∣∣
≤
∫

Ω

∣∣∣∣ n∑
i,j=1

aij
∂u

∂xi

∂ϕ

∂xj
+

n∑
i=1

bi
∂u

∂xi
ϕ+ cuϕ

∣∣∣∣dx
≤
∫

Ω

n∑
i,j=1

||aij||L∞(Ω)

∣∣∣∣ ∂u∂xi ∂ϕ∂xj
∣∣∣∣ dx+

∫
Ω

n∑
i=1

||bi||L∞(Ω)

∣∣∣∣ ∂u∂xiϕ
∣∣∣∣ dx+

∫
Ω

||c||L∞(Ω)|uϕ| dx
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From Hölders inequality (2.2) we have that

|B(u, ϕ)| ≤
n∑

i,j=1

||aij||L∞(Ω)

(∣∣∣∣∣∣∣∣ ∂u∂xi
∣∣∣∣∣∣∣∣
L2(Ω)

∣∣∣∣∣∣∣∣ ∂ϕ∂xj
∣∣∣∣∣∣∣∣
L2(Ω)

)
+

n∑
i=1

||bi||L∞(Ω)

(∣∣∣∣∣∣∣∣ ∂u∂xi
∣∣∣∣∣∣∣∣
L2(Ω)

||ϕ||L2(Ω)

)
+ ||c||L∞(Ω)||u||L2(Ω)||ϕ||L2(Ω)

= â||∇u||L2(Ω)||∇ϕ||L2(Ω) + b̂||∇u||L2(Ω)||ϕ||L2(Ω) + ĉ||u||L2(Ω)||ϕ||L2(Ω)

where â =
∑n

i,j=1 ||aij||L∞(Ω), b̂ =
∑n

i=1 ||bi||L∞(Ω) and ĉ = ||c||L∞(Ω). Applying the Poincaré
inequality (2.4) we obtain

|B(u, ϕ)| ≤ â||∇u||L2(Ω)||∇ϕ||L2(Ω) + b̂C||∇u||L2(Ω)||∇ϕ||L2(Ω) + ĉC̃||∇u||L2(Ω)||∇ϕ||L2(Ω)

= M ||∇u||L2(Ω)||∇ϕ||L2(Ω)

≤M(||∇u||L2(Ω)||∇ϕ||L2(Ω) + ||u||L2(Ω)||ϕ||L2(Ω))

≤M ||u||H1(Ω)||ϕ||H1(Ω)

Lemma 3.2. If the operator L is uniformly elliptic and ess inf(c−∇ ·~b) ≥ 0 then B(·, ·) is
coercive on H1

0 (Ω), that is, there exists a β > 0 such that for every u ∈ H1
0 (Ω) we have

B(u, u) ≥ β||u||2H1
0 (Ω) = β

(∫
Ω

u2dx+

∫
Ω

n∑
i=1

(
∂u

∂xi

)2

dx

)
.

Proof. Consider the bilinear form

B(u, u) =

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx+

∫
Ω

n∑
i=1

bi
∂u

∂xi
u dx+

∫
Ω

cu2 dx.

Since L is uniformly elliptic, it follows from Remark 3.1 that

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
≥ µ0|∇u|2 = µ0

n∑
i=1

(
∂u

∂xi

)2

.

Consider any ε > 0. Then Hence∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx ≥ µ0

∫
Ω

|∇u|2dx = µ0||∇u||2L2(Ω). (3.17)

µ0||∇u||2L2(Ω) = (µ0 − ε+ ε)||∇u||2L2(Ω)

= (µ0 − ε)||∇u||2L2(Ω) + ε||∇u||2L2(Ω).

From Poincaré’s inequality (2.4) we have that

µ0||∇u||2L2(Ω) ≥ (µ0 − ε)||∇u||2L2(Ω) +
ε

C2
||u||2L2(Ω).
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Choose ε =
µ0C

2

1 + C2
. It follows that

µ0||∇u||2L2(Ω) ≥
(
µ0 −

µ0C
2

1 + C2

)
||∇u||2L2(Ω) +

(
µ0C

2

C2(1 + C2)

)
||u||2L2(Ω)

=

(
µ0 + µ0C

2 − µ0C
2

1 + C2

)
||∇u||2L2(Ω) +

(
µ0

1 + C2

)
||u||2L2(Ω)

=
µ0

1 + C2

(
||∇u||2L2(Ω) + ||u||2L2(Ω)

)
=

µ0

1 + C2
||u||2H1

0 (Ω).

Taking the square root on both sides of the inequality we obtain

√
µ0||u||L2(Ω) ≥

√
µ0

1 + C2
||u||H1

0 (Ω) = β||u||H1
0 (Ω) (3.18)

where β =

√
µ0

1 + C2
. Combining (3.17) and (3.18) we get

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx ≥ β||u||H1

0 (Ω). (3.19)

Next we consider∫
Ω

n∑
i=1

bi
∂u

∂xi
u dx+

∫
Ω

cu2 dx =

∫
Ω

~b · (∇u)u dx+

∫
Ω

cu2 dx

=
1

2

∫
Ω

~b · ∇(u2) dx+

∫
Ω

cu2 dx

= −1

2

∫
Ω

u2(∇ ·~b) dx+
1

2

∫
∂Ω

u2(~b · ~n) ds+

∫
Ω

cu2 dx

=

∫
Ω

(
c− 1

2
∇ ·~b

)
u2 dx

≥
∫

Ω

(c−∇ ·~b)u2 dx

≥ ess inf(c−∇ ·~b)
∫

Ω

u2 dx

≥ 0.

(3.20)

From equations (3.19) and (3.20) it follows that

B(u, u) ≥ β||u||2H1
0 (Ω). (3.21)

Remark 3.2. Let us note that for the purpose of this proof it is enough to have
B(u, u) ≥ γ||u||L2(Ω) with γ = µ0

C2 , which follows from (3.17),(3.20) and Poincaré inequality.
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Remark 3.3. The assumption ess inf(c−∇ ·~b) ≥ 0 looks a bit strange within what looks to be
a quite elegant theory, particularly when compared to the simple condition c ≥ 0 in the
classical case. When b is a constant vector, there is not a problem as ∇ · b = 0. To simplify
the condition ess inf(c−∇ ·~b) ≥ 0 when b is a function of x ∈ Ω we can re-write the operator
as follows

L[u] = ∇ · (A∇u) + b · ∇u+ cu

= ∇ · (A∇u) +
1

2
b · ∇u+

1

2
∇ · (bu) +

(
c− 1

2
∇ · b

)
u.

Then we have
L[u] = ∇ · (A∇u) + b̃ · ∇u+∇(b̃u) + c̃u, (3.22)

where b̃ = 1
2
b and c̃ = c− 1

2
∇ · b. The bilinear form associated with (3.22) is

B̃(u, ϕ) =

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂ϕ

∂xj
+

∫
Ω

n∑
i=1

b̃i

(
∂u

∂xi
ϕ− u ∂ϕ

∂xi

)
+

∫
Ω

c̃uϕ. (3.23)

Then

B̃(u, u) =

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
+

∫
Ω

c̃u2

does not depend on b at all and it is easy to see that coercivity follows from the uniform
ellipticity of L and c̃ ≥ 0.
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3.3 Variational formulation in the case of

non-homogeneous Dirichlet boundary conditions

Let Ω be an open bounded subset of Rn. We consider the following non-homogeneous
Dirichlet boundary value problem:{

L[u] = f in Ω,

u = g on Γ := ∂Ω,
(3.24)

where L is given by (3.1). It follows from (b) in Theorem 2.3 that the function g can be
extended on the whole Ω in such a way that the extension is in H1(Ω). More precisely, such
extension is given by g̃ = T−1(g). We consider the following homogeneous boundary value
problem {

L[ũ] = f − L[g̃] in Ω

ũ = 0 on Γ.
(3.25)

Let f̃ = f − L[g̃], see [9, Remark, page 297], then (3.25) becomes{
L[ũ] = f̃ in Ω

ũ = 0 on Γ.
(3.26)

Theorem 3.5. A function u ∈ C2(Ω) is a solution of the non-homogeneous boundary value
problem (3.24) if and only if ũ = u− g̃ is a solution of the homogeneous boundary value
problem (3.26).

Similarly, for the variational formulation we have:

Theorem 3.6. A function u ∈ H1(Ω) is a solution of the variational problem

B(u, ϕ) = (f, ϕ) for all ϕ ∈ H1
0 (Ω) (3.27)

Tu = g, (3.28)

if and only if

(1) ũ = u− g̃ ∈ H1
0 (Ω) and

(2) ũ is a solution of (3.27).

Corollary 3.1. The variational problem (3.27)–(3.28) has a unique solution under the
assumptions of Theorem 3.4.

Remark 3.4. We can multiply the first equation of (3.26) by ϕ ∈ H1
0 (Ω), do integration by

parts and consider the boundary conditions to obtain a bilinear form that is equivalent to the
bilinear form defined in equation (3.11) where u will be replaced by ũ and f by f̃ .

Remark 3.5. The function ũ defined in Theorem 3.6 is a solution for Problem (3.26) and a
weak solution for the homogeneous Problem (3.24) [9].
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To summarize, from Theorem 3.6 it follows that the non-homogeneous problem (3.24) can be
written in the following form:
Find u ∈ H1(Ω) such that {

B(u, ϕ) = (f, ϕ) for all ϕ ∈ H1
0 (Ω)

Tu = g.
(3.29)
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3.4 Positivity and comparison theorems

In the previous sections we discussed classical solutions and solutions of the problem in
variational form. In this section we have results derived for the case where order preservation
is the property we are interested in. This means that the concepts of monotonicity and
inverse monotonicity come in. The result that we derive for the weak formulation of the
differential operator (3.1) use the important property of H1(Ω) being a lattice. Consider a
function w ∈ H1(Ω). The functions w+ and w− are defined as follows

w+(x) =

{
w(x) if w(x) > 0

0 if w(x) ≤ 0
(3.30)

w−(x) =

{
0 if w(x) ≥ 0

−w(x) if w(x) < 0.
(3.31)

We have that w = w+ − w−. We have that H1(Ω) is a lattice, hence for w ∈ H1(Ω) it follows
that w+, w− ∈ H1(Ω). Also if w ∈ H1

0 (Ω) then w+, w− ∈ H1
0 (Ω). It is also shown in the proof

of [5, Chapter 4.7, Propostion 6] that for any j = 1, 2, ...n

∂

∂xj
w+(x) =


∂

∂xj
w(x) if w(x) > 0

0 if w(x) ≤ 0
(3.32)

and

∂

∂xj
w−(x) =

0 if w(x) ≥ 0

− ∂

∂xj
w(x) if w(x) < 0.

(3.33)

Theorem 3.7 (Positivity). Let u ∈ H1(Ω) and assume that the bilinear form B is coercive. If

(a) B(u, ϕ) ≥ 0 for all ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 and

(b) Tu ≥ 0

then u ≥ 0 a.e. in Ω.

Proof. Let u ∈ H1(Ω) satisfy (a) and (b). Let u = u+ − u−, where u+ and u− are given in
(3.30) and (3.31) respectively. By the assumption of u ∈ H1(Ω), we have that
u+, u− ∈ H1(Ω). Using (3.30), (3.31), (3.32) and (3.33) we obtain

B(u+, u−) =

∫
Ω

n∑
i=1

aij
∂u+

∂xi

∂u−

∂xj
+

∫
Ω

n∑
i=1

bi
∂u+

∂xi
u− +

∫
Ω

cu+u− = 0

since in all products, the factors have disjoint support. Let u ∈ H1(Ω) satisfy (a) and (b).
Then Tu ≥ 0 implies Tu = Tu+ and Tu− = 0. Therefore u− ∈ H1

0 (Ω). Taking ϕ = u− in (a)
we have

B(u+ − u−, u−) ≥ 0,

B(u+, u−)−B(u−, u−) ≥ 0,

B(u−, u−) ≤ 0.
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Using the coercivity of B we have

β||u−||H1
0 (Ω) ≤ B(u−, u−) ≤ 0.

Therefore u− = 0 a.e. in Ω, which implies that u = u+ ≥ 0 a.e. in Ω.

Theorem 3.8 (Comparison Theorem). Let the bilinear form B be coercive on H1
0 (Ω). Then,

if for some u, v ∈ H1(Ω) we have

(a) B(u, ϕ) ≥ B(v, ϕ) for all ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 and

(b) Tu ≥ Tv

then u ≥ v a.e. in Ω.

Proof. Let z = u− v, then

B(z, ϕ) = B(u− v, ϕ)

= B(u, ϕ)−B(v, ϕ).

Since B(u, ϕ) ≥ B(v, ϕ) it follows that B(z, ϕ) ≥ 0 and

Tz = T (u− v)

= Tu− Tv
≥ 0

since Tu ≥ Tv. The function z ∈ H1(Ω) satisfies the conditions of Theorem 3.7. Hence z ≥ 0
a.e. in Ω. This implies that

u− v ≥ 0 a.e. in Ω

u ≥ v a.e. in Ω.
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3.5 Extension of the operator P in (3.5) to H1(Ω)

Let us take note that the bilinear form is defined on a much wider domain than in (3.11). To
be more precise, it is defined for all u, ϕ ∈ H1(Ω). We note that for any u ∈ H1(Ω), B(u, ·) is
a linear functional on H1

0 (Ω) defined via

ϕ→ B(u, ϕ), ϕ ∈ H1
0 (Ω).

Let B satisfy the boundedness condition (3.15). To be more precise,

B(u, ϕ) ≤ α||u||H1(Ω) ||ϕ||H1(Ω)

B(u, ϕ)

||ϕ||H1(Ω)

≤ α||u||H1(Ω)

Therefore, B(u, ·) is bounded and we have B(u, ·) ∈ H−1(Ω) (see section 2.4). The existence
and uniqueness theory is derived for an even more general problem than (3.14) given as:

Given f ∈ H−1(Ω), find u ∈ H1
0 (Ω) such that

B(u, ϕ) = 〈f, ϕ〉 for all ϕ ∈ H1
0 (Ω). (3.34)

The main result is that (3.34) has a unique solution provided B satisfies the conditions of the
Lax–Milgram theorem. The theory is given in detail in many books, e.g. [9]. Further, this
means that the non-homogeneous problem (3.24) can be generalized to the following
variational formulation:

Given f ∈ H−1(Ω) and g ∈ H1/2(∂Ω), find u ∈ H1(Ω) such that

B(u, ϕ) = 〈f, ϕ〉 for all ϕ ∈ H1
0 (Ω) and (3.35)

Tu = g,

where a unique solution exists under the same conditions for B on H1
0 (Ω). Considering

problem (3.35), the operator P in (3.5) can be extended to P : H1(Ω)→ H−1(Ω)×H1/2(∂Ω)
as

P [u] =

(
B(u, ·)
Tu

)
. (3.36)

Using this notation, problem (3.35) can be written in the form (3.7), where both the data and
the solution belong to much larger spaces than in the classical case, specifically f ∈ H−1(Ω),
g ∈ H1/2(∂Ω) and u ∈ H1(Ω). The existence and uniqueness of solution of the equation (3.36)
implies that P is actually a bijection. Our primary interest is in the preservation of order.
The goal here is to show that the operator P in (3.36) preserves order in H−1(Ω) which is
induced by order in H1

0 (Ω).

Theorem 3.9. Let the bilinear form B be coercive on H1
0 (Ω). Then the operator P defined in

(3.36) is inverse monotone.

Proof. Let P [u] =

(
B(u, ·)
Tu

)
and P [v] =

(
B(v, ·)
Tv

)
.

We have P [u] ≤ P [v] =⇒
(
B(u, ·)
Tu

)
≤
(
B(v, ·)
Tv

)
.
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This implies that

B(u, ϕ) ≤ B(v, ϕ) for all ϕ ∈ H1
+(Ω) := {ϕ ∈ H1

0 (Ω) : ϕ ≥ 0}
Tu ≤ Tv

Hence by the Comparison Theorem 3.8 we have that u ≤ v a.e. in Ω.

Corollary 3.2. The boundary value problem (3.27)– (3.28) is equivalent to

B(u, ϕ) = 〈f, ϕ〉 for all ϕ ∈ H1
+(Ω)

Tu = g.

Proof. Let ϕ ∈ H1
0 (Ω). We consider the functions:

ϕ+(x) =

{
ϕ(x) if ϕ(x) > 0

0 if ϕ(x) ≤ 0

ϕ−(x) =

{
0 if ϕ(x) ≥ 0

−ϕ(x) if ϕ(x) < 0.

Hence ϕ = ϕ+ − ϕ−, where ϕ+, ϕ− ∈ H1
+(Ω) [5, Chapter 4.7, Propostion 6]. Then

B(u, ϕ) = B(u, ϕ+ − ϕ−)

= B(u, ϕ+)−B(u, ϕ−)

= (f, ϕ+)− (f, ϕ−)

= (f, ϕ+ − ϕ−)

= (f, ϕ).

Remark 3.6. It is sufficient for the variational problem (3.24) to be satisfied for any
ϕ ∈ H1

+(Ω).
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3.6 Systems of elliptic PDEs

We consider in this section operators associated with weakly coupled systems of elliptic
PDEs. In the classical form such a system is formulated for u ∈ (C2(Ω) ∩ C(Ω))m as{

Lk[u] = fk in Ω,

uk = gk on ∂Ω,
(3.37)

where

Lk[u] ≡ −
n∑

i,j=1

∂

∂xj

(
a

(k)
ij

∂uk
∂xi

)
+

n∑
i=1

b
(k)
i

∂uk
∂xi

+
n∑
i=1

∂uk
∂xi

(b
(k)
i uk) +

m∑
`=1

ck,`u`, (3.38)

for k = 1, ...,m. Weakly coupling refers to the fact that the equations are not coupled in the
differential part of the operators Lk. If we denote A(k) = (a

(k)
ij )ni,j=1 and b(k) = (b

(k)
1 , ..., b

(k)
n )′,

then the differential operator (3.38) can be written in the following vector form

Lk[u] = −∇ · (A(k)∇uk) + b(k) · ∇uk +∇ · (b(k)uk) +
m∑
`=1

ck,`u`. (3.39)

We assume that the uniform ellipticity condition is satisfied, namely there exists a µ0 > 0
such that for every k = 1, ...,m we have

ξ · A(k)(x)ξ ≥ µ0|ξ|2

for all x ∈ Ω and ξ ∈ Rn. We introduce vector notation by letting

u =

 u1
...
um

 , L =

 L1[u]
...

Lm[u]

 , f =

 f1
...
fm

 and g =

 g1
...
gm

 .

As a result, the system (3.37) can be written as a single vector equation and boundary
condition as {

L[u] = f in Ω,

u = g on ∂Ω.
(3.40)

Furthermore, the operator admits the following convenient vector representation

L[u] ≡ −
n∑

i,j=1

∂

∂xj

(
Aij

∂u

∂xi

)
+

n∑
i=1

Bi
∂uk
∂xi

+
n∑
i=1

∂uk
∂xi

(Biu) + Cu.

We assume that Aij and Bi are diagonal m×m matrices, that is, Aij = diag(a
(1)
ij , ..., a

(m)
ij ) and

Bi = diag(b
(1)
i , ..., b

(m)
i ). We further make assumptions on matrix C as follows:

(i) ck` ≤ 0 for k 6= `, (3.41)

(ii) the matrix C + C ′ is positive semi-definite for any x ∈ Ω. (3.42)

We note that the assumption (3.41) implies that matrix C is an M−matrix. In other words,
−C is a Metzler matrix. This assumption is essential for deriving the intended monotonicity.
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A similar assumption is made in [22] for obtaining a comparison theorem in the space of
classical solutions. The assumption (3.42) generalizes the condition c ≥ 0 in the one
dimensional case. From this assumption we obtain that for any x ∈ Ω and η ∈ Rm we have

(C(x)η) · η =
1

2
((C(x) + C ′(x))η) · η ≥ 0. (3.43)

In order to derive a variational formulation we assume that all the coefficients in L are
measurable and uniformly bounded. Let f ∈ (L2(Ω))m. Multiply the first equation of the
boundary value problem (3.40) by a test function ϕ ∈ (C∞c (Ω))m, integrate over Ω and apply
Green’s formula. The resulting bilinear form is given in equation (1) in the research paper of
O’Connor [13] for all ϕ ∈ (H1

0 (Ω))m as

B(u, ϕ) =
n∑

i,j=1

∫
Ω

(
Aij

∂u

∂xi

)
· ∂ϕ
∂xi

dx+
n∑
i=1

∫
Ω

(
Bi
∂u

∂xi

)
·ϕ dx+

n∑
i=1

∫
Ω

(Bi)·
∂ϕ

∂xi
dx+

∫
Ω

(Cu)·ϕ dx.

(3.44)
We note that bilinear form (3.44) has a mapping B : (H1

0 (Ω))m × (H1
0 (Ω))m 7→ R. Similar to

the one dimensional case we generalize (3.37) to the problem
Given f ∈ (H−1(Ω))m and g ∈ (H1/2(∂Ω))m,

find u ∈ (H1(Ω))m such that

B(u, ϕ) = 〈f, ϕ〉 for all ϕ ∈ (H1
0 (Ω))m and

Tu = g.

(3.45)

Assumption (3.42) is a quadratic form, which is relaxed compared to the symmetry condition
of C especially in application. With this inequality we can obtain the coercivity of the
bilinear form on (H1

0 (Ω))m. Indeed, for any u ∈ (H1
0 (Ω))m we have

B(u, u) =
m∑
k=1

∫
Ω

(
(A(k)∇uk) · ∇uk

)
+

∫
Ω

(Cu) · u

≥ µ1

(
m∑
k=1

||∇uk||2
)
.

Then, following the standard approach of using the Poincaré inequality as in Lemma 3.2 we
obtain that there exists a constant µ2 such that

B(u, u) ≥ µ2

(
m∑
k=1

||uk||2H1(Ω)

)
= µ2||u||2(H1(Ω))m . (3.46)

The boundedness of B(u, v) is obtained in a similar way to the one dimensional case. Then,
the existence and uniqueness of solution of (3.45) follows from the Lax-Milgram Theorem -
first for the homogeneous problem and then extended to the non-homogeneous one. More
detailed existence and uniqueness theory of variational formulation of general systems of
elliptic PDEs is given in [13].
Our main interest in this section is the order properties of general elliptic systems of PDEs.
All product spaces in this section are considered with the associated coordinate-wise partial
order.
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Theorem 3.10 (Positivity Theorem). Let u ∈ (H1(Ω))m and assume that the bilinear form B
is coercive on (H1

0 (Ω))m. If

(a) B(u, ϕ) ≥ 0 for all ϕ ∈ (H1
+(Ω))m and

(b) Tu ≥ 0

then u ≥ 0 a.e. in Ω.

Proof. Let u = u+ − u−, where u+ and u− are given in (3.30) and (3.31) respectively. Let us
note that Tu ≥ 0 implies that Tu− = 0, so that u− ∈ (H1

0 (Ω))m. By the assumption of
u ∈ (H1

0 (Ω))m, we have that u+, u− ∈ (H1
0 (Ω))m by the lattice property of H1

0 (Ω). Using also
(3.32), (3.33) and (3.41) we obtain

B(u+, u−) =
m∑
k=1

(∫
Ω

n∑
i,j=1

(
a

(k)
ij

∂u+
k

∂xj

)
· ∂u

−
k

∂xi
+

∫
Ω

n∑
i=1

b
(k)
i

∂u+
k

∂xi
u−k

)
+

m∑
`=1

∫
Ω

ckku
+
k u
−
k

+
∑
k 6=`

∫
Ω

ck`u
+
k u
−
`

=

∫
Ω

m∑
k=1

n∑
i,j=1

a
(k)
ij

∂u+
k

∂xj
· ∂u

−
k

∂xi
+

∫
Ω

m∑
k=1

n∑
i=1

b
(k)
i

∂u+
k

∂xi
u−k +

∫
Ω

m∑
`=1

ckku
+
k u
−
k

+

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

=

∫
Ω

n∑
i,j=1

m∑
k=1

a
(k)
ij

∂u+
k

∂xj
· ∂u

−
k

∂xi
+

∫
Ω

n∑
i=1

m∑
k=1

b
(k)
i

∂u+
k

∂xi
u−k +

∫
Ω

m∑
`=1

ckku
+
k u
−
k

+

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

=

∫
Ω

n∑
i,j=1

0 +

∫
Ω

n∑
i=1

0 +

∫
Ω

m∑
`=1

0 +

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

=

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

≤ 0

Using (a) with ϕ = u− we obtain

B(u+ − u−, u−) ≥ 0

B(u+, u−)−B(u−, u−) ≥ 0

B(u−, u−) ≤ 0.

By the coercivity (3.46) of B it follows that

µ2||u−||2(H1(Ω))m ≤ B(u−, u−) ≤ 0.

Hence, ||u−||2(H1(Ω))m = 0, or equivalently u− = 0 a.e. on Ω. Then, u = u+ ≥ 0 a.e. on Ω.
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Theorem 3.11 (Comparison Theorem of an Elliptic System of PDEs). Let the bilinear form
B be coercive on (H1

0 (Ω))m. Then if for some u, v ∈ (H1(Ω))m

(a) B(u, ϕ) ≥ B(v, ϕ) for all ϕ ∈ (H1
+(Ω))m and

(b) Tu ≥ Tv

then u ≥ v a.e in Ω.

Proof. Let z ∈ (H1(Ω))m be the function defined by z := u− v, then

B(z, ϕ) = B(u− v, ϕ)

= B(u, ϕ)−B(v, ϕ).

Since B(u, ϕ) ≥ B(v, ϕ) it follows that B(z, ϕ) ≥ 0 and

Tz = T (u− v)

= Tu− Tv
≥ 0

since Tu ≥ Tv. The function z satisfies the conditions of Theorem 3.10, hence z ≥ 0 a.e. in Ω.
This implies that

u− v ≥ 0 a.e. in Ω

u ≥ v a.e. in Ω.

We can associate with the problem (3.45) the operator
P : (H1(Ω))m 7→ (H−1(Ω))m × (H1/2(∂Ω))m defined through

P [u] =

(
B(u, ·)
Tu

)
. (3.47)

Theorem 3.12. Let C satisfy (3.41)–(3.42). The the operator P defined in (3.47) is inverse
monotone, that is,

P [u] ≤ P [v] =⇒ u ≤ v for all u, v ∈ (H1(Ω))m.

Proof. Let K be the positive cone of (H1
0 (Ω))m, that is

K = {ϕ ∈ (H1
0 (Ω))m : ϕk(x) ≥ 0, for a.e. x ∈ Ω, k = 1, ...,m}.

Then the positive cone in (H−1(Ω))m is defined by

K∗ = {f ∈ (H−1(Ω))m : 〈f, ϕ〉 ≥ 0 for all ϕ ∈ K}.

Equivalently, this means that for any f1, f2 ∈ (H−1(Ω))m

f1 ≤ f2 ⇐⇒ 〈f1, ϕ〉 ≤ 〈f2, ϕ〉 for all ϕ ∈ K.

Specifically with reference to the operator P in (3.47), we have

B(u, ·) ≤ B(v, ·) ⇐⇒ B(u, ϕ) ≤ B(v, ϕ) for all ϕ ∈ (H1
+(Ω))m.

Then the proof follows directly from Theorem 3.11



Chapter 4

Parabolic PDEs

4.1 Variational formulation in the case of Dirichlet

boundary conditions

Let Ω be an open, bounded subset of Rn and Ωθ = Ω× (0, θ] where θ > 0 is some fixed time.
We study partial differential equations of the form

ut + L[u] = f in Ωθ, (4.1)

where f : Ωθ 7→ R and u : Ωθ 7→ R is the unknown that we seek. Let u ≡ u(x, t). In (4.1), the
letter L denotes the second order differential operator

L[u] ≡ −
n∑

i,j=1

∂

∂xj

(
aij(x, t)

∂u

∂xi

)
+

n∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u (4.2)

and we assume that aij, bi, c ∈ L∞(Ωθ). The operator ∂
∂t

+ L is said to be a uniformly
parabolic operator in Ωθ if there exists a positive constant µ0 such that

ξ · A(x, t)ξ ≥ µ0|ξ|2 (4.3)

for all (x, t) ∈ Ωθ and all ξ ∈ Rn. Note that for each fixed time t ∈ [0, θ] we assume that the
operator L is uniformly elliptic in the spatial variable x [9, Remark, Chapter 7.1.1]. To be
more explicit we state the following definition

Definition 4.1. [17, Definition 11.1.1] The operator

∂u

∂t
+ L[u],

defined for all real functions on Ωθ which are C1((0, θ]) with respect to t and C2(Ω) with
respect to x, is said to be parabolic if L is uniformly elliptic on Ωθ.

Unlike in Chapter 3, we have here the presence of the time derivative, hence an initial
condition has to be imposed in the problem formulation. We impose certain boundary
conditions to (4.1) in order to complete the formulation of the problem. Parabolic PDEs are
well known in Mathematical Physics as they describe the time evolution of spatial states, for
example, the distribution of heat. In more recent times parabolic PDEs and systems of
parabolic PDEs are applied to biological models, such as population dynamics. The biological
meaning of the homogeneous Dirichlet and Neumann boundary conditions are as follows:

30
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1. Dirichlet: u(x, t) = 0, x ∈ ∂Ω, describes a domain out of which individuals cannot
survive

2. Neumann: ∂
∂na

u(t, x) = 0 x ∈ ∂Ω describes an isolated domain with no movement of
individuals in and out of the domain.

In the heat equation, the homogeneous Dirichlet boundary conditions mean that the
temperature is kept zero at the end points. Neumann boundary conditions are used to
describe the lateral surface of the bar that is perfectly insulated, that is, no heat can come in
or go out of the surface. We focus on the following initial-boundary value problem

∂u

∂t
+ L[u] = f in Ωθ,

u(·, 0) = u0(·) on Ω,

u = 0 on ∂Ω× (0, θ),

(4.4)

where f ∈ L2(Ωθ) and u0 ∈ L2(Ω). As in the elliptic case studied before, we derive a weak
formulation for (4.4). For equation (4.4), we expect a solution u(t, x) to lie in C1((0, θ]) with
respect to t and in C2(Ω) with respect to x and we call such a solution a classical solution.
The derivation of a weak solution can be obtained by multiplying the first equation of (4.4)
by ϕ ∈ C∞c (Ω) and integrate:∫

Ω

∂u

∂t
ϕ dx+

∫
Ω

L[u]ϕ dx =

∫
Ω

fϕ dx. (4.5)

After using integration by parts, Green’s formula and the boundary conditions we obtain∫
Ω

∂u

∂t
ϕ dx+

∫
Ω

n∑
i,j=1

aij(x, t)
∂u

∂xi

∂ϕ

∂xj
dx+

∫
Ω

n∑
i=1

bi(x, t)
∂u

∂xi
ϕ dx+

∫
Ω

c(x, t)uϕ dx =

∫
Ω

fϕ dx.

For each t ∈ [0, θ] we let

B(t;u, ϕ) =

∫
Ω

n∑
i,j=1

aij(x, t)
∂u

∂xi

∂ϕ

∂xj
dx+

∫
Ω

n∑
i=1

bi(x, t)
∂u

∂xi
ϕ dx+

∫
Ω

c(x, t)uϕ dx. (4.6)

Since C∞c (Ω) is dense in H1
0 (Ω) with respect to the norm in H1(Ω), we have that every

solution u of (4.4) satisfies(
∂u

∂t
, ϕ

)
+B(t;u, ϕ) = (f, ϕ) for all ϕ ∈ H1

0 (Ω), (4.7)

where (·, ·) is an inner product in L2(Ω). Unlike (4.1) the operator on the left hand side of
(4.7) is defined on a much wider space of functions than the space considered for the solutions
of (4.1). Specifically, the bilinear form is defined if for any fixed t ∈ (0, θ] we have
u(t, ·) ∈ H1(Ω). Our initial-boundary value problem (4.4) has homogeneous Dirichlet
boundary conditions, that is Tu = 0 on ∂Ω× (0, θ). As a result, we expect for any fixed t the

solution to lie on H1
0 (Ω). Moreover, the integral

∫
Ω

∂u

∂t
ϕ dx is defined on the dual pairing of
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H1
0 (Ω) and H−1(Ω). Therefore it is well-defined for any t if

∂u

∂t
∈ H−1(Ω). From [9, Chapter

7.1b] we let uuu be a mapping
uuu : [0, θ] 7→ H1

0 (Ω)

defined by
[uuu(t)](x) := u(x, t) for x ∈ Ω, t ∈ [0, θ].

This means that we consider uuu as a mapping of t into the space H1
0 (Ω). Similarly we define

fff : [0, θ] 7→ L2(Ω)

by
[fff(t)](x) := f(x, t) for x ∈ Ω, t ∈ [0, θ].

As a result, the problem of this form reduces to a system of ODEs with initial condition
uuu(0) = u0. We denote by L2(0, θ;H1

0 (Ω)) the space

L2(0, θ;H1
0 (Ω)) :=

{
u : (0, θ) 7→ H1(Ω)| ||u(·)||H1

0 (Ω) is measurable and

∫ θ

0

||u(t)||2H1
0 (Ω)dt <∞

}
.

The following property is useful in getting to the variational formulation of problem (4.4):

Proposition 4.1. [6, Chapter XVIII, Section 1, Proposition 7] Let V be a Hilbert space and
let V ′ be the dual space of V . For uuu ∈ L2(0, θ;V ) with uuu′ ∈ L2(0, θ;V ′) and ϕ ∈ V we have

〈uuu′(·), ϕ〉 =
d

dt
(u(·), ϕ) in [0, θ].

It is important to note that the distributional derivative
duuu

dt
generalizes the derivative

∂u

∂t
of u

in Ωθ. Proposition 4.1 allows us to rewrite the first term of (4.7) as 〈du
uu

dt
(t), ϕ〉. Hence the

variational formulation is

Given fff ∈ L2(0, θ;H−1(Ω)) and u0 ∈ L2(Ω)

Find uuu ∈ L2(0, θ;H1
0 (Ω)) with uuu′ ∈ L2(0, θ;H−1(Ω)) such that〈

duuu

dt
(t), ϕ

〉
+B(t;uuu(t), ϕ) = 〈fff(t), ϕ〉 for all ϕ ∈ H1

0 (Ω)

uuu(0) = u0

(4.8)

for each t ∈ [0, θ].

Definition 4.2. A function satisfying (4.8) is called a weak solution of (4.4).

We introduce short-hand notation for the space defined where the solution lies, motivated by
Definition 4.2. Define

W(H1
0 (Ω), H−1(Ω)) := {uuu ∈ L2(0, θ;H1

0 (Ω)) | uuu′ ∈ L2(0, θ;H−1(Ω))}.

Properties of the bilinear form:
Let θ > 0 be fixed. For a.e. t ∈ [0, θ] the bilinear form B(t;uuu, ϕ) : H1

0 (Ω)×H1
0 (Ω) 7→ R

satisfies the following properties for all uuu ∈ W(H1
0 (Ω), H−1(Ω)) and ϕ ∈ H1

0 (Ω):
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(P1) the function t 7→ B(t;uuu(t), ϕ) is measurable,

(P2) |B(t;uuu(t), ϕ)| ≤M ||uuu(t)||H1
0 (Ω) ||ϕ||H1

0 (Ω) for a.e. t ∈ [0, θ] and

(P3) B(t;uuu(t),uuu(t)) ≥ α||uuu(t)||2
H1

0 (Ω)
− β||uuu(t)||2L2(Ω) for a.e. t ∈ [0, θ],

where α, β,M > 0.
Note that (P2) means that the bilinear form is continuous (P3) is the definition of L2

coercivity. The approach of J.-L. Lions is well known in the theory of PDEs as it allows us to
prove the existence and uniqueness of a weak solution for parabolic initial-boundary value
problems. J.-L Lions’ theorem can be seen as an equivalent of the Lax-Milgram theorem for
parabolic equations. We state the theorem here below

Theorem 4.1 (J.-L. Lions). [3, Theorem 10.9] Let V and H be Hilbert spaces and assume B
satisfies (P1)–(P3). Given fff ∈ L2(0, T ;V ′) and u0 ∈ H, there exists a unique function uuu
satisfying

uuu ∈ L2(0, θ;V ) ∩ C([0, θ];V ), uuu′(t) ∈ L2(0, θ;V ′)

〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ) = 〈fff(t), ϕ〉 for a.e. t ∈ (0, θ) for all ϕ ∈ V

and
uuu(0) = u0.

For our initial-boundary value problem (4.4), Brezis [3] states that in Theorem 4.1 we can let
H = L2(Ω) and V = H1

0 (Ω). Since the dual space to H1
0 (Ω) is given by H−1(Ω), we let

V ′ = H−1(Ω). In order to apply Theorem 4.1 to problem (4.8) we need to show that the
bilinear form (4.6) satisfies (P1)–(P3).

Proof. (P1)–(P2): The proofs of (P1) and (P2) follow directly from Theorem 2.7 by setting
V = H1

0 (Ω), then V ′ = H−1(Ω), V = L2(0, θ;H1
0 (Ω)) and V ′ = L2(0, θ;H−1(Ω)).

(P3): Consider the bilinear form

B(t;u, u) =

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx+

∫
Ω

n∑
i=1

bi
∂u

∂xi
u dx+

∫
Ω

cu2 dx.

Since L is uniformly elliptic, it follows that

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
≥ µ0|∇u|2 = µ0

n∑
i=1

(
∂u

∂xi

)2

.

Hence ∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx ≥ µ0

∫
Ω

|∇u|2dx = µ0||∇u||2L2(Ω). (4.9)

Let ε > 0. Then

µ0||∇u||2L2(Ω) = (µ0 − ε+ ε)||∇u||2L2(Ω)

= (µ0 − ε)||∇u||2L2(Ω) + ε||∇u||2L2(Ω).
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From Poincaré’s inequality (2.4) we have that

µ0||∇u||2L2(Ω) ≥ (µ0 − ε)||∇u||2L2(Ω) +
ε

C2
||u||2L2(Ω).

Choose ε =
µ0C

2

1 + C2
, it follows that

µ0||∇u||2L2(Ω) ≥
(
µ0 −

µ0C
2

1 + C2

)
||∇u||2L2(Ω) +

(
µ0C

2

C2(1 + C2)

)
||u||2L2(Ω)

=

(
µ0 + µ0C

2 − µ0C
2

1 + C2

)
||∇u||2L2(Ω) +

(
µ0

1 + C2

)
||u||2L2(Ω)

=
µ0

1 + C2

(
||∇u||2L2(Ω) + ||u||2L2(Ω)

)
=

µ0

1 + C2
||u||2H1

0 (Ω).

Taking the square root on both sides of the inequality we obtain

√
µ0||u||L2(Ω) ≥

√
µ0

1 + C2
||u||H1

0 (Ω) = α||u||H1
0 (Ω) (4.10)

where α =

√
µ0

1 + C2
. Combining (4.9) and (4.10) we get

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx ≥ α||u||H1

0 (Ω). (4.11)

Next we consider∫
Ω

n∑
i=1

bi
∂u

∂xi
u dx+

∫
Ω

cu2 dx =

∫
Ω

~b · (∇u)u dx+

∫
Ω

cu2 dx

=
1

2

∫
Ω

~b · ∇(u2) dx+

∫
Ω

cu2 dx

= −1

2

∫
Ω

u2(∇ ·~b) dx+
1

2

∫
∂Ω

u2(~b · ~n) ds+

∫
Ω

cu2 dx

=

∫
Ω

(
c− 1

2
∇ ·~b

)
u2 dx

≥ −β
∫

Ω

u2 dx

= −β||u||2L2(Ω)

(4.12)

where β = max{max(1
2
∇ ·~b− c), 0}. From equations (4.11) and (4.12) it follows that

B(t;u, u) ≥ α||u||2
H1

0 (Ω)
− β||u||L2(Ω).
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4.2 Variational formulation in the case of

non-homogeneous Dirichlet boundary conditions

Let Ω be an open, bounded subset of Rn and Ωθ = Ω× (0, θ] where θ > 0 is some fixed time.
We consider the following non-homogeneous Dirichlet initial-boundary value problem:

∂u

∂t
+ L[u] = f in Ωθ

u(·, 0) = u0(·) on Ω

u = g on ∂Ω× (0, θ)

(4.13)

where L is given by (4.2) and g ∈ H1/2(∂Ω). We recall that a non-homogeneous Dirichlet
boundary value problem can be transformed to a homogeneous Dirichlet boundary value
problem using the fact that g can be extended on the whole Ω in such a way that the
extension is in H1(Ω). It follows form (b) in Theorem 2.3 that this extension is given by a
sufficiently smooth function g̃ = T−1(g). As a result, we obtain the following homogeneous
initial-boundary value problem

∂ũ

∂t
+ L[ũ] = f − L[g̃] in Ωθ

ũ(·, 0) = ũ0(·) on Ω

ũ = 0 on ∂Ω× (0, θ).

(4.14)

Letting f̃ = f − L[g̃] we have that (4.14) becomes
∂ũ

∂t
+ L[ũ] = f̃ in Ωθ

ũ(·, 0) = ũ0(·) on Ω

ũ = 0 on ∂Ω× (0, θ).

(4.15)

To obtain the variational formulation, we multiply the first equation of (4.15) by ϕ ∈ H1
0 (Ω),

do integration by parts and take into consideration the boundary conditions to obtain a
bilinear form equivalent to the bilinear form given in (4.6) where u will be replaced by ũ and
f replaced by f̃ .

Theorem 4.2. A function u that lies in C1((0, θ]) with respect to t and C2(Ω) with respect to
x is a solution of the non-homogeneous initial-boundary value problem (4.13) if and only if
ũ = u− g̃ is a solution of the homogeneous boundary value problem (4.15).

We can state the variational formulation for this problem similar to the previous section as:

Given fff ∈ L2(0, θ;H−1(Ω)), g ∈ L2(0, θ;H1/2(∂Ω)) and u0 ∈ L2(Ω),

find uuu ∈ L2(0, θ;H1(Ω)) with uuu′ ∈ L2(0, θ;H−1(Ω)) such that

〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ) = 〈fff(t), ϕ〉 for all ϕ ∈ H1
0 (Ω)

uuu(0) = u0

T (uuu(t)) = g

(4.16)
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for each t ∈ [0, θ]. We can make use of short–hand notation for the space on which the
solution lies as

W(H1(Ω), H−1(Ω)) := {uuu ∈ L2(0, θ;H1(Ω))| uuu′ ∈ L2(0, θ;H−1(Ω))}.

We make use of the following Lemma for functions uuu which belong to the space
W(H1(Ω), H−1(Ω)).

Lemma 4.1. Let f ∈ C1(R) and f ′ ∈ L∞(R). If uuu ∈ W(H1(Ω), H−1(Ω)) then

f(uuu) = f(uuu(t)) = f ◦ (uuu(t)) ∈ W(H1(Ω), H−1(Ω)) for each t ∈ [0, θ) and
df(uuu)

dt
= f ′(uuu).

duuu

dt
.

Proof. Since f ∈ C1(R) and f ′ ∈ L∞(R), it then follows from Lemma 2.1 that for
uuu ∈ W(H1(Ω), H−1(Ω) we have f(uuu(t)) ∈ H1(Ω) for all t ∈ [0, θ].

First we show that f ′(uuu).
duuu

dt
∈ H−1(Ω) :

Consider φk ∈ L2(Ω) for k = 0, 1, ..., n and let
duuu

dt
= (φ0, φ1, ..., φn) by Proposition 4.1, that is

〈
duuu

dt
, ϕ

〉
=

∫
Ω

(
φ0ϕ+

n∑
k=1

φk
∂ϕ

∂xk

)
for ϕ ∈ H1

0 (Ω).

f ′(uuu)
duuu

dt
= (f ′(uuu)φ0, f

′(uuu)φ1, ..., f
′(uuu)φn) ∈ H−1(Ω).

Using the method of proof of the second part of Lemma 2.1, one can prove that
d

dt
f(uuu) = f ′(uuu)

duuu

dt
.
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4.3 Positivity and comparison theorems on

W(H1(Ω), H−1(Ω))

Positivity of solutions of the variational problem (4.8) has been published previously but
there hasn’t been results that can be directly applied to our variational problem. These
results appear in publications such as [8, Proposition 6.11] and [12, Theorem 1]. We state a
more general result for functions in W(H1(Ω), H−1(Ω)) and provide a detailed proof. Let us
first recall the definition of the space

H1
+(Ω) = {ϕ ∈ H1

0 (Ω) : ϕ ≥ 0}.

We need the following result to derive the positivity theorem.

Proposition 4.2.
〈(uuu+(t))′,uuu−(t)〉 = 0. (4.17)

Proof. We consider for all ε > 0 the function fε : R 7→ R given by

fε(ξ) =

{√
ξ2 + ε2 − ε if ξ > 0

0 if ξ ≤ 0.

For all ε > 0, fε ∈ C1(R). Next we consider

f ′ε(ξ) =


ξ√

ξ2 + ε2
if ξ > 0

0 if ξ ≤ 0

and lim
ε→0

fε(ξ) =

{
1 if ξ > 0

0 if ξ ≤ 0.

We see that f ′ε is continuous and bounded, that is, |f ′ε(ξ)| ≤ 1. By Lemma 2.1 we have that
for every t ∈ (0, θ) fε ◦ uuu(t) = fε(uuu(t)) ∈ H1(Ω). Further from Proposition 4.1 we have that

d

dt
(fε(uuu(t)), ϕ) =

〈
d

dt
fε(uuu(t)), ϕ

〉
.

Fix uuu ∈ W(H1(Ω), H−1(Ω)), ϕ ∈ H1
0 (Ω). Let Φε(t) = (fε(uuu), ϕ) ∈ L2(0, θ).

d

dt
Φε(t) =

〈
d

dt
fε(uuu), ϕ

〉
=

〈
f ′ε(uuu)

duuu

dt
, ϕ

〉
∈ L2(0, θ).

Therefore Φε(t) ∈ H1(0, θ). Fix t ∈ (0, θ). We have fε(u(x, t)) −→ u+(x, t) pointwise for all
x ∈ Ω. Using that (·, ·) is an integral, and using the dominated convergence theorem we
obtain convergence of the respective integral, that is

Φε(t) = (fε(uuu), ϕ) =

∫
Ω

fε(u(x, t))ϕ(x)dx −→
∫

Ω

u+(x, t)ϕ(x)dx = (uuu+(t), ϕ).

Similarly,

f ′ε(u(x, t))
ε−→
0
ζ(x, t) =

{
1 if u(t, x) > 0

0 if u(t, x) ≤ 0
(4.18)
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for all x ∈ Ω. The duality pairing 〈·, ·〉 has an integral presentation as given in Proposition
4.1. Therefore, from the dominated convergence theorem we obtain

d

dt
Φε(t) =

〈
f ′ε(uuu)

duuu

dt
, ϕ

〉
ε−→
∞

〈
ζ
duuu

dt
, ϕ

〉
.

The convergence of Φε and
d

dt
Φε is pointwise for t ∈ [0, θ]. Since the functions are also

bounded we have convergence in the L2(0, θ) norm as well, therefore

d

dt
〈uuu+, ϕ〉 =

〈
ζ
duuu

dt
, ϕ

〉
.

Let t ∈ [0, θ] and take ϕ = uuu−(t). Then

d

dt
〈uuu+(t),uuu−(t)〉 =

∫
Ω

ζ(x, t)

(
φ0(x)u−(x, t) +

m∑
k=1

φk(x)
∂

∂xk
u−(x, t)

)
=

∫
Ω

(
φ0(x)ζ(x)u−(x, t) +

m∑
k=1

φk(x)ζ(x)
∂

∂xk
u−(x, t)

)
.

Using (3.33) and (4.18) we have ζ(x)u−(x, t) = 0 and ζ(x)
∂

∂xk
u−(x, t) = 0 for all x ∈ Ω, then

d

dt
〈uuu+(t),uuu−(t)〉 = 0. Therefore〈
duuu(t)

dt
,uuu−(t)

〉
=

d

dt
(uuu+(t)−uuu−(t),uuu−(t)) =

d

dt
(uuu+(t),uuu−(t))− d

dt
(uuu−(t),uuu−(t))=− d

dt
||uuu−(t)||2L2(0,θ).

Since our main interest is to prove order properties in this section we make use of the
following lemma and theorem:

Lemma 4.2 (Gronwall). [8, Lemma 6.9] Let β ∈ R, ρ ∈ C1([0, θ];R) and f ∈ C0([0, θ];R)
such that

dρ

dt
≤ βρ+ f.

Then, for all t ∈ [0, θ] we have

ρ(t) ≤ eβtρ(0) +

∫ θ

0

eβ(t−τ)f(t)dτ.

Theorem 4.3. [9, Theorem 3, Section 5.9] Suppose uuu ∈ W(H1
0 (Ω), H−1(Ω)).

(a) Then uuu ∈ C([0, θ];L2(Ω)).

(b) The mapping t 7→ ||uuu(t)||2L2(Ω) is absolutely continuous, with

d

dt
||uuu(t)||2L2(Ω) = 2〈uuu′(t),uuu(t)〉

for a.e. t ∈ [0, θ].



Positivity and comparison theorems on W(H1(Ω), H−1(Ω)) 39

Theorem 4.4 (Positivity). Let the bilinear form B(t;uuu, ϕ) be L2-coercive on H1
0 (Ω). If

uuu ∈ W(H1(Ω), H−1(Ω)) is such that:

a) 〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ) ≥ 0 for all t ∈ [0, θ] and for all ϕ ∈ H1
+(Ω),

b) T (uuu(t)) ≥ 0,

c) uuu(0) ≥ 0,

then uuu(t) ≥ 0 for a.e. t ∈ [0, θ].

Proof. Let uuu ∈ W(H1(Ω), H−1(Ω)) satisfy conditions (a)–(c). For every t ∈ [0, θ] we have
uuu(t) = uuu+(t)− uuu−(t) and using the lattice property of H1(Ω) it follows that
uuu+(t),uuu−(t) ∈ H1(Ω). These functions are defined as in (3.30) and (3.31). Using also (3.32)
and (3.33) we obtain

B(t;uuu+,uuu−) =

∫
Ω

n∑
i,j=1

aij
∂uuu+

∂xi

∂uuu−

∂xj
+

∫
Ω

n∑
i=1

bi
∂uuu+

∂xi
uuu− +

∫
Ω

cuuu+uuu− = 0 (4.19)

since in all products the factors have disjoint support. We note that T (uuu(t)) ≥ 0 implies that
T (uuu−(t)) = 0 so that uuu− ∈ H1

0 (Ω). Using (a) with ϕ = uuu− as well as (4.17) and (4.19) we
obtain

〈(uuu+)′ − (uuu−)′,uuu−〉+B(t;uuu+ − uuu−,uuu−) ≥ 0

〈(uuu+)′,uuu−〉 −B(t;uuu+,uuu−)− 〈(uuu−)′,uuu−〉 −B(t;uuu−,uuu−) ≥ 0

〈(uuu−)′,uuu−〉+B(t;uuu−,uuu−) ≤ 0

〈(uuu−)′,uuu−〉 ≤ B(t;uuu−,uuu−).

(4.20)

If follows from the L2-coercivity of B and Theorem 4.3 that

〈(uuu−)′,uuu−〉 ≤ B(t;uuu−,uuu−)

1

2

d

dt
||(uuu−)||2L2(Ω) ≤ −α||uuu−||2H1

0 (Ω) + β||uuu−||2L2(Ω)

1

2

d

dt
||(uuu−)||2L2(Ω) ≤ β||uuu−||2L2(Ω)

d

dt
||(uuu−)||2L2(Ω) ≤ 2β||uuu−||2L2(Ω)

From Gronwall’s Lemma 4.2 we have

d

dt
||uuu−(t)||2L2(Ω) ≤ ||uuu−(t)||2L2(Ω) ≤ ||uuu−(0)||2L2(Ω)e

2βt.

Since uuu−(0) = 0 we have that ||uuu−(0)||L2(Ω) = 0 this implies that ||uuu−(t)||L2(Ω) = 0. Therefore
uuu−(t) = 0 in (0, θ], hence uuu(t) = uuu+(t) ≥ 0 a.e. t ∈ [0, θ].

We use this result to prove the comparison theorem for weak solutions of parabolic PDEs
given as follows:
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Theorem 4.5 (Comparison Theorem). Let the bilinear form B(t;uuu, ϕ) be L2-coercive on
H1

0 (Ω). Let uuu,vvv ∈ W(H1(Ω), H−1(Ω)). If

a) 〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ) ≥ 〈vvv′(t), ϕ〉+B(t;vvv(t), ϕ) ∀ t ∈ [0, θ] and for all ϕ ∈ H1
+(Ω),

b) T (uuu(t)) ≥ T (vvv(t)) and

c) uuu(0) ≥ vvv(0)

then uuu(t) ≥ vvv(t) a.e. t ∈ [0, θ].

Proof. Let zzz(t) = uuu(t)− vvv(t) and zzz′(t) = uuu′(t)− vvv′(t), then

〈zzz′(t), ϕ〉+B(t;zzz(t), ϕ) = 〈uuu′(t)− vvv′(t), ϕ〉+B(t;uuu(t)− vvv(t), ϕ)

= 〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ)− 〈vvv′(t), ϕ〉 −B(t;vvv(t), ϕ)

≥ 0

T (zzz(t)) = T (uuu(t)− vvv(t))

= T (uuu(t))− T (vvv(t))

≥ 0

zzz(0) = uuu(0)− vvv(0) ≥ 0

It follows from Theorem 4.4 that zzz(t) ≥ 0 a.e. for t ∈ [0, θ]. This implies that
uuu(t)− vvv(t) ≥ 0 =⇒ uuu(t) ≥ vvv(t) a.e. t ∈ [0, θ].



Inverse monotonicity of an operator on W(H1(Ω), H−1(Ω)) 41

4.4 Inverse monotonicity of an operator on

W(H1(Ω), H−1(Ω))

In this section we consider problem (4.16) and define the operator
P :W(H1(Ω), H−1(Ω)) 7→ L2(0, θ;H−1(Ω))× L2(0, θ;H1/2(∂Ω))× L2(Ω) as

P [uuu] =

 B(t;uuu, ·)
T (uuu(t))
u0

 . (4.21)

Theorem 4.6. If the bilinear form in (4.21) satisfies the properties (P1)–(P3) then the
operator P is inverse monotone, that is

P [uuu] ≤ P [vvv] =⇒ uuu ≤ vvv for all uuu,vvv ∈ W(H1(Ω), H−1(Ω)).

Proof. Let

P [uuu] =

 B(t;uuu, ·)
T (uuu(t))
u0

 and P [vvv] =

 B(t;vvv, ·)
T (vvv(t))
v0

 .

Then P [uuu] ≤ P [vvv] =⇒

 B(t;uuu, ·)
T (uuu(t))
u0

 ≤
 B(t;vvv, ·)

T (vvv(t))
v0

 .

It follows from the Comparison Theorem 4.5 that uuu(t) ≤ vvv(t).
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4.5 Systems of parabolic equations with Metzler

matrix in the reaction term

In this section we consider a system of PDEs of the form

ut,k(t, x) + Lk[u(t, ·)] = fk(t, x) in Ωθ (4.22)

where

Lk[u(t, ·)] = −
n∑

i,j=1

∂

∂xj

(
a

(k)
ij (t, x)

∂uk
∂xi

)
+

n∑
i=1

b
(k)
i (t, x)

∂uk
∂xi

+
m∑
`=1

ck`(t, x)u` (4.23)

for k = 1, ...,m. If we denote A(k) = (a(k))ni,j=1 and ~b(k) = (b
(k)
1 , ..., b

(k)
n )′, then (4.23) can be

written in the following more compact form

Lk[u(t, ·)] = −∇ · (A(k)∇u) +~b(k) · ∇u+
m∑
`=1

ck`(t, x)u`. (4.24)

We assume that all operators L1, ..., Lm satisfy the uniform ellipticity condition, that is, there
exists a µ0 > 0 such that for every k = 1, ...,m we have

ξ · A(k)(t, x)ξ ≥ µ0|ξ|2

for all (t, x) in Ωθ and ξ ∈ Rn. Using vector notation

u =

 u1
...
um

 , L[u(t, ·)] =

 L1[u(t, ·)]
...

Lm[u(t, ·)]

 and f =

 f1(t, x)
...

fm(t, x)


the system (4.22) can be represented as a single vector equation as

ut(t, x) + L[u(t, ·)] = f(t, x) in Ωθ. (4.25)

Furthermore, the operator can be written in the following convenient vector representation

L[u(t, ·)] = −
n∑

i,j=1

∂

∂xj

(
Aij

∂u

∂xi

)
+

n∑
i=1

Bi
∂u

∂xi
+ Cu (4.26)

where the partial derivatives are implemented coordinate-wise, Aij, i, j = 1, ..., n and
Bi, i = 1, ..., n are m×m matrices and C = (ck`)

m
k,`=1. In order to derive a variational

formulation we assume that all coefficients in L are measurable and uniformly bounded. We
multiply (4.25) by ϕ ∈ (C∞c (Ω))m and integrate∫

Ω

ut(t, x)ϕ dx+

∫
Ω

L[u(t, ·)]ϕ dx =

∫
Ω

f(t, x)ϕ dx. (4.27)

For
∫

Ω
L[u(t, ·)]ϕ dx we use Green’s formula to obtain∫

Ω

L[u(t, ·)]ϕ dx =

∫
Ω

( n∑
i,j=1

(
Aij

∂u

∂xj

)
· ∂ϕ
∂xi

+
n∑
i=1

Bi
∂u

∂xi
ϕ+(Cu)·ϕ

)
dx−

∫
∂Ω

n∑
i,j=1

ϕ·Aij
(
∂u

∂xj

)
nids
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The bilinear form is

B(t;u, ϕ) :=

∫
Ω

n∑
i,j=1

(
Aij

∂u

∂xj

)
· ∂ϕ
∂xi

+

∫
Ω

n∑
i=1

Bi
∂u

∂xi
ϕ+

∫
Ω

(Cu) ·ϕ−
∫
∂Ω

n∑
i,j=1

ϕ ·Aij
(
∂u

∂xj

)
nids.

(4.28)
Taking note that ϕ ∈ (C∞c (Ω))m the bilinear form (4.28) becomes

B(t;u, ϕ) =

∫
Ω

n∑
i,j=1

(
Aij

∂u

∂xj

)
· ∂ϕ
∂xi

dx+

∫
Ω

n∑
i=1

Bi
∂u

∂xi
ϕ dx+

∫
Ω

(Cu) · ϕ dx (4.29)

We have that any solution of (4.25) satisfies

(ut, ϕ) +B(t;u, ϕ) = (f, ϕ) for all ϕ ∈ (C∞c (Ω))m (4.30)

where (·, ·) denotes the inner product in L2(Ωθ). Since the space C∞c (Ω) is dense in H1
0 (Ω)

with respect to the norm in H1(Ω), we have that (4.30) implies

(ut, ϕ) +B(t;u, ϕ) = (f, ϕ) for all ϕ ∈ (H1
0 (Ω))m.

This variational formulation is associated with systems of parabolic PDEs with homogeneous
Dirichlet boundary conditions. It can be extended to systems with non-homogeneous
Dirichlet boundary conditions in a similar was as section 4.2. Generalizations for other types
of boundary conditions are also possible but in order to stay close to the main ideas we
consider only Dirichlet boundary conditions. Let us recall the mappings uuu : [0, θ] 7→ H1

0 (Ω)
and fff : [0, θ] 7→ L2(Ω) where [uuu(t)](x) := u(x, t) and [fff(t)](x) := f(x, t) for x ∈ Ω, t ∈ [0, θ].
Using the fact that L2(Ω) ⊂ H−1(Ω) [3, Remark, Section 8.3] and that the dual space to
H1

0 (Ω) is denoted by H−1(Ω) we get that the variational formulation for problem (4.25) with
homogeneous Dirichlet boundary conditions can be presented in the following very general
form: 

Given fff ∈ (L2(0, θ;H−1(Ω))m and u0 ∈ (L2(Ω))m,

find uuu ∈ (W(H1
0 (Ω), H−1(Ω)))m such that

〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ) = 〈fff(t), ϕ〉 for all ϕ ∈ (H1
0 (Ω))m

uuu(0) = u0

for each t ∈ [0, θ].
Our main interest is to prove the order properties of a system of PDEs of the form (4.25). We
have seen in the previous sections that such properties are formulated immediately after
imposing non-homogeneous Dirichlet boundary conditions to the problem. Hence we consider
the non-homogeneous Dirichlet boundary conditions to (4.25), that is,

T (uk(t)) = gk(t) for t ∈ (0, θ) and k = 1, ...,m

where gk ∈ L2(0, θ;H1/2(∂Ω)). The variational formulation of (4.25) with these boundary
conditions is as follows:

Given fff ∈ (L2(0, θ;H−1(Ω)))m, g ∈ (L2(0, θ;H1/2(∂Ω)))m and u0 ∈ (L2(Ω))m,

find uuu ∈ (W(H1(Ω), H−1(Ω)))m such that

〈uuu′(t), ϕ〉+B(t;uuu(t), ϕ) = 〈fff(t), ϕ〉 for all ϕ ∈ (H1
0 (Ω))m

uuu(0) = u0

T (uuu(t)) = g

(4.31)
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for each t ∈ [0, θ] where g = (g1(t), ..., gm(t))′.

The comparison theorems are obtained under the assumption for reactions which are similar
to systems of ODEs. More precisely, it is assumed that the interaction between any two
different species has negative impact on both of them. This means that

ck` ≤ 0 for k 6= `, (4.32)

that is, −C is a Metzler matrix.
Since the partial derivatives are implemented coordinate-wise, it follows that Theorem 4.3
holds for uuu ∈ (W(H1(Ω), H−1(Ω)))m. For positivity of solutions we formulate the following
theorem

Theorem 4.7 (Positivity). Let B(t;uuu, ϕ) be L2−coercive on (H1
0 (Ω))m. If

uuu ∈ (W(H1(Ω), H−1(Ω)))m is such that

(a) 〈uuu′(t), ϕ〉+B(t;uuu, ϕ) ≥ 0 for a.e t ∈ (0, θ], for all ϕ ∈ (H1
+(Ω))m

(b) T (uuu(t)) ≥ 0 and

(c) uuu(0) ≥ 0

then uuu(t) ≥ 0 for a.e. t ∈ [0, θ].

Proof. Let uuu ∈ (W(H1(Ω), H−1(Ω)))m satisfy conditions (a)–(c). For every t ∈ [0, θ] we have
that uuu(t) = uuu+(t)− uuu−(t) where uuu+(t),uuu−(t) ∈ (H1

0 (Ω))m. Using (3.30), (3.31), (3.32), (3.33)
and (4.32), we obtain

B(t;uuu+,uuu−) =
m∑
k=1

(∫
Ω

n∑
i,j=1

(
a

(k)
ij

∂u+
k

∂xj

)
· ∂u

−
k

∂xi
+

∫
Ω

n∑
i=1

b
(k)
i

∂u+
k

∂xi
u−k

)
+

m∑
`=1

∫
Ω

ckku
+
k u
−
k

+
∑
k 6=`

∫
Ω

ck`u
+
k u
−
`

=

∫
Ω

m∑
k=1

n∑
i,j=1

a
(k)
ij

∂u+
k

∂xj
· ∂u

−
k

∂xi
+

∫
Ω

m∑
k=1

n∑
i=1

b
(k)
i

∂u+
k

∂xi
u−k +

∫
Ω

m∑
`=1

ckku
+
k u
−
k

+

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

=

∫
Ω

n∑
i,j=1

m∑
k=1

a
(k)
ij

∂u+
k

∂xj
· ∂u

−
k

∂xi
+

∫
Ω

n∑
i=1

m∑
k=1

b
(k)
i

∂u+
k

∂xi
u−k +

∫
Ω

m∑
`=1

ckku
+
k u
−
k

+

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

=

∫
Ω

n∑
i,j=1

0 +

∫
Ω

n∑
i=1

0 +

∫
Ω

m∑
`=1

0 +

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

=

∫
Ω

∑
k 6=`

ck`u
+
k u
−
`

≤ 0
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since in all products the factors have disjoint support. From (b) we have that
Tuuu ≥ 0 =⇒ Tuuu = Tuuu+, Tuuu− = 0. Taking ϕ = uuu− in (a) and using (4.17) we obtain

0 ≤ 〈uuu′(t),uuu−〉+B(t;uuu,uuu−)

= 〈(uuu+)′(t)− (uuu−)′(t),uuu−〉+B(t;uuu+(t)− uuu−(t),uuu−(t))

= 〈(uuu+)′(t),uuu−(t)〉 − 〈(uuu−)′(t),uuu−〉+B(t;uuu+(t),uuu−(t))−B(t;uuu−(t),uuu−(t))

≤ −〈(uuu−)′(t),uuu−(t)〉 −B(t;uuu−(t),uuu−(t))

This implies that 〈uuu′(t),uuu−(t)〉+B(t;uuu−(t),uuu−(t)) ≤ 0. Using the fact that the bilinear form
is L2–coercive and Theorem 4.3 we obtain

1

2

d

dt
||uuu−(t)||2(L2(Ω))m ≤ −B(t;uuu−(t),uuu−(t))

1

2

d

dt
||uuu−(t)||2(L2(Ω))m ≤ −α||uuu−(t)||2(H1

0 (Ω))m + β||uuu−(t)||2(L2(Ω))m

1

2

d

dt
||uuu−(t)||2(L2(Ω))m ≤ β||uuu−(t)||2(L2(Ω))m

d

dt
||uuu−(t)||2(L2(Ω))m ≤ 2β||uuu−(t)||2(L2(Ω))m

From Gronwall’s Lemma 4.2 we have

d

dt
||uuu−(t)||2(L2(Ω))m ≤ ||uuu−(t)||2(L2(Ω))m ≤ e2βt||uuu−(0)||2(L2(Ω))m .

Since u−(0) = 0 we have that ||uuu−(0)||(L2(Ω))m = 0 this implies that ||uuu−(t)||(L2(Ω))m = 0.
Therefore uuu−(t) = 0 in (0, θ], hence uuu(t) = uuu+(t) ≥ 0 a.e. t ∈ [0, θ].

Remark 4.1. Take note that the zero in Theorem 4.7 is not a number but a zero function in
the space H1

0 (Ω).

Theorem 4.8 (Comparison Theorem). Let B(t;uuu, ϕ) be L2−coercive on (H1
0 (Ω))m. Let

uuu,vvv ∈ (W(H1(Ω), H−1(Ω)))m. If

a) 〈uuu′(t), ϕ〉+B(t;uuu, ϕ) ≥ 〈vvv′(t), ϕ〉+B(t;vvv, ϕ) for a.e t ∈ (0, θ], for all ϕ ∈ H1
+(Ω),

b) T (uuu(t)) ≥ T (vvv(t)) and

c) uuu(0) ≥ vvv(0)

then uuu(t) ≥ vvv(t) for a.e. t ∈ [0, θ].

Proof. Let zzz(t) = uuu(t)− vvv(t) and zzz′(t) = uuu′(t)− vvv′(t).
〈zzz′(t), ϕ〉+B(t;zzz, ϕ) = 〈uuu′(t)− vvv′(t), ϕ〉+B(t;uuu− vvv, ϕ)

= 〈uuu′(t), ϕ〉+B(t;uuu, ϕ)− 〈vvv′(t), ϕ〉 −B(t;vvv, ϕ)

≥ 0

T (zzz(t)) = T (uuu(t)− vvv(t))

= T (uuu(t))− T (vvv(t))

≥ 0

zzz(0) = uuu(0)− vvv(0) ≥ 0
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It follows from Theorem 4.7 that zzz(t) ≥ 0 a.e. t ∈ [0, θ]. This implies that
uuu(t)− vvv(t) ≥ 0 =⇒ uuu(t) ≥ vvv(t) a.e. t ∈ [0, θ].

We can associate with the problem (4.31) the operator
P : (W(H1(Ω), H−1(Ω)))m 7→ (L2(0, θ;H−1(Ω)))m × (L2(0, θ;H1/2(∂Ω)))m × (L2(Ω))m

P [uuu] =

 B(t;uuu, ·)
T (uuu(t))
u0

 . (4.33)

Theorem 4.9. If the bilinear form in (4.33) satisfies the properties (P1)–(P3) then the
operator P is inverse monotone, that is

P [uuu] ≤ P [vvv] =⇒ uuu ≤ vvv for all uuu,vvv ∈ (W(H1(Ω), H−1(Ω)))m.

Proof. Let

P [uuu] =

 B(t;uuu, ·)
T (uuu(t))
u0

 and P [vvv] =

 B(t;vvv, ·)
T (vvv(t))
v0

 .

Then P [uuu] ≤ P [vvv] =⇒

 B(t;uuu, ·)
T (uuu(t))
u0

 ≤
 B(t;vvv, ·)

T (vvv(t))
v0

 .

It follows from the Comparison Theorem 4.8 that uuu(t) ≤ vvv(t).



Chapter 5

Conclusion

This dissertation presents results related to the order properties of the operators associated
with elliptic and parabolic PDEs. This means that in the cases of both classical and
variational formulation, we have shown that the comparison theorems can be recast in a
general framework, namely in terms of inverse monotone operators, see (1.2).

In Chapter 3, we have considered one–dimensional and multidimensional elliptic PDEs. The
results in this chapter concern preserving the order in the target space as given by the
concept of inverse monotonicity. In the classical solution space, this property is derived from
the maximum principle. We have multiplied the one–dimensional and multidimensional
equation by ϕ ∈ C∞c (Ω) and (ϕ ∈ C∞c (Ω))m respectively. Different boundary conditions were
taken into account and this led to variational formulations. In the dissertation, we provide
inequalities which can be derived directly in the space of weak solutions.

We have considered weakly coupled systems of elliptic PDEs. This is because the maximum
principle has been extended to such systems in the classical case [7], [23]. We note that the
conditions on the matrix C in [7] and [23] are very similar to the conditions (3.41)–(3.42)
assumed in the text. The maximum principle does not have a natural extension to strongly
coupled systems. The results in the dissertation extend the classical order properties of the
operators in the mentioned elliptic problems, namely single PDEs or weakly coupled systems,
to a wider space of weak solutions, namely H−1(Ω). We have shown indirectly that the theory
of elliptic PDEs has a natural extension to parabolic PDEs and systems of parabolic PDEs.

In Chapter 4 we have considered a single parabolic PDE and a system of parabolic equations
with a Metlzer matrix on the reaction term. We saw that the space of solutions and the space
of data are Sobolev spaces which are wider that the respective spaces considered in classical
formulation. Unlike in Chapter 3, here we observed that the bilinear form should satisfy three
properties, namely measurability, boundedness and L2 coercivity. We were able to prove that
the bilinear form satisfies all these properties. As a result, Lions’ theorem could be applied,
meaning that existence and uniqueness of a weak solution was guaranteed. We were not able
to find the theory for the case of non-homogeneous Dirichlet boundary conditions in parabolic
equations. However, since parabolic equations are a natural extension of elliptic equations, we
were able to transform the initial-boundary value problem with non-homogeneous boundary
conditions to an initial–boundary value problem with homogeneous boundary conditions. In
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this case we required for any fixed t ∈ (0, θ], u(t, ·) ∈ H1(Ω) and g(t) ∈ H1/2(∂Ω). This meant
that we required the space of solutions to be W(H1(Ω), H−1(Ω)).

One may observe that the positivity theorems followed immediately after the case of
non–homogeneous Dirichlet boundary conditions, reason being, we need the space of data,
that is forcing term, boundary conditions and initial conditions. We have followed the method
of proof of [6, Chapter XVIII, Section 4, Theorem 2] to prove the positivity theorems. The
proofs of the comparison theorems simply required us to introduce a function zzz which was a
difference of the two functions being compared. As a consequence, the function zzz satisfied the
positivity theorems and the desired result was obtained. In both the cases of one–dimensional
and multidimensional parabolic equations, the comparison theorems have been recast in terms
of inverse monotone operators. This motivates our future work where we intend to consider
monotone properties of non–linear elliptic and parabolic equations and systems of such
equations which often occur in application in Biosciences, see [1] and [4].

The biggest challenge is that there is very much limited theory available for the analysis of
systems arising in practical applications which are modelled by systems of elliptic and
parabolic PDEs. Our goal will be to establish means of obtaining asymptotic properties of
general dynamical systems as they arise in application by using the theory of monotone
dynamical systems. More precisely, this goal can be formulated as deriving comparison
theorem which provide for upper and lower approximations of a dynamical system via
monotone dynamical systems.
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