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Abstract

Previous research has shown that African lions (Panthera leo) have the ability to discriminate

between conspecific vocalisations, but little is known about how individual identity is

conveyed in the spectral structure of roars. Using acoustic - accelerometer biologgers that allow

vocalisations to be reliably associated with individual identity, we test for vocal individuality

in the fundamental frequency (f0) of roars from 5 male lions, firstly by comparing simple f0

summary features and secondly by modelling the temporal pattern of the f0 contour. We then

assess the application of this method for discriminating between individuals using passive

acoustic monitoring. Results indicate that f0 summary features only allow for vocal

discrimination with 70.7% accuracy. By comparison, vocal discrimination can be achieved

with an accuracy of 91.5% based on individual differences in the temporal pattern of the f0

sequence. We further demonstrate that passively recorded lion roars can be localised and

differentiated with similar accuracy. The existence of individually unique f0 contours in lion

roars and their relatively lower attenuation indicates a likely mechanism enabling individual

lions to identify conspecifics over long distances. These differences can be exploited by

researchers to track individuals across the landscape and thereby supplement conventional lion

monitoring approaches.
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Introduction

African lions (Panthera leo) are well known for their loud, characteristic roars, frequently

audible from several kilometres away. Lions are, however, just one of many terrestrial

mammalian species that are capable of communicating vocally over large distances. The basic

function of long distance signalling is to aid individuals in searching for, locating and avoiding

each other and therefore facilitating group cohesion and the maintenance of territorial

boundaries (Marler 1967; Mitani and Nishida 1993; Ramsauer 2005). For many species, a key

component of the information conveyed to conspecifics through the use of long-distance calls

is individual identity. Detection and decoding of this information are crucial for influencing

the response of the receiver. For example, in the context of territoriality, identifying a call from

a neighbouring animal in their usual location will likely elicit a different response to that of an

unfamiliar animal (McGregor 1993). Several studies on terrestrial mammals such as elephants

(Loxodonta africana; Clemins et al. 2005), orangutans (Pongo pygmaeua wurmbii; Spillmann

et al. 2017), tigers (Panthera tigris; Ji et al. 2013) wild dogs (Lycaon pictus; Hartwig 2005)

and wolves (Canis lupus lycaon; Root-Gutteridge et al. 2013) have shown that certain elements

of vocal signals are unique to individuals and may convey information relating to caller

identity. The production of these unique call features is likely related to small variations in the

morphology of the vocal apparatus between individuals (Fitch et  al. 1997; Ey et al. 2007).

Despite the ability of many animals to encode individually unique features within their calls,

sound signals degrade progressively as they propagate through the environment. Higher

frequencies are more rapidly absorbed through air and incur greater scattering by small objects

(e.g. vegetation) compared to lower frequencies, resulting in changes to the spectral structure

of the original signal (Forrest 1994; Wiley and Richards 1978). This degradation can impair
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the ability of distant receivers to extract information. Several studies on birds have shown that

individuals responded more strongly to undegraded calls than to degraded calls (McGregor et

al. 1983; Mathevon and Aubin 1997). Despite the loss of information incurred during signal

propagation, some species are able to learn and accurately recognise the degraded call of a

conspecific through experience (Aubin and Jouventin 2002; Mouterde et al. 2014).

Knowledge of how species transmit information relating to individual identity is important for

understanding species communication mechanisms. In some cases, vocal individuality can also

be exploited by researchers and conservationists to monitor and survey species populations

using individually distinct vocal features as a non-invasive marking method (Terry et al. 2005).

For example, Gilbert et al. (2002) investigated the survival and movements of Great Bitterns

(Botaurus stellaris) using spectrogram measures of vocalisations. Similarly, Delport et al.

(2002) relied on vocal identification of African wood owls (Strix woodfordii) to monitor

territory turnover. However, despite the large number of studies that have explored vocal

individuality, there are relatively few published examples of how acoustic monitoring of

individuals can be applied in practice, particularly for mammalian species.

In order to assess animal vocal individuality, acoustic features must first be extracted from the

call recordings. Although this can be done automatically using state of the art deep learning

techniques (Stowell et al. 2018), acoustic features are often extracted manually, whereby

simple summary variables (e.g. min, max and mean) associated with the fundamental

frequency and the harmonics are calculated (Fan et al. 2019; Ji et al. 2013). Another common

approach involves the calculation of Mel-frequency cepstral coefficients (MFCCs) which

effectively  warps  the  frequency  axis  to  the  Mel-scale  under  the  assumption  that  the  species
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perceives frequencies on a logarithmic scale. The MFCC method is based the human auditory

system and is widely used in human-speech recognition, however it is also becoming more

popular for the identification of animal vocalisations (Clemins et al. 2005; Mielke and

Zuberbühler 2013; Spillmann et al. 2017). In this work we adopt a different and more simple

approach that uses short-time Fourier transformation to extract the fundamental frequency

contour sequence which is used as the only acoustic feature. Following feature extraction,

pattern recognition algorithms are implemented to ‘learn’ the acoustical features associated

with each individual and subsequently classify ‘unseen’ calls. The recognition models are

assessed based on their ability to classify the ‘unseen’ calls correctly. Several algorithms have

been used for this purpose, including discriminant functions (Blumstein and Munos 2005; Fan

et al. 2019), artificial neural networks (Mielke and Zuberbühler 2013; Reby et al. 1998),

gaussian mixture models (Cheng et al. 2010) and hidden Markov models (Clemins et al. 2005;

Ji et al. 2013). One of the main issues affecting the classification performance of vocal

recognition models is the presence of background noise. Noise from any natural or

anthropogenic source introduces additional sound information and thereby increases model

variation and classification uncertainty (Terry et al. 2001). The majority of studies have dealt

with this issue by removing samples with overlapping signals (Clemins et al. 2005; Reby et al.

1998).

Lions  emit  loud,  low-pitched  vocal  signals  referred  to  as  ‘roars’.  A  single  roar  is  typically

delivered in a bout consisting of one or two soft moans followed by several full-throated roars

and a terminating sequence of short grunts (Grinnell and McComb 2001; McComb et al. 1994).

The low fundamental frequency of the roar can be attributed to the long and heavy vocal folds,

characteristic of the species’ vocal anatomy (Weissengruber et al. 2002). Both male and female

members of a pride are known to roar and will do so to either maintain contact with distant
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companions, or to advertise territory ownership (Grinnell and McComb 2001; McComb et al.

1994). Lions also use roars to transmit information relating to group size. A series of

overlapping roars emitted by three or fewer individuals provides an honest indicator of the

number of individuals present (McComb et al. 1994). Receivers are then able to assess their

chances of successfully deterring potential competitors. Several studies have reported evidence

of vocal recognition in lions. For example, McComb et al. (1993) found that adult females are

able to distinguish between playbacks of familiar, resident males and those of unfamiliar males.

Similarly, individual lions have been shown to display stronger responses to situations where

there is conflicting information (e.g. a particular call does not match the individual from which

it is expected), suggesting that specific calls are associated with specific individuals (Gilfillan

et al. 2016). Other studies have examined the attributes of individual roars and have found

differences in the temporal pattern and acoustic features between male and female roars,

however, little is known about whether consistent differences exist between individuals

(Pfefferle et al. 2007; Stander and Stander 1988). This knowledge gap is likely attributable to

the  difficulties  associated  with  obtaining  sufficient  samples  of  roar  recordings  from  known

individuals in the wild and highlights the need for a new approach to acquire data on animal

vocalisations.

Lions defend large territories, often in excess of 500 km2 (Tumenta et al. 2013; Zehnder et al.

2018). Given that the primary functions of the roar require receivers to differentiate between

individuals in order to respond appropriately, it can be reasoned that the transmission of

information relating to caller identity over long distances would be advantageous. It can

therefore be expected that selection would favour animal calls that transmit information

efficiently by minimizing degradation of the intended signal. Despite many studies being

dedicated to lion vocal behaviour, little is known about how lions convey information relating
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to individual identity in their call structure. In this study, we investigate whether calls from

individual animals might be differentiated based solely on the fundamental frequency of the

full-throated roars; the frequency that is likely to suffer the least degradation over large

distances. To achieve this, we use a novel acoustic - accelerometer biologger which facilitates

the acquisition of a relatively large dataset of lion roar events. We also demonstrate the

conservation implications of our findings by testing the application of acoustic recognition and

localisation to lion tracking.

Materials and methods

Study site

The study took place in the Bubye Valley Conservancy (BVC), a privately-owned wildlife area

located in southern Zimbabwe between latitudes 21.209 and 21.851  South, and longitudes

29.789 and 30.521  East. The BVC measures approximately 3400 km2 in area and hosts a

variety of indigenous megafauna including a high density of African lions (du Preez et al.

2015). Habitat within the Conservancy is dominated by mopane woodland savannah with

riparian woodland occurring along several seasonal river lines. Annual rainfall is typically low,

averaging 351 mm, and falling mostly in summer between November and March (du Preez et

al. 2014). Maximum daily temperatures are high (> 40 C)  in  the  summer  months  and

comparatively mild in winter.
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Data collection

Animal-borne biologgers

Given that lions vocalise predominantly during the night and can be difficult to identify and

observe, we used an on-animal audio recording approach to investigate lion vocal individuality.

In November 2014 we fitted custom-designed biologgers to five male and three female lions

as described in Wijers et al. (2018). Each device comprised a triaxial accelerometer and

magnetometer sampling at 32 Hz per axis and a mono-electret microphone sampling audio at

16 Hz with 8-bit resolution (frequency response ~ 30 Hz – 8 kHz; dynamic range ~ 40 dB). All

components were encased in an epoxy resin reinforced housing with a hydrophobic vent

provided for the microphone. Study animals were chemically immobilised using 75-100 mg

Zoletil  (Virbac  RSA  (Pty)  Ltd,  Halfway  House,  South  Africa)  combined  with  5  mg

medetomidine (Kyron Laboratories, Johannesburg, South Africa). Immobilisation drugs were

delivered intramuscularly by 1 cc darts (Pneudart, Williamsport, Pennsylvania, USA) projected

from a Dan-Inject CO2-pressurised dartgun (Dan-Inject, Børkop, Denmark). After fitting the

biologger, ~ 25 mg atipamazol (Antisedan, Pfizer Animal Health, Johannesburg, South Africa)

was administered to reverse the effects of medetomidine allowing the animal to recover within

15 – 90 mins. The biologgers recorded continuous audio (8 bit, 16 kHz mono) for between 4

and 10 days before the batteries were depleted. Study animals were then recaptured and the

data downloaded for processing and analysis.

Acoustic array

To explore the application of acoustic recognition and localisation for lion tracking, we set up

a passive acoustic array system using CARACAL audio recorders (Wijers et al. 2019) within

the home-range of a coalition of two male lions fitted with GPS collars (neither of which had
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been previously fitted with biologgers). Animals were captured using the same capture

technique as described in the preceding section. The acoustic array consisted of 8 GPS-time-

synchronised audio recording stations each separated by ~ 500 m from the nearest station.

When operational, each station recorded audio continuously (32 bit, 44.1 kHz, 4 channel). The

array was activated on selected nights between June and November 2018 when weather

conditions were optimal (dry and low wind speed).

Vocal individuality

Roar extraction

All lion audio recordings were processed manually in Audacity 2.1.1 (Audacity Team 2015)

by visually inspecting spectrograms and annotating the position of lion roar events. Labelled

lion roars were then extracted and classified by individual identity. Roars could be reliably

associated with the tagged individual simply by the roar amplitude as roars emitted by other

individuals close by had distinctly lower amplitude. In addition, the concurrent accelerometer

data provided a further means of validation as lions make consistent head and neck movements

while vocalizing (Fig. 1). Roars containing interference (e.g. noise from natural or

anthropogenic sources) or overlapping roars of nearby lions were excluded from the analyses.

Because the aim of our study was to test for individual differences in the full-throated (FT)

roars for each study animal, we further annotated and extracted audio segments containing the

first three FT roar units for each roar bout (Fig. 2). As described in several other studies, the

FT roars are the high amplitude signals emitted after the initial soft moans and before the

sequence of short grunts (Grinnell and McComb 2001; McComb et al. 1994; Stander and

Stander 1988).
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Figure 1. Concurrent audio (left) and accelerometer (right) data for two different roars recorded on the

same biologger, one emitted by the tagged lion (top row) and the other emitted by a neighbouring lion

(bottom row). The combination of the audio amplitude and the clear body motion associated with

roaring that is recorded by the accelerometer facilitated reliable labelling of roars according to

individual identity.
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Figure 2. Fundamental frequency extraction process.

Fundamental frequency extraction

For each FT roar unit, we first applied a 4th order digital Butterworth bandpass filter function

to focus further analyses on the fundamental frequency (f0) between 40 Hz and 230 Hz. We

extracted the peak frequency contour for this bandwidth (the f0 contour) by computing the

short-time Fourier transformation (STFT) for the signal using a 2048-point moving Hann

window with 68% overlap and zero-padding to four times the window length. The above

extraction process was conducted in python using the ‘SciPy’ library (Jones et al. 2001). Plots

of the extracted f0 contours are shown in figure S1 in the Supplementary Information.

Fundamental frequency summary features

Following the method used by Ji et al. (2013), we aimed to investigate whether four f0 summary

features differed between individuals: maximum f0, minimum f0, mean f0 and roar duration.

Because the data were non-normal, we used the Kruskal Wallis method to test the hypothesis
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that the median feature value of least one individual differed from that of at least one other

individual. Post-hoc pairwise multiple comparisons were then conducted using Dunn’s test

with Bonferroni adjustment. In addition to the statistical analyses, we used the k-nearest

neighbours (K-NN) algorithm to test the classification ability of models built using the four f0

features, individually and combined. The purpose of this test was to measure the discriminative

ability of each f0 feature and to determine whether the combined feature set was sufficient to

accurately discriminate between individuals. Each K-NN classifier was assessed using the

overall accuracy metric (proportion of correctly classified data) produced from leave-one-out

cross validation where the test sample always included FT roars from the same bout.  This data

splitting approach was necessary to ensure that the test set was independent of the training set

and thus to avoid any bias resulting from the temporal autocorrelation between roars in a single

bout. All statistical analyses were conducted in R (R Core Team 2019).

HMM classification of f0 contour

A Hidden Markov Model (HMM) is a statistical tool for representing the probability

distributions over a sequence of observations and is therefore useful for modelling time series

data (Ghahramani 2001). An additional benefit of HMMs is their ability to model patterns of

varying length as would be expected from variable duration lion roars. We used HMMs to

model  the  temporal  pattern  of  the f0 contour for each individual lion. The roar recognition

experiment was implemented using the leave-one-out cross validation method whereby 10-

state Gaussian HMMs were trained for each individual using all but one sample of the f0

sequences.  As in the K-NN validation, a sample consisted of FT roar f0 sequences from the

same bout. The ‘unseen’ f0 sequences were then tested against each HMM by determining

which model was most likely to produce the given sequence (using the log-likelihood metric).
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Classification performance was assessed by calculating overall accuracy, recall (proportion of

data of a particular class that  is  classified correctly as positive) and precision (proportion of

correctly predicted positive classifications for a particular class) metrics of classified sequences

(Sokolova and Lapalme 2009; Bidder et al. 2014). HMM classification was performed in

python using the ‘hmmlearn’ library (hmmlearn development team 2019)

Lion tracking application

We used an acoustic array to record roars from two known male lions fitted with GPS tracking

collars. Identified roars were manually matched across at least 4 stations with the time of arrival

(ToA) of the signal recorded for each roar at each station. The difference in the ToA of the

signal between stations allowed us to localise the source of the roar with an accuracy of ~ 100

m using custom-written functions in python. Estimated roar locations were then compared with

GPS collar data from the two lions to determine the identity of the caller. An example of the

comparison between GPS collar positions and roar localisations is shown in figure 3. In this

particular example, the second male lion was not near the array, allowing us to confidently

identify the individual vocalizing. For the analysis, we excluded roars that contained noise from

other sources (e.g. wind) as wells as roars for which the identity of the caller was uncertain

(e.g. when lions roared while in close proximity to one another). To test roar recognition

performance, we used audio recorded by the closest station to the lion. Raw 44.1 kHz audio

was first down-sampled to 16 kHz, followed by FT roar and f0 extraction. We then trained 4-

state Gaussian HMMs for each individual and carried out tests using the leave-one-out cross

validation method as described previously.
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Figure 3. Comparison between collar GPS positions (left) and roar localisation (right) for a 4-hour

period from a single lion.

Results

Vocal individuality

We recorded a total of 60 lion-days of audio from the eight lions fitted with biologgers. Manual

inspection of the audio revealed a total of 296 roaring bouts from the 5 male lions. The 3 female

lions did not appear to roar and only uttered soft moans. Of the total number of bouts, only 78

were useable as the majority contained overlapping roars from conspecifics. From the useable

roar bouts, a total of 164 FT roars were extracted (Table 1).
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Table 1. Number of bouts and FT roars for each individual lion.

Individual A4 A8 A9 A10 A11

Bouts 17 18 16 13 14

FT roars 38 35 40 24 27

Fundamental frequency summary features

Results of the Kruskal Wallis tests, produced p values below 0.001 for all f0 features indicating

significant differences in max f0, min f0, mean f0 and duration between at least one pair of

individuals. Post-hoc analyses using the Bonferroni-Dunn test revealed that f0 features did not

differ significantly between all individuals (Table 2). Roars emitted by Lion A4, in particular,

were found to have significantly lower maximum f0 (median = 162.1 Hz), mean f0 (median =

122.3 Hz) and duration (median = 1.01 s) compared to other lions. Consistent differences

between lions A8, A9, A10 and A11 were not as apparent (Fig. 4).

Table 2. Results of Kruskal Wallis tests (Chi-squared and p values) and overall accuracy of the K-NN

classifiers for each of the four f0 features. Multiple comparisons were conducted using Dunn’s test with

Bonferroni adjusted p-values (significance threshold = 0.05).

Feature K-NN
Classifier

Kruskal Wallis Pairs that were significantly different

Accuracy 2 P value

Min f0 24.4 37.6 < 0.001 A9-A10; A10-A11; A10-A4; A9-A8

Max f0 50.6 79.4 < 0.001 A9-A10; A9-A4; A10-A4; A11-A4; A9-A8; A8-A4

Mean f0 42.1 98.2 < 0.001 A9-A10; A9-A11; A9-A4; A10-A4; A11-A4; A9-A8;
A4-A8

Duration 30.5 71.4 < 0.001 A9-A4; A10-A4; A11-A4; A4-A8
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Figure 4. Boxplots of the four f0 summary features for each lion.

The analysis of the classification ability of K-NN models built  using each of the f0 features

showed a performance range of between 24.4% (min f0) and 50.6% (max f0) when single

features were used (Table 2) Overall classification accuracy increased to 70.7% when all four

features were used together. Optimal performance was achieved using a k value of 7.
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HMM classification of f0 contour

Visible differences in the shape of the f0 contour were evident in the FT roars for each lion

(Fig. 5). Modelling the temporal pattern of individual f0 sequences resulted in high

classification performance with an overall accuracy of 91.5% and average recall and precision

of 91.0% and 91.7% respectively (Table 3). Four out of the five lions were classified with recall

greater than 90%. Recall for lion A10 was found to be lower at 83%. We also investigated

classification performance using training set sizes of between 40 (approx. 8 roars per

individual) and 160 (approx. 32 roars per individual) roars. Performance was found to increase

considerably from 40 to 120 roars and then more gradually beyond 120 roars (Fig. 6). Optimal

performance is therefore likely to be achieved with datasets consisting of 24 or more roars per

individual.

Table 3. Confusion matrix of actual lion IDs (rows) vs predicted IDs (columns) for biologger recorded

roars using HMMs based on FT roar f0 contours. Model training and testing were carried out on separate

roar bouts.

Individual A4 A8 A9 A10 A11 Recall % Precision %

A4 36 0 2 0 0 94.7 100.0

A8 0 33 0 0 2 94.3 84.6

A9 0 2 36 1 1 90.0 92.3

A10 0 2 1 20 1 83.3 95.2

A11 0 2 0 0 25 92.6 86.2

Average 91.0 91.7
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Figure 5. Examples of FT roar structure for each individual lion as recorded by the  biologgers. Where

possible, FT roars are taken from different bouts on different days to highlight temporal consistency.
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Figure 6. Classification accuracy using an increasing number of training set samples. Shaded region

represents 95% confidence interval.

Lion tracking application

We extracted a total of 50 FT roars from 31 roaring bouts emitted by the two collared males

while they were in the vicinity of the acoustic array. The FT roars were then localised using

ToA differences and identity assigned according to corresponding collar GPS data.  Results of

the HMM classification showed that, using passively recorded audio, we could differentiate

between the two individuals with an overall accuracy of 90.0%. Recall was slightly higher for

lion B1 compared to lion B2 (Table 4). Vocalisations used for identification originated from

distances ranging from 45 m to 1094 m with incorrectly classified calls distributed relatively

evenly across the distance spectrum (Fig. 7).
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Table 4. Confusion matrix of actual lion IDs (rows) vs predicted IDs (columns) for passively recorded

roars using HMMs based on FT roar f0 contours. Training and testing were carried out on separate roar

bouts.

Individual B1 B2 Recall % Precision %

B1 25 2 92.6 89.3

B2 3 20 87.0 90.9

Average 89.8 90.1

Figure 7. Distance distribution of correct and incorrectly classified roars

Discussion

Previous research dedicated to African lion vocal communication focused on receiver

responses to experimental playbacks with few studies exploring variations in the acoustic

structure of calls (Gilfillan et al. 2016; Grinnell and McComb 2001; McComb et al. 1993).

While playback-response experiments have undoubtedly provided important insight into the

function of vocal signalling and the possible information content of the signal, knowledge of

how this information is conveyed has been lacking. In this study, we have demonstrated that



21

the temporal pattern of the fundamental frequency of lion roars is a possible mechanism for

lion vocal identification and is useful for automated digital differentiation of individuals.

We acquired our lion roar dataset using a novel acoustic - accelerometer biologging method

which made it easy to obtain a sufficient number of roar recordings from each individual and

to be able to reliably associate roars with lion identity. When recording animal vocalisations

manually, it can be difficult to tell which individual is vocalizing (Clemins et al. 2005). This is

particularly true for identifying lions in the wild where the only clues to identity are subtle

differences in whisker spot patterns or unique scars (Pennycuick and Rudnai 1970).

Furthermore, lions roar mostly during the night which can make it even more difficult to

accurately differentiate between individuals. Manual recording approaches are also costly and

time consuming and can potentially influence animal behaviour as a result of observer

presence.

Results of the statistical analysis exploring differences in roar duration and maximum,

minimum and mean fundamental frequency between individuals showed that these factors

were not consistently different between all individuals. This suggests that simple overall

summary features that do not incorporate temporal variation may not provide optimum

discriminatory power to differentiate between individual lions. This was confirmed by the

lower classification accuracy of the K-NN model which classified 70.7% of calls correctly,

although this is still better than random chance (20%) and suggests that these factors are

relevant for acoustic monitoring of the species. Similar classification performance (69.9%) was

reported by Ji et al. (2013) for tigers (Panthera tigris), using these same four features. Other f0

features have been used in vocal identification studies on spotted hyaenas (Crocuta crocuta;
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Mathevon et al. 2010), monkeys (Rhinopithecus roxellana; Fan et al. 2019) and wolves (Canus

lupus lycaon; Root-Gutteridge et al. 2013) with varying success (32%-88%). The roars emitted

by lion A4 appeared to be significantly shorter and have lower maximum and mean

fundamental frequencies compared to the other four lions. Lion A4, although resident in the

study area, was known to have originated from the Tuli Block in eastern Botswana from where

it dispersed more than 60 km before breaking into the fenced Bubye Valley Conservancy. The

differences observed for this lion alludes to the possible existence of geographical variation in

lion roars. Stander and Stander (1988) also reported that lions from Etosha National Park have

shorter roars than lions in other parts of Africa. Geographical variations in vocalisations are

known to exist among other species and may occur between different lion sub-populations

(Deecke et al. 2000; Martins et al. 2018; Mitani et al. 1992).

Although the use of f0 summary features resulted in relatively poor classification performance,

when  we  modelled  the  temporal  pattern  of  the f0 sequence using HMMs, classification

performance improved considerably to an overall accuracy of 91.5%. The overall shape of the

f0 contour is therefore a defining characteristic that allows for better discrimination between

individual lions. This finding is consistent with studies on other species which have found that

the frequency distribution of vocalisations from each individual are similar but the temporal

patterns of the signals are unique to each individual (Clemins et al. 2005; Ji et al. 2013). The

key novelty of our approach is in the use of the f0 sequence as the only feature for building

individual HMM classifiers rather than the more common approach of using MFCC features

derived from a range of frequencies which include the harmonics. As shown in figure 8, the

higher frequencies of a full-throated lion roar degrade noticeably more than the fundamental

frequency which is more consistent across space. Information contained in the fundamental

frequency is therefore likely to be preserved over distance and received effectively by a listener.
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A study on long-distance communication between elephants also showed that the higher

formant frequencies of a call are unable to carry information related to individual identity over

long distance and therefore identity is more likely to be discerned from the lower frequency

harmonics in the 115 Hz region (McComb et al. 2003). Our results support this theory and

thereby provide a likely explanation for the mechanism underpinning individual vocal

recognition amongst African lions. We acknowledge, however, that it would be necessary to

conduct playback experiments using spectrally modified calls in order to determine the extent

to which lions are able to recognise conspecifics purely by the fundamental frequency of their

calls. We therefore suggest this as a beneficial avenue for future research in lion

communication as well as for other species. From a digital recognition perspective, the

accuracy of roar classification models could also be improved by using fundamental frequency

extraction algorithms that leverage cepstral transforms and autocorrelation as well as using

additional predictive features such as contour slopes.

Figure 8. Spectrograms of the same FT roar recorded at varying distances from the animal.

Understanding how lions are able to recognise conspecifics from their vocal signals is not only

important for advancing our understanding of lion ecology, but also provides a useful feature

by which lions could be identified using autonomous, acoustic recorders. Traditionally,
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abundance estimates for lion populations have been achieved using call-in surveys (Ferreira

and Funston 2010), spoor transects (Stander 1998) and camera trap surveys (Cusack et al.

2015). Vocal identification of lions may allow for the use of passive acoustic monitoring

methods which have the potential to be fully automated using detection and recognition

algorithms. Automation would facilitate longer term or even continuous surveys and

significantly reduce the number of man-hours required for data management; a challenge that

is inherent to camera trapping when individuals need to be manually identified.

Hartwig (2005) highlighted the value of individual vocal identification of African wild dogs as

a supplement to radio telemetry and visual recognition. Similarly, one of the primary benefits

of acoustic monitoring of lions would be its facilitation of collar-free tracking which is likely

to provide movement information for a greater number of individuals at lower cost compared

to animal-borne systems. Using an acoustic array and sound signal localisation techniques, we

were able to obtain position estimates for several roars emitted by two resident male lions. The

locations of the roars corresponded closely with collar GPS positions which provided reliable

ground truth information for assigning identity labels to each roar in order to build individual

recognition models. Models trained for each individual were able to accurately classify

‘unseen’ roars from varying distances. We therefore show that, with sufficient training data, it

would be possible to locate and identify lion roars and thereby track individual movements

across the landscape using passive acoustics as illustrated in figure 3. Furthermore, by

integrating in-network data processing, real-time tracking would be achievable, particularly as

the data content of the f0 contour is extremely small and therefore easily transmitted over the

air. However, despite the roar classification performance being considerably better than

chance, we acknowledge that this experiment was conducted for only two individuals, whereas

in practice, discrimination between several different lions may be required including out-of-set
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(unknown) individuals. Obtaining a sufficient number of clean vocal samples from known lions

without the use of animal-borne biologgers is a difficult task. As shown in our results, too few

training samples can lead to reduced classification performance. This is especially true when

attempting to distinguish between signals that have a greater degree of similarity (Trifa et al.

2008). Collecting such data is likely to present the biggest challenge to the development of

large-scale, collar-free lion tracking systems. However, with the development of machine

learning methods, particularly unsupervised clustering approaches, discriminating between

individuals may be possible without the need for manual training (Frasier et al. 2017; Stowell

et al. 2019, 2018).

Although we have shown that lion FT roars are individually unique, it is necessary to highlight

that fact that lion vocal behaviour can vary across space, time and social circumstances. None

of the three tagged female lions in this study emitted full throated roars. This was unexpected,

but could be related to the presence of small cubs in the pride (we acknowledge that further

work would be required to confirm this assumption). Similarly, other research has shown that

resident male lions tend to avoid roaring when outside of their own territories while nomadic

males roar at greatly reduced rates or avoid roaring entirely until they have gained prides

(Grinnell and McComb 2001). Surveys that rely entirely on roaring may therefore be biased by

the fact that not all lions vocalise consistently across the landscape or through time. In addition,

communal roaring by several members of a pride is a common occurrence and can make it

particularly difficult to dissociate individual roars, resulting in reduced classification

performance of recognition algorithms. Another important consideration for long term surveys

is the temporal consistency of individual calls. Age-related variations in the calls of other

species have been reported (Ey et al. 2007; Ota and Soma 2014). Our study was conducted

over a short period and therefore it remains uncertain as to whether the structure of an
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individual lions’ roar varies with age. In addition to these biological caveats and uncertainties,

we acknowledge that the hyperparameters used for the HMM and K-NN classification

algorithms were selected to provide the best classification performance and could have led to

overfitting, however, the leave-one-out cross-validation approach provides an effective

measure of generalisation performance.

In this study, we have shown that the roar of an African lion contains an individually unique

identifier in the form of the fundamental frequency contour. Although this finding has also

been reported for other species (Caldwell and Caldwell 1965; Lenhardt 1977), our method of

modelling the extracted f0 sequences using HMMs is unprecedented in the field of animal

vocal recognition and is likely applicable to a number of species which emit loud, long distance

calls. We have also demonstrated the conservation value of our findings through the use of a

passive acoustic array to localise and identify individual lion roars. This work highlights the

value  of  passive  acoustic  monitoring  for  African  lion  research,  particularly  as  current  GPS

tracking methods, although reliable, are highly expensive and involve invasive capture

procedures. With rapidly advancing technological innovations, especially open-source tools,

monitoring vocally active wildlife species is likely to become more efficient and affordable,

providing new avenues for research and conservation.
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