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Abstract  

Human activities such as agriculture and mining are leading causes of water pollution  

worldwide. Individual contaminants are known to negatively affect microbial communities.  

However, the effect of multifaceted pollution on these communities is less well understood.  

We investigated, using next-generation sequencing of the 16S rRNA genes, the effects of  

multisource (i.e., fertilizer industry and mining) chronic pollution on bacterial and archaeal  

communities in water and sediments from the Olifants River catchment, South Africa. Water  

samples showed less microbial species diversity than sediments and both habitats displayed  

different microbial communities. Within each of these habitats, pollution had no effect on  

alpha diversity but shaped the microbial composition and taxonomy-based predicted  

functions. Certain prokaryotic taxa and functional groups were indicative of different degrees  

of pollution. Heterotrophic taxa (e.g., Flavobacterium sp.) and sulphur-oxidizing bacteria  

(i.e., Thiobacillus sp.) were indicators of pollution in water and sediments, respectively.  

Ultimately, this information could be used to develop microbial indicators of water quality  

degradation.  
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Introduction  

Pollution has been identified as the main pressure affecting freshwater systems and resources  

around the world (Vörösmarty et al., 2010). Water pollution can result from different  

anthropogenic activities, including mining and fertilizer industry. Discharged mine water  

negatively impacts aquatic environments by increasing the levels of suspended solids, leading  

to mobilization of elements such as iron, copper, manganese and zinc and also altering the pH  

of the receiving water (Baker and Banfield, 2003). On the other hand, chemical fertilizers  

containing phosphorus and nitrogen contributes to eutrophication, one of the leading causes  

of degraded water quality worldwide (Dodds, 2006).   

Microorganisms play important roles in freshwater ecosystems, such as the fixation of carbon  

through the process of photosynthesis and participation in the release of nutrients (Cotner and  

Biddanda, 2002), which support aquatic food webs (Eiler et al., 2014). The activities of  

aquatic microbial communities are affected, both positively and negatively, by a wide variety  

of pollutants. Trace amounts of transition metals such as iron, copper, zinc and manganese  

contribute to enzyme activation (Samanovic et al., 2012 and references therein). Phosphorus  

levels are important for the population growth rates of phytoplankton (Reynolds, 2009).  

Nevertheless, in large amounts most pollutants, including transition metals, are toxic.    

In addition to affecting the activity of microorganisms, many studies have also demonstrated  

that water pollution affects the diversity and composition of microbial communities. For  

example, it was found that the relative abundance of Betaproteobacteria decreased across an  

alkaline contamination gradient in Central Appalachian streams (Bier et al., 2015), whereas  

Alphaproteobacteria increased in relative abundance in acidic waters across Southeast China  

(Kuang et al., 2013). Thus, it is postulated that some microbial taxa might be indicative of  

pollution; that is, they can be used as environmental bioindicators. Nowadays, the diversity  

and composition of microbial communities can be easily studied using next generation  
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sequencing techniques and they have been shown to respond quickly to pollution (Feris et al., 

2009). Therefore, the use of microorganisms as pollution indicators might be a more sensitive 

option compared to the use of other organisms such as invertebrates and fish. 

Most of the studies have evaluated the effects of a single source or type of pollution. 

Furthermore, most of these investigations have focused on the water column and not on 

sediments (but see García-Moyano et al., 2012), although sediments tend to accumulate 

higher amounts of contaminants than water masses (Salomons and Stigliani, 1995). High 

sediment contaminant loads can have a significant impact on the entire ecosystem and on 

human health, as metals in sediments can be remobilized and transported downstream, 

causing secondary contamination. Conversely, sediment microbial assemblages seem to be 

more diverse than those of any other environment (Lozupone and Knight, 2007). This may 

result from the high heterogeneity of the sediment, both in terms of environmental gradients 

and biogeochemical processes. Sediment heterogeneity may provide a larger number of 

niches, allowing the coexistence of more diversified assemblages of organisms.  

Here, using Illumina sequencing of the 16S rRNA genes and chemical analyses, we 

investigated the concomitant effects of different pollutants (i.e., phosphorus and heavy 

metals) on bacterial and archaeal communities in river water and sediment samples. To this 

end, we used a section of the Olifants River network (South Africa) affected by the activities 

of the Phalaborwa industrial complex (PIC), which includes two mines and a fertilizer 

industry (Gomez-Arias et al., 2016; Heath et al., 2010; Marr et al., 2017). The mines extract 

metals and phosphate from alkaline rocks; whereas the fertilizer industry produces 

phosphoric acid attacking the phosphate with sulphuric acid. Thus, the mines produce 

alkaline mine drainage; while the fertilizer industry generates acidic wastewater. We posed 

the following questions. To what extent do the water and sediment bacterial communities 

differ in terms of taxonomy and predicted function? does contamination (both in water and 
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sediments) significantly alter microbial community composition and function? and, if so, 

which taxa and functions can be used as bioindicators of such pollution? 

 

Materials and methods 

Sample collection 

Samples were collected in April 2016 at 14 sampling points (Supplementary meterial Fig. S1) 

and grouped a priori in three categories (‘high contamination’, ‘mid contamination’ and ‘low 

contamination’) based on previous data (Gomez-Arias et al., 2016) and on the assumption 

that samples near the PIC should be more contaminated than samples distant from the 

complex. The six ‘high contamination’ sites were located in the Selati River, a tributary of 

the Olifants River. The four ‘mid contamination’ sites were located upstream (1 site) and 

downstream (3 sites) the PIC. The five ‘low contamination’ sites were situated in the Olifants 

River, after the confluence with the Selati River, further down the complex. At each sampling 

site, two different habitat types (water and sediments) were sampled, resulting in a total of 28 

samples. Surface water (top 10 cm, 500 ml per sample) was filtered through 0.22 μm sterile 

nitrocellulose membranes (Nalgene, Rochester, NY, USA). Sediment samples (250 g per 

sample) were collected with a soil probe from the top 10 cm (probably containing both oxic 

and anoxic sediments) of the streambed and stored in sterile Whirl-Pak sampling bags. Water 

and sediment samples were kept at 4°C during transport. Once in the laboratory sediments 

were sieved using sterile 2 mm sieves to obtain a homogeneous sediment particle size and 

then stored, together with nitrocellulose membranes, at -80 °C prior to DNA extraction. 

 

Sediment and water chemistry 

We measured water pH in situ using a water probe (Campbell Scientific, South Africa) and 

analysed sediment and water samples for several major and trace elements (Table 1) using 
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standard procedures. Trace elements (e.g., Cu, Pb) were measured with a VG PlasmaQuad-3 

(Thermo Fisher Scientific Inc.) inductively coupled plasma mass spectrometry (ICP-MS) and 

major elements (e.g., Ca, Na) with an ARL SpectraSpan 7 (Thermo Fisher Scientific Inc.) 

direct current plasma optical emission spectrometry (DCP-OES). Total P was measured using 

the P Bray method. 

 

DNA extraction and amplicon sequencing 

The DNA extraction for both sample types was carried out using the Power Soil DNA 

Isolation Kit as per the standard protocol (MoBio Laboratories, Carlsbad, CA, USA). For 

water samples, half of the nitrocellulose filters were cut into small pieces with a sterile blade. 

In the case of sediment samples, genomic DNA was directly extracted from 250 mg of 

sediment. DNA was amplified via a single step PCR using the HotStarTaq Plus Master Mix 

Kit (Qiagen, Valencia, CA). The primer pair 515F (5’-GTGYCCAGCMGCCGCGGTA-3’) 

and 909R (5’-CCCCGYCAATTCMTTTRAGT-3’) (Tuan et al., 2014) was used for the 

amplification of the 16S rRNA genes. PCR was performed in triplicate for each sample under 

the following conditions: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30 seconds, 

53°C for 40 seconds and 72°C for 1 minute and a final elongation step at 72°C for 5 minutes. 

Amplicon products containing sample-specific barcodes were pooled together in equal 

concentrations (5 ng/µl) and purified using Agencourt Ampure XP beads (Agencourt 

Bioscience Corporation, MA, USA). The PCR product was then used to prepare a DNA 

library following the Illumina TruSeq DNA library preparation protocol. Sequencing was 

performed at MRDNA (www.mrdnalab.com, Shallowater, TX, USA) on an Ilumina 

MiSeq2000, using a paired-end approach, following the manufacturer’s guidelines. 

 

Sequence data processing  



 7 

The raw Illumina sequence data was analysed using QIIME v1.9.0 (Caporaso et al., 2010b). 

Briefly, demultiplexing and quality filtering was performed using split_libraries_fastq.py 

with a phred_quality_threshold of 25. Chimeric sequences were identified using usearch 

6.1.544 (Edgar, 2010) against the RDP v16 database (Cole et al., 2009) and filtered out by 

running the identify_chimeric_seqs.py and filter_fasta.py commands, respectively. Open 

reference OTU picking was performed and taxonomy assigned to representative OTUs using 

the pick_open_reference_otus.py script, at 97% sequence identity against the SILVA v128 

database (Pruesse et al., 2007). For phylogenetic analysis, OTUs were aligned using PyNAST 

(Caporaso et al., 2010a) and a phylogenetic tree constructed with fastTree (Price et al., 2010) 

implemented in Qiime. Any OTU classified as chloroplast or mitochondria was excluded 

from further analysis. 

 

Statistical analysis 

All statistical analyses were performed with R version 3.6.3 (Team, 2011). OTU richness and 

phylogenetic diversity (PD) were obtained with the package picante (Kembel et al., 2010). 

Rarefaction curves and Chao1 were calculated using phyloseq (McMurdie and Holmes, 

2013) in R (Team, 2011). Sequencing data were also used to predict potential functional 

capacity of the OTUs using FAPROTAX (Louca et al., 2016). Briefly, an OTU is associated 

with a particular metabolic function if all cultured representatives within that OTU have been 

reported to exhibit that function. 

Abiotic data were standardized and pair-wise distances computed based on Euclidean 

distances. Normalized weighted UniFrac distances were obtained with the taxonomic data 

matrix. Bray-Curtis distances were used with the functional data matrix after Hellinger-

transformation. The environmental variables were visualized using principal component 

analysis (PCA) and the taxonomic and functional structures of the microbial community 
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principal coordinate analysis (PCoA). The effect of abiotic data in explaining variations in 

bacterial community composition was assessed by distance-based redundancy analysis (db-

RDA). A permutational analysis of variance (PERMANOVA) was used to test for differences 

in composition and function between and within habitats, whereas permutation dispersion 

(PERMDISP) was used to test for differences in habitat dissimilarity; both analyses were 

performed with the “adonis" and “betadisper” functions in vegan (Oksanen et al., 2013) for 

R. Kruskal-Wallis test were used to determine significant differences in alpha diversity, 

chemistry and phyla relative abundances between habitats (sediment vs water). Within habitat 

differences were assessed using Wilcox tests following significant Kruskal-Wallis tests. The 

Benjamini-Hochberg FDR correction was applied to adjust the P value for multiple 

comparisons in R.  

To identify which prokaryotic phyla, families, genera and functions were indicative of the six 

sub-habitats, we used species indicator analyses (Dufrene and Legendre, 1997). Indicator 

species are species that are found mostly in a single habitat and are present in most sites or 

samples from that habitat (Legendre and Legendre, 1998). Only taxa and functions with 

significant (P < 0.01) indicator values that were > 0.3 were considered, as this latter value can 

be regarded as a good threshold for habitat specialization (Dufrene and Legendre, 1997). For 

all analyses the OTU table was rarefy to 22,697 sequences per sample to equalize sequencing 

depth. 

The raw sequences are available in the NCBI database under the BioProject accession 

number PRJNA485640. 

 

Results and discussion 

Environmental characterization  
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The chemistry of the sediments was more variable (PERMDISP F1,26= 7.8, P=0.001) but 

clearly distinct from that of the water samples (PERMANOVA F1,26= 30.3, R2=53.8%, 

P=0.001) (Figure 1). Furthermore, sediment samples showed higher levels of contaminants 

than water samples (Table 1); i.e., Al, Cu, Fe, Pb, and P concentrations were higher in 

sediments than in water (Kruskal-Wallis test < 0.05). In contrast, pH values were higher in 

water (Kruskal-Wallis test < 0.05). Variables such as organic matter, mineralogy and pH 

differ between water and sediments, and these factors are well known to affect the solubility 

of metals (Calmano et al., 1993). For example, organic matter sedimentation plays a major 

role in the accumulation of metals in sediments (Hsu et al., 2016).  

Within sediment samples, the chemistry of low contamination samples was significantly 

different from those of mid and high contamination samples (PERMANOVA P < 0.05, in 

both cases). Aluminium, copper and phosphorus showed higher values (Wilcox test, P < 

0.05) in high contamination sediments when compared to low contamination sediments 

(Table 1). The concentration of these contaminants differ in sediments around the world, but 

for example, the levels of copper are below the guideline sediment value of 65 mg/kg used by 

regulatory bodies internationally (Sutcliffe et al., 2019 and references therein). Similar 

PERMANOVA results were found for water. Phosphorus showed higher values (Wilcox test, 

P < 0.05) in high contamination water when compared to low and mid contamination water, 

while pH was lower in high contamination water compared to low and mid contamination 

water (Table 1). In general, the physicochemical parameters did not exceed the prescribed 

South African water quality standards for livestock watering; that is, the water was less 

contaminated than expected. In general for both sediment and water samples, individual 

contaminant concentrations decreased substantially after the confluence with the Olifants 

River, but did not show a consistent decline with distance from the PIC. Particularly, copper 

and lead sediment levels, were higher in some samples from sites downstream and distant 
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from the PIC (Supplementary meterial Table S1). These patterns suggest that the levels of 

contaminants in aquatic environments are controlled not only by anthropogenic sources but 

possibly also by other factors, such as natural geological weathering of rocks and soils 

exposed to surface water, and by the preferential accumulation of the contaminants by 

suspended particles and sediments (Jackson et al., 2015). 

 

Alpha-diversity patterns 

A total of 3,750 bacterial and archaeal OTUs (97% similarity cut-off), ranging from 673 to 

1,932 per sample, were found in water and sediments using identical sequencing depth. 

Rarefaction curves, Chao1 and Good’s coverage estimates suggest that this sequencing depth 

was adequate to capture most of the prokaryotic diversity in each sample (Supplementary 

meterial Fig. S2). Of the total number of OTUs, 555 (representing 1.3 % of the total number 

of sequences) were unique to water, 1,332 (7.6%) were unique to sediments and 1,863 

(91.1%) were shared between the two habitats.  

Alpha diversity (richness and PD) was higher in sediments than in water samples (Kruskal-

Wallis test, P < 0.05) (Figure 2). This was expected as sediments are known to harbour 

highly diverse microbial communities (Lozupone and Knight, 2007) and some of the 

sediment samples likely contained both oxic and anoxic layers. River water bodies are 

thought to be more homogeneous habitats that maintain relatively low and constant microbial 

populations, while sediments are considerably more complex environments, which can lead 

to spatially/resource-driven niche partitioning (Crump et al., 2012). Niche partitioning 

commonly increases microbial alpha diversity (Gibbons and Gilbert, 2015). In contrast, alpha 

diversity was not affected by the level of contamination (Kruskal-Wallis test, P > 0.05), either 

in the sediment or in the water samples (Figure 2). It is possible that the concentration of the 

contaminants was too low to reduce the microbial diversity. For instance, lab studies have 
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demonstrated that diversity decrease in sediments containing 46 mg/kg of copper (Sutcliffe et 

al., 2019), while here high contamination sediments contained ~30 mg/kg. 

The number of the functions identified using FAPROTAX correlated with both richness and 

phylogenetic diversity (r2 > 0.86, P < 0.001 in both water and sediments). Similar results have 

been found in other microbial communities (Bryant et al., 2012), indicating that the overall 

functional diversity found in a sample is, to a certain degree, predictable from the taxonomic 

and phylogenetic diversity of the microbial communities in that sample.  

 

Beta diversity patterns: Microbial community composition 

Distinct prokaryotic communities (OTU level) were detected in water and sediment samples 

(PERMANOVA F1,26= 23.7, R2=47.7%, P=0.001) using normalized weighted UniFrac 

dissimilarities. Microbial communities were also distinct between high contamination, mid 

contamination and low contamination sediments (PERMANOVA P < 0.05, in all three 

comparisons). In contrast the water communities from low and mid contamination did not 

differ significantly (PERMANOVA P > 0.05). There were no differences in compositional 

heterogeneity within high contamination and low contamination communities for both water 

and sediment samples after adjusting the P value for multiple comparisons (PERMDISPER P 

> 0.05, in both cases). Using distance redundancy analysis, Pb, Cu and pH levels were found 

to be the most important factors contributing to the overall differences in bacterial 

community composition between sediment and water samples, explaining 47% of the total 

variation (Figure 3). When water and sediment bacterial communities were analysed 

separately, Cu, Fe and pH were the factors that best explained the variation (43%) of 

sediment communities, while Al and P were the most important contributing factors (32%) 

for water communities. This suggests that sediment communities were primarily affected by 

the level of metal contamination, whereas water communities were affected by both metal 
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contamination (i.e., Al) and the supply of nutrients (i.e., phosphorus). Heavy metals such a  

copper, nutrients such as phosphorus and pH, have been shown to influence microbial  

community composition in aquatic environments (Kuan et al., 2013; Langenheder et al.,  

2012).  

Altogether, these results suggest that both between and within habitat differences play a  

major role in shaping these microbial communities, which is consistent with the concept of  

environmental filtering (Lindstrom and Langenheder, 2012), where abiotic factors select  

against or favour certain species. Conversely, the fact that sediment microbial communities  

were more variable in composition than water microbial communities could also be explained  

by differences in dispersal rates, which are inherently higher in water than in sediment  

samples. Nevertheless, 23-40% of the total variation in microbial community composition  

could be explained by the chemistry of the samples, suggesting that unmeasured  

environmental variables, biotic interactions (Lima-Mendez et al., 2015) and demographic  

drift (Ofiteru et al., 2010) might also affect microbial community composition.  

  

Contamination-indicator taxa  

Overall, Proteobacteria (60% in sediments, 38% in water) (mean relative abundance),  

Bacteroidetes (19% in sediments, 33% in water), Actinobacteria (0.8% in sediments, 22% in  

water) and Cyanobacteria (1% in sediments, 4% in water) were the most abundant phyla in  

the samples. Six other phyla, with average relative abundances higher than 0.5 %, were also  

detected (Figure 4a). Most of these phyla (except Verrucomicrobia) showed relative  

abundances that were significantly different between water and sediments samples (Kruskal- 

Wallis test, P < 0.05). Acidobacteria, Chloroflexi, Nitrospirae, Planctomycetes,  

Proteobacteria and Euryarchaeota were more abundant in sediments, while Actinobacteria,  
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Bacteroidetes and Cyanobacteria were more abundant in water. Indeed, the phylum 

Bacteroidetes was found to be indicator of high contamination in waters (Figure 4b). 

We found that 71 families were indicators of one of the six sub-habitats (Supplementary 

meterial Table S2). For instance, the families Thiobacillaceae (Betaproteobacteria) and 

Saprospiraceae (Bacteroidetes) were indicators of high contamination in sediments (Figures 

4c, d). These are families typically found in freshwater and comprise members known to use 

elemental sulphur, sulphide, thiosulfate, or polythionates as energy sources (Thiobacillaceae) 

and to degrade complex organic compounds (Saprospiraceae). On the other hand, the 

families Flavobacteriaceae (Bacteroidetes), and Methylophilaceae (Betaproteobacteria) were 

indicators of high contamination in water (Figure 4d). The utilization of macromolecules 

such as polysaccharides and proteins is a common feature of many members of the family 

Flavobacteriaceae. Members of the family Methylophilaceae are methylotrophs that are 

specialized in using reduced one-carbon (C1) compounds like methanol, methylamine, and 

formaldehyde as sole energy and carbon sources (Salcher et al., 2019). 

Of a total of 196 microbial genera detected in the study, fifty-two were classified as possible 

indicators of one of the six sub-habitats (Supplementary meterial Table S3). For example, 

Thiobacillus (Betaproteobacteria) and Cloacibacterium (Bacteroidetes) were assigned as 

indicators of high contamination in sediments (Figures 4e, f), while Flavobacterium 

(Bacteroidetes) and Polynucleobacter (Betaproteobacteria) were likely indicators of high 

contamination in water (Figures 4e, f). Genera such as Thiobacillus and Flavobacterium, 

typical representatives of the above-mentioned families Thiobacillaceae and 

Flavobacteriacea, respectively, have previously been found to dominate in contaminated 

environments (Yergeau et al., 2012; Pei et al., 2018). Bacterial strains affiliated to 

Polynucleobacter were reported to occur both as obligate endosymbionts of ciliates and as 

free-living forms that perform the assimilatory reduction of nitrate and assimilate sulphur and 
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sulphate (Boscaro et al., 2013). Overall, the presence of microbial bioindicators are probably 

linked to differences in contaminant toxicity tolerance and nutritional preferences between 

the different taxa, although biological interactions cannot be ruled out. Experiments with 

different combinations and concentrations of pollutants, and different numbers of microbial 

species, are needed to disentangle the contribution of these factors. 

 

Beta diversity patterns: Functional groups 

Functional annotation of OTUs revealed a total of 77 metabolic functional groups in the 

samples (Supplementary meterial Table S4). There were several functional groups indicative 

of contamination (Figure 5, Supplementary meterial Table S5). For instance, ‘high 

contamination’ sediments were enriched in dark sulphide- and sulphur-oxidizers, which 

usually couple the oxidation of sulphur and sulphide to the reduction of oxygen or nitrate 

under microaerophilic conditions. This can probably be explained by the high concentration 

of sulphur compounds found in water bodies near the Phalaborwa industrial complex 

(Gomez-Arias et al., 2016) and the sampling of the sediments at the oxic-anoxic interfase. 

Chemoheterotrophs were overrepresented in ‘high contamination’ water. Presumably, some 

bacteria that decompose organic matter are better competitors for organic and inorganic 

nutrients than others, leading to shifts in community structure in response to nutrient (i.e., 

phosphorus) enrichment. The observed functional patterns suggest that microbial primary and 

secondary production in the Olifants River catchment might be affected by chronic 

contamination. Nevertheless, as the functional profiles were inferred from taxonomy, the next 

logical step is to investigate whether or not the compositional shifts observed translate to 

functional responses using more sophisticated tools such metatranscriptomics, and to quantify 

those productivity changes.  
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Conclusion 

We have shown that water and sediment samples collected from the Olifants river catchment 

harbour significantly different microbial communities, and that the sediment communities are 

more diverse than water communities. Also, that chronic pollution did not affect alpha 

diversity (richness and phylogenetic diversity). In contrast, we demonstrate that chronic 

pollution shapes microbial community composition and, accordingly, taxonomy-based 

predicted function (beta diversity). Community shifts were found to occur at various 

taxonomic levels from phylum to species. Overall, these results indicate that several 

microbial taxa can be used as bioindicators of the underlying differences in pollution. 
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Tables 

Table 1. Average chemistry values for sediment and water samples. 

 
pH values represent pH units. Other values are concentrations in mg/l for water and mg/kg dry weight for 
sediment samples. 
*Different letters indicate significant differences (Wilcox test, P < 0.05) in chemistry between low, mid and 
high contamination within sediments and water samples (Supplementary data Table S1). 
SE, standard error. 
LC, low contamination; MC, mid contamination; HC, high contamination 

 Sediment (n=14) Water (n=14) 
 LC (n=5) MC (n=4) HC (n=5) LC (n=5) MC (n=4) HC (n=5) 

Parameters Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE 
Al  9.2 ± 1.2a* 19.7 ± 10.2ab 42.4 ± 17.8b 0.4 ±0.0 0.5 ± 0.1 0.4 ± 0.0 
Ca  565.0 ± 242.0 3048.0 ± 1102.0 532.0 ± 153.0 37.9 ± 1.5a 34.4 ± 5.6a 73.0 ± 10.3b 
Cu  0.45 ± 0.1a 29.1 ± 9.0ab 28.1 ± 5.1b 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
Fe  75.1 ± 12.2 159.0 ± 40.7 333.0 ± 98.2 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
K  21.2 ± 4.2 143.0 ± 74.5 57.3 ± 19.0 3.4 ± 0.2a 3.4 ± 0.6a 16.7 ± 5.0b 
Mg  134.0 ± 35.8 730.0 ± 333.0 143.0 ± 33.1 29.4 ± 1.3a 29.4 ± 2.3a 88.3 ± 25.0b 
Mn  29.6 ± 8.8 83.5 ± 25.9 39.4 ± 15.6 0.2 ± 0.0a 0.2 ± 0.0ab 0.3 ± 0.0b 
Na  18.6 ± 2.2a 82.4 ± 30.1ab 61.8 ± 11.7b 2.7 ± 0.1a 2.7 ± 0.6a 12.4 ± 1.9b 
P  1.68 ± 0.4a 2.4 ± 0.7ab 27.2 ± 10.3b 0.1 ± 0.0a 0.1± 0.0a 2.4 ± 0.3b 
Pb  0.2 ± 0.0 0.5 ± 0.2 0.5 ± 0.1 0.0 ± 0.0 0.0± 0.0 0.0 ± 0.0 
pH  8.1 ± 0.2 7.8 ± 0.2 7.8 ± 0.1 8.8 ± 0.0a 8.8 ± 0.1a 8.4 ± 0.0b 
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Figures 

 

Figure 1. Principal component analysis (PCA) depicting the degree of similarity 

(standardized Euclidean distance) in chemical composition between the different samples. 

HC, high contamination; MC, mid contamination; LC, low contamination. 

 

Figure 2. Alpha diversity metrics of microbial communities. Different letters next to the 

boxplots indicate significant differences in means (Wilcox test, P < 0.05). HC, high 

contamination; MC, mid contamination; LC, low contamination. PD, phylogenetic diversity.  
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Figure 3. Distance-based redundancy analysis (dbRDA) biplot of microbial communities and 

microenvironmental parameters. Only the environmental variables that significantly 

explained variability in microbial community structure are depicted (arrows). The direction 

of the arrow indicates the direction of maximum change of that variable, whereas the length 

of the arrow is proportional to the magnitude of change. Symbols are as in figure 4.   
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Figure 4. Comparative analysis of the prokaryotic communities. a, c, e Relative abundance 

of the most abundant microbes across sites at the phylum, family, and genus levels, 

respectively. b, d, f Relative abundance of the most abundant taxa classified as indicators for 

the different sub-habitats (marked with asterisk). HC, high contamination; MC, mid 

contamination; LC, low contamination. 
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Figure 5. Functional structure (based on FAPROTAX analysis) of the prokaryotic 

communities. HC, high contamination; MC, mid contamination; LC, low contamination. 
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