
1

An investigation into pre-service teachers’ experiences while transitioning from
Scratch programming to procedural programming

aFatimah Tijani; bRonel Callaghan, and bRian de Villers

a*Michael Otedola College of Primary Education, Lagos, Nigeria;
bFaculty of Education, University of Pretoria, South Africa
*Corresponding author. Email: tijanifatima.tf@gmail.com

Abstract
The use of Scratch programming in introducing text-based programming to novices at all levels
of education has gained prominence in computer science but is still hardly known among pre-
service teachers. With affordances of Scratch in learning text-based programming, we present
an experience report on how we supported our first-year pre-service teachers’ learning of
procedural programming concepts with Scratch for the first time. The study follows an action
research strategy conducted over two cycles with 58 pre-service teachers who were purposively
sampled. Findings revealed that Scratch supported the learning of procedural programming by
our first-year pre-service teachers to some extent. We, therefore, recommend that pre-service
teachers be exposed to more exercises while focusing on challenging concepts such as
algorithms, use of variables, repetition, and control structures.

Keywords: Action research, pre-service teachers, procedural programming, teaching and learning
process framework (TLPF), Scratch programming

Introduction
Across Nigeria, colleges of education have been established with the purpose of training and
preparing students to become teachers who will teach at primary and junior secondary schools
(Aina, 2015). Adequate preparation of pre-service teachers studying computer science and
programming related courses is necessary for technology innovation at all tiers of education in
the country. Surprisingly, many pre-service teachers fail and lose interest in programming,
which is one of the basic skills for computer science teachers in Nigeria (Olelewe & Agomuo,
2016). Pre-service teachers in this context lack programming experience. They are also unable
to understand basic programming concepts and write simple programming codes. These issues
impede achieving the goals of teaching and learning computer programming in Nigeria
(Olelewe & Agomuo, 2016). Some of the factors contributing to student difficulties in
programming include the complex nature of programming teaching (Koulouri et al., 2015); the
idiosyncratic nature and complex syntax of programming (Topalli & Cagiltay, 2018); problem-
solving skills (Yurdugül & Aşkar, 2013); and traditional teacher-centred teaching which does
not focus on student’s intelligence and learning capabilities (Olelewe & Agomuo, 2016).
Taking these factors together, students lose interest in the course, resulting in truancy, learning
difficulties, student failure, and often high dropout rates in programming (Law et al., 2010).
Therefore, if pre-service teachers are unable to understand the skills of programming, it will be
difficult to prepare young learners at the primary and secondary schools to meet the goals of
tertiary education as stated in the National Policy on Education (Federal Government of
Nigeria, 2013).

To address some of these identified issues, one of the promising approaches that have been
suggested is the use of visual programming languages (VPL) as a support for the learning of
text-based programming. It is speculated that if programming courses are supported with VPL,
students may understand programming concepts better and thereby develop an interest in
programming. However, there is a dearth of literature on the teaching of procedural

2

programming (PP) with the VPLs among pre-service teacher education. With this in mind, we
promulgate the importance of introducing visual programming (VP) into the computer science
curriculum and studying pre-service teachers’ experiences as they transition to PP.

Previously, the teaching of programming was mostly delivered in a traditional environment.
The development of programming skills cannot be facilitated through rote learning as is done
in the traditional classroom, but through the construction of knowledge within a social
environment. For this reason, it is necessary to design instruction that supports student-centred
teaching and learning of programming. It is conjectured that introducing VP within a social
environment will help our first-year students at tertiary institutions to learn to program better.
This paper presents the results of our investigation.

The research question guiding this study was: How does Scratch programming support
improved learning of procedural programming among first-year pre-service teachers?

Literature Review
The teaching of introductory programming to novices through exposure to VP, such as Scratch,
before transitioning to text-based programming is important if novices are to become fluent
programmers in the future (Shapiro & Ahrens, 2016). Researchers and practitioners in
computer science education have argued the benefits of Scratch, heralding it as being different
to text-based programming. The benefits documented include an improvement in students’
competence on loops and conditionals when Scratch is used with Logo (Lewis, 2010); a
positive influence with Java (Malan & Leitner, 2007); an improved attitude towards
programming (Mladenović et al., 2016); high cognitive levels; increased motivation and self-
efficacy with Java or C++ (Armoni et al., 2015); and perceived easiness with Java (Weintrop
& Wilensky, 2015). In contrast, Martínez-Valdés et al., (2017) as well as Marimuthu and
Govender (2018) stressed that Scratch was less satisfactory when used as a precursor to Java
and that students frowned at an informal introduction of Scratch. Other studies have also
supported Scratch as showing promising results on the affective aspects, but concepts such as
variables, concurrency, and repeated execution could not be internalised by the students
(Meerbaum-Salant et al., 2013). Nevertheless, these concepts could be grasped through
improved instruction.

However, despite the affordances of Scratch as a precursor to text-based programming,
researchers are still uncertain about its long-term benefits. Some critiques include its lack of
authenticity; less powerful technique and long-winded blocks (Weintrop & Wilensky, 2015);
lack of mediated transfer (Krpan et al., 2017); students developing bad habits; and use of a
bottom-up approach to programming (Moreno & Robles, 2014). Learners may exhibit these
shortcomings while programming. It is, therefore, necessary for the instructors to make use of
the affordances of Scratch while noting its weaknesses, and fully prepare students in text-based
programming. Meerbaum-Salant et al., (2011), therefore, recommended that teachers must
focus the teaching of programming on algorithm design and complex structures which will
help learners to code at a higher level. However, transitioning from Scratch to other text-based
programming languages requires 21st-century skills. Using the right teaching approach that
will foster this, as suggested by Resnick et al., (2009), requires a teaching approach that
involves a combination of diverse project types, personalisation of Scratch projects, and social
collaboration. Meerbaum-Salant et al., (2011) also stressed the use of a constructivist teaching
approach with a focus on exploration and experiment.

3

Theoretical Underpinnings
Procedural Text-based Programming Languages
PP provides varying commands for structuring and manipulation of codes (Vujošević-Janičić
& Tošić, 2008), and allows the programmer to state the computations that change the program
code using procedures (Lindeman et al., 2011). QBASIC is a type of PP. It has a user-friendly
environment, is easier to use, portable, and has application packages suitable for programming
for first-year students. QBASIC, therefore, is the first introductory programming course for
students at the universities and colleges of education in Nigeria.

Visual Programming Languages
Visual programming languages (VPL) support the use of a graphical user interface with each
programming example displayed using graphical objects (Aleksic & Ivanovic, 2016). It is
argued that novices will find VP easier to use and better than PP because of its ability to support
forward and backward reasoning, activate memory, and present a visual representation of the
control and data flow in a program (Lye & Koh, 2014). The cognitive load found in PP is
reduced by the chunking of codes into smaller units by helping learners focus on the codes
rather than the syntax of the program (Cetin, 2016). Scratch is a type of VPL; it was developed
with the notion that it will lower barriers to learning programming by empowering novices to
master programming constructs and logic before learning real programming. Although Scratch
is specifically designed for primary or secondary school learners, it is used in this study because
learners in this context lack previous programming experience.

Constructivism and Constructionism
Constructivism as a theory of learning is informed by the work of Piaget and Vygotsky. While
Piaget believes learning is developmental and involves the mental construction of knowledge,
Vygotsky believes that socially constructed knowledge facilitates human development
(Schunk, 2014). For Piaget, construction of knowledge is personal, but for Vygotsky, shared
knowledge facilitates construction of knowledge. The two major perspectives of
constructivism are cognitive and social constructivism. Each perspective holds different
assumptions about learning. Assumptions of the social constructivism of Vygotsky are that
social interaction forms the basis of construction – individual learners become self-regulated
as internalisation is formed through mental constructions that evolve during social interaction.
Language is a vital tool in social interaction and the zone of proximal development (ZPD)
encourages cognitive development. Strategies for implementing constructivism in the teaching
of programming include instructional scaffolding, pair programming (Chetty & Barlow-Jones,
2014), and cooperative learning (Johnson & Johnson, 2009).

Constructionism means “learning by making” (Papert & Harel, 1991, p. 6). It focuses on the
art of learning through building or sharing designed objects (Girvan et al., 2013).
Constructionism shares the same worldview on learning as constructivism, although there is a
slight difference. On the one hand, the former focuses on learning at every stage of
development and the learner’s construction of knowledge. n the other hand, the latter deals
with consciously engaging a learner with the creation and modification of digital artefacts.

Methodology
Research Strategy and Paradigm
This study employed an action research (AR) strategy. An AR is systemic and studies a
problem by developing theories to effect change. The researchers used two cycles of practical
AR to study an identified problem in their own classroom to improve professional practice.
The study was guided by an interpretive paradigm and hermeneutic phenomenology as a
method of inquiry.

4

Population and Sample
The population comprised first-year computer science students enrolled in the 2015/2016 and
2016/2017 academic sessions. More specifically, these students were exposed to QBASIC – a
compulsory introductory programming course – in their first semester in college. Purposive
sampling was used to obtain a sample of 58 students in the two academic sessions.

Setting and Participants
The setting of the study was a college of education situated in a rural area of Lagos State,
Nigeria. The participants comprised first-year pre-service teachers who were enrolled to study
computer science. Out of the 58 pre-service teachers, only four (4) had previous training on the
theoretical aspect of QBASIC programming, the rest had never learned to program in secondary
school. All the students were new to Scratch. In the two cycles, one of the researchers acted as
both a participant observer and human instrument for data collection.

Research Procedure
This study made use of Du Toit’s (2010) visionary AR model, which comprises the following
five stages, namely: (1) planning for innovation, (2) acting to innovate, (3) observing the effects
of the new action, (4) reflecting in/on the action, and (5) evaluating. The five stages were
followed in the two AR cycles. In the planning phase, we reviewed the literature, and the best
practices from the literature were brought into the study. This informed the design of a teaching
and learning process framework (TLPF) prepared by the authors, as illustrated in Figure 1
below.

Figure 1: Teaching and Learning Process Framework

The TLPF was based on the ADDIE – analyse, design, develop, implement, and evaluation –

5

framework for instructional design. In addition to being simple to use, ADDIE provides
instructors with a systematic approach in designing and developing a learning experience, with
the outcome of each phase informing the other (Khalil & Elkhinder, 2016). Therefore, this
framework was considered suitable for this study because it is system-oriented and produces a
good instructional design. The underlying motivation for the design of the TLPF was to teach
students programming using a student-centred and holistic approach to learning. The processes
involved in the planning of the framework are described below.

The planning of the TLPF
Analysis: Pre-service teachers’ approaches to learning were first determined and further guided
instructional design. This aspect is not discussed in this paper.

Design: Constructive alignment of courses (Scratch and QBASIC) were designed by the
researchers, and this guided instruction and assessment planning (Biggs, 2012).

Development: The designed instruction formed the initial TLPF. The content and supporting
media were organised to achieve the objective and create a satisfying learning experience for
the students. Different methods were used to communicate the content (Scratch and QBASIC),
which was based on the constructivist theory of learning.

Implementation: Instructional activities were planned and facilitated using constructivist
principles such as pair programming, scaffolding, and cooperative learning towards the
achievement of the designed learning objectives. Instructional activities necessitated grouping,
which strengthened the collaboration among pre-service teachers and the researchers.
Opportunities for the construction of meaning from the learning experiences were encouraged.

Evaluation: Assessment tasks were designed based on the structure of the observed teaching
and learning framework (SOLO) and revised Bloom’s taxonomy (Biggs, 2003; Biggs & Tang,
2007). Different assessments, such as assignments, group projects, and presentations were also
considered during the planning phase.

The Acting Phase of the TLPF
In the acting phase, the instruction was facilitated using the prepared TLPF. In the first cycle,
participants were introduced to Scratch over a four-week period, followed by QBASIC.
Classroom practicals, assignments, group work, and project works were done individually and
cooperatively during programming lessons. Participants received scaffolding where needed
and were also exposed to programming assessments at different stages of the teaching sessions.
Assessments included classroom exercises, a test of individual concepts, interim tests 1-4, and
a final test.

The Observation Phase
During the observation phase, the collected data was reflected upon. The insights obtained
during this phase were used to inform the teaching decisions that supported students’ learning
in each class. The outcomes of the first cycle formed the basis for re-planning in the second
cycle. As we reflected on the data, we also questioned our decisions to think differently and
engaged in an ongoing interim analysis as data collection unfolded. We reflected on the data to
check how it informed and captured the instruction. We finally evaluated the teaching situation
to ascertain whether we lived our values brought into the study. The outcome of the first cycle
of AR was used to enhance the redesign of the TLPF1, which was used in the second cycle as
TLPF2 (see Figure 1). The second cycle started with a re-planning for innovation, which was
informed by the outcome of the first cycle, including the management of time, increased

6

programming and lecture time, as well as focus on concepts such as variables, flowcharts, and
algorithms. These outcomes were incorporated into the second cycle which necessitated the
teaching of Scratch and QBASIC on separate days of the week. This helped the participants to
explore each environment extensively in the second cycle. The participants in this cycle
differed from the participants in the first cycle.

Data Collection Methods
Data was collected through classroom observation, artefacts, interviews, and documents. The
classroom observations took place from 20 January – 7 April 2016 with 11 lessons observed in
the first cycle; and 27 January – 7 April 2017 with 21 lessons observed in the second cycle.
Each lesson was observed using video and structured observation, which focused on the
participants’ construction of understanding, social interactions, shared meanings, and their
behaviour as lived in the programming classroom. The artefacts comprised classroom
assessments and a final test which covered all topics learnt during the semester, including
algorithms, data types, variables, repetition, looping, and program writing. An interview
protocol was used to elicit responses from 14 participants who had a lived experience in both
Scratch and QBASIC, and each audio-recorded interview lasted approximately 45 minutes. The
participants also jotted down their reflections of their experience in the programming classroom
in their journal, and these were studied for further analysis.

Data Analysis
The hermeneutic cycle was employed for data analysis (Klein & Myers, 1999). After the
interviews were transcribed and re-read, they were analysed both deductively and inductively
using thematic analysis. All the data was coded by the first author and then checked by the co-
authors for correctness.

Quality Assurance and Ethical Aspects
Validity was ensured by giving the participants an opportunity to respond during the interview
session, obtaining rich qualitative data and verifying participants’ responses, and discussing
the results and findings with a critical friend. Trustworthiness was maintained through the use
of triangulated data, member checking, keeping an open mind during the interview, thick
description of the phenomenon under study, negative case analysis, prolonged time in the field,
and ongoing reflective analysis (Creswell, 2014). All ethical considerations were observed and
permission to conduct the study was granted by the college management of the said institution.
In addition, permission was given to withdraw from the interview at any time and anonymity
was achieved through the use of pseudonyms. (Thus, the names – Nancy, Vanessa, Mercy,
Uchenna, Farai, Peter, and Ramsey – are pseudonyms used to protect the identities of the
participants).

Findings
The two sub-themes described below explain the emerged theme – programming knowledge gained by
students.

Students’ Programming Knowledge
We used the quantitative data presented below to gain a better understanding of the qualitative
findings generated from the data. Participants were given similar exercises on programming
concepts for both Scratch and QBASIC programming. Table 1 gives a summary of the
percentage of correct answers of all programming activities students did in both the first and
second cycle. Findings revealed that students in the first cycle improved on variables,
expressions, and program writing with a low percentage score on algorithms, operators, and
repetition, while in the second cycle, exposure to Scratch programming for the whole semester

7

did not seem to enhance their understanding of QBASIC concepts. However, it is possible that
further investigation of the final tests might provide better results.

Table 1. Programming concepts assessed during classroom activities

Programming
concepts

1st cycle
Scratch QBASIC
scores (%) scores (%)

 2nd cycle
Scratch QBASIC
scores (%) scores (%)

Variables 39 98 60 55
Debugging Not tested 81 Not tested 50
Algorithms 79 37 47 27
Operators 50 45 58 32
Repetition 56 50 61 26
Expressions 47 60 58 33
Program writing 18 73 46 42

Table 2 presents the final assessment test for defining a variable, debugging of syntactic errors,
designing algorithms for solutions, expressions and repetitions, and an analysis of the question
types. The final test for the cycles was administered using pen and paper with 18 and 22
students present in the two cycles, respectively. The test, which lasted for 1 hour, covered all
topics learnt over the semester.

Table 2. Final Test on Programming Concepts in Both Cycles
Question Type Programming

concepts learned
Revised
Bloom’s

SOLO % Correct
Answers
(1st cycle)

% Correct
Answers
(2nd Cycle)

(1) Basics Data types Remember Unistructural 56% 56.4%
(2) Syntactic errors Debugging Remember Unistructural 16% 73%
(3a) Skeleton code Program writing Apply Relational 16.5% 70%
(3b) Code tracing Expression and Apply Unistructural 33% 28%

 operators

(4ai) Code tracing Variables Remember Unistructural 43% 36%
(4aii) Code purpose Explaining skill Understand Relational 33% 68%

(4b) Change in Algorithm Understand Relational Not tested 36%
representation

(5ai) Code tracing Data types Analyse Unistructural 19% 38%
(6b) Syntactic error Debugging Understand Unistructural Not tested 38%
(6c) Change in Program writing Evaluate Relational 12% 14%
representation

(7a) Change in Program writing Create Relational 61% 26%
representation

(7b) Syntactic errors Debugging Understand Relational 35% 35%

Table 2 shows that participants in both cycles experienced difficulty with some programming
concepts. For example, on data types involving code tracing and analysis (5ai), the percentage
correct answers was 19% and 38%, respectively, but the students had an average performance
on data types (1) that required them only to recall facts. On debugging (2, 6b, and 7b), the
percentage correct answers for students in the first cycle was very low, but in the second cycle,
the result showed that the students understood debugging to some extent with their
understanding below average as the levels of the questions on the taxonomy became higher.
Findings on expressions and operators (3b) showed that the students’ understanding was low,
and when compared to the results in Scratch, it showed they were only at the average in both
cycles with the second cycle maintaining a lower percentage. On program writing (3a, 6c, 7a),
the first cycle students’ percentage score was low at the lower levels of Bloom, but higher as it

8

moved to the top level. The reverse was the case in the second cycle. On variables (4ai), the
result showed that the percentage score was low in both cycles. However, on algorithms (4b),
the percentage score in the final test is not shown for the first cycle, but in the classroom
activities, the result was low in the first and second cycle.

Students’ Perspectives about Scratch and QBASIC
Some participants perceived Scratch as a foundation stage that every student must master. This
understanding was fuelled by friends and seniors who were exposed to Scratch. The following
excerpts from the interview and reflective learning journal support this finding:

“Scratch is just like a foundation …” (Ramsey).

“…when most of them learnt that QBASIC is our real course, why then are we doing
Scratch… but it has helped me” (Percy).

“QBASIC programming not so very basic for me. More like complex programming”
(Percy).

Knowledge Gained in Scratch and QBASIC
This category describes pre-service teachers’ lived experiences of concepts such as algorithms
with flowchart and pseudocode, variables, repetition, control structures, and expressions. All
the participants noted that their understanding of programming concepts was well-grounded
due to repeated teaching combined with individual and group practices in both programming
languages. An interview excerpt from Farai supports this finding:

 “…so being taught something repeatedly, you will get more understanding about the
topic”.

However, one participant – Uchenna – expressed difficulty with the learning of programming
due to the mathematical aspect.

 Algorithms
Learning algorithms with flowchart and pseudocode was an interesting topic for half of the
participants. When designing a solution to problems, the knowledge gained from the algorithm
steps in the Scratch class were applied to solving problems in QBASIC. This was achieved as
the students noted that most of the topics learnt in class, including algorithms, have been learnt
previously (up to three times) in the Scratch class. Thus, learning it again in the QBASIC class
increased their understanding of the concepts. However, classroom observation shows that
students do not always apply the algorithmic steps during problem-solving in QBASIC, evident
as follows:

 “…students don’t know when to use a decision in a program and did not apply
algorithmic techniques in writing program…” (Researcher 1).

To support this further, classroom assessments on algorithms in Tables 1 and 2 on the final test
was 36% for the second cycle. Further investigation gives a deeper understanding of this.
Nancy, Vanessa, Mercy, and Ramsey indicated in their reflective learning journal that they
struggled with learning the concepts of algorithms during their first time in class. For example,
Ramsey said:

9

“…difference between algorithms and a flowchart, because it was the first class so I
couldn’t understand better…”

The first class here might refer to the different times the students joined the class. Not being
part of the class on the first day classes began, where foundation topics were introduced and
explained, may have contributed to this.

 Variables
Students in the first cycle can correctly identify and define a variable for programs in QBASIC.
Although the variable naming convention from Scratch either uses or does not use spaces
between variable names, it does not affect how students name variables in QBASIC. It is
uncertain whether Scratch helped them, since they had a low percentage score in QBASIC (see
Table 1). However, there seems to be an improvement in QBASIC for students in the second
cycle. A further investigation from the second cycle participants showed that even though they
were taught variables and its application in solving programming problems, and performed
better than their first cycle counterparts, most of the participants did not always declare
variables for programming problems. Data from three classroom observations showed that,

“[G]roups (C, D, E, F and G) also presented their results too without making use of
variables in their solution… I noticed the students did not all make use [of] variables
in their group work” and “in the problem given, some of them used the ‘number of
hours’ without declaring the number of hours as a variable” (Researcher 1).

Results from Table 2 on the final test also support the findings.

 Repetition and control structure
Participants noted that the concepts of “repetition” and “control structure” learnt in Scratch are
also found in QBASIC. Therefore, transitioning from Scratch to QBASIC with several
activities on repetition animations in Scratch using the repetition structures aided understanding
of related commands in QBASIC. A classroom observation supports this finding,

“…they all did well in the practical…” (Researcher 1).

In addition, results from Table 2 indicate that they performed above average on repetition.
However, not all the students have an understanding of repetition structure and writing program
codes involving “control structure”. This could be because the concepts were introduced
towards the end of the semester with little practical opportunities. For example,

“I understood the control structure, but I don’t know how to write and solve some
questions under it” (Vanessa).

Results from Table 1 show that students in the first cycle have an above-average percentage
score in both languages, but a low percentage score for QBASIC in the second cycle.

 Debugging skills
Furthermore, Scratch contributed to developing debugging skills in programming. Even though
debugging was not taught as a topic in Scratch, participants affirmed that debugging was not
an issue in Scratch class because Scratch did not return their errors. However, they came to the
awareness that locking the wrong blocks does not always produce the desired result. But
through further attempts based on trial and error, the expected result was obtained, even though
they didn’t understand the algorithm of the program. A supporting finding during a classroom

10

teaching where students were asked to discuss what they learned while programming is
explained in the following statement by Peter:

“…we made a mistake where we are trying to make a variable for dragon-1; we write
it without knowing that we are going to select it inside a block. So, when we run the
program, we discovered that after we inserted a cough, the dragon does not respond”.

Results from Tables 1 and 2 further show that participants’ preconceived ideas about debugging
with a lack of understanding concerning the algorithm of the program might have contributed
to the low percentage of correct answers in questions 2, 6b, and 7b.

 Program writing
The participants claimed that program writing as a result of block arrangements in Scratch
contributed to the arrangement of program codes in QBASIC. This was revealed in their ability
to develop a QBASIC flowchart and pseudocode from a Scratch script (see Table 1). As such,
they could understand that wrongly arranged blocks in Scratch give wrong output, meaning
program codes that are not well-arranged produces wrong output in QBASIC. This was affirmed
by Peter as follows:

“… in Scratch, there are some programs that when you place it in the wrong position,
it will stop there. Like when you are supposed to put something in a LOOP… and you
don’t put it… the output will be very wrong. So, in QBASIC also, if you are to face a
problem and you do not arrange it in order, then you will not get what you want to
get”.

However, program writing is more than just snapping blocks of codes together. Further
investigation of Scratch support to QBASIC in this regard is not clear, as there was a low
performance on Scratch and higher performance on QBASIC in the first cycle, with a slight
difference in the second cycle (see Table 1). As discussed earlier, students do not apply the use
of variables during program writing in QBASIC. It was towards the end of the semester that
students started seeing the importance of variables for planning solutions and writing programs
in QBASIC. This, however, was not the case during Scratch programming. Participants always
define variables using the “set block”. The reason for this could be that most classroom
exercises students were exposed to in Scratch were based on pre-written examples from the
textbook in which students only remix to produce a new script and animation.

Discussion
This study investigated pre-service teachers’ experiences as they transitioned from Scratch to
procedural programming. Pre-service teachers saw Scratch as easy to learn, motivating their
interest in programming (Ouahbi et al., 2015). They also appreciated the benefits of Scratch for
the learning of programming because it served as a foundation for learning QBASIC. However,
they believed it did not allow them to express themselves well during program writing
(Weintrop & Wilensky, 2015). Knowledge gained in Scratch deepened their understanding of
concepts like algorithms, repetition, and variables in QBASIC. The pre-service teachers also
learned program writing through the arrangement of program blocks in Scratch, which was
mostly based on trial and error. This finding on program arrangement relates to “sequencing”.
Bers et al., (2014) explained sequencing as a form of planning involved when arranging
computer codes to achieve the desired result. Therefore, students transferred the knowledge to
the arranging of codes in QBASIC. However, they could not think algorithmically about
programs that involved complex structures like repetitions and control structures in QBASIC
(Grover & Basu, 2017; Moreno & Robles, 2014). What we learned from this study is that

11

Scratch supports the learning of procedural programming in our first-year pre-service teachers
to some extent. We believe that exposure to more exercises while focusing on challenging
concepts such as algorithms, appropriate use of variables, debugging, repetition and control
structures, will deepen their understanding of these concepts.

Conclusion
Supporting the learning of QBASIC with Scratch programming motivated pre-service teachers
to learn to program. It also facilitated their understanding of the relevant concepts. However,
doing complex exercises was problematic for pre-service teachers. Thus, in the future, we
would like to focus more on extensive practicals on algorithms, debugging, and repetition and
control structure by exposing pre-service teachers to more exercises that will enable them to
think algorithmically. There is an urgent move by the Nigerian government to develop coding
skills in learners at the primary and secondary school level using VPLs. Its implementation can
only be effective if pre-service teachers are well prepared. In the interim, therefore, we
recommend the use of Scratch as the first programming language for pre-service teachers in
their first year of college to equip them not only for QBASIC but for other programming courses
that will be done before graduation. With the introduction of Scratch, they will be motivated to
learn to program and thereby develop programming skills. We also recommend the use of TLPF
for programming teachers and lecturers, which they can adapt or adopt for designing student-
centered programming instructions.

References
Aina, J. K. (2015). Analysis of integrated science and computer science students’ academic

performances in Physics in colleges of education, Nigeria. International Journal of
Education and Practice, 3(1), 28-35.

Aleksic, V., & Ivanovic, M. (2016). Introductory programming subject in European higher
education. Informatics in Education, 15(2), 163-182.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real”
programming. ACM Transactions on Computing Education, 14(4), 137-151.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and
tinkering: Exploration of an early childhood robotics curriculum. Computers and
Education, 72, 145-157.

Biggs, J. (2003). Aligning teaching and assessing to course objectives. In M. L. Sein-Echaluce,
A. Fidalgo-Blanco, & F. J. Garcia-Peñalvo (Eds.), Teaching and Learning in Higher
Education: New Trends and Innovations (pp. 13-17). University of Aveiro.

Biggs, J. (2012). Enhancing learning through constructive alignment. In J. R. Kirby & M. J.
Lawson (Eds.), Enhancing the quality of learning: Dispositions, instruction, and
learning processes (pp. 117-136). Cambridge University Press.

Biggs, J., & Tang, C. (2007). Teaching for quality learning at University (3rd ed.). Open
University Press.

Cetin, I. (2016). Pre-service teachers' introduction to Computing: Exploring utililization of
Scratch. Journal of Educational Computing Research, 54(7), 997-1021.

Chetty, J., & Barlow-Jones, G. (2014). Novice students and computer programming: Toward
constructivist pedagogy. Mediterranean Journal of Social Sciences, 5(14), 240. doi:
10.5901/mjss.2014.v5n14p240

Creswell, J. W. (2014). Research Design: quantitative, qualitative and mixed methods
approaches (4th ed.). Pearson Education Inc.

Du Toit, P. (2010). An Action Research approach for monitoring one's professional
development as a manager. Foundation for professional development.

Federal Government of Nigeria. (2013). National Policy on Education. NERDC Press.
Girvan, C., Tangney, B., & Savage, T. (2013). SLurtles: supporting constructionist learning in

12

second life. Computers and Education, 61, 115-132.
Grover, S., & Basu, S. (2017, 8–11 March). Measuring student learning in introductory block-

based programming: Examining misconceptions of loops, variables, and boolean logic.
Paper presented at the Proceedings of the 2017 ACM SIGCSE technical symposium on
computer science education, Seattle, WA, USA.

Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social
interdependence theory and cooperative learning. Educational Researcher, 38(5), 365-
379.

Khalil, M. K., & Elkhider, I. A. (2016). Applying learning theories and instructional design
models for effective instruction. Advances in Physiology Education, 40, 147-156.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS Quarterly, 23(1), 67-93.

Koulouri, T., Lauria, S., & Macredie, R. D. (2015). Teaching introductory programming: a
quantitative evaluation of different approaches. ACM Transactions on Computing
Education, 14(4), 1-28.

Krpan, D., Mladenović, S., & Zaharija, G. (2017, 22–26 May). Mediated transfer from visual
to high-level programming language, Opatija, Croatia.

Law, K. M., Lee, V. C., & Yu, Y.-T. (2010). Learning motivation in e-learning facilitated
computer programming courses. Computers and Education, 55(1), 218-228.

Lewis, C. M. (2010, March 10–13). How programming environment shapes perception, learning
and goals: logo vs. scratch. In Proceedings of the 41st Technical Symposium on
Computer Science Education (pp 346-350).

Lindeman, R. T., Kats, L. C., & Visser, E. (2011, 22–24 October). Declaratively defining
domain-specific language debuggers. Paper presented at the ACM SIGPLAN Notices,
Oregon.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51-
61.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE
Bulletin, 39(1), 223-227.

Marimuthu, M., & Govender, P. (2018). Perceptions of Scratch Programming among
secondary school students in KwaZulu-Natal, South Africa. The African Journal of
Information and Communication (AJIC), 21, 51-80.

Martínez-Valdés, J. A., Velázquez-Iturbide, J. Á., & Hijón-Neira, R. (2017, 18–20 October). A
relatively unsatisfactory experience of use of Scratch in CS1, Cádiz, Spain.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011, 27–29 June). Habits of programming
in Scratch. In Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education (pp. 168-172). ACM.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts
with scratch. Computer Science Education, 23(3), 239-264.

Mladenović, S., Krpan, D., & Mladenović, M. (2016). Using games to help novices embrace
programming: from elementary to higher education. International Journal of
Engineering Education, 32(1), 521-531.

Moreno, J., & Robles, G. (2014, 22–25 October). Automatic detection of bad programming
habits in scratch: A preliminary study. Paper presented at the Frontiers in Education
Conference (FIE), IEEE.

Olelewe, C. J., & Agomuo, E. E. (2016). Effects of B-learning and F2F learning environments
on students' achievement in QBASIC programming. Computers and Education, 103,
76-86.

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning Basic
Programming Concepts by Creating Games with Scratch Programming Environment.

13

Procedia-Social and Behavioral Sciences, 191, 1479-1482.
Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch:
programming for all. Communications of the ACM, 52(11), 60-67.

Schunk, D. H. (2014). Learning theories: An educational perspective (6th ed.). Pearson
Education Limited.

Shapiro, R. B., & Ahrens, M. (2016). Beyond blocks: Syntax and semantics. Communications
of the ACM, 59, 39-41.

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education
through problem-based game projects with Scratch. Computers and Education, 120,
64-74.

Vujošević-Janičić, M., & Tošić, D. (2008). The role of programming paradigms in the first
programming courses. The Teaching of Mathematics, 11(2), 63-83.

Weintrop, D., & Wilensky, U. (2015, 21–24 June). To block or not to block, that is the question:
students' perceptions of blocks-based programming. In Proceedings of the 14th
International Conference on Interaction Design and Children (pp. 199-208). ACM.

Weintrop, D., Holbert, N., Wilensky, U., & Horn, M. (2012). Redefining constructionist video
games: Marrying constructionism and video game design. Paper presented at the
Proceedings of the Constructionism 2012 Conference. Athens, Greece.

Yurdugül, H., & Aşkar, P. (2013). Learning programming, Problem solving and gender: A
longitudinal study. Procedia – Social and Behavioral Sciences, 83, 605-610.
doi:10.1016/j.sbspro.2013.06.115

