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ABSTRACT

A cone K in a vector space X is a subset which is closed under addition,

positive scalar multiplication and the only element with additive inverse is

zero. The pair (X,K) is called an ordered vector space. In this study,

we consider the characterizations of Reflexive Banach spaces. This is done

by considering cones with bounded and unbounded bases and the second

characterization is by reflexive cones. The relationship between cones with

bounded and unbounded bases, and reflexive cones is also considered. We

provide an example to show distinction between such cones.
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INTRODUCTION

A subset K of a vector space X is called a cone if it is closed under addition,

positive scalar multiplication and the only element ofK with additive inverse

is zero. Cones play very important role in pure and applied mathematics,

in particular, the theory of ordered vector spaces, Riesz spaces, economic

and optimization are based on properties of cones. The notion of cones also

bring together the order structure and topology. This is achieved when one

consider a convex subset of K, called a base. In this settings we can study

the relations between order and topology.

In particular, one define an order on a vector space using a base of a cone

(considered subcone of a cone), such order induced there so called Bronstead

order which is mainly used to find a maximal element of a convex subset of

a space X. This can also be used to study the relationship between Caristi

fixed pint theory and Ekeland’s variation principle. The order generated

by a base of cone is not necessarily a lattice order. Therefore, the ordered

vector with order induced by a base of a cone is more general that Riesz

spaces.

The theory of reflexive Banach spaces were studied from 1970s, mainly by

James. In this study we consider the characterizations of reflexive Banach

spaces using the notion of cones. We consider, characterizations, the first

one is using cones with bounded and unbounded base, the second one is

using reflexive cones. The cone with a bounded and unbounded bases is

called a mixed based cone.

We consider the relationship between reflexive cones and properties of their

bases. In particular, we observe that the existence of a basic sequence in a

reflexive cone depend on the existence of bounded and/or unbounded bases.

The notion of reflexive cone allows us to obtain some important results on

spaces. For example, if X is an ordered Banach space ordered by reflexive

cone K and K normal, then X is Dedekind complete (order complete).

Therefore, we can immediately, deduce that the positive cone C+[0, 1] of

C[0, 1], the space of all continuous functions on [0, 1] is not reflexive, since

C+[0, 1] is normal and C[0, 1] is not Dedekend complete. It is known that if

a Banach X is reflexive, then its dual space X∗ is also reflexive. However,

this is not necessarily true on cones. That is, we can find a reflexive cone

and its dual not reflexive.

The theory of reflexive Banach spaces plays a big role in Mathematical
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Analysis, economics, finance and fixed point theory [1, 3, 5, 6, 11, 14, 15, 29].

For instance, in economic, the Leontief model is a model to find, an element

e in X+, where X is ordered Banach space, such that the map

T : X+ → X+, Tx = x− e or x = Tx+ e

has a solution, depend on the reflexivity of the space X. That is, the exists

x∗∗ ∈ (X+)∗∗ such that x∗∗ = T ∗∗x∗∗ + e and also there exists a sequence

(xn) ⊂ X∗ such that xn − Txn → e. Therefore, the solution Tx = x − e
exists in a reflexive Banach space.

We organize our work as follows;

In chapter 1, we recall definitions of partial ordering, cones, ordered vector

spaces and Riesz spaces. We consider the relationship between different

types of cones, namely, normal, lattice, and generating cones, as well as the

relationship between Riesz space and ordered vectors space. We consider

some examples to illustrate the difference between the notions, whenever is

necessary.

In chapter 2, we consider cones with bases and provide examples of a cone

with no base, mixed base cones, cone with only unbounded bases. We also

consider the relationship between a cone and dual cone.

In chapter 3, we consider the characterization of Banach space in terms of

a cones with bounded and unbounded base. We study also the example of

cone with both bounded and unbounded bases in a reflexive space.

In chapter 4, we consider the characterization of reflexive Banach spaces

using reflexive cones. We also study the relationship between reflexive cones

and the properties.
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1 Preliminaries.

In this chapter we recall definitions of partially ordered sets, ordered vector

spaces and Riesz spaces. We also give some results regarding cones and

their properties as well as some examples of these cones. We also provide

examples to illustrate the difference between these cones. Definitions of

ordered Banach spaces and Banach lattices are also recalled as well as special

type of Banach space called Reflexive Banach space. Examples of these

spaces are provided. We study operators acting between Banach lattices, in

particular the relationship between the regular and order bounded operators.

We also recall definitions of order isomorphism and order isometry and give

examples.

1.1 Partially Ordered sets.

Definition 1.1. ([30, Definition 1.1]) The relation ≤ on a set X is called a

partial ordering if,

(i) x ≤ x for every x ∈ X, (reflexivity).

(ii) x ≤ y and y ≤ z implies x ≤ z for every x, y, z ∈ X, (transitivity).

(iii) x ≤ y and y ≤ x implies x = y for every x, y ∈ X. (antisymmetry).

The pair (X,≤) is called a partially ordered set. If x and y are points of X

such that x ≤ y or y ≤ x, we say that x and y are comparable.

Definition 1.2. Let (X,≤) be a partially ordered set, Y is a non - empty

subset of X and x0 ∈ X. The point x0 is called,

(i) an upper bound if y ≤ x0 for all y ∈ Y . If x0 ≤ z for any other

upper bound z of Y , then x0 is called a supremum of Y . We write

x0 = sup{y : y ∈ Y } for the supremum of Y .

(ii) a lower bound if x0 ≤ y for all y ∈ Y . If z ≤ x0 for any other

lower bound z of Y , then x0 is called an infimum of Y . We write

x0 = inf{y : y ∈ Y } for the infimum of Y .

(iii) a maximal element of X if it follows from x0 ≤ x ∈ X that x0 = x.

(iv) a largest element of X if x0 ≥ x for all x ∈ X.

(v) a minimum element of X if it follows from x0 ≥ x ∈ X that x0 = x.
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(vi) a smallest element of X if x0 ≤ x for all x ∈ X.

Proposition 1.3. Let (X,≤) be a partially ordered space. If x0 ∈ X is the

largest element, then x0 is a maximal element.

Proof. Assume x0 is the largest element of X, that is, x0 ≥ x for all x ∈ X.

This means no x ∈ X is strictly greater that x0. Therefore x0 is the maximal

element in X.

We show that the converse of the above results is not neccesarily true.

Example 1.4. (cf [30, Example 1.2]) Consider partially ordered space

(R2,≤), where ≤ is a pointwise ordering, that is,

(x1, x2) ≤ (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2

and the closed unit disc

A = {(x, y) ∈ R2 : x2 + y2 ≤ 1} ⊆ R2.

The points (x, y) such that

x ≥ 0, y ≥ 0, x2 + y2 = 1

are maximal elements. However, they are not the largest, since (0, 1) is not

comparable with any of other maximal elements.

Definition 1.5. ([30, Definition 1.3]) A partially ordered set X is called;

(i) Dedekind complete if every non - empty subset of X that is bounded

above (bounded below) has a supremum (infimum).

(ii) Dedekind σ- complete if every non - empty finite or countable subset of

X that is bounded above (bounded below) has a supremum (infimum).

(iii) a lattice if every subset consisting of two points, x, y, has a supremum

denoted by x ∨ y and an infimum denoted by x ∧ y.

1.2 Ordered vector space and Riesz spaces.

Definition 1.6. ([30, Definition 4.1]) A real vector space X is called an

ordered vector space, denoted by (X,≤), if X is partially ordered such that

the vector space structure and the order structure are compatible, that is,

(i) x ≤ y implies x+ z ≤ y + z for every z ∈ X.
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(ii) 0 ≤ x implies 0 ≤ αx for every x ∈ X and 0 ≤ α.

Definition 1.7. Let X be an ordered vector space and x, y ∈ X. The set

[x, y] = {z ∈ X : x ≤ z ≤ y}

is called an order interval of X.

Definition 1.8. Let C be a subset of an ordered vector space X. The set

C is called

(i) order convex if [x, y] ⊂ C for every x, y ∈ C.

(ii) order bounded if C ⊆ [x, y] for some x, y ∈ X.

Definition 1.9. ([2, Definition 1.14]) An ordered vector space X is a Riesz

space if every pair of vectors x, y ∈ X has a supremum and an infimum in

X.

Definition 1.10. Let X be a Riesz space and x ∈ X. We recall the following

notations,

(i) x+ = x ∨ 0,

(ii) x− = (−x) ∨ 0,

(iii) |x| = x ∨ (−x).

Theorem 1.11. ([30, Theorem 5.1]) Let X be a Riesz space, x, y, z ∈ X,

then

(i) x+, x− are elements of X+; (−x)+ = x−, and | − x| = |x|.

(ii) x = x+ − x−, x+ ∧ x− = 0 and |x| = x+ + x−. Hence |x| ∈ X+.

(iii) 0 ≤ x+ ≤ |x| and 0 ≤ x− ≤ |x|.

(iv) x ≤ y if and only if x+ ≤ y+ and x− ≤ y−.

(v) x+ y ∨ z = (x+ y) ∨ (x+ z).

(vi) x− (y ∧ z) = (x− y) ∨ (x− z).

Remark 1.12. The elements x+, x− and |x| are called the positive part,

negative part and absolute value of x, respectively.

We recall the following characterization of Riesz space.
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Lemma 1.13. [2, Lemma 1.15] An ordered vector space X is a Riesz space

if and only if for every pair of vectors x, y ∈ X their supremum x ∨ y exists

in X.

Proposition 1.14. (cf [2, Exercise 1.3.2]) An ordered vector space X is a

Riesz space if and only if for x ∈ X the supremum x+ = x ∨ 0 exists in X.

Proof. Let X be a Riesz space. Then for x, 0 ∈ X, we have x+ = x∨ 0 ∈ X
by definition of X.

Conversely, let x+ = x∨0 be in an ordered vector spaceX. Then for x, y ∈ X
we have x− y ∈ X since X is a vector space and (x− y)+ = (x− y)∨ 0 ∈ X
by the assumption. Therefore

x ∨ y = [(x− y) + y] ∨ (0 + y)

= (x− y) ∨ 0 + y by Theorem 1.11 (v)

= (x− y)+ + y by the assumption

∈ X by definition of X

By Lemma 1.13, an ordered vector space X is a Riesz space.

We give an example of a Riesz space.

Example 1.15. Let X = C([0, 1]) be the set of all real continuous functions

on [0,1]. Then X is a Riesz space.

Proof. We define the ordering f ≤ g whenever f(x) ≤ g(x) for all x ∈ [0, 1].

The set X is a partially ordered vector space. To see, let f, g, h ∈ X. We

have that f(x) = f(x) which implies f(x) ≤ f(x) for all x ∈ [0, 1], hence

≤ is reflexive. If we assume f ≤ g and g ≤ h, we get f(x) ≤ g(x) and

g(x) ≤ h(x) for all x ∈ [0, 1]. Since we have real valued functions, then

f(x) ≤ h(x) for all x ∈ [0, 1] and so f ≤ h. Hence we have transitivity.

Assuming f ≤ g and g ≤ f , we get f(x) ≤ g(x) and g(x) ≤ f(x) for all

x ∈ [0, 1]. Thus f(x) = g(x) for all x ∈ [0, 1], and f = g. Hence we have

anti - symmetry. As for ordering structure, assume f ≤ g, which implies

f(x) ≤ g(x) for all x ∈ [0, 1]. Thus we have that f(x) + h(x) ≤ g(x) + h(x)

for all x ∈ [0, 1] and h ∈ X. Hence we have that f + h ≤ g + h for any

h ∈ X. Similarly we assume 0 ≤ f which gives 0 ≤ f(x) for all x ∈ X. Now

0 ≤ αf(x) for all x ∈ X provided α ≥ 0. Therefore (X,≤) is an ordered

vector space. We now show it is a lattice. Let f, g ∈ X, then

f ∨ g = 1
2((f + g) + |f − g|)
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and

f ∧ g = 1
2((f + g)− |f − g|)

are continuous functions on [0,1] by properties of continuity. Thus

f ∨ g, f ∧ g ∈ X.

Since f, g are arbitrary then X is a Riesz space.

We now give example of ordered vector space which is not a Riesz space.

Example 1.16. (cf [2, Excercise 1.3.4]) Let X = C1[0, 1] be set of all

continuously differentiable functions on [0,1]. Then X is an ordered space

which is not a Riesz space.

Proof. We define the ordering f ≤ g if and only if f(x) ≤ g(x) for all

x ∈ [0, 1]. The set X is a partially ordered vector space. The proof is

similar to the one given in Example 1.15. Secondly, we show X is not a

Riesz space. To see, consider the functions f(x) = x and g(x) = 1 − x.

Clearly, they are continuous and differentiable on [0,1], that is, f, g ∈ X.

Now

f(x) ∨ g(x) = sup(f, g) = |x− 1
2 |+

1
2 =

x, if x ≥ 1
2 ;

1− x, if x < 1
2 .

is continuous but not differentiable (at x = 1
2) on [0,1]. Since

d(f(x)∨g(x))
dx =

1, if x > 1
2 ;

−1, if x < 1
2 .

Thus f(x) ∨ g(x) /∈ X. Therefore (X,≤) is an ordered vector space but not

a Riesz space.

1.3 Cones and their properties.

Definition 1.17. Let X be a vector space and K non-empty subset of X.

The set K is called a cone if:

(i) f ∈ K, g ∈ K then f + g ∈ K.

(ii) f ∈ K implies αf ∈ K for any real number α ≥ 0.

(iii) f ∈ K, f ∈ −K implies f = 0.
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Definition 1.18. A subset K of a vector space X is said to be convex if

x, y ∈ K implies tx+ (1− t)y ∈ K for all t ∈ [0, 1].

Remark 1.19. Cones are convex sets, since t, 1− t ≥ 0, and tx, (1− t)y are

in K by (i) and (ii).

We now give an example of a cone.

Example 1.20. Consider vector space R2. The subset

K = {(x, y) ∈ R2 : x > 0 or (x = 0 and y ≥ 0)}

is a cone in R2 and it is called lexicographic cone.

Proof. K is not empty, since (0, 0) ∈ K. To show (i) in Definition 1.17, let

(x1, y1), (x2, y2) ∈ K and consider the following 3 cases.

a) If x1, x2 > 0, then x1 + x2 > 0 and therefore (x1, y1) + (x2, y2) ∈ K.

b) If x1 > 0 and x2 = 0 and y2 ≥ 0 then x1 + x2 > 0 and therefore

(x1, y1) + (x2, y2) ∈ K.

c) If x1 = 0, x2 = 0 and y1 ≥ 0, y2 ≥ 0 then x1 + x2 = 0 and y1 + y2 ≥ 0

and therefore (x1, y1) + (x2, y2) ∈ K.

To show (ii) in Definition 1.17, let (x1, y1) ∈ K,α ∈ R and α ≥ 0 and

consider the following 2 cases.

a) If x1 = 0 and y1 ≥ 0 then αx1 = 0 and αy1 ≥ 0, therefore

α(x1, y1) = (αx1, αy1) ∈ K.

b) If x1 > 0 then

(1) αx1 > 0 for α > 0,

(2) αx1 = 0 and αy1 = 0 if α = 0 for any y1.

Therefore α(x1, y1) = (αx1, αy1) ∈ K.

Lastly, we show that K
⋂

(−K) = {0}, where

−K = {(x, y) ∈ R2 : x < 0 or x = 0 and y ≤ 0}.

To see, first we have

K
⋂

(−K) = {(x, y) ∈ R2 : x > 0 or (x = 0 and y ≥ 0)} ∩ {(x, y) ∈ R2 : x < 0 or x = 0 and y ≤ 0}

= {(x, y) ∈ R2 : x > 0 or (x = 0 and y ≥ 0) and x < 0 or (x = 0 and y ≤ 0)}.

and for (x, y) ∈ K
⋂

(−K) we consider the following cases:

13



(a) x > 0 and x < 0. Not possible.

(b) x > 0 and (x = 0 or y ≤ 0). Not possible.

(c) (x = 0 or y ≥ 0) and x < 0. Not possible.

(d) (x = 0 or y ≥ 0) and (x = 0 or y ≤ 0) implying that x = 0, y = 0.

Since (x, y) is arbitrary then K
⋂

(−K) = {0}. Hence K is a cone.

Next we show that an arbitrary cone K of a vector space X defines a

vector ordering on X.

Proposition 1.21. Let X be a vector space and K a cone in X. The

relation ” ≤ ” defined by x ≤ y if and only if y − x ∈ K for all x, y ∈ X, is

a partial ordering on X.

Proof. Let x, y, z ∈ X. Since 0 ∈ K we see that x ≤ x for all x ∈ X,

meaning that X is reflexive. Secondly, assume that x ≤ y and y ≤ x. Then

y − x ∈ K and x− y ∈ K.

But

−(y − x) = (x− y) ∈ K.

Then by definition, x−y = 0. Hence x = y. Therefore X is anti - symmetric.

Finally, assume that x ≤ y and y ≤ z. Then

y − x ∈ K and z − y ∈ K.

By definition

z − x = (y − x) + (z − y) ∈ K.

Thus, x ≤ z and therefore X is transitive.

Proposition 1.22. Let X be an ordered vector space. The set

X+ = {x ∈ X : x ≥ 0}

is a cone.

Proof. If x, y ∈ X+, then x + y ≥ 0 + y = y ≥ 0. Thus x + y ∈ X+.

If x ∈ X+ and α ≥ 0. Then x ≥ 0, αx ≥ α0 = 0. Thus αx ∈ X+.

Lastly, −X+ = {−x : x ∈ X+} = {−x : x ≥ 0} = {x : x ≤ 0}. So,

X+ ∩ (−X+) = {x : x ≤ 0 and x ≥ 0} = {0}. Thus X+ is a cone.
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The set X+ is called positive cone and its elements are called positive

elements.

Definition 1.23. A non empty subset D of an ordered vector space X is

said to be directed upwards if for every pair x, y ∈ D there exists z ∈ D

such that x ≤ z and y ≤ z.

Definition 1.24. A Riesz space X is Archimedean if 0 ≤ nx ≤ y for all

n ∈ N and some y ∈ X+ implies that x = 0.

Next we show that not all Riesz spaces are Archimedean.

Example 1.25. Let X = R2 and ≤ the lexicographic ordering, that is,

(x1, x2) ≤ (y1, y2), if and only if

x1 < y1 or (x1 = y1 and x2 ≤ y2).

The space (X,≤) is a Riesz space but not Archimedean.

Proof. X is a Riesz space, since any two arbitrary vectors u, v ∈ X are

comparable. To see it is not Archimedean, consider (0, 1) and (1, 1) in R2

with (1, 1) ∈ (R2)+. Then (0, 1) ≤ (1, 1) since 0 < 1 and for all n ∈ N, we

have 0 ≤ n(0, 1) ≤ (1, 1) but (0, 1) 6= (0, 0) = 0. Therefore (X,≤) is not

Archimedean.

Definition 1.26. A cone K of an ordered vector space X is called

(i) generating if X = K −K.

(ii) Archimidean if the order induced by K on X makes X an Archimedean

space.

(iii) lattice if X is a Riesz space.

The following is a well known result about Riesz space.

Proposition 1.27. Let X be a Riesz space and K be a cone in X. Then

K is generating.

Proof. Let K be a cone of a Riesz space X. So, for any x ∈ X we have that

x = x+ − x− and x+, x− ∈ K.

Hence K is generating.
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Theorem 1.28. (cf [30, Theorem 6.4]) ( Riesz decomposition property) Let

u, z1, z2 ∈ X+ satisfy u ≤ z1 + z2. Then there exist u1, u2 ∈ X+ such that

u1 ≤ z1, u2 ≤ z2 and u = u1 + u2.

Proof. Let u1 = u ∧ z1 and u2 = u − u1. Then 0 ≤ u1, because u ≥ 0 and

z1 ≥ 0. So u1 ∈ X+ and u1 ≤ z1. Since u1 ≤ u, we have u2 = u − u1 ≥ 0,

thus u2 ∈ X+. We now show that u2 ≤ z2.

u2 = u− u1

= u− (u ∧ z1)

= (u− u) ∨ (u− z1) by Theorem 1.11 (vi)

= 0 ∨ (u− z1)

≤ z2 since 0 ≤ z2 and u− z1 ≤ z2

Hence the result.

Next we give characterization of an ordered vector space with Riesz

decomposition property.

Theorem 1.29. (cf [2, Lemma 1.51]) An ordered vector space X has the

Riesz decomposition property if and only if

[0, x] + [0, y] = [0, x+ y]

holds for all x, y ∈ X+.

Proof. Assume that X has a Riesz decomposition property. Let x ∈ X+ be

an arbitrary vector such that x ≤ u+ v for u, v ∈ X+ where 0 ≤ x1 ≤ u and

0 ≤ x2 ≤ v and x = x1 + x2. Then x ∈ [0, u+ v], x1 ∈ [0, u] and x2 ∈ [0, v].

This also means x = x1 + x2 ∈ [0, u] + [0, v]. Hence the result. Conversely,

assume that

[0, x] + [0, y] = [0, x+ y]

holds for all x, y ∈ X+. Take any u ∈ X+ such that u ∈ [0, x] + [0, y] =

[0, x + y]. Then 0 ≤ u ≤ x + y and there exist x1, y1 ∈ X+ such that

0 ≤ x1 ≤ x, 0 ≤ y1 ≤ y and u = x1 + x2. Hence the result.

Corollary 1.30. (cf [2, Corollary 1.55]) Every Riesz space has the Riesz

decomposition property.

Proof. Let X be a Riesz space and X+ be a lattice cone. Take u, v ∈ X+

such that 0 ≤ x ≤ u+ v for any x ∈ X. Clearly
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A = {0, x− u} ≤ {v, x} = B.

Let x1 = supA, it follows that 0 ≤ x1 ≤ v and if we let x2 = x − x1, then

from x− u ≤ x1 ≤ x we get 0 ≤ x2 = x− x1 ≤ u. Clearly, x1 + x2 = x and

so X has the Riesz decomposition.

1.4 Ordered Banach spaces and Banach lattices.

Definition 1.31. ([19, Definition 3.2]) Let X be an ordered vector space

over R. A real - valued function ‖ • ‖ : X → R is said to be a norm on X if

(i) ‖αx‖ = |α|‖x‖,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

(iii) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

for all α ∈ R and x, y ∈ X. The pair (X, ‖ • ‖) is said to be an ordered

normed space.

The following normed vector space and subspaces will occur in several

cases later.

(i) Sequence spaces: For 1 ≤ p <∞, consider the set

`p = {(x1, x2, ..., xi, ...) : xi ∈ R and
∞∑
i=1

|xi|p <∞}.

For x = (x1, x2, ..., xi, ...) ∈ `p, we define a norm as follows

‖x‖p =

( ∞∑
i=1

|xi|p
) 1

p

.

(ii) Set of bounded sequences in R:

`∞ = {(x1, x2, ..., xi, ...) : xi ∈ R and sup
i∈N
|xi| <∞}.

For x = (x1, x2, ..., xi, ...) ∈ `∞, we define a norm as follows

‖x‖∞ = sup
i∈N
{|xi| : i = 1, 2, 3, ...}

(iii) c = {x ∈ `∞ : xi converges in R as i→∞}

(iv) c0 = {x ∈ c : xi → 0 as i→∞}
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(v) c00 = {x ∈ `p: all but infinitely many xi’s are equal to 0.}

Also, c00 ⊂ `p ⊂ c0 ⊂ c ⊂ `∞, for 1 ≤ p <∞.

Now we show that converse does not hold by only showing the following;

c0 * `p and `p * c00.

Example 1.32. Let X = c0 and Y = `p, 1 ≤ p < ∞. The space X * Y in

general. To this end, take xn =
1

n
1
p

. Then (xn) ⊂ c0, since lim
n→∞

1

n
1
p

= 0 for

1 ≤ p <∞. But

(
1

n
1
p

)
* `p, since

∞∑
n=1

∣∣∣∣ 1

n
1
p

∣∣∣∣p =
∞∑
n=1

(∣∣∣∣ 1n
∣∣∣∣ 1p
)p

since
1

n
> 0 for all n

=

∞∑
n=1

1

n

is a p - series with p = 1 and therefore diverges.

Next we show that `p * c00.

Example 1.33. Let X = `p, 1 ≤ p <∞ and Y = c00. The space X * Y in

general. To this end, take xn =
1

n
2
p

. Then (xn) ⊂ `p since for 1 ≤ p < ∞,

the series

∞∑
n=1

∣∣∣∣ 1

n
2
p

∣∣∣∣p =

∞∑
n=1

1

n2
since

1

n2
> 0 for all n

is a p - series with p > 1. But (xn) * c00 because (xn) has infinitely many

nonzero terms.

Definition 1.34. Let (X, ‖ • ‖) be a normed space, x ∈ X and r > 0. The

set

B(x, r) = {y ∈ X : ‖x− y‖ < r}

is open ball and B[x, r] = {x ∈ X : ‖x‖ ≤ 1} a closed ball in X with radius

r > 0. We now consider special cases of balls in X.

(i) B[0, 1] = {x ∈ X : ‖x‖ ≤ 1}

(ii) B(0, 1) = {x ∈ X : ‖x‖ < 1}

(iii) S(0, 1) = {x ∈ X : ‖x‖ = 1}

are called a closed, open unit balls, and unit sphere respectively. A closure

of set A in X is denoted by clA and intA in X denotes interior of A.
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We now prove the following property.

Proposition 1.35. Let (X, ‖ • ‖) be normed space. Then norm topology is

Hausdorff.

Proof. Take x, y ∈ (X, ‖ • ‖) such that x 6= y. The ‖x − y‖ > 0. Now let

ε be in the set (0, ‖x−y‖2 ). Then B(x, ε) ∩ B(y, ε) = ∅. We prove this by

contradiction. Suppose B(x, ε) ∩B(y, ε) 6= ∅. Then there is

z ∈ B(x, ε) ∩B(y, ε).

This imply that ‖z − y‖ < ε. So

0 ≤ ‖x− y‖

≤ ‖x− z‖+ ‖z − y‖

< ε+ ε

<
‖x− y‖

2
+
‖x− y‖

2

= ‖x− y‖,

which is a contradiction, since ‖x− y‖ ≮ ‖x− y‖.

Definition 1.36. Let (X, ‖ • ‖) be a normed space and C a subset of X.

(i) The set C is said to be closed, if for any sequence (xn) ⊂ C with

xn → x in X imply x ∈ C.

(ii) A sequence (xn) ⊂ X is said to be Cauchy, if for every ε > 0 there exists

an N ∈ N such that whenever m > N and n > N then ‖xn−xm‖ < ε.

We can now show that not all cones are closed.

Example 1.37. Consider ordered normed vector space R2. The lexico-

graphic cone in R2 with the following ordering

(x2, y2) ≥ (x1, y1) if x2 > x1 or x2 = x1 and y2 ≥ y1

is not closed. To see this, take the sequence ( 1
n ,−1) ∈ K for all n ∈ N since

x = 1
n > 0 for all n and converges to (0,−1) /∈ K since x = 0 and y � 0.

Definition 1.38. An ordered normed space X is said to be an ordered

Banach space if every Cauchy sequence in X converges to a limit in X.

That is, if X is complete.
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Definition 1.39. ([18, Definition 1.6.7]) Let ‖ • ‖ and ‖ • ‖0 be two norms

on a normed vector space X. We say ‖ • ‖ is equivalent to ‖ • ‖0 if there are

two real numbers α, β > 0 such that

α‖x‖ ≤ ‖x‖0 ≤ β‖x‖

for all x ∈ X.

Theorem 1.40. Let ‖ • ‖ and ‖ • ‖0 be two norms on a vector space X.

Then ‖ • ‖ and ‖ • ‖0 are equivalent if and only if (xn
‖•‖→ x if and only if

xn
‖•‖0→ x)

We state the following useful result without proof.

Theorem 1.41. Let K be a subset of Banach space X. The following

statements are equivalent.

(ii) K is closed.

(ii) K is complete.

Example 1.42. We show that C1[0, 1], the space of all continuously differ-

entiable functions, is not a closed subspace of Banach space

(C[0, 1], ‖ • ‖∞).

To this end, consider a function f , defined by f(x) =
∣∣x− 1

2

∣∣. Then

f ∈ C[0, 1]. We show that f /∈ C1[0, 1]. Now,

f ′(x) =

1, if x > 1
2 ;

−1, if x < 1
2 .

Then f /∈ C1[0, 1] since

lim
x→( 1

2
)−

f(x)− f(12)

x− 1
2

= −1 6= 1 = lim
x→( 1

2
)+

f(x)− f(12)

x− 1
2

.

We next show that there is a sequence of functions in (C[0, 1], ‖ • ‖∞) that

converges to f . Take

fn(x) =

√(
x− 1

2

)2

+
1

n
for all x ∈ [0, 1].
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Now,

|fn(x)− f(x)| =

∣∣∣∣∣∣
√(

x− 1

2

)2

+
1

n
−

√(
x− 1

2

)2
∣∣∣∣∣∣

=
(x− 1

2)2 + 1
n − (x− 1

2)2√(
x− 1

2

)2
+ 1

n +

√(
x− 1

2

)2 ,
=

1
n√(

x− 1
2

)2
+ 1

n +

√(
x− 1

2

)2 .
Since √(

x− 1

2

)2

+
1

n
+

√(
x− 1

2

)2

≥ 1√
n

,

it follows

|fn(x)− f(x)| ≤ 1√
n

,

for all x ∈ [0, 1], so that

‖fn − f‖∞ = 1√
n
→ 0, as n→∞.

So (fn) is uniformly convergent to f but f /∈ C1[0, 1]. This implies that

C1[0, 1] is not a closed subspace of (C[0, 1], ‖•‖∞). Hence by Theorem 1.41,

C1[0, 1] is not complete with respect to the norm ‖ • ‖∞.

We show that C1[0, 1] is complete with a different norm but first we show

that the function fn defined above does not converge with respect to this

norm.

Example 1.43. We show that a sequence (fn) defined above is not conver-

gent with respect to the norm

‖f‖ = ‖f‖∞ + ‖f ′‖∞

for f ∈ X.

Proof. Let fn be defined as in above example and consider the following

function,

f(x) =
∣∣x− 1

2

∣∣
and its derivative,

f ′(x) =

1, if x > 1
2 ;

−1, if x < 1
2 .
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Claim: fn
‖•‖9 f .

To see this, note that

‖fn − f‖ = sup
x∈[0,1]

|fn(x)− f(x)|+ sup
x∈[0,1]

|f ′n(x)− f ′(x)|

= sup
x∈[0,1]

∣∣∣∣∣∣
√(

x− 1

2

)2

+
1

n
−

√(
x− 1

2

)2
∣∣∣∣∣∣+ sup

x∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣
x− 1

2[(
x− 1

2

)2

+
1

n

] 1
2

− f ′(x)

∣∣∣∣∣∣∣∣∣∣∣

= 0 + sup
x∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣
x− 1

2[(
x− 1

2

)2
] 1

2

− f ′(x)

∣∣∣∣∣∣∣∣∣∣∣
,

as n→∞.

If n→∞, then ‖fn − f‖ = sup
x∈[0,1]

∣∣∣∣∣∣∣∣
x− 1

2∣∣∣∣x− 1

2

∣∣∣∣ − f
′(x)

∣∣∣∣∣∣∣∣→ 2 6= 0. Since

x− 1
2∣∣∣∣x− 1

2

∣∣∣∣ =

1, if x > 1
2 ;

−1, if x < 1
2 .

So fn
‖•‖9 f .

Remark 1.44. By Theorem 1.40, the norms ‖ • ‖∞ and ‖ • ‖ are not equiv-

alent, since fn
‖•‖∞→ f but fn

‖•‖9 f .

Now we recall the following lemma.

Lemma 1.45. ([19, Lemma 6.6]) Let (fn) be a sequence of continuously

differentiable functions on [0,1] such that

(i) fn → f uniformly, and

(ii) f ′n → g uniformly.

Then f is differentiable and f ′ = g.

We next show that the space (C1[0, 1], ‖ • ‖) is complete.

Proposition 1.46. The space (C1[0, 1], ‖ • ‖) is complete where
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‖f‖ = ‖f‖∞ + ‖f ′‖∞.

To see, let (fn) be a Cauchy sequence in C1[0, 1], that is, fn, f
′
n ∈ C[0, 1] so

that, by the completeness of C[0, 1], there exists f ∈ C[0, 1] with

‖fn − f‖∞ → 0.

Similarly, (f ′n) is also Cauchy sequence in C[0, 1] so that, again by the com-

pleteness of C[0, 1], there exists g ∈ C[0, 1] with ‖f ′n−g‖∞ → 0. By Lemma

1.45, the function f is differentiable with f ′ = g, so that fn → f in C1[0, 1]

with respect to the norm of C1[0, 1].

Definition 1.47. Let X be a Riesz space. A norm ‖ • ‖ on X is called a

lattice norm if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ X.

Definition 1.48. ([26, Definition 5.1]) If ‖ • ‖ is a lattice norm on ordered

vector space X, the pair (X, ‖ • ‖) is a normed Riesz space; if in addition,

(X, ‖ • ‖) is Banach space, it is called a Banach lattice.

We now give 2 examples of Banach lattices which are used more often

in this project.

Example 1.49. Consider the ordered Banach space X = C[0, 1] with the

norm

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

We show that X is a Banach lattice.

Proof. By definition we only show that the norm is a lattice norm. Let

|f | ≤ |g|, that is, |f(t)| ≤ |g(t)| for each t ∈ [0, 1]. Then

‖f‖∞ = sup
t∈[0,1]

|f(t)| ≤ sup
t∈[0,1]

|g(t)| = ‖g‖∞.

Thus we have a lattice norm. Therefore (X, ‖ • ‖∞) is a Banach lattice.

Example 1.50. The ordered Banach space (`p, ‖ • ‖p) is a Banach lattice.

Proof. We show that ‖ • ‖p is a lattice norm. We define a partial ordering

as follows, if x, y ∈ `p then we say x ≤ y if and only if xi ≤ yi for all i. Let

x = (xn), y = (yn) ∈ `p with |x| ≤ |y|, that is |xi| ≤ |yi| for all i. Then

‖x‖p =

( ∞∑
i=1

|xi|p
) 1

p

≤

( ∞∑
i=1

|yi|p
) 1

p

= ‖y‖p.
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Thus, (`p, ‖ • ‖p) is Banach lattice.

Next we show that lattice cones are closed.

Theorem 1.51. Let (X, ‖ • ‖) be a Banach lattice and let K = X+ be the

positive cone of X. Then K is closed.

Proof. Let (xn) be a sequence in K such that xn → x ∈ X as n → ∞.

Therefore, for every ε > 0, there is an N ∈ N such that ‖xn − x‖ < ε for all

n ≥ N . Since

|xn − x+| ≤ |xn − x|

(x+ ≥ x) and X is Banach lattice, it follows that for all n ≥ N

‖|xn − x+|‖ = ‖xn − x+‖ ≤ ‖xn − x‖ < ε.

Thus xn → x+ as n→∞. Since the norm topology is Hausdsorff, we obtain

x+ = x ∈ K.

We now revisit the notion of cone and define some cone that depends on

a norm.

Definition 1.52. A cone K in a normed ordered vector space (X, ‖ • ‖) is

called

(i) normal if for every x, y ∈ K such that x ≤ y we have that ‖x‖ ≤M‖y‖,
for all M ≥ 1.

(ii) solid if its interior is non - empty. That is, if there exists r > 0 such

that B(a, r) ⊂ K for some a in K and r > 0.

Proposition 1.53. If K is a solid cone in a normed vector space (X, ‖ • ‖).
Then K is a generating cone.

Proof. Since cone K is solid then B(a, r) ⊂ K for some a ∈ int(K) and

r > 0. Let x ∈ X,x 6= 0̄. Then there exists α > 0 such that αx ∈ B(0, r).

Hence

a+ αx ∈ B(a, r) ⊂ K,

that is,

αx ∈ K − a ⊂ K −K.

It follows that
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x ∈ α−1(K −K) = α−1K − α−1K = K −K.

By definition of a cone, {0} = K ∩ (−K). Therefore 0 ∈ K −K, and thus

X = K −K.

The next example shows that the converse of Proposition 1.53 is not

necessarily true.

Example 1.54. Consider the Riesz space `1 with norm ‖•‖1 and its positive

cone `+1 . Then `+1 is generating but int(`+1 ) = ∅.

Proof. By Proposition 1.27, `+1 is generating, since `1 is the Riesz space.

To see that int(`+1 ) = ∅, suppose on the contrary that there is y ∈ int(`+1 ).

Therefore there exists ε > 0 such that B(y, ε) ⊂ `+1 . Since y ∈ `+1 , there

exists N ∈ N such that 0 ≤ yn < ε
2 for all n ≥ N . Now, define z ∈ `1 by

zn =

yn, if n 6= N ;

− ε
2 , if n = N .

Then z ∈ B(y, ε), since

‖y − z‖1 =
∞∑
n=1

|yn − zn|

=
∣∣∣yN +

ε

2

∣∣∣ since all other terms are zero

≤ |yN |+
∣∣∣ ε
2

∣∣∣
<
ε

2
+
ε

2
= ε

But z /∈ `+1 , since one of the term, zN = − ε
2 < 0. Since y and ε are arbitrary

we have that int(`+1 ) = ∅.

The following relationship between lattice cones and normal cones follows

from the definition of a lattice norm with M = 1.

Theorem 1.55. Let (X, ‖•‖) be an ordered normed space and K be a cone

on X. If K is a lattice, then K is normal.

The following relates Archimedean cones to normal cones.

Proposition 1.56. Let (X, ‖ • ‖) be an ordered normed space and K be a

cone on X. If K is normal, then K is Archimedean.
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Proof. Suppose that K is normal cone of an ordered normed space X. As-

sume on the contrary that y ∈ K but y 6= 0. Now, if ny ≤ x for all n, then

for all n we have that,

|ny| ≤ |x|

‖ny‖ ≤M‖x‖ (for M ≥ 1, since K is normal)

|n|‖y‖ ≤M‖x‖
n

M
‖y‖ ≤ ‖x‖

n

M
≤ ‖x‖
‖y‖

.

This contradicts the Postulate of Archimedes, thus y cannot be non - null.

Therefore we have that y ∈ −K. Hence K is Archimedean.

Remark 1.57. Theorem 1.55 and Proposition 1.56 imply that lattice cones

are archimedean.

The next example shows that the converse of the Proposition 1.56 is not

necessarily true.

Example 1.58. Consider the ordered normed space X = C1[0, 1] and the

cone

K = {f ∈ X : f ≥ 0}.

Furthermore, consider the norm in this space defined by

‖f‖ = ‖f‖∞ + ‖f ′‖∞,

where ‖f‖∞ = sup
t∈[0,1]

|f(t)|. Then K is Archimedean but not normal.

Proof. We first show that K is Archimedean. To see, let f − ng ∈ K for all

n, where g ∈ X. This means that,

f(t)− ng(t) ≥ 0 for all t ∈ [0, 1].

Now this implies that for all n and for some t0 ∈ [0, 1] we have that,

ng(t0) ≤ f(t0).

Since f(t0) ∈ R+, g(t0) ∈ R and R is an Archimedean space, it follows

that g(t0) ≤ 0. Since t0 is arbitrary chosen in [0, 1], we have that g ≤ 0.

Hence the cone makes the space X an Archimedean space, that is, K is an

Archimedean cone. Finally, we show that K is not normal. To this end,

take g(x) = x and f(x) = x2M , where M ≥ 1. Then
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‖f‖ = ‖f‖∞ + ‖f ′‖∞ = 1 + 2M .

Using this norm, we get that ‖g‖ = 2. From normality inequality

‖f‖ ≤M‖g‖,

we have 1 + 2M ≤ 2M which leads to the contradiction 1 ≤ 0.

We now show an example of a cone which is not Archimedean and there-

fore, it is not lattice (see Remark 1.57) but has Riesz decomposition property.

Example 1.59. Let X = R2 and consider the cone

K = {(x, y) ∈ R2 : x, y > 0} ∪ {(0, 0)}.

Then K is not a lattice cone and has Riesz decomposition property.

Proof. We first show that K is not a lattice cone by showing that is not

Archimedean. To see, we need to show that there exists some y ∈ R2 such

that for all x ∈ K,ny ≤ x but y ∈ K. This result follows immediately when

we choose y = (0, 0).

Next we show that K has a Reisz decomposition property. To see, suppose

that X has a coordinatewise ordering, that is, for (x1, x2) ≤ (y1, y2) we have

x1 ≤ y1 and x2 ≤ y2. Now we take a = (a1, a2), b = (b1, b2) and c = (c1, c2)

in K such that

0 ≤ a ≤ b+ c.

This implies

0 ≤ a1 ≤ b1 + c1 and 0 ≤ a2 ≤ b2 + c2.

We need to show that there exist u = (u1, u2), v = (v1, v2) ≥ 0 such that

u ≤ b and v ≤ c and a = u+v. We only need to show for 0 ≤ a1 ≤ b1+c1. To

see, take u1 =
a1b1
b1 + c1

and v1 =
a1c1
b1 + c1

, where b1+c1 6= 0, then u1+v1 = a1

and

u1 =
a1b1
b1 + c1

≤ b1 since
a1

b1 + c1
≤ 1

and

v1 =
a1c1
b1 + c1

≤ c1 since
a1

b1 + c1
≤ 1
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if b1 + c1 = 0 that is, when b1 = 0 and c1 = 0, let u1 = v1 = 0, then result

hold trivially. Similarly, u2 ≤ b2, v2 ≤ c2 and a2 = u2 + v2 and thus the

result. Therefore K has a Riesz decomposition property.

1.5 Operators on Ordered Vector Space.

Definition 1.60. ([16, Definition 2.3]) Let X and Y be two vector space.

The mapping T : X → Y is said to be linear operator if, for all x, y ∈ X
and α, β ∈ R we have,

T (αx+ βy) = αT (x) + βT (y).

T is a linear functional if Y = R.

Definition 1.61. ([19, Definition 4.2]) A linear operator T from a normed

space (X, ‖ • ‖X) into a normed space (Y, ‖ • ‖Y ) is said to be continuous

at the point x0 ∈ X if for every ε > 0, there exists δ > 0 such that for all

x ∈ X we have

‖x− x0‖X < δ implies ‖T (x)− T (x0)‖Y < ε.

An operator T is said to be continuous if it is continuous at every point in

X.

Definition 1.62. ([19, Definition 4.3]) Let X and Y be normed spaces with

norms ‖ • ‖X and ‖ • ‖Y respectively and T : X → Y a linear operator.

The operator T is said to be bounded if there exists C > 0 such that for all

x ∈ X we have

‖T (x)‖Y ≤ C‖x‖X .

Here is an example of an unbounded operator.

Example 1.63. Let X = P [0, 1] be the set of polynomial on [0,1]. Since

f ∈ P [0, 1] is bounded, we define the norm

‖f‖∞ = sup
t∈[0,1]

|f(t)|

for f ∈ X. A differentiation operator T : X → X defined by

T (f(t)) = d
dtf(t), for f(t) ∈ X

is linear but unbounded operator.
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Proof. We first show the linearity. To see, let f, g ∈ X and α, β ∈ R. Since

the polynomial functions are differantiable, then by properties of differenti-

ation we have,

T (αf + βg)(t) =
d

dt
(αf + βg)(t)

=
d

dt
(αf(t) + βg(t))

= α
d

dt
f(t) + β

d

dt
g(t)

= αT (f(t)) + βT (g(t)).

So T is a linear operator. Lastly we show that T is unbounded. Consider

the polynomial function fn(t) = tn, n > 1. Then (T (fn))(t) = ntn−1 for

all t ∈ [0, 1]. Clearly ‖fn‖ = 1 and ‖T (fn)‖ = n. It follows that T is an

unbounded operator.

The following theorem show that the concepts of continuity and bound-

edness are closely related.

Theorem 1.64. ([19, Theorem 4.4]) Let X, ‖•‖X) and (Y, ‖•‖Y ) be normed

spaces. The linear operator T : X → Y is bounded if and only if it is

continuous.

Proof. If T is bounded, take any y ∈ X, then by Definition 1.62, there exists

C > 0 such that for all x ∈ X, we have

‖T (x)− T (y)‖Y = ‖T (x− y)‖Y ≤ C‖x− y‖X .

For a given ε > 0, we set δ = ε
C . Then for x, y ∈ X,

‖x− y‖X < δ implies ‖T (x)− T (y)‖Y ≤ C‖x− y‖X < ε

Since y ∈ X is arbitrary, it follows that T is continuous. Conversely, if T

is continuous at any y ∈ X, then given ε > 0 there exists a δ > 0 such

that ‖x − y‖X < δ implies ‖T (x) − T (y)‖Y ≤ ε. Let z 6= 0 in X and let

x = y + δ
‖z‖X z. Since T is linear we have,

‖T (x)− T (y)‖Y = ‖T (x− y)‖Y =
∥∥∥T ( δ

‖z‖X z
)∥∥∥

Y
= δ
‖z‖X ‖T (z)‖Y < ε.

Thus ‖T (z)‖Y < ε
δ‖z‖X . Picking C = ε

δ , we get the result T is bounded.

Definition 1.65. Let T : X → Y be a linear operator, where X and Y are

ordered vector spaces. Then T is said to be

(i) positive if T (x) ≥ 0 for all x ≥ 0.
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(ii) regular if T can be written as a difference of two positive operators.

(iii) order bounded if T carries order bounded subsets of X to bounded

subsets of Y .

Proposition 1.66. Let X and Y be Banach lattices. Every linear operator

T : X → Y is regular.

Proof. Suppose that T : X → Y is linear operator. Since for any x ∈ X, we

have Tx ∈ Y , which is a Riesz space, then by Theorem 1.11 (ii)

Tx = (Tx)+ − (Tx)− = T+(x)− T−(x),

where T+(x) = (Tx)∨ 0 and T−(x) = (−Tx)∨ 0. Therefore T+(x) ≥ 0 and

T−(x) ≥ 0. It follows that T is the difference between to positive operators

thus T is a regular operator.

Proposition 1.67. Let X and Y be ordered vector spaces. Every positive

operator T : X → Y is order bounded.

Proof. Consider an order interval on X, say [a, b]. For x ∈ [a, b] it is true

that x− a ∈ X+ and b− x ∈ X+. Now since T is positive, it follows that

T (x− a) ≥ 0 implies Tx ≥ Ta

and similarly,

Tx ≤ Tb.

Hence for any x ∈ [a, b] we have that Tx ∈ [Ta, Tb], thus the operator is

order bounded.

Proposition 1.68. Let X be a Banach lattice and [a, b] and [c, d] be order

bounded intervals on X. The following statements are true;

(i) The intervals α[a, b] is an order interval in X for α > 0.

(ii) The interval [a, b] + [c, d] is contained in an order interval [a+ c, b+ d]

on X.

Proposition 1.69. (cf [30, Theorem 18.3]) Let X and Y be ordered vector

spaces. Every regular operator T : X → Y is order bounded.

Proof. Consider an order interval on X, say [a, b]. Since T is regular, there

exists positive operators T1 and T2 such that

T = T1 − T2.
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Now by Proposition 1.67, if x ∈ [a, b] we have that T1x ∈ [T1a, T1b] and

T2x ∈ [T2a, T2b]. By Proposition 1.68 we have that [T1a, T1b]− [T2a, T2b] is

contained in an order interval. Therefore T is order bounded.

Definition 1.70. ([18, Definition 1.4.13]) Let (X, ‖ • ‖X) and (Y, ‖ • ‖Y ) be

normed spaces. A linear operator T : X → Y is said to be an isomorphism

if T is a bijection and continuous and its inverse operator T−1 : Y → X is

also continuous.

Theorem 1.71. ([18, Proposition 1.4.14]) Let (X, ‖•‖X) and (Y, ‖•‖Y ) be

normed spaces. A surjective linear operator T : X → Y is an isomorphism

if and only if there are positive constants s and t such that

s‖x‖X ≤ ‖Tx‖Y ≤ t‖x‖X

whenever x ∈ X.

Definition 1.72. ([2, Definition 19]) Let (X,≤X) and (Y,≤Y ) be two or-

dered normed spaces. A linear operator T : X → Y is called an order

isomorphism if for all x, y ∈ X we have

(i) T surjective and

(ii) x ≤X y if and only if T (x) ≤Y T (y).

If there exists an order isomorphism from X to Y , then X and Y are called

order isomorphic ordered vector spaces. An order isomorphism from a par-

tially ordered set to itself is called an order automorphism.

Proposition 1.73. Let X,Y be two ordered vector spaces and T : X → Y

be an order isomorphism. Then

(i) T is injective.

(ii) T is surjective.

Proof. (i) We show that T is injective. To this end, suppose Tx = Ty. This

is true if and only if

Tx ≤Y Ty and Ty ≤Y Tx (since Y is an ordered vector space).

Since T is order isomorphism then above inequalities imply that

x ≤X y and y ≤X x.
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And it is true if and only if x = y.

(ii) T is surjective by definition of order isomorphism.

Next we give example to show that the converse is not true, that is, not

every bijective map between ordered sets is an order isomorphism.

Example 1.74. Consider the ordered vector space, (R,≤) where ≤ denotes

the usual order. Then map T : R → R defined by T (x) = −x is bijective

but not order preserving.

To see, if x ≤ y then T (x) = −x ≥ −y = T (y).

Next we show a map that is neither bijective nor order preserving.

Example 1.75. Let X = N = Y with usual the order <. Define T : X → Y ,

by

Tx =

0, if x is even

1, if x is odd.

Then T is neither injective nor order isomorphism. To this end, T is not

order preserving since 1 < 2 but T1 = 1 > 0 = T2 and is also not injective

since 1 6= 3 but T (1) = 1 = T (3).

Example 1.76. Let (X,≤) be a partially ordered set. Then the identity

operator on X is an order automorphism.

Definition 1.77. Let (X, ‖ • ‖X) and (Y, ‖ • ‖Y ) be ordered normed spaces.

A linear operator T is an order isometry if ‖Tx‖ = ‖x‖ whenever x ∈ X.

The normed space X is order isometrically embedded in the normed space

Y if there is an order isometric from X onto Y . Then the normed spaces X

and Y are called order isometric.
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2 Cones with unbounded and bounded bases.

In this chapter, we consider cones with bounded, unbounded and compact

bases. These concepts were used to characterize the reflexivity of a Banach

space.

2.1 Properties of a Cone with a base.

We first consider some definitions we will use in this chapter.

Definition 2.1. Let X be a normed space and K a positive cone in X. The

set

X∗ = {f ∈ C(X) : f : X 7→ R},

of all continuous linear functional on X, is called dual of X, the set

K∗ = {f ∈ X∗ : f(k) ≥ 0, for all k ∈ K},

all continuous linear functionals that are positive on K, is a natural dual

wedge of K and the set

K∗s = {f ∈ X∗ : f(k) > 0, for all k ∈ K \ {0}}

denote all strictly positive linear functionals on K.

We recall the following two important Hahn - Banach Theorems.

Theorem 2.2. (Hahn - Banach separation theorem) Let X be a normed

space and E1, E2 be a nonempty disjoints convex subsets of X, where E1 is

open in X. Then for some f ∈ X∗ and t ∈ R, we have f(x1) < t ≤ f(x2)

for all x1 ∈ E1 and x2 ∈ E2.

Theorem 2.3. (Hahn - Banach extension theorem) Let X be a normed

space, Y be a subspace of X and g ∈ Y ∗. Then there is some f ∈ X∗ such

that f|Y = g and ‖f‖ = ‖g‖.

The next proposition provides the conditions for a set K∗ to be a cone.

Proposition 2.4. Let X be a normed space and K be a cone in X. The set

K∗ is a cone if and only if cl(K −K) = X.

Proof. Suppose on the contrary, that cl(K−K) 6= X. Then by Theorem 2.2,

there exists a non-zero f ∈ X∗ which is zero on K −K, that is, f(x) = 0

for x ∈ K − K. This means x = x1 − x2, where x1, x2 ∈ K, we have
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f(x1 − x2) = f(x1) − f(x2) = 0. Hence f(x1) = f(x2). By Theorem

2.2, x1 = x2. Thus, x = 0 ∈ K ∩ (−K), since K is a cone. This means

f ∈ K∗ ∩ (−K∗). Contradiction, since K∗ is a cone and f 6= 0. Conversely,

Suppose that cl(K −K) = X. To show that K∗ is a cone, we need only to

show that K∗ ∩ (−K∗) = {0}. To see, by assumption, for each x ∈ X, we

particularly have

B[x, 1] ∩ (K −K) 6= ∅.

This implies there is 0 6= x0 ∈ B[x, 1] and for some x1, x2 ∈ K such that

x0 = x1 − x2. Hence f(x0) = f(x1 − x2) = f(x1)− f(x2) 6= 0. This implies

f(x1) 6= f(x2), that is f is one - to - one. By Theorem 2.3, f can be extended

to X and thus f(x1) 6= f(−x1) = −f(x1) since x1 6= −x1 if x1 6= 0 and by

linearity of f . This is true for all f ∈ K∗ and x1 ∈ K. Hence the result.

Let K be a cone in a normed space X. We show that the set K∗s can

be empty.

Example 2.5. Consider (B([0, 1]), ‖•‖∞), a normed space of bounded func-

tions on [0,1]. Let

B+ = {f ∈ B[0, 1] : f(t) ≥ 0 for all t ∈ [0, 1]}

be a positive cone of B[0, 1]. The set of strictly positive functional

(B+)∗s = ∅.

Proof. Suppose that φ is a strictly positive linear functional on B[0, 1]. For

t ∈ [0, 1], let et ∈ B[0, 1] be given by

et(w) = χ[0,1](w) =

1, if w = t;

0 if w ∈ [0, 1] \ {t}.

Let

An =
{
t ∈ [0, 1] : φ(et) >

1
n

}
.

Then [0, 1] =
⋃∞
n=1An. Since the set [0, 1] is uncountable, atleast one of

the subsets An must be infinite. Suppose that An is infinite and let t1, t2, ...

be a countable subset of An. Let e ∈ B[0, 1] be defined by e(w) = 1 for all

w ∈ [0, 1]. Then, for every m ∈ N,

em :=
m∑
k=1

etk = χ{t1,...,tm} ≤ e,

so that
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m
n <

m∑
k=1

φ(etk) = φ(em) ≤ φ(e).

Letting m→∞, one obtains the contradition, φ(e) =∞.

In a vector space, there are different types of cones as we discussed in the

previous section, we now consider another type of cone on a vector space.

Let U be convex subset of X. The set Cone(U) = {λu : u ∈ U and λ ≥ 0}
is a cone. We prove this in the proposition.

Proposition 2.6. Let U be a convex set in a vector space X. The set

Cone(U) is a cone in X.

Proof. The set Cone(U) is not an empty set, since 0 = 0u ∈ Cone(U) for

all u ∈ U . We now show that Cone(U) is closed under addition and scalar

multiplication. Let x, y ∈ Cone(U), then there exist u1, u2 ∈ U and λ1 ≥
0, λ2 ≥ 0 such that x = λ1u1 and y = λ2u2. Then for λ ≥ 0, we have

λx = λλ1u1 ∈ Cone(U) since λλ1 ≥ 0 and u1 ∈ U .

x+ y = λ1u1 + λ2u2

= 1(ru1 + (1− r)u2) if λ1 = r, λ2 = 1− r and 0 < r < 1

Thus x+ y ∈ Cone(U) since 1 > 0 and ru1 + (1− r)u2 ∈ U (U is convex).

Lastly we show that Cone(U) ∩ (−Cone(U)) = {0}.
Note

−Cone(U) = {λu : u ∈ U,−λ ≥ 0}

= {λu : u ∈ U, λ ≤ 0},

and then

Cone(U) ∩ (−Cone(U)) = {λu : u ∈ U, λ ≥ 0} ∩ {λu : u ∈ U, λ ≤ 0}

= {λu : u ∈ U, λ ≤ 0 and λ ≥ 0}

= {λu : u ∈ U, λ = 0}

= {0u : u ∈ U}

= {0}.

Example 2.5 shows that K∗s can be empty. Now we consider the condi-

tions so that K∗s 6= ∅.
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Theorem 2.7. Let (X, ‖ • ‖) be a normed space and K a cone in X. Then

K∗s 6= ∅ if and only if there exists an open convex set U in X such that

(i) 0 /∈ U ,

(ii) K ⊆ cone(U).

Proof. Assume K∗s 6= ∅. Take any f ∈ K∗s and let U = {y ∈ X : f(y) = 1}.
Firstly, U = f−1(1) is open since f is continuous. Secondly, we show that

U is convex. Let x, y ∈ U and r ∈ (0, 1), then f(x) = 1 and f(y) = 1. We

claim that

rx+ (1− r)y ∈ U .

Now,

f(rx+ (1− r)y) = f(rx) + f((1− r)y) since f is linear

= rf(x) + (1− r)f(y) since f is linear

= r + 1− r assumption

= 1

Thus,

rx+ (1− r)y ∈ U .

Also, 0 /∈ U since

f(0) = 0 since f is linear

6= 1.

Lastly, we show that K ⊆ Cone(U). Let x ∈ K. If x = 0, then 0 ∈ Cone(U)

since 0 = 0u for all u ∈ U and λ = 0. If x > 0, then we have either

x ∈ U ⊂ cone(U) or f(x) 6= 1. For the latter, there exists σ > 0 such that

f(σx) = σf(x) = 1 and σx ∈ K. This means σx ∈ U ⊂ cone(U), that is,

x ∈ 1
σ cone(U) = cone(U). Hence the result. Conversely, suppose U is an

open convex set such that (i) and (ii) holds. Since 0 /∈ U , then by Theorem

2.2, there exists f ∈ X∗ such that f(0) < f(u) for all u ∈ U . Thus

f(0) = 0 < f(u)

for all u ∈ U . Clearly, K \ {0} ⊆ U ⊆ Cone(U). Then f(k) > 0 for all

k ∈ K \ {0}. Thus, f ∈ K∗s. Hence the result.
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Definition 2.8. ([2, Definition 1.46]) Let a set K be a cone in a normed

space X. A nonempty convex subset B of K \ {0} is said to be a base for

the cone K if for each x ∈ K \{0} there exist λ > 0 and b ∈ B both uniquely

determined such that x = λb.

We show an example of a cone with a base.

Example 2.9. Let X = R3 and

K = {(x, y, z) ∈ R3 : z ≥
√
x2 + y2}

= {λ(x, y, 1) ∈ R3 : λ ≥ 0 and x2 + y2 ≤ 1},

the ice cream cone. The cone K has a base,

B = {(x, y, 1) : x2 + y2 ≤ 1}.

We consider the characterization of a cone with a base.

Proposition 2.10. (cf (compare [2, Theorem 1.47])) Let (X, ‖ • ‖) be a

normed space and K ⊆ X a cone. The cone K has a base if and only if

K∗s 6= ∅.

Proof. Let f ∈ K∗s and A = {y ∈ X : f(y) = 1}. Let B = A ∩K, clearly

B ⊂ K. We claim that B is a base for K. To this end, first note that 0 /∈ B.

This is true since f(0) = 0 6= 1 (f is linear). Secondly we show that B 6= ∅.
Let 0 6= x ∈ K then x

‖x‖ ∈ K (since K is a cone). Now

f

(
x

‖x‖

)
=

1

‖x‖
f(x) f is linear

=
1

‖x‖
‖x‖ by Theorem 2.2

= 1.

Therefore, b =
x

‖x‖
∈ B for all x ∈ K. (1)

Lastly we show that B is convex. Let x, z ∈ B and 0 < λ < 1. Then

λx+ (1− λ)z ∈ K(K is a convex cone) and

f(λx+ (1− λ)z) = λf(x) + (1− λ)f(z) f is linear

= λ+ 1− λ x, z ∈ B

= 1.
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By (1), x = ‖x‖b = f(x)b ∈ K for all x ∈ K, b ∈ B and λ = f(x) ≥ 0.

This choice is uniquely determined, to see, let x = λ1b1 = λ2b2 with λi >

0 and bi ∈ B for each i. Then we have

λ1 = λ1f(b1) b1 ∈ B

= f(λ1b1) f is linear

= f(λ2b2)

= λ2f(b2) f is linear

= λ2 b2 ∈ B

And from this we get b1 = b2. Therefore B is base by definition of a base.

Conversely, suppose that B is a base for K. Since 0 /∈ clB, there exists open

convex neighborhood V of 0 such that V ∩clB = ∅. Note: 0 = 0+0 /∈ B+V ,

since 0 /∈ B. B + V =
⋃
x∈B

x + V is open as the union of translates of V .

B + V is convex as a sum of convex sets.

Cone(B + V ) = {λb+ λv : v ∈ V, b ∈ B, λ ≥ 0}

= {λb : b ∈ B, λ ≥ 0}+ {λv : v ∈ V, λ ≥ 0}

= K + {λv : v ∈ V, λ ≥ 0} B is a base of K.

This shows that K ⊆ Cone(B + V ). And therefore K∗s 6= ∅ by theorem

2.7.

Remark 2.11. The Proposition 2.10 shows that each base B for the cone

K is associated with a base Bf = {x ∈ K : f(x) = 1} defined by f ∈ K∗s.

The following example shows that not all closed cones has a base.

Example 2.12. Consider the space, X = (B[0, 1], ‖ • ‖∞) and X+ as in

Example 2.5. The cone X+ is closed.

Proof. To this end, let (fn) ⊂ X+ such that

fn → f ∈ X,

that is fn(t) → f(t) ∈ R for all t ∈ [0,1]. Since 0 ≤ fn(t) ≤ M for each n

and for all t ∈ [0,1]. Then 0 ≤ f(t) ≤ M < ∞ for all t ∈ [0,1]. This means

f ∈ X+ and therefore X+ closed.
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2.2 Cones with bounded and unbounded bases.

Now we consider cones with mixed bases, the cones with bounded and un-

bounded bases.

Definition 2.13. A base B of a cone K in a normed space (X, ‖ • ‖) is

called a bounded base if there exists α ∈ R such that ‖b‖ ≤ α for all b ∈ B.

Below we show an example of a cone with bounded base.

Example 2.14. Let X = R and K ice cream cone in X. The base

B = {(x, y, 1) : x2 + y2 ≤ 1}

= (0, 0, 1) + {(x, y, 0) : x2 + y2 ≤ 1}

ofK is bounded. To this end, note B translates to the {(x, y, 0) : x2+y2 ≤ 1}
which is bounded.

Definition 2.15. ([18, Definition 2.5.1]) Let X be a normed space. The

weak topology on X is the smallest topology such that every member of the

dual space X∗ is continuous with respect to that topology.

We next consider the characteristics of a cone with unbounded base.

Theorem 2.16. Let (X, ‖ • ‖) be a normed space and K a cone in X.

Suppose that K contains a sequence (yn) such that,

(i) there exists an m > 0 such that ‖yn‖ ≥ m for all n,

(ii) (yn) converges weakly to 0.

Then K has unbounded base.

Proof. Suppose on contrary that B is a bounded base for K. Then there

exists M > 0 such that ‖b‖ ≤M for all b ∈ B. Also, by definition of a base,

for each n there exists αn > 0, bn ∈ B such that yn = αnbn. Thus

M ≥ ‖bn‖ (since B is bounded)

=
‖yn‖
αn

≥ m

αn
.

Thus,

1

αn
≤ M

m
. (1)

Since (yn) converges weakly to 0, that is, f(yn) → 0 for all f ∈ X∗. Then

for each f ∈ X∗ and each ε > 0, there exists n ∈ N such that
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|f(yn)− f(0)| < ε for all n ≥ N if and if |f(yn)− 0| < ε for all n ≥ N .

This means |f(yn)| < ε for all n ≥ N and

f(yn) = f(αnbn)

= αnf(bn) since f linear. (2)

Note, since αn > 0 for each n ∈ N, then 0 < 1
αn
≤ M

m . Now we show that

| 1αn f(yn)| < ε also for all n ∈ N. Let n ≥ N be such that

|f(yn)| < εm

2(M + 1)
,

then ∣∣∣∣ 1

αn
f(yn)

∣∣∣∣ =

∣∣∣∣ 1

αn

∣∣∣∣ |f(yn)|

<
ε

2

< ε.

This implies lim
n→∞

1

αn
f(yn) = 0. Thus by (2) lim

n→∞
f(bn) = 0. Therefore,

(bn) converges weakly to 0. Hence 0 ∈ clBw(weak closure). Now we show

that clBw = clB.

case 1 clBw ⊂ clB. Let x0 ∈ X, and x0 /∈ clB. Then by Theorem 2.2, there

exists f ∈ X∗ and α ∈ R such that for all x ∈ clB, f(x0) < α < f(x),

and hence the set {x ∈ X : f(x) < α} is a weak neighborhood of x0

such that

{x ∈ X : f(x) < α} ∩B = ∅,

since the weak topology is Hausdorff. Thus x0 /∈ clBw. Hence the

results.

case 2 clB ⊂ clBw. Since clBw is weakly closed and weak topology is coarser

than a norm topology, it follows that clB ⊂ clBw. Therefore,

clB = clBw.

Hence 0 ∈ clB. This contradict the fact that B is a base.

Thus K have unbounded base only.

We consider a space with only unbounded base.
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Corollary 2.17. Let X = `p, 1 < p < ∞ and K = `+p . The cone K has

only unbounded base.

Proof. We prove for n = 2. That is, `2. Take

Bf = {x ∈ `+p : ‖x‖2 ≤ 1 = f(x)}

and f ∈ (`∗2)
+. Now take ei = (0, ..., 0,

ith

1 , 0, 0, ...) ∈ `+2 . Then ‖ei‖2 = 1 > 0

for each i. Finally (ei) converges weakly to 0. To see, let f ∈ (`∗2)
+, then

there is some y = (yi) ∈ `+2 such that

f(ei) =
∞∑
i=1

eiyi = yi.

Claim: f(ei) = yi → 0 as i → ∞. To see, since (yi) ∈ `2 then
∞∑
i=1

|yi|2 < ε.

From calculus this means that lim
i→∞
|yi|2 = 0, that is, for every ε > 0 there

exist N ∈ N such that for all i ≥ N we have

||yi|2 − 0| < ε.

So |yi|2 < ε, that is, |yi| < ε
1
2 . Therefore yi → 0 as i → ∞. Hence by

Theorem 2.16, `+2 admits unbounded base only.

Next we give an example of a mixed based cone. We start first by showing

that cone admits an unbounded base. The prove for a positive cone of `1

works differently, so we give a proof separately.

Corollary 2.18. Let X = `1 and K = X+. The cone K admits unbounded

base.

Proof. To see, consider a base Bf = {x ∈ `+1 : ‖x‖1 ≤ 1 = f(x)} defined

by f ∈ (`+1 )∗. Take (yi) = (

i−1︷ ︸︸ ︷
0, 0, ..., 0, 1, 12 ,

1
4 , ...) ∈ c+0 ⊂ `+∞. Consider

ei = {0, 0, ..., 0,
ith

1 , 0, 0, ...} in `+1 . Then ei
f(ei)

∈ Bf and

‖ ei
f(ei)
‖1 = 1

f(ei)
= 1

i∑
k=1

ekyk

= 1
1
i

→∞ as i→∞.

Therefore Bf is unbounded.

We now consider cones with closed and bounded base.

Proposition 2.19. If a cone K in a normed space (X, ‖•‖) admits a closed

bounded base, then K is closed.
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Proof. Let (xn)n∈N ∈ K and xn → x ∈ X as n → ∞. We show x ∈ K.

Since base B of K is closed, then for each n there exists λ > 0, bn such that

xn = λbn → λb (since bn → b ∈ B). Again

λb = x (1)

since the norm topology is Hausdorff. Thus b = x
λ ∈ B. Since B is bounded

then

‖b‖ = ‖xλ‖ ≤M , for some M > 0.

That is,

‖x‖ ≤ λM <∞. (2)

Hence by (1) and (2), x ∈ K.

The following example shows that the converse of the above result is not

true in general.

Example 2.20. The positive cone `+2 is closed by Example 1.51 and does

not admit a bounded base by Corollary 2.17.

We consider example of a closed cone that only admits bounded base.

Examples 2.21. Let (X, ‖ • ‖) be a normed space. If x ∈ S(0, 1), then

K = cone(x+ 1
2B[0, 1]), is a closed cone with a bounded base.

Proof. Firstly, note that K is a cone by Proposition 2.6, since the set

B = x+ 1
2B[0, 1]

is convex. Therefore B is a base of cone K by definition, since

0 /∈ x+ 1
2B[0, 1]

and it is also bounded (since it is a translation of bounded set B[0, 1]).

Therefore K is closed, since it admits a bounded base.

The following corollary shows that converse of Proposition 2.19 is true

for a finite dimensional normed space. We will give the conditions for an

infinite dimensional later.

Corollary 2.22. Let X be a finite dimensional normed and K a closed cone

with a base B in X. Then B is bounded.
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Proof. A closed unit ball B[0, 1] is closed and bounded in X since X is a

finite normed space. A set B+[0, 1] = B[0, 1]∩K is also closed and bounded

since K is also closed. Then a set B = {x ∈ B+[0, 1] : c ≤ x, c > 0} is closed

and bounded in B+[0, 1] and it is a base of a closed cone K = cone(B).

We consider now some characterization of bounded base. We first give

the following definition.

Definition 2.23. A linear functional f on a cone K of a normed space

(X, ‖•‖) is called uniformly monotonic on K if f(x) > a‖x‖ for all x ∈ K,

and a > 0.

Theorem 2.24. (cf, [20, Proposition 2]) Let Bf be a base for a cone K in

a normed space (X, ‖ • ‖) defined by strickly positive linear functional f .

Then Bf is bounded if and only if f is uniformly monotonic on K.

Proof. Let Bf = {x ∈ K : f(x) = 1} be a base for a cone K defined by

f ∈ K∗s. Firstly, assume that Bf is bounded, that is, there exists M > 0

such that

‖x‖ ≤M < M + 1 for all x ∈ Bf .

Thus
1

M + 1
‖x‖ < 1 = f(x) in Bf and by Hahn - Banach theorem,

1

M + 1
‖x‖ < f(x) for all x ∈ K.

Hence f is uniformly monotonic on K.

Conversely, assume that there exists a > 0 such a‖x‖ < f(x) for all x ∈ K.

By definition of a base, f(x) = 1 in Bf and thus a‖x‖ < 1, that is, ‖x‖ < 1

a
for all x ∈ Bf . Therefore Bf is bounded.

Example 2.25. Take normed space (`1, ‖ • ‖1) and let Bf denote base of

the cone `+1 defined by linear functional f ∈ (`+1 )∗. The linear functional is

uniformly monotonic and therefore the cone has a bounded base. To see, let
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x ∈ `+1 , and ‖x‖1 =
∞∑
i=1

xi <∞. If y ∈ `+∞ and f ∈ `∗1, then

‖x‖1 =
∞∑
i=1

xi (xi ≥ 0)

≤
∞∑
i=1

xiyi (y ≥ 0)

=
∞∑
i=1

|xiyi| (x, y ≥ 0)

= f(x)

Note, ‖x‖1 < (1 + b)

∞∑
i=1

xiyi if (b > 0), then 1
b+1‖x‖1 <

∞∑
i=1

xiyi = f(x).

Hence the result.

Remark 2.26. Cone in a normed space admitting both bounded and un-

bounded bases is called mixed based cone. By Corollary 2.18 and Example

2.25, `+1 is a mixed based cone.

Definition 2.27. (compare [20, Proposition 2.3]) Let (X, ‖•‖) be a normed

space, (X∗, ‖•‖X∗) be normed dual of X and K a closed cone in X. K in X

is said to have an angle property if there exists f ∈ X∗ \ {0} and ε ∈ (0, 1]

such

K ⊆ {x ∈ X : f(x) ≥ ε‖f‖X∗‖x‖}.

We give an example of a cone that satisfying angle property.

Example 2.28. Consider an ice cream cone K in a normed space (R3, ‖•‖2)
defined as in Example 2.9. We show that K satisfies an angle property. To

see, take a uniformly monotonic functional

f = e3 = (0, 0, 1) ∈ (R3)∗ \ {0},

with the norm ‖ • ‖2 on (R3)∗ = R3. This is possible since K has a bounded

base by Example 2.14 and by Theorem 2.24 such f exists. Now we have

e3 • (x, y, z) = (0, 0, 1) • (x, y, z) = z where x, y, z ∈ K

≥ 1
√
x2 + y2 from Example 2.9

= ε‖e3‖2‖(x, y, 0‖2

where ε = 1, ‖e3‖2 = 1. Hence the result.

44



The following main theorem gives a characterization of a closed cone

with a bounded base in terms of a solid cone K∗. We first give the Lemma

that will be useful in the main Theorem.

Lemma 2.29. Let K be a cone in a normed space X. If K admits a base

B then K −K = X.

Proof. Suppose on the contrary, that K −K 6= X. Then there exists x ∈ X
such that x 6= x1 − x2 for all x1, x2 ∈ K. Since K has a base, then x 6=
λ1b1 − λ2b2 where b1, b2 ∈ B. Which is contradiction. Hence the result.

Theorem 2.30. (cf [22, Theorem A]) Let (X, ‖ • ‖) be a normed space,

(X∗, ‖•‖X∗) be normed dual of X and K a closed cone in X. The following

statements are equivalent.

(i) K has the angle property.

(ii) K admits a bounded base.

(iii) K∗ = {f ∈ X∗ : f(x) ≥ 0, for all x ∈ K} is a solid cone.

Proof. (i) =⇒ (ii) Assume that a cone K has a property (a). Let x ∈ K
and x > 0, then ‖x‖ > 0 and by assumption f(x) > 0. Therefore f ∈ K∗s,
implying K has a base by Proposition 2.10. By Theorem 2.24 with a = ε‖f‖,
a base of K is bounded.

(ii) =⇒ (iii) Assume that a cone K has a bounded base. By Proposition

2.4 and lemma 2.29, K∗ is a cone in X∗. Lastly, we show that K∗ is solid.

Since K has a bounded base, by Proposition 2.10 and Theorem 2.24, there

exists a f ∈ K∗s ⊂ K∗ ⊂ X∗ \ {0} such that

f(x) ≥ a‖x‖ for all x ∈ K and a > 0.

Let g(x) = a‖x‖, need to show that g ∈ Br(f) ⊂ K∗s ⊂ K∗. We get the

result if we choose a = 1
‖x‖
(
r
2 + f(x)

)
, since

‖f(x)− g(x)‖∞ =
∥∥∥f(x)− f(x)− r

2

∥∥∥
∞

=
r

2
< r

Which shows that that K∗ is a solid cone and intK∗s = intK∗ 6= ∅.
(iii) =⇒ (i) Assume K∗ is a solid cone. Then there exists g ∈ Br(f) ⊂ K∗

for f ∈ K∗ and r > 0, then g(x) ≥ 0. Assume that f(x) − g(x) ≥ 0 and
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g(x) = a‖x‖ for x ∈ K and a = ε‖f‖X∗ > 0, where ε ∈ (0, 1]. Since f can

be extended to the whole of X by Banach - Hahn theorem, then

K = {x ∈ X : x ≥ 0 and f(x) ≥ ε‖f‖X∗‖x‖}

⊆ {x ∈ X : f(x) ≥ ε‖f‖X∗‖x‖}

Hence the result.

We now show by example that K∗s 6= intK∗.

Examples 2.31. Let X = `2 and X+ = `+2 be cone in X. The cone X+ has

a base this means, (`+2 )∗s 6= ∅ by Proposition 2.10. By Corollary 2.17, `+2

admits unbounded base only, meaning int(`+2 )∗ = ∅ by the above theorem.

Most importantly, int(`+2 ) = int(`+2 )∗ = ∅.

Remark 2.32. We consider the following relationships between cones with

bounded and unbounded bases and structures of K∗ and K∗s based on the

above results.

Let K be a closed cone of a normed space X and K∗s 6= ∅.

If intK∗ = intK∗s 6= ∅. Then

(a) K∗s 6= intK∗s implies a cone K has bounded base for f ∈ intK∗s

and unbounded base for f ∈ K∗s\intK∗s. Take `1 for a example.

(b) K∗s = intK∗s implies a cone K has bounded base for all f ∈ K∗s.
An example is given by Proposition 2.21.

A closed cone in finite dimensional spaces admits only bounded base,

while infinite dimensional space a closed cone can admit both bounded and

unbounded bases, for instance `1 and `2.

Theorem 2.33. Let X be a normed space and let K ⊂ X be a closed cone

such that K∗s 6= ∅. If K∗s = intK∗s then either the base Bf is bounded for

every f ∈ K∗s or Bf is unbounded for every f ∈ K∗s.

Definition 2.34. A normed spaceX is compact if and only if every sequence

in X has a convergent subsequence.

We mention the following important Theorem without a proof, proof can

be found in [16, Theorem 5.5].

Theorem 2.35. ([16, Theorem 5.5]) Let (X, ‖ • ‖) be a normed space, then

the subset B[0, 1] of X is compact if and only if X is finite dimensional.
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We now show an example of a base which is not compact.

Examples 2.36. Consider an infinite dimensional Banach space, (C([0, 1]), ‖ • ‖∞),

with a positive cone defined by

K = {f ∈ X : f(t) ≥ 0 for all t ∈ [0, 1]}

and the norm defined

‖f‖∞ = sup
i∈N
{|fi(t)| : t ∈ [0, 1]}.

A base

Bg = {f ∈ K : g(f) = 1}

= {f ∈ K : ‖f‖∞ ≤ 1}

where g : X → R is linear functional, is not compact. To this end, let

fn : [0, 1] 7→ R be defined by

fn(t) =

nt, if 0 ≤ t ≤ 1
n ;

1, if 1
n ≤ t ≤ 1.

Clearly, continuous function fn ∈ Bg. Then ‖fn − fm‖∞ = 1 for all n 6=
m. Meaning that terms are 1 unit apart, so they can’t have a convergent

subsequence. So Bg is not compact.

Theorem 2.37. Let (X, ‖ • ‖) be a Banach space and K = X+. If K has

a compact base, then X is finite - dimensional.

Proof. Let B be a compact base of K. Then there exists M > 0 such that

‖b‖ ≤ M for all b ∈ B. Again, since 0 /∈ B = B, there exists w such that

‖b‖ ≥ w for all b ∈ B. Let KM = {k ∈ K : ‖k‖ ≤ M}. Then KM is

closed and convex (and hence it is weak - closed). We now prove that KM is

compact. To this end, we first show that KM ⊆ {ab : 0 ≤ a ≤ M
w : b ∈ B}.

Let k ∈ KM , then there exists α > 0 and b ∈ B such that k = αb and

‖αb‖ ≤ M . This implies ‖b‖ ≤ M
α and w ≤ M

α . Therefore 0 < α ≤ M
w and

b ∈ B. Which shows that

KM = {αb : 0 < α ≤ M
w : b ∈ B} ⊆ {ab : 0 ≤ a ≤ M

w : b ∈ B}.

Now, [0, Mw ]× B is compact in the product topology of R×X,R has usual

topology and X has the norm topology. Again, X is a topological space,

and so multiplication by scalar is continuous from R × X 7→ X. The set
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{ab : 0 ≤ a ≤ M
w : b ∈ B} is compact as a scalar multiple of a compact set.

Therefore, KM is closed set, and so KM is compact as a closed subset of

compact set. Now, let XM = {y ∈ X : ‖y‖ ≤ M}. Then XM is closed and

XM ⊆ KM −KM . But KM −KM is compact and hence XM is compact.

Therefore X is finite - dimensional by Theorem 2.35.

Definition 2.38. E ⊂ X is weakly compact if E is compact in a weak

topology, that is, if f(B) is compact in R, where f ∈ X∗.

Definition 2.39. A base B of a cone K in a normed space X is weakly

compact if and only if for sequence (xi) ⊂ B there exists subsequence (xik) ⊂
B such that xik

w→ x0 in B, that is, f(xik)→ f(x0) in R as k →∞ for some

f ∈ X∗.

We consider cones with weak compact base.

Proposition 2.40. If a cone K of a Banach space (X, ‖ • ‖) has weak -

compact base B, then K admits a bounded base.

Proof. Assume that B is weakly compact, then B is weakly closed and

weakly bounded. This implies B is closed and bounded.

Converse of the above result is not true in general.

Examples 2.41. The cone `+1 admit bounded bases but not weakly compact

ones. (This will be deduced from Theorem 2.44)

We now consider the relationship between bounded, unbounded, and

weakly compact base.

Theorem 2.42. ([7, Theorem 3.3]) Let X be a normed space and K a

weakly closed cone of X so that B[0, 1]+ = B[0, 1]
⋂
K is weakly compact

then the base Bf is bounded for every f ∈ K∗s or Bf is unbounded for every

f ∈ K∗s.

Theorem 2.43. ([7, Lemma 3.4]) Let X be a normed space and let K ⊂ X
be a closed cone such that K∗s 6= ∅. If K∗s = intK∗s then Bf is weakly

compact for every f ∈ K∗s.

Using Theorem 2.33, Theorem 2.43 can be rephrased as follows in terms

of boundedness of a base of a cone:
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Theorem 2.44. Let X be a normed space and K a cone in X. If a base

Bf of K is bounded for all f ∈ K∗s or unbounded for all f ∈ K∗s then Bf

is weakly compact.

Example 2.45. Let X = `2, Y = `1 and X+ = `+2 , Y
+ = `+1 a positive

cones in X and Y respectively. The cone X+ admits a weakly compact base

Bf since Bf is unbounded for all f ∈ K∗s and Y + does not admits a weakly

compact base since it mixed based.
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3 Characterization of reflexive Banach spaces via

cones with bounded and unbounded bases.

In this chapter we discuss two characterizations of reflexive Banach space

in terms of closed cones with bounded and unbounded bases and we also

look at characterization of non reflexivity of a Banach space. We discuss the

notion of isometry between positive cone `+1 and other cones. Based on the

results in this section, we give a proof of Milman Theorem on non - reflexive

Banach space.

3.1 Reflexive Banach space and Banach lattice.

3.1.1 Reflexive Banach space.

Definition 3.1. Let (X, ‖ • ‖) be a normed space, (X∗, ‖ • ‖X∗) be a norm

dual of X and (X∗∗, ‖ • ‖X∗∗) be a norm dual of X∗, then X is reflexive if

the canonical embedding J : X → X∗∗ is surjective.

Next we give a classical characterization of a reflexive Banach space.

Theorem 3.2. ([16, Theorem 16.5]) Let X be a Banach space. The follow-

ing statements are equivalent.

(1) X is a reflexive.

(2) B[0, 1] is weakly compact.

(3) Every bounded sequence in X has a weakly convergence subsequence.

We next consider a classical characterization of reflexive Banach space

by Alaoglu.

Theorem 3.3. [Alaoglus] Let X be a Banach space. Then X is reflexive if

and only if a closed cone K admits a weakly - compact base.

Next we consider characterization of reflexivity of Banach space in terms

of cones with bounded bases.

Theorem 3.4. (cf [7, Theorem 3.5]) Let (X, ‖•‖) be a Banach space. Then

X is reflexive if and only if there exists a closed cone K in X such that int

K 6= ∅ and K∗s =int K∗s.

Proof. Suppose X is reflexive. Let x ∈ S(0, 1) and the cone
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Kx = cone(x+ 1
2B[0, 1])

which is closed and convex (therefore weakly closed) admits a closed and

bounded base x + 1
2B[0, 1]. That is, intK∗sx 6= ∅. Again intKx 6= ∅ since if

‖x0‖ > 1, we have x0 + 1
2B[0, 1] ⊂ Kx.

B[0, 1] = B∗∗[0, 1] is weakly compact in X by Alaoglu’s Theorem since

X is reflexive. And therefore B+[0, 1] = B[0, 1]
⋂
K is weakly compact

as a weakly closed subset of B[0, 1] and the base Bf ⊂ B+[0, 1] in Kx is

also a weak compact, that is, Bf is bounded for all f ∈ K∗s. Therefore

K∗sx = intK∗sx . Hence the result.

Conversely, suppose that there exists a closed cone K such that int K 6= ∅
and K∗s = intK∗s. Then there exists f ∈ K∗s such that Bf = {k ∈ K :

f(k) = 1} is a weakly compact base for the cone K. Now, since int K 6= ∅,
we can find x0 ∈ K such ‖x0‖ > 2 and the set G = B[x0, 1] ⊂ K. Since G is

a bounded and closed convex subset (therefore weakly bounded and closed)

of K, there exists a real number α > 0 such that 0 ≤ f(g) ≤ α for every

g ∈ G. Hence by Theorem 2.37

G ⊂
⋃

0≤β≤α
βBf = {βb : 0 ≤ β ≤ α, b ∈ Bf}

and the set
⋃

0≤β≤α
βBf is weakly compact set. Since G is a closed convex set,

it is also weakly compact. Therefore X is reflexive since B[0, 1] is weakly

compact.

The above result, shows that in a reflexive Banach space, there exists a

closed cone Kx with a weakly compact base. Meaning that such a closed

cone admit either bounded bases or unbounded bases but not both.

Corollary 3.5. (cf [21, Theorem 1]) Let X be a Banach space. If X is

reflexive then for each cone K∗ ⊂ X∗ admitting a bounded base, the cone

K = {x ∈ X : f(x) ≥ 0 for all f ∈ K∗} has a nonempty interior.

Proof. If a cone K∗ admits a bounded base, then intK∗∗ 6= ∅ in X∗∗. Since

X is reflexive, intK 6= ∅ in X. Hence the result.

The next theorem shows that in a reflexive Banach space, every closed

cone with a base admit a weakly compact base.

Theorem 3.6. (cf [7, Theorem 3.6]) Let X be a Banach space. Then X is

reflexive if and only if for every closed cone K in X such that int K∗s 6= ∅
we have K∗s = intK∗s.
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Proof. Let K ⊂ X be a closed cone such that intK∗s 6= ∅. Then there exists

a bounded base Bf in K defined by f ∈ K∗s. Since the space X is reflexive,

BX = B∗∗[0, 1] is a weakly compact in X. B+[0, 1] = B[0, 1]
⋂
K is weakly

compact in X as a weakly closed subset of B[0, 1]. Therefore Bf ⊂ B+[0, 1]

is bounded for all f ∈ K∗s. Thus K∗s = intK∗s.

Conversely, the cone K = cone(x+ 1
2B[0, 1]) for all x ∈ S(0, 1) will satisfies

the desired property. Because the cone K is closed with a bounded base

B = x+ 1
2B[0, 1]. That is, intK 6= ∅ and intK∗s 6= ∅. Since by assumption,

K∗s = intK∗s for each x ∈ S(0, 1), therefore B is a bounded base for all

x ∈ S(0, 1). That is, B is a weakly compact base in K and therefore B[0, 1]

is a weakly compact in X. Hence the result.

Note that theorem 3.6 can be rewritten as follows:

Theorem 3.7. Banach space is reflexive if and only if every closed cone K

is such that K∗s = intK∗s or intK∗s = ∅.

And in terms of boundedness of a base of a cone, theorem 3.7 can be

reformulated in the following way:

Theorem 3.8. A Banach space X is reflexive if and only if each closed cone

K with a base in X is such that either K has a bounded base for all f ∈ K∗s

or K has an unbounded base for all f ∈ K∗s.

Corollary 3.9. Rn is a reflexive Banach space.

Proof. The positive cone (Rn)+ is closed by Theorem 1.51 since Rn is normed

Riesz space and admits bounded base only by Theorem 2.22. Then by the

above Theorem, Rn is reflexive.

We next show that in a finite dimensional space, we have a mixed based

cone.

Example 3.10. Let X = R2. Define a cone

C = {x ∈ R2 : x2 > |x1|}, where x = (x1, x2)

= {x ∈ R2 : −x2 < x1 < x2}.

The cone C has both bounded and unbounded bases and it is open.
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Proof. We first show that cone C is open. Since −x2 < x1 < x2 , we have

that x2 − x1 > 0 and x1 + x2 > 0. Now let ε1 = x2 − x1 and ε2 = x1 + x2.

We need to show that

‖x− y‖∞ = ‖(x1 − y1), (x2 − y2)‖∞

= sup{|x1 − y1|, |x2 − y2|}

< ε.

So y = (y1, y2) ∈ C, that is, −y2 < y1 < y2. To do that, we consider the

following cases.

Case 1 |x1 − y1| < x2 − x1 and |x2 − y2| < x2 − x1.

(a)

|x1 − x2| < x2 − x1 ⇐⇒ x1 − x2 < y1 − x1 < x2 − x1

⇐⇒ 2x1 − x2 < y1 < x2

(b)

|x1 − x2| < x2 + x1 ⇐⇒ x1 − x2 < y2 − x2 < x2 − x1

⇐⇒ x1 < y2 < 2x2 − x1

Case 2 |x1 − y1| < x2 + x1 and |x2 − y2| < x2 + x1.

(a)

−x1 − x2 < y1 − x1 < x2 + x1 ⇐⇒ −x2 < y1 < 2x1 + x2

and

|x1| − |y1| < x2 + x1 ⇐⇒ −|y1| < x2 + x1 − |x1|

Then −(−y1) < x2 +x1−x1 as one of the possibilities. Therefore

y1 < x2.
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(b)

|x2| − |y2| < |x2 − y2| < x2 + x1

−|y2| < x2 − |x2|+ x1

−|y2| < x2 + |x2|+ x1

−|y2| < 2|x2|+ x1

−|y2| < 2|x2|+ y2

−|y2| < 2|x2|+ |y2|

|y2| > −|x2|

y2 > −(−x2) as one of the possibilities.

Therefore y2 > x2. This implies y2 ≥ 0 since x2 ≥ 0.

Let y1 = min{x2, x1 + 2x2}, then y1 < x2 < y2 < 2x2 − x1. Since y1 is

arbitray and y2 ≥ 0, then |y1| < y2 and so y ∈ C.

Finally, we find bounded base and unbounded base in the cone C, namely,

bounded base B1 = {(x, y) ∈ C : y = 1} and unbounded base

B2 = {(x, y) ∈ C : y = x2 + 1}.

Remark 3.11. Note that the example does not contradicts Theorem 3.8,

since C is open.

3.1.2 AL - and AM - Banach lattices.

We conclude this section with a result concerning the Banach lattices. First

note that an infinite dimensional Banach lattice `2 is reflexive since its pos-

itive cone `+2 admits unbounded bases only and infinite dimensional Banach

lattice `1 is not reflexive since its positive cone `+1 admit both bounded and

unbounded bases.

Definition 3.12. A Banach lattice (X, ‖ • ‖) is an

(i) ([26, Definition 8.1]) AL - space if ‖x+y‖ = ‖x‖+‖y‖ for all x, y ∈ X+.

(ii) ([26, Definition 7.1]) AM - space if ‖x ∨ y‖ = max{‖x‖, ‖y‖} for all

x, y ∈ X+.

Next we investigate whether a Banach lattice Rn is AL - and / or AM -

space.
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Examples 3.13. Consider a Banach lattice (Rn, ‖ • ‖1) with a norm

‖x‖1 =
∑
i=1

|xi| for all x ∈ Rn

and a coordinatewise ordering. We show that Rn is both AL - and AM -

space.

Proof. First we show that Rn is AL - space. Take x, y ∈ (Rn)+, then

‖x+ y‖1 =

n∑
i=1

|xi + yi|

=

n∑
i=1

xi + yi, xi + yi ≥ 0

=

n∑
i=1

xi +

n∑
i=1

yi

=

n∑
i=1

|xi|+
n∑
i=1

|yi|

= ‖x‖1 + ‖y‖1.

Next we show that Rn is AM - space. Take x, y ∈ (Rn)+, then

‖x ∨ y‖1 =
n∑
i=1

|xi ∨ yi|

=
n∑
i=1

(|xi| ∨ |yi|)

=
n∑
i=1

|xi| ∨
n∑
i=1

|yi|

= ‖x‖1 ∨ ‖y‖1

= max{‖x‖1, ‖y‖1}.

This shows that Rn is both AL - and AM - space.

Proposition 3.14. Let (X, ‖ • ‖) be a Banach lattice.

(i) If a lattice cone X+ has a bounded base, then X∗ is an AM - space.

(ii) If X∗ is not reflexive, then X is not reflexive.

Proof. (i) Let ψ ∈ (X+)∗s and f ∈ X∗, since a base Bψ is bounded, there

exists α ∈ R+ such that ψ(x) ≤ α = |f(x)| for all x ∈ Bψ. Equivalently, for

each ε > 0, |f(x)| < εψ(x) for x ∈ X \ Bψ. Note that ψ ∈ K∗s is such that

ψ > 0. Therefore the set {λ > 0 : |f | ≤ λψ} is not empty for all f ∈ X∗.
We first show that a real-valued function ‖ • ‖∞ defined by
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‖f‖∞ = inf{λ > 0 : |f | ≤ λψ}

is a norm on X∗.

‖f‖∞ = inf{λ > 0 : |f | ≤ λψ} ≥ 0 since for each λ0 in the set

{λ > 0 : |f | ≤ λψ}

we get that λ0 > 0. If f = 0, then

‖f‖∞ = inf{λ > 0 : |f | ≤ λψ}

= inf{λ > 0 : 0 ≤ λψ}

= inf{R+} = 0.

Now if ‖f‖∞ = 0 then inf{λ > 0 : |f | ≤ λψ} = 0, which implies for all λ > 0

we have that ‖f‖∞ ≤ λψ. So it follows that ‖f‖∞ ≤ 1
nψ for all n ∈ N. This

gives us |f | = 0 implying f = 0.

Now for propety (ii) of a norm,

‖αf‖∞ = inf{λ > 0 : |αf | ≤ λψ}

= inf{λ > 0 : |α||f | ≤ λψ}

= |α| inf{λ > 0 : |f | ≤ λψ}

= |α|‖f‖∞

For property (iii), note that since ψ > 0 we have

‖ψ‖∞ = inf{λ > 0 : |ψ| ≤ λψ} = inf{λ > 0 : ψ ≤ λψ}

= inf{λ > 0 : 1 ≤ λ}

= 1. (4)

Then if µ and γ are smallest positive real numbers such that |f | ≤ µψ and

|g| ≤ γψ then by properties of absolute values

|f + g| ≤ |f |+ |g| ≤ (µ+ γ)ψ.

So we have that,

‖f + g‖∞ ≤ ‖(µ+ γ)ψ‖∞

= |µ+ γ|‖ψ‖∞

= |µ+ γ| by (4)

= ‖f‖∞ + ‖g‖∞.
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Hence the result. Therefore the set (X∗, ‖ • ‖∞) is a Banach space.

To show that ‖ • ‖∞ defines a lattice norm, assume |f | ≤ |g|. So

‖f‖∞ = inf{λ > 0 : |f | ≤ λψ}

≤ inf{λ > 0 : |g| ≤ λψ}

= ‖g‖∞.

Thus (X∗, ‖ • ‖∞) is a Banach lattice.

Lastly, we show that ‖ • ‖∞ is an AM - norm. To this end, let f, g ∈ (X∗)+.

From f ≤ ‖f‖ψ and g ≤ ‖g‖ψ, we have

f ∨ g ≤ ‖f‖ψ ∨ ‖g‖ψ, so ‖f ∨ g‖ ≤ ‖f‖ ∨ ‖g‖.

On the other hand, from ‖f‖ ≤ ‖f ∨ g‖ and ‖g‖ ≤ ‖f ∨ g‖, we have

‖f‖ ∨ ‖g‖ ≤ ‖f ∨ g‖. Therefore ‖f ∨ g‖ = ‖f‖ ∨ ‖g‖} for all f, g ∈ (X∗)+

and then (X∗, ‖ • ‖∞) is AM - space.

2. If X∗ is not reflexive, then X∗ is an infinite dimensional AM - space with

a lattice cone C that admits bounded base Bf . Note that X is also infinite

dimensional space. We complete the proof by showing that X contains a

cone that admits bounded base. From intC∗s 6= ∅, there exists f ∈ C∗s ⊂
X∗∗ such that f(g) > 0, where g ∈ K∗s ⊂ X∗. This means for x ∈ K \ {0}
we have 0 < f(g(x)) ≤ α since Bf is bounded. This also shows that the

base Bf(g) is weakly bounded in X with f(g) ∈ K∗s. Therefore bounded in

X. And X contains a mixed base cone, since X is infinite. Hence X is non

reflexive.

3.2 Mixed based cones, cones conically isomorphic to `1 and

Non - Reflexive Banach spaces.

Theorem 3.15. (cf [7, Theorem 4.1]) A Banach space X in non-reflexive

if and only if there exists a closed cone K ⊂ X such that intK∗s 6= ∅ and

intK∗s 6= K∗s.

Proof. Let K ⊂ X such that intK∗s 6= ∅ and intK∗s 6= K∗s, that is K

admits bounded and unbounded bases. By Theorem 2.33,

B+[0, 1] = B[0, 1]
⋂
K

is not a weakly compact base, that is, B[0, 1] is not weakly compact in X.

Hence a Banach space X is not reflexive.

We now restate Theorem 3.15.
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Theorem 3.16. A non - reflexive Banach space admits a mixed base cone.

Example 3.17. By the above Theorem, infinite dimensional Banach space

`1 is non - reflexive since `+1 admits both bounded and unbounded bases.

Next we show another example of a mixed based cone.

Examples 3.18. Consider the Banach space, (c, ‖•‖∞) and a cone c+. The

cone c+ is a mixed base cone.

Proof. Firstly, we show that a cone admits a bounded base. Take

x = (xi) ∈ c+ ⊂ `+∞,

then there exists y = (yi) ∈ `+1 such that

‖x‖∞ = sup
i∈N
{xi}

≤
∞∑
i=1

xi xi ≥ 0

≤
∞∑
i=1

xiyi yi ≥ 0

= f(xi) = α > 0 f ∈ (c+)∗.

Hence the results. Lastly, we show that c+ admits unbounded base as

well. Let Bf = {x ∈ c+ : f(x) = 1} be a base of a cone c+ defined

by f ∈ (c+)∗. Take the subsequence yik = (1, 12 ,
1
4 ,

1
6 , ...) ∈ `+1 and take

eik = (0, 0, 0, ...,
iith

1 , 0, 0, ...) ∈ c+ then yik → 0 and eik → 1 as k → ∞.(
eik

f(yik )

)
∈ Bf and

∥∥∥ eik
f(yik )

∥∥∥
∞

= 1
∞∑
i=1

yikeik

= 1
1
i

→∞ as i→∞. Thus, Bf is

unbounded. Hence the result. This shows that c is a non - reflexive infinite

dimensional Banach space.

We now give notion of order isomorphism.

Definition 3.19. Let X and Y be normed spaces ordered by the cones

P,K respectively. The cone P is said to be order isomorphic to the cone

K of Y if there exists an additive, positively homogeneous, one - to - one,

map T1 of P onto K such that T1 and T−11 are continuous in the induced

topologies. Then we also say the cone P is embeddable in Y and that T1 is

a order isomorphism of P onto K.

T1 can be extended to a linear operator on P − P as follows;
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T1(x1 − x2) = T1(x1)− T1(x2) where x1, x2 ∈ P .

If P is generating then T1 can be extended to a whole space X.

We now give an example of a order isomorphism between cones. We first

give the following definition.

Definition 3.20. ([21, Definition 4.1.1]) Let (xn) be a sequence in a Banach

space X. Then a sequence (xn) in an ordered Banach space X is called a

Schauder basis for X if for each x ∈ X there is a unique sequence (αn) of

scalars such that

x =

∞∑
n=1

αnxn.

P =

{ ∞∑
n=1

αnxn : αn ≥ 0, for any n

}

is the positive cone of a Schauder basis (xn) of X. A sequence (xn) of X is a

positive basis of X if it is a Schauder basis of X and X+ = P . The Banach

space c0 is one of the examples of space with positive bases.

Definition 3.21. ([27, Definition 3.1] Let (xn) be a basis of a Banach space

X. The sequence of linear functionals (fn) defined by

fj(x) = αj , x =
∑∞

j=1 αjxj ∈ X, j = 1, 2, ...,

is called a sequence of coefficient functionals associated to the basis (xn),

a.s.c.f for short.

Examples 3.22. Consider two positive cones, `+1 and c+0 . Let a = (ai) ∈ `+1
and {xi} be a Schauder basis for c+0 . Consider the closed coneQ ⊆ c+0 defined

as

Q =

{
x ∈ c+0 : x =

∞∑
i=1

aixi, (ai) ⊂ `+1

}
.

Define the map T : `+1 → Q by

T (a) =
∞∑
i=1

aixi.

T is a conical isomorphism of `+1 onto Q.

Proof. This map is well defined since {xi} is bounded by being convergent.

Firstly, we show that T is additive and positively homogeneous. To this

end, if a, b ∈ `+1 and λ ≥ 0, then a+ b ∈ `+1 and λa ∈ `+1 . So
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T (a+ b) =
∞∑
i=1

(ai + bi)xi =
∞∑
i=1

aixi +
∞∑
i=1

bixi = T (a) + T (b)

and

T (λa) =

∞∑
i=1

(λai)xi = λ

( ∞∑
i=1

aixi

)
= λT (a).

Hence the result. Secondly, we show that T is injective and surjective.

T is injective, since x =

∞∑
i=1

aixi ∈ Q is uniquely determined by a =

(a1, a2, ..., ai, ...) ∈ `+1 . T is also surjective map. Indeed, if x ∈ Q then

the exists a sequence (ai) ∈ `+1 such that x =
+∑
i=1

aixi. Therefore we have

a = (ai) ∈ `+1 such that x = T (a). Hence the results. Lastly, T is continu-

ous on its domain since {xi} is a bounded basic sequence in c0. The closed

cones `+1 onto Q are complete subsets of Banach spaces `1 and c0 respec-

tively. Since T is continuous and surjective then by Open mapping theorem,

T−1 : Q → `+1 is also continuous. Therefore T is order isomorphism of `+1

onto Q.

We recall the following lemma.

Lemma 3.23. ([7, Lemma 3.4]) Let X be a Banach space and let K ⊂ X

be a closed cone such that K∗s 6= ∅. If K∗s = intK∗s then Bf is weakly

compact for every f ∈ K∗s.

Definition 3.24. A conical hull of a non - empty set X is a set denoted by

conv(X) and defined as

conv(X) =

{
N∑
n=1

αnxn : N ∈ N, xn ∈ X,
N∑
n=1

αn = 1, αn ≥ 0, for any n

}
.

We now consider cones that isomorphic to `+1 and show that such cones

are mixed based.

Theorem 3.25. ([7, Theorem 4.5]) Let X be a Banach space and K ⊂ X

be a closed cone order isomorphic to the cone `+1 then K is a mixed base

cone such that intK = ∅.

Proof. Let T : `+1 → K be an isomorphism and we denote again by T its

continuous extension to `1 (due to Hahn-Banach Theorem). Since the `+1

has a closed and bounded base B, the set T (B) is a closed (to see, let

xn ∈ B such that xn → x ∈ `+1 then g(xn) → g(x) ∈ R, where g ∈ (`+1 )∗s.
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Then for each n, g(xn) = 1 → g(x) ∈ R, implying that g(x) = 1 that is,

x ∈ B.) and bounded base for K. Hence there exists f ∈ X∗ such that

Bf = {k ∈ K : f(k) = 1}, is a bounded base for K. Therefore f ∈ intK∗s.
Now let U be unbounded base of `+1 . Then T (U) is a closed unbounded base

for K. Hence all f ∈ K∗s separate T (U) and 0 (by Hanh - Banach Theorem).

We claim that there exists f ∈ K∗s \ intK∗s. To see, assume K∗s = intK∗s.

Then by Lemma 3.23 bounded base Bf is weakly compact. Consider {ei} of

`1 given by sequence of unit vectors in `1 and write kn = T (en) in K. Then

there exists v > 0, such that ‖kn‖ ≤ v and f(kn) ≤ v‖f‖. Hence

{kn} ⊂

 ⋃
0≤α≤v‖f‖

αBf

⋂K = {αb : 0 ≤ α ≤ v‖f‖, b ∈ Bf}
⋂
K.

where
⋃
αBf is weakly compact. Therefore there exists k0 ∈ K such that

kn converges weakly to k0. Hence

k0 ∈
∞⋂
j=1

cl(conv{kj , kj+1, ...})

then

T−1(k0) ∈ T−1
 ∞⋂

j=1

cl(conv{kj , kj+1, ...})

 =
∞⋂
j=1

cl(conv{ej , ej+1, ...}).

Contradiction, since
∞⋂
j=1

cl(conv{ej , ej+1, ...}) = ∅. Because `+1 is a mixed

base cone, therefore not weakly compact. Finally, we show that intK = ∅.
To see, suppose on the contrary that there exists an open set O ⊂ K. Since

the map T is continuous, the set T−1(O) ⊂ `+1 is open, contradiction against

int`+1 = ∅.

Remark 3.26. Let (X, ‖ • ‖) be a Banach space and Q be a closed cone in

X order isomorphic to the cone `+1 , then there exists a order isomorphism

T of `+1 onto Q.

Lemma 3.27. Let (X, ‖ • ‖) be an ordered Banach space. If T is order

isomorphism of `+1 onto a cone Q ⊂ X then there are positive constants

α, β > 0 such that

α‖x‖1 ≤ ‖T (x)‖ ≤ β‖x‖1 for each x ∈ `+1 .

Proof. Note that T and T−1 are non zero operators since T is an isomor-

phism. So we have
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‖Tx‖ ≤ ‖T‖∞‖x‖1 and ‖x‖1 = ‖T−1(T (x))‖1 ≤ ‖T−1‖∞‖Tx‖

for each x ∈ `+1 , since both ‖T‖ and ‖T−1‖ are continuous. By letting

α = ‖T−‖−1∞ and β = ‖T‖∞ we get the desired inequalities.

Since `1 ordered by the componentwise ordering is a Banach lattice,

whose lattice cone is `+1 then the cone `+1 is generating, i.e., `1 = `+1 − `
+
1

([1]) and x = x+ − x− = sup{x, 0} − inf{−x, 0} for every x ∈ `1. The order

isomorphism T can be extended to a one - to - one linear operator of `1 onto

Q−Q by taking T (x) = T (x+)− T (x−).

The extension of T is continuous on the whole space `1.

Proof. To this end, we have

‖T (x)‖ = ‖T (x+)− T (x−)‖

= ‖T (x+) + (−T (x−))‖

≤ ‖T (x+)‖+ ‖T (x−)‖

≤ α(‖x+‖1 + ‖x−‖1)

= α‖x‖1 since `1 is an AL - space.

Hence the result.

We now recall the following types of basic sequences in a Banach space.

Definition 3.28. Let (xn) be a sequence in a Banach space X. Then (xn)

is a weak Cauchy sequence if it is a Cauchy sequence in X endowed with

the weak topology; equivalently, if lim
n→∞

f(xn) exists for every f ∈ X∗.

Definition 3.29. Let (xn) be a sequence in a Banach space X. A sequence

(xn) is a trivial weak Cauchy sequence if it is a weak cauchy sequence that

does not weakly converge.

Definition 3.30. ([17, Definition 1.a.1.] A sequence (xn) in a Banach space

X is a basic sequence if it is a Schauder basis for a closed linear span (denoted

by cl(span(xn)).

Definition 3.31. ([17, Definition 1.a.10.]) Let (xn) be a basic sequence

of in a Banach space X. A sequence (bn) of non - zero elements in X

is a block basis of (xn) if there exist a sequences (pn) and (qn) such that

1 = p1 ≤ q1 < p2 ≤ q2 < ..., and bn =

qn∑
i=pn

aixi, a non-trivial linear

combination of xi where the sequence (ai) ⊂ R.
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Definition 3.32. Let (xn) be a basic sequence of a Banach space X. A

sequence (bn) of a non - zero elements in X is a convex block basis of the

basic sequence (xn) if the sequence an in the previous definition is such that

ai ≥ 0 for all i and

qn∑
i=pn

ai = 1 for each n.

Definition 3.33. ([24, Definition 1.1]) Let (xn) be a basic sequence of in

a Banach space X. A sequence (xn) is a strong summing sequence if (xn)

is a weak Cauchy basic sequence such that whenever the sequence of real

numbers (an) satisfy

sup
j

∥∥∥∥∥
j∑

n=1

anxn

∥∥∥∥∥ <∞
then

∞∑
n=1

an converges.

Proposition 3.34. ([10, Theorem 5] Let (xn) and (yn) be a basic sequences

in a Banach spaces X and Y respectively, then (yn) is equivalent to (xn) if

there exists an isomorphism

T : cl(span(yn))→ cl(span(xn))

such that T (yn) = xn for each n.

We now give examples of a block basic sequence and a strong summing

sequence.

Example 3.35.

(i) Let a sequence (en) of standard unit vectors in c0 be the Schauder

basis of c0. Then a sequence (yn) given by yn =

n∑
i=1

λiei where λi = 1

for all i is a block basic sequence taken from (en).

If λi = 1
2i

, then (yn) defined above is a convex block basic sequence

since
∞∑
i=1

λi = 1.

(ii) A basic sequence (en) ∈ `1 is strong summing sequence. We first show

that (en) is weakly cauchy. To see, take any f = (fn) ∈ `∞. Then

f(en) =

∞∑
n=1

|fnen|

= |fn|.
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Thus

lim
n→∞

f(en) = lim
n→∞

|fn|

< sup |fn|

= ‖f‖∞

<∞ since f ∈ `∞.

Therefore (en) is weak cauchy basic sequence.

Next we show that sup
n

∥∥∥∥∥
n∑
i=1

aiei

∥∥∥∥∥ < ∞ for particular sequence (ai) =(
1
2i

)
. To this end, we have

sup
n

∥∥∥∥∥
n∑
i=1

1

2i
ei

∥∥∥∥∥ = sup
n

∣∣∣∣ 1

2n

∣∣∣∣ =
1

2
<∞

Hence the results, since
∞∑
i=1

1

2i
= 1 <∞.

Next we recall the following two lemmas.

Lemma 3.36. (cf [7, Theorem 4.6]) Every bounded sequence in a Banach

space has either a weak Cauchy subsequence or a subsequence equivalent to

the standard basis of `1.

Proof. Firstly, if (X, ‖ • ‖∞) is a reflexive Banach space, each bounded se-

quence in X has a weak Cauchy subsequence since weak convergence subse-

quence imply weak Cauchy subsequence.

Secondly, if X is a non - reflexive, then in B[0, 1] in X (not weakly com-

pact) there is a bounded (weak ) sequence (xn) with nontrivial weak cauchy

subsequence, say (xn), for simplicity. Therefore, there exists a subsequence

(xni) of (xn) that does not converges weakly, that is,

‖f(xn)− f(xm)‖∞ = 1,

for f ∈ X∗ and all n 6= m. Again, since X is non reflexive Banach space,

`+1 is cone conically isomorphic to a closed mixed base cone Q ⊂ X+, that

is T : `+1 → Q is isomorphism. Since Q − Q = X, the T can be extended

isomorphically to `1 onto X, using Hahn - Banach Theorem. Therefore,

(xni) in X will be equivalent to unit standard basis vector (en) in `1.

Lemma 3.37. (cf [7, Theorem 4.7]) Every nontrivial weak Cauchy sequence

in a Banach space has either a strongly summing subsequence or a convex

basis equivalent to the summing basis.
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Proof. By Lemma 3.36, nontrivial weak Cauchy sequence contain a sub-

sequence (xi) equivalent to the standard basis (ei) of `1 and therefore for

(yi) ∈ `+1 with yi ≥ 0 we have sup
n

∥∥∥∥∥
n∑
i=1

yixi

∥∥∥∥∥ < ε and

∞∑
i=1

yi < ∞. Showing

that (xi) is a strongly summing subsequence. Or a block convex basis (bi)

of (xi) described in the above Theorem can be constructed as follows: for

(ai) ∈ `+1 , we have bi =

i∑
k=1

akxk with ‖bi‖c0 = max
0≤k≤i

|ak| and

∞∑
i=1

ai = 1.

The basis sequence (bn) is a our block basis sequence and it is equivalent to

the summing basis

{
cn =

n∑
i=1

ei

}
of the space c0.

Next, we mention a converse of Theorem 3.25 with some important re-

sults.

Theorem 3.38. ([7, Theorem 4.8]) Let X be a Banach space. If there exists

a closed mixed based cone K ⊂ X then there exists a conical isomorphism

of `+1 onto a cone Q ⊆ K. Moreover only three cases occur:

(i) `+1 embeds in X,

(ii) c0 embeds in X, that is Q is conically isomorphic to

Ksummc0 =

{ ∞∑
k=1

λkbk ∈ c0 : λk ≥ 0

}
where bk =

k∑
i=1

ei,

(iii) Q = {q ∈ X : q =
∑∞

i=1 ψiqi, ψi ∈ R, ψi ≥ 0 for each i} where (qn) ⊂ X
is a strong summing sequence.

Next we prove the Milman’s characterization Theorem of non - reflexivity

in terms of a mixed base cone by combining Theorems 3.15, 3.25 and 3.38.

Theorem 3.39. (cf [7, Theorem 4.4]) A Banach space X is non - reflexive

if and only if the positive cone of `1 is embeddable in X.

Proof. Assume that X is non - reflexive, then by Theorem 3.15, there exists

a closed cone K ⊂ X such that (intK∗)+ 6= ∅ and intK∗s 6= K∗s, this

means that base Bf is bounded for f ∈ intK∗s and base Bg unbounded for

g ∈ K∗s \ intK∗s by Remark 2.32. That is, K is a closed mixed based cone.

By Theorem 3.38 there exists a conical isomorphism of `+1 onto a cone K.

That is `+1 is embeddable in X.

Conversely, assume `+1 is embeddable in X, that is there exists a closed

cone K ⊂ X isomorphic to `+1 . By Theorem 3.25, K is a mixed based cone
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such intK = ∅. Therefore by Theorem 3.15, a Banach space X is non -

reflexive.

Definition 3.40. ([18, Theorem 2.5.23]) A Banach space is weakly complete

whenever every weak Cauchy sequence weakly converges.

We consider an example of a Banach space that is not weakly complete.

Example 3.41. The Banach space c0 is not weakly complete. To see,

consider the sequence y = (yn) =

n∑
i=1

ei ∈ c0. We first show that y is weakly

Cauchy, that is lim
n→∞

(yn) exists for all f ∈ c∗0. Now, take any f ∈ c∗0 = `1,

then

f(y) =
∞∑
i=1

|fiyi|

=
∞∑
i=1

|fi|yi yi ≥ 0

=
n∑
i=1

|fi| by definition y.

And thus

lim
n→∞

f(yn) = lim
n→∞

n∑
i=1

|fi|

=
∞∑
i=1

|fi|

<∞ since f ∈ `1.

Next we show that (yn) is not weakly convergent, that is,

f(yn) 9 f(y) (3)

for y ∈ c0. Note that yn → y = (1, 1, 1, 1, ...) /∈ c0. This means for (yn) there

is no y ∈ c0 such that f(yn)→ f(y).

We recall the following Proposition.

Proposition 3.42. ([24, Proposition 1.4]) Let (xn) be a summing sequence

in a Banach space X, and (fn) be its a.s.c.f in X∗. The X∗ is not weakly

complete.

We now show that whenever X is weakly complete Banach space, only

the first situation listed in Theorem 3.38 occurs.
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Corollary 3.43. (cf [7, Corollary 4.10]) If X is a weakly complete Banach

space and X contains a mixed base cone K then `1 embeds in X.

Proof. Note that K is closed since it admits bounded base and X is non-

reflexive since K contains both bounded Bf and unbounded Bg bases for

f ∈ intK∗ and g ∈ K∗s \ intK∗. By Theorem 3.36, sequence (xn) ∈ Bf has

(i) either a subsequence (xnj ) equivalent to (ej) of `1

(ii) or a weak cauchy subsequence.

Using Theorem 3.38 on (i), we get the result that `+1 embeds on X. From

(ii) a weak cauchy subsequence (xnj ) converges weakly since X is weakly

complete. By Lemma 3.37, the following occur: (xnj )

(i) has no strongly summing subsequence, that is, situation (iii) on The-

orem 3.38 cannot occur.

(ii) has no convex block basis equivalent to the summing basis of c0, that

is, c0 is not embedding in K, meaning, situation (ii) on Theorem 3.38

cannot occur .

Next we provide conditions on a Banach space for the first two conditions

listed on Theorem 3.38 to occur.

Corollary 3.44. (cf [7, Corollary 4.11]) Let X be a Banach space such that

X∗ is weakly complete. If X contains a mixed based cone then X contains

either c0 or `1.

Proof. Note that X is a non - reflexive, since it contains a closed mixed

based cone K. As in the above Corollary, a sequence (xn) ∈ Bf (bounded

base of K with f ∈ intK∗) has either a subsequence (xni) of (xn) equivalent

to (ei) of `1 or a weakly cauchy subsequence.

If (xni) is equivalent to (ei) of `1 then by results of Theorem 3.38, `+1 embeds

on X.

Or (xni) is a non - trivial weakly cauchy by the results of Theorem 3.38. By

Lemma 3.37, (xni) contains either a convex block basis (xnij ) equivalent to

the summing basis (bj) of c0 or a strong summing subsequence (xnij ).

If (xnij ) is a convex block basis then by Theorem 3.38 c0 embeds in X.

But X cannot contain a strong summing sequence because if it has it would
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mean that X∗ is not weakly complete by Proposition 3.42. Contradicting

the assumption that X∗ is weakly complete.
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4 Reflexive cones.

In this chapter, we consider a notion of reflexive cones and their proper-

ties. The characterization of reflexive Banach space by reflexive cones is

also discussed. We also discuss the relationship between reflexive cones and

subcones of `+1 . We recall definitions of semi - interior points, open decom-

position as well as some of their properties.

4.1 Reflexive cones and their properties.

Theorem 4.1. ([2, Lemma 1.6]) Given a cone K in an ordered vector space

X. The cone K is generating if and only if X is directed upwards by ordering

induced by K.

Proof. Suppose K is a generating cone in an ordered vector space X. That

is, X = K −K. Then there are vectors a, b, c, d ∈ K such that x = a − b
and y = c − d or equivalently, x + b = a and y + d = c. Since b, d ≥ 0, it

follows that x ≤ a and y ≤ c. Note that a+ c ∈ X and that x ≤ a+ c and

y ≤ a + c. This implies that X is directed. Conversely, let X be directed

and take x ∈ X. Then there is u ∈ X such that u ≥ x and u ≥ 0 (since

0 ∈ X). Now let v = u − x. Then v ≥ 0. Thus u, v ∈ K and x = u − v.

Hence K is generating.

Definition 4.2. Let K be a cone of a vector space X. A vector e ∈ K is

an order unit if for each x ∈ X there exists some λ > 0 such that x ≤ λe.

Theorem 4.3. Let X be an ordered vector space. If X has order unit, then

the positive cone K is generating.

Proof. Suppose X has order unit. For x ∈ X, there is λ > 0 such that

x ≤ λe or equivalently, x − λe ≤ 0. This implies that v = x − λe ∈ −K.

Also u = λe ∈ K since e ∈ K. Thus x = u + v with u ∈ K and v ∈ −K.

Therefore, K is generating.

Definition 4.4. A subset S of a topological vector space X is said to be

absorbing if for every x ∈ X there exists r > 0 such that x ∈ αS for all

|α| ≥ r.

Theorem 4.5. (cf [18, Proposition 1.3.13]) An open unit ball B(0, 1) in a

normed space (X, ‖ • ‖) is absorbing.

Proof. Take x ∈ X and α > 0 such that ‖x‖ < α. Now,
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α−1‖x‖ < α−1α = 1

and by defintion,

α−1‖x‖ = ‖α−1x‖ < 1.

Thus, α−1x ∈ B(0, 1). And therefore x ∈ αB(0, 1). Thus, the set B(0, 1) is

absorbing.

Definition 4.6. A subset S of a topological vector space X is said to be

balanced if αS ⊆ S whenever |α| ≤ 1.

Theorem 4.7. A closed unit ball B[0, 1] in a normed space (X, ‖ • ‖) is

balanced.

Proof. Let x ∈ B[0, 1], then αx ∈ αB[0, 1]. Need to show that αx ∈ B[0, 1]

if |α| < 1. This is true since αx ∈ X(vector space) and

‖αx‖ = |α|‖x‖

≤ |α| since ‖x‖ ≤ 1

< 1.

Definition 4.8. Let K be a cone in an ordered normed space X. The point

x0 ∈ K is an interior point if x0 + αB[0, 1] ⊆ K.

Remark 4.9. It follows from the above definition that the point x0 ∈ K
is an interior point if x0 + αB+[0, 1] ⊆ K and x0 − αB+[0, 1] ⊆ K, where

B+[0, 1] = B[0, 1] ∩K. The first inclusion is always true for x0 ∈ K since

αB+[0, 1] ∈ K.

Second inclusion is not always true as the following theorem shows.

Theorem 4.10. let K be a cone in an ordered Banach space X, y ∈ X and

−x /∈ K, then there is α > 0 such that y − αx /∈ K

Proof. Suppose y − αx ∈ K for all α > 0. Since K is a cone, we have
1
αy−x ∈ K for all α > 0. Now, if α→∞, then −x ∈ K (Contradiction).

Definition 4.11. ( I. Polyrakis) Let K be a cone in an ordered normed

space and α > 0. A point x0 is called semi - interior point of K if

x0 − αB+[0, 1] ⊆ K
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for some α > 0.

Lemma 4.12. (cf [3, Example 2.5]) In a Riesz space (R2,≤), the function

‖ • ‖n, defined by

‖(x, y)‖n =

|x|+ |y|, if xy ≥ 0,

max{|x|, |y|} − n−1
n min{|x|, |y|}, if xy < 0.

and its unit ball is the polygon of R2 with vertices

(1, 0), (0, 1), (−n, n), (−1, 0), (0,−1), (n,−n).

is a norm on R2

Proof. (1) Let x, y ∈ R2. If xy ≥ 0. Then ‖•‖n is norm (1 - norm on R2).

(2) If xy < 0 and α ∈ R.

(i) for (x, y) ∈ Xn we have

‖(αx, αy)‖n = max{|αx|, |αy|} − n− 1

n
min{|αx|, |αy|}

= |α|max{|x|, |y|} − |α|n− 1

n
min{|x|, |y|}

= |α|‖(x, y)‖n.

(ii) Let (x1, y1), (x2, y2) ∈ Xn. Now,

‖(x1, y1) + (x2, y2)‖n

= max{|x1 + x2|, |y1 + y2|} −
n− 1

n
min{|x1 + x2|, |y1 + y2|}

≤ max{|x1|+ |x2|, |y1|+ |y2|} −
n− 1

n
min{|x1|+ |x2|, |y1|+ |y2|}

= max{(|x1|, |y1|) + (|x2|, |y2|)} −
n− 1

n
min{(|x1|, |y1|) + (|x2|, |y2|)}

= max{(|x1|, |y1)} −
n− 1

n
min{(|x1|, |y1|)}

+ max{(|x2|, |y2)} −
n− 1

n
min{(|x2|, |y2|)}

= ‖(x1, y1)‖n + ‖(x2, y2)‖n

Note that if xy < 0, we have

max{|x|, |y|} ≥ min{|x|, |y|}

max{|x|, |y|} > n− 1

n
min{|x|, |y|} since 0 ≤ n− 1

n
< 1

max{|x|, |y|} − n− 1

n
min{|x|, |y|} > 0
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and therefore, ‖(x, y)‖n ≥ 0. Thus ‖(x, y)‖n = 0 if and only if |x|+ |y| = 0,

that is, if and only if x = y = 0. Hence the result.

It is clear that an interior point of a cone K is a semi - interior point.

However, the converse is not true in general.

Example 4.13. (cf [3, Example 2.5]) Consider (R2,≤) as in above lemma.

Let E be a space of all pointwise bounded sequences in R2. Now consider

the ordered triple (E,K, ‖ • ‖∞), where K = {(xn) ∈ E : xn ∈ (R2)+} for

any n and ‖x‖∞ = sup
n∈N
‖xn‖n. Let X = K −K be subspace of E. The pair

(X,X+) is an ordered space. Suppose also that X = P − P is the subspace

of E generated by the cone P and suppose that X is ordered by the cone

X+ = P . We show that X+ has a semi - interior point but no interior point.

Proof. Let 1 be the constant sequence (1, 1) of X for any n. Claim: 1 is

not an interior point of X+. To see, for any m we take y = (yn) ∈ X with

ym = (−2, 2) and yn = (0, 0) if n 6= m. Since (−2)(2) < 0, then

‖y‖∞ = sup{max{| − 2|, |2|} − m−1
m min{| − 2|, |2|}} = 2− m−1

m (2) = 2
m

and 1 + y = (−1, 3) /∈ X+. Therefore 1 + αB[0, 1] * X+ for any α > 0. In

the same way x ∈ X+ is not an interior point and then that X+ has empty

interior.

We next show that 1 is a semi - interior point of X+.

First note that

B+[0, 1] = B[0, 1] ∩X+

= {x ∈ X : ‖x‖n ≤ 1} ∩ {x ∈ X : x ≥ 0}

= {x ∈ X+ : ‖x‖n ≤ 1}.

Now, for any (xn) ∈ B+[0, 1]. Then xn1 , xn2 ≥ 0. Therefore, by definition,

‖xn‖n = |xn1 |+ |xn2 |

= xn1 + xn2

≤ 1.

Thus, 0 ≤ xn1 + xn2 ≤ 1. Hence xn1 , xn2 ≤ 1. Therefore,

(0, 0) ≤ (1, 1)− (xn1 , xn2) ≤ (1, 1).

This implies that 1−B+[0, 1] ⊆ X+. Hence 1 is semi - interior of X+.
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Lemma 4.14. (cf [2, Lemma 1.7]) Let K be a cone of normed vector space

X. A vector e ∈ K is an order unit if and only if it is an interior point of

K.

Proof. Assume a vector e is an interior point of K. Then for each −x ∈ X,

there is α > 0 such e + α(−x) = e − αx ∈ K. That is, e − αx ≥ 0

or equivalently e ≥ αx. Thus x ≤ 1
αe. Hence e is an order unit of K.

Conversely, suppose e is an order unit of K and take −x ∈ X. Therefore,

there is α0 > 0 such that −x ≤ α0e. Now, take α ∈ [0, α0]. So, −x ≤ α0e ≤
αe. Therefore, 0 ≤ αe + x for all α ∈ [0, α0]. This implies that e is an

internal point of K.

Theorem 4.15. ([3, Theorem 2.8]) Let (X, ‖ • ‖) be an ordered Banach

space and K be a closed and generating cone of X. Then any semi - interior

point x0 of K is an order unit of X.

Proof. Suppose x0 is a semi - interior point of K and let x1 ∈ K, then by

definition 4.11 there exists α > 0 such that x0 − α
x1
‖x1‖

≥ 0, that is,

kx0 ≥
x1
‖x1‖

, where k =
1

α
(4)

since
x1
‖x1‖

∈ B+[0, 1]. Now let x ∈ X. Since K is generating there exist

x1, x2 ∈ K such that x = x1 − x2. Then

x = x1 − x2

≤ x1

= ‖x1‖
x1
‖x1‖

≤ ‖x1‖kx0 by (1)

≤ akx0 a ≥ ‖x1‖, a > 0 since K is closed

and similarly

x = x1 − x2

≥ −x2

= ‖x2‖
−x2
‖x2‖

≥ −‖x2‖kx0 by (1)

≥ −akx0 a ≥ ‖x2‖, a > 0 since K is closed.

Therefore x ∈ [−akx0, akx0] and x0 is an order unit of X.
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Definition 4.16. Let X+ be a positive cone of normed space X. We say

X+ gives an open decomposition if there exists α > 0 so that

αB[0, 1] ⊆ B+[0, 1]−B+[0, 1],

where B+[0, 1] = B[0, 1] ∩X+. That is, the convex set B+[0, 1] − B+[0, 1]

is a neighborhood of zero.

Next we give an examples of a cones that gives an open decomposition.

Example 4.17. Consider the lexicographic cone and unit ball B[0, 1] in R2,

where ‖(x, y)‖ = sup{|x|, |y|}. Then

B+[0, 1] = B[0, 1] ∩K

= {(x, y) : 0 < x ≤ 1 and− 1 ≤ y or x = 0 and 0 ≤ y ≤ 1}.

It can be seen that the points, x1, x2 ∈ B+[0, 1] are such that ‖x1−x2‖ ≤ 2.

For example, if we take two points at right - hand corners of B+[0, 1], namely

(1, 1), (1,−1) ∈ B+[0, 1], we get

(1, 1)− (1,−1) = (0, 2) ∈ B+[0, 1]−B+[0, 1]

and that ‖(0, 2)‖ ≤ 2. So if 0 < α < 2 then αB[0, 1] ⊆ B+[0, 1] − B+[0, 1].

Therefore K gives an open decomposition.

Theorem 4.18. [cf, (Krein - Smulian)] Let (X, ‖•‖) be an ordered Banach

space and X+ a closed and generating positive cone, then X+ gives an open

decomposition.

Proof. Since a neighborhood B[0, 1] of zero is both absorbing and balanced

then by Theorem 2.10 in [7], there exists some α > 0 such that

αB[0, 1] ⊆ B+[0, 1]−B+[0, 1].

That is, X+ gives an open decomposition which also means that

(B[0, 1] ∩X+)− (B[0, 1] ∩X+)

is a neighbourhood of zero.

We consider the conditions for a semi - interior point to be an interior

point.

Proposition 4.19. ([3, Proposition 2.4]) If X is a Banach space ordered

by the closed and generating cone K, then any semi - interior point of K is

an interior point of K.
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Proof. Let x0 be a semi - interior point of K. Then x0−αB+[0, 1] ⊆ K, for

some α > 0. Again, αB+[0, 1] ⊆ K. So by definition,

(x0 − αB+[0, 1]) + αB+[0, 1] = x0 + α (B+[0, 1]−B+[0, 1]) ⊆ K.

By Theorem 4.18, there exists a > 0 such aB[0, 1] ⊆ B+[0, 1] − B+[0, 1],

therefore we have

x0 + aαB[0, 1] ⊆ x0 + α (B+[0, 1]−B+[0, 1]) ⊆ K

and x0 is an interior point of K.

We recall the following lemma.

Lemma 4.20. Let (X, τ) be an ordered Hausdorff topological vector space

whose cone X+ has a nonempty interior. Then X+ is Archimedean if and

only if it is closed.

We use Theorem 4.18 to give an example of a cone that gives an open

decomposition.

Example 4.21. Let X = C1[0, 1], with norm ‖f‖, defined by

‖f‖ = ‖f ′‖∞ + ‖f‖∞

for f ∈ X and K = X+, then K gives open decomposition.

Proof. We know that (X, ‖ • ‖) is an ordered Banach space. We first show

that f(x) = 1 for x ∈ [0, 1] is an order unit. Take f ∈ X, then f is

continuous on the closed and bounded interval [0,1]. Therefore f(x) attains

a maximum on [0,1]. Let a = max
x∈[0,1]

f(x) and a(x) = a, a constant function,

then a(x) ∈ X since it is continuous and differentiable on [0,1]. Let 1(x) = 1

and λ = max{a, 1} > 0, then f ≤ a(x) = a ≤ max{a, 1} = λ1. Further, as

1(x) > 0, we have 1(x) ∈ X+. Since f ∈ X is arbitrary, this show that 1 is

an order unit ofX. ThusX has order unit. Therefore f(x) ≤ ‖f‖∞1 ≤ ‖f‖1
for all f ∈ X, where 1(x) is constant function and order unit in X. Thus by

theorem 4.3 X+ is generating. Again by Proposition 1.35 the norm topology

is Hausdorff. Therefore, by Lemma 4.20, X+ is closed since by Proposition

1.56 and Example 1.58, X+ is also Archimedean. Hence X has an open

decomposition property.

Definition 4.22. A cone K of a Banach space X is reflexive if the set

B+[0, 1] = B[0, 1] ∩K
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is weakly compact, that is, every sequence in B+[0, 1] has a weakly conver-

gent subsequence.

Now we give an example of a reflexive cone.

Example 4.23. Consider the base Bf for the positive cone `+p of the Banach

space `p, with 1 < p < ∞ defined by f ∈ `+q where 1
p + 1

q = 1. Then

by Corollary 2.17 Bf is closed and unbounded. Let x0 ∈ Bf , ρ > 0 with

ρ > ‖x0‖p,

Bρ = {x ∈ Bf : ‖x‖p ≤ ρ}.

Then Bρ has a non - empty interior and the set

K = {λx : λ > 0, x ∈ Bρ}

generated by its base Bρ is a cone since Bρ is convex. The

B+[0, 1] = B[0, 1] ∩K

is weakly compact, that is, K is reflexive.

Proof. First note that K is closed (and thus weakly closed) by Proposition

2.19 since its base Bρ is closed and bounded. Let (xnk) be a subsequence of

(xn) in B+[0, 1] such that xnk
w→ x in `p. Then

xnk ∈ B[0, 1] ∩K

and since K is weakly closed and B[0, 1] is weakly compact (`p is reflexive)

then xnk
w→ x in B[0, 1] ∩ K. That is, xnk

w→ x in B+[0, 1] and thus K is

reflexive.

We consider the following properties of reflexive cone.

Proposition 4.24. (cf [8, Remark 3.1.1] Let (X, ‖ • ‖) be a Banach space

and K a cone in X. If K is reflexive, then it is closed.

Proof. Suppose K is a reflexive cone in a Banach space (X, ‖ • ‖). Take a

sequence (xn) in K such that xn → x ∈ X. Therefore, (xn) is bounded.

That is, there is m > 0 such that ‖xn‖ ≤ m for all n ∈ N, or equivalently

xn ∈ mB+[0, 1]. Now, K reflexive implies that mB+[0, 1] is weakly closed

and hence closed. So x ∈ mB+[0, 1] ⊆ K. Thus K is closed.

Corollary 4.25. (cf [8, Remark 3.1.2]) Any closed cone K of a reflexive

space (X, ‖ • ‖) is reflexive.
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Proof. Supose X is a reflexive space and K a closed cone of X. Then by

Theorem 3.2 B[0, 1] is weakly compact. Therefore, every sequence (xn)

in B[0, 1] has weakly convergent subsequence in B[0, 1]. Now, take a set

B+[0, 1] = B[0, 1] ∩K and let (yn) be a sequence in B+[0, 1]. Then

(yn) ∈ B[0, 1] ∩K.

Therefore, there is a subsequence (ynk) of (yn) such that ynk
w→ y ∈ B[0, 1]

since B[0, 1] is weakly compact. But since K is closed and convex it follows,

that K is weakly closed, then y ∈ K. That is y ∈ B[0, 1] ∩K = B+[0, 1].

Thus B+[0, 1] is weakly compact. So K is reflexive.

We obtain the converse of the above results for generating cones.

Corollary 4.26. If a cone K of a Banach space X is reflexive and generating

then X is reflexive.

Proof. Let K be a reflexive generating cone of a Banach space X. By

Theorem 4.18 a cone K gives an open decomposition since K is closed (by

being reflexive) and generating, that is, αB[0, 1] ⊆ B+[0, 1]−B+[0, 1], where

B+[0, 1] = B[0, 1] ∩K.

Note that αB[0, 1] is weakly closed since it is closed and convex. Now let,

yn ∈ αB[0, 1] then yn ∈ B+[0, 1]−B+[0, 1] that is,

yn = xn − zn ∈ B+[0, 1]−B+[0, 1]

where xn, zn ∈ B+[0, 1]. Since B+[0, 1] is weakly compact (K is reflexive)

then there exist subsequences (xnk) and (znk) of (xn) and (zn) respectively

such that xnk
w→ x and znk

w→ z. Therefore for subsequence (ynk) of yn, we

have

ynk = xnk − znk
w→ x− z

in B+[0, 1]−B+[0, 1]. And x− z ∈ αB[0, 1] since αB[0, 1] is weakly closed.

Therefore B[0, 1] is weakly compact and therefore X is reflexive.

The next theorem shows that reflexive cone K of a Banach space X

coincide with their second dual cone in X∗∗, that is, K = K∗∗.

Theorem 4.27. ([8, Theorem 3.3]) Let X be a Banach space, we denote

by JX : X → X∗∗ the natural embedding of X in X∗∗. A closed cone K of

X is reflexive if and only if JX(K) = K∗∗, where K∗∗ ⊂ X∗∗.
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Next, we mention without proof the important Theorem that character-

izes a reflexive Banach space by means of a reflexive cone.

Theorem 4.28. ([8, Theorem 3.5]) A Banach space X is reflexive if and

only if there exists a closed cone K of X so that the cones K and K∗ are

reflexive.

This Theorem implies that in every non reflexive Banach space a reflexive

cone cannot have a dual cone which is reflexive.

Definition 4.29. The Rademacher functions {rn}∞n=0 on [0, 1] are defined

by rn(x) = sign(sin 2nπx), where

sign(sin 2nπx) =



1, x ∈
2n−1−1⋃
k=0

(
2k

2n
,
2k + 1

2n

)
,

0, x = k
2n , k = 0, ..., 2n,

−1, x ∈
2n−1−1⋃
k=0

(
2k + 1

2n
,
2k + 2

2n

)
.

Note that |rn| = 1 almost everywhere on [0, 1] and r0 = 1 for x ∈ [0, 1].

Theorem 4.30. (Khintchine’s Inequalties) There exist constants

Ap, Bp where 1 ≤ p <∞

such that for any finite sequence of scalars (ai)
n
i=1 and any n ∈ N

Ap

(
n∑
i=1

|ai|2
) 1

2

≤

∥∥∥∥∥
n∑
i=1

airi

∥∥∥∥∥
p

≤ Bp

(
n∑
i=1

|ai|2
) 1

2

if 1 ≤ p < 2

and (
n∑
i=1

|ai|2
) 1

2

≤

∥∥∥∥∥
n∑
i=1

airi

∥∥∥∥∥
p

≤ Bp

(
n∑
i=1

|ai|2
) 1

2

if p > 2.

What it says.

(i) – Khintchine’s Inequalties tells us that (ri)
∞
i=1 is a basic sequence

equivalent to the standard basis of `2 in every Lp, 1 ≤ p <∞.

– In L∞, (ri)
∞
i=1 is isometrically equivalent to canonical `1 - basis.
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(ii) (ri)
∞
i=1 is an orthonormal sequence in `2, such that∥∥∥∥∥

n∑
i=1

airi

∥∥∥∥∥
p

=

(
n∑
i=1

|ai|2
) 1

2

for any scalars (ai). But (ri)
∞
i=1 is not complete.

(iii) Khintchine’s Inequalties, all norms ‖•‖p, 1 ≤ p <∞ are equivalent on

the linear span of the Rademacher function on Lp.

Now we can provide an example of a reflexive cone such that its dual is not

reflexive.

Example 4.31. Let X = L1([0, 1]), Y is the closed subspace of X generated

by the Rademacher functions (ri), and let K be the positive cone of (ri).

Recall that (ri) is a basic sequence in L1([0, 1]), equivalent to the standard

basis of `2 by Theorem 4.30, therefore Y is isomorphic to `2 by Theorem

4.30 and the cone K is reflexive. By Theorem 4.28, the dual cone K∗ of K

in L∞([0, 1]) is not reflexive.

4.2 Bases of reflexive cones.

Theorem 4.32. (cf [8, Theorem 4.3]) Any reflexive cone of the Banach

space is not a mixed based cone.

Proof. Suppose that a cone K of a Banach space X is reflexive, then by

definition B+[0, 1] is weakly compact. By Theorem 2.43 we have either the

base Bf is bounded for every f ∈ K∗s or Bf is unbounded for every f ∈ K∗s.
This means K cannot have a mixed based cone.

The converse of the above theorem is not true in general as the following

example shows.

Example 4.33. To see, we consider the cone c+0 in a Banach space c0. This

closed cone is not a mixed base cone since it is not conically isomorphic to

`+1 , but c+0 is not reflexive since it contains a closed subcone isomorphic to

`+1 .

The next result provides condition for a reflexive cone.

Proposition 4.34. ([8, Proposition 4.4]) Let X be a Banach space ordered

by the closed cone K. If the set K∗s 6= ∅ and for any f ∈ K∗s the base Bf

for K defined by f is bounded, then the cone K is reflexive.
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The converse is not true in general.

Example 4.35. The cone `+2 is reflexive by Corollary 4.25 since `+2 is a

closed cone of a reflexive space `2 and it has a base Bf defined by unbounded

bases for all f ∈ K∗s by Corollary 2.17.

Definition 4.36. ([27, II Definition 10.1]) A basis (xn) of a Banach space

X is called to be of type `+ if (xn) is bounded and there is a constant η > 0

such that for all finite sequences α1, α2, ..., αn ≥ 0∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥ ≥ η
n∑
i=1

αi

Example 4.37. Let (en) be a sequence such that en = (0, 0, ...,
nth

1 , 0, 0, ...).

A basis (en) ∈ `1 is of type `+. To see, first note that (en) is bounded since

‖en‖1 =

∞∑
n=1

|en| = 1 < ∞. Now take any finite sequence (αi)
n
i=1 such that

0 ≤ αi <∞ for each i. Then
n∑
i=1

αi <∞ and

∥∥∥∥∥
n∑
i=1

αiei

∥∥∥∥∥ = αi <∞.

Because they are both finite real numbers, there exists η > 0 such∥∥∥∥∥
n∑
i=1

αiei

∥∥∥∥∥ ≥ η
n∑
i=1

αi.

We recall the following four theorems.

Theorem 4.38. ([27, II Theorem 10.2]) Let (xn) be a bounded basis of a

real Banach space X with the associated sequence of coefficient functionals

and let K(xn) be the cone associated to the basis (xn). The following are

equivalent

(i) (xn) is of type `+.

(ii) K(xn) =

{ ∞∑
i=1

αixi : αn ≥ 0, n = 1, 2, ...,
∞∑
i=1

αi <∞

}
.

(iii) K(xn) has a bounded base.

Theorem 4.39. Let (xn) be a sequence in a Banach space (X, ‖ • ‖) such

that xn is not norm convergent 0.

(i) If xn
w→ 0 or
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(ii) If (xn) is weakly Cauchy and not weakly convergent,

then (xn) has a basic subsequence.

Theorem 4.40. ([Rosenthal, 7]) A Banach space X contains a subspace

isomorphic to `1 if and only if it has a bounded sequence with no weakly

Cauchy subsequence.

Theorem 4.41. ([27, II Theorem 10.1]) Let (xn) be a basis of a Banach

space X, with

sup
1≤n<∞

‖xn‖ <∞.

The following statement are equivalent:

(i) (xn) is of type `+.

(ii) There exists an f ∈ X∗ such that f(xn) ≥ 1 for n ∈ N.

We now provide conditions for a cone to be reflexive.

Theorem 4.42. ([8, Theorem 4.5]) A closed cone K of a Banach space X

is reflexive if and only if K does not contain a closed cone isomorphic to `+1 .

Proof. Let X be a Banach space, K a reflexive cone of X and K1 a closed

subcone of K. Then K1 is reflexive by Corollary 4.25. Suppose that K1 is

isomorphic to `+1 . Then K1 by Theorem 3.25, is a mixed based cone with

empty interior. But this contradicts Theorem 4.32. Therefore, no closed

subcone of K is isomorphic to `+1 .

Conversely, suppose that K does not contain a closed cone isomorphic to `+1

and K is not reflexive cone. Then by definition, the set B+[0, 1] = B[0, 1]∩K
is not weakly compact set. Hence, there is a sequence {xn} in B+[0, 1]

with no weakly convergent subsequence. So by Theorem 4.40, there exists

a weakly Cauchy subsequence (xnα) of (xn), since K does not contain a

closed cone isomorphic to `+1 . Again by Theorem 4.39, {xn} has a basic

subsequence {xnB}. The sequence {xn} does not have a weakly convergent

subsequence, therefore {xn} is not weakly convergent to 0. Hence, there is

f ∈ X∗ and a subsequence {xnk} of {xn} such that f(xnk) ≥ 1 for each

k ∈ N. Therefore by Theorem 4.41, {xnk} is a basic sequence of `+− type

and the cone

P =

{
p ∈ X : p =

∞∑
k=1

αkxnk : αk ≥ 0 for every k ∈ N

}
⊆ K
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generated by {xnk} is isomorphic to `+1 by Theorem 4.39. But this contra-

dicts our assumption.

Corollary 4.43. ([8, Corollary 4.6]) If the closed cones K ⊆ X,Q ⊆ Y of

the Banach spaces X,Y are isomorphic we have: K is reflexive if and only

if Q is reflexive.

Proof. Let T be an isomorphism of K onto Q. That is, T is an additive,

positively homogeneous, one - to - one map of K onto Q such that T and

T−1 are continuous in the induced topology. Suppose K is reflexive and that

Q is nonreflexive. Then by Theorem 4.42, there is a closed subcone Q1 of Q

which is isomorphic to `+1 . Therefore T−1(Q1) is a closed cone of K, since

cone Q1 is closed in Q and T is isomorphism of K onto Q, isomorphic to

`+1 , because composite of two isomorphisms is an isomorphism. This leads

to contradiction.

Theorem 4.44. ([8, Theorem 4.7]) Suppose that K is a reflexive cone of a

Banach space X. If K has a bounded base defined by f ∈ X∗, then K does

not contain a basic sequence.

Proof. Let {xn} ⊆ K be a basic sequence and let yn =
xn

f(xn)
for each n.

Then (yn) is a basic sequence as a scalar multiple of a basic sequence and

f(yn) =
f(xn)

f(xn)
since f is linear and f(xn) ∈ R

= 1 for each n.

Now, (yn) is a basic sequence of `+ - type since (yn) is bounded. To this

end,

‖yn‖ =

∥∥∥∥ xn
f(xn)

∥∥∥∥
=

1

|f(xn)|
‖xn‖

≤ M

|f(x)|
, M > 0, since K is bounded

and by Theorem 4.41. Hence the cone

P =

{
p ∈ X : p =

∞∑
k=1

αkyn : αk ≥ 0 for every k ∈ N

}
⊆ K

generated by {yn} is isomorphic to `+1 which is a contradiction.
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Theorem 4.45. ([Bessaga - Pelczynski Selection Principle]) Let (xn) be a

weakly null, normalized sequence in the Banach space X. Then (xn) admits

of a basic sequence.

Theorem 4.46. (cf [8, Theorem 4.8]) Suppose that K is a reflexive cone of

a Banach space X. If X has an unbounded base defined by f ∈ X∗, then K

contains a normalized basic sequence {xn} which converges weakly to zero.

Proof. Suppose K is reflexive and has unbounded base Bf . Then there is

a sequence (yn) in Bf such that yn ≥ 0 and ‖yn‖ → ∞ for each n ∈ N
or equivalently ‖yn‖ > n for each n ∈ N. Now, consider the sequence

xn = yn
‖yn‖ . Then ‖xn‖ = 1 and hence (xn) is in B+[0, 1]. The set B+[0, 1] is

weakly compact, since K is reflexive, therefore (xn) has a weakly convergent

subsequence (xn). Say xn
w→ x. That is, f(xn) → f(x), f ∈ X∗. Since

B+[0, 1] is weakly closed, x ∈ B+[0, 1] ⊆ K. Now,

f(x) = lim
n→∞

f(xn) = lim
n→∞

f

(
yn
‖yn‖

)
= lim

n→∞

1

‖yn‖
since yn ∈ Bf , that is, f(yn) = 1

= 0, since lim
n→∞

‖yn‖ =∞.

hence x = 0, since f is strictly positive on K. By Theorem 4.45 {xn} has a

basic subsequence.

Definition 4.47. ([18, Definition 4.2.10]) A basis (xn) for a Banach space X

is unconditional if, for every x ∈ X,x =
∑
n

xn is unconditionally convergent,

that is, if the series
∑
n

αnxn converges for every choice of (αn) ∈ `∞.

Theorem 4.48. ([27, II Theorem 16.3]) Let (xn) a sequence in a Banach

space X and (fn) be a corresponding sequence of linear functional in X∗.

The following statements are equivalent:

(i) (xn) is an unconditional basis of X.

(ii) A cone K in X is normal and generating.

Theorem 4.49. (cf [8, Theorem 4.9]) Let (X, ‖•‖) be a Banach space with

an unconditional basis. If K is reflexive with an unbounded base defined

by a vector of X∗, then cl(K −K) contains an infinite dimensional reflexive

subspace.
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Proof. Suppose that K = {λx : x ∈ Bf , f ∈ X∗} is a reflexive cone in a

Banach space (X, ‖•‖) with unbounded base Bf , f ∈ X∗. By Theorem 4.46,

K has a normalized basic weakly null sequence (xn). That is,

K =

{
y ∈ X : y =

∞∑
n=1

αnxn, αn ≥ 0, ‖xn‖ = 1, n ∈ N

}
.

Hence by Theorem 4.45 (xn) has an unconditional basic subsequence (xnk).

That is,

∞∑
k=1

αkxnk converges for all choices of αk ∈ R. Now let

K(xnk )
=

{
x ∈ X : x =

∞∑
k=1

αkxnk , αk ≥ 0, k ∈ R

}
.

be a cone generated by (xnk). Then K(xnk )
is a closed subcone of K since

{xnk} ⊆ {xn} and
∞∑
k=1

αkxnk <∞. Hence K(xnk )
is a reflexive subcone of K

by Corollary 4.25 since K is reflexive. K(xnk )
is also generating by Theorem

4.48 because (xnk) is unconditional basis. Now let Y be a subspace of X

generated by K(xnk )
, that is, Y = K(xnk )

−K(xnk )
⊆ cl(K −K), since K(nk)

is closed and K(nk) ⊆ K. Then Y is closed since K(xnk )
is closed. Then note

that

Y = K(xnk )
−K(xnk )

=

{
x ∈ X : x =

∞∑
k=1

αkxnk −
∞∑
k=1

λkxnk , αk, λk ≥ 0, k ∈ N

}

=

{
x ∈ X : x =

∞∑
k=1

(αk − λk)xnk , αk − λk ∈ R

}
= cl(span{xnk}) since Y is closed.

Again, K(xnk )
gives an open decomposition in Y by Theorem 4.7 since K(xnk )

is closed and generating. Lastly, Y is an infinite dimensional reflexive by

Corollary 4.26 since Y contains a reflexive and generating cone K(xnk )
that

is generated by an infinite subsequence (xnk).

Proposition 4.50. A vector space X ordered by a reflexive cone K is

Archmedean.

Proof. Suppose K is a reflexive cone and that nx ≤ y for n ∈ N, x ∈ X and

y ∈ K. We claim that x ≤ 0. Now, nx ≤ y if and only if y − nx ∈ K. And
1
n(y − nx) = y

n − x ∈ K. If n→∞, 1ny − x→ −x. Since K is reflexive, it is
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closed. Hence −x ∈ K. That is −x ≥ 0 or equivalently x ≤ 0. Thus, X is

Archimedean.

The following two important properties of spaces ordered by reflexive

cones are worth mentioning.

Theorem 4.51. ([8, Theorem 7.1]) Any Banach space X, ordered by a

reflexive and normal cone K, is Dedekind complete.

Corollary 4.52. ([8, Corollary 7.5]) Any reflexive and generating cone of

an infinite dimensional Banach space X with a bounded base cannot be a

lattice cone.

We recall results based on the Riesz decomposition property and corol-

lary which is due to [2], and use it in proving some lattice property.

Theorem 4.53. ([2, Theorem 2.46 (Andô)]) For an ordered Banach space

X with a closed, generating and normal cone, the following statements are

equivalent:

(i) X has the Riesz space decomposition property.

(ii) X∗∗ is a Riesz space.

(iii) X∗ has the Riesz decomposition property.

Corollary 4.54. ([2, Corollary 2.43]) For an ordered norm space X whose

closed cone X+ is generating and normal we have the following:

(i) then dual cone (X+)∗ is generating in X∗.

(ii) If X is also a reflexive Banach space, then dual cone (X+)∗ is normal.

We complete this section by one of the important lattice property of a

Banach space ordered by a reflexive cone.

Theorem 4.55. (cf [8, Theorem 7.2]) A Banach space X ordered by a nor-

mal, generating and reflexive cone K has the Riesz decomposition property

if and only if X is a lattice.

Proof. Assume that X is a lattice, then X has the Riesz decomposition

property by Corollary 1.30.

Conversely, suppose that X has the Riesz decomposition property. By The-

orem 4.53, X∗ is a Riesz space. Since X is also reflexive as a Banach space
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of a closed, generating and reflexive cone then by Corollary 4.54 dual cone

(X+)∗ is generating and normal. Then by Theorem 4.53, X∗∗ is a Riesz

space. Since X is reflexive, then X = X∗∗ is also a Riesz space. Therefore

X has a lattice property.
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