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Vibration-based condition monitoring is a key and crucial element for asset longevity and to avoid
unexpected financial compromise. Currently, data-driven methodologies often require significant
investments into data acquisition and a large amount of operational data for both healthy and unhealthy
cases. The acquisition of unhealthy fault data is often financially infeasible and the result is that most
methods detailed in literature are not suitable for critical industrial applications.

In this work, unsupervised latent variable models negate the requirement for asset fault data. These
models operate by learning the representation of healthy data and utilise health indicators to track
deviance from this representation. A variety of latent variable models are compared, namely: Principal
Component Analysis, Variational Auto-Encoders and Generative Adversarial Network-based methods.
This research investigated the relationship between time-series data and latent variable model design
under the sensible notion of data interpretation, the influence of model complexity on result performance
on different datasets and shows that the latent manifold, when untangled and traversed in a sensible
manner, is indicative of damage.

Three latent health indicators are proposed in this work and utilised in conjunction with a proposed
temporal preservation approach. The performance is compared over the different models. It was
found that these latent health indicators can augment standard health indicators and benefit model
performance. This allows one to compare the performance of different latent variable models, an
approach that has not been realised in previous work as the interpretation of the latent manifold and
the manifold response to anomalous instances had not been explored. If all aspects of a latent variable
model are systematically investigated and compared, different models can be analysed on a consistent
platform.

In the model analysis step, a latent variable model is used to evaluate the available data such that the
health indicators used to infer the health state of an asset, are available for analysis and comparison.
The datasets investigated in this work consist of stationary and time-varying operating conditions. The
objective was to determine whether deep learning is comparable or on par with state-of-the-art signal
processing techniques. The results showed that damage is detectable in both the input space and the
latent space and can be trended to identify clear condition deviance points. This highlights that both
spaces are indicative of damage when analysed in a sensible manner. A key take away from this work
is that for data that contains impulsive components that manifest naturally and not due to the presence
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of a fault, the anomaly detection procedure may be limited by inherent assumptions made in model
formulations concerning Gaussianity.

This work illustrates how the latent manifold is useful for the detection of anomalous instances, how
one must consider a variety of latent-variable model types and how subtle changes to data processing
can benefit model performance analysis substantially. For vibration-based condition monitoring, latent
variable models offer significant improvements in fault diagnostics and reduce the requirement for
expert knowledge. This can ultimately improve asset longevity and the investment required from
businesses in asset maintenance.
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Chapter 1 Introduction

1.1 Background
Industrial processes, particularly those applicable to sectors such as mining, manufacturing and power
generation, are subject to increased production demand. The productivity of such processes must be
high, to satisfy demands placed on the process. The productivity of industrial processes is directly
linked to the assets that these processes use, where often the expectation in these processes is that they
must maintain operation with minimal intervention or downtime. However, deterioration of physical
assets is inevitable, which naturally leads to the requirement for asset maintenance.

Maintenance of industrial assets has evolved, from the original method of unplanned maintenance,
where only significant asset damage resulted in an intervention. This method, however, can be costly
as the down-time of critical assets can lead to severe financial privation. Time-based preventative
maintenance was subsequently introduced and functions on the principle of periodic maintenance to
ensure that asset reliability is maintained. This method can be expensive as periodic maintenance
does not offer improved cost per unit financial gain, and gave rise to a more efficient approach known
as Condition Based Maintenance (CBM) (Jardine et al., 2006). CBM requires that maintenance be
performed when there is clear evidence of a problem within a physical asset.

Vibration-based CBM is the most common technique used when performing CBM, and is based on
the principle that the health characteristics of an asset are intrinsically contained within a vibration
signal. However, this is not the only type of health characteristic detection, with acoustic emission,
oil debris, and magnetic chip detection being used for CBM (Večeř et al., 2005). The vibration signal
itself is not a sufficient indicator, but rather the signal covariates that relate to the asset’s state. Rotating
machinery is a common asset group within industry and resulted in the extensive development of
CBM techniques to ensure that reliability is maintained. Gearboxes in industrial applications are not
only critical components but also a severe expense should a critical failure occur. For example, wind
turbine statistics show that 17% of failures are due to gearboxes alone, which also requires the longest
downtime to perform gearbox maintenance. Bearings are an even larger contributor, with bearing
failure causing 76% of wind turbine failures (Sheng, 2016).

Vibration-based CBM operates on the principle of three distinct operational steps, namely, data
acquisition, data processing, and maintenance decision-making (Jardine et al., 2006). Data acquisition
is the process of obtaining the necessary vibration signals through the use of sensors. Data processing is
the step whereby the covariates of the system are extracted from the signal, and often requires advanced
processing techniques. After the necessary covariates are extracted, maintenance decision-making
allows for health assessment of the asset. This decision-making is typically split into two categories,
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Chapter 1 Introduction

namely, diagnostics and prognostics. Diagnostics is a methodology whereby the covariates are mapped
to specific fault cases in the fault space. Prognostics refers to the prediction of the Remaining Useful
Life (RUL) of the asset. Prognostics differs in the sense that one aims to estimate the time to critical
fault failure, as opposed to classifying a fault directly.

The issue associated with diagnostic CBM is that once a fault is identified, one cannot prevent the
associated downtime and thus there is often little time for preparation. Prognostic CBM, however, is a
predictive-preventative methodology. A superior, alternate framework, Prognostics and Health Man-
agement (PHM), aims to incorporate the facets of diagnostics and prognostics. PHM is a framework
that aims to provide early detection and isolation of a fault such that it can be monitored and tracked
throughout the asset’s life-cycle. In that way, it attempts to isolate fault characteristics and trend the
variation in these characteristics to perform maintenance when required. The underlying goal of PHM
is to ensure an that the downtime of an asset is minimised through early system fault identification
(Lee et al., 2014). Once the fault has been isolated and trended, a failure threshold identifies when
maintenance is required (Lei et al., 2018).

There are three methods of PHM that are often utilised, namely, i) data-driven, ii) physics-driven
and iii) hybrid-driven PHM. Data-driven PHM refers to an empirical model structure that consists
of statistical techniques and features extracted from data. Data-driven models typically try to utilise
manually-extracted features from signals (notice here the link to vibrational CBM) and attempt to
predict the health of the machine on these covariates alone. In a data-driven framework, one needs
access to both healthy and unhealthy data, which, when dealing with critical assets, is uncommon
(Ramasso, 2014, Ramasso et al., 2015).

Physics-driven modelling requires a mathematical model of the asset, where this model requires
prior knowledge of the failure mechanisms that may occur. The mathematical model parameters
are usually unknown and thus need calibration, either through extensive experimental or empirical
data (Jardine et al., 2006, Liao and Köttig, 2014). Hybrid-driven modelling approaches attempt to
utilise the advantages of both techniques to maximise on the prognostic ability of the model. Recently,
however, a drive towards deep-learning-based PHM has arisen, which can be considered an alternative
to the data-driven approaches. This technique aims to extract features from data through the use of
deep learning techniques, as opposed to hand-crafted covariates (Liao and Köttig, 2014, Lee et al.,
2014).

At this stage, the level of prior knowledge that one typically has available has not been addressed.
Due to the inherently dangerous nature of failure in critical assets, typically one does not have access
to extensive fault data. Usually, a vast amount of healthy asset data is available. With this in mind,
it is necessary to distinguish between fault detection, diagnosis, and severity. Fault detection and
severity is one form of PHM, and fault diagnosis is another. One can apply both deep learning and
signal processing approaches to both, with respective advantages and disadvantages that one can
exploit. Deep learning offers benefits such as a reduced requirement for domain expert knowledge, no
vibration signal alteration as the raw vibration signals are used as inputs and improved diagnosis result
interpretation (Lei et al., 2020b).

The disadvantages of deep learning include the requirement for target fault labels in supervised learning
applications and the requirement for computing resources. Furthermore, the type and location of a
fault are not always known or identified, with signal processing approaches often focusing heavily on

Department of Mechanical and Aeronautical Engineering
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Chapter 1 Introduction

this investigation. In this work, deep learning methods are investigated to perform fault detection and
severity trending by only using healthy asset data.

The aim of this study is to perform anomaly detection in rotating machines using latent variable models
by considering sensible metrics and the sensible analysis of the metrics. The unsupervised context of
these models is induced through the use of only healthy asset data, whereby sensible metrics are used
to measure the deviation from this healthy state. In this process, time-series data from an asset undergo
a series of transformations between the initial observation of the signal and the final analysis metric,
with the latent variable model facilitating this transformation. The model will provide a fault severity
indicator or fault metric to the user that serves as an indication of the state of the asset. This metric can
then be trended and interpreted to determine whether asset maintenance is required by analysing the
deviation relative to the healthy state. This study will focus on the transformation of the data prior to
the model seeing this data and on all aspects of a latent variable model that can provide a fault severity
indicator. In Figure 1.1, a high level overview of this process is given, whereby a signal undergoes
some transformation to obtain an output metric that can be trended through time to detect deviations
from the healthy state of the asset.

Figure 1.1. An illustration of the process followed in latent variable model-based anomaly detection.
A time-series signal undergoes a series of transformations to produce a health metric that is trended
and then interpreted to determine if damage has occurred or detectable.

In this study, the techniques used operate by using the temporal coherence in time-series data to capture
a state of the system. This state, as highlighted in Figure 1.1, is typically identified as the system in
a healthy condition and we use metrics to measure the deviation from this state. This work refers to
this as an unsupervised approach, to ensure that there is consistency between the literature for latent
variable models. However, it is clear that some knowledge of the data is exploited and this exploitation
allows for deviation identification to occur.

1.2 The Nature of Gearbox Faults
Vibration data obtained from gearbox applications consists of discrete-time waveform recordings
from a measurement device such as an accelerometer. This data may then contain covariates that are
indicative of damage. However, it is often non-trivial to extract this information. In this work, the
nature of faults in gearbox applications will be discussed as it is important that the reader understand
how the presence of different faults manifests in the vibration waveform.
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1.2.1 Gear Faults

Gear vibration, when measured, is known to be the prominent source within a vibration signal and
has a strong deterministic component. This is due to the interaction of multiple gear teeth within
one revolution of the machine. A gearbox set-up, in its most simplified form, consists of two gears
that transmit torque and can vary the speed of the output shaft proportional to the input (Shigley and
Mischke, 2005). The relationship between the input and output shaft speed, which are sometimes
referred to as the gear frequencies, for a parallel shaft gearbox is

fs j

fsi

=
Nti

Nt j

(1.1)

where Nt and fs is the number of teeth and the gear shaft frequency on gears i and j respectively,
otherwise identified as the shaft speed. It is obvious to note that each gear will have a corresponding
shaft frequency (Sharma and Parey, 2016). Due to the dynamics of gear interactions, deterministic
phenomena is generated that occurs periodically with the shaft speed due to the interactions between
the gear and pinion teeth. The frequency of this interaction present in a gearbox is known as the gear
mesh frequency, which is given by

fm =
Nti fsi

60
, (1.2)

where this form for the mesh frequency assumes that the gear shaft frequency ( fs) has units of
revolutions per minute. One can also note that a gear mesh frequency is shared between interacting
gears. In a complicated gearbox, i.e. one that consists of many gears and gear ratios, it is clear that
there will be many gear mesh frequencies present. Due to natural eccentricities within a gearbox,
modulation occurs, and a gearbox will always have side-bands on the frequency spectrum, around the
mesh frequency. Gears also typically have integer harmonics in the frequency spectrum due to the
periodic nature in which they operate. Wear inside a gearbox manifests as changes in the meshing
frequency energy (Martin, 1987).

Three typical fault types can occur in a gearbox, namely a local fault, a distributed fault and a deflection
fault. Local faults, such as a single tooth fault, will typically not manifest around the meshing frequency
as this fault acts like an impulse within the system. This response typically manifests in low-level
side-bands in the frequency spectrum of a signal. A distributed fault, such as multiple defective teeth,
manifests in the form of high amplitude side-bands (Martin, 1987). Gearbox faults such as pitting,
scoring and tooth spall are alternative faults that can also develop during the operational life-span of a
gearbox (Sharma and Parey, 2016).

1.2.2 Bearing Faults

Bearings, a rotating element often used in gearboxes, is considered a vital component in the effort
to produce rotation. Bearings typically assist in load transmission between the input and output of
a gearbox, by facilitating shaft rotation (Saruhan et al., 2014). Bearing defects, however, are far
more prevalent within gearboxes and thus cannot be ignored when considering gearbox faults. A
rolling-element bearing, one of the more common bearing types within a gearbox, typically exhibit
faults that manifest as a single point defect, a multiple point defect or a distributed fault. Single point
faults give rise to predictable fault frequencies for specific components, namely, the inner race, outer
race, rolling element or cage of a bearing. These faults often manifest through a crack or corrosion pits
within these bearing elements (Martin, 1987).

These faults all manifest in the form of impulses that are modulated due to the bearing housing. This
modulation causes the vibration signal of a bearing fault to initially manifest in a resonance frequency
band. At the same time, the impulse periodicity depends on the mode of application of the bearing.
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For example, consider the case where the outer race is stationary. Should the fault be a crack in the
outer race, periodic impulses can be expected, provided the operation is at a constant speed. However,
if the fault is on the inner race, the fault will only be detected when the race moves through the loading
zone of the bearing (McInerny and Dai, 2003).

Bearing faults have been identified to occur at different characteristic fault frequencies, assuming a
stationary outer race of the bearing which is a reasonable assumption for most applications. There
are four frequencies applicable to angular contact bearings. They are i) the Ball Pass Frequency on
the Outer race (BPFO), ii) Ball Pass Frequency on Inner race (BPFI), iii) Ball Spin Frequency (BSF)
and iv) the Bearing Cage Frequency (BCF). The latter is often referred to as the Fundamental Train
Frequency (FTF). All of these frequencies are a function of the shaft frequency, which is denoted as fs

and given in Hz, and can be presented as

BPFO = fs
N
2

(
1− d

D
cos(φ)

)
, (1.3)

BPFI = fs
N
2

(
1+

d
D

cos(φ)
)
, (1.4)

BSF = fs
D
2d

(
1−
[

d
D

cos(φ)
]2
)
, (1.5)

BCF = fs
1
2

(
1− d

D
cos(φ)

)
, (1.6)

where D is the pitch diameter, d is the roller element diameter, φ is the contact angle and N is the
number of roller elements within the bearing.

1.2.3 Operating Condition Problem

It is noticeable that the gear and bearing fault frequencies are all inherently functions of the input
shaft speed. It is also known that variations in operating condition can modulate the amplitude of
vibration signals (Stander and Heyns, 2006, Schmidt and Heyns, 2020). Thus, when operating under
time-varying conditions, it is difficult to identify whether there has been any form of fault development
as the fault frequency varies proportionally to the operating conditions. This problem has created
a juxtaposition in research, as the operating condition type limits many techniques detailed in the
literature. Thus, there has been a shift in the literature to try and address the time-varying speed problem
(Abboud et al., 2017). For the remainder of this review, it shall be emphasised, where applicable, to
what extent the current research addresses the variational speed problem.

1.2.4 Transmission Path Effects

Due to manufacturing restrictions, it may be difficult for an accelerometer to be placed directly on or
near the fault. Hence, accelerometers are often attached to the surface of the set-up housing. This,
however, induces a natural transfer function between the excitation source and the measurement
device, where this transfer function is a result of the transmission path between the two entities.
The transmission path can affect both the amplitude and phase of the vibration waveform, which
complicates the fault inference procedure (Stander and Heyns, 2006, Borghesani et al., 2012).

1.2.5 Fault Occurrence

It is clear that for bearing and gear faults, a frequency component is often present in the time waveform
that indicates the presence of a fault. In the work of Antoni (2009), an apparent reference is made
to the covariates indicative of damage in the waveform, with gear and bearing faults manifesting in
different components of the vibration signal. For faults that manifest as impulses in the signal, the
presence of a fault frequency indicates that the impulse itself is only detectable in the time waveform
with some periodicity. This implies that if one observes segments of a vibration signal, segments
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may exist that are representative of a healthy signal as they may contain no-fault information. This
is, however, subject to numerous assumptions, and these assumptions are addressed in Section 3.3 as
the reader must be aware of the potential effect of the rate of occurrence of fault components in time
waveforms.

1.3 Related Work
There are two main objectives that are key to effective PHM, namely diagnostics and prognostics
(Lee et al., 2014). In fault diagnostics, the goal is to be capable of performing fault detection, fault
isolation and fault severity while for prognostics the goal is to perform asset health assessment to
detect emerging failure and predict the asset RUL (Lee et al., 2014, Gao et al., 2015). Fault detection
entails that one detects the presence of a fault, regardless of the fault type. The requirement is that this
detection is made early into fault incipience, as typically one would prefer to detect the fault as early
as possible. Fault detection in PHM is based on the notion that a gearbox, in its healthy state, has a
standard condition that is given by characteristic properties, where these properties are contained in
the vibration signal (Gao et al., 2015). Thus, one aims to detect a fault when a deviation in behaviour
is detectable.

Fault isolation is the process of determining which component is responsible for the detected fault
and to determine what type of fault is present. Here the aim is to not only infer the fault type but to
ensure that the fault severity is known. Fault severity then refers to the severity of the fault and is often
defined relative to a known baseline state. This baseline state is given through a degradation metric or
health indicator (HI) and can be trended over the lifetime of an asset to infer the fault severity (Gao
et al., 2015). In typical applications of PHM, there are three levels of reasoning for fault diagnosis and
prognosis. Fault detection applications are only concerned with detecting and trending the severity of
a fault, without identifying the type of fault. Fault isolation only classifies a fault without considering
the severity of the fault. The third application is that of RUL prediction, often captured by prognosis
techniques (Lee et al., 2014). Gearbox fault analysis is imperative to ensure efficiency in industrial
asset reliability. Gearbox fault analysis contains two regions of interest, namely gear analysis and
bearing analysis as these elements are the more likely to develop faults (Sheng, 2016).

1.3.1 Signal Processing Approaches

Signal processing techniques are prevalent in literature, with a large body of work directed towards
gearbox fault problems. A brief overview of some of these techniques relevant to this study is
documented.

1.3.1.1 Traditional Approaches

Time-Statistical Approaches: the Root-Mean-Square (RMS) is a feature that is typical within signal
processing environments. The RMS of a signal, otherwise known as the quadratic mean, is thought to
be a representation of the energy within a signal x(t), whereby

RMS =

√
1
T

∫ T

0
x(t)2dt. (1.7)

An alternative metric is the crest factor (CF) of a signal. The CF measures signal impulsivity. The CF
is the ratio of the maximum value of a zero-mean signal and the signal RMS given as

CF =
||x(t)||∞

RMS
, (1.8)

where || · ||∞ is the L− in f inity norm. Sait (2011) noted that normal, stationary operating conditions
result in a crest factor between 2 and 6. There are other types of statistical features that one can also
use, such as the peak-to-peak value and peak value. Next, since the assumption here is that the signal
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is stationary, one can calculate the well known statistical moments of the signal, namely, the mean,
standard deviation, skewness and kurtosis (Sait, 2011). Skewness is known to be a measure of the
symmetry of the distribution. For example, if a signal has an equivalent count of small and large
amplitude components, the skewness should be approximately zero. The kurtosis of a signal is a
measure of the variation of the signal from a typical Gaussian signal. Thus, any kurtosis greater than 3
indicates that the signal is not Gaussian-like (Zhu et al., 2014, Večeř et al., 2005). Impulsive signals
lack Gaussian-like characteristics, which are then amplified in the kurtosis measure. The kurtosis of a
time-series signal is

Kurtosis =
1

σ4T

∫ T

0
x(t)4dt, (1.9)

where σ2 is the signal variance. Večeř et al. (2005) applied standard time-domain statistical features
to a gearbox under then notion that the distribution for the time series amplitude without gear mesh
frequencies was inherently different from that of a Gaussian signal as wear became prevalent. In their
work, many standard approaches were compared for detection and severity forecasting in the presence
of gear wear.

However, most of the proposed statistical features thus far are highly sensitive to fluctuating operating
conditions (Zimroz et al., 2014). It is not to say that one cannot apply traditional approaches to varying
operation conditions. Zimroz et al. (2014) attempted to perform bearing detection and severity trending
using the regression parameters of a linear regression through standard statistical features versus motor
power draw. The statistical features included RMS and peak-to-peak values. Zimroz et al. (2014)
found that by using both statistical features and operating condition data, the regression parameters
proved fruitful in bearing fault detection and severity forecasting.

1.3.1.2 Advanced Approaches

Frequency Analysis Approaches are techniques that utilise a transformation of the signal from the
time domain to the frequency domain. Conventional frequency domain approaches typically used in
practice is that of Fourier spectral analysis amplitude threshold detection. However, this technique
is outdated and advanced techniques have since replaced it, with significant advances coming from
the proposition of cyclostationarity (Antoni, 2009). Cyclostationarity is the notion that a signal has
statistical features that are periodic in time and that this periodicity manifests within the energy flow
of the signal (Gardner et al., 2006). Cyclostationarity is specifically relevant to gear and bearing
applications, as the repetitive nature of their operation introduces periodic energy releases.

More formally, a random signal in the time domain is said to be cyclostationary at the nth order if the
nth order statistical cumulant is a periodic function of time. A first-order cyclostationarity signal is one
with a periodic mean, which implies that the mean is not ergodic but rather cyclo-ergodic (Capdessus
et al., 2000). Numerous techniques have been suggested to estimate the periodicity of the signal means.
A common technique is to use Time Synchronous Averaging (TSA) where the TSA can be defined
as

xT SA(n) =
1
Nr

Nr−1

∑
i=0

x[n+ iNs], where 1≤ n≤ Ns, (1.10)

where the signal x(n) is processed to contain Nr rotations consisting of Ns points per rotation (Capdessus
et al., 2000, Abboud et al., 2017, Schmidt et al., 2018). It is interesting to note that Antoni (2009)
identified that gear components show strong first-order cyclostationarity, whereas bearing faults are
second-order cyclostationary. The Squared Envelope Spectrum (SES) was found to be sensitive to
the presence of second-order cyclostationarity within a time-series signal, which indicates that it is a
powerful technique to use for bearing fault detection. It is possible to split the first-order and second-
order components of a signal, which then allows one to decompose and analyse these components of a
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vibration signal separately (Borghesani et al., 2012). This is commonly known as deterministic/random
separation in literature, and there are numerous techniques to ensure that sufficient separation has
occurred.

For gearbox fault detection, typically the first operation is to separate the gear and bearing information
by performing deterministic-random separation, sometimes referred to as discrete-random separation.
One can then perform health analyses on the deterministic and on the residual parts, where gear health
information is often located in the former and bearing health information in the latter (Borghesani
et al., 2012). In some applications, the TSA of a signal is used to determine the deterministic part,
whereby the signal is segmented and averaged over one shaft revolution. One can then subtract the
TSA from the original signal, which gives a residual signal. However, the inherent assumption in
traditional techniques is that the system has constant operating conditions. In the case of varying
operating conditions, typically one needs to perform order tracking to change the signal from the time
domain to the order domain.

Order tracking is the process of re-sampling a vibration signal at a rate proportional to the speed of the
rotating machine. This re-sampling is done at constant angular increments and is implemented with
either analogue instruments known as synchronous approaches, or digitally as a post-operation, referred
to as asynchronous techniques. The difference between the two is that the former dynamically adjusts
the sampling rate based on the speed of the shaft, and the latter uses a tachometer signal to re-sample a
signal in an off-line setting. The asynchronous approach is known as Computed Order Tracking (COT)
(Munck and Fyfe, 1991, Fyfe and Munck, 1997). After order tracking, one can evaluate the signal
using the Fourier Transform, where the spectrum is referred to as an order spectrum as opposed to
a frequency spectrum. This classification is because the signal is a function of the shaft speed and
its multiples rather than the base sampling frequency. Borghesani et al. (2012) investigated gearbox
fault diagnostics under time-varying operation conditions. Order tracking was used as a pre-processing
strategy to overcome the operating condition problem. However, other pre-processing approaches
were used, such as the phase domain averaging approach proposed by Stander and Heyns (2006) or the
improved synchronous average proposed by Coats et al. (2009).

After a signal is decomposed into its deterministic and random components, enhancement techniques
are then often used to enhance the source of interest in the decomposed elements. Abboud et al. (2017)
stated that this is often achieved by filtering the decomposed signal around a high-energy frequency
band. Methods to determine the band of interest are well detailed in the literature. Randall and
Antoni (2011) emphasised the usage of the Kurtogram or a wavelet de-noising analysis scheme. The
Kurtogram is a powerful technique developed to detect and localise impulse events within a signal that
manifest in a specific frequency band. The Kurtogram is an implementation of the spectral kurtosis,
which is a function of frequency and frequency resolution (Sawalhi, 2004). Many alternatives to
the Kurtogram have been proposed in the literature. Detailed works include Antoni (2016), Tse and
Wang (2013a,b), Barszcz and Jabłoński (2011), Lei et al. (2011), Wang et al. (2013) and Niehaus et al.
(2020).

A popular signal processing technique is that of the squared envelope spectrum (SES), which is a
frequency domain transform of the Squared Envelope of a signal. The SES is given by

SES(α) = |DT FTn→α

{
|A{x[n]}|2

}
|, (1.11)

where DFT F is the discrete-time Fourier Transform, A{·} is the complex analytic signal obtained
through the Hilbert transform of the original signal and α is the cyclic frequency variable given in Hz
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(Randall and Antoni, 2011). The SES is known to be a powerful second-order cyclostationary analysis
technique and is well used in literature. However, it is often noted in the literature that it is beneficial
to perform some form of signal pre-processing before looking at the SES, with a technique called
cepstrum pre-whitening (CPW). CPW often used due to its simplicity in implementation (Borghesani
et al., 2013). The implementation procedure of CPW is given as

xcpw = IFT
{

FT (x)
|FT (x)|

}
, (1.12)

where FT and IFT denote the use of the Fourier transform and the inverse Fourier transform. One can
then analyse the SES of the CPW signal to see what fault information lies around the fault frequencies
of interest.

For signal processing, specific techniques are considered to be the current state-of-the-art (SOTA). The
first SOTA technique is the minimum-entropy-deconvolution (MED) spectral kurtosis (SK) normalised
squared-magnitude of the squared envelope spectrum (NES), given as a full acronym as MED-SK-NES.
The work of Abboud et al. (2019) provides an in-depth analysis of the MED-SK-NES process. The
MED-SK-NES technique operates by first using MED and SK filtering to highlight the impulsive
fault components in a signal as a form of signal pre-processing and then using the NES to analyse the
amplitude of specific frequency components. In the work of Abboud et al. (2019), the performance
of MED-SK-NES and the Improved Envelope Spectrum (IES) is compared for three datasets, with
the results showing that the methods were able to detect bearing faults in both stationary and non-
stationary operating condition cases. For a detailed analysis, implementation guide and discussion of
the MED-SK-NES process, please see Appendix D.

A recent focus in the signal processing literature is to develop a statistical analysis framework that can
quantify the impulsiveness and cyclostationarity of time-series data. Antoni and Borghesani (2019)
proposed a set of condition indicators that track cyclostationary and non-Gaussian components inde-
pendently. This approach uses a null hypothesis differentiation between healthy and abnormal states to
design indicators using the logarithm of the generalised likelihood ratio between the null and alternative
hypothesis. A set of indicators is obtained by varying the assumptions given to the null and alternative
hypotheses where these assumptions explore cyclostationary signal components under Gaussian and
non-Gaussian conditions, generalised Gaussianity against Gaussian cyclostationarity, unknown cyclic
periods, non-Gaussianity against Gaussianity and impulses in Bernoulli-Gauss cyclostationary cases.
This exploration allows for an interpretation of the anomalous state information under a deviation from
stationarity and/or signal Gaussianity. Wang and Tsui (2018) proposed a bearing health indicator that
is dimensionless and thus is not affected by variations in the asset operating condition. This health
indicator is also formulated with analytical upper and lower bounds which allows for the indicator
to be evaluated with respect to known bounds which has benefits in bearing prognosis applications.
The upper bound of this indicator corresponds to the healthy bearing condition and the lower bound
corresponds to a failure condition.

1.3.1.3 Discrepancy Analysis

Discrepancy analysis is a well researched and used technique in vibration-based condition monitoring,
with many applications in gear diagnostics and rolling element bearing diagnostics. Discrepancy
analysis is fundamentally akin to residual signal analysis (RES), which is a methodology that seeks to
remove any healthy components from data by estimating the first order cyclo-stationary components.
RES has strong links to deterministic-random separation, with the works of Abboud et al. (2017),
Randall et al. (2011) and Randall and Antoni (2011) offering a concise introduction to the topic.
Discrepancy analysis is the generalised technique of comparing a signal from some system with a
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model of the healthy condition of the system. In discrepancy analysis, a discrepancy signal transform,
otherwise known as a discrepancy measure, is obtained for signal segments or features thereof and this
discrepancy measure serves as a measure of the deviation from the model of the healthy data (Schmidt
et al., 2019a, Heyns et al., 2012d).

In the work of Heyns et al. (2012d), gearbox fault diagnostics were investigated using discrepancy
analysis. The process followed was first to utilise Computed Order Tracking with a windowed re-
sampling scheme, the window length was carefully chosen based on the relationship between the
shaft speed and the gear mesh frequency. The authors used inter-window interpolation to emphasise
the signal edges. From this, a Gaussian Mixture Model (GMM) was fit to the healthy training data
partitioned using the windowed re-sampling scheme. The GMM then served as the healthy model, and
the Negative Log-Likelihood (NLL) served as the discrepancy measure for any observed windowed
sample. By considering all of the discrepancy measures for any given signal, a discrepancy signal
was obtained. As multiple shaft rotations are present in the discrepancy signal, the synchronous
average was computed and, combined with an order-domain analysis. Their work showed a capacity
for gearbox diagnostic analysis under non-stationary load conditions. Heyns et al. (2012c) compared
Auto-Regressive (AR) and neural network (NN) based time-series regression to compute a discrepancy
signal residual between the predicted and actual time-series values. The discrepancy signal was then
re-sampled using the instantaneous shaft angular speed, and the residual signal envelope was computed,
deemed the discrepancy transform. The spectrum and cepstrum of the residual signal envelope were
analysed for the case of a gear fault under time-varying operating conditions.

Schmidt et al. (2019a) proposed a discrepancy analysis approach that operates by using the Wavelet
Packet Transform (WPT) and Order tracking to extract features from the RMS of windowed wavelet
coefficients from 2N independent Wavelet Coefficient signals. The healthy data in this case then
became an R16 space for each of the wavelet coefficient signals, in which the window RMS was
considered for variations in one wavelet coefficient signal space. After this point, a multivariate
Gaussian distribution was fit to wavelet coefficient RMS space with the Mahalanobis distance used as
a discrepancy measure. A discrepancy signal then came from measuring the discrepancy metric for the
RMS of each windowed segment through all wavelet coefficients. To account for the inherent RMS
dependencies on the shaft speed, the calculation of a discrepancy measure was standardised based on
training data and its dependence on shaft speed. It was shown that the methodology could detect faults
under non-stationary operating conditions as well as to detect faults in the spectrum of the discrepancy
signals.

The main contribution of this work is to show that discrepancy analysis is essential to be applied to
unsupervised deep learning approaches to gain additional insight and to draw improved conclusions.
In unsupervised learning methods applied to this work, a HI is applied to time-series data fed through
a latent-variable model. A HI is synonymous with a discrepancy measure, and one can draw parallels
in the analysis of discrepancy signals for a complete time-series signal. Fink et al. (2020) referred to
signal-reconstruction based unsupervised learning as residual-based approaches, an apparent reference
to residual analysis and by extension, discrepancy analysis.

1.3.2 Learning Approaches

The goal of learning-based approaches is to use data to understand the patterns, trends and observations
in the data for understanding and prediction. Learning approaches is an overarching term given to
supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning. A
natural progression of complexity is present in learning approaches, that stems from statistical learning
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to machine learning and finally to deep learning. To initialise this discussion, the various forms of
learning-based approaches will be broadly defined and discussed.

1.3.2.1 Learning-based approaches

Supervised learning is a learning-based approach that assumes access to observed samples x and target
labels t. The form of the target variable dictates the learning task applied to the data, where discrete
variables t ∈ Z are used for classification and continuous variables t ∈ R are used for regression tasks.
The goal of a supervised learning task is learn a discriminative function to capture the conditional
distribution p(t|x) by maximising the likelihood. This discriminative function is also required to
generalise to the entire input space Rn such that predictions can be made for both observed and new
data.

Unsupervised learning is a class of machine learning that does not use target labels t and only the
observed samples x. With these samples, unsupervised learning focuses on three main aspects, namely
clustering, density estimation or data visualisation. Unsupervised clustering is where the goal is to
discover groups of similar examples in data, density estimation refers to methods that aim to determine
or model the input space data distribution and unsupervised visualisation refers to techniques that
project high dimensional data in a R2 or R3 space (Bishop, 2006).

Semi-supervised learning is an approach that lies between supervised and unsupervised learning. This
approach assumes that there are observed samples x and some of these samples have observed target
variables t. Two forms of semi-supervised learning are investigated in the literature, referred to as
inductive or transductive semi-supervised learning (Kingma et al., 2014). The former is another term
given to supervised learning techniques while the latter seeks to learn from the observed data to predict
only on test data (Chapelle et al., 2006). The difference seems ambiguous but is better understood
by relating inductive learning to learning for the entire input space while transductive learning is
only concerned with unlabelled data only. In a semi-supervised setting, it is common to allow for
the generative function applied to p(x) or p(t,x) to share parameters with the discriminative model
used to capture p(t|x). In this process, the supervised learning scheme is used in conjunction with the
unsupervised learning scheme and a nature trade-off develops between maximising the supervised
conditional log-likelihood log p(t|x) and the unsupervised density estimation log-likelihood log p(x)
or log p(t,x) (Goodfellow et al., 2017). If this trade-off is then controlled to allow for sufficient
flexibility from both frameworks, a model can be obtained that may hinge off the benefits of both
frameworks.

The importance of learning-based approaches is the ability to access sources of information that can
be used to infer the state of a system. These representative metrics are common to learning-based
approaches. Many learning approaches used in PHM utilise classification or regression information
to determine the type of fault or predict the RUL of an asset, while other methods use reconstruction
loss information as a damage measure. These methods are viable techniques that can be applied, but
the important factor reduces to the cost required to produce the relevant data and data labels. For
time-series data, vibration samples are easy to obtain but the issue of data labelling may be problematic.
In this work, the problem of data labels is negated by only using data from an asset in a healthy state.
From this, we use metrics available from the models considered to infer damage. This is an important
difference as a large portion of learning-based literature is devoted to classification or regression
performance. Lei et al. (2020b) identifies two issues with current approaches, the first is that assets
often operate for long periods of time in a healthy state and the time spent in an unhealthy state is
often low. The second is the data labelling problem. It this work, healthy system data is used with
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techniques from learning-based approaches to produce metrics that arise from an unsupervised learning
framework, thereby negating the need to labelled fault data.

1.3.2.2 Statistical Learning

Statistical learning is an overarching term given to the objective of determining a function that can
relate some inputs to some outputs. The initial applications of statistical learning are considered
the building blocks for more complex techniques used in machine learning such as neural networks
(Bishop, 2006, Hastie et al., 2009). Common statistical learning tasks are supervised regression and
classification and in a statistical learning framework, linear models are used to predict outputs to
data given inputs. Statistical learning is the cornerstone of learning-based approaches and the basic
elements of regression and classification are seen as the foundational work for machine learning and
deep learning. The difference is that statistical learning is concerned with how to handle to data to
predict outputs while the other learning types are concerned with maximising performance.

Statistical learning techniques have been used for vibration data and have been integrated into many
facets of signal processing techniques. For example, Zimroz et al. (2014) used a regression analysis
framework to detect deviations in wind turbine data by monitoring the linear regression model coef-
ficients. Jiang et al. (2009) compared the classification performance of linear discriminant analysis
with a proposed supervised manifold learning algorithm on a variety of datasets. Schmidt and Heyns
(2019) used a Gaussian mixture model to perform probabilistic condition inference by using Bayes
rule to infer the class of a fault. This approach, albeit not explicitly a statistical learning approach as
the expectation maximisation (EM) algorithm is used to fit the GMM model to the available class data,
uses techniques from probabilistic generative models (Bishop, 2006).

1.3.2.3 Machine Learning

Machine learning is a numerical approach to statistical learning that uses neural networks to improve
model performance through increased parameter flexibility and model non-linearity. Machine learning
has risen in popularity over recent years due to the increase in computational power availability as
well as data dimensionality and quantity (Zhao et al., 2019). The rise in data-driven health monitoring
using machine learning as opposed to signal processing approaches is due to the reduced dependency
on expert techniques to extract useful information from a vibration signal. There are three popular
approaches to machine learning, namely: Artificial Neural Networks (ANNs), Expert Systems (ES)
and Hidden Markov Models (HMMs) (Jardine et al., 2006, Liu et al., 2018b). ANNs were conceptually
formulated on the notion of how the human relates an input to output (Bishop, 2006). Concerning
machine health monitoring, the typical application of supervised regression and classification is for
RUL and fault classification. An inherent requirement for machine learning approaches is to have input
features that relate to the output. This requirement is a serious drawback of conventional machine
learning approaches, as the quality of manually designed input features can be a deciding factor
in the performance of an ANN and said features often require expert knowledge (Khan and Yairi,
2018).

Many machine learning techniques have been applied to PHM, such as Jiang et al. (2019a) who used a
variant of typical ANNs, namely Convolutional Neural Networks (CNNs) for fault diagnosis for a wind
turbine gearbox. The operation principle was to use vibration signals as input with multiple individual
levels that all perform 1-dimensional convolution on the signal. A supervised learning strategy was
used to classify known wind turbine fault conditions.

Support Vector Machines (SVMs) are decision machines developed with the intent to ensure that the
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objective function is convex during model optimisation, thereby ensuring that any solution found is a
global optimum. This implies that the SVM weight Hessian is positive-definite for all values within
the model parameter space. SVMs operate on the principle that a margin exists that is the smallest
distance between the input samples to the machine and the boundary that it uses for decision support.
By maximising this margin, which can be shown to be a function of support vectors (data-points from
the input training set), one can perform classification and even regression (Bishop, 2006). Jedliński and
Jonak (2015) used wavelet coefficients obtained from the Continuous Wavelet Transform, a method
detailed in Sadowsky (1994), as input features. An SVM and a simple Multi-Layer Perceptron (MLP)
were used to classify the gearbox condition in a binary case with healthy or damaged classes. The
authors also compared the wavelet coefficient to vibration signal features as inputs, but this worsened
the classification performance.

1.3.2.4 Deep Learning

The main problem associated with the standard machine learning approach is the requirement for
manually defined features. This process can result in information loss as the time-series data is
compressed into user-defined features. To circumvent this, a more recent field of interest has developed,
namely that of deep learning. In a deep learning framework, the aim is to extract representations
of a raw input through the use of a deep neural network. This deep neural network will typically
consist of many non-linear layers, with the non-linearity coming from the activation functions. Thus,
deep learning does not require manually extracted features but attempts to learn features without any
guidance. In that way, deep learning seeks to replace the extensive expert knowledge of typical health
monitoring methodologies with a network that learns methods for fault detection, isolation and severity
trending (Zhao et al., 2019, Hoang and Kang, 2019).

Techniques utilising deep learning are on the rise, with multiple approaches applied to fault detection
and isolation. Typical deep learning methods include Auto-Encoders (AEs) which were originally
proposed by Rumelhart et al. (1986), Deep Belief Networks (DBN) proposed by Hinton et al. (2006),
Deep Boltzmann Machines (DBM) proposed in Salakhutdinov and Hinton (2009), Recurrent neural
networks (RNNs) for which Hochreiter and Schmidhuber (1997) introduced foundational work, deep
convolutional neural networks (CNNs) proposed by LeCun et al. (1998), Generative Adversarial
Networks (GANs) proposed by Goodfellow et al. (2014) and Variational Auto-Encoders (VAEs)
introduced by Kingma and Welling (2013). Zhao et al. (2019) provide a detailed investigation for
specific examples of these models applied to time-series data.

Zhang et al. (2018) proposed and implemented a Training Interference CNN that used a raw time-series
signal as input with multiple convolutional layers for bearing fault classification. Due to low data
samples, the author chose to perform data augmentation of a time-series signal by segmenting the
signal with a certain amount of overlap between segments. The validation as to why this is consistent is
that vibration measurement is typically conducted at very high frequency, and thus the dimensionality
of a single sample is very high. However, in rotating machinery, typically a single record has multiple
revolutions and thus by performing a form of manual convolution, one can increase the number
of training samples. The authors used the Case Western Reserve Bearing Dataset in a supervised
classification setting, as this dataset contains many bearing faults. It was found that the Training
Interference CNN outperformed typical machine learning and deep learning techniques.

San Martin et al. (2019) proposed the usage of VAEs as a form of unsupervised dimensionality
reduction for bearing fault diagnosis in a supervised classification setting. In their work, a comparison
of raw signal input, spectrogram input, and manually extracted feature inputs was done, which aimed
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at highlighting the potential benefits and pitfalls of supervised fault classification using different
input data formats. Multiple variations of the VAEs were tested and compared with the well-known
dimensionality reduction technique, that of Principal Component Analysis (PCA). For bearing fault
classification, the authors found that PCA and the VAEs had similar performance, even with extensive
studies into the VAE form. The authors also noted that a spectrogram or the manual features as inputs
improved performance while raw signal inputs appeared to hinder performance.

Booyse et al. (2020) used a GAN to perform fault detection and trending in an unsupervised setting.
The data discriminator was used as a HI, and its fault detection performance was analysed for many
datasets. It is important to note that Booyse et al. (2020) trained their models on only healthy data,
which keeps to the definition of an unsupervised approach used in this work. The work of Booyse
et al. (2020) was one of the first applications of unsupervised deep learning for PHM using raw
vibration data. The GAN HI was compared to a VAE for datasets that varied in fault manifestation.
The response to damage from the output of the data discriminator was clear, which indicates that
implicit generative models such as a GAN offer significant benefits and that their use in PHM cannot
be ignored. Using deep learning to capture healthy data distributions allows for machine learning to be
readily implemented and applied in industrial applications.

1.4 Latent Variable Models
Latent variable models and, by extension, semi-supervised and unsupervised learning are two key
topics for this work as they form the foundation of the techniques used in this work. Thus, is necessary
that the reader understand its application in PHM. However, to understand the application to PHM
requires that the concept of a latent variable model be understood. For the purposes of this work, the
focus begins on density estimation techniques using latent variable models. This work will focus on
the latent manifold of latent variable models and thus the implications of any transition functions or
latent manifold information must be clear.

The objective of density estimation techniques is to model the probability distribution p(x) using
a set of samples from this distribution. However, a severe limitation exists where the data x may
exist in a high dimensional space which makes the process of modelling this distribution complex
and infeasible. To overcome this high dimensionality constraint, the assumption is made that there
exists a lower-dimensional subspace on which all data points from p(x) lie, where this assumption is
often referred to as the manifold hypothesis (Fefferman et al., 2013, Goodfellow et al., 2017). The
manifold hypothesis exists as a strong argument can be made that physical laws often constrain the
low dimensional manifold of data and that the observed data are simply a manifestation of these
laws.

The assumption made from the manifold hypothesis is that there exists an unobserved latent variable
z that explains the relationship between the observed variables in x. A generative view of a latent
variable model is given through the conditional distribution p(x|z) with some prior p(z) over the latent
variable space. This then allows for the generation of new samples through the directed graph of
sampling z∼ p(z) and then sampling a new observation x from the conditional distribution p(x|z). To
perform density estimation, it is now required that the joint distribution p(x,z) is marginalised with
respect to the latent variable z through

p(x) =
∫

p(x|z)p(z)dz, (1.13)
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which is intractable as an analytical solution can rarely be developed for most real-world data. Fur-
thermore, if we attempt to use Bayes theorem to compute the posterior distribution p(z|x) to perform
model inference, with the posterior distribution given through

p(z|x) = p(x|z)p(z)
p(x)

. (1.14)

The end result is an intractable solution due to the presence of p(x) in the denominator (Bishop, 2006,
Goodfellow et al., 2017). However, techniques such as Variational Inference or GANs that allow one
to capture and model the generative distribution and the posterior distribution. Figure 1.2 visualises the
typical process followed by latent variable models. In Figure 1.2, there are two elements, namely the
input space shown in R3 and the latent space shown in R2. It is important to emphasise the presence
of two functions fφ and gθ , where these functions are used to transition between the input space and
the latent space through a mapping between the two spaces. The link to probabilistic approaches is
also shown, as the functions are used to define the generative distribution and the posterior distribution
used for model inference.

Figure 1.2. An illustration of the process of latent variable models. Notice the location of the latent
prior p(z) and the learnt latent manifold through the inference network fφ .

In Figure 1.2, reference is made to the practical application of latent variable models, whereby the
parametric functions fφ and gθ are used to emphasise the learnt transition between the input space and
the latent space. The placement of the latent prior with respect to the latent manifold is also emphasised,
to highlight how it is critical to ensure that fφ transforms input feature samples in a region similar
to p(z). This ensures that the data samples can be generated through sampling p(x|z) from a sample
z∼ p(z). Not all latent variable model approaches learn both parametric functions, for example, GANs
typically only focus on learning a powerful parametric function gθ . It is crucial to note that VAEs
and GANs differ through their approach to density estimation, where the former is explicit while the
latter is implicit. The benefit of implicit density estimation approaches is that they allow for increased
transition function flexibility as they are not constrained to be a specific distribution type. For an
in-depth discussion in this regard, please refer to Section 2.6.1.
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1.4.1 Application to Vibration Data

For the application of PHM, the objective is to develop a framework that uses healthy time-series data
to capture and model the data distribution of the asset in a healthy condition. Vibration data has to be
correctly processed and applied to the models, where in this work the processing step is key to obtain
useful information from the latent manifold. To process vibration data, an assumption is made that
any given signal of length Ls, which is often of very high dimension Ls� 1, can be segmented and
broken down into segments of length Lw, where Lw is referred to as the model window length. The
mathematical operation of data processing can be regarded as a non-symmetric Hankel matrix with
the addition of a shift term Ls f t that controls the overlap between adjacent windows. This is given
as

Xsignal =


x(0) x(1) x(2) · · · x(Lw)

x(Ls f t) x(Ls f t +1) x(Ls f t +2) · · · x(Lw +Ls f t)
x(2Ls f t) · · · x(Lw +2Ls f t)

...
. . .

...

 , (1.15)

where Xsignal is a matrix of size RbTc×Lw with T = Ls−Lw
Ls f t

and b·c denotes the use of the floor operator.
To obtain a Hankel matrix, as per the definition of a Hankel matrix, the shift term Ls f t must be set to
one. All signals available in a given dataset are then processed using the process followed in Equation
(1.15). This then gives rise to the temporal preservation approach that is crucial to this work. The
continous-time approach is a technique used in this work that aims to preserve the element of time in the
model analysis metrics. By processing vibration data using Equation (1.15) with Ls f t = 1, the element
of time is preserved data observed by the model and thereby allows for metric responses to evolve
over time as opposed to previous work, which produced metric responses which were independent of
time. Figure 1.3 emphasises the difference between previous approaches and the approach proposed in
this work. In Figure 1.3, the classic deep learning processing approach and the temporal preservation
approach followed in this work are given, where the difference is slight but of utmost importance to
this work.

From Figure 1.3, it can be seen that there are the two processes begin in the same way, whereby the
available signals are split into a training and test set, and the signals are processed using Equation (1.15)
with Ls f t set to 0.5Lw. Following this, the training data is further partitioned into training and validation
data, and the entire dataset is normalised based on the features from the training data. It is emphasised
here that the training data only consists of signals that are considered to be representative of an asset
in its healthy state. Once the processing stage is completed, the parameters of the different transition
functions, defined broadly with the variables θ and φ , are optimised. Once the optimisation procedure
is complete, the difference between the standard approach and the proposed temporal preservation
approach becomes evident, with the latter processing all of the data using Ls f t = 1 for Equation (1.15)
and then bypassing the model training stage. The reason for this decision is to ensure that the element
of time in the vibration data is preserved, a decision that is further discussed in Section 1.5. The final
step followed by both approaches is to evaluate then all data with the health indicators available to
the model, where the health indicator is a degradation metric, is model specific and finally, the model
health indicator performance is then assessed.

After we model or learn the distribution of an asset in a healthy condition, we can use the model to
analyse whether newly observed data is healthy or unhealthy. This analysis can occur in two regions,
firstly the likelihood of a new sample can be assessed given the healthy historical data and secondly
the latent representation of a sample can be evaluated based on where it lies on the latent manifold.
The former analysis region is well detailed in the literature, with Booyse et al. (2020) providing an
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Figure 1.3. A detailed schematic of the typical deep learning model evaluation procedure versus the
methodology proposed in this report. Notice the slight but key difference after model training, whereby
Ls f t is set to one, resulting in one index window shifts when processing the data for model evaluation.
The effect of this change induces metric responses which evolve over time, while the classic approach
produces metric responses that are independent of time.

excellent introduction and formulation of latent variable models to PHM. The latter analysis region is
a key idea to this work, and thus the concept of the latent manifold will be clearly introduced to the
reader.

Certain health indicators arise from the choice of latent variable model formulation. The type of
health indicator is dictated by the choice of distribution parametrisation, which is an important aspect
when analysing the meaning and interpretation of the health indicator. Models that assume a Gaussian
distribution use the reconstruction loss, which in turn can be used as a health indicator to measure
whether the model can reconstruct an input. For models that wish to use implicit density estimation
techniques, the discriminator function used in the adversarial training scheme can be used to measure
whether data is anomalous. However, the latent manifold is an aspect of latent variable models
that can also be analysed, which requires that sensible latent metrics be formulated as degradation
metrics.
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In order to produce sensible latent metrics, it is imperative that the latent manifold be untangled. The
implication of an entangled manifold is that damage may then be hidden in the manifold, thereby
ensuring that the detection of anomalous instances is non-trivial. However, a disentangled manifold
will allow for the intrinsic structure in the data to be represented in the manifold and will ensure that
anomalous instances will be detectable in the manifold.

1.4.2 The Latent Manifold

The latent manifold of a latent-variable model can be seen as an embedding of the data distribution in
a lower-dimensional space, where the natural constraints of physical laws govern this space. The use
of the latent manifold for vibration data is evident in the dimensionality of vibration signals, which
will be given in this work by Lw as any vibration signal is processed with Equation (1.15). However,
this input feature space is still of high dimensionality, and the use of a lower-dimensional manifold is
applicable. In the latent manifold, it is expected that the vital information that is used to capture the
input data be represented and thus the latent space can be seen as a compressed representation of the
input data (Jiang et al., 2009, Fefferman et al., 2013).

In the latent manifold, it is expected that input data that possess similar features be closer together,
where the concept of closeness refers to the representation of the distinguishable features for similar
input data be placed in close proximity on the latent manifold. This process is often referred to as
Representation Learning, which entails that the latent manifold must represent the important features
of the input data. In this representation, the manifold can either exist in a linear or non-linear subspace,
where the difference refers to how information is compressed and makes reference to the fact that the
linear manifold is represented by a linear hyperplane. The assumption of the subspace of the manifold
has significant implications on the model used, as typically a parametric function is used to represent
the transition from the input space to the latent space. This is also important in a probabilistic sense,
whereby to perform model inference a parametric function is used to represent the parameters of the
distribution p(z|x) and this function can either be formulated as a linear or non-linear function. The
decision is also influenced by the data space, where a non-linear transition function is capable of
capturing and transitioning between a non-linear input and latent space. In contrast, a linear transition
function can only perform linear operations. If the data lies near a non-linear manifold embedded in a
high-dimensional space, linear transition functions will be problematic and incapable of transitioning
between x and z.

To emphasise the choice of linear or non-linear parametric functions, consider the S-curve data in an
R3 space shown in Figure 1.4. For this example, let the colour used in Figure 1.4 be a hypothetical
indication of the damage present in the data. Here, the input space is non-linear, and the purpose of this
example is to examine how a linear vs non-linear transition function maps this data to an R2 manifold.
For the linear case, PCA was used as a transition function while for the non-linear case, a technique
known as Isomap was used, a method detailed in Tenenbaum (2000).

In Figure 1.5, the linear and non-linear transition function results are shown, where the non-linearity
of the data space can clearly be seen to affect where data lies in the latent manifold. In Figure 1.5(a),
it is clear that the linear transition function cannot capture the non-linearity in the dataset and thus
data that lies close to one another in the input space are not correctly placed in the latent manifold.
The implication of this is that the presence of damage has not been clearly uncovered in the data.
However, for the non-linear transition function, data that have similar features or spatial characteristics
are represented in similar locations in the latent manifold. This is beneficial as it clearly indicates that
additional non-linearity can assist in clearly uncovering the presence of the damage in the data.
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Figure 1.4. The S-curve dataset in its R3 data space.
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(a) Linear transition function manifold.
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(b) Non-linear transition function manifold.

Figure 1.5. The learnt manifold for the S-curve dataset shown in Figure 1.4 using a linear (PCA) and
a non-linear (Isomap) dimensionality reduction technique for (a) and (b) respectively.

To obtain a latent representation using latent variable models, it is crucial that model inference be
performed otherwise no access to the latent manifold is possible. The perspective that separates
dimensionality reduction techniques and model inference are the assumptions that a probability
distribution constrains the latent manifold and that samples can be drawn from this distribution. This
then gives the generative ability to latent variable models, as one has access to a simple distribution
to sample from when obtaining generated data samples and if one can perform model inference, the
representation of input data is all constrained to lie in the same place. Techniques such as AEs do not
have such an ability and the latent space from the encoder is unconstrained, and thus the user has no
way of knowing where the data lies in the manifold.

1.4.3 Latent Manifold Entanglement

Latent variable models attempt to approximate the intrinsic geometry of high dimensional data mani-
folds by learning low-dimensional latent-space variables and a transition function that embeds data
manifolds into a latent manifold if the goal is to perform model inference. The recent focus of latent
variable models is into uncovering the semantic meaning of the latent representations with an analysis
of whether disentangled latent representations can be obtained (Bengio et al., 2013). A disentangled
representation is one where each latent dimension captures the underlying factors of variation in the
date distribution. To uncover and disentangle the intrinsic structure of the data in the latent distribution
implies that the poignant information has been effectively captured during data compression and that
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the latent distribution captures the explanatory sources in the data (Bengio et al., 2013).

However, to learn a disentangled latent representation is non-trivial as many alternative representations
are equally viable. The representation types that can be achieved are a tangled or disentangled
representation. A random or tangled latent representation implies that the latent space contains the
highest entropy possible, meaning it captures the least structure and hence the least information in the
latent space. The implication being that a tangled latent space cannot be effectively used as a metric
for anomaly detection. It is essential that the point be made here that to have a prior p(z) as a Gaussian
does not imply that the latent space will be random, a random representation implies one where the
embedding or compressing function captures no structure in the data. A tangled representation may
recognise and uncover some structure in the form of factors of variation in the data, but these factors
are entangled in the latent space. In a tangled latent space, it is expected that perturbing a single latent
dimension will result in changes in a variety of generative data factors. A disentangled representation
is one where each latent dimension captures a factor of variation in the data, and the resulting latent
manifold captures the factors of variation in the data. If this is achieved, it allows for changes in
these factors to be detected which is a necessity for this work. The implication of a disentangled
manifold is aligned with the preservation of information, whereby the goal is to disentangle the factors
of variation to ensure that the amount of information present in the data that is disregarded is as little
as possible.

For this work, it is important to find untangled latent manifolds that disentangle these factors of interest.
When damaged time-series data is introduced, it is undesirable that the response to damage be hidden
or tangled with other potential factors of variation which highlights the importance of disentanglement.
In a practical context, if there are time-varying operating conditions present alongside damage, we
do not want fluctuations in the operating condition to affect the manifold response to damage. A
visual illustration of manifold entanglement is given in Figure 1.6 where this figure is used to illustrate
the differences between an entangled and disentangled manifold. Figure 1.6 differs from Figure 1.5,
whereby the former aims to show how the data generative factors can be entangled and the latter focuses
on how linear or non-linear techniques can affect the learnt manifold depending on the non-linearity
present in the input space. Figure 1.6 illustrates how generative data factors, with colour given to the
shaft speed of the machine, can be hidden in the manifold or can be correctly disentangled to give a
latent space where the traversal along a single dimension changes a single generative factor. It is clear
that in a disentangled manifold the shaft speed has been correctly disentangled and the manifold is
able to capture the intrinsic factors in the data.
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Figure 1.6. An example of latent entanglement, with (a) showing an entangled manifold and (b)
showing a disentangled manifold. Note that the colours here are representative of generative data
factors such as the shaft speed.

1.5 Scope of Research
This research explores three major ideas:

1. Previous data-driven approaches for vibration-based condition monitoring overlook implicit
assumptions in the model design. The nature and implications of these assumptions on the model
performance are explored in detail in this work and it is shown that the effect of model window
length has significant implications on result interpretation and performance. This highlights
the need to sensible result analysis procedures when dealing with time-series data that extend
through all aspects of a model and the results obtained.

2. One will expect different unsupervised latent variable models to perform differently with an in-
crease in model and formulation complexity. This has however not been explored systematically.
In this work such a systematic investigation is conducted. The latent variable models considered
are PCA, VAEs and GAN models that can be used for model inference, such as the DLS−GAN
proposed in Ding and Luo (2019) and the model proposed in this work, the RY −GAN model.
The performance of the models much be analysed against signal processing for performance
quantification purposes, thus the results obtained will be benchmarked against state-of-the-art
signal processing techniques.

3. It is shown in this work that the latent manifold of latent-variable models is equally responsive
to damage. This is a natural expectation for a manifold representative of healthy data but has this
idea has not been sensibly investigated. A trivial reformulation of the model analysis procedure
can introduce additional latent metrics. This observation is the crux of the present work and
focuses on the traversal through the latent space and the detection of anomalous instances
in the manifold. This reformulation manifests through the temporal preservation approach
which differs from standard approaches in the preservation of time available in time-series data
applications. This subtle change is shown to offer substantial improvements over the standard
approach.

To understand the response of the latent manifold to damage, it is useful to consider a visual thought
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experiment. Consider two parametrisations of a latent manifold learnt by a model trained on healthy
data, one with and one without a dependent time variable. Figure 1.7 details this idea and can be used
to assist the thought experiment. We assume that a model is trained only on healthy signals and z
defines the latent variable space.

For the case without a dependent time variable, there are two ways in which the latent space can
respond to damage, one where the model projects anomalous data far from the original healthy region
and another where there are more significant changes in the distance travelled through the manifold. In
Figure 1.7(a), the contour colours are that from an isotropic Gaussian distribution and represent the
distribution governing healthy data in the latent space and path one and two represent two potential
manifold traversal cases. A traversal through the manifold along either path from time instance ti to
ti+n could either force anomalous data off the manifold or grow in path distance travelled. Both cases
are equally viable, but the distinction must be made. If the vector norm of a latent instance is a damage
metric, the point at t(1)i+n will not be deemed anomalous.

Z1

Z 2

ti

t(1)
i + n

t(2)
i + n Path one

Path two

(a) manifold response: type one (b) manifold response: type two

Figure 1.7. The potential manifold response that can be obtained from latent variable models with and
without the presence of time visualised explicitly. Note that in (a) the healthy data distribution in R2

space is indicated by colour and the contour lines present.

An even better intuitive understanding arises through Figure 1.7(b), which details the inclusion of the
time component present in vibration data. It is clear that from the original healthy latent traversal,
the two anomalous cases manifest differently. For growth in radius, the inter-point distance may be
preserved, but the model pushes some instances far off the manifold before returning to its original
path. For growth in the inter-point distance, the radius change is not significant, but the model is still
indicating that this instance is unlike previously seen healthy data. These two responses may be equally
indicative of damage but cannot readily be detected under the same latent HI. The purpose of this work
is to show that the latent manifold is equally responsive under the right analysis formulation.

For deep learning applications to time-series data, it is common for the data to be treated in a practical
machine learning context. However, it is argued in this work that this decision is unwise and can
detract from the ability of the user to understand the response of the model to anomalous data. By
simply adding in a second processing step as shown in Figure 1.3, one can uncover model results

Department of Mechanical and Aeronautical Engineering
University of Pretoria

22



Chapter 1 Introduction

by merely preserving the time element. This benefit is predominantly noticeable when analysing the
latent manifold, as we can track the position and trajectory of latent instances through time, as was
highlighted in Figure 1.7. This manifold tracking allows one to investigate the response of a latent
variable model to anomalous instances, if the model is representative of a healthy asset. The analysis of
the latent manifold augments model intuition and can introduce physical interpretation into the latent
manifold and the response therein to anomalous data.

The decision to add in a processing step after a model has been trained seems trivial, however, it is an
analysis step that is not considered in current deep learning practices. The benefit is realised in the
analysis of the latent manifold as it introduces a sensible manner of interpreting data and the interaction
between the chosen processing strategy and the model. As this work will show that the latent manifold
is interpretable under the temporal preservation approach, it is argued that it also provides the ability
to quantify the addition of model complexity, as it establishes a consistent baseline for performance.
Suppose one considers all aspects of any given model, where these aspects are both the latent and input
space. In that case, significant improvements can be made in quantifying whether certain assumptions
or decisions increase the return on investment to the user.

Three datasets are considered and investigated in this work. Each of these datasets were selected
with a specific goal in mind. These datasets were carefully chosen with a critical theme: to show the
performance of latent variable models under stationary and non-stationary operating conditions for
gearbox condition-based monitoring applications. The first dataset is a phenomenological model that
is a synthetic dataset with constant operating conditions. This dataset was chosen as it allows for
explicit control over the dataset parameters, and it allows for the simulation of both inner and outer
race bearing faults. In the phenomenological model dataset, the aim is to two-fold, it aims to show
the difference in model performance for the models considered, and it also illustrates the effect of
the assumed model window length Lw on model result interpretation. For a further explanation in the
impact of the latter, please refer to Section 3.3.

The second dataset considered is the Intelligent Maintenance Systems (IMS) dataset which was
introduced in the work of Qiu et al. (2006). This dataset was investigated as it offered a wide variety of
sensory data, fault cases and is a run-to-failure dataset. This dataset has bearing faults that manifest
naturally under stationary operating conditions. The aim of the analysis is to show the performance
ability of the proposed latent metrics on a real dataset for constant operating conditions.

The final dataset considered in this work is a gear-tooth fault dataset under time-varying operating
conditions that have been extensively analysed in the works of Schmidt et al. (2018) and Schmidt
and Heyns (2020). This dataset consists of two experimental datasets that are joined, where the first
contains vibration data for a healthy experimental set-up and the second contains data from the set-up
where a tooth fault was manually seeded and left to run until complete tooth failure occurred. The
aim of this analysis is the investigate the performance of unsupervised latent variable models under
time-varying operating conditions.

For the various models considered in this work, the objective is to show the effects of model complexity
on the response results obtained from the model. The decision to include a model complexity
investigation is to highlight the strengths and weaknesses of different models, with a focus on how the
model formulation affects the results obtained. This work does not attempt to improve or formulate a
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novel signal processing approach. The focus was on the application of unsupervised data-driven models
to gearbox PHM in the presence of both stationary and time-varying operating conditions.

1.6 Document Overview
Chapter 2 introduces latent variable model literature and summarises the important aspects and
principles thereof. The required techniques associated with model formulation, derivation and im-
plementation are discussed. The focus is on the fundamental formulation of latent variable models
in an unsupervised learning framework. The latent variable models which were considered, namely,
PCA, VAE and GAN-based methods, are described and derived in detail. The RY −GAN model is also
proposed and explained to the reader. The implications and applications of these models are discussed
for vibration data.

Chapter 3 presents an analysis of latent variable models in their ability to learn a latent manifold, with
a focus on the flexibility of the transition functions between the input and latent space and on how
the various models approach latent disentanglement. The multiple health indicators and the proposed
latent health indicators available from the models used in this work are then introduced and formulated
for the reader.

Chapter 4 introduces the reader to the phenomenological model dataset investigated in this work, and
the properties of this model are discussed in some detail. The responses from the various health and
latent health indicators are shown for the dataset and compared in detail.

Chapter 5 presents the IMS dataset and performs an analysis on three of the available bearing datasets.
The ability of the various health and latent health indicators is critically discussed and compared across
the various models considered. A comparison to various state-of-the-art signal processing techniques
is also conducted. This was done to allow for the health indicator performance can be quantified and
analysed against signal processing.

Chapter 6 presents the gear-tooth fault dataset and performs an analysis of two versions of this dataset.
The difference in the datasets was introduced through a low-pass filtered version of the dataset, which
was done to quantify model performance in terms of dataset complexity. The health indicator response
performance is compared to various signal processing techniques. This was done to ensure that a
suitable baseline is formed to ensure that the metric performance is fully quantified.

Chapter 7 presents the report conclusions and recommendations for future work. The performance
of the various models, health indicators and latent health indicators is discussed and work for future
investigations are proposed.

Appendix A details important machine learning and supervised learning literature that is important
but not fundamental to this work. This chapter was included as supervised learning techniques provide
a solid background into the probabilistic treatment of statistical learning.

Appendix B details the optimisation schemes, further details the implementation of the β −TC−VAE
method, introduces the training schemes for the DLS−GAN and RY −GAN models and provides
important information related to the networks used in this work. The network architecture and
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motivations for network design are given and the important hyper-parameters are detailed for the
datasets considered.

Appendix C presents the important parameters for the phenomenological model. These parameters
allow for the mathematical model to be defined such that the model is representative of a real application
with reasonable characteristics.

Appendix D provided a detailed derivation and analysis of MED-SK-NES. This was done to allow for
a concise analysis of the implementation aspects for the MED-SK-NES technique to provide a level of
insight into using MED on time-series data.

Appendix E presents results that were deemed interesting for the IMS dataset result analysis section.
These results were included to allow for a full result analysis reflection to occur.
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2.1 Chapter Abstract
The purpose of this section is to provide a literature background into unsupervised latent variable
techniques and to detail the DLS−GAN and RY −GAN methods used in this work.

2.2 Introduction
Unsupervised learning is a variant of machine learning whereby one assumes that one does not have
training target labels and thus the aim is to learn the representation of the distribution p(x) as opposed
to p(t|x). Often, in unsupervised learning, a model for this distribution utilises latent variables, which
are a lower-dimensional representation of the data x. In this way, the latent variables z act as a
method to learn the relationships between data, with the relationship given as the model evidence
p(x) = Ez p(x|z). In this section, different unsupervised learning techniques shall be presented. The
discussion will consist of Principal Component Analysis (PCA), Variational Auto-Encoders (VAEs),
the β − TC−VAE and important literature for Generative Adversarial Networks (GANs) shall be
analysed. It is important to note that the proposed temporal preservation approach is used to process
any data that the models see. For those interested in a background to supervised learning, please refer
to Appendix A.

There is a important difference between the various domains of literature that must be clarified prior
to the development of the important literature for this work. The basis of vibration-based condition
monitoring has strong roots in signal processing techniques. Signal processing is a powerful field
directly focused on obtaining interpretable results from the covariates of a damaged signal that is
indicative of damage. However, to obtain these results requires extensive domain knowledge and
is built on hand-crafted features and insights into vibration data. The term hand-crafted features is
used broadly here but the meaning is simple, a feature or set of features is obtained from a vibration
signal where these features require domain knowledge as a prior to understand and interpret either the
implementation required to obtain results or meaning of the results.

If we now venture away from signal processing, statistical learning is concerned with using data to
uncover observations in the data that can be used for output prediction given an input. A statistical
learning application formulation consists of a linear model and often significant data pre-processing
is required for small datasets to obtain manually extracted features. The choice of model linearity
arises from finding a suitable function to discover the relationship between input and output using
statistical methods. In a statistical learning model, often non-linearity is included through the use
of basis functions on the features, however the model itself is still a linear function of the unknown
parameters used to fit the model (Bishop, 2006, Hastie et al., 2009).
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Machine learning is the numerical technique that approaches some of the problems from statistical
learning with increased model flexibility and non-linearity and is sometimes referred to as non-linear
statistical modelling (Hastie et al., 2009). In machine learning approaches, there is still a requirement
for a significant investment into data pre-processing and a need to obtain manually extracted features
which requires some domain knowledge for feature significance. However, the use of a neural
network allows the model to increase its flexibility as there is significantly more unknown parameters
and activation functions are often used to introduce a level of non-linearity into the model. This
increased flexibility is what makes neural networks attractive to supervised and unsupervised learning
applications.

The caveat of machine learning is the requirement for manually extracted features that can improve
the model performance. This is where deep learning has an impact as the goal is to use no data
pre-processing and only increase the model flexibility to allow for an increased level of abstraction
through each layer of the neural network. The dependency of increased model flexibility implies that
highly flexible non-linear models must be used.

In this chapter, the important unsupervised learning techniques to this work will be discussed, where
the first goal will to introduce the technique from a machine learning background. However, where
necessary, a discussion of how a method is used for condition monitoring is used to highlight how the
method is applicable to time-series data.

2.3 Principal Component Analysis
PCA is a linear dimensionality reduction technique that is often used as a pre-processing step in
supervised learning. PCA is defined as the orthogonal projection of any input x into a linear latent
subspace, where PCA aims to maximise the variance along the principal components (PCs) of the
latent space from the projected inputs. In another manner of thinking, PCA attempts to ensure that
in the transformation from the input space to the latent space, data variation is preserved. For this
report, the deterministic form of PCA shall be considered, whereby one only performs deterministic
movements from the latent space to the input space and vice-versa.

The formulation of PCA shall now be investigated. Consider the case where one aims to project data
to a M dimensional space, where one can obtain a latent representation of x ∈ RD, where D is the
dimensionality of the input feature space, through

z = UT x, (2.1)

which is a linear transformation through the transformation matrix U. The dimensionality of U provides
control of the size of the latent space. If one then wishes to reconstruct x from the latent space, this
can be done using

x̃ = Uz, (2.2)
where x̃ is the input reconstruction. Consider now the projection to one latent dimension, a scalar
projection, of a given input vector xn from a training set through a unit vector u1, given by z = uT

1 xn

(Bishop, 2006). As the aim is to maximise the variance of the transformed data along the principal
component u1, the variance for the projected data can be given as

σ
2
latent =

1
N

(
uT

1 xn−uT
1 x
)2

= uT
1 Su1, (2.3)
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where x is the mean of the training set and S is the data covariance matrix given as

S =
1
N

N

∑
n=1

(x−x)(x−x)T . (2.4)

To ensure that when maximising the variance the principal component vector does not tend to infinity,
a constraint is enforced that the vector must be a unit vector. The constraint is thus: uT

1 u1 = 1 (Bishop,
2006). To re-define the objective function with this constraint into an unconstrained objective function,
a Lagrange multiplier is used on the constraint leading to the objective function

L= uT
1 Su1 +λ1(1−uT

1 u1). (2.5)

By taking the closed-form derivative of this function with respect to u1 and setting it equal to zero, it
can be shown that

Su1 = λ1u1, (2.6)
where if one then left multiplies by uT

1 we can see that

uT
1 Su1 = λ1. (2.7)

This indicates is that the principal component u1 is an eigenvector of S and the variance will be
maximum when u1 is the eigenvector with the largest eigenvalue. If one then wishes to find the other
principal components, a constraint is given such that the new principal component is orthogonal to
the former which naturally leads to the next eigenvector. The result is that the principal components
are ordered and selected based on the M largest eigenvalues of S, where this then gives the form of
U

U =

 ↑ · · · ↑

u1
. . . uM

↓ · · · ↓

 , U ∈ RN×M. (2.8)

For the selection of the number of principal components to use, it is common to assign a variance
proportion that is kept in the dataset, which is given by the eigenvalues as these were shown to be
equal to the variance of the latent space. By using the cumulative contribution rate (CCR), sometimes
referred to as the cumulative percentage,

∑
M
i=1 λi

∑
N
i=1 λi

, (2.9)

where M ≤ N and N is the dimensionality of the latent space, N ≤ D.One can use the first M principal
components that ensure that a high percentage of the variance is preserved (Bishop, 2006). An
interesting, alternative formulation of PCA is that of finding U using

min
C
‖X−XUUT‖2

2

subject to UT U = I, (2.10)

which is a objective function designed to minimise the least-squares projection of the dataset X to a
linear subspace under the constraint that each direction be unit vectors and orthogonal to one another
(Udell et al., 2016).

PCA is often utilised as a deterministic dimensionality reduction technique but can also be used
as a generative model that uses linear transformations to the latent space as opposed to non-linear
transformations as are used in the sections that follow. This approach is often referred to in literature
as Probalistic PCA, but it is simply a framework that uses a linear latent variable model formulation
with Gaussian distributions for the generative distribution p(x|z) and the latent prior p(z) (Tipping
and Bishop, 1999, Bishop, 2006).
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The key idea for PCA as a latent variable model is that it is a model that uses linear transformations
to and from the latent space. However, the use of a linear transformations may be limiting as it
assumes that the data distribution is a linear Gaussian model, with the same assumption made for
the generative distribution p(x|z) and the posterior distribution p(z|x). This limitation leads to the
requirement for more complex latent variable model formulations, which induces complexity in
formulating an objective function from the marginal distribution p(x) as this is intractable. This
intractability stems from the addition of a neural network with a non-linear hidden layer (Kingma and
Welling, 2013).

The application of PCA to time-series data is not unheard of, as detailed in Zhang et al. (2020), however
the application has often been used as a dimensionality reduction technique to improve classification or
regression performance as opposed to viewing PCA as a linear latent variable model. This difference
is a crucial component in this work as PCA can be seen as a computationally robust and efficient
version of methods that use neural networks, which provides a coherent performance baseline and also
introduces a model flexibility component in the analysis of vibration data. This is because PCA is a
linear model but other techniques offer more flexibility.

2.4 Variational Auto-Encoders
As noted previously, the aim of unsupervised learning is to approximate the distribution p(x) with the
use of latent variables z with the relationship given as p(x) = Ez p(x|z). More formally, assuming that
latent variables are drawn from a latent distribution, the model evidence can be given as

p(x) =
∫

z
p(x|z)p(z)dz, (2.11)

which is the marginalisation of the joint distribution p(x,z). However, often in deep learning, this
marginalisation is intractable as this is in integration over an often high dimensional latent space.
Furthermore, if one aims to perform model inference in a probabilistic setting, one would use Bayes’
theorem to obtain the posterior distribution, which is given as

p(z|x) = p(x|z)
p(x)

. (2.12)

However, this is also intractable due to the intractable marginal distribution. In the work of Kingma and
Welling (2013), these issues were addressed using Variational Inference (VI) techniques to formulate
an objective function that can be optimised. Thus, the VI concept will be introduced after which
Variational Auto-Encoders (VAEs) shall be shown. VI is a technique used to determine the posterior
distribution using the approximation from a family of distributions q(z) ∈K, where each distribution
is considered to be a candidate for the optimal solution. To evaluate the distributions such that the
optimal distribution from the family K can be found, the KL divergence can be used (Blei et al., 2017).
Thus, the optimisation problem is

q∗(z) = min
q(z)∈K)

KL(q(z)‖p(z|x)), (2.13)

where the complexity of this optimisation problem is now a function of the complexity of the family of
distributions chosen by the user. This then induces a trade-off as one needs to select a distribution that
best suits the posterior distribution with sufficient complexity while still allowing for computational
efficiency to perform the optimisation. This objective function is still, however, intractable due to
the dependency on the posterior distribution. Consider for a moment the following expansion of the
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natural logarithm of the marginal distribution p(x)

log p(x) = log
(∫

z
p(x,z)dz

)
= log

(∫
z

p(x,z)
q(z)
q(z)

dz
)

= logEq(z)

[
p(x,z)
q(z)

]
. (2.14)

Now, using an equality known as Jensen’s equality (Jensen, 1906), which is formally given for concave
functions as

f (E[X ])≥ E [ f (X)] , (2.15)
the expansion can be continued as

log p(x)≥ Eq(z) [log p(x,z)]−Eq(z) [logq(z)] , (2.16)

where the terms on the right hand side is known as the Evidence Lower Bound (ELBO) (Blei et al.,
2017). Bearing this term in mind, if one expands the term KL(q(z)‖p(z|x))

KL(q(z)‖p(z|x)) =−Eq(z)

[
log

p(z|x)
q(z)

]
=−

(
Eq(z) [log p(z|x)]−Eq(z) [logq(z)]

)
=−

(
Eq(z) [log p(x,z)]− log p(x)−Eq(z) [logq(z)]

)
=−(ELBO − log p(x))

=−ELBO + log p(x). (2.17)

Thus, one can see that by taking the difference between the log marginal likelihood term and the KL
divergence, one can maximise the log-likelihood and minimise the KL divergence by maximising
the ELBO. This allows one the opportunity to avoid the use the KL divergence minimisation for the
posterior distribution and rather perform maximisation of the ELBO and in doing so, the two intractable
issues previously identified can be resolved. However, the derivation of the ELBO is incomplete, as
the joint distribution term still needs to be expanded. Through expansion,

ELBO = Eq(z) [log p(x,z)]−Eq(z) [logq(z)]

= Eq(z) [log p(z)]+Eq(z) [log p(x|z)]−Eq(z) [logq(z)]

= Eq(z) [log p(x|z)]−KL(q(z)‖p(z)) . (2.18)

In the work of Kingma and Welling (2013), the decision was made to use a parametric model on
the approximate distribution over the intractable posterior distribution, given as q(z) = qφ (z|x). This
distribution is often referred to in the literature as the recognition or inference model. In the same
manner, it is assumed that the latent variables z are generated from a prior distribution pθ (z) and the
parameters θ are considered to be the generative model parameters that are required for the latent
variable prior and likelihood distributions pθ (z) and pθ (x|z). The term probabilistic encoder refers
to the approximate posterior distribution and the term probabilistic decoder refers to the generative
distribution pθ (x|z). Both the encoder and decoder are assumed to be parametrised by neural networks,
where the encoder aims to learn the parameters of the approximate distribution by taking a given input
x and mapping it to distribution parameters and the decoder aims to learn the mapping from the latent
variable space to the original feature space x.

The form of the probabilistic encoder is often chosen to be a multivariate isotropic Gaussian, as it then
allows for a given input x to produce a known distribution form over the latent variables. The form
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of the probabilistic decoder is often parametrised either as a Gaussian or as a Bernoulli distribution
depending on the application. The probabilistic decoder then allows for a given input z to be mapped
to a distribution for the input features x from which the latent variable could have been drawn. A
Gaussian encoder is often given in the form

q(z|xi)∼N(z|µµµ i,σσσ
2
i I), (2.19)

where µµµ i and σσσ i are given by the parametric non-linear neural networks. The probabilistic decoder is
given as

p(xi|z j)∼N(xi|µµµ j,σσσ
2
jI), (2.20)

where again, µµµ j and σσσ j are given by the parametric non-linear neural networks. The objective function
minimised for a VAE is

L(φ ,θ ,xi) =−Eqφ (z|x) [log pθ (xi|z j)]+KL
(
qφ (z|xi))‖pθ (z)

)
, (2.21)

where φ are the recognition model parameters and θ are the generative model parameters. The two
terms in the loss function have significantly different implications in how the optimisation occurs.
The first term is one that is not uncommon in Machine Learning literature but typically does not
compute the integral directly and rather performs empirical sampling of the encoded latent distribution
to evaluate the expectation. The second term, fortunately, has a closed-form solution that can be
computed under the assumption of the form of the prior and the approximate posterior distribution.
Thus, the objective function can be given as

L(φ ,θ ,xi) =
1
L

L

∑
l=1

[
− log pθ (xi|z j,l)

]
+KL

(
qφ (z|xi)‖pθ (z)

)
. (2.22)

It was noted by Kingma and Welling (2013) that often, the number of samples L required to evaluate
the expectation can be set to one if the batch size is sufficiently large. From this point, the loss function
dependency on φ and θ is dropped for brevity.

2.4.1 VAE Discussion

The approach presented thus far is somewhat complex and is better understood when relating previous
literature to the VAE framework. The probabilistic encoder is a network that maps a given feature
vector to an assumed distribution that covers the latent space. Typically, the latent space is incomplete
by design, meaning its dimensionality is less than the input. Thus, the encoder performs probabilistic
dimensional reduction. This implies is that the encoder facilitates dimensionality reduction with the
added benefit of a known form of distribution that governs the latent space, which is powerful as this
can allow for latent sampling. The probabilistic decoder is then a network that learns to take a given
latent space vector and map it back to the original input space, where this input space is now also
governed by some explicit distribution. The important element here is that often this mapping is chosen
to be deterministic, as is often the case with supervised learning, but this does not have to be the case.
One could train a network that can learn a stochastic distribution on the input space which then allows
one to perform sampling in the reconstructed space. This is powerful for anomaly detection as one can
use this space to justify how unexpected a given reconstruction is.

Figure 2.1 serves as a visual explanation of how a VAE network structure is formulated. In this figure,
the networks served to parametrise Gaussian isotropic distributions. One can immediately note is how
both the encoder and decoder networks learn a mean and variance vector that corresponds to the latent
space and the reconstructed output. However, it is clear that if one is to sample in the latent space,
one cannot easily perform gradient descent. This lead to the proposed re-parametrisation trick which
introduces an external multivariate zero mean, unit covariance noise distribution from which one can
sample and then use this sample to develop a latent variable vector (Kingma and Welling, 2013). Given
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Figure 2.1. Illustration of a simplistic Variational Auto-Encoder. The notation, in this case, is circular
elements denote nodes, square elements denote the latent vector distribution parameters and the dotted
rectangular elements indicate the inputs and outputs of the network system.

in mathematical notation, this is
zi = µµµ i +σσσ i� εεε i, (2.23)

where � is the element-wise product operator and εεε i is the stochastic component sampled from a
distribution, given as εεε i ∼N(0,I). This process allows one to conduct back-propagation through the
network structure. The aim now is to develop the necessary terms that can allow for an evaluation of
the loss function. The first term in the loss function, under the assumption of a multivariate isotropic
Gaussian decoder, can be expanded to be

log p(xi|z j) =−
1
2
(
Dinput log(2π)+ log(|σσσ2

jI|)
)
− 1

2
(xi−µµµ j)

T (σσσ2
jI)
−1(xi−µµµ j)

=−1
2

(
Dinput log(2π)+

Dinput

∑
i=1

log(σ2
j )

)
−

Dinput

∑
k=1

(xi,k−µ jk)
2

2σ2
j,k

, (2.24)

where Dinput is the dimensionality of the input space and j refers to the elements obtained by passing an
input xi through the encoder and decoder µµµ j,σσσ

2
j = Dθ (Eφ (xi). One can then drop the term 1

2 D log(2π)
to give the reconstruction objective function. In this work, two forms of a VAE are considered where
the main difference between the two is the decision to either assume an identity output covariance
matrix and rather learn an output variance. These two forms are referred to as the deterministic (VAE1)
or stochastic (VAE2) VAEs respectively. If the VAE1 is used, Equation (2.24) reduces to the MSE
loss function. For vibration data, the use of an output variance can aid in quantifying the extent of an
anomalous instance and help emphasise anomalous instances in the data.

The second term in the loss function is the KL divergence between the approximate distribution and the
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latent variable prior. This term acts as regularisation in the VAE loss function as it penalises deviance
from the assumed form from the prior distribution. This then enforces that the VAE learns to map input
vectors to a controlled latent space which is useful as this allows the loss function to ensure that the
mapping to the latent space can be one that is informative as to what features represent a certain input
when compared to the other. Under the assumption that both of these distributions are Gaussian, the KL
divergence between two general multivariate Gaussian distributions, N0 ∼ (µµµ0,ΣΣΣ0),N1 ∼ (µµµ1,ΣΣΣ1),
can be expanded to be

KL(N0,N1) =
1
2

[
tr(ΣΣΣ−1

1 ΣΣΣ0)+(µµµ1−µµµ0)
T

ΣΣΣ
−1
1 (µµµ1−µµµ0)−Dlatent + log

|ΣΣΣ1|
|ΣΣΣ0|

]
, (2.25)

where tr(·) is the trace operator and | · | indicates a matrix determinant (Kingma and Welling, 2013).
In this manner, it is often assumed that the latent space prior is a zero mean, isotropic unit Gaussian,
which then leads to the following expansion

KL
(
qφ (z|xi))‖pθ (z)

)
=

1
2

[
tr(σσσ2

i I)+µµµ
T
i µµµ i−Dlatent + log

1

∏
Dlatent
k=1 σ2

i,k

]

=
1
2

Dlatent

∑
k=1

[
µ

2
i,k +σ

2
i,k− log(σ2

i,k)−1
]
, (2.26)

where i now refers to the latent sample obtained by using the re-parametrisation trick on the outputs of
the encoder µµµ i,σσσ

2
i = Eφ (xi). Therefore, the loss function for VAEs can be given in full as

L(xi) =
1
2

(
Dinput

∑
i=1

log(σ2
j,i)

)
+

Dinput

∑
k=1

(xi,k−µ j,k)
2

2σ2
j,k

+
1
2

Dlatent

∑
k=1

[
µ

2
i,k +σ

2
i,k− log(σ2

i,k)−1
]
. (2.27)

In practical applications, there are two conventional approaches to the modelling of the variance terms
in the probabilistic encoders and decoders. These approaches try to navigate the potential issue of
negative variances learnt by the network, as this is an impossible occurrence. The first approach to
circumnavigate this issue is to use a linear activation function on the variance output and treat this
term as a logarithmic variance, whereby one then takes the exponent of this term to treat it then as a
variance. Alternatively, an approach often used in literature is to use a Softplus activation function, as
this is a variant of the approach which models it as a logarithmic term. In doing this, the variance can
then be treated as normal and thus requires no manipulation to transform it into the correct form. These
two approaches are equivalent in how they aim to ensure positive variances in a network, however, the
effect it has on the values that the variance might take is highly different. If one uses an exponential
form on a linear unit the variance will change exponentially whereas the Softplus activation function
ensures a linear variation for an activated neuron. The Softplus activation method can be treated as a
dampened form of the exponential approach as it ensures that the variances do not grow exponentially
but rather linearly. The effect of this in a VAE context has not been investigated, but it is certainly an
interesting contrasting assumption that has clear implications on the performance of the model. For the
interested reader, conditional VAEs are detailed in the work of Sohn et al. (2015). A conditional VAE
maximises the ELBO of the conditional distribution p(x|y) where y are conditional variables.

In the work of An and Cho (2015), a VAE based anomaly detection algorithm was proposed that
consisted of determining a Monte Carlo estimate for a given sample xi through the reconstruction
log-likelihood Eqφ (z|x) log(pθ (x|z)). The ability of this reconstruction probability was then compared
to reconstruction errors obtained from an AE, a linear PCA model and a kernel PCA model on two
datasets and it was found that the reconstruction probability was an objective and clear anomaly score
in comparison to those found from the other models considered.
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In the work of Matsubara et al. (2018), an unregularised score was proposed which is the same as that
used by An and Cho (2015) but differs in the once-off estimation of the expectation using only the
predicted mean of the latent variable from the posterior distribution qφ (z|x). This metric was compared
on a toy and manufacturing anomaly dataset, where the latter consisted of identifying anomalous crack
in screw holes. Matsubara et al. (2018) found that a VAE with the unregularised score was found to
work well for anomaly detection on problems of varying difficulty.

In the work of Booyse et al. (2020), VAEs are presented in the context of anomaly detection on
vibration data. A VAE was trained on only healthy data and the reconstruction log-likelihood response
was compared to the discriminator output from a GAN trained on the same data. It was found that
a VAE could be used for anomaly detection, however the GAN consistently outperformed the VAE.
Booyse et al. (2020) investigated a variety of synthetic and experimental datasets and found that a VAE
and a GAN was able to capture the manifold of healthy asset data and detect anomalous instances in
vibration data.

In this work, the latent manifold of VAEs is investigated for time-series data to determine whether
anomalous instances are detectable only in the input space or if the latent manifold is also able to
detect the presence of anomalous instances. The benefit of the VAE model is the addition of encoder
and decoder network non-linearity and flexibility, which can aid in producing better latent manifolds.
To do this, the temporal preservation approach is imperative as it allows for the element of time to be
preserved in the discrepancy signals, where a discrepancy signal in this work is a signal that contains
all the discrepancy metric responses for the partitioned segments obtained using Equation (1.15)
with Ls f t = 1. Most approaches to anomaly detection using VAEs only focus on the reconstruction
log-likelihood of a model for an instance xi but the input space is only one element of the model that is
indicative of damage. If the latent manifold captures the information of a healthy asset, the presence of
anomalous instances should also manifest in this manifold, however sensible methods of measuring
this change must be used.

2.5 β -TC-VAE
Another form of a VAE that is interesting is the β -Total Correlation (TC)-VAE, which is considered
to be one of the current state-of-the-art VAE methods. The β -TC-VAE formulation is a variation of
the original VAE whereby the KL divergence from the ELBO is decomposed into separate elements.
The aim here is twofold, not only does this decomposition yield an alternative formulation to the
original VAE, but it also allows for a deeper understanding of the original VAE formulation and what
the KL divergence aims to achieve. Due to issues with initially implementing this method, the decision
was made to present the β -TC-VAE thoroughly, so that future work can be done more efficiently if
required. Consider now the KL divergence from the VAE loss in Equation (2.22), which was given in
its mini-batch form. In Chen et al. (2018), they initialise the proof using

1
N

N

∑
i=1

KL
(
qφ (z|xi)‖pθ (z)

)
= Ep(n)[KL

(
qφ (z|xi)‖pθ (z)

)
], (2.28)

where n now makes reference to the entire dataset of training data x. The decomposed form of the KL
divergence was shown to be

Ep(n)[KL
(
qφ (z|xi)‖pθ (z)

)
],= KL(q(z,n)||q(z)p(n))︸ ︷︷ ︸

Index-Code MI

+KL(q(z)||∏
j

q(z j))︸ ︷︷ ︸
Total Correlation

+∑
j

KL(q(z j)||p(z j))︸ ︷︷ ︸
Dimension-wise KL

,

(2.29)
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where z j is used to refer to the jth latent variable (Chen et al., 2018). As noted in Equation (2.29),
there are three elements which can be referred to as the index code Mutual Information (MI), the TC
and the dimension-wise KL divergence. The intuition between these three elements is: the index code
MI can aid in enabling compact and disentangled latent space representations, the TC term can aid
in finding independent latent factors in the data distribution and the dimension-wise KL divergence
ensures that the latent dimensions do not deviate from the prior distribution. Chen et al. (2018) then
argue that the existence of the TC term in the KL divergence is why VAEs can learn disentangled latent
representations and give the overall VAE objective function as

Lβ -TC =−Eq(z|n)p(n)[log p(n|z)]+αKL(q(z,n)||q(z)p(n))+βKL(q(z)||∏
j

q(z j))

+ γ ∑
j

KL(q(z j)||p(z j)),

(2.30)

where α,β and γ are weighting parameters for the expanded KL divergance, with Chen et al. (2018)
stating that one use α = γ = 1 and modifying β . This is the final objective of the β -TC-VAE. However,
there is a clear dependency here on the entire dataset n, which can be problematic when datasets
become large in size. One can note that this objective function cannot be easily implemented, thus
the author has chosen to present a detailed decomposition of the β −TC−VAE objective function in
Appendix B.3.

Kim and Mnih (2018) derived a Factor-VAE, which is similar to the β -TC-VAE but an adversarial
training approach was used to estimate the TC term in the expanded KL divergence. Esmaeili et al.
(2018) provide a unifying investigation into the ELBO and the KL divergence in VAEs, with an intuitive
explanation of the expanded KL divergence. In this research, the β -TC-VAE with mini-batch stratified
sampling shall be used to compare how a standard VAE performs to a state-of-the-art technique.

2.6 Generative Adversarial Networks
Generative Adversarial Networks (GANs), developed by Goodfellow et al. (2014), are considered to be
the forefront of unsupervised learning techniques due to their impressive successes in image generation
and to a larger degree, generative modelling as a research endeavour. A GAN, in an unsupervised
machine learning framework, is an algorithm whereby two networks are pitted against one another and
play a two-player game that terminates when an equilibrium point is reached. Here, the two players
are the generator network and the discriminator network, denoted as G and D respectively, and the
two-player game methodology is known as an adversarial network framework. In this framework, the
adversary is the discriminator D. The roles of the players in this game are simple, the objective of the
generator is to generate samples similar to those of the ground truth data samples and the role of the
discriminator is to determine whether these samples are real or fake. The discriminator is trained to try
and improve its ability to label data as real or fake, while the generator is trained to try and improve its
ability to make the discriminator label the generated data incorrectly. The equilibrium point required
for game termination is the point when the Nash-equilibrium is reached. Nash equilibrium is a point
where all players in a non-cooperative game cannot perform any profitable action, based on the state of
all other players (Muthoo et al., 1996).

As training progresses in this framework, the hope is that G will become better at producing samples
that are similar to those of the data distribution, while D will become better at determining whether
samples are from the real distribution. Thus, as training progresses, the players G and D shall update
and improve themselves, based on the improvement of the other, to a point where D has equivalent
uncertainty on whether real and fake samples are distinguishable. The hope is that when Nash-
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equilibrium is reached, G can fully mimic the data distribution and generated samples should be
indistinguishable from those in the real distribution. If this point is reached, then G can be seen as a
proxy to the real distribution (Goodfellow et al., 2014).

Jiang et al. (2019b) utilised GANs in an AE based framework, whereby vibration data was encoded and
decoded using an AE, and the decoded data was sent to a discriminator. However, the raw vibration
data was not used but rather a feature extractor that converted a signal into feature representations.
Their implementation is akin to an α−GAN approach with a pre-defined feature extractor (Rosca
et al., 2017). The implementation used by Jiang et al. (2019b), like Booyse et al. (2020), makes use of
only healthy vibration data as training data but rather than using the discriminator as a health indicator,
an anomaly score based on the reconstruction loss in the input space and the latent space was used.
When their approach was implemented on the Case Western Reserve University bearing dataset their
technique proved to be comparable to other inference-based techniques such as a Bidirectional GAN
(BiGAN) and, by extension, Adversarially Learned Inference (ALI), which are techniques proposed by
Dumoulin et al. (2016) and Donahue et al. (2016) respectively.

Liu et al. (2018a) utilised the adversarial auto-encoder (AAE) approach, detailed in Makhzani et al.
(2015), alongside their proposed Categorical GAN (CatGAN) approach to produce a technique they
call Categorical Adversarial Auto-Encoder. Here, the idea was to allow the adversarial AE to learn to
encode data to some prior p(z) and at the same time, the encoded data was used to train a discriminative
classifier to classify latent codes to one of K classes. Thus, the assumption is inherently made that
the latent space is some clustered distribution, such as K Gaussians, so that labels can be generated
for prior samples. In doing so, the hope is to not only encode data to some prior but also perform
clustering based on different data. This technique was implemented on vibration data for the Case
Western Reserve Bearing dataset, where fault data was also trained on, with the hope that different
faults could be clustered to different places in the latent space. Vibration data was pre-processed using
a multitude of features and a simple 2D latent space was constructed. Their technique was compared
to other latent space clustering techniques such as K-means clustering and was found to be superior for
vibration data, even in the presence of non-stationary operating conditions.

GANs have also been specifically designed for anomaly detection in cases where the data is not
vibration data, with various techniques such as the Anomaly GAN (AnoGAN) (Schlegl et al., 2017),
f-AnoGAN (Schlegl et al., 2019), Efficient GAN-Based Anomaly Detection (EGBAD) (Zenati et al.,
2018), GANomaly (Akcay et al., 2019) and Adversarial Dual Auto-Encoder (ADAE) (Vu et al., 2019).
In the works of Di Mattia et al. (2019), these techniques are all compared and their performance is
evaluated on a variety on datasets, including MNIST and Fashion-MNIST (LeCun et al., 1998, Xiao
et al., 2017).

2.6.1 GAN Training

To train a GAN, a framework is used whereby the two players are both parametrised by neural
networks, which are then initialised and shall bear the notation Gθ (z) and Dφ (x) for the generator and
discriminator respectively. As is the case with unsupervised learning, the assumption is made that there
are latent variables z that describe the data, inducing a latent variable model, and a prior for this latent
variable distribution is assumed (Rosca et al., 2017). The generator then represents the distribution
pθ (x|z), where the prior p(z) is often assumed to be a multivariate, isotropic unit Gaussian. G can
also be seen as a parametric function from Rz→ RD, where z is the latent space and D refers to the
input space, with continuous parameters θ . The discriminator is a network with a single output node
and a sigmoid activation function applied to this node, thus a function RD→ R1 with parameters φ in
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the classic GAN framework. The objective of D is to predict 1 for samples x∼ p(x) and 0 for samples
x ∼ pθ (x|z). From a probabilistic perspective, the discriminator gives the distribution p(t = 1|x),
which assigns a probability to a sample it sees with t = 1 signifying real data and t = 0 signifying
fake data. One can immediately notice here that there are now some target labels assigned to data,
indicating that this training framework, albeit being purely unsupervised concerning data labels, is
supervised in its training of the discriminator.

Using the binary cross-entropy loss function from Equation (A.8), the objective function for GAN
training can be given as

min
G

max
D

V (D,G) = Ex∼p(x)
[
logDφ (x)

]
+Ez∼p(z)

[
log(1−Dφ (Gθ (z))

]
, (2.31)

where one aims to optimise the discriminator parameters φ by minimising the loss function

LD(θ ,φ) =−Ex∼p(x)
[
logDφ (x)

]
−Ez∼p(z)

[
log(1−Dφ (Gθ (z)))

]
, (2.32)

and one aims to optimise the generator parameters θ by minimising the loss function

LG(θ ,φ) = Ez∼p(z)
[
log(1−Dφ (Gθ (z)))

]
. (2.33)

The training procedure for GANs is implemented as an alternating gradient descent procedure, where
it is important to note that it is referred to as descent as the objective functions are minimised rather
than maximised. Equations (2.32) and (2.33) are the ones shown in Goodfellow et al. (2014), with the
target label elements dropped for brevity due to the trivial nature of their application. One interesting
derivation that is key to understanding how GANs learn to approximate p(x) with pθ (x|z) comes
about in the derivation of what the optimal values that should be obtained GAN training reaches Nash
equilibrium. The entire derivation is beyond the scope of this work and only the key elements from
Goodfellow et al. (2014) shall be presented. If one attempts to find an optimal discriminator using
maxDV (G,D), the result becomes

D∗G(x) =
p(x)

p(x)+ pg(x)
. (2.34)

where p(x) is the true data distribution and pg(x) is the generated distribution learnt by the generator.
This result shows that in the discriminator update step, density ratio estimation is performed by the
discriminator, which often leads to some literature calling the discriminator update the ratio estimation
step and the adversarial or generative step (Mohamed and Lakshminarayanan, 2016, Uehara et al.,
2016, Goodfellow, 2015). Using this result, the original objective function in Equation (2.31) was
reformulated in Goodfellow et al. (2014) and reduced to

V (D∗G,G) =− log4+2JSD(p(x)‖pg(x)), (2.35)

where JSD is the Jensen-Shannon Divergence between two distributions. This is an important con-
sideration for the GAN framework, as it is now clear that some divergence metric is used to compare
the true and generated distributions. This divergence is also slightly better behaved, theoretically,
when two distributions are non-overlapping as the KL divergence tends to infinity in the case of
non-overlap.

In the application to time-series data, GANs offer significant advantages due to the implicit density
estimation performed. This then removes the assumption that the input data is Gaussian, which adds
a benefit of model flexibility to capture more complex data distributions. The work of Booyse et al.
(2020) was significant in introducing and formulating GANs in a time-series data application, with it
shown that GANs offer significant advantages and can clearly detect damage through the use of the
learnt discriminator. The implicit density estimation along with G non-linearity offers an advantage
over VAEs in the type of data the manifold can capture. However, the focus of this work is around
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the latent manifold of latent variable models and the current GAN formulation only allows for data
generation and no model inference. In the sections that follow, the aim is to investigate GANs further
and also develop latent variable models that can benefit from the implicit density estimation and recover
a latent manifold for the input data.

In the implementation of GANs, GAN training proved to be a tricky procedure, with clear sources
of difficulty identified in the literature. These problems have been thoroughly investigated, however,
there is no clear direction that has shown to be the correct focal direction. There are three main fields
of research focus, namely, GAN loss function improvement, GAN training framework improvement
and GAN parametrisation improvement. These fields will now be elaborated on and discussed based
on literature.

2.6.2 Loss Function Improvement

The loss functions associated with GANs are often scrutinised due to problematic results noted from
the original formulation. Here, the author is referring to how the gradients might back-propagate
during training initialisation. It was noted by Goodfellow et al. (2014) that D, due to the simple nature
of its operation, is near-optimal performance as there is little to no overlap between p(x) and pθ (x|z).
As a result, the original formulation in Equation (2.33) produces insufficient gradients and results in
slow or even negligible G training improvement. Two popular improvements from literature are the
Non-Saturating loss and the KL Loss (Goodfellow et al., 2014, Sønderby et al., 2016). These losses
are implemented to directly improve Generator training, where the non-saturating loss is

LGNS =−Ez∼p(z)[logDφ (Gθ (z))], (2.36)

which in non-saturating as the original GAN loss may saturate around 0 during initial training. The
fundamental principle of the loss has also changed, where for the original loss the generator aimed to
minimise the prediction that the generated data was fake while for the non-saturating loss it aims to
maximise the prediction of generated data as real. The non-saturating loss allows for strong gradients
during initial training and weaker gradients near the end of training, provided that G improves. However,
this weaker gradient result is not always an ideal occurrence, as it may result in premature saturation in
the training of G. As an alternative, the KL Loss was derived by Sønderby et al. (2016) based on the
principle of mean-seeking versus mode-seeking divergence metrics between distributions. Consider
for a moment, the asymmetric KL divergence where the mean-seeking divergence is the forward KL
divergence KL(p||q) whereas the mode-seeking divergence is the reverse KL divergence KL(q‖p),
where p is the true distribution and q is the approximate distribution. By expanding the KL divergence,
these forms are

KL(p‖q) =
∫

p(x) log
(

p(x)
q(x)

)
dx, (2.37)

KL(q‖p) =
∫

q(x) log
(

q(x)
p(x)

)
dx, (2.38)

where the performance of these two types is easily explained through a simple example. Consider
the case where one aims to approximate some bi-modal univariate-Gaussian mixture distribution p(x)
with a univariate Gaussian distribution q(x) of which one can control the mean and variance, as shown
in Figure 2.2. When minimising the forward KL divergence in Equation (2.37), the approach will
strongly penalise points where q(x) is very low while p(x) is larger. As a result, the optimal case will
result in a q(x) that covers all p(x) > 0, thereby tending to satisfy a mean-result of p(x), as shown
in Figure 2.2(a). When minimising the reverse KL divergence in Equation (2.38), the approach will
strongly penalise points where p(x) is low while q(x) is larger. This result will induce a mode-seeking
approach, as shown in the simple example shown in Figure 2.2(b), as the univariate distribution will
rather focus on one mode and not placing q(x) where there is no p(x). As noted by Bishop (2006), in
many practical applications it is not unreasonable to assume that p(x) may be multi-modal, which then
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highlights that the forward KL divergence may be ill-suited, as it may lead to the modal average and
thus the parametric distribution q(x) will be a poor approximation. This simple idea extends to other
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(a) Optimal forward KL divergence.
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(b) Optimal reverse KL divergence.

Figure 2.2. Illustration of the KL divergence for a simple problem of a parametrised univariate
Gaussian distribution used to minimise the forward and reverse KL divergence. Notice the mean
seeking behaviour of the forward KL divergence and the mode seeking behaviour of the reverse KL
divergence.

distributions and for the assumption of the distribution modelled through G, which takes an implicit
distribution form, the parametric function is hopefully sufficiently flexible to capture all modes. This
assumption of sufficient flexibility is why the reverse KL divergence is favoured, as G will then tend to
neglect points where p(x) is not likely to be and may be able to capture all modes.

The derivation of the KL divergence loss is beyond the scope of this work but if one minimises the
reverse KL divergence, as detailed in Sønderby et al. (2016), the KL divergence loss that one can use
for the optimisation of G can be given as

LGKL =−Ez∼p(z) log
D(Gθ (z))

1−Dφ (Gθ (z))
. (2.39)

2.7 GAN Training Framework Improvement
The second problem often addressed and discussed in the literature is the idea of addressing GANs
through changing the optimisation scheme or even the methodology of how a GAN is developed.
Thus, in this section, the author will discuss different approaches to GAN training as well as different
approaches to the adversarial framework on which GANs operate. Due to the inherent difficulties
associated with training GANs, there has been a substantial driving mechanism within the literature to
improve the optimisation scheme implemented to find the Nash-equilibria of the GAN-game. Here,
the author generalises the optimisation scheme to cover both the optimisation technique as well as the
GAN framework formulation. For the first point of discussion, GAN optimisation scheme improvement
from the optimisation technique and the objective function will be discussed. Note that in the previous
section we did cover G objective function improvement, here however the focus will be on both D and
G.
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2.7.1 Optimisation Scheme Improvement

For the classical optimisation technique used in training GANs, one takes alternating D steps and then
G steps until some convergence criteria are met. This technique is referred to as alternating gradient
descent or ascent depending on how one defines their loss functions, but as pointed out in the works of
Mescheder et al. (2017) this technique does not always guarantee convergence due to inherent issues
with the optimisation framework.

In the zero-sum game, if the Hessian is positive definite and the learning rate is sufficiently small,
then the alternating gradient descent approach shall converge to the Nash equilibrium. However, due
to complexity induced by neural network parametrisation, the Hessian is no longer guaranteed to be
positive definite, due to the non-convex nature of the objective functions used in GANs. Furthermore,
Mescheder et al. (2017) show that the existence of eigenvalues with large imaginary components in the
Hessian can be detrimental to training, with this existence attributed to the non-conservative vector
field induced in the original zero-sum game. To alleviate this issue, the authors choose to enforce
convexity into the loss functions directly, by adding the norm of the objective functions to the original
cost functions. This convexity enforcement led to the development of the Consensus Optimisation
algorithm, which can also be seen as a technique that tries to enforce that the non-conservative vector
field is conservative locally. The convex enforcement term is developed for GAN training as

Lnorm(θ ,φ) =
1
2
[
||∇φLD(θ ,φ)||22 + ||∇θLG(θ ,φ)||22

]
, (2.40)

where one can see that this term enforces that the gradients of the two objective functions must tend
to zero during optimisation. Thus, for the case of GAN training, the new objective functions can be
shown to be

L̃D(θ ,φ) = LD(θ ,φ)+λLnorm(θ ,φ), (2.41)
L̃G(θ ,φ) = LG(θ ,φ)+λLnorm(θ ,φ), (2.42)

where λ is some enforcement parameter, that guides how harshly the objective function is penalised
for large gradients. The training scheme for Consensus Optimisation is also one that is no longer
alternating gradient descent but simultaneous gradient descent. Therefore, G and D are updated
simultaneously as opposed to in an alternating pattern (Mescheder et al., 2017, 2018).

Consensus Optimisation, however, is not a silver bullet for GAN training, with other techniques such as
unrolled-GANs (Metz et al., 2016) also showing promising results. Unrolled-GANs operate under the
principle of an unrolled update procedure for G, whereby G is updated for N updates of D. However,
the gradient is back-propagated or ’unrolled’ through each of the N updates for D and not for just the
future state of D. This unrolled future state of D is then forgotten and D is updated based on the current
state of G. A technique proposed by Nagarajan and Kolter (2017), similar to Consensus Optimisation,
operates by adding the norm of the gradient of D to the objective function of G. This technique also
focuses on the non-conservative nature of the vector field, however, it addresses it only for G and not
for both D and G. The loss function in this case is

L̃G(θ ,φ) = LG(θ ,φ)+λ ||∇φLD(θ ,φ)||22. (2.43)

These convex gradient approaches are proposed to combat mode collapse in GANs, which they attribute
to the optimisation scheme. Mode collapse is a phenomenon whereby, if the data distribution consists
of non-overlapping modes, G tends to hop between modes rather than learning to sample from each
mode. This occurs due to the nature of G, as it is not enforced that it captures all modes but rather its
only objective is to fool D (Goodfellow et al., 2014). Other techniques that try to circumvent mode
collapse are to induce gradient penalisation, such as the technique proposed by Roth et al. (2017)
which uses a gradient penalty on the discriminator. An alternative to the technique proposed by Roth
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et al. (2017) is the R1 or R2 gradient penalty proposed by Mescheder et al. (2018), which penalises the
discriminator based on either real data or fake data. The form of this penalty is

Rn =
λ

2
Ex∼P[‖∇xDφ (x)‖2

2], (2.44)

where R1 is for cases where P = p(x) and R2 is for cases where P = pθ (x). Another alternative, as
proposed by Booyse et al. (2020), is that of a discriminator penalty that is based on samples from
the latent distribution, where the objective here is to produce a discriminator that is invariant to mild
perturbations in the latent space. The penalty form is similar to the R2 penalty but instead of taking the
derivative to x the derivative is taken to z, given as

Rz =
λ

2
Ex∼pθ (x)[‖∇zDφ (x)‖2

2], (2.45)

2.7.2 GAN Formulation Improvement

In this section, a discussion about GAN formulations that aim to introduce disentangled latent rep-
resentations explicitly as well as GAN formulations that aim to improve training by changing the
divergence metric that is used to quantify the divergence between p(x) and pθ (x|z) will occur. The
first method introduced is that of the InfoGAN, then the Adversarial Auto-Encoder (AAE) and finally
Wasserstein-GANs (WGANs) and by extension, Wasserstein Auto-Encoders (WAEs).

2.7.2.1 InfoGAN

The Information Maximising GAN (InfoGAN) framework is a mild modification of the original
GAN framework. This modification attempts to obtain explicit disentangled representations in an
unsupervised manner. The benefit of a disentangled latent representation is the capturing of the
factors of variation in the data and thereby ensuring that the important information in the data is
captured by the latent manifold. Here the author introduces the term explicit disentanglement, which
is not often seen in the literature. The explanation for this term is that for disentanglement in a
GAN framework, the form of the disentangled representation is explicitly chosen, such as a discrete
categorical representation, whereas VAEs attempt to uncover disentangled representations implicitly.
InfoGAN’s originally received criticism for poor performance in comparison to state of the art VAEs,
such as FactorVAE (Kim and Mnih, 2018). However, Lin et al. (2019) were able to show that by using
techniques to improve GAN training from literature, the performance of InfoGANs could be vastly
improved.

InfoGANs make use of mutual information, which is a measure of the amount of information between
two random variables. Mutual information can be expressed as the sum of the entropy of one of the
random variables minus the conditional entropy, where the variable chosen for just the entropy term is
conditioned by the other. The author chose this description as mutual information can be expressed
as

MI(X ,Y ) = H(X)−H(X |Y )
= H(Y )−H(Y |X), (2.46)

where H(·) is the Shannon entropy of a random variable and it is clear to see that the mutual information
between two random variables is interchangeable (Bishop, 2006). Chen et al. (2016) then chose to
assume that the latent vector z comprises three components: a noise component n, a continuous
component s and a categorical component c. These three components then had three objectives in
terms of what they aim to disentangle. The noise component is assumed to contain the incompressible
noise element of the data distribution, the continuous component is assumed to capture the structured
semantic features of the data distribution and the categorical element is assumed to capture any
categorical representations of the data distribution. Then, by adding an information-theoretic mutual
information measure as a form of regularisation, the objective is to maximise the mutual information
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between latent codes c and s and the generated distribution pθ (x|z). By maximising this mutual
information, the hope is to obtain latent codes that are disentangled and contain features that define the
underlying structure of the data. The proposed form of the zero-sum game is given as

min
G

max
D

VI(G,D) =V (G,D)−λ [MI(c,G(n,c,s))+MI(s,G(n,c,s))]. (2.47)

One of the issues associated with the conditional entropy term in the mutual information is that one
needs the posterior distribution p(c|x), which is intractable. However, using Variational Information
Maximisation (Barber and Agakov, 2004), a lower bound of mutual information can be obtained. In
this work the approach for c is shown, assuming that one has access an approximate distribution q(c|x),
which can be done using a neural network as a parametric function from RD→ Rc. The lower bound
is shown to be

MI(c,G(n,c))≥ H(c)+Ex∼G(n,c)Ec∼p(c|x) log(q(c|x)). (2.48)
However, one can see that there is still a dependency of the intractable distribution p(c|x), fortunately
Chen et al. (2016) show that this can be removed, where the final element of the proof is the considera-
tion of a parametric distribution qϕ(c|x), where we now wish to maximise the mutual information by
optimising the parameters ϕ in qϕ(c|x) through

LI(G,Q) = q(c|x)) = max
q(c|x)

(H(c)+Ec∼p(c),x∼G(n,c) log(q(c|x))

= H(c)+max
ϕ

Ec∼p(c),x∼G(n,c) log(qϕ(c|x))

= H(c)+max
ϕ

Ec∼p(c),n∼p(n) log(qϕ(c|G(n,c))). (2.49)

Therefore, the InfoGAN objective function can be written as

min
G,Q

max
D

VIn f oGAN(G,D,Q) =V (G,D)−λLI(G,Q), (2.50)

where H(c) is dropped as it is a constant. To implement the InfoGAN approach, we parametrise Q
with a neural network, with the decision made by Chen et al. (2016) to share most of the weights of D.
The form of the distribution qϕ(c|x) is made to be that of a categorical distribution of c, or a Gaussian
distribution for s. Lin et al. (2019) showed that it is more effective to rather choose a factored Gaussian
distribution for s as it is easier to optimise. As a result, the form for categorical latent variables are as
follows

q(c|Gi(n,ci))∼ Bern(ci|µµµci
), (2.51)

where µµµci
is a parametric function in RD→Rk where k is the number of categories. For the continuous

latent variable case, the assumption is that the distribution is a Gaussian given as

q(s|Gi(n,si))∼N(si|µµµsi
,σσσ2

si
I), (2.52)

where µµµsi
and σσσ2

si
are parametric functions in RD→ Rs. One thing to note is that the variance can

either be a neural network or assumed to be unity. So, ultimately, to implement an InfoGAN you need
an neural network that takes in a generated sample G(n,c,s) and then outputs a predicted form of
c and s. It acts as a form of encoder that is focused on recovering the latent samples in a generated
sample. The objective is to then minimise the difference between the original and recovered forms of
the disentangled latent elements. In practice, it is common for the categorical variable chosen to be a
categorical distribution c∼ Cat(K,u) whose form is given as

p(ti|u(xi)) =
K

∏
k=1

uk(xi)
tik , (2.53)

where K is the number of classes and u is the parametric function used to predict the class of an input.
It is also common practice to let the continuous variable be of the form s∼N(0,I).
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In the work of Lin et al. (2019), the InfoGAN framework was improved with a technique that introduced
a regulariser on the original InfoGAN objective function. This regulariser was referred to as a
contrastive regulariser. The regulariser operates by introducing a discriminator that takes two samples
generated by setting one latent feature to be the same while randomly sampling the other latent features.
The objective of this discriminator is then to predict the latent feature that was shared between the
images. The notion behind this proposed method is the enforcement of disentangled latent features
which are distinct as possible.

2.7.2.2 Adversarial Auto-Encoder

Adversarial Auto-Encoders (AAEs) are a technique developed by Makhzani et al. (2015) that introduces
the adversarial framework into a setting where one aims to perform variational inference. The
operational principle of AAEs is to utilise the auto-encoder framework, which allows for a latent space
to be recovered. However, the latent space has no form of regularisation which then does not guide the
network into how z should be, allowing it to be distributed freely. Thus, to regularise it to some form,
an adversarial framework is placed on the latent space. The objective of this adversarial framework
is to produce a latent posterior distribution q(z|x) that matches an arbitrary prior distribution. This
framework, which shall be called the AAE framework, can be seen as an alternative to a VAE, where a
VAE uses the KL divergence to regularise the latent space while the AAE framework uses the JSD
from GAN training to regularise the latent space. The objective function for AAEs can thus be defined
as
min
θ ,φ

max
ω

LAAE = LAE +min
Gz

max
Dz

V (Dz,Ez)

= Ex∼p(x)||xi−Gθ (Eφ (xi))||22 +Ez∼p(z) [logDω(z)]+Ex∼p(x)
[
log(1−Dω(Eφ (x))

]
,

(2.54)
where Dω refers to the latent discriminator network, Eφ refers to the encoding network and Gθ refers
to the decoding network from the AE framework. Samples are drawn from any prior z∼ p(z), which
are then considered to be the real latent samples and the encoding network is updated to ensure that the
features it encodes are similar to those latent samples. Due to the requirement that all one needs is
samples from the latent distribution, the latent space can be enforced to be any distribution that can be
efficiently sampled from. This means that rather than developing an analytical expression, as was the
case for the KL divergence, the latent space can be structured into anything just by having access to
samples from the distribution you wish to use. This is quite a fundamental difference between VAEs
and GANs and shall be discussed in section 2.7.3.

One interesting development in the AAE framework is the ability to use the adversarial framework to
develop discrete latent variables. Like InfoGAN, the assumption can be made that the latent space
consists of noise and some discrete categorical element. However, an encoding network can be trained
to cluster inputs into categories, in an unsupervised fashion. It is interesting that if one uses the
adversarial framework on n and c separately, where z = [n,c] is the latent space, class structure can
be enforced and uncovered. Here, one just needs a prior for p(c) which can easily be chosen to be
a categorical distribution Cat(K, p). This then introduces a second discriminator network into the
original AAE objective function that then aims to enforce that q(c|x) matches the prior for c. The
encoding network is therefore represented as q(c,n|x). To enforce that the output of the encoder q(c|x)
is representative of the prior a softmax activation function can be used. In the implementation of
categorical AAEs, the author found that it was easier to add a small amount of white noise to any
discriminator input on the categorical code Dζ . This is because samples from the prior p(c) are one-hot
vectors, therefore allowing the encoder some time to sort out its production of categorical elements
before no useful gradients can back-propagate. One can also use this discrete latent variable approach
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in a semi-supervised setting, where one uses minimal labelled samples to aid in how the encoder
categorises inputs if the data has categorical labels associated with it.

One important point of discussion in the AAE framework is whether or not it is necessary to use the
adversarial framework for simple latent distributions, such as the Gaussian distribution. If one has
access to simpler divergence metrics, it might make sense to use a simpler metric to enforce structure
into the latent space, where here the author is specifically referring to noise elements (n) and even
continuous elements s. A popular metric in literature is that of the Maximum Mean Discrepancy
(MMD) metric, which was introduced in Zhao et al. (2017) in a VAE context and Li et al. (2015) for a
GAN context. In the works of Zhao et al. (2017), issues related to how VAEs with the KL divergence
metric can lead to undesirable results were highlighted, such as inference failures due to properties
of the ELBO objective, modelling bias due to dimensionality differences or a problem identified
as the information preference problem. To overcome these issues, the authors proposed replacing
the KL divergence with any divergence that satisfies D(q||p) = 0, if and only if q == p. They also
propose adding a MI maximisation term, which could be reduced to the VAE objective function with a
secondary divergence. For purposes of this discussion, the In f oVAE objective function from Zhao
et al. (2017) can be given as

LIn f oVAE = Ep(x)Eqφ (z|x) [log pθ (x|z)]+(1−α)Ep(x)KL
(
qφ (z|x)‖pθ (z)

)
+(α +λ −1)KL(qφ (z)||p(z)), (2.55)

where qφ (z) cannot be evaluated, thus the authors propose approximating it by sampling x ∼ p(x)
and then sampling z∼ qφ (z|x), which is the exact process in which latent samples are obtained in the
original VAE framework to allow for gradients to back-propagate through distributions. The authors
then recommend setting α = 1 for instances when complex data distributions are to be approximated,
which then leaves the second KL divergence term in Equation (2.55). This divergence was then
replaced, with the authors recommending and AAE approach through the JSD, or recommending that
one use MMD. Due to the authors’ recommendations, the overall principle of the work of Chen et al.
(2016) is the analysis of replacing the KL divergence with the MMD divergence. MMD is a technique
that was developed by Gretton et al. (2008) that tests whether two distributions are different, based on
samples drawn from each distribution. Specifically, MMD investigates the statistical moments of the
two distributions and based on the similarity of these moments indicates whether or not the samples
are similar. MMD is formulated as

MMD(F, p,q) = sup
f∈F

(Ex∼p[ f (x)]+Ey∼q[ f (y)]), (2.56)

where F is a class of functions f : X→ R with p and q defined in the domain X. Gretton et al. (2008)
produced a closed form solution that seeks to evaluate the difference in the first moments of the
transformed space R. This can be expressed by using a kernel k(x,x′) = 〈φ(x),φ(x)〉, where φ(x) is a
basis function. Gretton et al. (2008) showed that MMD can be expressed as

MMD(F, p,q) =
1

N2

N

∑
i=1

N

∑
i′=1

k(xi,x
′
i)+

1
M2

M

∑
j=1

M

∑
j′=1

k(y j,y
′
j)−

2
MN

N

∑
i=1

M

∑
j=1

k(xi,y j), (2.57)

where N and M are the number of samples x∼ p(x) and y∼ q(x) respectively (Li et al., 2015, Dziugaite
et al., 2015). A common choice for the kernel is the Gaussian kernel of the form

k(x,x
′
) = e−

‖x−x
′
‖22

ε , (2.58)

where ε is a shape parameter that controls the spread of the kernel (Snyman and Wilke, 2018, Bishop,
2006). For MMD in machine learning applications, a common choice is ε = 2 ∗D, where D is the
dimensionality of the vector space. Interestingly, MMD has also been used to replace the GAN
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objective as shown in the work of Li et al. (2015). To conclude this section, one now has the option to
either use MMD for latent space regularisation or one can use the GAN objective, where the former is
regarded to be stable and less susceptible to GAN training problems.

2.7.2.3 Wasserstein GANs

The next section of discussion is that of Wasserstein GANs (WGANs), which is a reformulation of
the approach used for GANs. WGANs attempt to use another technique to measure the divergence
between the generated parametric distribution pg(x) and the true distribution p(x). WGANs introduce
the concept of the earth-mover distance, which has its roots in optimal transport (OT) theory (Peyré
and Cuturi, 2019). OT studies the problem of economically transforming one distribution into another,
where these distributions can be discrete point masses or continuous distributions. Let µ and ϑ be
probability measures defined on X and Y, with density functions µ(x) = f (x)dx and ϑ(y) = g(y)dy.
To facilitate this transformation, one needs to define a transportation map T : Rd → Rd that transports
discrete points or alters the spatial modification of a distribution. This transformation map must satisfy
the condition ∫

A
g(y)d(y) =

∫
T−1(A)

f (x)dx, (2.59)

where ∀A⊂Rd . Given a cost function c(x,y), where this cost function is the cost of transporting a unit
mass from x to y, the total transportation cost can be given as

Ct =
∫

x
c(x,T (x))dµ(x). (2.60)

The Monge problem is then the attempt to find the transport map that minimises the total transportation
cost under the transformation density constraint. The solution to this problem is known as the OT map
and the total transportation cost of an OT map is called the Wasserstein distance Wc(µ,ϑ) which can
be given as

Wc(µ,ϑ) = min
T#µ

∫
x
c(x,T (x))dµ(x), (2.61)

where T# is called the push forward function given by T that produces ϑ = T#µ (Peyré and Cuturi,
2019, Lei et al., 2020a). A formulation was then developed called the Kantrovich formulation, which
relaxed transportation maps to transportation plans. The idea is to rather than map points directly,
a point xi can be spread to several locations in y (Peyré and Cuturi, 2019). A joint distribution was
defined as p(x,y) where, when marginalised with respect to y or x, equals µ(x) or ϑ(y). This gives
rise to a coupling which can be defined as

U(µ,ϑ) =

{
p(x,y) : Rd×Rd → R,

∫
y

p(x,y)dy = µ(x),
∫

x
p(x,y)dx = ϑ(y)

}
. (2.62)

The OT map is then found by

Wc(µ,ϑ) = min
p∈∏(µ,ϑ)

∫
x
c(x,T (x))d p(x,y). (2.63)

If the cost is chosen to be the distance between points x and y, c(x,y) = ‖x− y‖, the optimal cost,
often referred to as the Earth Mover distance or Wasserstein1 distance, can be shown to be (using the
Kantrovich-Rubenstein duality)

W1(µ,ϑ) = inf
p∈∏(µ,ϑ)

E(x,y)∼p[‖x− y‖]

=
1
K

sup
‖ f‖L≤K

Ex∼µ [ f (x)]−Ey∼ϑ [ f (y)],
(2.64)

where f is a function that is K-Lipschitz on its entire domain R (Arjovsky et al., 2017, Gulrajani et al.,
2017, Tolstikhin et al., 2018). K-Lipschitz functions are those that satisfy | f (x1)− f (x2)| ≤ K|x1−x2|,
or rather, the approximate gradient of a function for any set of points x1 and x2 is restricted by a
constant K on the entire domain. By assuming that f is parametrised by a neural network and is to
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be 1-Lipschitz, where f shall be referred to as the WGAN critic (DWGAN), this formulation can be
re-organised to be

min
G

max
DWGAN

VWGAN(D,G) = Ex∼p(x)
[
Dφ (x)

]
−Ez∼p(z)

[
Dφ (Gθ (z))

]
, (2.65)

which leads to the following objective functions, for gradient descent purposes, for DWGAN and G
respectively

LD(θ ,φ) =−Ex∼p(x)
[
Dφ (x)

]
+Ez∼p(z)

[
Dφ (Gθ (z))

]
, (2.66)

LG(θ ,φ) =−Ez∼p(z)
[
Dφ (Gθ (z))

]
. (2.67)

One important element is how the Lipschitz constraint is satisfied. In the work of Arjovsky et al.
(2017), gradient clipping was used. However, the authors noted that this is a poor method of enforcing
the constraint. In Gulrajani et al. (2017), a gradient penalty of the form

GP = λEx̃∼p(x̃)[‖∇x̃Dφ (x̃)‖2−1]2, (2.68)

where x̃ are samples drawn by uniformly varying between points from x∼ p(x) and x∼ pg(x). The
enforcement parameter λ is recommended to be set ≥ 1, with Gulrajani et al. (2017) reporting that
λ = 10 worked well in their experiments. This gradient penalty is only applied to the critic, as the
1-Lipschitz enforcement is only for the WGAN critic. One key point is that the WGAN critic is no
longer a parametric distribution as is the case for discriminators for GANs but rather a function that
allows one to calculate the Wasserstein distance and track its deviation as the generator improves its
expressibility to capture the data distribution.

Tolstikhin et al. (2018) developed the WAE, which can be viewed in juxtaposition to a VAE, where a
WAE uses a WGAN divergence metric to replace the log-likelihood or reconstruction term from the
VAE objective and any choice of divergence metric for the latent space regularisation. Two choices
were investigated by Tolstikhin et al. (2018), namely, a GAN-based approach or an MMD-based
approach. One key assumption made by Tolstikhin et al. (2018) was to not use the Wasserstein-1
distance but rather the Wasserstein-2 distance coupled with a convex penalty term (the Lagrangian
of the constrained optimisation problem), which lead to the formulation of the Penalised Optimal
Transport (POT) approach (Bousquet et al., 2017). As a result, a WAE approach leads to nothing more
than a generalisation of AAEs and offers an alternative latent space regulariser.

A Wasserstein-Wasserstein Auto-Encoder was proposed by Zhang et al. (2019), which uses the
Wasserstein-2 distance as a latent space regularisation strategy. Under the assumption that both the
prior p(z) and the approximate posterior q(z|x) are to be Gaussian, the Wasserstein-2 approach reduces
to the Fréchet distance (Dowson and Landau, 1982, Heusel et al., 2017). This latent space objective
function can be given as

W2(p(z)||q(z|x)) = ‖µp−µx‖2
2 + tr(Σp)+ tr(Σq)−2tr(Σ

1
2
p Σ

1
2
q ), (2.69)

where tr(·) is the trace operator and µ and Σ refer to the mean and covariance of the distributions. This
regularisation term can be seen as a direct alternative to that used in a VAE.

2.7.3 GANs and VAEs

From a probabilistic framework, GANs can be described as an implicit density model where the model,
at no point, makes any assumptions about the data distribution that it wishes to approximate. This is a
powerful approach as it may allow for more flexible distributions to be approximated, by using density
ratio estimation (Goodfellow, 2015, Mohamed and Lakshminarayanan, 2016). VAEs, on the other
hand, can be seen as an explicit density model as one assumes choices for the parametric likelihood
distributions that may ultimately affect the type of data one wishes to approximate. For this discussion,
reference will be made between the ELBO which is to be maximised, as shown in Equation (2.18).
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The objective is to derive an alternative loss that can be drawn into a GAN framework. Firstly, the
density ratio r(x) can be defined as

r(x) =
p(x)
q(x)

=
p(x|t = 1)
p(x|t = 0)

=
p(t = 1|x)
p(t = 0|x)

=
D(x)

1−D(x)
, (2.70)

which the reader may recognise in its inverse form if they are aware of the generator loss derivation
shown in Sønderby et al. (2016). Mohamed and Lakshminarayanan (2016) showed that this ratio can
be related to the discriminator objective function through D = r

r+1 and the use of the Bernoulli loss
function. There is also a need to define a synthetic likelihood, which can be used as an alternative to
the first half of Equation (2.18) (Rosca et al., 2017). This synthetic likelihood can be given as

Eqφ (z|x) [log pθ (xi|z j)] = Eqφ (z|x)

[
log

pθ (xi|z j)

p(x)

]
+Eqφ (z|x) log p(x). (2.71)

Consider now the approach of explicit or implicit posterior distributions qφ (z|x) (Rosca et al., 2017).
For the explicit case, the KL divergence in Equation (2.18) can be reduced to an analytical solution if
both the prior p(z) and qφ (z|x) are assumed to be factorised Gaussians. In the implicit case, one can
use the density ratio trick to replace the KL divergence

−KL[qφ (z|x)‖p(x)] =−Eqφ (z|x)

[
log

qφ (z|x)
p(x)

]
≈ Eqφ (z|x)

[
log

Dzψ
(z)

1−Dzψ
(z)

]
, (2.72)

which introduces a discriminator to enforce latent structure as opposed the KL divergence, which
Makhzani et al. (2015) achieved with AAEs. Here, Dzψ

refers to a discriminator over z parametrised
by ψ . This form of the divergence is using the KL divergence form of the generator update, where here
the generator is regarded to be the encoding network (or the posterior distribution that is a parametric
function) (Rosca et al., 2017).

Consider now the approach of explicit or implicit likelihood distributions pθ (x|z). If we parametrise
this distribution as a Gaussian the classical MSE or L2 loss function can be used, or if a zero-mean
Laplace distribution is used the L1 loss function can be used. If we assume that this distribution is
implicit, we can again use synthetic likelihood with the density ratio trick, while dropping the second
term in the synthetic likelihood as it is a constant. This usage case can be shown to result in

Eqφ (z|x) [log pθ (xi|z j)] = Eqφ (z|x)

[
log

Dφ (Gθ (z))
1−Dφ (Gθ (z))

]
, (2.73)

which introduces a discriminator on x, as is the case in the classic GAN framework (Rosca et al., 2017).
Here it is again clear that the KL divergence form of the generator objective function is used. Please
note that in these derivations it was assumed that one still aims to maximise the ELBO, hence the sign
difference in the derivations. One can note that two approaches can be taken to posterior distributions
and likelihood distributions, which either leads to the VAE, GAN or AAE framework.

2.7.4 GAN Parametrisation Improvement

GAN parametrisation improvement is broadly described as techniques that attempt to ensure that the
adversarial zero-sum game is well defined. These techniques aim to improve GAN training through the
introduction of auxiliary elements that aim to smooth the training process. The main techniques that
shall be discussed here are instance noise and spectral normalisation. Mescheder et al. (2018) detail a
good introduction to parametrisation improvement. The works of Radford et al. (2015) and Heusel
et al. (2017) are equally important, thus any interested reader should review these papers. Conditional
GANs are an interesting research sphere of GANs, however, they are not paramount to this work. The
author suggests that readers interested in this topic review the papers of Mirza and Osindero (2014),
Reed et al. (2016), Odena et al. (2016), Perarnau et al. (2016) and Miyato and Koyama (2018) for
more information in this regard.
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2.7.4.1 Instance Noise

Instance noise is a technique that is considered to be commonplace in recent GAN training techniques.
Instance noise aims to assist in the training of the generator, which may be ill-posed during initial
training. As noted in Sønderby et al. (2016), often during training initialisation the generative
distribution pθ (x|z) and the real distribution p(x) are non-overlapping. The result of this is that
the classic KL divergence in infinite and the JSD, albeit finite, is near maximum. The clear and
obvious side-effect of this result is that discriminator updates will often be encroaching on optimality
before the generator is even able to shift its distribution to match the real distribution (Sønderby et al.,
2016).

To solve the problem of non-overlapping supports, Sønderby et al. (2016) proposed that one adds some
Gaussian noise to any data seen by the discriminator, where this noise is gradually annealed out over
the course of training. This allows for a better behaved divergence response and allows the initial state
of the zero-sum game to focus on proxy distributions as opposed to the true distributions. Sønderby
et al. (2016) show that any divergence metric Dσ (q|p), when q and p are subjected to instance noise,
becomes equivalent to Dσ (q ∗Nσ |p ∗Nσ ) where ∗ is the convolution operator and Nσ is the noise
distribution. Figure 2.3 contains a visualisation of instance noise applied to two non-overlapping
Gaussian distributions. One can note how instance noise creates overlapping supports between the two
(Sønderby et al., 2016, Roth et al., 2017).
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(a) Distributions with no instance noise.
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(b) Distributions with instance noise.

Figure 2.3. Instance noise applied to two simple distributions. Notice the clear non-support in the case
where there is no instance noise while if one uses instance noise there is now suddenly an overlapping
support. Adapted from Sønderby et al. (2016) and best viewed in colour.

2.7.4.2 Spectral Normalisation

Another technique that has received attention is Spectral Normalisation (SN). Spectral normalisation
is a discriminator weight normalisation technique that is based on the Lipschitz continuous function
approach from WGANs. The overall idea is to determine a discriminator that satisfies

max
‖ f‖L≤K

V (G,D), (2.74)

where the linear approximation of the gradient f (x2)− f (x1)
x2−x1

is bounded by the Lipschitz constant K. This
is achieved by taking each weight matrix w in the discriminator network and normalising it by the
spectral norm (or largest eigenvalue) σ(w) of said matrix. The result of this ensures that the Lipschitz
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constant of a given layer is equal to 1. Miyato et al. (2018) show that due to the linear manner in which
weights are multiplied in neural networks, this normalisation process can be done for each layer in the
network independently. Thus, the Lipschitz constant for a neural network function is the product of the
spectral norm of the layers in the network. In the implementation of SN, a power iteration method is
used to determine the spectral norm of each of the weight matrices and are then iteratively updated
through

wt+1 = wt −η∇E
(

wt

σ(wt)

)
. (2.75)

The result of using SN on discriminator networks has shown to improve generator performance on
more complex datasets and allows for improved training performance. SN is also computationally
cheaper to implement than other methods such as gradient norm regularisation (Miyato et al., 2018).
Qin et al. (2018) investigated how SN affects discriminators and it was found that, as opposed to
restricting weights to be small, SN restricts the range of loss function values attainable during training
and in doing so, prevents vanishing and exploding gradients. This result shows it not the restriction of
the discriminator network that matters, but rather objective function restrictions. it was also shown that
for strong Lipschitz constraint enforcement, the objective function appears to tend towards a linear
function.

2.8 Latent Disentanglement
A topic that needs to be elaborated on is that of the idea of implicit versus explicit disentanglement.
In this work, implicit disentanglement is the term given to techniques such as VAEs where the latent
space is required to be disentangled but there are no explicit terms in the training scheme that prompt
disentanglement of specific feature types. This is a highly debated and discussed idea, with the
works of Locatello et al. (2019) providing an informative and sobering investigation into whether it is
intrinsically possible to learn disentangled features using the ELBO formulation on which VAEs are
built.

Explicit disentanglement, in this work, refers to techniques that aim to obtain latent space elements
that are explicitly prescribed to be some structure, such as a discrete latent space element from the
InfoGAN framework. For vibration-based condition monitoring, Baggeröhr (2019) used an approach
that consisted of a latent space that comprised of three elements, namely, a continuous element
s, a categorical or discrete element c and a noise element n. This explicit latent space z can be
given as z = [s,c,n]. The idea that stems from the notion of a signal decomposition, whereby a signal
comprises of two main elements: a deterministic component, the first order cyclo-stationary component,
and a residual component, where this residual may consist of noise and any second or higher-order
cyclostationary components (Antoni, 2009). The objective of this explicit latent space composition is
to let c and s capture the deterministic component while n is left to capture the residual component of
a signal.

In the GAN-based frameworks in this work, the premise is to utilise two alternating training approaches
in one, where the two approaches are the AAE approach and the InfoGAN approach. The AAE
approach is used to ensure that data can be encoded and reconstructed into the prescribed latent space
components, while the InfoGAN approach enforces that the mutual information terms MI(s|x) and
MI(c|x) are maximised. In implementation, the mutual information maximisation can be obtained
through the use of the encoder network, which is now treated as the parametric distribution Q from the
original InfoGAN framework.
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In the presence of only healthy data, the notion is that n will be a representation of a healthy signal
residual component and will have some prescribed structure, such as a unit Gaussian distribution.
In the presence of data that deviates from the training data representation, with this data potentially
containing some machine damage information, n will exhibit off-manifold responses to data, with the
hope that n will be the only latent representation to deviate from its normal state. One crucial note to
make here is that these techniques are tailored to bearing failure cases, as it is a known property of
bearing faults to manifest in the residual component of a signal. This intuition was used and driven in
the works of Baggeröhr (2019). However, it is this author’s inclination that these techniques can be
thought of under a more general framework, that of using disentangled latent components to capture
the predictable and known components of a signal, while the noise component is used to capture any
additional information about the data. The noise component will also respond to any deviance from
the healthy data state.

There is, however, one potential discrepancy that was not discussed or presented in the work of
Baggeröhr (2019), that of whether the model behaviour under anomalous data responds according
to the model assumptions. The model assumption referred to here is that a GAN-based technique
with a latent space z = [s,c,n] actually presents responses to damage in only the n component. In the
formulation presented in Baggeröhr (2019) and, by extension, Zhou et al. (2019), there is no model
incentive to only respond in n but only an incentive to disentangle s and c to capture the salient data
attributes and restrict n to be the incompressible data attributes. As shown in Zhou et al. (2019), n
still had some cluster-dependency, which indicates that the latent noise component still contains some
structural information, which is undesirable. To investigate this, this author shall present two alternative
formulations where these formulations are derived under two different ideologies: one focused on
complete latent separation and the other focused on improved decoder information capture. As with
most literature on GANs, the application is heavily biased to image data. Thus, the techniques used in
this work will first be presented in their raw form and then adapted to vibration data applications. This
adaptation accounts for both categorical and continuous latent variables.

2.9 Disentangled Latent Space Clustering
The Disentangled Latent Space (DLS) Clustering methodology is a technique proposed by Ding
and Luo (2019) that aims to produce a latent representation of data that is not only disentangled but
also separated into independent parts. This technique can be seen as an alternative to the REPGAN
approach from Zhou et al. (2019), a foundational method used in the work conducted by Baggeröhr
(2019). The main difference between the DLS methodology and the REPGAN methodology is that
DLS aims to separable latent space elements. The benefit of this approach is that it forces the network
to learn deterministic components that contain information in the deterministic component of the data
while n as unstructured noise. To do this, a GAN and a deterministic auto-encoder are integrated,
referred to in this work as a GAN-based model, to allow for bi-directional mappings between the latent
space and the data space alongside the addition of non-Gaussian density estimation using the GAN
framework for the data space. For a discussion to take place, the authors present four key model
elements, namely, the posterior (encoder) distribution qφ (z|x), the generative (decoder) distribution
pθ (x|z), a data discriminative distribution pχ(t = 1|z) and a latent Wasserstein metric function fω(zn).
As this is a deep learning application, these distributions are represented by parametric functions
Eφ (x),Gθ (z),Dχ(x) and Dω(zn) respectively. To aid with explain-ability, Figure 2.4 shall be often
referenced to in three sections and these sections are highlighted in the figure.

Ding and Luo (2019) made the assumption that the latent space is split into two representations,
based on the prior joint distribution p(z) = p(zc,zn) where zc is the discrete prior categorical latent
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1.

2.

3.

Figure 2.4. A complete overview of the DLS GAN model architecture with three main components,
denoted through numbered circles. Part one refers to the InfoGAN framework, part two refers to the
AAE framework and part three refers to the latent separation approach that the DLS-GAN method
uses. Note that this author chose to use subscripts s to refer to elements that are influenced by samples
from the latent prior distribution and r to refer to elements that are influenced by samples from the
data distribution.

representation and zn is the prior noise representation. For this discussion, this author will also
introduce a third latent component, zs which shall be referred to as the prior continuous representation.
The objective is now to apply two sets of constraints to the posterior distribution qφ (z|x), firstly such
that the prior p(z) = p(zc,zs,zn) becomes p(zc,zs)p(zn) and secondly, constraints should also be
applied such that zc and zs are disentangled latent components (capture the generative factors of the
data). The former constraint is achieved by penalising the discrete and continuous latent components
separately to the noise latent component while the latter constraint is achieved using mutual information
maximisation. In this work, two topics shall be referred to, that of latent disentanglement and latent
separation whereby the former aims to obtain disentangled latent components while the latter aims
to obtain latent code independence. For brevity, it shall be assumed from this point that the posterior
distribution generates components c as a categorical distribution and s and n components as a factorised
unit-variance Gaussian distribution.

The process in which latent disentanglement, part one of Figure 2.4, is achieved is in lieu with the
InfoGAN, however the parametric distribution Q that facilitates mutual information maximisation is
simply the encoding distribution qφ (z|x). Under the InfoGAN framework, the first step is to generate
samples zg = [c,s,n] from which data samples are generated using xg = Gθ (zg). These generated
samples then are fed through the encoder to obtain the reconstructed latent variable ẑg = Eφ (Gθ (zg)).
This then allows for the calculation of the mutual information MI(c,s|Gφ (zg)) through

LMI = Ec∼p(c),s∼p(s),n∼p(n) log(qφ (c|Gθ (c,s,n)))+Ec∼p(c),s∼p(s),n∼p(n) log(qφ (s|Gφ (c,s,n))),
(2.76)

which is to be maximised under the InfoGAN framework and it is trivial to see that these two terms
reduce to the cross-entropy loss and the Gaussian negative log-likelihood under the assumed latent
element prior distributions. These can be given as

LCE1(θ ,φ) = Ec∼p(c),s∼p(s),n∼p(n)

[
−

K

∑
k=1

ck log
[
Ec

φ ,k(Gθ (zg))
]]

, (2.77)
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LNLL1(θ ,φ) = Ec∼p(c),s∼p(s),n∼p(n)

[
1
2
‖s−Es

φ (Gθ (zg))‖2
2

]
, (2.78)

where the author chose to represent the components from the encoder used in each loss in the superscript
of Eφ and ‖ · ‖ is the L2 norm. As the InfoGAN framework builds on the GAN framework, generated
samples xg can also be evaluated through a discriminator to improve the generative capacity of the
decoder network Gθ (zg). In this work, the original GAN objective function is used to train Dχ(x)
while the KL divergence loss shall be used for Gθ (z). These losses are given independently as

LD(χ) =−Ex∼p(x)
[
logDχ(x)

]
−Ezg∼p(z)

[
log(1−Dχ(Gθ (zg)))

]
, (2.79)

LGKL(θ) =−Ezg∼p(z) log
[

Dχ(Gθ (zg))

1−Dχ(Gθ (zg))

]
. (2.80)

A clear issue with DLS-GAN, up to this point, is that it appears to be only a purely generative model and
cannot use any sampled data x∼ p(x) from the true data distribution to perform inference. However,
the fix here is trivial as one has already made explicit assumptions of an encoder and decoder network.
In this manner, the standard auto-encoder framework, part two of Figure 2.4, can be applied where
the explicit assumption is made that the generative distribution pθ (x|z) is Gaussian. If one assumes
a deterministic decoder, the objective function is just the negative log-likelihood under a Gaussian
distribution with unit variance given as

LAE(θ ,φ) = Ex∼p(x)

[
1
2
‖x−Gθ (Eφ (x))‖2

2

]
. (2.81)

For the observant reader, one may note that at this point the latent distributions appear to be uncon-
strained, while the author mentioned previously that an AAE framework is used. Interestingly, Ding
and Luo (2019) only regularise the latent noise component, n, through the use of the MMD objective
function. This is interesting in two ways, they imply that to regularise c and s obtained from Eφ all
that is required is to use the InfoGAN framework. In this way, it is implied that the cross-entropy and
negative log-likelihood terms are sufficient to guide the encoder to encode data into the required prior
forms. It is also interesting as it is directly contrastive to Zhou et al. (2019), who used adversarial
latent regularisation techniques for all three latent components alongside the InfoGAN framework. In
this work, it is required that one obtain a health indicator from the latent noise component and as such
an adversarial regularisation technique shall be used. This method shall be that WGAN latent critic
with gradient penalty, (Arjovsky et al., 2017, Gulrajani et al., 2017), which gives an objective function
of the form

LD(ω) =−En∼p(n) [Dω(n)]+Ex∼p(x)
[
Dω(En

φ (x))
]
+λEñ∼p(ñ)[‖∇ñDω(ñ)‖2−1]2, (2.82)

LE(φ) =−Ex∼p(x)
[
Dω(En

φ (x))
]
, (2.83)

where care should be taken to see that the generator, in this case, is the encoder network Eφ . Please
refer to Figure 2.4, part two for clarity in the entire AAE process. It is clear to note that up to this point
that there is clear network consistency between the InfoGAN and AAE frameworks through the use of
shared encoder and decoder networks.

The final element of the DLS-GAN is that of latent separation, which Ding and Luo (2019) approach
in an interesting manner. Part three of Figure 2.4 should be referred to in this regard. In the use of
this model, one would typically sample from the data and latent prior distributions to evaluate the
expectations in each of the objective functions. From this point, the notation cs,cs,cs ∼ p(z) and
xr ∼ p(x) shall be used for the samples. To enforce latent separation, a combined latent representation z′
is used with elements z′ = [cs,ss,nr] where nr = En

φ
(xr). From this combined latent representation, one

needs to simply feed it through the encoder and decoder networks respectively, such that reconstructed
latent representation is obtained z̃′ = Eφ (Gθ (z′)). From this point, one can simply use the cross
entropy and negative log likelihood loss functions on (cs, c̃s) and (ss, s̃s) to ensure that they are
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recovered correctly and to ensure clear latent separation, one can use the negative log likelihood loss
on (nr, ñr). The motivation here is straightforward, one can ensure that nr is distinct and separable
if, given a random class and continuous representation, it can still be recovered from the generated
sample. This may be accomplished if the information contained in nr does not contain any structure
that is linked to c and s which would ultimately change when fed through the decoder. The objective
functions required here are

LCE2(θ ,φ) = Exr∼p(x)Ecs∼p(c),ss∼p(s)

[
−

K

∑
k=1

ck log
[
Ec

φ ,k(Gθ (z′))
]]

, (2.84)

LNLL2(θ ,φ) = Exr∼p(x)Ecs∼p(c),ss∼p(s)

[
1
2
‖nr−En

φ (Gθ (z′))‖2
2

]
, (2.85)

LNLL3(θ ,φ) = Exr∼p(x)Ecs∼p(c),ss∼p(s)

[
1
2
‖ss−Es

φ (Gθ (z′))‖2
2

]
. (2.86)

The final objective function used in this model can be given as

L(θ ,φ ,χ,ω) = LGAN +λAELAE +β1LWGAN +β2LNLL2 +β3LCE1 +β4LCE2 +β5LNLL1 +β6LNLL3 ,
(2.87)

where this objective function depends on one λAE parameter and six β parameters. Note that λAE is
different from the λ used in the gradient penalty applied to LWGAN . In the work of Ding and Luo
(2019), there were fewer parameters due to the lack of a disentangled continuous component. The λ

parameter can be seen as a method to increase the reconstruction term in the objective function, while
the β parameters control the enforcement of the latent disentanglement and separation terms. It is
also recommended that β1 = β2,β3 = β4 and β5 = β6 to allow for reasonable control of the strength of
latent components in the objective function. For a clear training procedure to apply to the DLS-GAN,
please see Appendix B.4.

2.10 Representation Yielding GAN
A Representation Yielding GAN (RY-GAN) is proposed in this work as an alternative to the DLS-GAN
to provide some method of compatibility between the generative models used in this work. The purpose
of this technique is to try and allow for deeper decoder network information capture to allow for a
latent representation that captures the crucial information about the data. RY-GAN is a variant of the
work of Rosca et al. (2017) that takes into consideration the presence of continuous and categorical
latent components. Ultimately, this technique attempts to unify improvements found in literature in the
case of models that aim to incorporate GANs into an auto-encoder framework. The main component
used from Rosca et al. (2017) was the treatment of the decoder network as a generative distribution
but built into an auto-encoder, which aims to improve the expressibility of the decoder network to
discourage generator mode collapse. This is a subtle but fundamental difference to the DLS-GAN as
the DLS-GAN discriminator only sees samples that are purely generative.

RY-GAN also aims to integrate latent disentanglement through an InfoGAN-like framework with
an explicit focus on only the decoder network. The motivation here is akin to the generator in the
InfoGAN framework, with the Q distribution serving as a means to guide G into disentanglement. The
decoder network is driven towards a point where it can utilise latent information to generate signals that
contain similar semantic meaning to the latent samples from which they were obtained and captures
the misalignment that the encoder would produce. This misalignment is obvious if one does not update
the encoder from the InfoGAN framework, however, it is proposed that this step is not required if
latent regularisation and auto-encoder based updates are used in the training framework as the encoder
is already guided to produce a suitable latent representation.
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In this way, the encoder network serves primarily to capture the constraint of prior regularisation for the
three latent elements while the decoder serves to utilise the latent representation for disentanglement
and improved generative performance. Figure 2.5 shall be referred to often, with two sections that
stem from the AAE-based framework and the InfoGAN framework. For this discussion to take place,
the author presents five key model elements, namely, the posterior (encoder) distribution qφ (z|x),
the generative (decoder) distribution pθ (x|z), a data discriminative distribution pχ(t = 1|z), a noise
latent Wasserstein metric function fω(zn) and a discrete latent discriminative distribution pς (t = 1|zc).
As this is a deep learning application, these distributions are represented by parametric functions
Eφ (x),Gθ (z),Dχ(x), Dω(zn) and Dς (zc) respectively. This notation is preserved between RY-GAN
and the DLS-GAN as many equations can be re-used in the RY-GAN case.

 1.

2.

Figure 2.5. A complete overview of the RY-GAN model architecture with two main components,
denoted through numbered circles. Part one refers to the AAE framework with latent regularisation
while part two refers to the InfoGAN-based framework. Notice the subtle inclusion of the xr in the
discriminator.

The first component that shall be elaborated on is part one of Figure 2.5 as it is primarily an auto-encoder
framework with additional latent regularisation techniques. In the standard auto-encoder framework
a Gaussian distribution is assumed for the generative distribution pθ (x|z). For a the deterministic
Gaussian distribution, Equation (2.81) can be used. For the case of latent regularisation, the author
chose to deviate from the DLS-GAN approach and rather penalise the encoder directly as it is not
required to create latent misalignment during training in part two of Figure 2.5. For the latent noise
component, a WGAN latent critic with gradient penalty is to be used, with the critic objective functions
given in Equation (2.82) and the encoder objective function given in Equation (2.83). The part that
deviates from the DLS-GAN approach is that one now penalises the posterior distribution components
q(c|x) and q(s|x) to match a discrete categorical distribution and a isotropic Gaussian distribution,
which are the assumed prior forms of p(c) and p(s) respectively. For the categorical prior constraint, a
discriminator is used with an assumed constant amount of instance noise σn ∼N(0,σ2) added to each
instance that Dς sees. This was done as the author found that this constant noise aided in training as
during the initial stages of training this discriminator over-fits to the fact that one element is perfectly
one while the rest are exactly zero, which is unlikely under a softmax activation function which one
typically uses when using networks for multi-class classification. The objective functions associated
with Dς and Eφ are given as

LD(ς) =−Ec∼p(c),ε∼σn

[
logDς (c+ ε)

]
−Ex∼p(x),ε∼σn

[
log(1−Dς (Ec

φ (x)+ ε))
]
, (2.88)
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LEKL(φ) =−Ex∼p(x),ε∼σn log
Dς (Ec

φ
(x)+ ε)

1−Dς (Ec
φ
(x)+ ε)

. (2.89)

The next element that requires latent regularisation is s for which the author has two options, the first
is to use a discriminator as was the case in the work of Zhou et al. (2019) and the second option is to
use an MMD divergence approach. In this work, the latter shall be used as MMD offers optimisation
stability and implementation simplicity. The MMD objective function can be given as

LMMD(φ)=Es∼p(s),s′∼p(s)
[
k(s,s′)

]
+Ex∼p(x),x′∼p(x)

[
k(Es

φ (x),E
s
φ (x
′))
]
−2Es∼p(s),x∼p(x)

[
k(s,Es

φ (x))
]
,

(2.90)
where k(·, ·) is a Gaussian kernel. For part two of Figure 2.5, a variant of the InfoGAN framework
is used, whereby only the decoder is updated to ensure that MI maximisation occurs. Under the
InfoGAN framework, the first step is to generate samples zg = [c,s,n] from which data samples are
generated using xg = Gθ (zg). These generated samples then are fed through the encoder to obtain the
reconstructed latent variable ẑg = Eφ (Gθ (zg)). Using the MI representation in Equation (2.76) the CE
and NLL objective function in the case of RY-GAN are almost identical to those given in Equation
(2.77) and Equation (2.78) respectively, with a deviance in the optimised elements in the losses LCE(θ)
and LNLL(θ). This notation is used to indicate that only the decoder is updated when these objective
functions are used. The final component of RY-GAN is that of the data discriminator, which follows
an intuition used in the α−GAN approach proposed by Rosca et al. (2017). The intuition here is that
one uses generated samples, xg = Gθ (zg), and the reconstruction of samples x∼ p(x) passed through
the auto-encoder, xr = Gθ (Eφ (x)), to update Dχ and Gθ respectively. The former case is to improve
the training performance and the latter is to improve the generative capacity of the decoder network.
The motivation for this choice is also detailed in Rosca et al. (2017). The power in this approach lies in
its ability to rather use one discriminator. The two objective functions obtained from this approach,
using the KL divergence GAN loss formulation for generator updates, can be given as

LD(χ) =−Ex∼p(x)
[
logDχ(x)

]
− 1

2

(
Ezg∼p(z)

[
log(1−Dχ(Gθ (zg)))

]
+Ex∼p(x)

[
log(1−Dχ(Gθ (Eφ (x))))

])
, (2.91)

LGKL(θ) =−
1
2

(
Ezg∼p(z)

[
log

Dχ(Gθ (zg))

1−Dχ(Gθ (zg))

]
+Ex∼p(x)

[
log

Dχ(Gθ (Eφ (x))
1−Dχ(Gθ (Eφ (x))

])
, (2.92)

where there is a clear usage of a factor of 1
2 , which was used in this work to allow for the GAN

equilibrium position to be kept to 0.5. The overall objective function that is to be applied to a RY-GAN
approach can be given as

L(θ ,φ ,χ,ω,ς) = α (λAELAE))+(1−α)LMMD +LWGAN +LGANc +LCE +LNLL, (2.93)

where there are two factors used to balance the training, namely α and λAE . The former aims to control
the influence of the GAN and the reconstruction terms on the decoder network while the latter is used
to increase the emphasis of the reconstruction term in the objective function. For a clear training
procedure for the RY-GAN, please refer to Appendix B.4.

The use of the DLS-GAN and RY-GAN approaches is to try and obtain a model that has an improved
generative capacity through the adversarial training scheme as well as allowing the model to perform
model inference. To ensure that model inference and latent disentanglement is possible, techniques
from the InfoGAN framework and the Variational inference framework are used in combination to
create a model that not only offers model inference but also improved disentanglement and generative
capacity. For vibration data, the addition of an adversarial latent critic for the n latent component
offers a metric that can be used to track the latent representation of signal segments with a scalar value.
This metric can be analysed in conjunction with the latent health metrics that are detailed in the next
chapter.
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3.1 Chapter Abstract
In this section, a succinct model evaluation analysis shall be given and detailed in the context of
vibration-based condition monitoring. To initialise this analysis, a clear context is given to the various
latent variable models considered in this work to detail the relationship between the models. After
this analysis, a discussion is required regarding the application of latent variable models for condition
monitoring. The purpose of this discussion is twofold, it is to clarify what health indicators may be
available from the various latent variable models and to clarify how current model evaluation practices
are performed and how they can be improved.

3.2 Latent Manifolds in Latent Variable Models
In this work, the considered latent variable models are, namely PCA, VAEs and β −TC−VAEs with
a deterministic and stochastic parametrisation which is a term given to the decision to assume an
identity output covariance or a learnt output covariance, the DLS−GAN and the proposed RY −GAN
methodology. In these latent variable models methodologies, there is a clear progression in the linearity
of the latent manifold and the approach taken to introduce latent disentanglement. PCA is a linear
latent variable model that uses a linear transformation to perform the transition to and from the latent
manifold. This transition is facilitated through the eigenvectors of the training data covariance matrix
and there is a natural structuring of the eigenvectors from the largest eigenvalue to the smallest. In
this discussion, the term transition function is used to describe any parametric function that is used to
transition between the input space and the data space. For the latent variable models considered in
this work, a transition function is non-invertible and therefore two transition functions are required for
models used for both data generation and model inference.

The assumption of transition function linearity assumes that the latent manifold exists on a linear
hyperplane in the latent manifold. This linearity, by design, can be problematic for two reasons. The
first is that if there exists any non-linearity in the data, the transition functions will be incapable of
handling this non-linearity and the effect will be a complex and entangled latent manifold. The second
reason is that the generative and posterior distributions for PCA are linear Gaussian distributions, thus
the model is designed for data that only consists of Gaussian data. The result of this distribution choice
assumes that the data seen by the model is Gaussian, which can be problematic if the data contains of
non-Gaussian components.

The purpose of a VAE is to move away from linear transition functions as VAEs use neural networks
to introduce transition functions that are non-linear. The power of a neural network lies in its ability to
introduce a parametric function that is flexible and non-linear through the use of non-linear activation
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functions. This addition of non-linearity offers flexibility in the latent manifold through a non-linear
embedding of the data in the latent space. VAEs do keep the assumption of Gaussian generative and
posterior distributions, which shares the same limitation identified for PCA. The issue often associated
with VAEs is their ability to capture the factors of variation in the data, with the work of Burgess
et al. (2018) indicating that penalisation on the KL divergence term in the VAE objective function is
a capable method of enforcing latent disentanglement. However, this is an implicit disentanglement
technique and in the work of Locatello et al. (2019), the idea of latent disentanglement in models that
attempt to obtain a factorised posterior distribution is challenged. This decision leads to models that
use alternative techniques to explicitly enforce latent disentanglement though the use of MI.

The MI term used in the In f oGAN approach proposed in Chen et al. (2016) provides an explicit method
of ensuring that specific latent codes are used by the generator of a GAN and that these codes capture
important information in the data. This is done by using a network to recover specific latent codes from
any generated data. The use of MI can be seen as an explicit disentanglement technique as the network
is penalised for producing samples that do not use the latent codes effectively. By incorporating this
approach into a framework that considers improving the generative capacity of a latent variable model,
the goal for the DLS−GAN and RY −GAN is to obtain a generative distribution that is more flexible
and a latent manifold that better captures the factors of variation in the data. This is done by segmenting
the latent space into three components, where two components are trained to maximise the MI between
the latent variables and the generated data and the third is used to capture any additional information
in the data. The DLS−GAN and RY −GAN models use non-linear transition functions, MI and the
adversarial GAN framework to try and capture the complexity of the data distribution and improve the
quality of the latent manifold.

One fundamental detail that must be made clear is that PCA is a computationally robust and efficient
technique, while VAEs and GANs are computationally expensive and less robust during training. This
difference allows for PCA to be seen as a baseline method and can rationalise the performance of the
metrics from the VAE and GAN-based methods. This can also allow for the quantification of model
linearity versus non-linearity and the effect of latent manifold disentanglement.

The purpose of obtaining latent manifolds of good quality is that this work is focused on the latent
manifold response to anomalous instances in data. If the latent manifold is highly entangled or
equivalent to random noise, the ability to detect the presence of anomalous instances becomes non-
trivial and may be infeasible. if the manifold is able to capture the factors of variation in the data through
flexible, non-linear transition functions then the process of detecting subtle changes is simplified
significantly. As the learnt latent manifold has no knowledge of anomalous data, it is expected that this
data will affect the traversal through this manifold in time, where the aim of this work is to detect and
identify these changes. In the next section, the proposed Pseudo-Time analysis framework and the
various detection metrics are proposed and quantified for the reader.

3.3 Pseudo Time Analysis
The potential that this work aims to highlight is how current unsupervised deep learning approaches
tend to make somewhat naive choices when analysing the performance of the models, with the final
objective often cast in a format of a binary fault detection scheme, albeit often being an implicit
rather than explicit choice. The key element of interest up to this point has been providing evidence
that unsupervised deep learning techniques can detect faults in vibration data. This is a promising
investigative approach, but it is limiting in that one may never know the fault type and that it never
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exploits a key element in any vibratory signal: time. This work will show how this implicit choice
comes about and what its relationship is with common data partitioning practices and post-processing
analyses often performed in literature.

3.3.1 Vibration Data Preparation

In deep learning, there is a strong driving force to reduce the dependency on feature engineering and
allow the model to perform automatic feature extraction. The processing methodology often driven
for in CBM-based deep learning is the use of the raw-vibration signal. The problem, however, is that
one does typically not have large amounts of raw vibration data for a system’s unhealthy state and this
data is often obtained with a high sampling frequency. The high sampling frequency is problematic as
this results in a model input dimensionality that is often computationally infeasible. A solution to this
often used in literature is to use a direct partitioning scheme, as was the case in the works of Booyse
et al. (2020), Baggeröhr (2019) and San Martin et al. (2019), whereby a prescribed model window
length Lw is effectively used to reduce model input dimensionality and increase the size of the training
dataset. This window is then randomly moved in a signal or is treated as a moving window with a
certain overlap percentage between windows (Booyse et al., 2020, San Martin et al., 2019). The next
steps are then straightforward, partition all vibration data using the direct partitioning scheme, train a
model and then evaluate the model on all data with the objective to determine whether the model can
detect damage. In this analysis, often one utilises a HI, which is a broad term given to metrics used to
detect damage. In this work, there are three potential HI estimates, namely,

HI(1)(x, x̃,σσσ2) =− 1
D

D

∑
k=1

(x̃k− xk)
2

σ2
k

, (3.1)

which is the reconstruction log-likelihood for an input x and its reconstructed mean x̃ and variance σσσ2

obtained from the explicit assumption that the generative distribution p(x|z) is Gaussian. Note that the
terminology and notation used here is broad and not crucial to understand at this time. The literature
study will enhance the readers understanding of the HIs. This term can also be considered to be the
negative squared Mahalanobis distance under a factored Gaussian distribution. The second is the data
discriminator likelihood estimate

HI(2)(x) = Dx(x), (3.2)
which is based on the input feature space x. The rationale of HI(1) is a estimate of the likelihood that
the data x is from the true data distribution. For this work, the data discriminator provides an estimate
of how likely any observed data is from the healthy asset data distribution. The third health indicator is
that of the Wasserstein metric estimate

HI(3)(n) = Dn(n), (3.3)

which is based on the latent feature space n. The rationale behind this metric is a scalar measure of
the deviation of a given latent variable from the learnt latent manifold in the n space. Typically, one
must use a HI to determine the machine condition given any signal, which leads to the use of statistical
features such as the mean or RMS of the HI values for a signal. Another treatment perspective is that
the partitioning scheme coupled with a healthy indicator gives rise to a discrepancy signal, which
one obtains by preserving the sequential order in which signal segments are obtained. One can then
calculate the statistical features of this discrepancy signal to arrive at an estimate of the machine
condition.

The objective of classic vibration-based anomaly detection has now become apparent, for a signal
to be classified as anomalous from the training data all of its segments need to be different to those
in the reference healthy data. This can be problematic, as it is now crucial that each signal segment
contain some indication of damage. One can now link properties of rotating machinery such as fault
frequency, fault dynamics and model window length. This observation is best realised through the use
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Figure 3.1. The interaction between model window length Lw, signal sampling frequency Fs and the
shaft speed fs. Note here that the shaft speed is used as a proxy for the presence of faults, as faults
occur proportional to the shaft speed.

of a simple thought experiment that uses the idea that for any rotating machinery, fault frequencies are
proportional to shaft speed. A relation between sampling frequency Fs and shaft speed fs can give an
approximation of a window length that will capture one rotation of the shaft, given as

Lw ≥
Fs

fs
, (3.4)

where Fs is the sampling frequency. One can also make the reasonable assumption that the faults in
gearbox condition monitoring will occur in proportion ≥ 1 to the shaft frequency. Therefore, if the
objective is to capture fault responses in the data, the window length should, as current literature stands,
capture at least one shaft revolution within the window. An obvious problem now lies in slow operating
condition cases or faults subjected to fault dynamics such as moving in and out of a loading zone, in the
case for inner race faults. In this case, if one neglects to allow for interpretation of how model window
length is linked to the fault information they wish to detect, they may end up with results skewed
based on implicit assumptions they made. For the case of non-stationary or time-varying operating
conditions, an alternative explanation based on the lower bound of Equation 3.4 follows this intuition,
given as

fsmin =
Fs

Lw
, (3.5)

which states that to detect, at a minimum, once per revolution faults, one must ensure that shaft speed
is bound by the ratio of the sampling rate and the chosen window length. It is also clearly evident that
if one uses a very high sampling frequency, this implicit assumption is also affected as one may have
to use large window lengths. In Figure 3.1, a visual representation of this idea is given. It is simple to
note that unless the sampling rate, which discretises the measured signal, is low and the shaft speed
is high, the window length will never be large enough to ensure that each segment contains damage.

In this work, the author will show that to interpret deep learning model results correctly, one must not
only be aware of their implicit assumptions but also exploit the time domain of the vibration data to give
a better understanding of what the model is potentially responding to and what is gained by using more
complex deep learning methods. It shall also show how current practices limit the exploratory power
available to the user and may, in some applications, give results that one may struggle to interpret.
Before this statement is clarified, let us introduce a simple re-casting of the evaluation analysis step
that most authors tend to neglect. It is often common that one takes the entire dataset and follows
the direct partitioning scheme for every signal available. It is proposed here that a simple temporal
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preservation analysis approach, whereby one incrementally shifts the window over a signal and then
evaluate and store the HI values for each increment. This approach is related to discrepancy analysis
techniques however this has now been extended to data-driven approaches (Heyns et al., 2012b,a,
Schmidt et al., 2019a). This approach then gives a discrepancy signal of length Ld = Ls−Lw, where Ld
is the discrepancy signal length and Ls is the discrete time-domain signal length. Figure 1.3 contains a
visual example of how one would typically process vibration data under the temporal preservation
analysis approach.

The ramifications of the implicit assumption made through Lw can, however, reduce with fault frequency
and shaft speed. For the former, if the fault frequency is proportional at a sufficiently large rate, where
the ambiguity here is due to application dependency, one may be guaranteed to obtain faults in every
signal segment. For the latter, in the case of sufficiently high shaft speed, anomalies may be present in
every signal segment. Another limitation is that as fault frequency and shaft speed increase, one may
be tempted to reduce the window length accordingly, but this may result in unreasonably inflexible
network architectures. However, the benefits of the temporal preservation analysis shall always be
present and it applies to other applications, such as interpreting the latent space.

3.3.2 Latent Space Analysis and Metrics

Another missing component in deep learning approaches is an analysis of the latent space and its
response to unhealthy data. A large number of latent variable models are detailed and proposed in
literature, with a few mentioned in Chapter 2 in this work. However, in the case of vibration-based
condition monitoring, there has been no manner of comparing the benefits of different techniques and
no unified method of comparing models critically against one another. Here the author is referring to
alternative formulations of the same methodology, common in VAE literature. The initial motivation
for the use of complex latent-variable models is that they may provide some bounds on where healthy
data is in the latent space, through latent-variable model regularisation. However, to the best of the
author’s knowledge, there has been no case in the literature of an in-depth latent space analysis of
models trained on vibration data. Note that it may be beneficial for the reader to keep Figure 1.7(b) in
mind when reading the following section.

In this work, the author will show that for proper latent space interpretation, one does not only have
access to HIs but also Latent Health Indicators (LHIs), which provides a platform for deeper and more
directed research into latent-variable models and their application in vibration data. The LHIs are
simple to compute and implement in the temporal preservation analysis approach detailed in this work
and allow for an in-depth and deeper understanding of the role of the latent space in PHM. For one to
understand the latent space and its response to damage, one must first incrementally shift the signal
observation window through time, to develop a state-space representation of the latent space. The term
state-space is used here to refer to the time component included in the latent space, as shown in Figure
1.7(b). Three latent metrics are proposed in this work, where these metrics are trivial to compute and
are given as

LHI(1)t = ‖zt+1− zt‖2, (3.6)
LHI(2)t = ‖zt‖2, (3.7)

LHI(3)t = cos−1
(

zT
t+1zt

‖zt+1‖2‖zt‖2

)
, (3.8)

where zt indicates the latent space representation at any point t ∈ [0,Ld−1] from the temporal pre-
servation analysis procedure and ‖ · ‖2 is the L2 norm. LHI(1) is the trivial calculation of the latent
representation Euclidean norm. LHI(1) can be interpreted as the latent distance norm between two
time-continuous interval points and allows one to interpret the inter-time distance characteristics of
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the latent space. LHI(2) can also be interpreted, for latent space representations enforced to be an
isotropic Gaussian, as the Euclidean norm. This metric directly measures the projection of data from
the origin. LHI(3) can be interpreted as the angle between two points in the latent space and allows one
to interpret the directional characteristics of the latent space. LHI(1) can analyse the latent velocity or
latent distance, which reduces to looking at either the average or total of the LHI(1). This phenomenon
exists by considering the discrete velocity

vt =
zt+1− zt

∆t
, (3.9)

where ∆t is a constant under the temporal preservation analysis procedure if the signal sampling rate is
constant. One can then look at the average velocity norm

vavg =
1

Ld−1 ∑
t
‖vt‖2, (3.10)

however if ∆t is treated as constant, one can rather use

vavg =
1

Ld−1 ∑
t
‖zt+1− zt‖2, (3.11)

as ∆t is simply a scalar on the norm. One can also analyse the total path distance by considering a
discretisation of the latent distance integral

xpath =
∫ t=Ld−1

t=0
‖vt‖2dt

= ∑
t
‖vt‖2∆t

= ∑
t
‖zt+1− zt‖2.

(3.12)

It shall be shown in this work how the combination of the temporal preservation analysis and the
proposed LHIs can lead to an interpretable latent space and introduce insight into how latent variable
models respond to anomalous data. The term interpretation is used to describe how these metrics
quantify the latent manifold response to anomalous instances. The significance here is that these
metrics provide a means of understanding the dynamics of latent manifolds for time-series data and
understanding the traversal through the latent manifold. The LHIs are trivial to compute but the
fundamental principle on which they operate is linked to the manifold hypothesis and the basis of
anomaly detection. It is assumed that a model trained on reference vibration data, presumed to be
healthy, should be incapable of understanding vibratory data that contain anomalous instances. If
so, there should be some measurable model response to damage, whether it be in the latent space or
the data space. In Table 3.1, the model analysed in this work and their available HIs and LHIs are
succinctly noted for the reader.

Table 3.1. The available health and latent health indicators for the different latent variable models
considered in this work.

Model Type HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA X 7 7 X X X
VAE1‖2 X 7 7 X X X

β −TC−VAE1‖2 X 7 7 X X X
RY −GAN X X X X X X

DLS−GAN X X X X X X

Department of Mechanical and Aeronautical Engineering
University of Pretoria

61



Chapter 4 Phenomenological Model Dataset Analysis

4.1 Chapter Abstract
In this chapter, the author presents the phenomenological model and the performance investigation
of the different models considered in this work. There are four key concepts that are key to this
investigation:

1. The model window length Lw affects model diagnostic performance
2. The latent manifold is interpretable under the temporal preservation approach
3. Model complexity and the progression thereof needs to be highlighted and understood for

applicability
4. Model performance must be compared to fully highlight the benefits of complex methods

The reader is asked to keep these concepts in mind when going through the various results, as each
dataset offers insights into each of these points. For a detailed collection of the model architectures,
learning rates, stopping conditions and hyper-parameters please refer to Appendix B.5. The models
used on this dataset are: PCA, the VAE1 and VAE2 models, a β −TC−VAE model with both the unit
and learnt output variance denoted as β −TC−VAE1 and β −TC−VAE2, the RY −GAN model and
the DLS−GAN model. This dataset was chosen as it allows for clear user control of the parameters of
the data, which allows for an in-depth analysis of the metric response that is not possible with other
datasets where certain properties may not be known.

4.2 Dataset Introduction
The phenomenological model was proposed in Abboud et al. (2017) where the model was designed to
reproduce the response of a gearbox system with a local gear fault and a distributed wear bearing fault.
This model was developed to be a function of the rotational speed and aims to capture the physical
phenomena that occur as the rotational speed changes. Here the author is referring specifically to
the amplitude modulation that is present in time-varying operating conditions (Urbanek et al., 2017,
Schmidt et al., 2019a).

The vibration signal proposed by Abboud et al. (2017) consists of four separate additive elements,
given as

x(t) = xgd (t)+ xgr(t)+ xn(t)+ xb(t), (4.1)
where the four elements are: the deterministic gear component xgd (t), the random gear component
xgr(t), the noise component xn(t) and the bearing component xb(t). The latter can be composed of an
outer race or inner race fault given as xbo(t) or xbi(t) respectively. These components are then used
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to account for transmission path modulation, which is typical for vibration measurement cases. The
transmission path that Abboud et al. (2017) account for is that from the source of excitation to the
accelerometer. For all components other than the noise component, this can be expressed as

xgd (t) = hgd (t)⊗ zgd (t), (4.2)

xgr(t) = hgr(t)⊗ zgr(t), (4.3)
xb(t) = hb(t)⊗ zb(t), (4.4)

where hi is the impulse response function that is convolved, where ⊗ denotes the convolution operator,
with the true excitation signal zi. Abboud et al. (2017) state that these impulse responses are those
typically found in single degree of freedom sources, which is given in Schmidt et al. (2019a) as a
viscously under-damped response function

hi(t) = exp−ξiωn,it sin
(√

1−ξ 2
i ωn,it

)
, (4.5)

where ξi is the damping ratio of component i with an assumed natural frequency ωn,i in rad
s . Next,

one can document the source excitations for each component, where the source excitation for the
deterministic gear component is given by Abboud et al. (2017) as

zgd (t) = Mgd (ωre f (t))(1+ I(θre f (t)))
Ngd

∑
j

a( j)
gd cos( jNtgθre f (t)+ϕ

( j)
gd ), (4.6)

where Mgd (ωre f (t)) is a modulation function that is based on the rotational speed, to account for the
signal modulation present in varying speed conditions which is detailed and elaborated on in Urbanek
et al. (2017). The term I(θre f (t)) is used by Abboud et al. (2017) to model gear fault impacts as a
function of the shaft position, however, this term shall be excluded in this work as the aim of this
dataset is to only analyse bearing fault cases. Inside the summation of Equation (4.6), Ngd is the
number of gear mesh components, with a( j)

gd and ϕ
( j)
gd referring to the amplitude and phase of the jth

mesh component. Finally, Ntg is the number of teeth on the gear considered and θre f (t) is the angular
position of the shaft, given by the integration of the speed of the shaft

θre f (t) =
∫ t

0
ωre f (τ)dτ. (4.7)

Consider, briefly, that the speed of the shaft is modelled at a constant speed, the integration of the speed
of the shaft then results in θre f (t) = ωt. The frequency of the deterministic component is ωd = jNtgω ,
which is exactly the form for the gear mesh frequency given in Equation (1.2), with the summation
indicator j used for the harmonics of the mesh frequency which should typically be modelled at a lower
amplitude. The next component is that of the random gear component whose purpose is to manifest as
modulated white noise that can be a simulation of distributed gear damage which, as documented by
Schmidt et al. (2019a), aims to complicate the inference procedure for bearing damage detection. This
term is given as

zgr(t) = Mgr(ωre f (t))εgr(t)
Ngr

∑
j

a( j)
gr cos( jωre f (t)+ϕ

( j)
gr ), (4.8)

where Mgr(ωre f (t)) is a modulation function, a j
gr and ϕ

( j)
gd are the amplitude and phase of the random

components and εgr(t) is the white noise component of the signal. Abboud et al. (2017) use the gear
ratio to alter the phase of the signal, however this term is just set to one by Schmidt et al. (2019a). The
white noise component is modelled as a zero-mean univariate Gaussian

εgr(t)∼N(0,σ2
gr
), (4.9)

that has a variance σ2
gr

and at each time instant a random sample is drawn from this noise distribution.
The noise term is modelled as amplitude modulated white noise

xn(t) = εn(t)Mn(ωre f (t)), (4.10)
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where Mn(ωre f (t)) is an amplitude modulating function and the noise component εn(t) is given
as

εn(t)∼N(0,σ2
n ), (4.11)

which is a zero-mean univariate Gaussian with a set variance σ2
n . The final term that is modelled is the

bearing component, which is given by Schmidt et al. (2019b) for an outer race fault as

zbo(t) = Mb(t)
NT

∑
i

F(i)
damo

δ (t−Ti), (4.12)

which is considered to be a train of Dirac delta functions that are all centred at different Ti terms. These
centres are based on the type of bearing, the slip of the bearing and the shaft speed. To determine
these terms one typically uses the expected angle of impacts in the angle domain and then converts
to the time domain. Gryllias and Antoniadis (2012) and Schmidt et al. (2019a) introduced slip by
making slight adjustments to the impact angle in each rotation, which was accomplished by sampling
from a zero-mean univariate Gaussian distribution with a variance of 0.1. As indicated in Abboud
et al. (2015) and Abboud et al. (2017), the term Ti can be modelled as Ti = t(iθ f −µi), where θ f is
given as θ f =

2π

BPFO which is the angular period of the bearing fault. However, one can also use the
instantaneous speed of the shaft and the expected angular impulse, based on the shaft orders of the
fault, to determine when an impulse occurs in the angle domain and then convert this back to the time
domain.

The bearing damage component is modelled as a term that one can sample from a univariate Gaus-
sian distribution in the form Fdamo ∼ N(Fdamo ,σ

2
damo

), where one can then change the mean of this
distribution to characterise the growth in the bearing magnitude. This growth change was made to be
monotonically increasing over the different levels, where the signal-to-noise ratio (SNR) was then
tuned for the various damage components. If one were to simulate healthy gearbox data, which is
necessary for this work, one just needs to set zb(t) = 0.

Finally, one can also model inner race bearing faults, whereby the methodology of implementation is
primarily the same as that applied to an outer race fault. A key difference, however, is the presence
of fault dynamics with the fault moving in an out of the bearing loading zone, synchronous with the
shaft speed. It is reasonable to expect that bearing faults on the inner race, with a stationary outer race,
exhibit periodic fault amplitude modulation related to the loading zone of the bearing. An inner race
defect can be modelled as

zbi(t) = q(θre f (t))Mb(t)
NT

∑
i

F(i)
dami

δ (t−Ti), (4.13)

where again, one can use the BFPI to determine the impact locations in the angular domain and use
the instantaneous speed of the shaft to track when impulses periodically occur based on the BFPI
normalised by shaft speed. In this model, it is also expected that one includes bearing slip as a
zero-mean univariate Gaussian with the same variance as the case for the outer race fault. As before,
one cannot assume that the amplitudes are constant per rotation in the bearing signal and as such the
amplitude is randomly sampled from a distribution Fdami ∼N(Fdami ,σ

2
dami

). The modulation function
Mb(t) can be assumed to be the same form as the outer race fault, however now the function q(t) is
used to simulate the instantaneous loading of the bearing and if one assumes it to be a radial load, its
form is

q(θre f (t)) =
{

q0[1− 1
2ε
(1− cosθre f (t))]n : |θre f (t)|< θmax,

0 : otherwise,
(4.14)

where q0 is the maximum load intensity, θmax is the maximum angular range of the loading zone, ε is
the load distribution factor and n is often set to 3

2 for ball bearings (McFadden and Smith, 1984). In the
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work of Gryllias and Antoniadis (2012), the following limits are given for the load distribution factor
and the maximum angular range: ε < 0.5 and θmax <

π

2 . Finally, one needs to carefully define the
angular ranges of the load distribution, with Schmidt et al. (2019b) suggesting that one shifts the angle
to a range of [−π,π], while it is also possible to use the relation −θmax < θre f (t)< θmax to develop
the distribution. Ultimately, the choice is dictated with respect to first angular reading and to where
this is in relation to the loading zone. Figure 4.1 contains a visual explanation of the load distribution
for a initial condition of θre f (0) = 0, which results in a loading factor of q(θre f (t)) = q0.

1fs 2fs
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

q(
re

f(t
))

Figure 4.1. The load distribution function q(θre f (t)) for an initial condition of θre f (0) = 0, ε = 0.499,
n = 3

2 , θmax =
π

2 and q0 = 1. Notice how the loading and unloading process is synchronous with the
shaft rotation fs, adapted from McFadden and Smith (1984).

The final element of this model is to define signal contribution levels under constant operating condi-
tions. One must take careful note here of the reference to the operating condition level, as this approach
will not hold under non-stationary operating conditions. As one has access to the discrete gearbox
signal components, one can perform simple component scaling manipulations such that a reasonable
model can be obtained. Here, the suggestion is that one uses his direct access to the noise signal to
perform Signal-to-Noise Ratio (SNR) based component scaling. The SNR can be given as

SNR =
Psignal

Pnoise
, (4.15)

which is the ratio of the average power of any signal with respect to the average power of the noise.
For discrete signals, it is common to use the SNR on a decibel scale and the RMS of a signal, which
can be given as

SNRdB = 10log10

(
Asignal

Anoise

)2

, (4.16)

where A refers to the discrete signal RMS. Under the objective of finding a SNR between the
components in Equation (4.1) and xn(t), such that each component can be scaled to a specific SNR,
the following relationship can be found

Ci =
10

SNRi+20log10(Axn )
20

Axi

. (4.17)
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This relationship then allows for model components to be defined in a reasonable relationship for the
noise component of the signal, such that any gearbox signals generated by the model are representative
of a real application with characteristics that are within reasonable bounds.

4.2.1 Dataset Properties

In this work, a set of prescribed properties shall be used to give a phenomenological model that is
representative of a gearbox under constant operating conditions. To introduce model stochasticity,
the decision was made to use constant but per-signal varying shaft speeds sampled from a normal
distribution. This means that although the speed for a given signal will be stationary, the shaft speed
from one signal to the next shall be different. This allows one to control the model complexity as a
larger speed variance will control the data distribution complexity that any latent variable model aims to
capture. The speed profile distribution that shall be used is fsha f t1 ∼N(10,0.052)Hz, with Figure 4.2(a)
showing the samples for the generated signal records. In Figure 4.2(b) the signal RMS was calculated
and one can note that there is a clear progression of damage with levels corresponding to the ten
records for each of the thirty increments between −40dB and 10dB. As the phenomenological model
in this work shall be used to simulate bearing faults, bearing properties were required to be chosen to
develop fault frequencies. For a concise summary of the model parameters for the transmission paths,
mesh coefficients, variance components and noise scaling SNRs please refer to Appendix C.
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Figure 4.2. The signal record shaft speed and RMS for the signals generated using the phenomenolo-
gical model. Note that the shaft speed for the inner race and outer race fault datasets were shared to
ensure that any conclusions made were not biased by discrepancies in shaft speed.

To generate a healthy signal distribution, the decision was made to densely sample the healthy signals
speed profile to develop a total of one hundred and fifty healthy signals. For the faulty dataset, the
author chose to use thirty batches of ten signals per batch weighted using Equation (4.17) for a
SNR f ault ∈ [−40,10]dB with each of the thirty points linearly spaced along the domain. This then
gives three hundred signals in the unhealthy dataset, from which both inner and outer race faults shall
be explored. To reduce fault analysis complexity, the decision was made to share the inner race and
outer race unhealthy dataset speed profile, such that one can explore the effects of different faults
without complicating the analysis with different shaft speeds per fault. It is important to emphasise
here that the faults are still kept distinct and only the shaft speed is shared, thus giving two unhealthy
test datasets under one shaft speed profile.
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4.3 Dataset Result Analysis
The phenomenological model was investigated due to parameter availability and the control the author
had on the dataset. The mathematical model provides access to both inner race and outer race faults,
which allowed for model comparisons to occur for different fault cases. The objective here is also
not to compare the methods to signal processing, but rather to analyse deep learning models in
performance comparisons to one another. The author will show results from the temporal preservation
data processing approach with the discrepancy signal mean used as the detection metric. A discrepancy
signal is obtained by feeding signal segments through the model and preserving the order of these
components for the obtained HI or LHI values. To allow for a condition deviance point to be identified,
the author will use a threshold that is defined as threshold = µ̃ +3σ , where µ̃ is the discrepancy signal
median and σ is the discrepancy signal standard deviation. This threshold approach is considered a
hypotheses test with H0 : P = µ̃ and Ha : P 6= µ̃ with a p value of 0.003. To formulate this hypothesis
test, the 99.7% confidence interval is used to develop deviance bounds on the average of the healthy
discrepancy signals and a condition deviance point is detected when any discrepancy signal average
exceeds these bounds. To associate between once-off anomalous instances and instances of damage the
author will identify condition deviance points as those whose five-point-ahead average from a point of
deviance are greater than the threshold. This five-point-ahead average can be considered an anti-causal
filter h(t) where h(t) = µHI(t+1)+µHI(t+2)+µHI(t+3)+µHI(t+4)+µHI(t+5)

5 . It is important to note that this is
not a fault detection methodology that is being proposed, but rather a performance quantification
methodology that is used to compare the various HIs and LHIs obtained from the models considered
in this work. The use of an anti-causal filter introduces the assumption that the future state of the HI or
LHI can be accessed, which is impossible if these techniques are implemented in real-time.

For the phenomenological model dataset, the author will demonstrate the performance of the available
HIs and LHIs for both fault cases respectively. The performance will be initially quantified using
PCA, to investigate whether additional model complexity is required. PCA will be used to quantify the
temporal preservation approach with a focus on the chosen model window length, Lw. The window
length investigated will be Lw = 512 and 4096, given that a shaft speed of approximately 10Hz and a
sampling frequency of 25kHz, the ratio Fs

fs
is equal to 2500. The author also used a CCR of 95% for

the PCA models unless indicated otherwise.

4.3.1 PCA Response

In figure 4.3(a) and (b), the HI(1) discrepancy signal average are shown for the two considered window
lengths. The choice of window length clearly affects the reconstruction log-likelihood, with a larger
window length resulting in a very similar record average while the smaller window length produces
changes in record average. This is directly attributed to the interaction present between the pre-
processing methodology and the model window length, as larger window lengths produce segments
that always capture the fault. The relationship between Figure 4.3(a)-(b) and (c)-(d) is that the latter
comprises alternative discrepancy signal statistics to the average to highlight how model window length
and discrepancy measures may not give a full picture into the HI or LHI relationship with the fault
present. The effect of the model window length on the discrepancy signal statistics shown in Figures
4.3(c) and (d) is noticeable, with the shorter window lengths returning segments that are in the same
range as the healthy data as shown by the min-max range. The inner race fault median for a window
length of Lw = 512 also shows how the type of fault affects the response of the discrepancy signal.
This highlights the implicit assumptions between the partitioning scheme applied to vibration data
and the model response, with a link to the fault frequency. It is also important to note here that the
author chose to restrict the captured variance to 80% for the model with a window length of Lw = 4096.
This was done as a 95% CCR produced noticeable discrepancies between the training and validation
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(c) Statistical features: Lw = 512
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(d) Statistical features: Lw = 4096

Figure 4.3. The HI(1) and discrepancy signal statistics for PCA models trained on phenomenological
model data that differ in model window length Lw. Figures 4.3(a) and (b) detail the HI(1) response
while Figures 4.3(c) and (d) detail the statistical features. Notice how the choice of model window
length affects discrepancy signal min-max range and median, with the model for Lw = 512 clearly
encountering healthy signal segments.

Figure 4.4 shows the response from the three LHIs made available through the temporal preservation
approach, for the window lengths of interest. All three LHIs are responsive to damage for the Lw = 512
model while the larger window length produces poor responses from LHI(2). It is clear that LHI(3) is
the best performing metric as it produces the earliest identifiable condition deviance point. It is clear
that the latent manifold is responding differently to the different faults, with a noticeable difference in
LHI(3) magnitude for a shorter window length shown in Figure 4.4(e). In comparison of the results
for the different window length, there is an effect on the condition deviance detection point, with the
larger window length producing points that occur consistently later for the LHI(2) and LHI(3) metrics.
The latent metric that is least indicative of damage is LHI(2), which indicates that the latent manifold
response to damage favours changes in latent manifold velocity over off-manifold path projections.
The latent metrics allow one to discover manifold intuition that was previously unavailable and allow
for physical interpretation due to the inclusion of the time component.
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(b) LHI(1): Lw = 4096
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(c) LHI(2): Lw = 512
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(d) LHI(2): Lw = 4096
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(e) LHI(3): Lw = 512
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(f) LHI(3): Lw = 4096

Figure 4.4. The three LHI responses for PCA models with different model window lengths Lw trained
on phenomenological data. The discrepancy signal mean was used as a discrepancy metric.
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To further emphasise the benefits that one obtains through the temporal preservation approach, the
author chose to illustrate the HI(1) discrepancy signal frequency spectrum content for each record for
the two faults considered. For a shorter window length, it was found that a clearer distinction between
signal segments and faulty segments could be isolated, which is beneficial for the Fourier analysis of
signals. This is quantified by examining the difference in the magnitudes between Figures 4.5(a)-(b)
and Figures 4.5(c)-(d), where it is clear that Figures 4.5(c) and (d) have a lower magnitude and is less
refined. In figure 4.5, the frequency content of the final faulty record and the content through each
record is shown. Figure 4.5(a) and (b) show the presence of the two bearing faults considered, with
clear amplitudes at the fault frequencies and harmonics thereof. In Figure 4.5(c) and (d), the frequency
content in the HI(1) discrepancy signal for each record is plotted and shown. The author normalised
the frequency by the shaft speed so that the amplitudes could be shown with respect to shaft orders. It
is clear, from a signal processing perspective, that the exploitation of the time component introduces
changes in the HI that corresponds to the introduction of the fault.

4.3.2 VAE Response

In Figure 4.6, the average of the discrepancy signals for HI(1) are shown for the deterministic and
stochastic parametrisations of the VAE model for a window length of Lw = 512. It is evident to note is
that the VAE2 model produces stronger HI(1) responses to damaged segments which is attributed to the
learnt output variance effect on the HI, as it quantifies the expected deviation in a reconstructed feature.
It is clear that the VAE model reconstruction response is indicative of damage, a result attributed to
the simplicity of the phenomenological model dataset. The discrepancy signal average of the outer
race and inner race fault HI is notably different, which indicates that the faults produces differences in
deviation magnitude. The condition deviance point identified by the model for the different fault cases
is in-line with the points obtained from PCA, indicating that the HI is performing at a satisfactory
level.

In Figure 4.7, the area-under-the-curve (AUC) and classification rate for the HI(1) discrepancy signals
are given for two PCA and VAE1 models that differ in window length. The objective here is to further
quantify how the binary classification approach often employed to validate unsupervised deep learning
models is highly dependant on the window length. It is noted here that the AUC was determined for a
threshold that varied from the smallest LL magnitude from the validation set to the condition deviance
threshold. It is clear to note that for a window length of Lw = 512, the classification performance is
poor for the outer race fault and even worse for the inner race fault. This is attributed to the presence
of both healthy signal segments and unhealthy signal segments in an unhealthy signal, which alters the
definition of classification as the discrepancy signal elements are no longer all indicative of damage. In
Figure 4.7(b), a window length of Lw = 4096 ensures that all segments processed with the temporal
preservation approach contain damage and a 100% classification accuracy can be obtained. In Figures
4.7(a) and (c), performance differences can be noted between the type of fault present, which is
attributed to the loading zone modulation present in inner race faults.

In Figure 4.8, the three LHI responses from a VAE1 and VAE2 model for a window length of Lw = 512
are shown. It is clear here that the LHI(2) response is very poor for both models and the best performing
metric is LHI(3), a result that is aligned with what was seen in the PCA case. The VAE2 model also
provides a clearer and more indicative response, with improvements to both LHI(1) and LHI(3). It is
clear that the learnt variance affects the learnt manifold, with LHI(2) identifying as an inferior metric
that provides no indication of damage. The physical interpretation here is that the learnt manifold
does not place anomalous instances far off the manifold but rather increases the distance travelled
within the manifold. It is also clear that records 39, 116 and 163 are clear threshold deviance records
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(b) Frequency spectrum: inner race fault

0 50 100 150 200 250 300 350 400
Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

M
ag

ni
tu

de

1xfs

1xBPFO
2xBPFO

3xBPFO

Frequency Spectrum - Outer Race HI

(c) Frequency spectrum: outer race fault
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(d) Frequency spectrum: inner race fault

(e) Record-Frequency spectrum: outer race fault (f) Record-Frequency spectrum: inner race fault

Figure 4.5. The frequency and record-frequency spectra of the HI(1) discrepancy signal from a PCA
model with window length Lw = 512 and Lw = 4096 for the outer race and inner race fault data of the
phenomenological model dataset. Figure 4.5(a), (b), (c) and (d) were developed using the final signal
record in the dataset for the outer and inner race cases, with (a), (b), (e) and (f) developed from the
Lw = 512 model while (c) and (d) were developed from the Lw = 4096 model.
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(b) HI(1): VAE2

Figure 4.6. The discrepancy signal average of the HI(1) response for VAE1 and VAE2 models with a
window length of Lw = 512. Note that in 4.6(b) the notation is now a log-likelihood average, which
was done to indicate that a learnt output variance was used.

which is related to the shaft speed of the signals, as these records all have the largest speeds seen in
Figure 4.2. It is clear that these are not the only threshold deviance records, but the variation in the
LHI responses can be directly attributed to the shaft speed. The performance of the VAE models can
now be compared to that of PCA and it is clear that by all accounts, PCA is the superior model in terms
of the latent manifold response to damage. This is attributed to two potential reasons, the first is that
this dataset is simple and thus a linear model can correctly represent and track damage without the
need for increased model complexity. This may imply that the VAE models may attempt to linearise
their in-built non-linearity and the result is a weakened manifold response. The second reason that is
attributed to is the potential power of the VAE decoder, which may induce a latent manifold that is
less informative. This is aligned with some known issues that plague VAEs, as detailed in Chen et al.
(2017) and Zhao et al. (2017).

The author would now like to draw the reader’s attention to a consistency between the classification
and the LHI responses, with a detectable change around approximately −10dB or from record three
hundred and thirty onwards. This change point is important as this is the exact SNR of the random gear
component, which indicates that the fault is only detected by the model once the bearing component
dominates this component. If a Fourier analysis is then conducted using the LHI(3) response for two
VAE2 models that differ in window length on the inner race fault data, interesting results are obtained.
In Figure 4.9, it is clear that there are two clear spikes that are consistent through each spectrum and
these spikes are at shaft orders of 20 and 40 respectively. The two frequency components are the gear
mesh frequency and its harmonic, indicating that there is some oscillation in the LHI at the dominant
deterministic signal component. This indicates that the manifold may capture the dynamics of the
system in the latent manifold and that these dynamics affect the traversal through the manifold. This is
powerful as it shows that the properties of the data space and the latent space are shared, indicating
that the manifold is capturing the intrinsic properties of the data. This also highlights the benefit of the
proposed temporal preservation approach and the LHIs, as they introduce a level of intuition that was
previously unnoticed in latent variable models.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

72



Chapter 4 Phenomenological Model Dataset Analysis

40 30 20 10 0 10
Fault SNR

0

20

40

60

80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Outer Accuracy
Inner Accuracy

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ar
ea

 U
nd

er
 C

ur
ve

 (A
UC

)

AUC (Outer)
AUC (Inner)

(a) PCA: Lw = 512
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(b) PCA: Lw = 4096
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(c) VAE1: Lw = 512
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(d) VAE1: Lw = 4096

Figure 4.7. The AUC and classification accuracy obtained from two formulations of the PCA and
VAE1 model that differ in model window length. Notice the clear change in classification performance
due to a simple assumption of model window length. Note that the Lw = 512 model does perform well
but a level of interpretation exists that clearly needs to be built into the response analysis.

4.3.3 GAN-based Response

In Figure 4.10, the corresponding HI(2) and HI(3) response under the temporal preservation approach
is shown for RY −GAN and DLS−GAN models with a window length of Lw = 512. The objective
here was to highlight to the reader that this approach is not limited to the LHIs used, but can also
be equally extended to the HIs. This implies that the usage of the temporal preservation approach
can be readily used as a drop-in replacement for most model evaluation methods. The discrepancy
signal mean was used as a discrepancy metric, with a clear response to damage exhibited from the
reconstruction log-likelihood, data discriminator and the latent critic. It is clear that the GAN-based
model is performing on a comparative level to PCA. The latent critic also identified condition deviance
points early than the data discriminator, a result attributed to poor discriminator training. An indication
of poor GAN training is the stability point for the data discriminator, which should produce an value
around 0.5. Clearly, in Figures 4.10(a) and (b), this is not the case. This is attributed to the presence of
the L2 and GAN methodologies in the training scheme which optimise in juxtaposition to one another
and often the L2 loss will dominate training. It is clear, however, that in the presence of significant
damage the discriminator detects a movement from the healthy data manifold and begins to classify
this data as fake by tending to zero.
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(b) LHI(1): VAE2
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(c) LHI(2): VAE1
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(e) LHI(3): VAE1

0 100 200 300 400
Record Number

0.2

0.4

0.6

Av
er

ag
e 

an
gl

e

355
360

360

Latent angle average: Outer race
+ 3

condition deviance (360)

0 100 200 300 400
Record Number

0.2

0.3

0.4

Av
er

ag
e 

an
gl

e

350
360

360

Latent angle average: Inner race
+ 3

condition deviance (360)

(f) LHI(3): VAE2

Figure 4.8. The three LHI responses for VAE1 and VAE2 models with a window length of Lw = 512
trained on the phenomenological model data.
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(a) Record-frequency spectrum: Lw = 512 (b) Record-frequency spectrum: Lw = 4096

Figure 4.9. The LHI(3) record-frequency spectra for the VAE2 models with a window length of
Lw = 512 and Lw = 4096 for the inner race fault. Notice the clear presence of the gear mesh component
and its harmonic at 20 and 40 shafts orders respectively.

To investigate how the latent manifold is responding to healthy and unhealthy data, Figure 4.11 shows
the data discriminator and latent critic frequency spectra through time for the other race fault data.
It is clear from both Figure 4.11(a) and (b) that there is some natural discrepancy signal oscillation
at the frequency of the gear mesh frequency and its harmonics. It is clear that the data discriminator
response in Figure 4.11(a) that the random gear and gear mesh frequencies dominate the earlier records
and the fault frequencies dominate the later records. Figure 4.11(b) shows how the latent manifold
is aware of the shaft speed, with a strong frequency component at the gear mesh frequency and its
harmonics in relation to the fault frequencies. The presence of this component is strong in the latent
critic response which indicates that the model is sensitive to the shaft speed and this sensitivity is
amplified in the latent manifold. This also highlights for the reader how the latent manifold is greatly
affected by the model formulation and that one can gain knowledge by looking at both the learnt latent
manifold and the data manifold. Ultimately, the latent critic is a powerful element as it introduces
latent understanding, however further interpretability can be obtained from the LHIs.

In Figure 4.12, the three LHIs are shown and it is clear that the RY −GAN and DLS−GAN methods
have learnt similar latent manifolds. It is clear from Figures 4.12(a), (b), (e) and (f) that LHI(1) and
LHI(3) produce clear condition deviance points, with LHI(3) identifying as the more sensitive metric.
The condition deviance points for LHI(3) are competitive with those shown for PCA in Figure 4.4,
which further indicates how the latent metrics proposed in this work augment the information available
to the user. The latent critic was found to fluctuate at a frequency of the gear mesh component and
the author confirmed that although the three latent metrics also contained some of this information, it
was most clear in LHI(2). This highlights that the latent critic may be more responsive to changes in
the distance from the origin, an expected response given its training objective. However, changes in
the manifold velocity and trajectory are also interpretable and carry information related to damage.
The magnitude of the three LHIs also provide some indication that the two faults are interpreted by
the model differently, however this is a purely qualitative observation that can be made in comparison
of the faults. One cannot directly quantify the fault present unless the analysis if further augmented
with external information such as the fault frequency which requires knowledge of the shaft speed and
bearing characteristics. However, this does highlight that deep learning can immediately benefit from
simple signal processing techniques, as taking the Discrete Fourier Transform (DFT) of a discrepancy
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(a) HI(1): RY −GAN
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(b) HI(1): DLS−GAN
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(c) HI(2): RY −GAN
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(d) HI(2): DLS−GAN
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(e) HI(3): RY −GAN
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(f) HI(3): DLS−GAN

Figure 4.10. The responses from the data discriminator and the latent critic for the RY −GAN and
DLS−GAN models with a window length of Lw = 512 for the outer and inner race fault data.
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(a) Record-frequency spectrum: HI(2) (b) Record-frequency spectrum: HI(3)

Figure 4.11. The record-frequency spectra of the data discriminator and latent critic response from
a RY −GAN model with a window length of Lw = 512 for the outer race fault data. Notice the clear
presence of the gear mesh component.

signal is trivial and the evaluation of frequency content is common in signal processing techniques
under stationary operating conditions.
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(a) LHI(1): RY −GAN
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(b) LHI(1): DLS−GAN
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(c) LHI(2): RY −GAN
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(d) LHI(2): DLS−GAN
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(e) LHI(3): RY −GAN
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(f) LHI(3): DLS−GAN

Figure 4.12. The latent manifold response for RY −GAN and DLS−GAN models with a window
length of Lw = 512. Notice the strong condition deviance through the latent manifold metrics.
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4.3.4 Dataset Consolidation

To conclude this dataset, the author will represent the identified condition deviance points for the
various models considered in this work through Table 4.1. The decision was made to use the temporal
preservation approach to determine the discrepancy signal mean, as was done for the various LHI
responses. This was done to ensure that the HI and LHI responses are quantifiable in the same domain
of analysis.

Table 4.1. The obtained threshold condition deviance point from the first phenomenological model
dataset for both fault types when investigating the HI’s. Note that IC1 is the abbreviation used for
inconclusive results.

Model type and characteristics Health indicator condition deviance point for outer race || inner race fault
Model used Window length HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA
Lw = 512 310 || 309 N/A N/A 310 || 310 353 || 353 273 || 269

Lw = 4096 312 || 312 N/A N/A 335 || 326 437 || 434 310 || 310

VAE1
Lw = 512 312 || 322 N/A N/A 391 || 379 437 || 421 390 || 372

Lw = 4096 312 || 312 N/A N/A IC1 || IC1 IC1 || IC1 406 || 411

VAE2
Lw = 512 311 || 310 N/A N/A 370 || 370 IC1 || IC1 360 || 360

Lw = 4096 326 || 326 N/A N/A 430 || 426 IC1 || IC1 400 || 409

β −TC−VAE1
Lw = 512 312 || 322 N/A N/A 411 || 391 IC1 || IC1 383 || 380

Lw = 4096 312 || 312 N/A N/A IC1 || IC1 IC1 || IC1 421 || 421

β −TC−VAE2
Lw = 512 311 || 310 N/A N/A 368 || 370 IC1 || IC1 373 || 380

Lw = 4096 330 || 326 N/A N/A 300 || 381 IC1 || 439 366 || 354

RY −GAN
Lw = 512 326 || 326 386 || 368 353 || 353 326 || 335 437 || 433 310 || 320

Lw = 4096 350 || 353 396 || 396 363 || 363 424 || 419 353 || 360 IC1 || IC1

DLS−GAN
Lw = 512 326 || 326 388 || 379 377 || 377 321 || 326 389 || 391 319 || 329

Lw = 4096 325 || 326 361 || 367 410 || 408 339 || 350 407 || 390 340 || 355

In the analysis of Table 4.1, it is clear that PCA is a strong performing method on this dataset, with clear
fault identification through all HIs. The choice of window length appears to clearly affect the VAE
model and the β −TC−VAE variant, which highlights that there are careful considerations that must
be made when selecting a window length. It is clear that the GAN-based model offers some immediate
improvements over the VAE models, with the exception of HI(1). The difference is HI(1) is attributed
to the addition of the GAN component, which makes some attempt to capture the noise and random
gear component. The LHI metrics proposed in this work offer improved model interpretability and the
fortunate result of responsive behaviours in all three LHI metric, while LHI(2) was often weaker. The
best performing LHI can be identified to be LHI(3), which highlights how the temporal preservation
approach can offer significant insights into how a model handles anomalous data.

The strong performance of PCA indicates that this dataset can be captured by a linear latent variable
model. This fact shows that it is important to quantify dataset complexity by, at the minimum,
considering how fault detection performance compares to PCA. If PCA produces adequate performance
responses, one would have to justify why the addition of model complexity should feature.
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5.1 Chapter Abstract
In this chapter, the author presents the IMS dataset and the performance investigation of the different
models considered in this work. There are four key concepts that are key to this investigation:

1. The model window length Lw affects model diagnostic performance
2. The latent manifold is interpretable under the temporal preservation approach
3. The amount of training data can greatly affect the response results
4. Model performance must be compared to fully highlight the benefits of complex methods

The reader is asked to keep these concepts in mind when going through the various results, as each
dataset offers insights into each of these points. For a detailed collection of the model architectures,
learning rates, stopping conditions and hyper-parameters please refer to Appendix B.5. The models
used on this dataset are: PCA, the VAE1 and VAE2 models, the β −TC−VAE1 and β −TC−VAE2
models, the RY −GAN model and the DLS−GAN model.

5.2 Dataset Introduction
The IMS dataset, Qiu et al. (2007), is a well-used bearing failure dataset in literature due to the natural
fault degradation characteristics of the data. The IMS dataset consists of three run-to-failure tests in
which different faults occurred naturally through time. In the reference paper of Qiu et al. (2006), the
dataset was introduced and the experimental set-up was detailed. Figure 5.1 presents a schematic of
the set-up. Gousseau et al. (2016) presented an analysis using various signal processing techniques as
well as potential conclusions that can be made for each of the run-to-failure tests such that a unified
perspective of each test set could be established.

5.2.1 Dataset Description

The IMS endurance test rig consisted of four bearings on a shaft coupled to an AC motor through rub
belts. The bearings were force lubricated using a circulation system and each test was stopped once a
significant amount of metal debris was detected on a magnetic plug. The test rig characteristics are four
double row Rexnord ZA-2115 bearings, two PCB 353B33 High Sensitivity Quartz ICP accelerometers
per bearing, a shaft speed of 2000rpm and a radial load of 26.69kN.

The three test datasets in the IMS dataset consist of many one-second measurements throughout the
lifespan of the test. Each measurement was made in intervals of ten minutes, with an exception
existing in the first dataset whereby the initial forty-three measurements were obtained in five-minute
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Radial Load, 

Bearing Housing
Accelerometers

Figure 5.1. The IMS experimental set-up (Qiu et al., 2007). Notice the presence of four bearings with
two accelerometers per bearing.

intervals. Table 5.1 presents a succinct summary of the dataset size and visually determined fault cases
for each test set. Due to the stationary operating conditions in this dataset, the fault frequencies are
known. However, there appears to be some discrepancy in the literature about the sampling frequency
of the accelerometers. Qiu et al. (2006) indicated that the sampling frequency was 20kHz with a
data length of 20480 points. However, Gousseau et al. (2016) indicated that the sampling frequency
may be 20.48kHz, with their investigation proving to support their claim. Under the assumption of a
sampling frequency of 20.48kHz, the fault frequencies are given in Table 5.2 alongside the bearing
characteristics of the Rexnord ZA-2115 bearings (Qiu et al., 2006).

Table 5.1. IMS Bearing test set properties

Dataset Number Number of Channels Set Duration Signal records available Failure Case

1 8 355.75 hrs 2156 Inner race fault (B3), Roller element defect (B4), outer race defect (B4)
2 4 158 hrs 984 Outer race fault (B1)
3 4 741.3 hrs 4448 Debated in literature

Table 5.2. IMS dataset bearing and fault characteristics.

Characteristic Value

Rexnord ZA-2115

Pitch diameter 71.5mm
Roller element diameter 8.4mm

Contact angle 15.17◦

Number of rolling elements 16

Frequencies of interest

Shaft Speed 33.3Hz
Ball Pass Frequency Outer race (BPFO) 236Hz
Ball Pass Frequency Inner race (BPFI) 297Hz

Ball Spin Frequency (BSF) 278Hz
Ball Cage Frequency/Fundamental Train Frequency (BCF/FTF) 15Hz

One may note in Table 5.1 that the author stated that test set three has a failure case which was debated
in the literature. Gousseau et al. (2016) could not detect the presence of damage, while the IMS dataset
Readme document stated that a fault had occurred. Due to this discrepancy, the author will not analyse
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this dataset. One may also note in Table 5.1 how there are eight channels per bearing for test set one
while for sets two and three there are only four channels. Due to this change, the author chose to limit
the analysis to the x− channels for test set one and will only analyse data from the bearings of interest,
bearings three and four. As a basic analysis, one may compute simple statistical features from each
record in a test set, where these statistics are the RMS and kurtosis of the signals, as was done in Qiu
et al. (2006). One difference here is the author chose to leave the horizontal axis in integer increments
corresponding to record number, as it allows one to see changes in the system that less obvious when
viewing the axis under measurement interval. Figures 5.2 and 5.3 contain the computed statistical
features for bearings three and four from test set one while Figure 5.4 shows the statistical features for
bearing one from test set two.
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Figure 5.2. The RMS and Kurtosis of bearing three data in channel five through all signal records for
IMS test set one. Notice the discontinuous jump in RMS that occurs between record 155 and 156 in
5.2(a) and 5.2(b).
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Figure 5.3. The RMS and Kurtosis of bearing four data in channel seven through all signal records for
IMS test set one. Notice the lack of discontinuous jump as was found in Figure 5.2.
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Figure 5.4. The RMS (5.4(a)) and Kurtosis (5.4(b)) of bearing one data in channels one through all
signal records for IMS test set two. Notice the gradual increase in the region of record six-hundred and
the drop around record eight-hundred, attributed to bearing self-healing.

5.3 Dataset Result Analysis
The IMS dataset analysis will focus on bearings three and four from the first dataset and bearing one
from the second dataset. This was done as these bearings all had faults that developed throughout
the experimental lifespan. For method comparability, four signal processing techniques shall be
analysed, namely, MED−SK−NES,SK−NES,CPW−NES and the SES, to provide insight into how
unsupervised learning compares to fundamental and state-of-the-art signal processing methodologies.
The analysis objective of this dataset is twofold, firstly to see how the different models perform in
comparison to one another and secondly, how the latent manifold can augment model interpretability
for CBM.

To allow for performance comparability, the author has chosen to follow approaches used by Abboud
et al. (2019) and Schmidt et al. (2019a), whereby a threshold was defined as threshold = µ̃ + 6σ

where the median µ̃ and standard deviation σ are obtained from the first N reference diagnostic metric
measurements. For the IMS dataset six standard deviations were used by Abboud et al. (2019) to
ensure that the condition deviance point was clear and this work will use the same approach to allow
for comparative result response analysis. The decision to use the diagnostic metric median was made
as the median is less susceptible to outliers and the threshold response to outliers can be captured in
the standard deviation. For any diagnostic metric measurement greater than the threshold, the mean of
the following five points was calculated to determine whether a point is a false positive or a point of
condition deviance and shall be indicated as such. For the signal processing approaches used in this
work, the first one hundred and two hundred records are considered as reference metrics for datasets
one and two respectively. The decision to use one hundred records was made with consideration of the
jump noted in the signal RMS shown in Figure 5.2(a). For any deep learning approaches, the records
used will consist of those used for model training and validation.

For diagnostic metrics, the author predominately focuses on the discrepancy signal mean as the mean
was found to be a sufficient metric for damage detection. Due to the operating condition present,
little was gained from using the temporal preservation approach for the HIs as the shaft speed was
sufficiently high. However, it is still necessary for the LHIs as increment continuity is required, with
the exception of LHI(2). Note that the benefit of the temporal preservation approach for the discrepancy
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metrics is not as significant here, as the ratio Fs
fs
= 20480

33.3 = 615.02 is very close to the lowest considered
model window length of Lw = 512.

5.3.1 Dataset One: Bearing Three

For the first IMS dataset, the author conducted two parallel investigations focused on the amount of
training data made available due to the clear jump around record one hundred and fifty-six shown
in Figure 5.2(a). The purpose here is simple, under the decision to use 5% or 10% of the available
records as training and validation data, referred to as case one and case two respectively, one may bias
results to inadvertently capture or ignore the jump and the defined damage threshold and condition
deviance point may suffer. In Table 5.3, these cases are given to make it clear to the reader how much
data was used. Furthermore, the author will investigate, under these parallel cases, the assumed model
window length as this parameter proved to be important to the interpretation of the model response
in Section 4.3. The window lengths of interest are: Lw = 512 and Lw = 4096. As many models were
analysed, it is infeasible to present all the results obtained for each case. Thus, the author will present
results deemed interesting and after the response has been motivated, the remaining results will be
collectively shown in Table 5.4.

Table 5.3. The amount of healthy data used for the first IMS dataset.

Training data percentage

Case one Case two
5% 10%

5.3.1.1 PCA Model Response

In Figure 5.5, the author present the HI(1) response from case one and two for both considered
window lengths using PCA.It is immediately clear that case one results in a condition deviance point
at record one hundred and fifty-six while case two results in a condition deviance point in the region
surrounding record two thousand, for both window lengths considered. Clear implications of the
assumed percentage of training data are noted on the threshold deviance response, whereby in case one
the condition deviance point gives a binary detection response while for case two this did not occur.
The reconstruction in Figures 5.5(c) and (d) appear visually smoother in the region around record
two-thousand which is attributed to the assumed window length. For larger window lengths, if the
anomalous instances seen by the model are infrequent and short in occurrence in comparison to the
window length, the LL will naturally be less indicative unless the anomalous component is significant.
The case two response appears to highlight records surrounding record two thousand, which were
noticeably impulsive in Figure 5.2(b). Finally, severe damage is seen to occur near the end of the
experimental life-span, with significant growth in record average shown in Figure 5.5.

Figure 5.6 shows the response from the three LHIs for PCA models with a window length of Lw =
512 under case one and case two. Clearly, the latent manifold is responding to damage and it is
interpretable. All three LHIs indicate the presence of damage albeit clear that LHI(3) is noticeably
worse. The intuition here is that the manifold is responding by representing instances of damage
approximately perpendicular to the manifold path and consequently, the distance between latent
instance representations and the distance from the Euclidean origin increases. The latent angle
still exhibits a mild response to damage which attributed to the lack of perfect orthogonal path
projection.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

84



Chapter 5 IMS Dataset Analysis

0 500 1000 1500 2000
Record Number

10 1

100

Av
er

ag
e 

M
SE

156
157

156

average  MSE
+ 6

threshold deviance (156)
threshold deviance (157)
condition deviance (156)

(a) Case one: Lw = 512
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(b) Case two: Lw = 512
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(c) Case one: Lw = 4096
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(d) Case two: Lw = 4096

Figure 5.5. The PCA model HI(1) response to all of the bearing three data from IMS dataset one for
the two considered window lengths and training data cases.

Furthermore, Figure 5.6 provides an intuition for the amount of training data used, where there is a
clear condition deviance effect for this bearing data. One can note that for the case two model, it still
captures the change around after one hundred and fifty-six in a different location on the manifold,
which shows that the model latent manifold has an awareness to the fact that the records are different
to the others. This may mean that there is some shift either induced by a fault or a change in system
properties, with enough significance that the model cannot fully capture the change equally, as seen in
Figures 5.6(b), (d) and (f). Clearly, the PCA models work extremely well on this bearing data which
indicates that it is a simple dataset to detect damage on and additional model complexity may not be
necessary. However, it is crucial that the complex models also perform well and thus, they will be
analysed.

5.3.1.2 VAE Model Response

The results from the VAE models for bearing three data did not add any benefit over PCA and thus
shall not be expanded completely. Under the VAE2 model for case two, the jump at record one hundred
and fifty-six disappears which indicates that the VAE2 model learns a variance that can effectively
capture the change, a curious result for the stochastic VAE model. The reason for this is attributed
to the increased model complexity available to models trained with larger window lengths, which
improves the expected model response given the training data. However, if the change is anomalous, it
would be preferred that it be made known to the user. The author chose to analyse the β −TC−VAE
model in both its deterministic and stochastic form, however, it was noted that the response was similar
to that shown for the VAE model. In fact, in reconstruction, the models performed equivalently with no
clear jump after record one hundred and fifty-six for the β −TC−VAE2 model trained under case two.
Interested readers can refer to Figures E.1 and E.2 for a visual analysis of the VAE response.
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(a) LHI(1) using case one: Lw = 512
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(b) LHI(1) using case two: Lw = 512
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(c) LHI(2) using case one: Lw = 512
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(d) LHI(2) using case two: Lw = 512
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(e) LHI(3) using case one: Lw = 512
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(f) LHI(3) using case two: Lw = 512

Figure 5.6. The PCA model LHI responses to all of the bearing three data from IMS dataset one for
the two training data cases under a model window length of Lw = 512.

If one critically examines Figure E.1, it is clear to see that the addition of learning the model output
variance is, in a fault diagnostic domain, unnecessary as the VAE1 response is suitable. The only
change where VAE2 notably contributes is in the magnitude of the average, which is not a necessary
requirement for this dataset. It is also interesting that the VAE2 models respond to the records which
have large kurtosis values, an indicator of impulsivity in a signal, as this implies that this impulsivity is
highly unlike the healthy data which the model has seen and this is enhanced by the learnt variance in
the HI. This can be attributed to the underlying assumption of a VAE where the output distribution is
Gaussian, hence strong deviation from this is noticeable. This learnt variance also affects the learnt
latent manifold, with clear differences noted between the VAE1 and the VAE2 response in Figure
E.2.
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5.3.1.3 GAN-based Model Response

For the GAN-based methods, the author will present the response obtained from the RY −GAN model
for both case one and case two for a window length of Lw = 512 as these results provide the reader
with a succinct summary of the response from the GAN-based models. The objective here is to indicate
to the reader how the additional HIs available to the user respond and how the latent manifold responds
under the GAN-based formulation.
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(b) HI(1): case two
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(c) HI(2): case one
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(d) HI(2): case two
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(e) HI(3): case one
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(f) HI(3): case two

Figure 5.7. The mean response obtained from HI(1), HI(2) and HI(3) from a RY −GAN model with a
window length of Lw = 512 for the two cases on interest for bearing three from IMS dataset one.

In Figure 5.7, the response from the reconstruction log-likelihood, data discriminator and latent critic
are shown and it is immediately noticeable how HI(1) and HI(3) are more responsive than HI(2). The
HI(2) response performance can be attributed to the use of the L2 objective function which operates in
conflict to the GAN objective function. This is due to the difference in terms of what the generative
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distribution p(x|z) is parametrised as, as the former is explicitly Gaussian while the latter is driven
implicitly. The author does not believe that the use of the two in conjunction is beneficial to GAN
training on vibration data and the part that suffers is the data discriminator. It is clear that HI(3) is a
good HI as it is able to capture responses to damage and it appears to be less biased to the impulse
data, attributed to the L2 guidance and its effect on what information the encoder distribution captures.
In the comparison between Figure 5.5 and Figure 5.7, it is clear that the HI(1) metric response is
comparable, indicating that the GAN-based method produces satisfactory performance. The latent
critic metric is also clearly indicative of damage and produces comparable responses to those obtained
from PCA.
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(d) LHI(2): case two
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(e) LHI(3): case one
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(f) LHI(3): case two

Figure 5.8. The LHI responses for a RY −GAN model trained bearing three data for both 5% and
10% of the available data using a window length of Lw = 512.

In Figure 5.8, the LHI response for the two training data cases of the RY −GAN are shown. LHI(1)

and LHI(2) respond strongly to damage and are both indicative of the fault present. Figure 5.8(e) and
(f) show LHI(3), with a weakened response and this is carried not only through both cases but it is
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synonymous with how the PCA and the VAE models respond on the latent manifold. It is not unexpected
that one LHI suffers while others perform well, as the three LHIs are linked in interpretation, with
the resulting poor slow angle change attributed to the data following the same path through the latent
space and the encoder mapping unseen anomalous instances far from the manifold but along the
same trajectory. One can note how the response from the RY −GAN model appears to be smoother
for LHI(1) and LHI(2) which may be attributed to the built-in disentanglement allowing the s latent
component to capture the deterministic part of the signal while n captures the rest of the information
present in the signal. Figure 5.8(d) provides a less noticeable change at record one hundred and fifty-six
and its response appears to be akin to the latent critic response shown in Figure 5.7(d).

5.3.1.4 Signal Processing

For the next segment of this report, it is required to demonstrate how the four signal processing
approaches respond on the third bearing data for the first dataset. This will show how the use of latent
variable models is competitive with the state-of-the-art signal processing techniques. Note that the SES
is used as a performance baseline technique, as it is often beneficial to utilise pre-processing techniques
such as MED-SK or CPW filtering before analysing the SES. Figure 5.9 shows the various signal
processing responses at the frequency amplitudes of interest for the third bearing. It is clear to note that
the MED−SK−NES and SK−NES methods, shown in Figure 5.9(a) and (b) respectively, do not
provide any clear indication of damage with a noisy BCF component. This noise, however, is attributed
to the SNR noise floor and hence it is un-interpretable. The CPW −NES and SES methods seem to
provide better results, shown in Figure 5.9(c) and (d) respectively, with a clear drastic fault frequency
progression in the final records. Oddly, these methods do not correctly identify which component is
responsible for the damage, with all fault frequencies showing rapid growth in frequency magnitude.
Furthermore, it is non-trivial to identify a point of condition deviance when using MED−SK−NES
and SK−NES and as such, no threshold was defined. It is possible to do so for the CPW −NES
approach and the SES approach but it is limited to the final records. One can note a gradual growth in
magnitude at record one hundred and fifty-six but this change, however, does not compare with the
latent variable model responses.

5.3.1.5 Result Consolidation and Conclusion

To consolidate and represent the results obtained for this bearing data, Table 5.4 is provided such
that the results for models trained under case one and case two for two input lengths considered can
be interpreted and summarised. It must be noted here that some results can be classified into three
inconclusive (IC) indicators, namely, IC1, IC2 and IC3. The term IC1 was given to any health indicator
that was deemed a failure. IC2 is an indicator used for case two models where the change at record one
hundred and fifty-six affected the results in a manner that caused the health indicator condition deviance
approach to be inconclusive but still indicative of anomalous data. Finally, IC3 was reserved for the
GAN-based approaches to indicate cases where the data discriminator training was unsatisfactory.
The latter was included to highlight the flaws associated with the current training approach for the
GAN-based methods which was attributed to the inclusion of both the L2 and GAN training schemes
in the model. As with the phenomenological model, the author chose to use the discrepancy signal
mean from the temporal preservation approach for the results in Table 5.4 and all those that follow for
the IMS dataset analysis, hence some results may differ to the figures shown.

In the analysis of Table 5.4, it is clear that the choice of the amount of training data greatly affects the
condition deviance point that the threshold detects. It is common for case one models to isolate record
one hundred and fifty-six. There are three approximate ranges that one can group the results of Table
5.4 into, with the first range around record one hundred and fifty-six, the second around the impulse
signal band near record one thousand eight hundred to two thousand and the third is when the rapid
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Figure 5.9. The four considered signal processing approaches frequency amplitude at the four frequen-
cies of interest for the first channel of bearing three from IMS dataset one. Notice the clear lack of
fault progression when the MED−SK−NES, (a), and SK−NES, (b), approaches are used.

Table 5.4. The obtained threshold condition deviance point from the first IMS dataset for bearing
three when investigating the HIs. Note that IC1 is the abbreviation used for inconclusive, IC2 refers to
a case where the change at record 155 affects result performance and IC3 refers to a poorly trained
discriminator

Model type and characteristics Health indicator condition deviance point from case one || case two
Model used Window length HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA
Lw = 512 156 || 2055 N/A N/A 156 || 2049 156 || 2119 IC1 || IC1

Lw = 4096 156 || 2019 N/A N/A 156 || 2049 156 || 2076 1664 || 2120

VAE1
Lw = 512 156 || 2019 N/A N/A 196 || 2119 196 || IC2 594 || IC1

Lw = 4096 156 || 2119 N/A N/A 2055 || 2121 2134 || 2121 2119 || IC1

VAE2
Lw = 512 156 || 1843 N/A N/A 637 || 2121 177 || 1843 1842 || 2131

Lw = 4096 156 || 2019 N/A N/A 2133 || 2135 IC1 || IC1 1739 || IC1

β −TC−VAE1
Lw = 512 156 || 2010 N/A N/A 156 || 2127 182 || IC2 594 || IC2

Lw = 4096 156 || 2119 N/A N/A 2120 || IC2 2120 || IC2 IC1 || IC2

β −TC−VAE2
Lw = 512 156 || 1843 N/A N/A 1985 || 2119 1819 || 1843 2010 || 2119

Lw = 4096 156 || 2006 N/A N/A 2120 || 2120 2134 || IC1 2119 || IC2

RY −GAN
Lw = 512 156 || 2007 904 || 2119 156 || 1861 156 || 2006 156 || 1904 624 || IC1

Lw = 4096 156 || 2010 156 || 2010 284 || 2007 284 || 2120 637 || 1905 IC1 || 2136

DLS−GAN
Lw = 512 156 || 2019 IC3 || IC3 156 || 2009 162 || 2006 156 || 2049 IC1 || IC1

Lw = 4096 156 || 2010 156 || IC3 1903 || IC2 637 || 2006 239 || IC2 2123 || IC1
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failure occurs from record 2100. These bands allow one to home in on where exactly the condition
deviance point is and why the model has chosen the point. It is also clear that the decision of the
amount of training data greatly affects the condition deviance point with a large number of IC2 cases.
With regards to window length, it is clear to see that the larger window length tends to favour the rapid
failure point through the LHIs. The larger window length alters the performance of the LHIs, with
LHI(2) often performing poorly and this is exaggerated by the amount of training data used. When one
compares the VAE models to that of the GAN-based, the additional model design complexity aids in
model performance and produces more consistent results. PCA also appears to be a highly competitive
method which shows that this bearing data is constrained in a manner that is interpretable through
a linear latent variable model. One clear positive, when one compares the signal processing results
to the latent variable model results, is that the latent variable models out-perform signal processing
in result interpretability and in result conclusiveness. The presence and response to damage can be
isolated, as opposed to the signal processing case where there is some discrepancy and the true fault is
unclear.

5.3.2 Dataset One: Bearing Four

For the fourth bearing, the analysis process will remain predominantly the same as that shown for
bearing three with a slight focus on the interesting response results that were noted by the author. As
with bearing three, the author chose to investigate the effect of the assumed amount of training data
and difference in metric response based on a case one or case two approach was investigated for this
bearing data. The author chose to not show the PCA response for this bearing, as its response was
similar to that found from the VAE and GAN models.

The response results from this bearing data under the case one and case two training data options
offered an interesting analysis as there appears to be a region of self-healing present in the response.
This caused case one results to often identify a early condition deviance point but between records five
hundred and one thousand the response would heal and go under the threshold. To aid in response
quantification, a final deviance point is identified as the point that represents the final record that
crosses the threshold. The final deviance point can be interpreted as the record from which all other
record HI or LHI discrepancy average metrics are classified as damaged.

5.3.2.1 VAE Model Response

For the VAE discussion in this work, the author chose to show the results from training case one and
will rather illustrate how the latent manifold changed as a result of the model window length. In Figure
5.10, the response from HI(1) under the two window lengths can be found, with it clear that both
VAE1 models respond well to damage and that the damage progression is clear. There are identifiable
points where sudden jumps in mean occur and after an initial period of growth, there is a decline prior
to the sudden growth from the discrepancy signal average around record one thousand five hundred.
The images in Figure 5.10 also provide one with a clear indication of how the threshold is robust to
fault progression but it is still a binary method of fault identification. In the presence of apparent self
healing, the response may require some human interpretation to quantify the damage growth present.
It is a non-trivial task to identify a clear binary point of fault diagnosis in vibration data but the process
is greatly simplified if the health indicator responds strongly to damage amidst all other machine
conditions and factors, which is the underlying purpose of vibration-based condition monitoring. It
is clear in Figure 5.10 that the addition of more training data would ultimately be problematic as the
threshold variance will automatically capture the jump at record one hundred and fifty six. The final
condition deviance point is also a function of the training data percentage, with the case one response
identifying an earlier final deviance point.
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(a) VAE1 : Lw = 512
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(b) VAE1 : Lw = 4096

Figure 5.10. The VAE1 response for two different window lengths for data from bearing four of the
first IMS dataset using 5% of the available data for training.

In Figure 5.11, the three LHIs obtained using the temporal preservation approach from VAE1 models
with different window lengths for case one are shown. It is evident that, for the VAE models, the
latent manifold manifests differently based on the window length. One can note how the robust metric
now appears to be LHI(2) for Lw = 512, with the other LHIs showing strong off-manifold responses
to the healthy data that has been identified as anomalous training instances. The presence of these
anomalous instances is interesting as the model reconstruction did not identify these points. The reason
for these anomalies will be explored shortly, but it is clear that the LHIs used in this work allow for
clear result augmentation and give the user a better picture into the data they analyse. It is clear for
LHI(3), as shown in Figures 5.11(e) and (f), the response is poor for a shorter window length while
improved for a larger window length, at the expense of a strong response from LHI(2) with Figure
5.11(d) exhibiting an objectively slower response. The final deviance record identified in Figure 5.11
appears to be change based on latent metric and window length, which is attributed to the presence of
anomalous training instances in the data.

The change in performance of the LHIs for different window lengths was also found to be consistent
across the deterministic and stochastic VAE models and the β −TC−VAE models. This consistent
response indicates that, for data from the fourth bearing from the first IMS dataset, the learnt manifold
from a larger window length responds strongly to the presence of damage and does so by pushing
anomalous data instances far from the healthy manifold with significant alterations to the path travelled
through the manifold. This may be a result of the information present in signals with longer window
lengths, as larger segments will naturally have more frequency content. This additional content may
fundamentally change the learnt manifold as more information is to be captured in the manifold to
produce adequate signal reconstruction. It may also be a function of how faults interact with the
window length and the shaft frequency, as the ratio fs

fsha f t
is a point between the two considered window

lengths and thus the interaction between the two models and the fault may be different based on the
fault frequency. It can be easily reasoned that the larger window length potentially has more faults in
a given window and thus its response may be more significant through all latent components as the
remaining healthy structure in the observed signal has been reduced.
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(a) LHI(1): Lw = 512
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(c) LHI(2): Lw = 512
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(d) LHI(2): Lw = 4096
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(e) LHI(3): Lw = 512
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(f) LHI(3): Lw = 4096

Figure 5.11. The three LHI’s for a VAE1 model trained using two different window lengths using a
case one approach to bearing four from IMS dataset one.
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5.3.2.2 GAN-based Model Response

For the discussion of the performance of the GAN-based methods, the author will present the RY−GAN
results from case one and case two under a window length of Lw = 512. The purpose here is two-fold,
the reconstruction log-likelihood, data discriminator and latent critic of the two methods must be
analysed under the assumption of the amount of data provided for training and a latent manifold
response investigation must be conducted. In Figure 5.12, the data discriminator and latent critic
response is given and the data discriminator is clearly responding to damage, however it is still
somewhat weakened in performance. The author does still believe that there are problems with the
model formulation from the GAN side can be attributed to the sub-optimal performance. This problem
is the presence of the L2 objective function which drives the model towards Gaussian distributions
while the GAN loss allows for distribution flexibility but in competition with the L2 loss and ultimately
the exploitation of this flexibility is not fully utilised. The amount of training data does affect the
performance of the RY −GAN on the data discriminator, as seen in Figure 5.12(b) where the condition
deviance point occurs later. With regards to the latent critic, it is clear that the latent space is responding
to the anomalous records that have been noted in the other model results shown on this dataset, a
response that, albeit unpleasant, is not unexpected when one considers the training objective of the
latent critic. Its objective is to enforce that the latent manifold is an isotropic Gaussian and if these
points deviate from the other data shown to the model and is learnt as such, the latent critic will indicate
these latent representations to be anomalous. This has a significant effect on the case two response
shown in Figure 5.12(d) where the jump at record one hundred and fifty-six is significant enough to
alter the threshold deviance significantly. It is also clear that record twenty-four is problematic with its
average going past the threshold in Figures 5.12(c) and (d).

From the identified final deviance points in Figures 5.12(a)-(d), it is clear that for the reconstruction
log-likelihood and data discriminator the performance is equivalent. This is attributed to the lack of
anomalous instance segmentation in the data manifold, which ensures that the threshold is not affected
by metric anomalies in the healthy data. The benefit of identifying final deviance records is clear, as
the condition deviance point neglects the presence of bearing self-healing. The results from the case
one metrics do identify earlier final deviance points, with this attributed to the jump at record one
hundred and fifty-five affecting the threshold.

In Figure 5.13, the three LHIs as shown from the RY −GAN model, wherein the latent anomalies are
evident and having a clear effect on the all three latent metrics. The best metric is LHI(1) as it shows
less response to the outliers present in the data and is capable of identifying a clear final deviance
point. The use of the final deviance point is also clear between the case one and case two results
in Figures 5.13(a) and (b). The difference between the condition deviance points is significant but
less so for the final deviance point, which indicates that less training data is useful for detecting the
initial presence of the fault but less so for identifying the final deviance point. All three latent metrics
also show a response to damage but unfortunately the severe deviance of the healthy data anomalies
has shifted the threshold to a region where fault diagnosis is not possible. The result of the case one
and case two investigation is also evident in this dataset, where a threshold of larger magnitude was
developed for all case two results. It is clear from Figures 5.13(e) and (f) that the latent angle has a
more gradual response to damage and that the outliers in the data increase the threshold to an extent
where no condition deviance point can be identified. It is noticeable from Figure 5.13, in comparison
to Figure 5.10, that the latent manifold response is similar to the other models used in this work. This
further emphasises how the connection between the models through the L2 objective function has a
strong influence on the latent space, regardless of how the latent manifold is constrained. This shows
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(d) HI(2): case two
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(e) HI(3): case one
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(f) HI(3): case two

Figure 5.12. The RY −GAN model response through HI(1), HI(2) and HI(3) for the two training cases
considered for data from bearing four from the first IMS dataset under a window length of Lw = 512.
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that the L2 loss is influential in model training, which is not unexpected but its reach extends into
similarities in how the latent manifold is constructed between methods.
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(d) LHI(2): case two
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(e) LHI(3): case one
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(f) LHI(3): case two

Figure 5.13. The various LHI’s obtained from a RY −GAN model trained on the two training data
cases on interest for bearing four data from IMS dataset one with a model length of Lw = 512.

To investigate the anomalous records, the author chose to look at the signal statistics and the latent
representation of the signal in the n space using T −SNE to visualise the training data in its higher
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Figure 5.14. A T −SNE latent n visualisation, Figure 5.14(a), and the record mean, Figure 5.14(b),
for the training data used for a RY −GAN model trained on the first 5% of the vibration data. It was
noted for Figure 5.14(a) that records 6, 8, 19, 36 and 41 were all anomalous, however the clusters were
centred around the records noted in the Figure.

dimensional space to two dimensions (van der Maaten and Hinton, 2008). In Figure 5.14(a), it is clear
to note that there are obvious outliers present in the data, where these outliers have been identified and
labelled for the reader. To investigate why this is the case, the author chose to analyse the statistical
properties of all of the records obtained for the fourth bearing, to determine if any explanation can be
obtained. In Figure 5.14(b), the record mean is shown for all records and it is clear to see that there
is some noticeable fluctuation in the signal mean, which may be indicative of a sensor malfunction.
It is clear, as shown in Figure 5.3, how the average with the record mean has clear impulses which
contradicts that shown in Figure 18(b) in the work of Qiu et al. (2006). This indicates that Qiu et al.
(2006) may have calculated an RMS with a removal of the record mean, a typical pre-processing
technique in signal processing. The record mean is a statistical feature of the data and it is clear that the
models used in this work are sensitive changes in the mean, which, in itself, shows that the models have
recovered this information. To clarify to the reader how the results in this work can be immediately
improved, the HI(3) and the three LHIs for a RY −GAN model with a window length of Lw = 512
was trained on 5% of the data and these results are shown in Figure 5.15. It is clear that the identified
condition deviance point is now more consistent between metrics, which indicates that the metrics are
distinctive and are able to detect the presence of anomalous data instances.

The removal of the mean as a feature from the data immediately improves the latent results in fault
detection but these anomalous instances have now been lost, a dangerous repercussion of manually
removing information from the signals. This result speaks to the use of deep learning for anomaly
detection and how just looking for anomalies in signal reconstruction is not always suitable, as the
latent space may provide information that is not captured in the signal reconstruction. The latent critic
is powerful as it provides one with a metric to quantify and possibly detect anomalous instances but,
one has to analyse the latent manifold in a deeper manner to quantify why the latent critic responds in
the way it does. This is where the latent metrics proposed in this work interpret the latent manifold
as they are not restricted to a specific model and are not required to be built into the model training
procedures in some way, which is a powerful notion for broad applicability.
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Figure 5.15. The latent critic and LHI responses for a RY −GAN model trained on bearing four data
with the mean for each record removed. Notice the clear improvement for all cases presented in this
figure in comparison to that shown in Figures 5.12 and 5.13.
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5.3.2.3 Signal Processing

Figure 5.16 shows the four signal processing response amplitudes at the fault frequencies of interest
for the fourth bearing. A clear growth in the FT F component is noticeable throughout all the methods
and they all follow a similar trend. There also appears to be two large spikes on the other components
which can also be noted in the signal kurtosis shown in Figure 5.3(b). It is interesting that this growth
be noted in the FT F , as this type of fault was not indicated in the original write up of this dataset.
Due to this discrepancy, the author has thus chosen to present the CPW −NES and SES spectrum for
record two thousand such that it is clear that this result is not fictitious. Figure 5.17 demonstrates the
presence of the FT F in both spectra and one can note how the component is dominant and shows a
presence of its third harmonic. Booyse et al. (2020) showed a similar growth in the FT F when using a
technique called the Improved Envelope Spectrum, detailed in Abboud et al. (2019). For the signal
processing results obtained, the best performing method is that of the SES with a condition deviance
point identified at record 1528.

0 500 1000 1500 2000
Record Number

0.0

0.2

0.4

0.6

0.8

M
ED

-S
K-

N
ES

 A
m

pl
itu

de

1657

BPFO
BPFI
BSF
BCF/FTF
thres = + 6

(a) MED−SK−NES

0 500 1000 1500 2000
Record Number

0.0

0.1

0.2

0.3

0.4
SK

-N
ES

 A
m

pl
itu

de 1720

BPFO
BPFI
BSF
BCF/FTF
thres = + 6

(b) SK−NES

0 500 1000 1500 2000
Record Number

0.00

0.05

0.10

0.15

0.20

0.25

CP
W

-N
ES

 A
m

pl
itu

de

1678

BPFO
BPFI
BSF
BCF/FTF
thres = + 6

(c) CPW −NES

0 500 1000 1500 2000
Record Number

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

SE
S 

Am
pl

itu
de

421

BPFO
BPFI
BSF
BCF/FTF
thres = + 6

(d) SES

Figure 5.16. The four considered signal processing approaches frequency amplitude at the four
frequencies of interest for the first channel of bearing four from IMS dataset one. Notice the amplitude
progression in the FT F throughout all methods.

5.3.2.4 Result Consolidation and Discussion

In Tables 5.5 and 5.6, the multiple model results from the fourth bearing data from the IMS dataset are
presented and as such can now be interpreted. In Tables 5.5 the condition deviance points are given
while in Tables 5.6 the final deviance points are given. There are model health indicators that have
been identified as IC2, a condition that indicates that the anomalous records resulted in a threshold
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Figure 5.17. The resulting spectrum for record 2000 for IMS dataset one obtained through CPW, (a),
and the SES, (b). Notice the clear spike at the FTF in both cases, with clear harmonics.

that was ineffective for condition deviance detection. Tables 5.5 and 5.6 also indicates the effect of
training on 5% or 10% of the data, with the latter producing condition deviance points that occur later.
One can note the impact of window length on the latent manifold, with the larger window length cases
producing responses in LHI(3) for the VAE-based models. The addition of the β −TC−VAE1 model
does not seem to add much benefit to this dataset, with similar performance results obtained to that
of a VAE. The GAN-based models also appear to be heavily influenced by the anomalous records,
as pointed out in the previous sections of this work. It was also found that the DLS−GAN was a
poorer model to train from a data discriminator perspective, with the RY −GAN model producing
better responses.

Table 5.5. The obtained threshold condition deviance point from the first IMS dataset for bearing four
when investigating the HIs. Note that IC1 is the abbreviation used for inconclusive, IC2 refers to a
case where the anomalous signals offset the threshold substantially and IC3 refers to a poorly trained
discriminator

Model type and characteristics Health indicator condition deviance point from case one || case two
Model used Window length HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA
Lw = 512 1509 || 1559 N/A N/A 235 || 1490 1667 || 1656 IC1 || IC1

Lw = 4096 1277 || 1514 N/A N/A 193 || 1555 IC2 || 1681 IC1 || IC1

VAE1
Lw = 512 204 || 1277 N/A N/A 1622 || 1279 235 || 1636 IC1 || IC1

Lw = 4096 395 || 1607 N/A N/A 395 || 1302 1612 || 1721 1640 || 1649

VAE2
Lw = 512 235 || 1467 N/A N/A 1649 || 1657 1640 || 1632 IC1 || IC1

Lw = 4096 1597 || 1559 N/A N/A 364 || 1613 1612 || 421 1806 || IC1

β −TC−VAE1
Lw = 512 195 || 1491 N/A N/A 361 || 1640 403 || 1667 IC1 || IC1

Lw = 4096 355 || 1596 N/A N/A 1302 || 1612 1657 || 1699 1622 || 1681

β −TC−VAE2
Lw = 512 235 || 1467 N/A N/A 1657 || 1640 1619 || 1657 IC1 || IC1

Lw = 4096 439 || 1555 N/A N/A 456 || 1609 1619 || 406 2045 || IC2

RY −GAN
Lw = 512 361 || 1490 1279 || 1667 1735 || IC2 235 || 1621 IC2 || IC2 IC2 || IC2

Lw = 4096 361 || 1552 156 || IC2 2145 || IC2 IC1 || 1635 IC2 || IC2 IC2 || IC1

DLS−GAN
Lw = 512 1277 || 1491 IC3 || IC3 IC2 || 160 || 1277 1678 || 1749 IC1 || IC1

Lw = 4096 235 || 1542 IC3 || IC3 1294 || 1663 235 || 1237 1236 || 1294 IC2 || IC2
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Table 5.6. The obtained final condition deviance point from the first IMS dataset for bearing four when
investigating the HI’s. Note that IC1 is the abbreviation used for an inconclusive metric result.

Model type and characteristics Health indicator condition deviance point from case one || case two
Model used Window length HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA
Lw = 512 1528 || 1568 N/A N/A 1405 || 1577 2091 || 1667 IC1 || IC1

Lw = 4096 1433 || 1550 N/A N/A 1236 || 1605 2155 || 2115 IC1 || IC1

VAE1
Lw = 512 1236 || 1590 N/A N/A 1657 || 1612 1590 || 2049 IC1 || IC1

Lw = 4096 1433 || 1612 N/A N/A 1554 || 1657 2115 || 2155 2049 || 2123

VAE2
Lw = 512 1414 || 1552 N/A N/A 2119 || 2119 2113 || 2090 IC1 || IC1

Lw = 4096 1607 || 1606 N/A N/A 1577 || 2119 2139 || IC1 1993 || IC1

β −TC−VAE1
Lw = 512 1236 || 1596 N/A N/A 1657 || 2116 1605 || 2127 IC1 || IC1

Lw = 4096 1418 || 1605 N/A N/A 1612 || 2116 2118 || IC1 IC1 || 2143

β −TC−VAE2
Lw = 512 1427 || 1553 N/A N/A 2117 || 2119 2109 || 2113 IC1 || IC1

Lw = 4096 1433 || 1606 N/A N/A 1606 || 2116 2143 || 2155 IC1 || IC1

RY −GAN
Lw = 512 1424 || 1550 2044 || 2060 2118 || IC1 1424 || IC1 IC1 || IC1 IC1 || IC1

Lw = 4096 1432 || 1577 1372 || IC1 2145 || IC1 IC1 || 2008 IC1 || 2155 IC1 || IC1

DLS−GAN
Lw = 512 1433 || 1550 IC1 || IC1 2155 || IC1 1540 || 2045 2124 || 2146 IC1 || IC1

Lw = 4096 1367 || 1554 IC1 || IC1 1629 || 2123 1542 || 2044 1611 || 2049 IC1 || IC1

In Table 5.6, there appears to be a more consistent deviance point recognised between the case one
and case two models, with less significant differences. As with Table 5.5, the record mean was still
a feature and thus certain metrics responded poorly, but Figure 5.15 provides a clarification into
how removing the mean improves results. It is clear from Table 5.6 that all methods appear to be
performing adequately, with HI(1) as the seemingly optimal metric, however this again is a function of
the record mean and its effect on the threshold. It is clear that the underlying physical and dynamical
properties of this dataset are constrained in such a manner that a linear latent variable model such as
PCA can easily detect and trend damage. The addition of model complexity does seem to improve the
response of HI(1), however the LHIs used in this work add sufficient interpretability to the various
models considered. The additional final condition deviance point aids in identifying the robustness
of the metric, as it is now clear that a point can be identified from which all following records are
damaged.

5.3.3 Dataset Two - Bearing One

For the second dataset, the first bearing was analysed as it was the bearing that was found to exhibit
fault characteristics. In this investigation, the author chose to look at two window lengths to determine
if any potential benefit or effect of using different model window lengths. As before, the HI and LHI
results from the different models will be presented, where necessary, and the model performance will
be discussed.

5.3.3.1 PCA Model Response

For PCA, the author demonstrate the model response for both window lengths for HI(1) and the three
LHIs. Figure 5.18 shows the average of the reconstruction LL and for a window length of LW = 512,
the response to damage occurs later than that for a window length of Lw = 4096. Notably, in Figure
5.18(a) the response is less indicative around record five hundred. If one examines Figure 5.19, it is
clear to see that the latent manifold response to damage for the two window lengths are similar and
that the presence of damage is noticeable. All three LHIs appear to be responding to damage which is
not only unexpected but also shows that this dataset’s manifold is highly responsive. In the presence of
an anomalous instance, the manifold not only deviates from the path in distance and radius to induce a
change in velocity, but breaks the conservation of the path trajectory indicating a volatile path deviance
phenomenon. This highlights the ability of the proposed latent metrics as they augment model intuition
and introduce physical interpretation into how the model handles anomalous data without examining
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the data in higher dimensional spaces. The self-healing phenomenon of the bearing can be noted here,
whereby from record seven hundred a deviation back towards the healthy manifold is present until
rapid failure occurs after record eight hundred. LHI(3) crosses the threshold in this region, indicating
that the model tries to conserve the path trajectory but cannot perfectly re-obtain it.
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(b) Lw = 4096

Figure 5.18. The reconstruction normalised log-likelihood, HI(1), obtained under a PCA model for
two different window lengths. Notice the clear improvement in PCAs condition deviance point for the
larger window length.

The author also found that the performance of the VAE models did not offer any significant improvement
other than having a better response in HI(1) for a window length of Lw = 512. Interested readers can
view Figures E.3 and E.4 if they wish, however these results are purely supplementary.

5.3.3.2 GAN-based Model Response

For the performance of the GAN-based models, the author will present a focus on HI(2),HI(3) and the
three LHIs as these are the five key areas in which is it expected that these models provide increased
performance. This does not imply that HI(1) is not useful but rather it is the less interesting HI for the
GAN-based models as all other models considered in this work have access to it. For the majority of the
results shown here, a visual interpretation for Lw = 512 was sufficient. However an interesting latent
response was found for RY −GAN for a window length of Lw = 4096 and as such will be discussed.

In the analysis of Figure 5.20, one can find the favourable responses obtained from both the data
discriminator and the latent critic from both the RY −GAN and the DLS−GAN models. In Figure
5.20(a), the RY −GAN model has learnt a better data discriminator, with a clear response to damage
when compared to the DLS−GAN data discriminator shown in Figure 5.20(b). It is interesting to note
here that both data discriminators represent healthy data with a likelihood of approximately 0.8, an
indication that there has been some unsatisfactory model representation of the true data distribution
and as a result, the discriminator has a higher value assigned to the healthy data. This response was
also noted in for the previously considered datasets. This can be attributed, again, to the L2 objective
function involved in the model optimisation, with the model failing to capture the signal noise floor
as white noise is in-compressible and as a result, the discriminator attempts to enforce that this noise
be learnt. This may explain the rapid manner in which the data discriminator moves from healthy to
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(a) LHI(1) : Lw = 512
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(b) LHI(1) : Lw = 4096
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(c) LHI(2) : Lw = 512
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(d) LHI(2) : Lw = 4096
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(e) LHI(3) : Lw = 512
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(f) LHI(3) : Lw = 4096

Figure 5.19. The three LHIs obtained using a PCA model for the two window lengths of interest for
the first bearing from the second IMS dataset. Notice the strong response to damage that is identifiable
through the latent manifold under the temporal preservation approach.
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(a) HI(1) : RY −GAN
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(b) HI(1) : DLS−GAN
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(c) HI(2) : RY −GAN
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(d) HI(2) : DLS−GAN
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(e) HI(3) : RY −GAN
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(f) HI(3) : DLS−GAN

Figure 5.20. The reconstruction log-likelihood, data discriminator and latent critic results obtained
from models trained on data from bearing one of the second IMS dataset for the two GAN-based
methods considered in this work. Figures 5.20(a), (c) and (e) show the results for the RY −GAN
formulation while Figures 5.20(b), (d) and (f) show the results from the DLS−GAN formulation. For
these results the window length was kept at Lw = 512.
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unhealthy. The author did try many model formulations to capture this noise but was unsuccessful. For
the latent critic response, it is clear from Figure 5.20(c) and (d) that there is indeed a latent manifold
response to damage and both critics provide satisfactory performance. The latent critic is a powerful
addition as it is defined over the latent manifold, which, prior to the work of Baggeröhr (2019), was
largely un-interpretable as no formulation had used the critic as a proxy metric on the latent space. It
does appear that the latent critic identifies a condition indicator point that is worse than those noted
for previous models, however this can be attributed to the slight change in the average of the first few
records in Figure 5.20(c) and (d).

In Figure 5.21, it is clear to note that the latent space is responding to damage and it is interpretable, a
result that is hinted at by the latent critic. It is clear that the performance is aligned with that obtained
through PCA and the VAEs, which shows that the models are working. One interesting case is that,
as was the case with the VAE results shown in Figure E.4 and by extension Figure 5.19 for PCA, the
LHIs all respond in a similar manner. This can be attributed to the L2 objective function, which is still
included in the GAN-based formulations used in this work. The excellent performance of the LHIs on
this dataset speaks to the applicability of the temporal preservation approach and the augmentation of
information from the latent space obtained from latent-variable models. By performing simple tweaks
to the data analysis process and exploiting the time element that it introduces, one can introduce model
interpretation in the data space and the latent space.

An interesting result found by the author is the difference between the RY −GAN models for the two
different window lengths considered. For the larger window length, the latent manifold was found
to respond with strong latent radius responses at the expense of the latent distance. This provides
some intuition into how the window length affects the learnt latent manifold, with the preservation of
the typical velocity over which the data travels through the latent space while the distance from the
Euclidean centre is altered. To drive this point, the author used T −SNE to reduce the latent N-space
representation of the data into an interpretable 2-dimensional equivalent, shown in Figure 5.22(a). It
is clear to see here that as one moves through the samples, at some point there is a clear jump in the
manifold to regions that are unlike those on which the healthy data lies. If one interprets the increase in
radius at the expense of the latent distance, the latent angle must exhibit some response to preserve the
latent distance and it manifests in a reduction of inter-instance angle shown in Figure 5.22(b). One can
immediately see how the LHIs offer significant model interpretation and introduce model response
conclusions to anomalous data.

For the sake of concreteness, the author believes it is poignant to end the discussion with an analysis of
how damage manifests in the s and n latent components as this portion of the model is not intuitive
and well discussed in previous work. Additionally, the use of the DLS−GAN was also introduced in
this work to try and enforce latent component separation. In Figure 5.23, a two-dimensional T −SNE
visualisation of the s and n space for both the RY −GAN and DLS−GAN is given. It is clear that the
RY −GAN provides a less evident manifestation to damage in the s space as opposed to the n space,
while only the significantly damaged instances at the end of the experimental life-span are mapped to
the edges of the manifold. The DLS−GAN response, however, indicates a stronger manifestation of
damage than that found from the RY−GAN, with Figure 5.23(d) presented a more evident development
at the outer edge of the manifold and it is akin to that seen in the n space shown in Figure 5.23. This
indicates that albeit the DLS−GAN method was used to avoid this very scenario, it seems to rather aid
it. The DLS−GAN was formulated to produce independent latent components with the hope that the c
and s capture the relevant information and n capture the residual information. It is then expected that
signals with anomalous components manifest their response in n. However, based on the placement
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(a) LHI(1) : RY −GAN
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(b) LHI(1) : DLS−GAN
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(c) LHI(2) : RY −GAN
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(d) LHI(2) : DLS−GAN
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(e) LHI(3) : RY −GAN
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(f) LHI(3) : DLS−GAN

Figure 5.21. The three LHI responses obtained using the RY −GAN and DLS−GAN methods for the
first bearing of the second IMS dataset. Note that this visualisation was obtained for a window length
of Lw = 512.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

106



Chapter 5 IMS Dataset Analysis

(a) T −SNE Visualisation
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(b) LHI(3)

Figure 5.22. A T −SNE enabled latent n space and LHI(3) visualisation, Figures 5.22(a) and 5.22(b)
respectively, for a RY −GAN model trained on a window length of Lw = 4096 for data from the first
bearing from IMS dataset two. Note that the colour-bar axis corresponds to record number.
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(a) T −SNE: RY −GANn
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(b) T −SNE: RY −GANs
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(c) T −SNE: DLS−GANn
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(d) T −SNE: DLS−GANs

Figure 5.23. A T − SNE visualisation of all the available data for the n and s manifold for the
RY −GAN and DLS−GAN models trained with a window length of Lw = 512 on the first bearing data
from the second IMS dataset. Note that the colour used corresponds to the record number.
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of anomalous instances on the outer ranges of Figures 5.23 (c) and (d), it appears that damage is
manifesting in the component that should only capture the generative factors of the data.

5.3.3.3 Signal Processing

For this dataset, it is important that clear comparability be shown for any deep learning approach
through the identification of a condition deviance point using signal processing techniques. As before,
four signal processing approaches will be used and the results obtained will be discussed. From
inspection of Figure 5.24, three of the four methods perform extremely well with the exception
of the CPW −NES approach which only detects a condition deviance point in later records. It is
interesting to note how the addition of MED almost seems to hinder the detectability, with a worsened
condition deviance point identified in Figure 5.24(a) when compared to Figure 5.24(b). It is the
author’s inclination after spending some time with MED that the algorithm still needs some further
development as MED was found to be problematic in optimisation of the kurtosis. Literature does
detail methods to aid in this, however, it is clear that using SK−NES is sufficient and better in fault
diagnostic performance. The performance of the SES is also powerful as it is the simplest method used
and highly efficient in implementation. However, the SES does induce some frequency discrepancy,
with the other fault frequencies following a similar fault trend, albeit reduced in frequency magnitude.
The condition deviance point at record five hundred and fifty two is in agreement with literature,
highlighting the power of these signal processing techniques on constant operating condition bearing
fault data.

0 200 400 600 800 1000
Record Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ED

-S
K-

N
ES

 A
m

pl
itu

de

542

BPFO
BPFI
BSF
BCF/FTF
thres = + 6

(a) MED−SK−NES
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(c) CPW −NES
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(d) SES

Figure 5.24. The four considered signal processing approaches frequency amplitude at the four
frequencies of interest for the first channel of bearing four from IMS dataset two. Notice the clear
instance of condition deviation in all cases.
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5.3.3.4 Result Consolidation and Conclusion

To fully consolidate all results presented for IMS dataset two, Table 5.7 has been included for an
analysis of the performance of the different HIs for the various models and window lengths considered.
Some noticeable results will now be discussed and some conclusions will be drawn on the performance
of the considered approaches. It is clear to note that the performance obtained from the different latent
variable models is on par with the state-of-the-art signal processing techniques. This is an excellent
result as it shows that latent variable models are comparable and that they allow for an excellent insight
into fault detection applications, with many elements of the model in agreement into the presence of
damage. Based on the results shown, it can be said that deep learning is better than signal processing
in its ability to detect damage, with both the data space and latent space providing clear evidence
of damage. There is also a strong indication that latent manifold analysis is applicable and that the
manifold is responsive to faulty data instances that are detectable.

Table 5.7. The obtained threshold condition deviance point from the second IMS dataset for bearing
one when investigating the available HIs and LHIs. Note that IC1 is the abbreviation used for results
deemed inconclusive by the author.

Model type and characteristics Health Indicator condition deviance point
Model used Window length HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA
Lw = 512 702 N/A N/A 533 538 533

Lw = 4096 543 N/A N/A 533 579 533

VAE1
Lw = 512 533 N/A N/A 578 648 554

Lw = 4096 579 N/A N/A 702 IC1 622

VAE2
Lw = 512 545 N/A N/A 550 702 556

Lw = 4096 647 N/A N/A 586 IC1 621

β −TC−VAE1
Lw = 512 533 N/A N/A 549 703 539

Lw = 4096 545 N/A N/A 933 IC1 639

β −TC−VAE2
Lw = 512 543 N/A N/A 542 606 539

Lw = 4096 589 N/A N/A 702 975 639

RY −GAN
Lw = 512 543 545 571 542 606 539

Lw = 4096 537 594 543 958 548 639

DLS−GAN
Lw = 512 537 621 544 533 542 533

Lw = 4096 567 578 571 549 647 542

Through the analysis of Table 5.7, it is clear to see that most models respond similarly although differing
in parametrisation and design. It is clear to see that LHI(2) is a poor condition indicator for VAE and
β −TC−VAE models trained with a larger window length. The performance of HI(1) is weakened
when parametrising the VAE and β −TC−VAE models with some learnt data variance. This is a
surprising result as it was expected that the variance aid in explaining model condition deviance but
this does appear to not be the case. With regards to the GAN-based methods, it is clear to see that all
cases perform well through all condition indicators with the exception of HI(2) for the DLS−GAN
model with a window length of Lw = 512. This is attributed to the sub-optimal data discriminator
training that is present due to the GAN loss and the L2 loss. Table 5.7 indicates that the model window
length does affect the latent manifold construction during training, with a change in the responsiveness
of different LHIs as a function of window length. One may also note that PCA is a strong candidate
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for fault detection on this bearing data, with great performance obtained through its available HIs.
This is attributed to the simple operating and machine conditions present in this dataset. PCA is also a
method that is not considered when talking about generative latent-variable models however it is clear
that a constrained linear latent transform parametrisation is sufficient for damage detection on this
dataset. This also introduces and highlights the fact that method complexity may not always be better,
however there is still a place for explicitly constructing disentanglement in latent variable models as it
may open doors into data interpretability and causality. The performance of the LHIs also indicate that
the temporal preservation approach offers insights into model performance that has been previously
neglected in vibration-based condition monitoring research. These insights best seen in the latent
manifold response of latent variable models and the are beneficial as typically the latent manifold is
neglected but it is clear that it holds important and interesting information.

5.3.4 IMS Consolidation

The IMS dataset has allowed for an in-depth analysis of different models and their respective perform-
ance results. It was found that PCA was sufficient for representing the data from the considered dataset
in a latent manifold, with condition deviance points that are often competitive with the other models
used and with the signal processing results. It is clear that the models themselves may offer some
interpretation through the three HIs, however the latent manifold is evidently responsive and can be
interpreted. The next frontier that must be explored is the domain of time-varying operating conditions
as this is a relevant and important region of vibration-based condition monitoring.
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6.1 Chapter Abstract
In this chapter, the author presents the gearbox dataset and the performance investigation of the different
models considered in this work. There are three key concepts that are key to this investigation:

1. The latent manifold is interpretable under the temporal preservation approach
2. Model complexity and the progression thereof needs to be highlighted and understood for

applicability
3. Model performance must be compared to fully highlight the benefits of complex methods

The reader is asked to keep these concepts in mind when going through the various results, as each
dataset offers insights into each of these points. For a detailed collection of the model architectures,
learning rates, stopping conditions and hyper-parameters please refer to Appendix B.5. The models
used on this dataset are: PCA, the VAE1 and VAE2 models, the β −TC−VAE1 and β −TC−VAE2
models, the RY −GAN model and the DLS−GAN model.

6.2 Dataset Introduction
The C-AIM experimental gearbox dataset contains healthy and unhealthy vibration data for a gearbox
set-up that contains a single gear tooth fault. This dataset has been extensively analysed in the works of
Schmidt et al. (2018) and Schmidt and Heyns (2020), and contains time-varying operating conditions.

Figure 6.1. The C-AIM test gearbox experimental setup.

The experimental set-up, as depicted in Figure 6.1, consists of an electrical motor, three helical
gearboxes of which one is a step-down and two are step-up gearboxes and an alternator to dissipate the
system’s rotational energy. The centre gearbox in Figure 6.1 is the one that was used for testing and as
such, a tri-axial accelerometer was mounted to the bearing casing of the back of the test gearbox with
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a proximity probe and an optical probe on the output and input shafts of the test gearbox respectively.
The experimental data were measured using an Oros OR35 data acquisition system. Table 6.1 contains
important properties of the data obtained in this dataset.

Table 6.1. A table showing the experimental gearbox dataset properties for the test gearbox, accelero-
meter and tachometer.

Characteristic Value

Gear teeth 37
Pinion teeth 20
Gear Ratio 1.85

Accelerometer sampling frequency 25.6kHz
Tachometer sampling frequency 51.2kHz
Tachometer pulse [input || output] 88 || 1 pulses per revolution

Sampling duration 20 seconds

Schmidt et al. (2018) state that the system operating conditions were chosen based on a simplification
of operating conditions seen in a gearbox from a bucket-wheel excavator and wind turbine application.
Figure 6.2 show the speed profile obtained for a randomly selected healthy signal for the input and
output shafts respectively. Due to geometrical imperfections at the butt joint of the shaft encoder seen
by the optical probe, the Bayesian Geometry Compensation (BGS) algorithm proposed by Diamond
et al. (2016) was used.
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Figure 6.2. The input and output test gearbox speed profiles. Note that BGS was used for the input
shaft speed while the output speed was obtained from the once per revolution tachometer and thus
required no use for BGS (Diamond et al., 2016).

In this dataset, a total of one hundred healthy signals were obtained and were recorded in a relatively
short space of time, within approximately two days from the first record to the last. The test gearbox
was then disassembled and a slot was seeded into the root of a single gear tooth, with the slot along the
entire width of the tooth, 50% of the tooth thickness deep and at a height of 0.3mm. The gearbox was
then re-assembled and left to run for approximately twenty days until gear tooth failure occurred. From
this, two hundred unhealthy signals were recorded throughout the tooth failure life-cycle. As a basic
analysis, the author chose to calculate the signal RMS and kurtosis, as was done for the IMS dataset, to
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illustrate the difficulty one may face when analysing this dataset. This is shown in Figure 6.3 and the
main component of interest is the axial component of the tri-axial accelerometer, tri−axialx. A third
order low-pass Butterworth filter was used to filter the data at 3200Hz as there are impulsive signal
components that complicate the analysis procedure. Notice the clear fluctuations in the RMS, attributed
to changes in the surrounding environment temperature. Figure 6.3(d) shows the clear presence of an
impulsive component through the Kurtosis, while for the filtered case in Figure 6.3(c) this component
is less noticeable.

0 50 100 150 200 250 300
Record Number

0.30

0.35

0.40

0.45

0.50

RM
S

Tri Axialx
Tri Axialy
Tri Axialz
Accx

(a) Record RMS: filtered
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(b) Record RMS: unfiltered

0 50 100 150 200 250 300
Record Number

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ku
rto

sis

Tri Axialx
Tri Axialy
Tri Axialz
Accx

(c) Record kurtosis: filtered
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(d) Record kurtosis: unfiltered

Figure 6.3. The record RMS and kurtosis for the low-pass filtered and unfiltered versions of the gearbox
dataset. The low-pass filtering was conducted at a cut-off frequency of 3200Hz with a third order
Butterworth filter.

6.3 Dataset Result Analysis
For the analysis of the gearbox dataset, an initial assumption was made to investigate a filtered
and unfiltered version of the data, as the accelerometer signals from the test gearbox had impulsive
components in both the healthy and unhealthy data. This would make it possible to compare the
performance of the methods without impulsive components in the training data and with impulsive
components in the training data. In this investigation, the author chose to train the data using the
common pre-processing strategy detailed in Section 3.3, whereby no complex pre-processing was done
and the models were trained only on the raw data. However, it was found that the discrepancy signal
average result interpretability was biased for the gear tooth fault present, which is a infrequent fault as
it only occurs once per shaft revolution. This differs to the previously analysed datasets as bearing

Department of Mechanical and Aeronautical Engineering
University of Pretoria

113



Chapter 6 Gearbox Dataset Analysis

faults typically occur in proportions greater than one to the shaft speed. The decision was made to look
into the synchronous average of the time-continuous results for the health and latent health metrics
using Equation (1.10).

The TSA processing step typically consists of first obtaining the points where one revolution starts
and ends, for which a tachometer is required. It is key to note here that the author did not use the
tachometer during model training, but only in model evaluation which resulted in the order tracked
discrepancy signal. A linear interpolation method was used to re-sample the signals in a revolution
into Ns points and the author chose to align each synchronous signal with the start of a revolution
fixed to the point where the tachometer crossed the butt-joint on the zebra tape shaft encoder (ZTSE).
This was done to aid in synchronous average interpretability and visualisation and was achieved using
the Bayesian Geometry Compensation algorithm developed by Diamond et al. (2016). The author
will demonstrate how result analysis can be improved with the synchronous average, with an initial
example for each of the filtered datasets. This type of analysis is deemed signal processing assisted
deep learning, a hybrid between the two research spheres. It can be seen as applied deep learning that
hinges of powerful techniques from signal processing. For the discrepancy signal average, a threshold
defined on three standard deviations from the median will be analysed, denoted as threshold = µ̃±3σ ,
with sign dependent on the type of health indicator. This threshold was chosen as three standard
deviations was deemed to be a sufficient indicator of a strong deviation from the typical response value.
To further enhance the condition deviance analysis, a point will be identified, if possible, based on the
mean of five points ahead from a point that crosses the threshold. The purpose here is to ensure that
once-off anomalies are not flagged as condition deviance points.

It is important for the reader to note here that the gearbox dataset consists of two separate experimental
datasets that are combined to produce a healthy and unhealthy dataset. This change occurs at record
100, as the case might exist where a HI or LHI detects a change between these datasets but is unable
to perform fault trending or detect fault degradation.

6.3.1 Filtered Gearbox Dataset

For the filtered version of the test gearbox dataset, an analysis will be conducted into how models
perform with and without the integration of the temporal preservation analysis approach combined
with the use of the synchronous average. For the former, all one has available for scrutiny is the
discrepancy signal average and one must try perform fault inference on this metric. However, for the
latter, one can look into both the average and the synchronous average as the time component of the
dataset is preserved. For the temporal preservation analysis, only the first ten seconds of each signal
was processed, due to evaluation time constraints, memory limitations and the fact that one operating
condition cycle occurs at a frequency of 0.1Hz.To filter out the impulsive components in the training
data, a third order Butterworth filter was used at a cut-off frequency of 3200Hz.

6.3.1.1 PCA Model Analysis

The author will present the reconstruction health indicator as well as the latent health indicators for
two applications of PCA, one that uses all of the modes that capture 95% of the variance and one
application that drops the first five Principal Components (PCs), to investigate the effect of dropping
data information that contribute to the main sources of data variance. This will poorly favour signal
reconstruction but may offer an insight into how the latent manifold responds to dominant signal
information restriction. Figure 6.4 shows the discrepancy signal average of HI(1) discrepancy signal
using the standard deep learning analysis procedure. It is directly noticeable that the HI obtained from
a PCA model is a poor method under the discrepancy signal average, however, it is argued here that
the average is an insufficient metric for this dataset due to the type of fault exhibited and the data
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impulses. Figure 6.4(a) shows how using all of the PCs seem to be a poor choice as the model cannot
detect the jump around record one hundred, which is where the tooth fault was seeded. This is not
the case however for when one drops the first five principal components, which is interesting as this
may indicate that the variance captured in the first PCs captures information that relates more to the
operational state of the dataset than to the development of damage.
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(b) Dropped five PCs.

Figure 6.4. The PCA HI(1) discrepancy signal average for all retained PCs, 6.4(a), versus dropping
the firsts five PCs, 6.4(b) for the filtered gearbox data.

The latent metrics share the same result response, as shown in Figure 6.5. In Figure 6.5 a sudden change
at record one hundred is detectable in the latent distance and radius, with a jump and then gradual
progressive growth in the latent angle. There were some temperature variations in the surrounding
environment of the gearbox test-rig, this resulted in changes to be observed in the vibration response
of the system, which is ultimately also reflected in the first one hundred healthy records of LHI(1) and
LHI(2), indicating model sensitivity to this parameter. For the model where five PCs were dropped,
LHI(3) has a decreased diagnostic performance as it now does not detect the jump at record one
hundred. This shows that one must take careful consideration into the preservation of PCs as for
previous datasets the response was seen to be sufficient without dropping any PCs.

To investigate result interpretability, the synchronous average of the HIs and LHIs was obtained to
clarify if the poor performance was just linked to result interpretability. Figure 6.6(a) shows the HI(1)

synchronous average, whereby it is clear that there is some increase in magnitude around a shaft
angle of approximately 140◦ from the ZTSE joint. The same response is not present in Figure 6.6(b)
which is a direct result of dropping PCs as these PCs capture the dominant variance required for signal
reconstruction. This does, however, demonstrate the potential of improved model interpretability under
the temporal preservation approach, as the synchronous average process is not feasible under the
standard model analysis approach.

To further investigate the performance of PCA, the LHIs were analysed using the synchronous av-
erage, as shown in Figure 6.7. For the latent distance, LHI(1), is not interpretable for all PCs but
its interpretability is improved when the first five PCs are dropped, as seen in Figures 6.7(a) and (b)
respectively. For the latent radius, the improvements of dropping some PCs can be noted from the
comparison of 6.7(c) and (d), with LHI(2) exhibiting a clear presence of damage and an improved
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(a) LHI(1): all PCs.
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(b) LHI(1): dropped five PCs.
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(c) LHI(2): all PCs.
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(d) LHI(2): dropped five PCs.
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(e) LHI(3): all PCs.
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(f) LHI(3): dropped five PCs.

Figure 6.5. The discrepancy signal average of the three LHI metrics using PCA with the temporal
preservation analysis approach. 6.5(a), (c) and (e) refer to the case where all PCs are used while 6.5(b),
(d) and (f) are for the case where 5 principal components are dropped.
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(a) HI(1): all PCs. (b) HI(1): dropped five PCs.

Figure 6.6. The HI(1) synchronous average using PCA with the temporal preservation analysis
approach. Notice how dropping some PCs negatively favours the reconstruction ability of PCA.

synchronous average floor around the damaged tooth. In Figure 6.7(e) and (f), the latent angle can
be seen to decrease in magnitude around the damaged tooth. Here again, the removal of the first five
PCs appears to improve result consistency. One can interpret from the LHI(2) and LHI(3) response
shown in Figure 6.7 is how these two components together provide some insight into how the latent
space is responding to unhealthy data. When segments of the vibration signal that contain damage
pass through the model, the latent representation casts the points off the manifold but tries to preserve
the velocity of the traversal, as opposed to an orthogonal projection on the manifold to maintain the
underlying trajectory.

6.3.1.2 VAE Model Analysis

Having shown that the synchronous average improves result interpretability, the author preferred a
result analysis of the synchronous average in the case of VAEs. However, the reconstruction average
under the standard analysis approach shall be presented to provide some perspective of how assuming
one learns a deterministic or stochastic VAE can affect results. In Figure 6.8, the reconstruction HI
discrepancy signal average was analysed and it is clear to see that notable results were obtained. In
Figure 6.8(a), a clear condition deviance threshold can be defined, however, due to the noisy average
response from the healthy training data this threshold is undesirably late for damage detection. Figure
6.8(b) details the VAE2 response, with an improved condition deviance threshold and some clear
progressive damage growth occurring after record one hundred. It is also clear that the temperature
effect is still clearly noticeable in the average of the healthy data, however the VAE2 response is better
able to capture and quantify these effects. It is also clear that after approximately record two hundred
and fifty, there is a drop and then rapid increase through the final records and this is present in both
models.

For the latent metrics of the VAE models, using the standard model evaluation procedure, it was found
that metrics were highly uninformative to damage other than showing clear deviance around record
one hundred. The latent distance and radius do not offer much insight while there does appear to be
some progressive latent angle growth throughout the gearbox lifespan. However, as emphasised with
PCA, the synchronous average will be examined and these results are shown in Figure 6.9 and Figure
6.10 for HI(1) and LHI(1,2,3) respectively.
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(a) LHI(1): all PCs. (b) LHI(1): dropped five PCs.

(c) LHI(2): all PCs. (d) LHI(2): dropped five PCs.

(e) LHI(3): all PCs. (f) LHI(3): dropped five PCs.

Figure 6.7. The three LHI metric under the synchronous average using PCA with the temporal
preservation analysis approach. 6.7(a), (c) and (e) refer to the case where all PCs are used while 6.7(b),
(d) and (f) are for the case where 5 principal components are dropped.
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(a) HI(1): VAE1.
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(b) HI(1): VAE2.

Figure 6.8. The HI(1) discrepancy signal average for VAE1 and VAE2 models for the filtered gearbox
dataset.

(a) HI(1): VAE1. (b) HI(1): VAE2.

Figure 6.9. The HI(1) discrepancy signal synchronous average for VAE1 and VAE2 models for the
filtered gearbox dataset.

In Figure 6.9 it is clear that there are now clear improvements from PCA whereby the synchronous
average of HI(1) is smoother and shows the presence of the gear tooth fault after the fault was seeded
into the system. It is also clear that VAE2 has some improvements over VAE1 whereby the learnt
variance introduces a drastic increase in fault magnitude, which may explain the damage growth in
Figure 6.8(b), as the presence of damage is amplified in the HI due to the learnt variance. If we
now look at the LHIs, as shown in Figure 6.10, it is clear that the latent distance, LHI(1), is a poor
metric to use for damage detection and this is extended through both VAE1 and VAE2. However, the
latent radius and distance show a clear presence of damage and allow for the same interpretability of
manifold traversal as was given to PCA. It is important to note how PCA and the VAEs latent responses
are in agreement in where the fault occurs and with how the damage manifests in the latent space.
Due to similarities in model formulation, with a VAE is simply an unconstrained, non-linear version
of PCA, it is expected that the latent response be similar in manifestation. One interesting note is
that both VAE1 and VAE2 do not show the presence of damage in LHI(1) clearly whereas, as shown
in Figure 6.7(b), PCA with some dropped PCs shows some presence of damage. Dropping latent
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components in a VAE is a non-trivial task as there is no requirement for any latent hierarchy whereas
PCA organises its PCs by variance captured. Additionally, latent disentanglement is implicit and thus
the identification of generative factors or dominant components that one can adjust or suppress is
non-trivial. It is not completely unjustifiable that if LHI(3) drops and LHI(2) increases one may lose
information in LHI(1) as the model is favouring rapid jumps off the manifold as opposed to gradual
shifts off the manifold. This strongly highlights the strength of the three proposed LHIs as they cover
a large domain of manifold operations in an interpretable manner. It was also noted by the author
that the β −TC−VAE model responses were equivalent to that found from the VAEs regardless of
parametrisation and offered little improvement.

6.3.1.3 GAN Model Analysis

For the GAN-based model analysis, the author will present all three HIs and LHIs available to the
RY −GAN and the DLS−GAN models using the discrepancy signal average to continue to motivate
the use of the synchronous average. In Figure 6.11, the average of the HI(1) discrepancy signal is
shown and this response is akin to those shown from the VAE1 and β −TC−VAE1 results previously.
This is not unexpected as HI(1) comes from the auto-encoder framework but it is clear that the average
of the training instances causes the threshold to be higher than the mean of the other records. The
large threshold is due to the large variation in the healthy data HI(1) response which indicates that
the behaviour is non-stationary and the standard deviation will capture some of those non-stationary
effects. Both methods, however, do show a discrete jump at record one hundred and some drop and
then rise after record two hundred and fifty. It is also clear that there are indeed strong temperature
effect responses in the discrepancy signal average of the healthy data, with a growing and then dropping
effect clearly evident.

If we now examine the Dχ(x) discrepancy signal average shown in Figure 6.12, it is interesting to note
that the data discriminator appears to be responding to the data. However, it is not significant enough
to say with certainty that a fault is present. The effects of the healthy data temperature variations are
evident, with the condition deviance point at record eighty-one. This is not a fault point but rather
the model response to the set-up temperature variation, which is interesting as it is a deviance from
the learnt operating condition state of the set-up. The DLS−GAN result also appears to be slightly
worse, a frequent occurrence found through all attempted training runs. One improvement to the data
discriminator is that the healthy data discrepancy signal mean for the RY −GAN is around 0.5, which
is the known stability point for GAN discriminator training. This is attributed to the low-pass filtering
operation applied to the data and the fact that the decoder network does not have to try and capture the
incompressible noise typically found in the vibration signals. This is a flaw that the author believes
is holding the current GAN-based models back as the L2 objective function and the discriminator
objective function are competitive in the type of generative distribution p(x|z) they approximate. The
L2 loss drives one to capture the strongest elements of data variance and thus typically does not capture
noise while the data discriminator is driven to force the model to capture this noise, albeit random
and incompressible. For the previous datasets analysed, one cannot filter the data as the bearing faults
manifest in a high-frequency resonance band and this trade-off may negatively affect the performance
of the data discriminator and the model as the L2 loss will dominate.

For the latent critic discrepancy signal average, as shown in Figure 6.13, it is clear that the latent space
is responding to damage but the results are still somewhat un-interpretable. Both the RY −GAN and
the DLS−GAN methods respond to record one hundred but they do not offer any other insights. The
discrepancy measure does not exhibit any form of growth to the unhealthy data and appears to be quite
flat. Again, a clear response to the temperature variation is present as there is some notable growth
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(a) LHI(1): VAE1. (b) LHI(1): VAE2.

(c) LHI(2): VAE1. (d) LHI(2): VAE2.

(e) LHI(3): VAE1. (f) LHI(3): VAE2.

Figure 6.10. The LHI synchronous average responses from the VAE1 and VAE2 models for the filtered
dataset.
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(a) HI(1): RY −GAN.
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(b) HI(1): DLS−GAN.

Figure 6.11. HI(1) discrepancy signal average results using the RY −GAN and DLS−GAN methods
from the filtered gearbox dataset under the standard processing approach.
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(a) HI(2): RY −GAN.
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(b) HI(2): DLS−GAN.

Figure 6.12. HI(2) discrepancy signal average results using the RY −GAN and DLS−GAN models
from the filtered gearbox dataset under the standard processing approach. Figure 6.12(a) shows the
RY −GAN case and 6.12(b) shows DLS−GAN case.

after record 50 for both methods.

Figure 6.14 shows the three HI synchronous average results for the filtered gearbox data. It is
immediately clear that the reconstruction HI appears to be the most dominant out of the three HIs.
One troubling result is that the data discriminator response, HI(2) in Figure 6.14(c) and (d), shows
positive deviances to damage, which is unlike the known response one should obtain when using a
data discriminator. One would expect that the response should tend to zero as the data discriminator
represents p(healthy|x). The signal impulsivity present in the training data is responsible for this, as it
was not filtered out completely and thus the data discriminator has been trained poorly, to the extent
where it recognises the gear tooth fault as healthy data. For the latent critic, it is interesting to note that
there is a sign of fault deviance, with an anomaly around 140◦ from the ZT SE butt joint. The latent
critic is responding to damage and the synchronous average is responsible for uncovering this. The
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(a) HI(3): RY −GAN.
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(b) HI(3): DLS−GAN.

Figure 6.13. HI(3) discrepancy signal average results using the RY −GAN and the DLS−GAN
methods from the filtered gearbox dataset under the standard processing approach.

latent critic response is not as clear as that shown for HI(1), which is attributed to the model inability
to capture the impulsivity and the resulting manifestation thereof in the latent space. This may also
indicate why LHI(1) is a poor metric and shows that the latent critic is considering the potential effects
noted in the LHIs together.

Figure 6.15 shows the response for the three LHIs using the synchronous average. It is clear that the
latent distance is a poor metric on this dataset and that the latent radius and angle are strong candidates
for fault detection. It is also clear to note that this response is akin the that of the VAEs and PCA, which
is not a surprise given that the L2 loss features in this model and that the latent space is constrained
to be a factored Gaussian. Interestingly, the latent manifold is responding well while the latent critic,
shown in Figure 6.14(a) and (b), responds less clearly. This indicates that the latent critic may be more
receptive to latent distance deviances as a result of the impulses and that the deviance in radius and
angle is insufficient to help identify the presence of the fault.
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(a) HI(1): RY −GAN. (b) HI(1): DLS−GAN.

(c) HI(2): RY −GAN. (d) HI(2): DLS−GAN.

(e) HI(3): RY −GAN. (f) HI(3): DLS−GAN.

Figure 6.14. The three HI metrics obtained from the RY −GAN (Figure 6.14(a), (c) and (e)) and
DLS−GAN (Figure 6.14(b), (d) and (f)) models analysed using the synchronous average.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

124



Chapter 6 Gearbox Dataset Analysis

(a) LHI(1): RY −GAN. (b) LHI(1): DLS−GAN.

(c) LHI(2): RY −GAN. (d) LHI(2): DLS−GAN.

(e) LHI(3): RY −GAN. (f) LHI(3): DLS−GAN.

Figure 6.15. The three LHI metrics analysed using the synchronous average under the RY −GAN
(Figure 6.15(a), (c) and (e)) and DLS−GAN (Figure 6.15(b), (d) and (f)) methodologies.
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6.3.2 Unfiltered Gearbox Dataset

The next step in this dataset analysis is to analyse the unfiltered version of this dataset. The objective
is to provide a true reflection of how deep learning performs when a dominant component of healthy
and unhealthy data is an impulsive component. For the unfiltered data, often poor results were
obtained from the discrepancy signal average and the synchronous average alike. Thus, for the sake
of conciseness, some of the positive and negative responses will be shown, where applicable. As the
L2 objective function is integral to the considered models, it is not unreasonable to expect that the
impulsive components, which are highly non-Gaussian, may not be represented by the models and
thus results may break down.

The addition of the impulsive components is a good indicator of the current state of deep learning
and how the objective functions used must be carefully analysed to match the field use-case. This
requirement is evident when one considers the depth of research applied to vibration-based condi-
tion monitoring and the properties of vibration signals. For unsupervised deep learning to be truly
competitive, it may be a requirement that one build in some domain knowledge to improve the model
performance to a point where it is competitive on datasets consisting of complex vibration components
and various operating conditions.

6.3.2.1 PCA Model Analysis

For PCA, the author chose to investigate two versions of PCA, namely, one model that uses all PCs
and another model that neglects the first twenty PCs. If one examines HI(1) in Figures 6.16(a) and (b),
it is clear that the inclusion of the impulse almost completely broke down the reconstruction ability of
the model and the reduced number of PCs further emphasises this. It is interesting to note that LHI(2)

appears to be slightly better at identifying damage and gives some indication of the presence of the
tooth fault. LHI(3) also exhibits some notable damage presence. However, it is clear to see in Figure
6.16(e) how the latent angle drop is not without regions that rise and drop through time. The cause of
this phenomenon is the surrounding temperature variation present in the data, which is problematic
as it implies that LHI(3) deviations are not limited to the impulses. It is interesting to note that by
dropping twenty PCs, LHI(3) seems to improve using PCA, with less clear temperature variations.

To investigate why PCA responds in this manner, the author chose to perform a small analysis into
the latent content of PCA for the filtered data case and the unfiltered data case. It is possible to do
so as PCA uses the eigenvectors of the covariance matrix which are orthogonal to one another and
organised hierarchically by eigenvalue magnitude. Figure 6.17 shows the latent frequency content
obtained through the temporal preservation analysis approach for all of the modes used in the PCA
model for the filtered and unfiltered versions of the gearbox dataset. It is clear that the latent manifold
captures the frequency content of a signal and that result is available when the temporal preservation
analysis approach. It is clear to note how PCA tends to capture the central frequency in the frequency
content bands first and then filters the remaining content down through the PCs. The first PCs tend
to capture the frequency content around 400, 1700 and 8000Hz, indicating that the content in the
frequency bands dominate the vibration data. This type of analysis can also provide one with insight
into what frequency content is lost in the signal reconstruction using PCA.

6.3.2.2 VAE Model Analysis

For the analysis of the performance of the VAE models, the results from HI(1), LHI(2) and LHI(3) are
shown in Figure 6.18. If one analyses Figures 6.18(a) and (b), one immediately notices the difference
between the deterministic and stochastic parametrisations in HI(1), with VAE1 exhibiting no response
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(a) HI(1): all PCs. (b) HI(1): dropped twenty PCs.

(c) LHI(2): all PCs. (d) LHI(2): dropped twenty PCs.

(e) LHI(3): all PCs. (f) LHI(3): dropped twenty PCs.

Figure 6.16. HI(1) and LHI(2,3) metrics using PCA for all PCs and twenty dropped PCs analysed using
the synchronous average. (a), (c) and (e) show the metrics for the all PC case while (b), (d) and (f)
show the metrics for the dropped mode case.
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(a) Filtered latent spectrum. (b) Unfiltered latent spectrum.
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(c) Filtered signal frequency spectrum.
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(d) Unfiltered signal frequency spectrum.

Figure 6.17. The latent frequency content of the PCA model for the first signal record using the filtered
and unfiltered versions of the gearbox dataset. Figure 6.17(a) and (c) shows the filtered latent and
signal content while Figure 6.17(b) and (d) shows the unfiltered latent and signal content. Notice the
significant difference in the number of modes required to capture 95% of the data variance.

to damage while VAE2 shows some rapid growth. However, it is clear that this growth is broad and
not limited to one tooth increment, which is a clear indicator that albeit learning the variance helps
in identifying anomalous instances, the impulsive components are dominating the discrepancy signal
response. This is interesting as it highlights that although the variance can aid in detecting anomalous
instances, the averaging procedure in the synchronous average is failing as the impulses are increasing
the floor of the average. It is clear that although the signal reconstruction HI is failing, the latent space
is responding to damage strongly. VAE1 exhibits a response to damage through the latent radius while
VAE2 demonstrates true manifold expressiveness in the response obtained from this model. It is clear
that LHI(2) is indicating the presence of the tooth fault and its manifestation is by placing deviance
orthogonal from the learnt manifold. LHI(3) also exhibits some clear response to damage alongside
some clear variations in record response attributed to the temperature effects present in the data.

The manifold response to damage from a VAE is a crucial enhancement of unsupervised deep learning
on assets subject to time-varying operating conditions, as it highlights that there is a requirement for
model complexity over and above PCA and that one needs to analyse the latent manifold clearly to
analyse model response to anomalous data. By incorporating the time attribute present in vibration
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data, one can utilise simple signal processing methods to improve the interpretability of model results.
It is also clear that there are issues with the model objective function formulation, with the presence of
data impulses causing poor result performance.

(a) HI(1): VAE1. (b) HI(1): VAE2.

(c) LHI(2): VAE1. (d) LHI(2): VAE2.

(e) LHI(2): VAE1. (f) LHI(2): VAE2.

Figure 6.18. HI(1) and LHI(2) metrics using VAEs analysed using the synchronous average. (a) and
(c) show the metrics for the deterministic VAE while (b) and (d) show the metrics for the stochastic
VAE.
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6.3.2.3 β −TC−VAE Model Analysis

For the response from the β −TC−VAE models, the objective is to see how the latent manifold and
reconstruction HI respond to damage under the deterministic and stochastic model parametrisations.
In Figure 6.19, only the response from HI(1) and LHI(2) as the other LHIs were found to be equivalent
to that shown in Figure 6.18. It is clear to see how the model parametrisation affects the results with
an improved HI(1) response at the expense of LHI(2) for the stochastic case, shown in Figure 6.19(b)
and (d) respectively. The trade-off between signal reconstruction and the latent manifold is present as
β −TC−VAE2 indicates damage in the reconstruction HI to the detriment of the latent radius. The
presence of damage is detectable in the latent manifold albeit less indicative as the response shown in
Figure 6.18(d).

(a) HI(1): β −TC−VAE1. (b) HI(1): β −TC−VAE2.

(c) LHI(2): β −TC−VAE1. (d) LHI(2): β −TC−VAE2.

Figure 6.19. HI(1) and LHI(2) metrics using the β −TC−VAE model analysed using the synchronous
average. (a) and (c) show the metrics for the deterministic β −TC−VAE while (b) and (d) show the
metrics for the stochastic β −TC−VAE.

6.3.2.4 GAN Model Analysis

For the analysis of the GAN-based methods, the author chose to showcase the responses from the
RY −GAN method as it proved to be the most successful method between the two models considered.
In Figure 6.20, all of the HIs and LHIs are shown. It is clear to note that the similarities between the
response from HI(1) and those shown for VAE1 and β −TC−VAE1 are all highly similar, a by-product
of the shared L2 objective function. The HI(2) response indicates that the data discriminator is a
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poor performance indicator, a result attributed to the by-product from the GAN and the AE training
scheme trade-off. One good result is that the latent critic is responding to damage, as noted in Figure
6.20(c). The latent manifold is exhibiting some response to damage that is measurable, with the
model demonstrating an awareness of anomalous data. From the three LHIs, it is clear that the latent
radius and angle are exhibiting the presence of damage and that this damage is trackable through the
temporal preservation approach. The latent manifold is responding in a way that is synonymous with
that obtained from the VAE models, an attribute of the shared L2 objective function. The L2 objective
function appears to dominate the construction of the latent manifold, albeit that disentanglement is
built-in and the latent regularisation method was different.

6.3.3 Signal Processing Results

For model performance quantification, it was necessary to analyse how different signal processing
techniques perform on the dataset. For this to occur, the author chose three versions of the dataset,
namely, a band-pass filtered version of the dataset, a low-pass filtered version of the dataset and the
unfiltered version of the dataset. The signal processing techniques used consisted of those shown
previously with the addition of the Fast Kurtogram developed by Antoni (2007). Some methods,
by design, are not well suited to gear tooth fault detection and as such, only sufficiently performing
methods will be presented. Each signal was order-tracked to account for the time-varying operating
conditions present in the data, such that the order spectrum could be analysed. For the band-pass
filtered version of the dataset, a band of [200,700]Hz was used.

The SES and the SK−NES methods produced the best results, while the Kurtogram, MED−SK−NES
and CPS−NES approaches failed in one manner or another. MED− SK−NES did work for the
band-pass filtered case however, sporadic impulses appeared in some records, a result not uncommon
to MED. In the figures presented in Figure 6.21, the frequency amplitude of the first, second and
impulse orders were tracked for each version. The band-pass filtered version of the dataset produced
the best performing signal processing results. Both the SES and the SK−NES approaches present
some presence of damage for the low-pass filtered case however it is clear that it is not as clear as the
responses obtained from the various deep-learning approaches considered in this work. Furthermore,
the presence of the impulse in the data at approximately 5.71 orders is dominant in the unfiltered data,
with both methods failing significantly. The general shape of the impulse order magnitude from the
unfiltered signal processing approaches shown in Figures 6.21(e) and (f) is interesting. It is akin to
that seen in the record average for the HI(1) discrepancy signal for the unfiltered dataset, which further
serves as an indication that the impulse in the data causes the widespread HI(1) response failure. Figure
6.22 highlights this response alongside the discrepancy signal order spectrum for a PCA model that
uses all PCs.

To allow for the deep learning approaches to be compared on the band-pass filtered dataset, the author
investigated the performance of a PCA model on this data. Figure 6.23 shows the results in this regard
and notably, the band-passed version of the dataset is simple to analyse with PCA responding strongly
to damage. It is interesting to note how the LHIs have changed in their response, where previously
the data did not respond in the latent distance whereas now it the latent angle that does not respond
to damage. One may now interpret how the model utilises information when signal complexity is
increased or decreased. As complexity increases, the model does not learnt a latent manifold that can
drastically change the traversal velocity for anomalous instances. The model then indicates anomalous
instances through the simple properties of the manifold such as the euclidean distance from the origin.
In the alternative case of reduced complexity, the latent manifold velocity can be easily changed by
placing points far from each other and far from the manifold. It is also clear how PCA responds in its
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(a) HI(1). (b) HI(2).

(c) HI(3). (d) LHI(1).

(e) LHI(2). (f) LHI(3).

Figure 6.20. The response from the three HIs and the three LHIs using the RY −GAN model analysed
using the synchronous average.
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(a) SES: band-pass filtered
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(b) SK−NES: band-pass filtered
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(c) SES: low-pass filtered
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(d) SK−NES: low-pass filtered
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(e) SES: unfiltered

0 50 100 150 200 250 300
Record Number

0

1

2

3

4

5

6

7

SK
-N

ES
 A

m
pl

itu
de

1e 2
fimpulse 5.71fs
2 × fs
1 × fs

(f) SK−NES: unfiltered

Figure 6.21. The frequency amplitude responses from the SES and SK−NES processing techniques
for signals from three versions of the original gearbox dataset. Notice how the gradual addition of
the impulsive component worsens the results, with Figure 6.21(e) and (f) showing clear impulsive
components.
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(a) Record statistics (b) HI(1) order spectrum

Figure 6.22. The mean, maximum and minimum features of HI(1) synchronous average for each
record from a PCA model trained in the unfiltered dataset with all PCs used. Note the presence of the
impulse at 5.71 orders and the trend of the statistics shown in comparison to Figure 6.21(e) and (f).

signal reconstruction HI, a clear indication that one can perform fault diagnostics using a simple linear
latent variable model. The response under the other model formulations was also validated and was
confirmed to be equivalent.

6.3.4 TSA Response Analysis

The next step required for model performance quantification is identify the condition deviance points
from the TSA of HI and LHI response. To quantify damage in the synchronous average, an approach
similar to that detailed in Schmidt et al. (2017) is applied. The process is to use a clustering algorithm
to find two clusters in the synchronous average signal for a given record. One can then access to two
means and two standard deviations, from which the means are organised by size under the assumption
that when damage is present, the larger of the two means will represent this damage while the smaller
one will represent the healthy portion. This process is then repeated for each synchronously averaged
signal and allows one to track the growth in the synchronous average data. To alter this approach for
the various HIs and LHIs considered, an alternative discrepancy signal to the synchronous average
is proposed in this work. This discrepancy signal is the absolute of the difference between the
synchronous average and the synchronous average median, given as

H̃I(i) = |HI(i)− µ̃HI(i) |, i = 1, . . . ,6, (6.1)

where HI(i) refers to any of the six available health or latent health indicators and µ̃HI(i) refers to the
median of the synchronous average of the health indicator. Not all health indicators produce positive
deviations around the fault and a HI alteration of this form will produce positive deviations. To identify
a condition deviance point, the author has chosen to use the five ahead mean procedure with a threshold
defined as thres = µ̃ +3σ . The results of this approach are provided in Table 6.2. To visually motivate
the results in Table 6.2, the results using a VAE2 model on the filtered and standard gearbox dataset as
shown in Figure 6.24 and Figure 6.25 respectively. Notice the condition deviance detection in Figure
6.24(b) but the poor growth in the larger k-means centre, a result not uncommon to the LHI(1) response.
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(a) HI(1). (b) LHI(1).

(c) LHI(2). (d) LHI(3)

Figure 6.23. The HI(1) and LHIs synchronous average responses using PCA for the band-pass filtered
dataset.

6.4 Conclusion
In the analysis of Table 6.2, two interesting points can be made by simply observing the results. The
first is that, specifically for the unfiltered dataset, most methods seem to produce condition deviance
points around record one hundred, barring PCA. This appears to be inconsistent with some figures
shown previously, specifically for LHI(1) results. The subtraction of the synchronous average median
causes the proposed metric to track relative deviances, with most metrics introducing detectable jumps
around record one hundred potentially introducing a point of detection. The second observation
is that PCA is consistently worse than the other metrics, which indicates that the additional model
non-linearity and complexity is beneficial to this dataset. In the generation of Table 6.2, the author
found that some metrics gave condition deviance points but when analysed, were poorly performing
metrics and were responding to the change in condition attributed to the manually seeded fault. Table
6.2 shows these cases by underlining the result, with LHI(1) results often capable of detecting the
change due to the fault but cannot track the growth thereof. The DLS−GAN model performed poorly
on the unfiltered dataset, with the author being unable to obtain any reasonable results. This failure is
attributed to the use of both the L2 and GAN objective functions and a potential GAN training failure,
as detailed in Chapter 2. The change induced by the seeding of the fault was detectable but often this
is where the analysis ended.
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(c) ˜LHI(2).
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Figure 6.24. The HI(1) and LHI synchronous average H̃I(i) responses using VAE2 for the filtered
dataset.

Table 6.2. The obtained threshold condition deviance point from the gearbox dataset for the filtered
and unfiltered versions of the dataset.

Model type k-means health indicator condition deviance point for: low-pass filtered || unfiltered
HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA - all PCs 124 || IC N/A N/A 102 || IC 105 || 110 172 || 223
PCA - dropped PCs (-5 || -20) 111 || 285 N/A N/A 101 || IC 105 || 110 176 || 260

VAE1 105 || 267 N/A N/A 107 || IC 105 || 105 105 || 107
VAE2 101 || 81 N/A N/A 102 || 105 105 || 105 106 || 116

β −TC−VAE1 105 || 267 N/A N/A 107 || IC 105 || 106 105 || 107
β −TC−VAE2 102 || 102 N/A N/A 102 || IC 105 || 106 106 || 109

RY −GAN 105 || IC IC || 102 103 || 106 100 || IC 105 || 105 139 || 104
DLS−GAN 105 || IC 106 || 106 113 || 100 100 || IC 106 || 100 171 || 157
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Figure 6.25. The HI(1) and LHI synchronous average H̃I(i) responses using VAE2 for the low-pass
unfiltered dataset.

Furthermore, the data discriminators for the GAN-based methods provided little in terms of fault
detection. This was attributed to the impulsive data components and the model inability to capture this
data due to its formulation. It can be concluded, for this dataset, that deep learning can be competitive
with signal processing and that it is applicable for time-varying operating condition cases. However,
the Gaussian assumptions built into the models will break down when the data is non-Gaussian and, as
shown, will result in deep learning being unable to obtain results unless the impulses are accounted for
in some way, which is why the synchronous average was crucial in result interpretation. Unsupervised
latent variable models are competitive and capable of capturing speed profile variations but they are
not at a place where they need to be, just yet.
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7.1 Conclusion
This research aimed to investigate the latent manifold for interpretability, responsiveness to damage
and to analyse the performance of the proposed latent metrics. The importance of untangled latent
manifolds and temporal preservation analysis of latent metrics indicates that previous investigations of
unsupervised deep learning have approached these aspects suboptimally. Specifically, latent manifold
response metrics were proposed alongside the temporal preservation analysis to highlight how the
latent and data space can be used in conjunction for anomaly detection. The investigations considered
and highlighted the interactions between model window length and fault frequency, with a focus on
how the shaft speed is a crucial factor in this interaction. A variety of latent-variable models were
considered, namely, PCA, VAEs, β −TC−VAEs and GAN-based methods such as the DLS−GAN
and the proposed RY −GAN. These models highlighted the importance of considering an ensemble of
latent variable models to conduct PHM effectively.

The main contributions of this work are three-fold. Firstly, it shows that the standard approach to
processing time-series data for data-driven models must be reformulated to utilise time. This allows for
information in the HIs and LHIs to be fully realised and interpreted. Secondly, it shows that the latent
manifold of latent variable models when untangled is interpretable, making them suitable to detect the
presence of fault covariates in time-series data. It was empirically shown that latent variable models
are strong competitors for identifying faults in time-series data. Analyses in gearbox fault applications
under both stationary and time-varying operating conditions clearly demonstrated that one could detect
a variety of faults using unsupervised data-driven techniques. Machine fault diagnostics highlighted
the need to carefully assess the decision of which latent variable model to use for any given application,
which opens up the possibility of using the multiple facets of a latent variable model, in a carefully
considered manner, for PHM. The temporal preservation approach is a trivial reformulation of the
data processing problem. Still, it can offer significant insights into the implicit model assumptions
made during model design and into the traversal of time-series data through the latent manifold.

The investigations performed in this work demonstrated that latent variable models are capable of
learning a latent manifold that is responsive to damage and that the three proposed LHIs allow for
a physical interpretation of how a model responds when presented with anomalous data. This is the
first application of latent metrics that are self-contained and not specific to any model type. The LHIs
proposed are sufficiently flexible to allow for variations in fault and dataset type, with the investigations
in this work yielding fruitful latent manifold responses. The difference between standard pre-processing
and the proposed temporal preservation approach is trivial, requires no change in model training and
is only used in model evaluation. Improvements include the ability to determine the type of fault
in both stationary and time-varying operating condition cases. Deep learning, as it currently stands,
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can be easily interpreted as a discrepancy analysis method and the temporal preservation approach
allows one to augment the interpretation given to faults in vibration-based condition monitoring
circumstances.

A study into the role of linear and non-linear latent variable models in PHM applications was considered.
PCA often performed well on datasets with stationary operating conditions. In the datasets investigated,
the response to damage was consistent through the latent-variable models, which provided a clear
indication that the HIs and LHIs can be used in conjunction for damage detection. For the third dataset,
it was shown that although non-linear latent variable models performed better than linear variable
models, the contribution of the L2 objective function introduced inappropriate responses. Specifically,
the data impulses present in both the healthy and unhealthy data could not be effectively captured
by the model and thus were immediately indicated as anomalous. This was shown by considering a
filtered and unfiltered version of the dataset. The health and latent health metric responses were found
to be mostly uninformative in their simple statistics, with a requirement of hinging off the benefits
of time-synchronous averaging to uncover the fault. It can be noted that TSA was only performed
post-training and is only feasible due to the temporal preservation approach. This does introduce the
potential of combined deep learning and signal processing approaches, as typically these techniques
are investigated in similar circumstances but with no interaction.

In the comparison between signal processing and deep learning techniques, it is clear that there is a
strong case to be made for the use of latent variable models in gearbox fault diagnostics. The use of
latent variable models in an unsupervised learning setting can offer significant improvements in the
detection of anomalous instances in time-series data and this is a highly exploitable feature that can be
used in the PHM field. The ability to take healthy machine data and detect deviations from the healthy
data manifold and the latent manifold is powerful, as it completely negates the requirement for any
faulty data. A lack of fault data means that the cost of implementing and deploying these models is
significantly decreased along with the rise in computational power and the Internet of Things. The
cost of monitoring an asset is decreased further under these considerations and can be employed in an
online setting. The metrics obtained from latent variable models are also more intuitive to interpret
and understand as opposed to those from signal processing techniques, which often require someone
well versed with the implementation and technique to interpret the results. This is a direct result of the
latent variable model frameworks, which reduces any problem to data and probability distributions.
This generalises what is often used in signal processing, as the field is refined to approach particular
types of issues. The downside of the deep learning techniques considered in this work is the presence
of the L2 objective function, which was shown to be problematic in the presence of impulsive signal
components. The adversarial framework from GANs offers a natural solution to this problem; however,
model inference then becomes a non-trivial and complicated procedure.

In the presence of any additional faulty data, a unsupervised learning scheme can be employed to
identify any fault classes, if required. The downside here is that this is an area where signal processing
techniques offer significant advantages, as often these techniques can detect the type of fault by
introducing expert knowledge into the problem and understanding the relationship between the energy
content in a signal and the nature of faults. Signal processing also has access to in-depth knowledge
about the nature of faults in time-series data, and this knowledge has been used to develop powerful
techniques that can cover a wide variety of problems. Signal processing is a well-established field,
which means that there is a high baseline that unsupervised data-driven techniques must overcome to
be considered viable technology. However, this offers a natural merging between the two domains to
capitalise on the benefits that each has to offer. Latent variable models provide a unique method to
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uncover the presence of faults covariates in a signal. In contrast, signal processing offers services in
fault classification and determining the exact type of fault present in the signal.

This benefit was realised during the analysis of the UP C-AIM gearbox dataset, where the latent
variable models were used to develop the discrepancy signals for the different HIs and LHIs and
T SA, a common signal processing technique, was used to uncover the exact location and type of
fault. This example shows a unique method of combining the two fields, whereby deep learning
techniques could be assisted by signal processing or vice versa. For the former combination, the use
of signal processing techniques to pre-process the data could meaningfully benefit the performance
of unsupervised data-driven methods as there are signal processing techniques that are known the
improve the enhancement of fault covariates in a signal. There are a plethora of signal processing
techniques that can be used, such as the Normalisation of the Amplitude Modulation caused by Varying
Operating Conditions (NAMVOC) method proposed by Schmidt and Heyns (2020), for example. This
technique can be used to improve the quality of the data shown to a latent variable model by reducing
the amplitude modulation effects of time-varying operating conditions. For the latter combination,
signal processing techniques can be applied to further evaluate the HIs and LHIs obtained under the
temporal preservation approach to confirm the cause of any identifiable condition deviance points.
This can manifest through record-frequency plots and the analysis of the evolution of known theoretical
fault frequencies for the stationary operating condition case, an analysis technique that is demonstrated
in Section 4.3, or through the order spectrum for time-varying operating condition cases. In hindsight,
pursuing each field in isolation seems naive as the simple notion of using deep learning approaches in
a discrepancy analysis framework can combine the two fields in a simple, intuitive and complementary
manner. Ultimately, the goal of PHM is to ensure that fault can be detected, trended and isolated
as early as possible, so utilising both fields to realise this goal can only benefit the machine fault
diagnostics field.

Let us critically compare the results obtained from the signal processing techniques, linear latent
variable model and the non-linear latent variable models. A variety of factors exist that must be
considered during this comparison. The signal processing results from IMS dataset clearly highlighted
the degradation of the bearing over time and could correctly identify the bearing component responsible
for the fault. The difference between the linear and non-linear latent variable models was not that
distinct, where PCA was a highly competitive option for fault diagnostics. The fact that PCA works
well indicates that datasets with little to no change in operating condition throughout the experimental
lifespan are constrained in such a manner that a linear transition function may be suitable uncover the
presence of damage. In this case, the return on investment obtained from more complex non-linear
formulations is minimal, as PCA is computationally efficient and is trivial to implement in the current
computational state.

From the gearbox dataset, however, the addition of model non-linearity began to show as PCA
became the model with consistently poor performance. This is attributed to the time-varying operating
conditions, which make the input data space complex and non-linear. The non-linear latent variable
models were then able to uncover the presence of the gear tooth fault in both the input and latent
manifold. However, the downfall here was the impulsive signal components in the data. This is where
a signal processing approach will tend to shine through, as the presence of impulsive components are
detailed and investigated in the literature, with techniques that exist that can readily overcome them.
This downfall, from a latent variable model perspective, was, however, a function of the explicitly
assumed distributions rather than latent variable models in general. The distributions were limited to
multivariate isotropic Gaussian distributions. The GAN-based methods were used as the adversarial
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framework was proposed to offer improved flexibility in describing densities. However, it is clear from
this work that this is not the case as the combination of this framework and the L2 loss were not aligned
towards the same goals.

7.2 Future work
For future work, the following avenues should be considered for deep learning research on vibration
data:

• It is an absolute necessity that the L2 loss is replaced for deep learning models trained on raw
vibration data. It was shown and highlighted in detail in this work how this loss has substantial
implications on the formulation of the latent manifold and forces the model to a place where
specific vibration components cannot be learnt. Adversarial losses are a vital contributor to the
solution as they make implicit data distribution assumptions. Booyse et al. (2020) did make this
clear, however, a GAN does not offer any latent manifold exploration which was shown to be a
key model element. GAN disentanglement has been implemented in literature, but often one
cannot perform model inference.

• Normalising and auto-regressive flows are exciting aspects of unsupervised machine learning
that have yet to be explored for PHM. The benefits of these approaches are that they exploit
the change of variables theorem to obtain a series of invertible bijective mappings that, under
certain design choices, allow one to easily transform data from a simple distribution to complex
distribution and vice versa. Formulations such as the real-valued non-volume preserving (Real
NVP) or Parallel Wavenet, proposed by Dinh et al. (2016) and Van Den Oord et al. (2018),
maybe an interesting avenue of research. For vibration data, it is believed that a good starting
point would be the forward KL divergence formulation detailed in Papamakarios et al. (2019) as
we do not have access to p(x) but only samples from this distribution.

• Currently, the formulations considered in this work explore disentanglement, but it was not made
clear what advantages this offers into data causality and interpretation. This is still an avenue
that needs to be investigated and clarified for time-series data.

• Formulations such as Independent Component Analysis may be an exciting avenue of work
as it assumes that the data is non-Gaussian. This offers a direct departure from the L2-loss. It
may also be interesting, given the strong performance of PCA on datasets with stationary or
quasi-stationary operating conditions, to investigate methods such as kernel PCA.

• This work highlighted the importance of the model window length; however, at no point was an
optimal window length identified. It may be required for future work that this choice be made
for the user in a transparent and conducive manner for deep learning-based PHM.

• It may be required that deep learning models be designed using domain-specific knowledge
to enhance model performance for PHM further. If the primary objective of the research is to
obtain work that is readily applicable to the industry, then the use of domain knowledge is vital
for the development of work that utilises and exploits signal processing knowledge and can only
improve the field.

• The threshold condition deviance approach used in this work was used to provide a consistent
comparison platform for the various HIs and LHIs. This approach, however, is far from ideal
and can be further explored to determine whether improved health indicator condition inference
techniques can be developed.
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Appendix A Machine Learning

A.1 Chapter Abstract
The purpose of this section is to provide a literature background into machine learning practices and
their associated objective functions, training schemes and data processing techniques.

A.2 Introduction
Machine learning is a topical region of research in present society. Machine learning and the use of
ANNs originated from the research into finding mathematical representations of the neuron processing
in the human brain. This initial research was conducted by McCulloch and Pitts (1943), however, at the
time the technological capabilities were insufficient to realise the potential of the technology. However,
with the rise in computational power, ANNs have since become a viable technology. Supervised
learning is when one has access to both input data and their associated labels, denoted as x and t
respectively. In the supervised framework one aims to learn the conditional distribution p(t|x). Here
the label types can formulate the classification or regression frameworks, based on whether the labels
are discrete or continuous. Unsupervised learning is when one does not have any data labels and tries
to model the data distribution p(x) (Hoang and Kang, 2019, Goodfellow et al., 2017).

A.3 Supervised Learning
There are two approaches to network training that seek to determine the optimal weights of a neural
network, the first is the maximum likelihood learning approach while the second is the Kullback-
Leibler (KL) divergence approach. The formulation of the former is more intuitive and will be
explored in this literature review. However, any interested reader should look at the work of Martens
(2014), who presents an interesting comparison between maximum likelihood training and the KL
divergence.

Consider now the case where one has access to some data x and an associated target variable t, the goal
is to use this data to learn a function that can correctly predict a target label given an input. However, we
need a way to capture the prediction uncertainty and to do this one can utilise probabilistic techniques.
The mathematical formulation of a machine learning problem is as follows, given input features x,
obtain a function f (x) that can represent a target t, where the function f (x) is parametrised by weights
w. One must then optimise this function such that its representation is optimal.

In a supervised learning probabilistic framework, given a random vector x and labels t, the objective
is to learn the conditional distribution p(t|x) of this data. We now make the decision to parametrise
the conditional distribution with the parametric function f (x), which varies based on the assumed
distribution form. For a batch of N samples of (x, t), under the assumption that the data is sampled
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independently, we can construct a likelihood function in the form

p(t|x,w) =
N

∏
i=1

p(ti|xi,wi). (A.1)

It is now mathematically convenient to take the logarithm of this distribution, as gradients for products
of probability values often tend to zero quickly. The objective now is to maximise the likelihood given
a batch of samples, which requires the parametric function to be updated. It is also convenient to take
the negative of this log-likelihood function to produce the objective function as

L(w) =−
N

∑
i=1

log p(ti|xi,wi), (A.2)

which emits a method for obtaining an optimal fit to the condition distribution. In Martens (2014), it is
shown that the KL divergence approach with a parametric conditional distribution q(t|x) results in the
same objective function.

A.3.1 Regression

For regression, it is assumed that the target variable t is continuous t ∈ R, where it is assumed that a
Gaussian distribution can be used for the approximate distribution that is parametrised with a neural
network function f (x,w), where this function is parametrised by unknown weights, as mentioned
previously. The form of this distribution is given as

p(t|x,w) =N(t| f (x,w),β−1I), (A.3)

where β is the Gaussian noise precision. Consider the case now where a single target variable t is
obtained for samples x that can be used as a training set. This reduces the Gaussian distribution from
its multivariate form to its univariate form. This assumption is not made for complexity purposes
as the difference is trivial but rather for illustration purposes. By using Equation (A.2), the negative
logarithm over N training samples results in

−∑
x

log p(t|x,w) =
β

2

N

∑
i=1

( f (xi,w)− ti)
2− N

2
logβ +

N
2

log(2π), (A.4)

By neglecting the terms that are not a direct function of the weights, one can obtain an loss function that
can be used to update the weights of the parametric function f (x) (Bishop, 2006). The loss function in
this case is

Li =
1
2
( f (xi,w)− ti)

2 . (A.5)
For the multivariate case in which one has multiple target variables, the loss function can be developed
to be in the form

Li =
1
2
‖ f (xi,w)− ti‖2

2, (A.6)
where ‖ · ‖2 is the L2 norm. This loss function is known in literature as the squared error loss function.
One can also take the mean of this to obtain the mean-squared error (MSE) (Bishop, 2006).

A.3.2 Classification

In a classification framework, one assumes that the target variable t is discrete t ∈ Z, where each
dimension of the target variable refers to a specific class label in k classes. There are three dominant
cases of classification, namely, binary classification, multi-class classification and multi-class binary
classification, often referred to as multi-label classification in literature (Bishop, 2006).

A.3.2.1 Binary Classification

Binary classification, or two-class classification, assumes the conditional distribution to be a Bernoulli
distribution parametrised as p(t|u), where t ∈ [0,1] and u = f (x,w) (Bishop, 2006). The parametrized
distribution can be given as

p(ti|xi,w) = f (xi,w)ti(1− f (xi,w))1−ti . (A.7)
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If one takes the negative logarithm of this distribution, as required by Equation (A.2), the result
is

Li =− [ti log f (xi,w))+(1− ti) log(1− f (xi,w))] , (A.8)
which can be summed and normalised by the batch size in a neural network batch training setting,
under the assumption that the data is i.i.d. This objective function is often known as the binary or
sigmoid cross-entropy loss.

A.3.2.2 Multi-Class Classification

If one makes the assumption that the class labels are exclusive (the multi-class, single-label case) for a
given input variable x, then one can use the categorical distribution otherwise known as the generalised
Bernoulli distribution, given as

p(ti|xi,w) =
K

∏
k=1

fk(xi,w)tik , (A.9)

where in this case the target is a vector, where the vector is required to satisfy ∑
K
k=1 tk = 1. This is easily

achieved with a softmax activation function on the output (Bishop, 2006). If one takes the negative
logarithm, as required by Equation (A.2), the resulting loss function can be given as

Li =−
K

∑
k=1

tik log fk(xi,w), (A.10)

which can be summed and normalised by the batch size in a neural network batch training setting,
under the assumption that the data is i.i.d. This objective function is often known as the softmax
cross-entropy loss.

A.3.2.3 Multi-Label Classification

In the multi-label setting (one input, multiple classes), we assume that there are K binary class labels
that are independent. The distribution used in this case is a version of the Bernoulli distribution for
multiple independent classes

p(tn|xn,w) = ∏
k

fk(xn,w)tnk(1− fk(xn,w))1−tnk , (A.11)

where the target is now a vector and each element represents the probability of a given class. If one
takes the negative logarithm of this distribution, as required by Equation (A.2), the result is

Li =−
K

∑
k=1

[tik log fk(xi,w))+(1− tik) log(1− fk(xi,w))] , (A.12)

which can be summed and normalised by the batch size in a neural network batch training setting,
under the assumption that the data is i.i.d.

A.4 Network Architecture
The motivation for the use of a neural network often stems from the original use of basis functions to
capture any non-linearity present in the data. The issue with basis functions, however, is that to model
higher-order non-linearity, dimensionality becomes an issue (Duda et al., 2001). A neural network is
one that attempts to mimic the biological processes involved in the human brain, with a multilayer
perceptron being the main network structure with the best practical value (Bishop, 2006). The simplest
form of a neural network is the feed-forward neural network (FFNN) and an example is given in Figure
A.1.

There are a few notational elements used in defining the basic process of an ANN which are given as
follows: the parameters ω ji are the network weights, ω j0 is the bias weights, a j is known as the nodal
activation and h(·) is an activation function. A node is considered to be a point where all variable
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Figure A.1. A simple two-layer neural network. Bias units are denoted using blue shaded circles.

inputs to the node are combined to produce a nodal output. If we generate M linear combinations of
the input features x1,x2, · · ·xm the result is

a j =
M

∑
i=1

ω
(1)
ji xi +ω

(1)
j0 , (A.13)

where the superscript (1) indicates that it is the first layer of the neural network. The activation a j is
then passed through the activation function h(·) to give the variable z j (Bishop, 2006). The variable z j

can then be moved through the second layer of the neural network, to the output nodes, if the network
is a two-layer neural network such as the one shown in Figure A.1, where the activation is now

ak =
J

∑
j=1

ω
(2)
k j z j +ω

(2)
k0 , (A.14)

where one can have an arbitrary number of output nodes for the network and the number is often
problem-specific. The activation ak must be passed through a final activation function to give the
outputs of the network yk. However, this final layer activation is problem-specific. The final form of a
simple two-layer neural network is

yk = h

(
M

∑
j=1

ω
(2)
k j h

(
N

∑
i=1

ω
(1)
ji xi +ω

(1)
j0

)
+ω

(2)
k0

)
. (A.15)

The entire process followed here is known as forward propagation, as the feature vector x is forward
multiplied through the network. If more hidden units are required, the process can be repeated as
necessary (Bishop, 2006). The activation function h(·) can be any function, however, there are a
few popular ones typically used in practice. An activation function is a scalar-to-scalar function
that typically converts any input to a bounded output range (Bishop, 2006). It is preferable that the
activation function emits an obtainable and continuous derivative and that it induces non-linearity in
some way (Duda et al., 2001).

The linear activation function is the first available type, however, this activation function is not known
to be useful for complex problems as a network with only linear activation can only learn a linear
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representation from input to output. Non-linear activation functions are useful for complex problems,
with three main activation functions being popular. These three functions are the sigmoid activation
function, the hyperbolic tangent (tanh) activation function and the ReLU activation function. Due to
the saturation of the sigmoid activation function that was once considered beneficial, ReLU is often
preferred in literature as it does not make gradient descent techniques harder to implement due to
potentially small gradients (Bishop, 2006). One drawback of the ReLU activation function is that due
to the nature in which it applies activation, one cannot learn using typical back-propagation techniques
if the activation on a node is zero. There are alternate forms of the ReLU activation function, such as
the leaky ReLU, parametric ReLU, Softplus and absolute value ReLU which are all alterations of the
generalised ReLU form

h(ai) = max(0,ai)+αimin(0,ai), (A.16)
where αi is a slope parameter. An analytical form of ReLU exists through the softplus activation
function (Goodfellow et al., 2017). Finally, an output activation unit that one can use for multi-class,
single-label classification is that of the softmax activation function (Bishop, 2006).

An alternative form of standard FFNNs is that of a Convolutional Neural Network (CNN). To
understand why one might use a CNN, one needs to be well acquainted with the property of invariances.
For machine learning, the learnt parametric function should be invariant (to remain unchanged) to an
input feature vector that has undergone some form of transformation. For signal processing techniques
this means that, at least in the case of rotating machinery, a signal that undergoes time-domain
translation should not be seen as a new signal to which the network has no understanding of what
information it holds. If a network is invariant to this transformation and other types, then it becomes
possible to learn the periodic nature of a vibration signal under stationary or even non-stationary
conditions (Yann LeCun, 1995).

Bishop (2006) discusses these techniques in detail, however, the most useful invariance formulation is
the CNN, proposed in Yann LeCun (1995). A convolutional layer in a neural network typically consists
of three operating principles: local receptive fields, weight sharing and sub-sampling, where the latter
is optional. A CNN implements the mathematical operation known as convolution, however sometimes
in practice, one might implement the cross-correlation operation. These two operations appear to be
very similar mathematically but have significant differences in implementation, with the convolution
operation using the reflection of the filter. A convolutional unit in a network uses multiple filters that
are convolved over an input to generate an output (Bouvrie, 2006). The mathematical notation of a
general convolution operation is given as

z(l)j = h

(
∑

i∈D j

z(l−1)
i ∗wl

i j +b j

)
, (A.17)

where l is the layer number, ∗ signifies a convolution operation, D j refers to multiple inputs, the
weights wl

i j are what is known as a feature map of a filter and b j is the bias that is added to a specific
output. Typically, one will convolve i filters over the i input vectors or matrices and then repeat this
process tor produce j outputs (Bouvrie, 2006). Thus there will be i× j filters in a filter layer, where
each filter can be organised into banks and each bank size is equal to the number of inputs zl−1

i . A
filter bank is then convolved and summed to produce the jth output. One can then also incorporate a
sub-sampling layer, such as average sampling or max sampling to reduce the dimensionality of the
system. Sub-sampling also helps ensure that the filtered elements that contain information are being
utilised in the next layer, as it might be the case that a filtered component carries no information and
thus to continually pull its contribution is unnecessary (Wang et al., 2017).
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A.4.1 Data Pre-processing

As is often required for most machine learning problems, one must pre-process the data before the
data is used for any form of feature selection or classification. The reason for this is that data features
are often obtained from a variety of different sources and will have noticeably different feature ranges.
Feature normalisation is used to ensure that each feature is on an equivalent range such that the network
is not immediately biased to a certain feature range due to magnitude. There are two main types of
scaling often employed in literature, namely min-max normalisation and z-score normalisation. These
two types are given as

x̃i =
[xi−min(xi)][max(xnew)−min(xnew)]

max(xi)−min(xi)
+min(xnew), (A.18)

x̃i =
xi−µi

σi
, (A.19)

where the former is the general form of min-max normalisation, and the latter is z-score normalisation.
Often, literature performs unit scaling where a feature range is shifted to [0,1]. Equation (A.19) is
the form used for z-score normalization, where the mean µi and standard deviation σi of feature i is
used to shift the feature domain to one that has a zero mean and unit variance (Kumar Singh et al.,
2015). For the case of vibration signals, z-score normalization is preferred as it retains the natural
structure of a vibration signal data and one cannot say with certainty that the data range will never
contain outliers.

A.5 Network Optimisation
To determine the optimal network parameters ω

(1)
ji and ω

(2)
k j induces an interesting analysis, as there are

many weights. Before this formulation is presented, one needs to define minimisation. Minimisation is
the process whereby an objective function, which is a function of the certain tunable parameters, is
minimised such that an optimal parameter set can be obtained. For machine learning, this process may
allow the network to accurately predict the representation of the target variable given any new input
feature vector. This minimization is performed in the weight space of the objective function, where the
aim is to determine the point where the gradient of the error function indicates a local minimum, given
by

∇E(w) = 0. (A.20)
Numerous techniques attempt to find the minimum point within the weight space, with the most
common and perhaps fundamental approach being gradient descent. Gradient descent attempts to
find a local minimum, as to truly prove that your function is at a global minimum is highly complex
and often not feasible for an iterative numerical method (Bishop, 2006, Snyman and Wilke, 2018).
Gradient descent is where one assumes an initial starting vector w0 and iteratively takes steps, given
as

w(t+1) = w(t)+∆w(t), (A.21)
where t is known as the iteration step counter. The gradient is used as an indication of where to move
in the weight space, however, one does typically not take a unit step from any given gradient, as if the
weight space is highly non-linear and large steps make it easy to move past the minimum. Instead, one
uses a learning rate η that scales the iterative weight update process in the direction of the negative
gradient, given as

w(t+1) = w(t)−η∇E(w)(t). (A.22)
In machine learning, there are different approaches to the evaluation of the gradient. If one utilises the
entire training set, then this is known as a batch method and the descent method is typically called
batch gradient descent or steepest descent. An alternative approach is known as on-line gradient
descent which can be seen as a sequential gradient descent technique. In this variation, an update for
the weights is made for each data point in the training set. One can also utilise mini-batch sampling
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where the batch size is not equal to the training set size N, which can be seen as a hybrid technique.
The advantages to the on-line or hybrid gradient descent techniques are that they can handle data
redundancy, reduce computational effort and can circumvent local minima induced in steepest descent
techniques (Bishop, 2006).

Back-propagation is a technique that aims to determine the error gradient, through a clever implement-
ation of the chain rule and gradient descent. There are two stages typically used in back-propagation,
namely, the evaluation and determination of the error function gradient with respect to the weights are
found. Gradient descent is then applied iteratively to determine the optimal weights for the network.
In the first stage, an error is back-propagated through the application of chain rule through the network
to ascertain the correct weight gradients and then in the second stage weight adjustments are made to
ensure that the objective function is minimised (Bishop, 2006, LeCun et al., 2012).

Back-propagation, however, is the simplest form of gradient descent available and by no means is
it the only method. Multiple alternative gradient descent methodologies have been proposed, such
as the well-known Resilient Propagation (RPROP) method which operates by making weight space
movements based on gradient sign analysis (Riedmiller and Braun, 1993, Riedmiller, 1994). The
leapfrog method is a numerical optimisation technique inspired by the principles governing particle
energy, proposed by Snyman (1982) and detailed in Snyman and Wilke (2018). Back-propagation
with momentum is another famous method, which makes slight alterations by incorporating a previous
iteration gradient as denoted in Duda et al. (2001) . Finally, the adaptive moment estimation method
(Adam) which was proposed by Kingma and Ba (2014) is one of the more popular deep learning
techniques of late. Ruder (2017) provides a succinct summary of the more recent gradient descent
techniques, with it being noted that Adam is the recommended gradient descent technique for deep
learning applications. The Adam algorithm is a local per weight adaptive gradient-based optimisation
algorithm which aids convergence (Kingma and Ba, 2014).

Since Adam’s proposal, there have been many suggested alternatives to help improve training. These
variants include, but are not limited to, AMSGrad proposed by Reddi et al. (2018), DiffGrad proposed
by Dubey et al. (2019), AdaMod and Adabound proposed by Ding et al. (2019), with its extension
being AMSbound proposed by Luo et al. (2019). A preferred alternative to Adam is that of AdamW,
which was formulated by Loshchilov and Hutter (2017) to utilise the proven successes of weight decay,
and by equivalence, L2 regularisation, in stochastic gradient descent approaches. An analysis and
implementation description of Adam and AdamW is given in Appendix B.

However, gradient-based methods are not the only known methods used to optimise neural networks,
with heuristic optimisation also being used. These methods typically do not utilise gradient information
but rather use function evaluations of the loss function only. Well-known techniques are as follows:
Genetic Evolutionary Algorithms as detailed in Siddique and Tokhi (2001), Whitley (1994) and Koehn
(1994), Particle Swarm Optimisation as detailed in Wilke et al. (2006) and simulated annealing. In
heuristic optimisation, often a population set of N networks are all individually evaluated and ranked
using an objective function. The population is used to explore the weight space and iteratively changed
to find a suitable minima, which may be global but it is not always guaranteed. These techniques offer
a greater range of search in the weight space but often are computationally expensive by a factor of the
population size N.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

A7



Appendix B Network Optimisation, GAN training schemes
and Network Architectures

B.1 Chapter Abstract
The purpose of this section is to present and show the mathematics behind the Adam algorithm
and its variant, AdamW. It is also to detail the training schemes of the DLS−GAN and RY −GAN
models.

B.2 Adam and AdamW
The basic workings of the Adam method shall now be described (Kingma and Ba, 2014). There are two
estimate vectors in Adam, that of the first moment estimate and the second moment estimate

mt+1 = β1mt +(1−β1)�∇E(wt), (B.1)

vt+1 = β2vt +(1−β2)∇E(wt)�∇E(wt). (B.2)
The first and second moment are then bias corrected, where their form is now given as

m̂t+1 =
mt+1

1−β t
1
, (B.3)

v̂t+1 =
vt+1

1−β t
2
. (B.4)

It is thus clear that there are two unknown parameters in the Adam algorithm, that of the exponential
decay parameters β1 and β2. These parameters were recommended by Kingma and Ba (2014) to be
initialised as β1,β2 ∈ [0,1) and are recommended to be set as β1 = 0.9,β2 = 0.999. Finally, the Adam
update applied recursively to the weights is

wt+1 = wt −η
m̂t+1√
v̂t+1 + ε

, (B.5)

where ε is a parameter that is typically set to 10−8 for numerical stability in the algorithm, with the
purpose of the parameter to ensure that at no point a division by zero occurs. One can immediately
note is that there is a clear local gradient normalisation property and a historical gradient property. The
parameter β1 controls the historical gradient emphasis, where the higher it is the more Adam will rely
on the previously accumulated gradients as opposed to the current gradient at any time t. It is also
clear to see that the gradient normalisation creates a local gradient for each dimension of the objective
function space. The adaptation of Adam to AdamW is trivial and can be given as

wt+1 = wt −η

(
m̂t+1√
v̂t+1 + ε

+λwt

)
, (B.6)

where λ is the weight decay parameter. The pseudo-code for the Adam and AdamW method can be
found in Algorithm 1.

A8



Appendix B Network Optimisation, GAN training schemes and Network Architectures

Algorithm 1 The Adam Algorithm

Require: learning rate η

β1 = 0.9, β2 = 0.999, ε = 1e−8

Initialise: first moment m0 = 0, second moment v0 = 0, t = 0
Compute loss function gradient: ∇E(wt)
Compute the first moment update: mt+1 = β1mt +(1−β1)�∇E(wt)
Compute the second moment update: vt+1 = β2vt +(1−β2)∇E(wt)�∇E(wt)
Compute the bias corrected first moment: m̂t+1 =

mt+1
1−β t

1

Compute the bias corrected second moment: v̂t+1 =
vt+1

1−β t
2

if Adam == True then
Compute Updated weights: wt+1 = wt −η

m̂t+1√
v̂t+1+ε

else if AdamW == True then
Compute Updated weights: wt+1 = wt −η

(
m̂t+1√
v̂t+1+ε

+λwt

)
end if
Store weights in wtStore

Store the first moment in mtStore

Store the second moment in vtStore

Update the time parameter t = t +1
return Updated weights

B.3 β -TC-VAE
Due to the issues with initially implementing this VAE method, the decision was made to present the
β -TC-VAE thoroughly, so that future work can be done more efficiently, if required. Consider now the
KL divergence from the VAE loss in Equation 2.22, which was given in mini-batch form. In Chen
et al. (2018), they initialise the proof using

1
N

N

∑
i=1

KL
(
qφφφ (z|xi)‖pθθθ (z)

)
= Ep(n)[KL

(
qφφφ (z|xi)‖p(z)

)
], (B.7)

where n now makes reference to the entire dataset of training data x. The decomposition can then be
represented as follows, where the parametrisation elements φφφ were dropped for brevity:

Ep(n)[KL(q(z|n)‖p(z))] = Ep(n)[Eq(z|n)[logq(z|n)− logq(z)− logq(z)+ log∏
j

q(z j)− log∏
j

q(z j)]]

= Eq(z,n)

[
log

q(z|n)
q(z)

]
+Eq(z)

[
log

q(z)
∏ j q(z j)

]
+Eq(z)

[
∑

j
log

q(z j)

p(z j)

]

= Eq(z,n)

[
q(z|n)p(n)
q(z)p(n)

]
+Eq(z)

[
log

q(z)
∏ j q(z j)

]
+∑

j
Eq(z j)

[
log

q(z j)

p(z j)

]
= KL(q(z,n)||q(z)p(n))+KL(q(z)||∏

j
q(z j))+∑

j
KL(q(z j||p(z j)).

(B.8)
Thus, the decomposed form of the KL divergence can be shown to be

Ep(n)[KL(q(z|n)‖p(z))] = KL(q(z,n)||q(z)p(n))︸ ︷︷ ︸
Index-Code MI

+KL(q(z)||∏
j

q(z j))︸ ︷︷ ︸
Total Correlation

+∑
j

KL(q(z j||p(z j))︸ ︷︷ ︸
Dimension-wise KL

,

(B.9)

Department of Mechanical and Aeronautical Engineering
University of Pretoria

A9



Appendix B Network Optimisation, GAN training schemes and Network Architectures

where z j is used to refer to the jth latent variable (Chen et al., 2018). As noted in Equation B.9, there
are three elements which can be referred to as the index code Mutual Information (MI), the Total
Correlation (TC) and the dimension-wise KL divergence. The intuition between these three elements
are: the index code MI can aid in enabling compact and disentangled latent space representations,
the total correlation term can aid in finding independent latent factors in the data distribution and
the dimension-wise KL divergence ensures that the latent dimensions do not deviate from the prior
distribution. Chen et al. (2018) then argue that the existence of the TC term in the KL divergence is
why VAEs can learn disentangled latent representations and give their objective function as

Lβ -TC =−Eq(z|n)p(n)[log p(n|z)]+αKL(q(z,n)||q(z)p(n))+βKL(q(z)||∏
j

q(z j))

+ γ ∑
j

KL(q(z j)||p(z j)), (B.10)

where α,β and γ are weighting parameters, with Chen et al. (2018) stating that one use α = γ = 1
and modifying β . This is the final objective of the β -TC-VAE. However, there is a clear dependency
here on the entire dataset n, which can be problematic when datasets become large in size. One can
however see that this form of the objective function cannot be easily implemented, thus what will
follow is an expansion of the terms until an entire objective function can be presented. To do this, the
author will break down each term individually, for brevity. Consider now the Index-code MI, which,
following the proof of the KL divergence expansion, can be given as

KL(q(z,n)||q(z)p(n)) = Eq(z,n)

[
log

q(z|n)
q(z)

]
= Ep(n)q(z|n)[logq(z|n)− logq(z)]

= Ep(n)q(z|n)[logq(z|n)]−Eq(z,n)[logq(z)]. (B.11)

It is now important to understand that the marginal distribution q(z) is obtained from Ep(n)[q(z|n)],
therefore indicating that the second term in the expansion of the index-code MI can readily be given
as

Eq(z,n)[logq(z)] = Eq(z)[logq(z)], (B.12)
which is the notation adopted by Chen et al. (2018) in their proofs. This is a subtle but important result,
whereby the expectation over the joint distribution (z,n) can be reduced to an expectation over q(z)
due to q(z) being the marginalisation of q(z|n). Consider now the expansion of the TC term, which
can be given as

KL(q(z)||∏
j

q(z j)) = Eq(z)

[
logq(z)−∑

j
logq(z j)

]
. (B.13)

Finally, one can expand the dimension-wise KL term, which can be given, from the proof of the
expanded KL, as

∑
j

KL(q(z j)||p(z j)) = Eq(z)

[
∑

j
logq(z j)−∑

j
log p(z j)

]
. (B.14)

It is clear to note that the expansion of these three terms all depend have elements on the expectation
over z, with a clear dependence of q(z). Chen et al. (2018) proposed that one perform some form of
mini-batch sampling, but state that purely computing the Monte Carlo approximation with a mini-
batch, as is the case for the standard VAE, may underestimate certain components in the objective
function. For the likelihood distribution p(x|z), using mini-batches is sufficient. However, for q(z), a
Monte-Carlo approximation will underestimate the term. Chen et al. (2018) proposes two methods to
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estimate q(z), the first being Mini-batch Weighted Sampling (MWS) and the second being Mini-batch
Stratified Sampling (MSS). The operational principle of these methods are akin to leave one out
cross-validation, whereby MWS acts as a pure cross validation approach and MSS acts summation of
MWS for two different batches.

To begin the explanation of these sampling approaches, consider an estimation of q(zn) for an sample
from a given mini-batch of samples, where this mini-batch is denoted here as BM = {xi,xM} and
xn ∈ BM, with M ≤ N. Let BM be samples obtained without replacement from the dataset n, an
estimation of q(zn) using MWS can be given as

q(zn) =

[
1

NM

M

∑
m=1

q(zn|xm)

]
, (B.15)

where N is the dataset size and M is the batch size. Intuitively, MWS can be described as the likelihood
of sample zn under all samples in the mini-batch BM , normalised by the batch size and the dataset size.
It is critical to note here that zn is a sample obtained from the posterior distribution q(z|xn), which can
be obtained using the re-parametrisation trick. MSS uses the same principle but can be seen as the
sum of MWS for a mini-batch including xn and MWS for a dataset not containing xn. Using MSS, an
estimation for q(z) can be given as

q(zn) =
1
N

q(zn|xn)+
1
M

M−1

∑
m=1

q(zn|xm)+
N−M

NM
q(zn|xM). (B.16)

To then obtain approximations for the entire mini-batch, the expectation is taken over all z∼ q(z|x),
for x ∈BM. Therefore, the final form for MWS and MSS can be denoted as

Eq(z) [logq(z)] =
1
M

M

∑
i=1

[
log

[
M

∑
j=1

q(zi|x j)

]
− log(NM)

]
(B.17)

Eq(z) [logq(z)] =
1
M

M

∑
i=1

[
log

[
1
N

q(zi|xi)+
1
M

M−1

∑
j=1

q(zi|x j)+
N−M

NM
q(zi|xM)

]]
(B.18)

For the observant reader, one may have noted that this only solved one half of the problem and that the
term Eq(z)

[
∑ j q(z j)

]
has not been addressed. Fortunately, to compute this term one can use the same

forms of MWS and MSS described above, with the summation over the latent dimensions occurring
after the evaluation of logq(zn), rather than before. It is also important that one use the log_sum_exp
operator to evaluation logq(zn) and ∑ j logq j(zn), to reduce numerical instabilities obtained when
evaluating likelihoods. Chen et al. (2018) stated that although MSS is unbiased, the results obtained
did not differ substantially in implementation.

B.4 DLS-GAN and RY-GAN Training Algorithms
The purpose of this section is to present both of the training procedures required for the DLS−GAN
and RY−GAN. Algorithm 2 contains the DLS-GAN training procedure while Algorithm 3 contains the
RY-GAN training procedure. These algorithms are given as the DLS-GAN approach used here differs
slightly to that used by Ding and Luo (2019) and due to RY-GAN being proposed as an alternative. For
these algorithms, let H(·, ·) refer to the calculation of any cross-entropy loss, for notational simplicity.
The MMD loss shall also not be expanded, as its analytical form can be found in Equation 2.57.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

A11



Appendix B Network Optimisation, GAN training schemes and Network Architectures

Algorithm 2 Model training for the DLS-GAN approach, adapted from Ding and Luo (2019).

Require: Initialise Eφ ,Gθ ,Dχ and Dω , the number of classes k, continuous latent variable dimension-
ality Ds and noise latent variable dimensionality Dn, λ , λAE and β1−β6 parameters.

Require: Training data x, discriminator update iteration count M
1: while not converged do
2: for i = 1, . . .M do
3: Sample cs ∼ p(c), a batch of size N of one-hot encoded vectors
4: Sample ss ∼ p(s), a batch of size N of continuous samples from a isotropic Gaussian

distribution
5: Sample ns ∼ p(n), a batch of size N of noise samples from a isotropic Gaussian distribution
6: Sample xr ∼ p(x), a batch of size N from the training data
7: zg← (cs,ss,ns), assembled latent prior sample
8: xg← Gθ (zg)
9: zr← cr,sr,nr← Eφ (xr)
10: ε ∼ U(0,1), a sample from a uniform distribution
11: ñ← ε�ns +(1− ε)�nr (� = element-wise product)
12: ∇Dχ ← 1

N ∇χ

[
logDχ(x)− log(1−Dχ(xg))

]
13: ∇Dω ← 1

N ∇ω

[
−Dω(ns)+Dω(nr)+λ [‖∇ñDω(ñ)‖2−1]2

]
14: Update network parameters Dς and Dω

15: end for
16: Sample cs ∼ p(c), a batch of size N of one-hot encoded vectors
17: Sample ss ∼ p(s), a batch of size N of continuous samples from a isotropic Gaussian distribu-

tion
18: Sample ns ∼ p(n), a batch of size N of noise samples from a isotropic Gaussian distribution
19: Sample xr ∼ p(x), a batch of size N from the training data
20: zg← (cs,ss,ns), assembled latent prior sample
21: zr← (cr,sr,nr)← Eφ (xr)
22: x̃r← Gθ (zr)
23: xg← Gθ (zg)
24: (c̃s, s̃s, ñs)← Eφ (xg)
25: z′← (cs,ss,nr), assemble combined latent representation
26: (c̃s2 , s̃s2 , ñr)← Eφ (Gθ (z′))
27: ∇Eφ ← 1

N ∇φ

[
λAE‖xr− x̃r‖2

2−β1Dω(En
φ
(xr))+β2‖nr− ñr‖2

2 +β3H(cs, c̃s)

+β4H(cs, c̃s2)+β5‖ss− s̃s‖2
2 +β6‖ss− s̃s2‖2

2
]

28: ∇Gθ ← 1
N ∇θ

[
− log Dχ (Gθ (zg))

1−Dχ (Gθ (zg))
+λAE‖xr− x̃r‖2

2 +β2‖nr− ñr‖2
2 +β3H(cs, c̃s)

+β4H(cs, c̃s2)+β5‖ss− s̃s‖2
2 +β6‖ss− s̃s2‖2

2
]

29: Update network parameters Eφ and Gθ

30: end while
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Algorithm 3 Model training for the RY-GAN approach.

Require: Initialise Eφ ,Gθ ,Dχ , Dω and Dς , the number of classes k, continuous latent variable dimen-
sionality Ds and noise latent variable dimensionality Dn, λ , λAE and α parameters.

Require: Training data x, discriminator update iteration count M
1: while not converged do
2: for i = 1, . . .M do
3: Sample cs ∼ p(c), a batch of size N of one-hot encoded vectors
4: Sample ss ∼ p(s), a batch of size N of continuous samples from a isotropic Gaussian

distribution
5: Sample ns ∼ p(n), a batch of size N of noise samples from a isotropic Gaussian distribution
6: Sample xr ∼ p(x), a batch of size N from the training data
7: zg← (cs,ss,ns), assembled latent prior sample
8: xg← Gθ (zg)
9: zr← cr,sr,nr← Eφ (xr)
10: x̃r← Gθ (zr)
11: ε ∼ U(0,1), a sample from a uniform distribution
12: ñ← ε�ns +(1− ε)�nr (� = element-wise product)
13: ∇Dχ ← 1

N ∇χ

[
logDχ(x)− 1

2

(
log(1−Dχ(xg))+ log(1−Dχ(x̃r)

)]
14: Sample ε ∼ N(0,0.32), white noise to be added to samples seen by Dς

15: ∇Dς ← 1
N ∇ς

[
logDς (cs)− log(1−Dς (cr)

]
16: ∇Dω ← 1

N ∇ω

[
−Dω(ns)+Dω(nr)+λ [‖∇ñDω(ñ)‖2−1]2

]
17: Update network parameters Dχ , Dς and Dω

18: end for
19: Sample cs ∼ p(c), a batch of size N of one-hot encoded vectors
20: Sample ss ∼ p(s), a batch of size N of continuous samples from a isotropic Gaussian distribu-

tion
21: Sample ns ∼ p(n), a batch of size N of noise samples from a isotropic Gaussian distribution
22: Sample xr ∼ p(x), a batch of size N from the training data
23: zg← (cs,ss,ns), assembled latent prior sample
24: zr← (cr,sr,nr)← Eφ (xr)
25: x̃r← Gθ (zr)
26: xg← Gθ (zg)
27: (c̃s, s̃s, ñs)← Eφ (xg)
28: Sample ε ∼ N(0,0.32), white noise to be added to samples seen by Dς

29: ∇Eφ ← 1
N ∇φ

[
αλAE‖xr− x̃r‖2

2−Dω(En
φ
(xr))− log

Dς (Ec
φ
(xr)+ε)

1−Dς (Ec
φ
(xr)+ε) +LMMD(ss,sr)

]
30: ∇Gθ ← 1

N ∇θ

[
−1−α

2

(
log Dχ (xg)

1−Dχ (xg)
+− log Dχ (x̃r))

1−Dχ (x̃r)

)
+αλAE‖xr− x̃r‖2

2 +H(cs, c̃s)+‖ss− s̃s‖2
2

]
31: Update network parameters Eφ and Gθ

32: end while
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B.5 Network Architectures and Parameters
In this work, Pytorch was used to optimise and train the models (Paszke et al., 2019). The system used
to train and evaluate the models had an Intel i7-8750H processor and a Geforce RTX 960 graphics
card. The decision was made to generalise the network architecture design based on the window length
to simplify the analysis process and to reduce the analysis complexity for the results section of this
work. This allows for a simple implementation as well as consistent network design referencing. For
any network that used a convolutional layer, the decision was made to use a fixed stride and kernel
size, with the padding being designed around these two components to ensure that equal feature map
division could be found from one layer to the next. The convolutional layer design used in this work
consists of:

• Lstride = 4
• Lkernel = 32
• Lpadding =

Lkernel−Lstride
2 = 14

Under these properties, the network convolutional layer output size is enforced to undergo a reduction
or expansion of a factor of four on the layer input size. To determine the output dimensionality
of a convolutional layer, R(Nc×Lout ,1), one then needs to simply divide (or multiply if one uses de-
convolutional layers) the number of channels by four times the number of convolutional layers that
have been used at that point. To attach and layer that performs convolution to a fully connected
layer, the decision was made to use a layer size of LFC1 = 800 at the intermediary level and then a
second fully connected layer to the final output dimensionality, where this could be a prescribed latent
space dimensionality or a single node in the case of a discriminator or critic network. For a tabular
visualisation of what these architectures may look like for an encoder, decoder or data discriminator
network, please refer to Table B.1.

Table B.1. A table showing the basic network architecture for an encoder network for Lstride =
4,Lkernel = 32 and Lpad = 14. Note that N is the batch size and if one wishes to design a decoder, this
table can simply be reversed. If one wishes to design a data discriminator, the final layer at depth level
5 can be a fully connected layer R800→ R1.

Network depth level Layer Operator Layer Dimensionality

0 - RN×1×Lw

1 Convolution RN×32× Lw
4

2 Convolution RN×64× Lw
16

3 Convolution RN×64× Lw
64

4 Fully-connected RN×800

5 Fully-connected RN×Zlatent

For any latent discriminator or critic that is used in this work, a simple three layer fully-connected
network is used where the dimensionality follows the process: Rinput → R3000→ R3000→ R1. This
decision was made arbitrarily and based of basic discriminator designs the authors noted in literature.
In this work, the windowed partitioning scheme with a overlap percentage shall be used as it gives a
good number of signal samples from a single vibration signal, with an overlap of 50% being arbitrarily
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chosen. The next section of this section will detail the chosen network architectures for the different
datasets analysed in this work. This information comprises of consistent and varied decisions and thus
the authors will try to convey this information as clearly as possible to the reader. In Table B.2, the
relevant activation functions for the different model components are given. Note that the author kept
these activations consistent through the different datasets. The final element that allows for results
reproduction is that of the latent dimensionality and hyper-parameters used for each dataset. This
information is given in Tables B.3 and B.4. To train the models in this work, the Adam and AdamW
methods were used for the VAE and GAN-based methods respectively, with parameters β1 = 0.6,
β2 = 0.999. Instance noise was also used for the first three thousand epochs of the GAN-based method
training. The RY −GAN method also used generated samples from Zlatent = [c,0,0] to aim in enforcing
that the decoder use the class variables. This additional component was linearly annealed in the first
2500 epochs and was added to the L2 loss component.

Table B.2. A table showing the basic network activation functions that was used alongside the inform-
ation in Table B.1.

Method Hidden Layer Activations Output Layer Activations
VAE: z ∈ RZlatent ReLU for all hidden layers µ : linear, σ2: softplus (for both encoder and decoder)
β −TC−VAE(β = 1): z ∈ RZlatent ReLU for all hidden layers µ : linear, σ2: softplus (for both encoder and decoder)

RY −GAN: z ∈ RZlatent=[c,s,n]

Encoder: leaky ReLU (a = 0.2) for all hidden layers
Decoder: leaky ReLU (a = 0.2) for all hidden layers
Dχ(x): SN on all hidden layers, ReLU for all hidden layers
Dn(n)/Dc(c): ReLU for all hidden layers

Encoder ([c,s,n]): softmax, linear, linear
Decoder: linear
Dχ(x): sigmoid
Dn(n)/Dc(c): Linear/Sigmoid

DLS−GAN: z ∈ RZlatent=[c,s,n]

Encoder: leaky ReLU (a = 0.2) for all hidden layers
Decoder: leaky ReLU (a = 0.2) for all hidden layers
Dχ(x): SN on all hidden layers, ReLU for all hidden layers
Dn(n)/Dc(c): ReLU for all hidden layers

Encoder ([c,s,n]): softmax, linear, linear
Decoder: linear
Dχ(x): sigmoid
Dn(n)/Dc(c): Linear/Sigmoid

Table B.3. The relevant latent dimensionality of the different models trained on the different datasets.
Note that the input window length was not included here as its effect is noted in the form of the encoder
and decoder given by Table B.1.

Latent variable model type: Phenomenological model IMS dataset Gearbox Dataset
VAE1 and VAE2 Zlatent = 100 Zlatent = 100 Zlatent = 50

β −TC−VAE1 and β −TC−VAE2 Zlatent = 100 Zlatent = 100 Zlatent = 50
RY −GAN Zlatent = R[10,10,128] Zlatent = R[4,10,128] Zlatent = R[10,10,125]

DLS−GAN Zlatent = R[10,10,128] Zlatent = R[10,10,128] Zlatent = R[10,10,150]

Table B.4. The relevant hyper-parameters of the different models trained on the different datasets.

Latent variable model type: Phenomenological model IMS dataset Gearbox Dataset
VAE1 and VAE2 η = 1e−4 η = 1e−4 η = 1e−4

β −TC−VAE1 and β −TC−VAE2 η = 1e−4 η = 1e−4 η = 1e−4
RY −GAN η = 5e−5,α = 0.5,λAE = 10 η = 5e−5,α = 0.5,λAE = 10 η = 5e−5,α = 0.5,λ = 10

DLS−GAN
η = 1e−5,λAE = 60,β1 = β2 =

β3 = β4 = β5 = β6 = 1
η = 1e−5,λAE = 80,β1 = β2 =

β3 = β4 = β5 = β6 = 1
η = 1e−5,λAE = 40,β1 = β2 =

β3 = β4 = β5 = β6 = 1
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C.1 Chapter Abstract
The purpose of this chapter is to present the important parameters for the phenomenological data
model. These parameters were chosen such that a simple model could be obtained while still ensuring
that sufficient difficulty could be presented in the data.

C.2 Model Parameters
For the phenomenological data model, Table C.1 contains the modulation coefficients for the first order
impulse responses of the phenomenological data, Table C.2 contains the deterministic gear components
while Table C.3 contains the random gear component statistics. Table C.4 contains the variance of
the noise and random gear components. The SNR that one can design each component for, to provide
some scaling with respect to the noise floor using Equation 4.17, is given in Table C.5. The properties
of the bearings used in this work and the respective fault frequencies are given in Table C.6. Note that
for all of the zi components that are modulated, the amplitude modulation function used in this work
is

Mi(t) = ω
2
re f (t). (C.1)

Table C.1. A table showing the impulse response coefficients for Equation (4.5) for the three transmis-
sion paths being modelled.

Modulation Component Natural Frequency - fn,i(Hz) Damping Ratio - ξi

hgd (t) 2000 0.05
hgr(t) 1300 0.05
hbr(t) 7000 0.05

Table C.2. A table showing the mesh coefficients for the deterministic gear excitation signal, whose
form is given in Equation (4.6).

j 1 2 3

Amplitude - a( j)
gd 1 2 3

Phase - ϕ
( j)
gd 0 0 0
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Table C.3. A table showing the mesh coefficients for the random gear excitation signal, whose form is
given in Equation (4.8).

j 1 2 3

Amplitude - a( j)
gr 1 2 3

Phase - ϕ
( j)
gr 0 0 0

Table C.4. A table showing the variance of the distributed gear noise and the white noise, given in
Equations (4.8) and 4.9 respectively.

Variance Component Value

σ2
n 0.01

σ2
gr

1

Table C.5. A table showing the pre-defined component SNR used in Equation (4.17).

Component Signal-to-Noise Ratio Value (dB)

Deterministic gear 5
Random gear -10
Bearing fault [−40,10], linearly spaced

Table C.6. Phenomenological model bearing and fault characteristics. Notice the fault frequencies
given proportional to the dataset shaft speed fsha f t .

Characteristic Unit

Roller Bearing

Pitch diameter 6.35mm
Roller element diameter 36mm

Contact angle 0◦

Number of rolling elements 10
Gear teeth 20
Gear ratio 1

Frequencies of interest

Sampling frequency (Fs) 25kHz
Gear Mesh Frequency 20 Hz

fsha f t

Ball Pass Frequency Outer race (BPFO) 4.12 Hz
fsha f t

Ball Pass Frequency Inner race (BPFI) 5.88 Hz
fsha f t

Ball Spin Frequency (BSF) 2.75 Hz
fsha f t

Ball Cage Frequency/Fundamental Train Frequency (BCF/FTF) 0.41 Hz
fsha f t
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Minimum entropy deconvolution (MED) is a methodology that was proposed in the work of Wiggins
(1978) as a means to obtain a signal filter that maximises the kurtosis of the filtered signal. The MED
objective is to recover a filtered signal that captures the impulsive components of a signal, whereby the
minimization of entropy makes reference to the enhancement of structural information in a signal, as a
signal with higher entropy will tend to be more Gaussian, or more similar to white noise. MED utilises
the kurtosis as a proxy to measure the entropy, as a higher kurtosis corresponds to a further deviation
from a Gaussian-like state. Under the kurtosis proxy the objective is to determine a set of FIR filter
coefficients that maximise the objective function OMED(h)

OMED(h) =
∑

N−1
n=0 y4(n)[

∑
N−1
n=0 y2(n)

]2 , (D.1)

where y(n) is a signal that was filtered through a FIR filter h consisting of L coefficients which can be
given as

y(n) =
L

∑
l=1

h(l)x(n− l). (D.2)

One can then consider the vector field of OMED with respect to each filter coefficient and determine the
filter coefficients that result in a local maximum. This can be found through

dOMED(h)
dh

= 0. (D.3)

The expansion of this objective function shall be detailed in this work as the author felt that its
reproducibility is key to future use of such methods. As a first step, consider the representation
of OMED(h) as the ratio of two components, v(h) = ∑

N−1
n=0 y4(n) and u(h) = ∑

N−1
n=0 y2(n) such that

OMED(h) = v(h)
u2(h) . Using the quotient rule, the partial derivative of OMED(h) with respect to hi can be

found to be

∂OMED(h)
∂hi

=
u2(h)

[
∑

N−1
n=0 4y3(n) ∂y(n)

∂hi

]
− v(h)

[
2
(
∑

N−1
n=0 y2(n)

)(
2∑

N−1
n=0 y(n)

)]
[u2(h)]2

,

using
∂y(n)
∂hi

= x(n− i),

=
1

u4(h)

[
u2(h)

[
4

N−1

∑
n=0

y3(n)x(n− i)

]
− v(h)

[
4u(h)

N−1

∑
n=0

y(n)x(n− i)

]]
,

=
1

u4(h)

[
4

N−1

∑
n=0

y3(n)x(n− i)−4v(h)u(h)
N−1

∑
n=0

y(n)x(n− i)

]
. (D.4)
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One can then consider the case where the local maximum is to be found, by setting Equation D.4 to
zero. The result of this is the relation

v(h)
u3(h)

N−1

∑
n=0

y(n)x(n− i) =
1

u4(h)

N−1

∑
n=0

y3(n)x(n− i), (D.5)

from which the result can be shown to be

OMED(h)u(h)
N−1

∑
n=0

y(n)x(n− i) =
N−1

∑
n=0

y3(n)x(n− i), (D.6)

which can be simplified further that noting that one can also expand the summation on the left as it is
dependant on y(n), resulting in

OMED(h)u(h)
L

∑
p=1

h(p)
N−1

∑
n=0

x(n− p)x(n− i) =
N−1

∑
n=0

y3(n)x(n− i), (D.7)

It is immediately noticeable how this equation is a non-linear function of h and cannot be solved
for analytically. It is also only the partial derivative towards ∂hi, and thus needs to be expanded to
account for the other filter coefficients. This process can be given in matrix form as A˜h = g, where
A˜ is a Toeplitz auto-correlation matrix of dimensionality RL×L, h are the filter coefficients and g is
a column vector of dimensionality RL×1 containing the right hand side of Equation D.7. Due to the
issues with respect to the analytical solution, a iterative process is applied whereby an initial set of
filter coefficients h(0) are assumed and the iterative algorithm

h(t+1) = A˜−1(h(t))g(h(t)). (D.8)

Lee and Nandi (2000) provides a detailed analysis of this method, referred to as the Objective Function
Method (OFM), with a potential stopping function check, which can be given as

e =
h(t+1)−µth(t)

µth(t)
, (D.9)

where µt is given as

µt =

√
E
[
(h(t+1))2

]
E
[
(h(t))2

] . (D.10)

One may then use E [e] as a threshold, with Lee and Nandi (2000) using a value of 0.01 such that
iteration is terminated when E [e]≤ 0.01. Interestingly, literature defines a stopping condition not on
the kurtosis but rather on the rate of change of the coefficients from one iteration to the next. Endo
and Randall (2007) provides a discussion of this, stating that optimal kurtosis may not be optimal for
fault diagnosis purposes. It was also noted that in their case typically two iterations were required to
converge to a very small coefficient change.

In the work of Sawalhi et al. (2007), an Auto-Regressive residual MED-SK approach was used to
filter the signal after which the squared envelope and envelope spectrum were analysed. During their
investigation, an analysis was performed into the inclusion of MED and the benefits it may offer, by
comparing an AR-SK result to a AR-MED-SK result. It was shown that with the enhancement of MED,
a deeper understanding of the fault present could be obtained. Interestingly, the result was noticeable
but it was clear that just an SK filter produced sufficient results. In the work of McDonald and Zhao
(2017), flaws of the MED approach were presented and it was noted that MED tended to produce
spurious impulses in the filtered signal which the authors attributed to the convolution operation and
the zero-padding that is often involved in there. Alternative techniques were then proposed to improve
the performance of MED.
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Appendix D MED-SK-NES: Derivation and Application

The next element of the MED-SK-NES approach is that of the SK-based filter. Abboud et al. (2019)
states that this method is used to further enhance signal impulsivity with respect to the background
noise floor prior to the analysis with the SES. The SK is a widely used technique in signal processing,
with works such as the Kurtogram, Antoni and Randall (2006), Antoni (2007), being heavily dependant
on the usage of the SK. The SK is then forth-order normalised cumulant of the short-time Fourier
transform of a signal x(n), denoted here as X(n, f ), which can be given as

Kx( f ) =
〈|X(n, f )|4〉
〈|X(n, f )|2〉2

−2, (D.11)

where 〈·〉 denotes the average operator over time index n, 〈 f (n)〉= limn→∞
1
N ∑N f (n). Note that the

SK definition here subtracts two as opposed to three as X(n, f ) is complex and thus the Gaussian
spectral kurtosis is not longer three. To use the SK as a filter, one must use the square root of the
spectral kurtosis as this filter is proportional to a Wiener filter (Sawalhi, 2004). This then defines a
Wiener filter of the form

W ( f ) = k
√

Kx( f ), (D.12)
where k is an arbitrary constant and can be set to one. One can then either perform frequency domain
weighting or transform the SK filter to the time domain using the Inverse Fourier transform to obtain a
impulse response that can be used as a filter. In this work the former approach is favoured over the
latter. The final element of this analysis is the calculation of the Normalised Envelope Spectrum of the√

SK-filtered MED signal z(n). To do this, the Squared Envelope Spectrum is determined using the
discrete time Fourier Transform (DTFT) of the squared Hilbert transform analytic signal

SESz(α) = |DT FTn→α(|A [z(n)] |2)|, (D.13)

where A [·] is the complex analytic signal obtained from the Hilbert transform. The SES is then
normalised by the DC offset of the spectrum to obtain the NES

NESz(α) =

(
SESz(α)

SESz(0)

)2

. (D.14)

It is then expected that the NESz(α) exhibit harmonics of a bearing fault frequency with side-bands
offset by the modulation frequency. Figure D.1 contains a visual illustration of the full process in
which one applies MED-SK-NES.

Figure D.1. A figure showing the MED-SK-NES process in full, adapted from Abboud et al. (2019).
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Appendix E Interesting Results

The purpose of this appendix document is to allow for interested readers to analyse other results that
were excluded from the results section of this work.

E.1 IMS: Bearing three, dataset one

0 500 1000 1500 2000
Record Number

100

101

Av
er

ag
e 

M
SE

156
157 156

average  MSE
+ 6

threshold deviance (156)
threshold deviance (157)
condition deviance (156)

(a) Case one, VAE1
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(b) Case two, VAE1
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(c) Case one, VAE2

0 500 1000 1500 2000
Record Number

100

101

102

103

104

105

Av
er

ag
e 

M
SE

1843
1845 1843

average  MSE
+ 6

threshold deviance (1843)
threshold deviance (1845)
condition deviance (1843)

(d) Case two, VAE2

Figure E.1. The HI response obtained from VAE1 and VAE2 models trained using 5% and 10% of the
data available for bearing three from IMS dataset one.

E.2 IMS: Bearing one, dataset two
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Appendix E Interesting Results
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(a) LHI(1), VAE1

0 500 1000 1500 2000
Record Number

101

102

Av
er

ag
e 

di
st

an
ce

2121
2122 2121

average latent distance
+ 6

threshold deviance (2121)
threshold deviance (2122)
condition deviance (2121)

(b) LHI(1), VAE2
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(c) LHI(2), VAE1
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(d) LHI(2), VAE2
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(e) LHI(3), VAE1
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(f) LHI(3), VAE2

Figure E.2. The LHI responses from VAE1 and VAE2 models for the case where the model had access
to 10% of the records available as training data. Notice the visible lack of jump around record 155 for
the VAE2 response in LHI(1) and LHI(2).
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(a) VAE1,Lw = 512
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(b) VAE2,Lw = 512

Figure E.3. The HI(1) result obtained using two different parametrisations of the VAE model under
the same window length for the first bearing of the second IMS dataset. Figure E.3(a) shows the
deterministic VAE while Figure E.3(b) shows the stochastic VAE
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(a) LHI(1)−VAE1,Lw = 512
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(b) LHI(1)−VAE2,Lw = 512
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(c) LHI(2)−VAE1,Lw = 512
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(d) LHI(2)−VAE2,Lw = 512
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(e) LHI(3)−VAE1,Lw = 512
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(f) LHI(3)−VAE2,Lw = 512

Figure E.4. The three LHI’s response curves obtained from the deterministic and stochastic VAE
models trained on bearing one data from the second IMS dataset. Figures E.4(a), (c) and (e) refer to
the deterministic results and Figures E.4(b), (d) and (f) refer to the stochastic results.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

A24


	Acknowledgements
	Abstract
	Nomenclature
	Introduction
	Background
	The Nature of Gearbox Faults
	Gear Faults
	Bearing Faults
	Operating Condition Problem
	Transmission Path Effects
	Fault Occurrence

	Related Work
	Signal Processing Approaches
	Learning Approaches

	Latent Variable Models
	Application to Vibration Data
	The Latent Manifold
	Latent Manifold Entanglement

	Scope of Research
	Document Overview

	Unsupervised Learning
	Chapter Abstract
	Introduction
	Principal Component Analysis
	Variational Auto-Encoders
	VAE Discussion

	-TC-VAE
	Generative Adversarial Networks
	GAN Training
	Loss Function Improvement

	GAN Training Framework Improvement
	Optimisation Scheme Improvement
	GAN Formulation Improvement
	GANs and VAEs
	GAN Parametrisation Improvement

	Latent Disentanglement
	Disentangled Latent Space Clustering
	Representation Yielding GAN

	Data-Driven Condition Monitoring
	Chapter Abstract
	Latent Manifolds in Latent Variable Models
	Pseudo Time Analysis
	Vibration Data Preparation
	Latent Space Analysis and Metrics


	Phenomenological Model Dataset Analysis
	Chapter Abstract
	Dataset Introduction
	Dataset Properties

	Dataset Result Analysis
	PCA Response
	VAE Response
	GAN-based Response
	Dataset Consolidation


	IMS Dataset Analysis
	Chapter Abstract
	Dataset Introduction
	Dataset Description

	Dataset Result Analysis
	Dataset One: Bearing Three
	Dataset One: Bearing Four
	Dataset Two - Bearing One
	IMS Consolidation


	Gearbox Dataset Analysis
	Chapter Abstract
	Dataset Introduction
	Dataset Result Analysis
	Filtered Gearbox Dataset
	Unfiltered Gearbox Dataset
	Signal Processing Results
	TSA Response Analysis

	Conclusion

	Conclusion and Recommendations
	Conclusion
	Future work

	References
	Machine Learning
	Chapter Abstract
	Introduction
	Supervised Learning
	Regression
	Classification

	Network Architecture
	Data Pre-processing

	Network Optimisation

	Network Optimisation, GAN training schemes and Network Architectures
	Chapter Abstract
	Adam and AdamW
	-TC-VAE
	DLS-GAN and RY-GAN Training Algorithms
	Network Architectures and Parameters

	Phenomenological Model Parameters
	Chapter Abstract
	Model Parameters

	MED-SK-NES: Derivation and Application
	Interesting Results
	IMS: Bearing three, dataset one
	IMS: Bearing one, dataset two


