Supporting Information

Polypyrrole-promoted rGO-MoS₂ nanocomposite for enhanced photocatalytic

conversion of CO₂ and H₂O to CO, CH₄ and H₂ products

Neeraj Kumar^{1*}, Santosh Kumar², Rashi Gusain^{1,3}, Ncholu Manyala⁴, Salvador Eslava² and

Suprakas Sinha Ray^{1,3*}

¹Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa

²Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, London

³Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa

⁴Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0002, South Africa

*Corresponding authors: N. Kumar (<u>nkumar@csir.co.za; ynk.neeraj@gmail.com</u>), and S. S. Ray (<u>rsuprakas@csir.co.za; ssinharay@uj.ac.za</u>)

Experimental:

Synthesis of graphene oxide sheets using improved Hummer's method: In a typical experiment, 3 g of graphite powder was added to 400 mL of a concentrated acid mixture (H_3PO_4/H_2SO_4 :1/9 v/v) and stirred for a 15 min. KMnO₄ (6 weight equivalent of graphite) was then added to the above mixture and stirred at 50°C for 14 h. After completion, the reaction was cooled naturally and then poured on ice ~500 mL with 5 mL of H_2O_2 (30 %). To avoid Mn impurities, the solution was further diluted with deionized (DI) water and centrifuged using water and diluted HCl to obtain dark a brown product as graphite oxide. This product was re-dispersed in D.I. H_2O and sonicated for 2 h to get graphene oxide nanosheets. In Fig. S1, XRD confirms the successful formation of graphene oxide.

Fig. S1 Spectral data graph for AM 1.5 G filtered 300 W Xe lamp.

Apparent quantum yield calculations

Apparent quantum efficiency (AQE) was measured under the same experimental setup, using 523 nm LED monochromatic light and the equation as follows:

AQE / % =
$$\frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100$$

The number of incident photons are calculated using the following equations:

Number of moles of incident photons per time ($N_{Einstein}$) = $\frac{N_{umber of incident photons per time (N_p)}{N_A}$

where N_p can be calculated as follows:

$$N_P = \frac{\text{Light intensity (E)}}{P_{\text{hoton energy (E_p)}}}$$
 and photon energy $(E_p) = \frac{hc}{\lambda}$; substituting, we obtain

$$E_{p} = \frac{(6.625 \times 10^{-34} \text{ J s})(3 \times 10^{17} \text{ nm s}^{-1})}{523 \text{ nm}} = 0.038 \times 10^{-17} \text{ J};$$

Light intensity (*E*) = Irradiance (W m⁻²) × effective light irradiation area (m²).

Irradiance in the reactor measured as 9 mW cm⁻² and the effective light irradiation area was 3.0 cm². Therefore, calculated *E* was 0.027 W or J s⁻¹ at 523 nm.

Substituting, we obtain:

$$N_p = \frac{E}{E_p} = \frac{0.027 \, J \, s^{-1}}{0.038 \, \times 10^{-17} \, J} = 0.71 \, \times \, 10^{17} \, s^{-1}$$

 $N_{Einstein} \ = \ \frac{N_P}{N_A} = \frac{0.71 \, \times \, 10^{17} \, s^{-1}}{6.022 \, \times \, 10^{23} \, mol^{-1}} = 0.118 \ \times \ 10^{-6} \ mol \ s^{-1} = \ 0.118 \ \mu mol \ s^{-1}$

The production rates of H_2 , CO, and CH₄ with 523 nm monochromatic light under given experimental conditions were 0.37, 0.19 and 0.02 µmol h⁻¹ respectively. Finally,

AQE (%) =
$$\frac{2 \times H2 \text{ production rate in } \mu \text{mol s}^{-1}}{0.118 \ \mu \text{mol s}^{-1}} \times 100 = 0.17$$

AQE (%) = $\frac{2 \times CO \text{ production rate in } \mu \text{mol s}^{-1}}{0.118 \ \mu \text{mol s}^{-1}} \times 100 = 0.089$

AQE (%) = $\frac{8 \times CO \text{ production rate in } \mu \text{mol s}^{-1}}{0.118 \ \mu \text{mol s}^{-1}} \times 100 = 0.037$

Therefore, total AQE in the given experimental condition rGO-MoS₂/PPy-150 nanocomposite is 0.30 %.

Fig. S2 XRD pattern of graphene oxide (GO).

Fig. S3 FTIR spectrum of graphene rGO-MoS $_2$ nanocomposite.

Fig. S4 N_2 adsorption-desorption isotherms of MoS_2 nanosheets and rGO-MoS₂.

Fig. S5 EDX spectrum of rGO-MoS₂/PPy-150 nanocomposite.

Table S1 BET surface area of MoS₂, rGO-MoS₂, rGO-MoS₂/PPy-600, rGO-MoS₂/PPy-300 and rGO-MoS₂/PPy-150 nanocomposite.

Sample	Surface Area (S _{BET}), (m ² /g)
MoS_2	16.1
rGO-MoS ₂	149.6
rGO-MoS ₂ /PPy-600	8.4
rGO-MoS ₂ /PPy-300	12.5
rGO-MoS ₂ /PPy-150	16.0

Fig. S6 Rate of O₂ evolution on different photocatalytic systems.

.

Fig. S7 Tauc's plots of MoS_2 and $rGO-MoS_2$ for band gap calculation.