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A B S T R A C T

In the framework of the quasi-static approximation (QSA), some theoretical
studies were conducted within the local response approximation (LRA). In
these studies, certain plasmonic and plexcitonic systems were proposed, and
their spectroscopic properties investigated. The QSA allows us to study metal
nanoparticles (MNPs) and inter-particle distances that are small compared to
the wavelength of light in the medium surrounding the MNPs, while the LRA
enables us to utilize the bulk dielectric response of the metal in consideration.
We have studied the following properties in detail: localized surface plasmon
resonances (LSPRs), plasmon-induced transparency (PIT), and plasmon-enhanced
fluorescence (PEF), while exciton-induced transparency (EIT) has only been
partly studied. LSPR and PIT are properties of plasmonic systems while PEF
and EIT are properties of plexcitonic systems. Both PIT and EIT are forms of
electromagnetically-induced transparency.

We started by constructing a geometry-based theoretical model that predicts
the LSPR formula of any member of a certain group of single MNPs, using the
LSPR for the most complex MNP geometry in the group. The model shows
that from the LSPR of a nanorice, one could predict the LSPRs of concentric
nanoshells, solid and cavity nanorods and nanodisks, respectively, and solid
and cavity nanospheres. These formulae serve as quick references for predicting
LSPRs since they can easily be compared to LSPRs obtained from spectral analysis.
Likewise, we studied LSPR in addition to PIT in a nanoegg-nanorod dimer. We
proposed this dimer in order to investigate how the interplay between plasmon
coupling and MNP sizes affects PIT in complex geometries such as nanoeggs.
Our result shows that the formation of PIT dips — regions in the dimer spectra
where little or no incident radiation is absorbed by the dimer — are strongly-
dependent on the nanorod size, due to the dependence of the plasmon coupling
strength on the half-length of the nanorod.

We investigated the phenomenon of PEF using a nanoegg-emitter system
and a nanorod-emitter system, respectively. Emitters are organic or inorganic
materials whose radiative decay rates increase dramatically when placed near a
MNP subjected to plasmon excitation. Our theoretical results show that the choice
of the MNP-emitter system to use depends on both the intrinsic quantum yield of
the emitter and the antenna efficiency of the MNP. Theory shows that PEF is more
substantial when the former is very low, and it will always occur if the latter is
greater than the former. A nanorod-emitter system should serve as the preferred
choice, due to the relatively easier synthesis of nanorods compared to nanoeggs,
and the large longitudinal polarizability of nanorods as a result of the lightning
rod effect. However, our theoretical model also shows that a nanoegg-emitter
system can rival the PEF parameters obtained in a nanorod-emitter system, due
to an increase in the Purcell factor of the emitter with increasing core-offset of
the nanoegg, resulting from the presence of dipole-active modes in the nanoegg.
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1
I N T R O D U C T I O N

1.1 overview of classical plasmonics

Plasmonics can be described as the study of the spectroscopic properties of
metal-dielectric nanostructures upon their interaction with electromagnetic ra-
diation of certain wavelength.1–3 Though such nanostructures usually contain
noble metals,1, 4 plasmonic behaviour has also been reported in other transition
metals and their oxides,2 and in alkali metals.3 Metal nanoparticles (MNPs) are
known to support localized surface plasmons – collective oscillations of confined
conduction electrons at the metal-dielectric interface, in the ultraviolet,5 visi-
ble,1, 4 and near-infrared regions1 of the electromagnetic spectrum. MNPs display
size-dependent characteristic colours upon exposure to diffused light (Fig. 1.1(a)),
due to excitation near their localized surface plasmon resonance (LSPR). The
colour displayed is due to the scattered component of the visible light region.
For a solution of gold nanospheres,6 the colour undergoes a blueshift, i.e., from
brick red to light blue (Fig. 1.1(a)), as the particle sizes increase from 20 nm
to 60 nm in diameter. However, in asymmetric MNPs — such as nanodisks7, 8

Figure 1.1: (a) Size-dependent characteristic colours of colloidal solutions of spherical
gold nanoparticles. (Adapted from Ref.6) (b) Shape-dependent scattering cross-sections
of single silver nanostructures of same volume: a nanosphere (NS), a nanodisk (ND),
and a nanorod (NR) embedded in water, showing the positions of their dipolar LSPR.
(Reproduced from Ref.7)

(oblate spheroidal nanostructures), nanorods9–12 (circular cylindrical nanostruc-
tures with two hemispherical caps on its opposite ends), nanoeggs13–15 (core-shell
nanostructures with off-centre dielectric or metallic cores), nanocups15 (core-shell
nanostructures with off-centre dielectric or metallic cores in contact with the host

1



1.1 overview of classical plasmonics 2

medium), and nanocaps (core-shell nanostructures with incomplete dielectric
or metallic shells),16 and in dimers17–19 and aggregates20 — the polarization of
the incident light affects their LSPR. As shown in Fig. 1.1(b), the spectral peak
positions of the nanostructures, i.e., their LSPR, are shape-dependent. Their
dependence on the polarization of the incident field will be discussed in Chapter
2. For single silver nanoparticles, their LSPR shifts from the blue to the red
region of the visible light spectrum as the shape changes from a sphere to a
rod. This is due to a decrease in the geometric factor, L, of the MNP, i.e., from
L = 0.333 to L = 0.109, as shown in Fig. 1.1(b). The geometric factor, also
known as shape factor,7, 21 is a dimensionless geometric parameter that arises
from the shape-induced dipole field due to the response of the nanostructure
to an incident field. This determines the particle’s polarizability, i.e., the ease
at which the surface charges are polarized upon excitation by light, and the
corresponding spectral properties. For instance, in Fig. 1.1(b), the decrease in
L is also responsible for the increase in the scattering cross-section. Thus, for
the same MNP volume, large polarizabilities and redshifted spectra, are mostly
associated with MNPs that possess elongated shapes,7, 22 as well as those with
sharp or pointed edges, due to their ability to induce high surface charges.23, 24

The spectroscopic properties of interest are primarily absorption, scattering, and
extinction of the incident radiation. However, when MNPs are used as optical
nanoantennas,25, 26, 66, 89 several other properties are worth considering, namely:
sensitivity of the LSPR — a measure of the ease at which the LSPR changes with
a change in the refractive index of the host medium,69 quality factor — a ratio
of the LSPR to the corresponding resonance linewidth,33 figure of merit — a
ratio of the sensitivity to the resonance linewidth,66 antenna efficiency — the
quantum yield of the MNP,26, 52 local field enhancement factor — a measure of
the enhancement of the incident electric field due to the scattered field by the
MNP,9, 99 and so on. All these properties are affected by the shape and size of
the MNP, the material composition, and its dielectric environment.

Wet chemistry methods11, 27 and lithographic techniques28 remain the domi-
nant approaches to nanofabrication of MNPs, while classical electrodynamics is
the predominant tool utilized in theoretical studies of plasmonic behaviour.3, 21

However, nanostructurization has also been reported via optical heating.29 On
the other hand, theoretical studies have become inter-disciplinary in recent
years, borrowing from classical mechanics,14, 30 and circuit theory.31–33 These
approaches have led to the birth of other sub-fields, namely: plasphonics34, 35

— which investigates the interaction between surface plasmons and phonons,
thermoplasmonics29, 36 — which deals with the thermal effect of plasmon excita-
tion, magnetoplasmonics37, 38 — which looks at the effects of external magnetic
fields on plasmonic behaviour as well as the effect of plasmon excitation on
optomagnetic properties, molecular plasmonics39 — which investigates plas-
monic behaviour in nanostructured aggregates of certain molecular dyes,28, 40

and the interaction between surface plasmons and molecular excitons — plexci-
tonics.41–43 While new applications of plasmonics are emerging gradually, such as
the recently proposed plasmon-enhanced fluorescence (PEF)-based smartphone
microscopy,25 major advances have been made in the applications of plasmonics
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to solar cells,44–46 light-emitting diodes,47, 48 waveguides,20 biosensors,49 and
nanocircuits.33, 50 Fig. 1.2(a) shows a series RLC circuit model of the optical

Figure 1.2: (a) Equivalent circuit model of a metallic nanosphere of dielectric constant
ε(ω), embedded in a homogeneous medium of dielectric constant εm, in the presence of
a uniform electric field E of frequency ω. (Adapted from Ref.33) (b) A complete cycle of
dipole mode (with angular momentum number, l = 1) of the harmonic oscillation of the
surface charges on the nanosphere upon plasmon excitation. (Adapted from Ref.61)

response of a spherical MNP upon interaction with an incident field. A capacitor
with capacitance C, models the dielectric response of the host medium, the
incident electric field on the MNP is represented by the sinusoidal voltage source,
while both an inductor and a resistor are used to model the optical response of
the MNP. The resistance R of the resistor represents all the plasmon damping
channels in the nanosphere, i.e., free and bound electron decay rates arising from
electron scattering as well as radiation and size-dependent damping. Fig. 1.1(b)
shows the oscillation of surface charges on the MNP upon excitation near its
LSPR. As indicated by the arrows, the electron cloud oscillates in the opposite di-
rection to the alternating field, leading to one complete cycle of the dipole mode.
However, in the quadrupole mode (l = 2), half of the electron cloud oscillates
in the opposite direction to the alternating field while the other half oscillates
in the same direction to the field.61 Hence, the displacement current outside
the MNP flows in the opposite direction to the electric current inside it. This
behaviour is modelled via the inductance L of the inductor.2 Ref.33 has shown
that the Fröhlich condition for a metal sphere (<[ε(ω)] = −2εm), is needed to
satisfy the resonance condition in the circuit, via the following model parameters:
R = 4=[ε(ω)]/3πr℘ω, L = 4(εm − <[ε(ω)])/3πr℘ω2, C = πr℘/4εm , where
℘ = |ε(ω)|2 + ε2

m− 2εm<[ε(ω)], and r is the sphere radius. This model effectively
captures the 1/r dependence of the plasmon damping in nanospheres,3, 51 and
the intrinsic dependence of non-radiative losses on the imaginary part of the
dielectric function.52 Such circuit models provide valuable insights for the design
of plasmon circuits.50

Classical plasmonics uses theoretical concepts of classical physics, such as
the macroscopic Maxwell’s equations, to describe the optical response of plas-
monic nanostructures. It is confronted by at least two challenges: the issue of
gap distance-dependent electron tunnelling in dimer gaps53 and size-dependent
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electron damping in MNP sizes within the quasi-static approximation (QSA). In
the QSA, the former is avoided by considering gap distances within the classical
regime (Fig. 1.3(b)), where the electron tunnelling probability is negligible,17

while the latter has only been clearly resolved in spherical MNPs.51 The afore-

Figure 1.3: (a) Contour plot of the normalized extinction cross-section, Cext/πr2, of a
spherical gold nanoparticle of radius r embedded in water, as a function of the photon
energy and the particle radius for both local and non-local response. (Reproduced for
gold from Ref.3) (b) Regimes of quantum plasmonics (QP), semi-classical plasmonics
(SCP), and classical plasmonics (CP) in nanoparticle dimers as a function of the dimer
gap g. (Figure was drawn based on data from Refs.3, 53)

mentioned challenges are due to non-local effects. A decrease in the MNP size
causes these effects to arise from the smearing of the induced surface charges over
a finite space into the MNP, and electron scattering at the MNP surface. How-
ever, in touching and overlapping dimers, non-local effects are due to electron
spill-out.3, 53 As predicted by semi-classical approaches,3, 51, 53, 54 size-dependent
damping causes both a size-dependent LSPR shift and broadening of the plas-
mon linewidth (Fig. 1.3(a)), while electron tunnelling leads to a non-singular
response in the limit of touching dimers,3 in agreement with experiments. Fig.
1.3(a) shows that while the local response approximation (LRA) predicts no
size-dependent LSPR shift i.e 2.54 eV for all nanosphere sizes, the non-local
response predicts a blueshift in the LSPR with decrease in the nanosphere radius
i.e approximately 2.58 eV at 30 nm to 4.00 eV at r = 2 nm. However, the non-local
results approach those of the local response at large r, as shown in Fig. 1.3(a). In
addition, the plasmon linewidths i.e the smearing around the dashed line plot
in non-local response in Fig. 1.3(a), broaden gradually with increase in particle
radius. These results were obtained by including some correction terms to the
local dielectric function of the metal. For instance, in Ref.,53 a fictitious dielectric
was added to the Drude model to account for the electron tunnelling probability
within the gap of a nanosphere dimer, and in Refs.,3, 54 the Drude model, the
continuity equation, and some part of Maxwell’s equations were modified, in
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order to account for non-local effects. Non-local response manifests itself through
the presence of longitudinal waves.3 As such, the local dielectric function is
corrected by taking the longitudinal wavevector of the incident electric field into
consideration.3, 54, 55 This causes a spatial variation in the dielectric response of
the metal.54, 55 Non-local response is characterized by both a pressure-driven
convective flow and an entropy-driven diffusive flow of the induced charges.54

In addition to conduction currents - which are accounted for in the local Drude
model1, 3 (discussed in Section 1.2), the non-local models take the convection and
diffusion of the induced surface charges into account. This leads to additional
induced current densities in the Maxwell’s equations.3, 54

On the other hand, quantum plasmonics tackles these issues through several
electron density-functional theories,56, 57 which have been proposed over the
years. For MNP sizes below 10 nm, Ref.3 has shown that semi-classical and
quantum methods are the preferred choice, since the optical response of the
MNPs is dominated by non-local effects at such sizes (Fig. 1.3(a)). However, for
MNP sizes greater than 10 nm, classical plasmonics remains the preferred choice,
due to its straightforwardness and the ability to account for retardation effects3, 22

(discussed in Section 1.3) - radiation reaction and dynamic depolarization of the
induced field, in contrast to quantum mechanical approaches.56, 57 As shown
in Fig. 1.3(b), quantum plasmonics is the preferred choice when dimer gaps
approach the electron spill-out regime, while semi-classical approaches bridge
the method gap between classical and quantum plasmonics.

1.2 the local response approximation

The optical response of MNPs to an applied electric field of frequency ω is
non-local i.e it varies spatially with the size of the metal. It is described through
the constitutive equation:1, 3

D(r, ω) = εo

∫
ε(r− r′, ω)E(r′, ω)dr′ (1.1)

which relates the displacement field D to the electric field E. ε(r− r′, ω) is the
non-local dielectric function of the metal and εo is the free space permittivity. In
the local response approximation, ε(r− r′, ω) has a non-zero value only at r′ = r
described via the delta function:1, 3

ε(r− r′, ω) = δ(r′ − r)ε(ω). (1.2)

With this approximation, Eq. (1.1) becomes

D(r, ω) = εo

∫
δ(r′ − r)ε(ω)E(r′, ω)dr′ = εoε(ω)E(r, ω). (1.3)

Eq. (1.3) is said to be local, since it connects D and E to the same point r in space.
When retardation and non-local effects are negligible, the optical response of

MNPs is largely due to local effects. These effects arise from a short-wavelength
dielectric response — due to the polarization of the positive ion core in the metal,
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P∞, intraband transitions at long wavelengths — due to the polarization of the
free electrons, P f , and interband transitions at short wavelengths — due to the
polarization of the bound electrons in the metal, Pb. In order to find the local
dielectric function ε(ω) in Eq. (1.3), we consider the following displacement field
proposed by Drude and Lorentz:1

D(r, ω) = εo

(
1 +

P∞

εoE(r, ω)
+

P f

εoE(r, ω)
+

Pb
εoE(r, ω)

)
E(r, ω), (1.4)

with
P∞

εoE(r, ω)
= (ε∞ − 1), (1.5)

where ε∞ is the short-wavelength dielectric constant of the metal.
To find P f , Drude considered a damped plasma model for the free electron

gas under the influence of an applied electric field, according to the equation of
motion:1

mẍ f + mγ f ẋ f = −eE(t). (1.6)

Fourier transformation of Eq. (1.6) leads to x f = eE(ω)/mω(ω + iγ f ), so that

P f

εoE(ω)
= −

n f ex f (ω)

εoE(ω)
= −

ω2
f

ω(ω + iγ f )
, (1.7)

where ω2
f = n f e2/mεo, ω f is the plasma frequency of the free electrons, n f is the

free-electron density, e and m are the electronic charge and mass respectively,
and γ f is the damping rate of the free electrons.

To account for interband transitions at short wavelengths, Lorentz modelled
the oscillating bound electrons under the influence of the applied field, as a
damped harmonic oscillator, with the equation of motion:1, 58

mẍb + mγb ẋb + mω2
b xb = −eE(t). (1.8)

Fourier transformation of Eq. (1.8) leads to xb = eE(ω)/m(ω2 − ω2
b + iωγb).

Hence
Pb

εoE(ω)
= −nbexb(ω)

εoE(ω)
= −

sω2
b

ω2 −ω2
b + iωγb

, (1.9)

where ω2
b = nbe2/smεo, ωb is the bound-electron plasma frequency, γb is the

damping rate of the bound electrons, nb is the bound-electron density, and s is
the oscillator strength.

Substituting Eqs. (1.5), (1.7), and (1.9), into Eq. (1.4), and comparing the result
to Eq. (1.3), leads to

ε(ω) = ε∞ −
ω2

f

ω2 + iωγ f
−

sω2
b

ω2 −ω2
b + iωγb

. (1.10)

Eq. (1.10) is the local Drude-Lorentz model of the dielectric response of metals.
It reduces to the local Drude model when s = 0.
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Metal ε∞ s ω f (eV) ωb (eV) γ f (eV) γb (eV) Validity region
Au 5.9673 1.09 8.7411 2.6885 0.0658 0.4337 500 nm - 1000 nm
Ag 0.1148 3.63 8.7272 10.4074 0.0464 0.0689 400 nm - 800 nm
Au 9.07 - 8.92 - 0.076 - 700 nm - 1000 nm
Ag 4.00 - 8.79 - 0.056 - 400 nm - 800 nm

Table 1: List of fitting parameters of the Drude-Lorentz model (top) and Drude model
(bottom) for the local dielectric response of gold (Au)58 and silver (Ag),59 and their
respective validity regions.

Figure 1.4: The dielectric functions of: (a) gold and (b) silver, based on the local
Drude-Lorentz model (Theory) and experimental data (Experiment). Top: real parts,
and bottom: imaginary parts of the dielectric functions, respectively. (Reproduced from
Refs.58, 59)

We will limit our discussions of the local dielectric function to wavelengths in
the range of 400 nm to 800 nm for silver59 and 500 nm t0 1000 nm for gold,58 as
shown in table 1. These correspond to the visible and infra-red regions of the
electromagnetic spectrum, where most plasmonics studies are carried out.21, 24, 60

At wavelengths below the optical band edge threshold in metals, incident photons
can induce transitions between electronic bands by exciting electrons from the
filled band below the Fermi surface (bound electrons) to an upper band.1 As
mentioned earlier, the motion of these electrons is accompanied by an additional
damping term, γb. As shown in table 1, γb for gold is about six times its value in
silver, and affects mostly the imaginary part, =[ε(ω)], of the dielectric function
(Fig. 1.4). Fig. 1.4(a) shows that the onset of these interband transitions is
around 700 nm for gold i.e at the overlap between the infra-red and the visible
light regions. At this point, the Drude model fails to account for =[ε(ω)] for
gold (Fig. 1.4(a), bottom plot). However, due to the low value of γb for silver
compared to its value for gold, both the Drude and the Drude-Lorentz models
are in good agreement in describing =[ε(ω)] for silver (Fig. 1.4(b), bottom plot),
when compared to experimental data. In both metals, the models are in good
agreement in describing =[ε(ω)], when compared to experiment data within the
validity regions indicated in table 1.
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However, in predicting the real part of the dielectric function, <[ε(ω)], the
models agree quite well with the experimental data for gold, and excellent for
silver (Fig. 1.4, top plots). These metals have very high negative values of <[ε(ω)]
(Fig. 1.4, top plots) and small positive values of =[ε(ω)] (Fig. 1.4, bottom plots),
at visible wavelengths. This material property is an essential component of high
quality-low loss plasmonic materials.2 The negative permittivity is responsible
for the harmonic motion of conduction electrons at the metal-dielectric interface,
upon excitation near the surface plasmon frequency. It causes the induced field
outside the MNP to flow in the opposite direction to the applied field inside
the MNP (Fig. 1.2(b)). Hence, <[ε(ω)] determines resonance oscillations in
excited MNPs. On the other hand, the positive permittivity is responsible for
non-radiative losses via plasmon decay.1, 52 Though both <[ε(ω)] and =[ε(ω)]
contribute to radiative losses, these losses are MNP geometry-dependent while
non-radiative losses are intrinsic.52 As shown in Fig. 1.4 (bottom plots), =[ε(ω)]
is smaller in silver compared to gold, which makes silver nanoparticles more
efficient plasmonic nanoantennas compared to their gold counterparts, at the
same wavelengths. However, the applicability of gold nanoparticles is less
hindered by photo-oxidation compared to their silver counterparts.4

1.3 retardation effects: the role of mnp size

Retardation effects are usually observed in electrodynamic calculations3, 21, 61 and
in experiments2, 10 involving MNPs of a few nanometres. They manifest them-
selves through both a size-dependent LSPR shift and broadening of the plasmon
linewidth. They include: radiation damping and dynamic depolarization.21, 22

The polarization of the electron cloud by an incident electric field causes the MNP
to acquire an induced dipole moment (Fig. 1.2(b)). Radiation damping is due to a
self-reaction field produced by the induced dipole moment.22, 61, 62 This reaction
field acts to depolarize the MNP via the spontaneous emission of radiation by
the induced dipole.1, 61, 63 On the other hand, dynamic depolarization is due to
the non-locality of the scattering process in time — as a result of the polarization
of different parts of the MNP at different times, causing induced surface charges
to oscillate in phases.22, 63

Authors usually report the range of MNP sizes within which retardation
effects are negligible to be between 20 nm - 60 nm in diameter for nanospheres.7, 61

The lower limit is such that non-local effects are negligible,3, 62 while the upper
limit is such that retardation effects can be ignored.7, 22 Ford and Weber62 have
suggested that particle sizes within one-tenth of the wavelength of light in the
medium can be studied with the QSA, provided that radiation damping is
considered. In this section, we will look into these MNP size regimes within
which the QSA is valid, for spherical and prolate spheroidal MNPs, respectively.

The effect of retardation on the dipolar LSPR of MNPs can be accounted
for within the QSA by taking into account the first-order corrections due to
the full retarded field.61, 62 We consider a solid nanosphere, and a solid prolate
spheroid (which is usually a good approximation of a nanorod for analytical
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Figure 1.5: Common MNP geometries usually studied within the QSA. Each consist
of a metal with a local dielectric function ε(ω), embedded in a medium of dielectric
constant εm.

calculations8, 12), in the presence of a uniform electric field Eo applied parallel
to the long axis of the spheroid, as shown in Fig. 1.5. The induced dipole
moment pind on the spheroid produces a radiation reaction field Err, which is
in anti-phase with the induced field and proportional to pind. In addition, a
dynamic depolarization field Edp, also proportional to pind, acts in phase to the
radiation reaction field. The effective induced dipole moment can therefore be
re-written as61, 62

pind = αs(ω)(Eo + Err + Edp), (1.11)

where12, 22

αs(ω) =
V
4π

ε(ω)− εm

εm + Ls[ε(ω)− εm]
(1.12)

is the static longitudinal dipole polarizability of the spheroid. ε(ω) is the dielectric
function of the material of the spheroid, εm is the dielectric constant of the host
medium, V is the volume of the spheroid, and Ls is its longitudinal static
geometric factor.

First-order corrections report Err = i2k3
m pind/322, 61, 62 and Edp = k2

mLd pind/l,22

respectively, where km = 2π
√

εm/λ is the wave number of light in the medium,
λ is the wavelength, l is the half-length of the spheroid, and Ld is its longitudinal
dynamic geometric factor. Substituting these two expressions into Eq. (1.11)
leads to the dynamic longitudinal dipole polarizability of the spheroid:

αd(ω) =
αs(ω)

1− k2
mLd
l αs(ω)− i2k3

m
3 αs(ω)

, (1.13)

which reduces to the static response when km = 0. The shape-dependent
parameters include:12, 22

Ls = [(v coth−1 v)− 1](v2 − 1), v = d/ f , d > c, l = d,
Ld = 3

4 [1 + Ls(v2 + 1)(v2 − 1)−1], f =
√

d2 − c2, (Prolate spheroid)
Ls = 1/3, Ld = 1, l = a (Sphere),

(1.14)
where d and c are the half-length and half-width of the spheroid, respectively,
f is the focal distance of the spheroid, v is its radial coordinate, and a is the
sphere radius. Here, Eq. (1.13) shows that the radiation reaction term changes
the real part of αs(ω) into a complex value and the imaginary part into a real
value, while the dynamic depolarization term contributes equally to both the
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real and imaginary parts of αs(ω) without interchanging their roles. Hence,
radiation damping introduces size-dependent radiative losses in the extinction
cross-section of the MNP, by reducing the dipole polarizability, resulting in a size-
dependent broadening of the plasmon linewidth.1, 61 On the other hand, dynamic
depolarization introduces a change in the effective polarization, resulting in a
size-dependent shift of the dipolar LSPR of the MNP.61, 63

The extinction cross-section of each of the above MNP geometries, which orig-
inates from both the radiative (scattered) and non-radiative (absorbed) powers,
due to interaction with the incident field, is calculated using Eq. (1.13) as7, 8

Cext = Csca + Cabs, (1.15a)

Csca =
k4

m
6π
|αd(ω)|2, Cabs = km=[αd(ω)], (1.15b)

where Csca and Cabs are the scattering and absorption cross-sections, respectively.
In the following contour plots, Figs. 1.6 and 1.7 (Here, we focus only on the
size-induced resonance shifts in the spectra, so that colour bars are not shown.),
we consider the effects of retardation on the dipolar LSPR of spheres and prolate
spheroids, respectively. We restrict the lower bound of MNP size to 10 nm, below
which non-local effects dominate.3 Fig. 1.6(a) and Fig. 1.6(c) are the contour
plots of the extinction cross-sections of gold and silver nanospheres, respectively,
without retardation effects. In Fig. 1.6(a) and Fig. 1.6(c), the QSA does not lead
to any size-dependent LSPR shift as the radii of the nanospheres (NS) are varied
from 10 nm to 50 nm. It predicts approximately 525 nm as the dipolar LSPR of
the gold NS (Fig. 1.6(a)), and approximately 398 nm as the dipolar LSPR of the
silver NS (Fig. 1.6(c)), regardless of MNP size.

Fig. 1.6(b) and Fig. 1.6(d) are the contour plots of the extinction cross-sections
of gold and silver nanospheres, respectively, with retardation effects. In contrary
to the plots without retardation effects, discussed above, Fig. 1.6(b) and Fig.
1.6(d) show a redshift of the dipolar plasmon peak position as the radii of the
NS increase from 10 nm to 50 nm. However, the redshift is more pronounced in
silver NS (Fig. 1.6(d)) than in gold NS (Fig. 1.6(c)), due to a strong dependence
of the retardation terms on short wavelengths, and on material properties. In
Fig. 1.6(b), no significant redshift in the dipolar LSPR is observed from a radius
of 10 nm to around 25 nm, beyond which a noticeable redshift begins to occur,
reaching nearly 600 nm at 50 nm radius. However, in Fig. 1.6(d), a noticeable
redshift in the dipolar LSPR from 398 nm to 400 nm has already taken place at 10
nm radius, which further approaches 550 nm at 50 nm. Fig. 1.6(b) and Fig. 1.6(d),
respectively, also feature size-dependent broadening of the plasmon linewidths —
which are noticeable from the increased spread of the contours in Fig. 1.6(b) and
Fig. 1.6(d) compared to those in Fig. 1.6(a) and Fig. 1.6(c). Therefore, the MNP
size regime where the validity of the QSA is not questionable is likely between
20 and 50 nm in diameter for gold NS, and less than 20 nm for silver NS.

Fig. 1.7(a) and Fig. 1.7(c) are the contour plots of the extinction cross-sections
of gold prolate spheroids, at constant half-widths and half-lengths, respectively,
without retardation effects. Fig. 1.7(a) and Fig. 1.7(c), shows the QSA results
for the size-dependence of the longitudinal dipolar LSPR in prolate spheroids.
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Figure 1.6: Contour plots of the extinction cross-sections of single gold nanospheres
(top) and silver nanospheres (bottom) embedded in water, as a function of the particle
radius and wavelength. (a) and (c): without retardation effects. (b) and (d): with
retardation effects.

Fig. 1.7(a) shows a redshift in the dipolar LSPR as the half-length is increased
at constant half-width while Fig. 1.7(c) shows a redshift in the dipolar LSPR
as the half-width is decreased at constant half-length. In either case, the aspect
ratio of the spheroid is increasing. However, there is an underlying flaw in these
predictions, i.e., both Fig. 1.7(a) and Fig. 1.7(c) show that two different prolate
spheroids with the same aspect ratio will have the same dipolar LSPR.

Fig. 1.7(b) and Fig. 1.7(d) are the contour plots of the extinction cross-sections
of gold prolate spheroids, at constant half-widths and half-lengths, respectively,
with retardation effects. As revealed by retardation effects via Fig. 1.7(b) and
Fig. 1.7(d), when two different prolate spheroids have the same aspect ratio, the
dipolar LSPR of the spheroid with a longer half-length will be more redshifted
compared to the spheroid with a shorter half-length. For instance, let us consider
two prolate spheroids with half-lengths of 25 nm and 50 nm, and half-widths
of 10 nm and 20 nm, respectively. The aspect ratio of both spheroids is 2.5. Fig.
1.7(a) and Fig. 1.7(c) predict the dipolar LSPR of both spheroids as 560 nm,
approximately. According to Fig. 1.7(b), the dipolar LSPR of the 25 nm by 10 nm
spheroid is around 565 nm, while Fig. 1.7(d) predicts the dipolar LSPR of the 50
nm by 20 nm spheroid as 595 nm, approximately. As shown in Fig. 1.7(a) and
Fig. 1.7(b), the MNP size regime within which the QSA is valid is very narrow
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Figure 1.7: Contour plots of the extinction cross-sections of single gold prolate spheroids
embedded in air, as a function of the spheroid size and wavelength. Top: half-length
varied at constant half-width of 10 nm. Bottom: half-width varied at constant half-length
of 50 nm. (a) and (c): without retardation effects. (b) and (d): with retardation effects.

for spheroids, i.e., less than 25 nm of the half-length for a constant half-width of
10 nm. The validity region is further compromised when the half-length is longer
than 25 nm, irrespective of the half-width, as shown in Fig. 1.7(c) and Fig. 1.7(d).

1.4 thesis outline

This thesis presents a theoretical study of the following phenomena: local-
ized surface plasmon resonance (LSPR), plasmon-induced transparency (PIT),
plasmon-enhanced fluorescence (PEF), and exciton-induced transparency (EIT).
The first two occur in plasmonic nanostructures or in a system of such nanos-
tructures, i.e., dimers, while the latter two occur in plexcitonic systems, such as
hybrid metal-molecule nanostructures. LSPR has been introduced in Chapter 1,
and will be discussed in more detail, alongside PIT, in Chapter 2. PEF will be
discussed in Chapters 3 and 4, while EIT is discussed in Chapter 4. Applications
will be mentioned in passing while we focus on our theoretical results limited to
single metal nanoparticles (MNPs) and dimers. The thesis concludes in Chapter
5 with the summary of the major findings of the research projects presented in
previous Chapters, as well as perspectives on an on-going work.
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The theoretical approach we adopted is the quasi-static theory. It is well
within the framework of classical electrodynamics when retardation effects are
negligible. As such, it is an approximate theory, better referred to as the quasi-
static approximation (QSA) or the non-retarded field limit.1, 21 The QSA has
been shown to agree with experiments involving MNP sizes and inter-particle
distances that are small compared to the wavelength of light in the medium: the
so-called Rayleigh regime. It has also been shown to agree with other theoretical
methods such as the plasmon hybridization theory,14, 64 and transformation
optics,65, 66 within the local response approximation (LRA).

Our discussions will not be complete without mentioning the pioneers of the
QSA — theorists whom we have either borrowed directly from or modified a
few of their formulations to suit ours. They include: Rayleigh — who laid the
theoretical foundation of the QSA, Laplace — whose equation is indispensable
in potential theory, Fröhlich — who defined the LSPR condition, Gersten and
Nitzan and Ford and Weber — who independently developed the theory of
PEF within the QSA. We must also mention that what makes the QSA very
relevant is its intuitive simplicity, made possible by the existence of orthogonal
series expansion of electrostatic potentials in almost any coordinate system. For
instance, some authors have noted that a Mie expansion is not possible for
scattering by spheroids, since such expansion of electrodynamic potentials is not
available in a spheroidal basis.67

All major derivations are relegated to the appendix sections, while final results
such as polarizabilities, and so on, will be presented in the main body of the
thesis. We have used Python for translating formulae to visualizable data.



2
S U R FA C E P L A S M O N S A N D P L A S M O N C O U P L I N G

2.1 propagating surface plasmons

In planar nanostructures consisting of one or more metal-dielectric interface,
excitations formed via the interaction between an incident electromagnetic field
and the conduction electrons in the metal, propagate at the interface. These
longitudinal excitations are bounded perpendicularly to the interface, and decay
over a finite distance along it, as shown in Fig. 2.1(a). They are known as
propagating surface plasmons (PSPs) or surface plasmon polaritons,21, 68 with the
plasmon resonance frequency:68

ωpsp =
ωp√

ε∞ + εm
1−(km/κ)2

. (2.1)

Here, km = ko
√

εm is the wavenumber of light in the medium, ko is the free-
space wavenumber, κ is the complex propagation constant given by:68 κ =
km
√

ε(ω)εm/[εm + ε(ω)], with ε(ω) as the dielectric function of the metal, and
εm as the dielectric constant of the medium. Therefore, κ is always greater than
km, so that in practice, special phase-matching techniques are needed to excite
PSPs,1 since their dispersion lies outside (for example, on the right side of the
light line in Fig. 2.1(c) i.e the lower branch) the light cone of the dielectric. For
instance, using a glass prism coupling, PSPs between the light lines of glass and
air, can be excited, as shown in Ref.1 For lossless metals, κ becomes real, since
=[ε(ω)] vanishes.

Fig. 2.1(a) also shows that PSPs are formed at the interface between two
materials with opposite signs of the real parts of their dielectric functions i.e
εm > 0 for the dielectric medium, and <[ε(ω)] < 0 for the metal. PSPs will
only propagate at the interface in the presence of a transverse-magnetic (TM)
polarized incident field (Fig. 2.1(a)) i.e Ex 6= Ez 6= Hy 6= 0 and Hx = Hz = Ey = 0,
where E and H are the electric and magnetic fields, and the subscripts denote
the field components, respectively. The evanescent fields propagate at different
lengths into the metal and the dielectric, respectively, as shown by sketches
of the magnitude of the z-component of the electric field (|Ez|) in each region
(Fig. 2.1(a)). The differences in propagation lengths between the metal and the
dielectric are due to the penetration depths, which are in the range of µm in the
dielectric and nm in the metal.1

As shown in Fig. 2.1(a), as well as in Eq. (2.1), these evanescent excitations
modify the free-electron plasma frequency of the metal, ωp (here we use ωp for
ω f ) into a surface plasmon frequency, ωpsp. Due to the quadratic dependence
of ωpsp on κ (Eq. (2.1)), the bounded surface waves have two branches (Fig.
2.1(c)). The lower branch, which exists on the right side of the light line (ω = cko,

14
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where c is the speed of light in free-space), bounded at ωp > ω < ωsp, are the
PSPs,68 while the upper branch, which exists at small propagation constants (for
example, in Fig. 2.1(c), at 0 < κ ≤ 18× 10−3 nm−1), bounded at ω > ωp, on
the left side of the light line, are referred to as Sommerfield-Zenneck waves.1 PSPs
become quasi-static at large propagation constants. For example, in Fig. 2.1(c),
when κ > 30× 10−3 nm−1, ωpsp approaches ωsp. In this limit, they become
non-propagating, and are simply called surface plasmons.1, 68 The characteristic
surface plasmon resonance frequency is obtained from Eq. (2.1) when κ −→ ∞
or km −→ 0 (static limit) as:

ωsp =
ωp√

ε∞ + εm
. (2.2)

Figure 2.1: (a) Surface charge propagation at the interface between a metal layer and
air, when TM polarized light is applied at the metal-air interface. Appended to the
right side of the figure are sketches of the z-component of the evanescent electric field
in each region, respectively. (b) Distribution of charges inside the metal. (c) Dispersion
relation of bulk and surface plasmons of a metal-insulator geometry (Reproduced from
Ref.68 based on a lossless Drude model for gold, using ωp = 4.6 eV, ε∞ = 1, with air,
εm = 1, as the insulating medium). Here, ωp is the free-electron plasma frequency of the
metal, ωpsp is the resonance frequency of the propagating surface plasmons, ωsp is the
resonance frequency of the surface plasmons, and ωbp is the resonance frequency of the
bulk plasmons.

In bulk metals, longitudinal collective oscillations of free electrons also occur
inside the metal (Fig. 2.1(b)). These excitations do not couple to electromagnetic
radiation, and are usually formed via ion impact.1 They are caused by radiation
into the metal, which occurs at ω > ωp, as shown in Fig. 2.1(c). They are
observed at finite wave vectors (for example, Fig. 2.1(c), at κ ≤ 30× 10−3 nm−1),
and are known as volume plasmons or bulk plasmons,1, 4 with the bulk plasmon
resonance frequency:1

ωbp =

√
ω2

p +
3
5

v2
Fk2

m, (2.3)
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where vF is the Fermi velocity of the free electrons in the metal.
In-between the bulk plasmons and the surface plasmons i.e at ωbp > ω > ωsp

in Fig. 2.1(c), is a frequency gap, where there is no plasmon propagation. The
plasma dispersion in this region (not shown in Fig. 2.1(c)) is due to the imaginary
part of the complex propagation wavevector in lossy metals, as shown in Refs.1, 68

2.2 localized surface plasmons
1

In MNPs, incident electromagnetic fields interact with conduction electrons
to form non-propagating excitations called localized surface plasmons (LSPs).1, 21

These particle-confined excitations are due to resonant oscillation of the elec-
tron cloud, as a result of a harmonic force exerted by the particle shape. The
frequencies of the normal modes of these oscillations correspond to their LSPR.
For an arbitrary MNP geometry, these modes can be investigated by solving
the scattering problem of the particle in a uniform electromagnetic field.1, 8 For
MNP sizes small compared to the wavelength of light in the medium, Refs.1, 8

have shown that the induced field on the MNP is dominated by the electric field
component, and that the magnetic field component approaches zero in the static
limit. This is called the Rayleigh approximation or the quasi-static approximation.
In this regime, LSPs can be investigated by solving the scattering problem of a
particle in a uniform electrostatic field.1, 4, 8

Here, we report the LSPR of single MNPs which we have studied within
the QSA. Single particle studies have identified a number of unique plasmonic
behaviour in MNPs. Such as: plasmon hybridization of solid and cavity plasmons
in nanoshells,57, 64, 69 mode-mixing in nanoeggs13, 14 and nanocups,15 incident field
polarization-dependent LSPR in nanorods,1, 8 as well as dark modes (multipolar
modes) in silver nanodisks,70 and so on.

In the Rayleigh limit, the dipolar mode, also known as the bright mode,71

contributes most to the absorption cross-section of the MNP. This is because the
electron cloud undergoes an intense polarization in the dipolar mode compared
to higher-order modes.21 The LSPR of the dipolor mode manifests itself as
the position of absorption maximum,61 and reveals a lot of detail pertaining to
the size and shape dependence of plasmonic behaviour in single MNPs. This
has led to both theoretical and experimental studies of a myriad of particle
sizes of various shapes. Such as: nanocavities,1 concentric nanoshells,64 and
MNPs with smooth edges; spheres,7, 61 spheroids,22, 61 and ellipsoids8 or with
sharp edges; nanoprisms,21 nanostars,24 and nanocubes,2, 21 and so on. Though
difficult to fabricate, reduced-symmetry MNPs; nanoeggs,14, 66, 71 nanocups,15 and
nanocaps,16 are also studied in plasmonics literature. MNPs with sharp edges
and reduced-symmetry feature mostly redshifted spectra,15, 24 accompanied by
intense local field enhancements,21, 71 compared to their counterparts.

Single MNPs have been shown to display some common trends in their
plasmonic behaviour, despite their differences in shape. For example, plasmon
hybridization of solid and void plasmons, and the presence of symmetric and

1 some part of this section has been published in plasmonics (see pp. i) .
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Figure 2.2: A tree diagram illustrating the relationships between the LSPR of the nanos-
tructures we have studied in this section. PH, Plasmon Hybridization, DR, Dielectric
Reversal, GR, Geometric Reduction, S, Symmetrization, and AS, Anti-Symmetrization.

asymmetric modes in nanoshells,64 nanorice,69 and so on. We took this further
by exploring other possible relationships among the members of a group of
tunable plasmonic nanostructures which we have categorized as simple. This
classification is based on three typical properties: their dipolar LSPR can be
expressed analytically via certain formulas, the MNPs have smooth edges, and
some relationships exist among them according to Fig. 2.2. Our main objective
is to derive the multipolar and dipolar LSPR of a nanorice (a core-shell prolate
spheroid), and show that using these relationships, the multipolar and dipolar
LSPR of a concentric nanoshell (a core-shell sphere), and those of other nanos-
tructures in Fig. 2.2, can be derived, straightforwardly. These derivations will
include dielectric effects. We conclude this section by presenting a simplified
model of plasmon hybridization in the core-shell MNPs in Fig. 2.2 and Fig. 2.3.

Our theoretical approach relies on a series solution of the Laplace equation
for the target MNP geometry, in order to obtain the static multipole polarizabil-
ity.72–74 Once the polarizability of the MNP is found, the LSPR can be derived
using a combination of the Drude model, and the LSPR condition, also called the
Fröhlich condition.7, 21 The polarizability is a complex quantity that determines
the ease at which the electron cloud is polarized upon the application of an
electric field. It depends on shape, size, material composition, and dielectric
environment of the MNP, as well as on the frequency of the incident radiation,
ω. Given some multipole polarizability αlm(ω) (where the angular momentum
number l indicates the number of multipoles, and the azimuthal number m
indicates either a perpendicular (m = ±1) or parallel polarization (m = 0) of the
incident electric field), the LSPR is found via the poles of αlm(ω). The Fröhlich
condition states that at resonance: ω ≈ ωr, the real part of ωr gives the LSPR
while the imaginary part corresponds to the plasmon linewidth.1, 3, 21 Hence, an
expression for ε(ωr) is needed from the denominator of αlm(ωr) to solve for ωr
via the Drude model. If damping is ignored, then <[ε(ωr)] = ε(ωr), allowing one
to obtain only the LSPR. To obtain αlm(ω), the amplitude of the electric potential
induced on a given MNP (also referred to as the amplitude of the scattered
potential73) is expressed in terms of the amplitude of the external potential.
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Figure 2.3: Model geometries of the MNPs we have classified as simple. (a) A core-shell
prolate spheroid of aspect ratio qs = bs/as, with a shell of non-uniform thickness and
a confocal core of aspect ratio qc = bc/ac. (b) A core-shell sphere of aspect ratio a/b,
with a shell of uniform thickness and a concentric core. Each core-shell nanostructure
is embedded in a homogeneous dielectric medium of dielectric constant εm. The shell
consists of a metal of dielectric function εs(ω), and the core is filled with a dielectric of
dielectric constant εc. (c) A solid prolate spheroid of aspect ratio bs/as. (d) An isotropic
solid sphere of radius b. Each solid nanostructure consists of a metal of dielectric function
ε(ω), embedded in a homogeneous dielectric medium of dielectric constant εm. (e) A
prolate spheroidal cavity of aspect ratio bc/ac. (f) An isotropic spherical cavity of radius
a. Each cavity is formed in a homogeneous infinite metallic background of dielectric
function ε(ω), and filled with a dielectric of dielectric constant εc.

Upon resonant excitation, one obtains ωr from the real part of Eq. (1.10) (at
s = 0, with ω f replaced with ωp) as:

ωr =
ωp√

ε∞ −<[ε(ωr)]
, (2.4)

where the damping rate of the free electrons, γ f , has been ignored, following
the approach of Wu et al.14 This involves the use of a renormalized value of
ωp, with ε∞ = 1, without considering free-electron damping. It reproduces
observed values of the LSPR of spherical gold nanoshells over a wide range of
aspect ratios.14 Therefore, we have chosen to consider gold MNPs only, with
ωp = 4.6 eV (the renormalized value of ωp reported in Ref.14 for gold). For
convenience, the subscript “r” in Eq. (2.4) will be dropped. The symbol |A|
denotes the determinant of A, wherever it appears.
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2.2.1 Hybrid Plasmons

In this section, we will report the multipolar and dipolar LSPR of a nanorice,
which we have obtained with the inclusion of the dielectric constants ε∞, εc and
εm. The MNPs considered include a nanorice (Fig. 2.3(a)) and a concentric
nanoshell (Fig. 2.3(b)). We will then derive the multipolar LSPR of the nanoshell
from that of a nanorice using Geometric Reduction (GR). The plasmon modes of
these core-shell MNPs can be referred to as the hybrid plasmon modes, since they
are formed via hybridization of the fundamental plasmon modes.64, 69 We will
discuss the hybridization of plasmons in these nanoshells in Subseection 2.2.3.

Following the approach described in Section 2.2, the poles of the multipole
polarizability αlm(ω) of a nanorice, i.e., a core-shell prolate spheroid (Fig. 2.3(a))
(see Appendix F) are:

<[εs(ωr)] =

−[β+ζ−Ω(εc+εm)]±

√√√√√
∣∣∣∣∣∣[β + ζ −Ω(εc + εm)] 4(Ω− ∆)

(εcεmΩ−Λ) [β + ζ −Ω(εc + εm)]

∣∣∣∣∣∣
2(Ω−∆) ,

(2.5)
where

Λ ≡ εmεc
Q′lm(vs)Qlm(vc)Plm(vs)

Plm(vc)
, ∆ ≡

Qlm(vs)Q′lm(vc)P′lm(vs)

P′lm(vc)
, (2.6a)

β

εm
≡

Q′lm(vs)Q′lm(vc)Plm(vs)

P′lm(vc)
,

ζ

εc
≡

Qlm(vs)Qlm(vc)P′lm(vs)

Plm(vc)
, (2.6b)

and Ω ≡ Qlm(vs)Q′lm(vs). (2.6c)

Here, Plm(vc) and Qlm(vc) are the associated Legendre functions of the first and
second kind, respectively, evaluated at the core surface: v = vc = ac/ f ; Plm(vs)
and Qlm(vs) are similar functions evaluated at the shell surface: v = vs = as/ f ; v
is the radial coordinate of the spheroid; and f is the focal length of the spheroid
(which is the same for the core and the core-shell for confocal spheroids73, 74).
The primes denote derivatives with respect to the radial coordinate at the corre-
sponding surfaces.

Substituting Eq. (2.5) for <[ε(ωr)] in Eq. (2.4), we obtain the multipolar LSPR
of the nanorice:12

ω±lm =
ωp√

2

√√√√√√√√√
∣∣∣∣∣∣ 2ε∞ −1
[β + ζ −Ω(εc + εm)] (Ω− ∆)

∣∣∣∣∣∣±
√√√√√
∣∣∣∣∣∣β 1
ζ 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣ εmΩ(1 + εc) −4
[ΛΩ− εcεmΩ(Ω− ∆)] [εmΩ(1 + εc)− 2(β + ζ)]

∣∣∣∣∣∣∣∣∣∣∣∣[ε
2
∞(Ω− ∆) + (εcεmΩ−Λ)] −ε∞
[β + ζ −Ω(εc + εm)] 1

∣∣∣∣∣∣
,

(2.7)
where ω±l0 is the longitudinal LSPR (LLSPR) and ω±l1 is the transverse LSPR
(TLSPR). The former is due to the incident field polarization along the long
axis of the spheroid, while the latter is due to polarization along its short axis.
The higher-energy LSPR ω+

lm, are due to antisymmetric hybridization of solid
and cavity (void) plasmons of the nanorice, i.e., modes from Fig. 2.3(c) and
Fig. 2.3(e) of equivalent dimensions. while the lower-energy LSPR ω−lm, are
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due to symmetric hybridization.12, 69 For a core-shell oblate spheroid, the LSPR
are calculated by making the transformations: vc → ivc and vs → ivs, in the
Legendre functions.72, 74

In the dipole limit l = 1, with Eqs. (2.6a) - (2.6c), the terms in Eq. (2.7)
simplify to the following:

f (vc, vs) = vc(v2
c − 1)(v2

s − 1), (2.8a)

β− ζ =
1

f (vc, vs)

∣∣∣∣εm(1− Lm
c ) εcLm

c Lm
s

1 (1− Lm
s )

∣∣∣∣ , (2.8b)

∣∣∣∣ 2ε∞ −1
[β + ζ −Ω(εc + εm)] (Ω− ∆)

∣∣∣∣ =
∣∣∣∣∣∣2Lm

s ε∞ + εm(1− Lm
c − Lm

s ) (εm + εc − 2ε∞)
−Lm

s [Lm
c + fc(1− Lm

s )] 1

∣∣∣∣∣∣
f (vc,vs)

,

(2.9)

∣∣∣∣[ε2
∞(Ω− ∆) + (εcεmΩ−Λ)] −ε∞
[β + ζ −Ω(εc + εm)] 1

∣∣∣∣ =
∣∣∣∣∣∣ [εm(1− Lm

s ) + ε∞Lm
s ] − fcLm

s (1− Lm
s )

[ε∞(εm + εc − ε∞)− εmεc] [ε∞(1− Lm
c ) + εcLm

c ]

∣∣∣∣∣∣
f (vc,vs)

,

(2.10)∣∣∣∣ εmΩ(1 + εc) −4
[ΛΩ− εcεmΩ(Ω− ∆)] [εmΩ(1 + εc)− 2(β + ζ)]

∣∣∣∣ = fcLm
s (1−Lm

s )
f (vc,vs)

∣∣∣∣∣ Lm
s [2Lm

c + fc(1− Lm
s )] −2εm

[εm + εc + (L‖c + Lm
s )(εc − εm)] (εc − εm)2

∣∣∣∣∣.
(2.11)

Substituting Eqs. (2.8) - (2.11) into Eq. (2.7), we obtain the dipolar LSPR of the
nanorice as:

ω±1m =
ωp√

2

√√√√√√√√√
∣∣∣∣∣∣[2Lm

s ε∞ + εm(1− Lm
c − Lm

s )] [−Lm
s [Lm

c + fc(1− Lm
s )]]

(εm + εc − 2ε∞) 1

∣∣∣∣∣∣±
√√√√√
∣∣∣∣∣∣εm(1− Lm

c ) εcLm
c

Lm
s 1− Lm

s

∣∣∣∣∣∣
2

+ fcLm
s (1−Lm

s )

∣∣∣∣∣∣ Lm
s [2Lm

c + fc(1− Lm
s )] −2εm

[εm + εc + (L‖c + Lm
s )(εc − εm)] (εc − εm)2

∣∣∣∣∣∣∣∣∣∣∣∣ [εm(1− Lm
s ) + ε∞Lm

s ] − fcLm
s (1− Lm

s )
[ε∞(εm + εc − ε∞)− εmεc] [ε∞(1− Lm

c ) + εcLm
c ]

∣∣∣∣∣∣
,

(2.12)
where

L0 = [(v coth−1 v)− 1](v2 − 1), L1 = 1
2(1− L0), v = 1√

1−q−2
, q > 1, fc =

vc(v2
c−1)

vs(v2
s−1)

(Prolate), (2.13)

L0 = 1
2 [(v

2 + 1)(v cot−1 v)− v2], L1 = 1
2(1− L0), v = 1√

q2−1
, q > 1, fc =

vc(v2
c+1)

vs(v2
s+1)

(Oblate). (2.14)

Here, L0 and L1 are the longitudinal and transverse geometric factors of the
spheroid, respectively, q is its aspect ratio, and fc is the core-volume fraction of
the core-shell spheroid. The aspect ratio is evaluated on the core and shell to
obtain the values of L0 and v on the core and shell, respectively, using

qc =
bc

ac
, bc > ac, qs =

bs

as
, bs > as, qc > qs (Prolate), (2.15a)

qc =
ac

bc
, bc < ac, qs =

as

bs
, bs < as, qc > qs (Oblate). (2.15b)

Fig. 2.4(a) shows that as the aspect ratio of the core increases, the symmetric
(ω−10) and antisymmetric (ω+

10) modes of the nanorice in the longitudinal polar-
ization (m = 0) approach the LSPR of the solid, ωs

10 (Eq. (2.20) for m = 0), and
cavity, ωc

10 (Eq. (2.22) for m = 0) prolate spheroid plasmons, respectively. The
transverse modes (m = 1) show a similar trend (Fig. 2.4(b)), but the transverse
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Figure 2.4: Dipolar (a) LLSPR and (b) TLSPR of a gold shell-silica core prolate spheroid,
respectively, and dipolar (c) LLSPR and (d) TLSPR of a gold shell-silica core oblate
spheroid, respectively, and those of their corresponding core and shell, respectively, using
the following parameters: ωp = 4.6 eV, ε∞ = 1, εc = 2.13 (silica core), εm = 1.77 (water),
and qs = 1.5.

symmetric mode (ω−11) is blueshifted from the longitudinal symmetric mode
(ω−10) while the transverse antisymmetric mode (ω+

11) is redshifted from the lon-
gitudinal antisymmetric mode (ω+

10). This is because increasing qc (increasing
the prolateness of the core) at a constant qs causes the core-volume fraction to
decrease, i.e., the shells become thicker, and the nanorice plasmons will therefore
de-couple into the fundamental plasmons. In a core-shell oblate spheroid, these
trends are similar but the energy shifts between the respective modes are different
from those of the nanorice, as shown in Fig. 2.4(c) and Fig. 2.4(d), respectively.
In addition, as the aspect ratio of the core increases (increasing the oblateness
of the core), the symmetric and antisymmetric modes approach the LSPR of the
solid and cavity spheroid plasmons, respectively.

The multipolar LSPR of a concentric nanoshell (Fig. 2.3(b)) is obtained via
GR of Eq. (2.7) by using the spherical limits of the following functions:74

Qlm(v)
Plm(v)

∣∣∣
v−→∞

=
Nlm

v2l+1 ,
Q′lm(v)
P′lm(v)

∣∣∣
v−→∞

= − Nlm

v2l+1

( l + 1
l

)
, (2.16)

where Nlm is a normalization constant which cancels out during the simplification
of Eq. (2.7) using Eq. (2.16). Here, vc = a/ f and vs = b/ f in the sphere limit.
Using these expressions, we obtain the m-independent multipole LSPR of the
nanoshell as:

ω±l =
ωp√

2

√√√√√√√√√
∣∣∣∣∣∣l(l + 1) −[l2εc + (l + 1)2εm]

1 [2ε∞ + q2l+1(εm + εc − 2ε∞)]

∣∣∣∣∣∣±
√√√√√
∣∣∣∣∣∣(l + 1)2 εc

l2 εm

∣∣∣∣∣∣
2

+l(l+1)q2l+1

∣∣∣∣∣∣ [l(l + 1)q2l+1(εc − εm)2] −2
[lεc + (l + 1)εm]2 + εcεm(2l + 1)2 1

∣∣∣∣∣∣∣∣∣∣∣∣ [(l + 1)εm + lε∞] −l(l + 1)q2l+1

[ε∞(εm + εc − ε∞)− εmεc] [lεc + (l + 1)ε∞]

∣∣∣∣∣∣
,

(2.17)
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which reduces to

ω±1 =
ωp√

2

√√√√√√√√√
∣∣∣∣∣∣ 3 −(1 + 2 fc)
(εm + εc − 2ε∞) (εm + 2ε∞)

∣∣∣∣∣∣±
√√√√√
∣∣∣∣∣∣4 εc
1 εm

∣∣∣∣∣∣
2

+4 fc

∣∣∣∣∣∣ (1 + fc) −3εm
(εm + 5εc) (εc − εm)2

∣∣∣∣∣∣∣∣∣∣∣∣ (2εm + ε∞) −2 fc
[ε∞(εm + εc − ε∞)− εmεc] (εc + 2ε∞)

∣∣∣∣∣∣
,

(2.18)
in the dipole limit l = 1, where q = a/b is its aspect ratio, and fc = q3 is
the core-volume fraction. Eq. (2.18) can also be obtained via GR of Eq. (2.12)
by setting L0

c = L0
s = 1/3, where L = 1/3 is the static geometric factor of an

isotropic sphere.8 Fig. 2.5 shows that an increase in the core aspect ratio q of a

Figure 2.5: Dependence of the dipolar and quadrupolar LSPR of a concentric gold
nanoshell on the aspect ratio of the core, using the following parameters: ωp = 4.6 eV,
ε∞ = 1, εc = 2.13 (silica core), εm = 1.77 (water). Dashed lines show the dipolar and
quadrupolar LSPR of solid and cavity nanospheres, respectively. Appended to the right
is the plasmon hybridization diagram of the dipolar (l = 1) and quadrupolar (l = 2)
modes, respectively.

concentric nanoshell, i.e., thinning of the shells, causes a redshift in the symmetric
modes (ω−l ) and a blueshift in the antisymmetric modes (ω+

l ), while a decrease
in the core aspect ratio, i.e., thickening of the shells, causes the hybrid modes
to approach the LSPR of the corresponding solid (ωs

l ) and cavity (ωc
l ) sphere

plasmons, respectively. For l ≥ 2 (higher-order modes), ωs
l and ω−l both undergo

a blueshift, while ωc
l and ω+

l both undergo a redshift, as q increases, with respect
to the LSPR of the dipolar mode, as shown in Fig. 2.5. The plasmon hybridization
diagram indicates the different energy shifts in the LSPR of the nanoshell, for the
dipolar (l = 1) and the quadrupolar (l = 2) modes, respectively.
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2.2.2 Fundamental Plasmons

In this section, we will derive the LSPR of solid and cavity spheroids (Figs. 2.3(c)
and (e), respectively), as well as those of solid and cavity spheres (Figs. 2.3(d) and
(f), respectively), from the LSPR of the core-shell MNPs, using the relationships
in Fig. 2.2. Solid prolate spheroids are sometimes referred to as nanorods,8, 69

while solid oblate spheroids are also known as nanodisks70 or platelets.7 The
plasmonic modes of these nanocavities and solid MNPs can be referred to as the
fundamental plasmon modes, due to their role in plasmon hybridization.64, 69

To obtain the LSPR of these fundamental plasmons from those of the cor-
responding core-shell geometries, we made use of the fact that in concen-
tric/confocal core-shell MNPs,64, 69 the antisymmetric mode is formed from
antisymmetric coupling of solid and cavity plasmons of the same angular mo-
mentum number l, while the symmetric mode is formed via symmetric coupling
of similar solid and cavity plasmons. This is explained in detail in Section 2.2.3.
Here, we show that an antisymmetric de-coupling of the symmetric and anti-
symmetric modes in the core-shell MNPs leads to the LSPR of the cavity or void
plasmons, while a symmetric de-coupling of the symmetric and antisymmetric
modes leads to the LSPR of the solid plasmons. We have chosen to refer to the
latter as Symmetrization (S), and the former as Anti-Symmetrization (AS). The
LSPR of these fundamental MNPs are well-known but we present them to show
that they can alternatively be obtained using the relationships we proposed in
Fig. 2.2.

To de-couple the hybrid plasmon modes, we need to find the coupling
constants responsible for hybridization of the fundamental modes. We found
that the quantity Ω, defined in Eq. (2.6c), plays the role of the coupling constant
between the void and solid plasmons of the core-shell spheroid in the multipole
limit. This is because it is proportional to the core-volume fraction of the spheroid.
Thus, by setting Ω = 0 in the symmetric mode (ω−lm) of Eq. (2.7), and making
use of Eqs. (2.6a)–(2.6c), one obtains the multipole LSPR of the solid prolate
spheroid (Fig. 1.10(c)) as:

ωs
lm = ω−lm(Ω = 0)

= ωp

√
P′lm(vs)Qlm(vs)

ε∞P′lm(vs)Qlm(vs)− εmPlm(vs)Q′lm(vs)
. (2.19)

However, in the dipole limit, the core-volume fraction fc plays the role of the
coupling constant. This is because by setting fc = 0 in the symmetric dipolar
mode (ω−1m) of Eq. (2.12), the dipolar LSPR of the solid prolate spheroid (also
the dipole limit of Eq. (2.19)) is found as:

ωs
1m = ω−1m( fc = 0)

= ωp

√√√√ Lm
s

ε∞Lm
s + εm

(
1− Lm

s

) . (2.20)

These two processes correspond to S.
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In the case of a cavity spheroid (Fig. 1.10(e)), DR can be used to obtain its
LSPR.1 To do this, the expression obtained for <[ε(ωr)] in the case of a solid
prolate spheroid is used, but the positions of the dielectric constants are reversed.
Also, εm is replaced with εc, and vs with vc to obtain a new expression for
<[ε(ωr)] (see Appendix F), which is substituted in Eq. (2.4) to give the multipole
LSPR of the cavity prolate spheroid, or via AS of Eq. (2.7), i.e, by setting Ω = 0
in the antisymmetric mode (ω+

lm) of Eq. (2.7), to obtain:

ωc
lm = ω+

lm(Ω = 0)

= ωp

√
Plm(vc)Q′lm(vc)

ε∞Plm(vc)Q′lm(vc)− εcP′lm(vc)Qlm(vc)
. (2.21)

The dipole limit of Eq. (2.21) can be obtained via AS of Eq. (2.12), i.e, by setting
fc = 0 in the antisymmetric mode (ω+

1m) of Eq. (2.12), to obtain:

ωc
1m = ω+

1m( fc = 0)

= ωp

√√√√ 1− Lm
c

ε∞

(
1− Lm

c

)
+ εcLm

c

. (2.22)

For a solid sphere (Fig. 1.10(d)), we performed S on Eq. (2.17) to obtain its
LSPR. In the multipole limit, the aspect ratio q of the nanoshell plays the role of
the coupling constant between the solid and cavity sphere plasmons. Thus, by
setting q = 0 in the symmetric mode (ω−l ) of Eq. (2.17), the multipole LSPR of a
solid sphere is found as:

ωs
l = ω−l (q = 0)

= ωp

√
l

lε∞ + (l + 1)εm
. (2.23)

Here, Eq. (2.23) can also be obtained from the sphere limit of Eq. (2.19). The
dipole limit of Eq. (2.23) can be obtained by simply setting l = 1 in Eq. (2.23), or
by performing S on Eq. (2.18). Here, the core-volume fraction fc, which plays
the role of the coupling constant between the solid and cavity sphere plasmons,
has to be set to zero. Also, GR can be used by setting Lm

s = 1/3 in Eq. (2.20), to
obtain:

ωs
1 = ω−1 ( fc = 0)

= ωp

√
1

ε∞ + 2εm
. (2.24)

Likewise, DR can be used to obtain the LSPR of a cavity sphere (Fig. 1.8(f)).
To do this, the expression obtained for <[ε(ωr)] in the case of a solid sphere is
used, but the positions of the dielectric constants are reversed, and εm is replaced
with εc, to yield an expression for <[ε(ωr)] (see Appendix F), which is substituted
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in Eq. (2.4), to obtain the multipole LSPR of the cavity sphere, or via the sphere
limit of Eq. (2.21) to obtain:

ωc
l = ω+

l (q = 0)

= ωp

√
l + 1

lεc + (l + 1)ε∞
. (2.25)

However, Eq. (2.25) can also be obtained by performing AS on Eq. (2.17), i.e., by
setting q = 0 in the antisymmetric mode (ω+

l ) of Eq. (2.17). The dipole limit of
Eq. (2.25) can be obtained by simply setting l = 1, or by performing AS on Eq.
(2.18), or by using GR, i.e., by setting Lm

c = 1/3 in Eq. (2.22), all giving:

ωc
1 = ω+

1 ( fc = 0)

= ωp

√
2

εc + 2ε∞
. (2.26)

Figure 2.6: Dipolar and quadrupolar LSPR of: (a) solid and (b) cavity prolate gold
spheroids, respectively, (c) solid and (d) cavity oblate gold spheroids, respectively, and
those of solid and cavity gold spheres, using the following parameters: ωp = 4.6 eV,
ε∞ = εc = εm = 1.0.

In Fig. 2.6, increasing the aspect ratio of a prolate spheroid causes a redshift
in both the longitudinal (m = 0) dipolar (l = 1) LSPR of the solid spheroid (ωs

10,
Fig. 2.6(a)) and the transverse (m = 1) dipolar LSPR of the cavity spheroid (ωc

11,
Fig. 2.6(b)). Conversely, the transverse LSPR of the solid spheroid (ωs

11, Fig.
2.6(a)) and the longitudinal LSPR of the cavity spheroid (ωc

10, Fig. 2.6(b)) are
both blueshifted. The LSPR of the quadrupolar modes (l = 2) follow similar
trends (Fig. 2.6(a) and Fig. 2.6(b), respectively). However, with respect to the
dipolar modes, ωs

20 is blueshifted while ωc
20 is redshifted. On the other hand,

ωc
21 is blueshifted while ωs

21 is redshifted, with respect to the dipolar modes. Fig.
2.6(c) and Fig. 2.6(d) show that these trend are reversed in an oblate spheroid,
i.e., increasing the aspect ratio of the spheroid affects the longitudinal dipolar
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LSPR of the solid spheroid (ωs
10, Fig. 2.6(c)) and the transverse dipolar LSPR

(ωc
11, Fig. 2.6(c)) of the cavity spheroid in the same manner, (i.e., causing a

blueshift), while the transverse LSPR of the solid spheroid (ωs
11, Fig. 2.6(c)) and

the longitudinal LSPR of the cavity spheroid (ωc
10, Fig. 2.6(c)) are both redshifted.

Quadrupolar modes (l = 2) follow similar trends, but as also shown in Fig. 2.6(c)
and Fig. 2.6(d), the QSA fails to properly replicate the expected converse trends
around q ≥ 4, for the longitudinal solid and cavity oblate spheroids, respectively.
However, as q −→ 1, the LSPR of the solid and cavity spheroids approach the
LSPR of the solid (ωs

1) and cavity (ωc
1) sphere, respectively. A comparison of these

plots (Figs. 2.6(a) and (b) and Figs. 2.6(c) and (d)) shows that the longitudinal
LSPR of the solid oblate spheroid is blueshifted from that of the solid prolate
spheroid, while the transverse LSPR of the solid oblate spheroid is redshifted
from that of the solid prolate spheroid, as their aspect ratios increase. The LSPR
of the cavity spheroids show a converse trend. In addition, the longitudinal LSPR
of the spheroids (ωs

l0 and ωc
l0) are more sensitive to changes in the aspect ratio

compared to their transverse counterparts (ωs
l1 and ωc

l1).

2.2.3 Plasmon Hybridization in a Nanorice

In this section, we constructed a simple model of plasmon hybridization in a
nanorice, in the dipole limit. In core-shell MNPs, void plasmons couple to solid
plasmons to form hybrid plasmons, through the core volume fraction fc, which
plays the role of the coupling constant in the dipole limit. This phenomenon is
known as plasmon hybridization.13, 64 We used this model to justify the de-coupling
of the hybrid plasmon modes through fc = 0, to form the fundamental plasmon
modes, as a part of the S and AS methods we have employed in Section 2.2.2.
For brevity, we only considered the case: εm = εc = ε∞ = 1. We started with a
nanorice since it can be transformed to a core-shell oblate spheroid or reduced to
a concentric nanoshell.

Consider a solid prolate spheroid and a cavity prolate spheroid with dimen-
sions as given in Section 2.2.1, but with qc > qs. When these two nanostructures
couple to form a nanorice, the core-volume fraction of the nanorice is fc as given
in Section 2.2.1. From Eq. (2.12), we obtain the following normal modes of the
plasma oscillations in the nanorice:

ω2
± =

1
2

[
(ω2

c + ω2
s )± (ω2

c −ω2
s )

√
1 +

4 fcLs(1− Ls)

(1− Lc − Ls)2

]
(2.27)

for the longitudinal polarization (m = 0), where ωc and ωs are the longitudinal
dipolar LSPR of the cavity and solid prolate spheroid, respectively, and Lc and
Ls are the longitudinal static geometric factors of evaluated at the core and at
the shell surfaces, respectively, for which the superscript “0” has been dropped.
We constructed a simple model of plasmon hybridization by assuming that the
cavity plasmons couple weakly to the solid plasmons in the nanorice. This
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weak-coupling regime corresponds to fc < (1− Lc− Ls)2/4Ls(1− Ls), where the
antisymmetric and symmetric modes are obtained from Eq. (2.27) as:

ω2
+ ≈ ω2

c + fc

(
1−Ls

1−Lc−Ls

) [
ω2

s − fcω2
c

(
Ls

1−Lc−Ls

√
1−Ls
1−Lc

)2
]

(2.28)

and

ω2
− ≈ ω2

s − fc

(
1−Ls

1−Lc−Ls

) [
ω2

s − fcω2
c

(
Ls

1−Lc−Ls

√
1−Ls
1−Lc

)2
]

, (2.29)

respectively, up to second order in fc. We observe that the higher-energy anti-
symmetric plasmon mode ω+, is formed via a blueshift in the cavity plasmon
mode ωc, as a result of coupling with the solid plasmon, while the lower-energy
symmetric plasmon mode ω−, is formed via a redshift in the solid plasmon
mode ωs, as a result of coupling with the cavity plasmon, as revealed by both Eq.
(2.28) and Eq. (2.29), as well as the plasmon hybridization diagram in Fig. 2.7.

Figure 2.7: Graphical solution of the Fröhlich function F(ω, fc), for a gold nanorice
with dimensions: qs = 1.5 and qc = 1.839. The plasmon hybridization diagram and the
distribution of surfaces charges for the different plasmon modes are shown on the right.

Using ω2
+ and ω2

+, we construct a function, F(ω, fc) = ω4 −ω2(ω2
+ + ω2

−) +
ω2
+ω2
−, which we refer to as the ”Fröhlich function”, in order to better understand

the weak coupling of fundamental plasmon modes in a nanorice. For a nanorice
of aspect ratio qs = 1.5, and core aspect ratio qc = 1.839, we obtain an upper
bound of fc = 0.466 = (1− Lc − Ls)2/4Ls(1− Ls) in the weak-coupling regime
( fc < 0.466 for this nanorice geometry). The zeros of F(ω, 0.466) are ω− =
1.53 eV and ω+ = 4.43 eV at the LSPR (F(ω = ωr, fc) = 0), for the longitudinal
polarization, m = 0. The function has a minimum at ω = ωp

√
1− Lc + Ls/

√
2.

Here, Eqs. (2.28) and (2.29) predict ω− = 1.62 eV and ω+ = 4.41 eV, respectively.
The zeros of F(ω, fc < 0.466) will therefore approach ωs and ωc, respectively.
The distribution of surface charges shown in the plasmon hybridization diagram
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appended to Fig. 2.7, shows that surface charges align in the same direction in
the solid and cavity plasmons to form the symmetric mode, while the reverse
occurs in the case of the antisymmetric mode.

In the sphere limit, Lc = Ls = 1/3⇒ fc < 1/8. Hence, when εm = εc = ε∞ =
1, the coupling constant of solid and cavity plasmons in a concentric nanoshell
has an upper bound that is independent of the aspect ratio of the nanoshell,
below which the fundamental plasmons are weakly coupled. However, in core-
shell spheroids, the weak coupling regime of solid and cavity plasmons has an
upper bound that depends on the aspect ratios of the core and the core-shell, via
Lc and Ls, respectively. However, this result is only valid for MNP sizes within
the QSA, where the LSPR of solid and void sphere plasmons are independent of
the sphere size, provided that the coupling constant is weak.

2.3 plasmonic dimers

Plasmonic dimers consist of two MNPs which interact with each other in the pres-
ence of an applied electromagnetic field to form hybrid plasmon modes.18, 19, 75

The optical response of a MNP dimer can be investigated using a dipolar quasi-
static approach, provided that the MNP sizes and the inter-particle distance are
small compared to the wavelength of light in the medium.19, 76, 77 The above con-
ditions ensure that the contributions from higher-order modes are negligible, and
can therefore be ignored. These conditions also one to ignore radiation damping,
the spatial variation of the incident electric field, and the wavenumber-dependent
terms in the induced field on each particle.19, 76 This approach has been shown
to agree with experiments involving small MNPs less than 30 nm in radius.19, 65

Beyond such sizes, the quasi-static model is not valid.8, 65 The method also re-
quires that the nanoparticles are such that the probability of electrons tunnelling
through the dimer gap is zero. Esteban et al.53 have shown that the probability
for quantum tunnelling is negligible in dimer gaps greater than or equal to 0.5
nm (Fig. 1.3(b)), so that classical methods are valid in this regime. In addition,
the local electric field, Eloc, on each MNP in the dimer is represented as that of an
induced electric dipole, Eind, at the centre of the other particle, and the external
field, E0, applied to the dimer.19 This is used to find the effective quasi-static
dipole polarizability of the dimer for a given incident field polarization.19, 76

The optical properties of MNP dimers, such as nanosphere (NS) dimers,53, 78–80

nanorod (NR) dimers,75, 80, 81 concentric nanoshell dimers,82, 83 NS-concentric
nanoshell dimers,18, 19 pairs of cavity resonance based plasmonic nanoanten-
nas,84 and nanowire dimers65, 85 have been widely studied in plasmonic litera-
ture. While significantly more strongly enhanced near-fields have been reported
to exist in dimer gaps,53, 84, 86, 87 the spectra of dimers also differ from those
of single nanoparticles, predominantly because they feature incident electric
field polarization-dependent response, plasmon-induced resonance shifts, and
plasmon-induced transparency (PIT) regions.18, 75, 78 These dimers are generally
classified as either homo– or heterodimers.
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2.3.1 Homo– and Heterodimers

Homodimers are formed from two MNPs of the same size, geometry, orientation,
and material composition.21, 65, 75 For a given incident field polarization, the
optical response of such dimers, usually features one dipolar plasmon bonding
mode (within the dipole-dipole coupling limit), where plasmon coupling results
in a shift in the dipolar LSPR of the MNP.21 On the other hand, heterodimers are
formed from two MNPs with different sizes,18 geometry,17 orientation,80 and/or
material composition.19 Unlike homodimers, plasmon coupling in heterodimers
can lead to the formation of one or more dipolar plasmon bonding modes,17–19

for a given incident field polarization.

Figure 2.8: Examples of homo– and heterodimers of gold (golden) and silver (grey)
nanospheres and nanorods.

Fig. 2.8 shows the arrangement of some common homo– and heterodimers.
Let g denote the surface to surface distance between any pair of nanoparticles
shown in Fig. 2.8, and let r denote the radius of the NS. Then the centre to centre
distance is l = g + 2r. The longitudinal dipole polarizability (due to an incident
field parallel to the dimer axis, m = 0) and the transverse dipole polarizability
(due to an incident field perpendicular to the dimer axis, m = 1) of the dimer are
respectively21, 76 (also see appendix F):

αm = 2αns

[
1 + (−1

2 )m αns
2πl3

]
1−

(
αns

2m+1πl3

)2 , (2.30)

where αns = 4πr3[ε(ω)− εm]/[ε(ω) + 2εm]19 is the static dipole polarizability of
the NS. Applying the Fröhlich condition to Eq. (2.30) leads to αns/2m+1πl3 = ±1,
from which <[ε(ω)] is obtained. Let ωm denote the LSPR of the homodimer. It is
derived by substituting the expression for <[ε(ω)] into Eq. (2.4), to obtain:

ωm = ωs

√
1 + νm

1 + ενm
, νm = ±(21−m)

(r
l

)3
, (2.31)

where ωs is the dipolar LSPR of the solid sphere (Eq. (2.24)), νm are the dipole
orientation-dependent coupling constants of the solid sphere dipole plasmons,
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and ε = (ε∞ − εm)/(ε∞ + 2εm). At constant values of r, νm −→ 0 as g −→ ∞, so
that Eq. (2.31) reduces to Eq. (2.24).

Figure 2.9: Dependence of the LSPR of a silver NS homodimer on the dimer gap. On
the left is the plasmon hybridization diagram showing the positions of the LSPR, the
coupling constants, and the direction of the induced dipole field in each NS (as indicated
by the arrows). (Reproduced for silver from Ref.21 based on the Drude model, with
r = 20 nm, and εm = 1.)

In Fig. 2.9, dipolar solid plasmons of the NS align in different directions to
form new dipolar modes. Plasmon coupling in the NS homodimer depends on
the coupling constant, νm. When the direction of the induced dipole field in each
NS is the same, dipoles parallel to the dimer axis form a lower-energy hybrid
plasmon mode (ω−0 ), due to a decrease in the coupling constant, while dipoles
perpendicular to the dimer axis form a higher-energy hybrid plasmon mode
(ω+

1 ), due to an increase in the coupling constant (Fig. 2.9). Here, we represent
these modes with solid lines, since the extinction spectra of the dimer usually
feature these two configurations (Fig. 2.10(a)), as demonstrated experimentally in
Ref.18, 19 The other two configurations, which are not so common experimentally,
involve induced dipole fields in opposite directions (Fig. 2.9, dashed lines).
In this case, dipoles parallel to the dimer axis form a higher-energy hybrid
plasmon mode (ω+

0 ), due to an increase in the coupling constant, while dipoles
perpendicular to the dimer axis form a lower-energy hybrid plasmon mode (ω−1 ),
due to a decrease in the coupling constant (Fig. 2.9). The respective hybrid modes
approach that of the NS (ωs) at large values of r, as a result of weak coupling.

Let d and c denote the half-length and half-width of a prolate spheroid,
respectively, and let b and a denote the half-length and half-width of a nearby
prolate spheroid, respectively, as shown in Fig. 2.8. If we approximate each
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spheroid to a NR, then the effective longitudinal dipole polarizability of the NR
dimer is (see Appendix F):

αe f f =
α1 + α2 +

3α1α2
4πl

[
1−Lµ1

(l2− f 2
1 )

+
1−Lµ2

(l2− f 2
2 )

]
1− 9α1α2(1−Lµ1)(1−Lµ2)

(4πl)2(l2− f 2
1 )(l

2− f 2
2 )

, (2.32)

where f 2
1 = d2 − c2 and f 2

2 = b2 − a2 are the squares of the focal lengths of the
first and second NR, respectively, l = d + g + b is the centre to centre distance,
Lµ1 is the longitudinal static geometric factor of the dimer due to the first NR,
Lv2 is the longitudinal static geometric factor of the dimer due to the second
NR, µ1 = l/ f1 and µ2 = l/ f2 are the corresponding radial coordinates of the
dimer, α1 and α2 are respectively the static dipole polarizabilities of the first and
second NR. Here, αi = Vi[ε(ω)− εm]/[εm + Li[ε(ω)− εm]], with V1 = 4πdc2/3
and V2 = 4πba2/3, L1 and L2 are the longitudinal static geometric factors of the
first and second NR, respectively. If the nearby spheroid is replaced by a NS
of radius r, the effective longitudinal dipole polarizability of the NS-NR dimer
becomes:

αe f f =
αns + αnr + αnsαnr

[
1

2πl3 +
3(1−Ll)

4πl(l2− f 2)

]
1− 3αnsαnr(1−Ll)

2(2πl2)2(l2− f 2)

, (2.33)

where l = r + g + d is the centre to centre distance, f is the focal length of the
NR, αnr is the static dipole polarizability of the NR, and Ll is the static geometric
factor of the NS-NR system.

Figure 2.10: (a) Normalized absorption cross-sections of the silver NS homodimer in Fig.
2.8, and (b) Normalized absorption cross-sections of gold NS-NR heterodimer, gold NR
heterodimer, and those of the single MNPs, with water, εm = 1.77, as the host medium.

In the homodimers in Fig. 2.8(a), only one hybrid dipolar mode is possible
for each direction of the incident field (Fig. 2.10(a)), while two hybrid dipolar
modes are possible in heterodimers (Fig. 2.10(b)). Fig. 2.10(a) also shows that
the absorption cross-section is enhanced when the incident field is parallel to the
dimer axis (m = 0), as well as when the incident field is perpendicular to the
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dimer axis (m = 1), but mostly for the former. In addition, the plasmon peak
position of the hybrid mode in the case of m = 0 is redshifted from that of the
isolated NS while the plasmon peak position of the hybrid mode in the case of
m = 1 is blueshifted from that of the isolated NS. These behaviours have also
been reported in Refs.18, 19, 65, 88

In Fig. 2.10(b), plasmon coupling between two gold nanorods, NR1 of di-
mension: (d, c) = (25 nm,10 nm), and NR2 of dimension: (b, a) = (20 nm,10

nm), leads to the formation of two dipolar hybrid modes. The lower-energy
hybrid mode is due to a redshift in the plasmon peak position of NR1, while the
higher-energy hybrid mode is due to a blueshift in the plasmon peak position of
NR2 (Fig. 2.10(b)). Similarly, plasmon coupling between NR1 and a gold NS of
radius r = 20 nm, leads to the formation of a lower-energy hybrid mode, which
is due to a redshift in the plasmon peak position of NR1, and a higher-energy
hybrid mode, which is due to a blueshift in the plasmon peak position of the NS
(Fig. 2.10(b)). In each of the above cases, the cross-section of the dimer is partly
enhanced (due to the redshifted mode) and partly reduced (due the blueshifted
mode), compared to the cross-section of the isolated MNP. The regions in the
absorption spectra, between 2.1 eV and 2.4 eV for the NS-NR1 dimer, and around
2.1 eV for the NR1-NR2 dimer, where the cross-sections are significantly reduced
compared to the rest of the spectra, are known as plasmon-induced transparency
dips.89

2.3.2 A Nanoegg-Nanorod Dimer 2

Reduced-symmetry metal–dielectric nanoparticles such as nanoeggs13, 14 possess
great LSPR tunability due to their ability to support the plasmon hybridization
of solid and void plasmons with both the same and different angular momen-
tum numbers.13, 14 Engineered primarily by off-setting the core of a concentric
nanoshell, this symmetry-breaking property of nanoeggs enables the manifesta-
tion of dipole-active modes15, 66 in their extinction spectra. In addition, a typical
nanoegg (NE) absorption spectrum, based on the two lowest-order plasmonic
modes (the dipole and the quadrupole modes), features a plasmon-induced
transparency (PIT) dip,71 also known as a Fano dip.17, 71 This is a region of
reduced or zero absorption as a result of dipole–quadrupole plasmon coupling.71

Likewise, the aspect ratio of a nanorod (NR) enables its LSPR to be tuned
with great sensitivity along the long axis.21, 22, 27, 56, 91 Both the dipolar LSPR
of a NE66, 71 and longitudinal dipolar LSPR of a NR10, 12, 27, 91 have a common
property, namely a redshift in their LSPR with an increase in their respective
asymmetry parameters, i.e., the aspect ratio of the NR and the core-offset of the
NE. When these two MNPs are spatially separated by a small gap, a NE-NR
heterodimer is formed. Although nanoeggs are more complicated to fabricate
than concentric nanoshells, they can be synthesized via wet chemistry methods,
as demonstrated in Refs.13, 14 Thus, it is feasible to synthesize the proposed dimer.
A heterodimer similar to the one proposed here, where a gold nanosphere (NS)

2 Most of this section is part of the publication in Ref.90
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was used to modify the optical spectra of a gold NR, was studied in Ref.17 The

Figure 2.11: Model geometry of the NE–NR dimer. The dimer is surrounded by a
homogeneous dielectric medium of dielectric constant εm. The NR is modelled as a
prolate gold spheroid in the presence of a uniform electric field E polarized in the
z-direction, with a propagation wavevector k in the x-direction. The NE consists of a
gold shell of dielectric constant ε(ω), an off-centre silica core of dielectric constant εc,
and a core-offset σ, in the positive z-direction. The surface-to-surface distance is g = gẑ,
and the centre-to-centre distance is l = lẑ.

aim of this study is to investigate the effect of plasmon coupling on the optical
properties of a NE-NR heterodimer as the longitudinal LSPR of the NR is tuned
via its size. We chose to study a NE since, unlike the concentric nanoshell, the
LSPR of a NE can be tuned at constant particle size via its core-offset.13, 14 We
studied small nanorods to ensure that only dipolar NR plasmons, which can be
fully described via a quasi-static approach, are considered. Likewise, radiation
broadening of the scattering and absorption spectra,22, 65 due to radiation of
incident light as the particle sizes become comparable to the wavelength of light
in the medium, is avoided. The optical properties studied in this work include
the effective scattering and absorption spectra of the NE-NR dimer, as well as
the characteristics of such hybrid spectra. We approximated the NR to a solid
prolate spheroid, a usual practice in analytical models.77 A uniform electric field,
parallel to the dimer axis, polarizes the NR along its long axis in the direction of
the core-offset of the NE, as shown in Fig. 2.11. An incident field perpendicular
to the dimer axis will polarize the NR along its short axis and the NE across
its core-offset. Since these transverse LSPRs have poor tunabilities compared to
their longitudinal counterparts,12–14, 91 this incident field direction will not be
considered.

For the NE-NR dimer, with E0 parallel to the dimer axis, as shown in Fig.
2.11, we obtain the effective quasi-static dipole polarizability of the NE, the NR,
and that of the dimer as follows:90

α
e f f
NE = αNE

[
1 +

3αNR[1− L(v2)]

4πl(l2 − f 2)

] [
1− 3αNRαNE[1− L(v2)]

2(2πl2)2(l2 − f 2)

]−1

, (2.34)

α
e f f
NR = αNR

[
1 +

αNE

2πl3

] [
1− 3αNRαNE[1− L(v2)]

2(2πl2)2(l2 − f 2)

]−1

, (2.35)

αdimer = α
e f f
NE + α

e f f
NR, (2.36)
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where L(vi) = (v2
i − 1)[(vi coth−1 vi)− 1], v1 = (1− q−2)−

1
2 , l = d + g + b, v2 =

l/ f , q = d/c, f =
√

d2 − c2, αNR = (4πdc2/3)[ε(ω)− εm]/[εm + L(v1)[ε(ω)−
εm]] is the longitudinal static dipole polarizability of the NR, v1 and v2 are the
radial coordinates of the NR and the NE-NR system, respectively, L(v1) and
L(v2) are the the longitudinal static geometric factors of the NR and the NE-NR
system, respectively, q is the aspect ratio of the NR, f is the focal distance of
the NR, and αNE is the quasi-static dipole polarizability of the NE, obtained in
Refs.90, 92 as follows:

αNE = 4πb3

9ε(ω)εmK11

(
εc−ε(ω)

)
κ2+

(
ε(ω)−εm

)(
κ1κ2−κ3

)
(

ε(ω)+2εm

)(
κ1κ2−κ3

)
 , (2.37)

where

κ0 =
(

εc − ε(ω)
)(

ε(ω)− εm

)
, (2.38a)

κ1 = 2K11κ0 + M11

(
εc + 2ε(ω)

)(
2εm + ε(ω)

)
, (2.38b)

κ2 = 6K22κ0 + M22

(
2εc + 3ε(ω)

)(
3εm + 2ε(ω)

)
, (2.38c)

κ3 = 3K12M21κ0
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ε(ω) + 2εm

)(
3ε(ω) + 2εc
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K12 = 2
( a

b2

)
σ, M21 = −2

(b2

a3

)
σ. (2.39b)

Here, K11 and M11 are coupling constants of solid and cavity dipole sphere
plasmons, respectively, K22 and M22 are coupling constants of solid and cavity
quadrupole sphere plasmons, respectively, and K12 and M21 are the dipole–
quadrupole and quadrupole–dipole coupling constants of solid and cavity sphere
plasmons, respectively.

Absorption and Scattering Spectra of the Dimer

In the quasi-static limit, the scattering and absorption cross-sections of the
dimer are calculated using Eq. (1.15b), with the polarizability in Eq. (1.15b)
replaced with Eq. (2.36). The Drude-Lorentz local dielectric function for gold
(Eq. (1.10)), with the model parameters given in Table 1, will be used. We
will consider a NE with dimensions a = 15 nm and b = 20 nm, and the
following core-offsets: σ = 0.0, 1.0, 2.0, 3.0, and 4.0 nm. For a given aspect ratio
of the NR, the dipolar LSPR of the NE is tuned via its core-offset to make it
resonant or off-resonant with the longitudinal dipolar LSPR of the NR, while
the coupling distance is kept constant. The dimer gap, g, will be set to 1.0 nm,
a typical gap distance that has been reported experimentally for heterodimers
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in aqueous solutions.17 Likewise, Eqs. (2.34) and (2.35) show that the plasmon
coupling terms, which are proportional to 3αNRαNE[1− L(v2)]/4πl(l2− f 2), and
αNRαNE/2πl3, respectively, are strongly dependent on short dimer gaps. Since
each of the coupling terms is proportional to αNR/l at constant g and αNE, we
will consider several nanorods with different αNR by varying both c and d in
order to tune the plasmon coupling strength.

As shown in Fig. 2.12(a), the dipolar LSPR of the NE, which we denote as
ωne, undergoes a redshift with increasing core-offset, i.e., from ωne = 615 nm
when σ = 0.0 nm to ωne = 652 nm when σ = 4.0 nm, in agreement with Ref.71

At large core-offsets, a quadrupole LSPR is also noticeable in Fig. 2.12(a) at
around 550 nm, due to an increase in the dipole–quadrupole plasmon coupling
strength. In the NE-NR dimer, we studied two groups of NR sizes. For the big
nanorods, their absorption cross-sections are comparable to those of the isolated
NE, i.e., the NR sizes (d, c) are (24 nm, 12 nm), (24 nm, 9.6 nm), and (24 nm,
8 nm), as shown in panel 1 of Fig. 2.12(b), while for the small nanorods, their
absorption cross-sections are small compared to those of the isolated NE, i.e., the
NR half-length and half-width, (d, c), are (15 nm, 7.5 nm), (15 nm, 6 nm), and
(15 nm, 5 nm), as shown in panel 2 of Fig. 2.12(b). In the quasi-static limit, the
dipolar plasmon resonances of the different NR sizes, which we denote as ωnr,
are the same when they have the same aspect ratio,12, 22 i.e., ωnr = 586 nm, 625
nm, and 673 nm, corresponding to q = 2.0, 2.5 and 3.0, respectively, while their
absorption cross-sections are different, as shown in Fig. 2.12(b), panels 1 and 2,
respectively). The absorption spectra of the NE-NR dimer are shown in Fig. 2.13

Figure 2.12: Absorption cross-sections of the uncoupled nanoparticles. (a) Absorption
cross-sections of the NE for each of the core-offsets studied. (b) Absorption cross-sections
of the big nanorods (panel 1) and those of the small nanorods (panel 2), respectively. (c)
Absorption cross-section of a nanosphere with the same volume as that of the blueshifted
big NR (panel 1) and small NR (panel 2).

while the scattering spectra are shown in Fig. 2.14 for each of the three plasmon
peak positions of the nanorods with respect to those of the NE, respectively.

For the blueshifted nanorods i.e., the nanorods with half-dimensions (24

nm, 12 nm) and (15 nm, 7.5 nm), with a LSPR of 586 nm, the absorption and
scattering spectra of the NE-NR dimer in Figs. 2.13((a), (d)) and 2.14((a), (d)),



2.3 plasmonic dimers 36

Figure 2.13: Absorption cross-sections of the NE-NR dimer, for the different core-offsets
of the NE, in the case of nanorods with different absorption cross-sections and plasmon
peak positions, corresponding to NR sizes (d, c): (a) (24 nm, 12 nm) NR and (d) (15 nm,
7.5 nm) NR (Blueshifted nanorods), (b) (24 nm, 9.6 nm) NR and (e) (15 nm, 6 nm) NR
(Resonant nanorods), and (c) (24 nm, 8 nm) NR and (f) (15 nm, 5 nm) NR (Redshifted
nanorods), with respect to those of the NE. Top row: the big nanorods. Bottom row: the
small nanorods. The dotted lines represent the plasmon peak positions of the NR and
NE, respectively.

respectively, show a gradual appearance of transparency dips and mode splittings
as ωne redshifts from ωnr. This is due to an increase in the plasmon detuning
frequency, ωne −ωnr, which leads to mode splitting. However, the big NR, with
half-dimensions (24 nm, 12 nm), whose plasmon linewidth and absorption cross-
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Figure 2.14: Scattering cross-sections of the NE-NR dimer, for the different core-offsets
of the NE, in the case of nanorods with different absorption cross-sections and plasmon
peak positions, corresponding to NR sizes (d, c): (a) (24 nm, 12 nm) NR and (d) (15 nm,
7.5 nm) NR (Blueshifted nanorods), (b) (24 nm, 9.6 nm) NR and (e) (15 nm, 6 nm) NR
(Resonant nanorods), and (c) (24 nm, 8 nm) NR and (f) (15 nm, 5 nm) NR (Redshifted
nanorods), with respect to those of the NE. Top row: the big nanorods. Bottom row: the
small nanorods. The dotted lines represent the plasmon peak positions of the NR and
NE, respectively.

section are comparable to those of the NE (Fig. 2.12), induces more plasmon shifts
and some noticeable transparency dips, and leads to more enhanced spectra,
as shown in Figs. 2.13(a) and 2.14(a), due to its large absorption cross-section
(Fig. 2.12(b), panel 1) compared to that of the small NR with dimensions (15 nm,
7.5 nm) (Fig. 2.12(b), panel 2). For the small NR, nearly only plasmon-induced
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LSPR shifts occur in the dimer spectra in Figs. 2.13(d) and 2.14(d), even when
the detuning frequency is high. This is because the NR absorption cross-section
(Fig. 2.12(b), panel 2) is too small compared to those of the NE (Fig. 2.12(a)). In
addition, the plasmon-induced shifts in the spectra of the NE-NR dimer, i.e., the
strong redshifts in ωne and the weak blueshifts in ωnr, are slightly larger for the
big NR due to its large polarizability.

Figs. 2.13(b) and 2.14(b) show the absorption and scattering spectra of the
dimer when the NE is coupled to a big NR, (24 nm, 9.6 nm), with ωnr = 625
nm resonant with the NE at σ = 2.0 nm, whose absorption cross-section is
comparable to that of the NE (Fig. 2.12(b), panel 1). The spectra of the NE-NR
dimer (Figs. 2.13(b) and 2.14(b)) only feature plasmon-induced LSPR shifts. This
is because the plasmon coupling strength is small, since a long half-length of
the NR leads to a longer inter-particle distance, so that plasmon hybridization
leads only to a strong redshift in ωne, even beyond zero detuning (ωne 6= ωnr). In
addition, the plasmon linewidths of the isolated NE and NR absorption spectra
are comparable (Fig. 2.12(a) and Fig. 2.12(b), panel 1), so that Fano interference
does not occur. However, when the NE is coupled to a small NR, (15 nm, 6

nm), whose absorption cross-section is smaller than that of the NE, and also
resonant with the NE at σ = 2.0 nm (Fig. 2.12(b), panel 2), both the scattering and
absorption spectra of the dimer feature some noticeable induced transparency
when σ ≤ 2.0 nm (Figs. 2.13(e) and 2.14(e)). In this case, the plasmon linewidths
of the isolated NE and NR are not comparable and the coupling strength due to
the (15 nm, 6 nm) NR is more than that of the (24 nm, 9.6 nm) NR as a result of its
short half-length, so that Fano interference can occur, but plasmon hybridization
only leads to mode splitting when σ ≤ 2.0 nm. Beyond σ = 2.0 nm, the NR
absorption is too small compared to that of the NE for any significant mode
splitting to take place. Similar to the blueshifted NR case, the plasmon-induced
LSPR shifts are slightly greater and the spectra of the dimer are more enhanced
when the NR is bigger due to its large polarizability.

In the case of redshifted nanorods, the absorption and scattering spectra of the
NE-NR dimer in Figs. 2.13(c) and 2.14(f), respectively, show a gradual decrease
in both the induced transparency dips and mode splittings as ωne approaches
ωnr. This is expected since the detuning frequency, ωnr −ωne, decreases in this
case so that mode splitting becomes more unlikely. However, the small NR,
(15 nm, 5 nm), induces significant transparency dips in the dimer spectra (Figs.
2.13(f) and 2.14(f)) compared to the dimer spectra for the big NR, (24 nm, 8 nm)
(Figs. 2.13(c) and 2.14(c)), irrespective of the detuning frequency. As a result,
the smaller NR can enhance or reduce the cross-sections of the NE-NR dimer
(Figs. 2.13(f) and 2.14(f)) depending on the core-offset of the NE. This is partly
due to the difference between the plasmon linewidths of the isolated NE (Fig.
2.12(a)) and the small NR (Fig. 2.12(b, panel 2) compared to that of the big NR
(Fig. 2.12(b, panel 1), and also due to a stronger coupling strength in the dimer
when the NR half-length is short due to a smaller centre-to-centre distance. The
plasmon-induced shifts in the dimer spectra, i.e., the weak redshifts in ωnr and
the strong blueshifts in ωne, and the enhancement of the cross-sections for the
big NR are greater than those of the small NR due to the large polarizability of
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the former. Similar size-dependent spectral shifts and enhancement of optical
cross-sections have been reported for other dimers studied in Refs.17–19 For
instance, similar to one of the scattering spectra of the NS-NR dimer studied in
Ref.,17 when the NS is located at the end of the NR and the NR is at a redshifted
plasmon peak position with respect to the plasmon peak of the NS, the scattering
spectra of the NE-NR dimer (Fig. 2.14(f)) also contain two scattering peaks.
However, for the NE-NR dimer, a high-energy peak, which is weak and decreases
with increasing core-offset, and a low-energy peak, which is strong and increases
with decreasing core-offset, are formed.

When σ = 0.0 nm, i.e., a concentric nanoshell, the transparency dips in both
the absorption and scattering spectra of the NE-NR dimer (Fig. 2.13 and Fig. 2.14)
are more noticeable in the redshifted small NR case (Fig. 2.13(f) and Fig. 2.14(f,
top panels) compared to those of the blueshifted small NR case (Fig. 2.13(d) and
Fig. 2.14(d, top panels), whereas at large core-offsets, such as σ = 4.0 nm, the
converse is true for the big nanorods (Fig. 2.13(a) and Fig. 2.14(a, bottom panels).
Again, this behaviour is due to the detuning frequency, which can be increased
or decreased with respect to the spectral peak position of the NR.

We considered nanospheres with the same volume as the blueshifted nanorods
by using the equivalent sphere-volume radius of the NR as the radius of the
NS in each case, i.e., r =

3
√

dc2, to obtain r = 15.12 nm for the (24 nm, 12 nm)
NE-NR dimer and r = 9.45 nm for the (15 nm, 7.5 nm) NE-NR dimer. Their
dipolar LSPR, which is at around 525 nm, as shown in Fig. 2.12(c, panels 1 and
2), is the same in the quasi-static limit. To obtain the polarizability of the NE-NS
dimer from that of the NE-NR dimer, we set L(v1) = L(v2) = 1/3, i.e., the static
geometric factor of an isotropic sphere,12, 22 f = 0, and l = r + g+ b. As shown in
Fig. 2.15, both the absorption and scattering spectra of the NE-NS dimer are less
enhanced compared to those of the NE-NR dimer (Figs. 2.13(a)-(f) and 2.14(a)-(f),
respectively), for the blueshifted NR case. This is due to the smaller polarizability
of the NS compared to that of the NR of the same volume. Compared to the
NE-NR dimer, the spectra of the NE-NS dimer (Fig. 2.15) are dominated by
plasmon-induced LSPR shifts due to the small absorption cross-section of the NS
compared to that of the NE. However, the trends that lead to plasmon-induced
shifts and induced transparency in the NE-NS dimer are similar to those of the
NE-NR dimer for the blueshifted NR case.

In the above discussions, we have attributed the plasmon-induced trans-
parency phenomenon to either plasmon hybridization or Fano interference or
both, since the plasmon linewidths of the dipolar modes of the NR and the NE
can be comparable or dissimilar, depending on the NR size. As discussed in
Refs.,42, 71 and as we have explained above, a difference in the plasmon linewidths
also leads to induced transparency as a result of Fano interference between the
two plasmon modes. Plasmon coupling in the NE-NR dimer depends on both the
plasmon detuning frequency and the NR size. The appearance of transparency
dips in the dimer spectra for all NR spectral peak positions studied shows that
for a given NE size, the dimer can be strongly coupled depending on the de-
tuning frequency and the NR size. The latter determines the plasmon coupling
strength through the half-length of the NR77 and Fano interference through the
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Figure 2.15: Absorption cross-sections of the NE-NS dimer (top row, (a) and (b)), and
scattering cross-sections of the NE-NS dimer (bottom row, (c) and (d)), respectively, for
the different core-offsets of the NE, in the case of nanospheres with the same volume as
the blueshifted nanorods: (a) and (c) (24 nm, 12 nm) NR, r = 15.12 nm, and (b) and (d)
(15 nm, 6 nm) NR, r = 9.45 nm. The dotted lines represent the plasmon peak positions of
the NS and NE, respectively.

NR absorption linewidth,17 while the former determines plasmon hybridiza-
tion. This is consistent with plasmon coupling in other heterodimers17, 19 where
plasmon-induced transparency has been reported.

In addition, the redshifts in the hybrid plasmon modes of the NE-NR dimer
and the enhanced spectra of the dimer (Figs. 2.13 and 2.14) are consistent
with the trends reported in Ref.19 for an incident field parallel to the dimer
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axis. However, the NE-NR heterodimer is such that decreasing or increasing
the detuning frequency at constant NE size can lead to induced transparency,
depending on the spectral peak position of the NR. In addition, a small NR
whose absorption cross-section is less than that of the NE at a redshifted plasmon
peak position tends to induce more transparency dips in the dimer spectra,
irrespective of the detuning frequency, compared to a small NR with similar
absorption cross-section at a blueshifted or resonant plasmon peak position. This
might be related to the direction of the core-offset, which is towards the NR in
the redshifted NR case. However, in comparison to the NS-NR dimer studied in
Ref.,17 it could also be due to both the redshifted spectral peak position of the
NR and the positioning of the NE along the NR long axis.

Both the absorption and scattering spectra of the NE-NR dimer show a com-
mon trend: the emergence of mode splittings and plasmon-induced transparency
dips as the detuning frequency is tuned via the core-offset of the NE at a con-
stant NR size, in addition to plasmon-induced LSPR shifts. However, similar
to the spectral behaviour of the NR dimer studied in Ref.,42 the scattering dips
are greater than the absorption dips due to their different dependence on the
wavelength of light in the medium. For instance, compared to the absorption
spectra in Fig. 2.13(f), the scattering spectra of the redshifted NR case in Fig.
2.14(f) are almost entirely transparent between 630 nm and 670 nm.

Plasmon-Induced LSPR Shifts

Due to plasmon coupling, ωne and ωnr undergo plasmon hybridization to form
new dipolar plasmon modes. Depending on the detuning frequency and the NR
size, both plasmon-induced transparency and plasmon-induced LSPR shift will
occur or only the latter occurs in the dimer spectra. The spectral peak positions
of the NE-NR dimer (Fig. 2.13) correspond to the plasmon resonances of these
new modes. As summarized in Table 2 for the small nanorods with d = 15 nm,
the hybrid plasmon modes of the dimer inherit the intrinsic property of the NE,
i.e., they undergo a redshift with increasing core-offset, depending on whether
the NR absorption leads to mode splitting in the dimer spectra. A redshift is
also expected for an incident field parallel to the dimer axis.18, 19 However, the
sensitivities of the hybrid plasmon modes to changes in the core-offset differ due
to the different NR polarizabilities.

In Fig. 2.16, the scattering cross-section of the dimer is significantly enhanced
in the blueshifted NR case (Fig. 2.16(a)), due to a longer half-width of the NR,
compared to the other cases (Fig. 2.16(b) and (c)). When the NR absorption does
not lead to a significant induced transparency, the cross-sections of the NE-NR
dimer are more enhanced (Fig. 2.16(a) and (b)) compared to the redshifted
NR case (Fig. 2.16(c)). Plasmon coupling leads to a strong redshift in ωne to
form a bright, low-energy hybrid plasmon mode, ω−, whose scattering intensity
decreases with increasing core-offset (Fig. 2.16(a)), compared to Fig. 2.16(b)
and (c), where the intensity of the bright hybrid mode increases with increasing
core-offset. However, in the latter two cases, the intensity of the bright mode is
affected by induced transparency in the scattering spectra of the dimer since the
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NR absorption is reduced further compared to that of the NE. A new, weak, high-
energy hybrid plasmon mode, ω+, is then formed, depending on the plasmon
detuning frequency. For the small nanorods, only ω− is formed in the blueshifted
NR case, as shown in Fig. 2.16(a) and in Table 2. In the dispersion curves in
Fig. 2.16(b) and (c), the weak scattering peak is hardly visible in the redshifted
NR case (Fig. 2.16(c)), while it is completely absent in the resonant NR case
(Fig. 2.16(b)). For the redshifted NR, ω+ vanishes gradually as the core-offset is
increased (Fig. 2.14(f)), due to a decrease in the detuning frequency. Depending
on the spectral peak position of the NR and its size, the respective sensitivity
of the hybrid plasmon modes to changes in the core-offset differs, i.e., ω+ is
more sensitive in the redshifted NR case, while ω− is more sensitive in both the
blueshifted and resonant NR cases. Also, ω+ is formed by a plasmon-induced
blueshift in ωne for the redshifted NR. On the other hand, ω− is formed by
a plasmon-induced redshift in ωne for the blueshifted and resonant nanorods,
while it is due to a redshift in ωnr for the redshifted NR. This is depicted in the
energy-level diagram in Fig. 2.17.

Isolated NE NE-NR dimer with NE-NR dimer with NE-NR dimer with
a blueshifted NR a resonant NR a redshifted NR

c = 7.5 nm c = 6.0 nm c = 5.0 nm
ωnr = 586 nm ωnr = 625 nm ωnr = 673 nm

σ (nm) ωne (nm) ω− (nm) ω− (nm) ω+ (nm) ω− (nm) ω+ (nm) χ (meV)
0 615 635 653 598 692 606 92.835

1 618 638 654 600 693 609 92.225

2 625 642 657 – 695 615 91.980

3 636 651 662 – 697 625 87.340

4 652 665 671 – 699 636 82.700

Table 2: Dependence of ωne, ω−, ω+, and χ on the core-offset, σ, of the NE, for
the small nanorods.

Plasmon coupling in MNP dimers has been described previously using a
coupled harmonic oscillator (CHO) model.17 Here, we adopt the same model in
order to determine the plasmon coupling strength in the NE-NR dimer when
the NR absorption leads to mode splitting for all the core-offsets studied, i.e., for
the small redshifted NR. We seek a relationship between the detuning frequency,
the coupling strength, and mode splitting. The CHO model gives the hybrid
plasmon modes as42, 43, 93, 94

ω± = 1
2(ωne + ωnr)− i

4(γnr + γne)± 1
2

√
4χ2 +

[
(ωne −ωnr) +

i
2(γnr − γne)

]2
, (2.40)

where we have rewritten the equation in terms of the model parameters of the
NE-NR dimer. Here, ωne and ωnr are the LSPR of the NE and NR, respectively,
γne and γnr are the dipolar plasmon linewidths of the NE and NR, respectively,
χ is the dipole–dipole plasmon coupling strength of the NE-NR dimer, ω+

is the high-energy hybrid plasmon mode, and ω− is the low-energy hybrid
plasmon mode. In Eq. (2.40), the (ωne −ωnr) term determines whether plasmon
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Figure 2.16: Contour plots of the scattering cross-sections of the NE-NR dimer, showing
the dispersion curves when the NE is coupled to the (a) blueshifted, (b) resonant, and (c)
redshifted, small nanorods, with respect to the plasmon peaks of the isolated NE, and (d)
contour plot of the scattering cross-section of the isolated NE. The colour bars indicate
the maximum value of the scattering cross-section in each case. The line plots represent
the dependence of ωne, ω+ and ω− on the core-offset, respectively, with respect to ωnr,
while the “smearing” around them is due to their imaginary parts, i.e., the plasmon
linewidths.

Figure 2.17: Plasmon hybridization diagram showing how the spectral peak positions
of the small nanorods in Table 2 and their detuning frequency affect the hybrid plasmon
modes and the mode splitting, based on the data for σ = 2.0 nm.

hybridization will occur, the (γnr − γne) term determines Fano interference, while
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a combination of either of these two terms or both, and χ, determines the mode
splitting. From Eq. (2.40), we obtain the coupling strength as

χ =
1
2

√
Ω2 − ∆2, (2.41)

where we have assumed that γne ≈ γnr, which is only true when the NR
absorption is comparable to that of the NE or when absorption losses due to
plasmon damping are negligible.43 However, it allows us to obtain a real χ.42, 43

In Eq. (2.41), Ω = ω+ −ω− is the mode splitting,43, 93 and ∆ = ωne −ωnr is the
detuning frequency. As shown in Fig. 2.17, ∆ determines ω−, ω+, and Ω for a
given NR absorption cross-section. For each core-offset, we used Eq. (2.40) to
determine the coupling strengths shown in energy units in Table 2. The trends
in χ indicate that for a given dimer gap and NR size, the coupling strength
decreases gradually with a decrease in the detuning frequency for the redshifted
NR. This is also expected since once the NR size is kept constant, only the
detuning frequency will determine plasmon-induced transparency in the spectra
of the NE-NR dimer.

Ref.71 has shown that the amplitude of the dipolar mode of a NE decreases
with increasing core-offset, due to dipole–quadrupole plasmon coupling. The
downside of this plasmonic behaviour is that the absorption and scattering cross-
sections of the NE decrease with increasing core-offset, as we have shown in Fig.
2.12(a). However, by coupling the NE to a NR, the absorption and scattering
cross-sections of the NE-NR dimer are significantly enhanced, as shown in Figs.
2.13 and 2.14, respectively. In addition, the PIT regions in the dimer spectra can
be used as a sensing parameter in LSPR spectroscopy to distinguish between NR
sizes, since the PIT phenomenon in the dimer is very sensitive to changes in the
NR size.
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P L A S M O N - E N H A N C E D F L U O R E S C E N C E

3.1 introduction

Theoretical models describing the modifications of the decay rate of an excited
molecule near a metal layer can be traced back to Chance et al.95 Similar models
were then proposed by Gersten and Nitzan,52 Ruppin,96 and Ford and Weber,62

for metallic nanospheroids and nanospheres respectively. These models predict
that the decay rate of an excited molecule near a metal-dielectric interface in-
creases with decreasing metal-molecule separation and decreases with increasing
metal-molecule distance.52, 62, 95, 96 The former is due to the increased rate of
non-radiative energy transfer from the excited molecule to the metal, while the
latter is due to interference between the incident field on the molecule and the in-
duced field on the molecule as a result of the reflected field at the metal-dielectric
boundary.

The enhancement of the radiative decay rate of a molecule near a metal
is known as the Purcell effect.97–99 It has been studied both theoretically and
experimentally in the emission stage of the phenomenon of plasmon-enhanced
fluorescence (PEF). PEF, the effect of increase in the emission rate of a molecule
near a MNP, is characterized by an increase in both the quantum yield67, 100, 101

and excitation rate of the molecule.9, 98 PEF reaches its maximum at a wavelength
red-shifted from the dipolar localized surface plasmon resonance (LSPR) of the
metal nanoparticle (MNP).99, 102 It depends on the excitation wavelength, the op-
tical properties of the molecule, the molecule’s dipole orientation, the molecule’s
position from the MNP, the MNP-molecule distance, the MNP geometry, the ma-
terial composition of the MNP, polarization of the incident electric field, and the
dielectric embedding medium. However, molecule-dependent, plasmon-induced
quenching of fluorescence can also occur at short distances between the MNP
surface and the molecule.98

The dependence of PEF on MNP geometry has been investigated in molecules
near metal layers,95, 97, 103 metallic spheres,98–100 metallic nanorods and nano-
spheroids,9, 11, 26, 60, 67, 101 metallic nanoshells,60, 104, 105 nanoparticle dimers,86, 87, 106

and with MNPs of irregular geometries.102, 107 The molecule-dependence of
PEF has been studied with different molecules, including photosynthetic pig-
ments,11, 101, 108 where PEF has been shown to be more pronounced in weakly-
emitting molecules,9, 100, 101 while the material-dependence of PEF has been
mostly reported using gold,11, 60, 98 silver,104, 109 and aluminum5 nanoparticles.

45



3.2 emission rate of a molecule near a nanoantenna 46

3.2 emission rate of a molecule near a nanoantenna

In this section, we will follow the approach employed by Khatua et al.,9 to derive
the equation used for calculating the emission rate enhancement of an excited
molecule near a MNP. However, we will re-write this equation in terms of the
emitter’s quantum yields, i.e., the quantum yield of the molecule in the absence
of the MNP, also known as the intrinsic quantum yield, and the quantum yield
of the molecule in the presence of the MNP, also known as the quantum yield
enhancement. This classical approach assumes that the emission occurs at a single
frequency, and that the MNP does not alter the intrinsic non-radiative decay rate
of the molecule, γo

nrad.9, 98, 99, 106 In addition, the model is only valid in the weak-
excitation limit, where quantum effects between the ground and excited states of
the molecule, and the depletion of the molecule’s ground state population, can
be neglected.9, 42 In other words, the model is valid at excitation intensities much
lower that the saturation intensity of the emitter.42

Figure 3.1: A simple two-level system showing the transition rates of the emitter in
the absence and presence of a MNP. Here, I is the laser excitation intensity, σ is the
absorption cross-section of the molecule, γo

rad and γo
nrad are the intrinsic radiative and

non-radiative decay rates of the molecule, respectively, P is the Purcell factor, γabs is the
rate of power absorption by the MNP, and Eex is the excitation rate enhancement. The
modified rates (shown in boxes) are due to the contribution from the MNP. (Adapted
from Ref.9)

For an excited molecule (modelled as a molecular dipole62, 101) near a MNP,
energy conservation requires that the rate of power dissipation by the excited
molecule, γdiss, must be equal to the non-radiative energy transfer rate from
the molecule to the MNP. This energy is then absorbed by the MNP where it
is dissipated as heat due to Ohmic heating in the metal.52, 62, 96, 104 Also, if we
consider the two-way antenna model described in Ref.,99 where the molecular
dipole acts as a transmitter of radiation while the MNP acts as a receiver or
vice-versa, as depicted in Fig. 3.2, then the Purcell factor can also be regarded as
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the normalized rate of radiative energy transfer, γrad/γo
rad, from the MNP to the

molecular dipole. In all, we have

(Emitter)
γdiss
γo

rad
=

γabs
γo

rad
(MNP), (3.1a)

P =
γrad
γo

rad
. (3.1b)

Figure 3.2: A schematic of the two-way antenna model described in Ref.99 Here,
the molecular emitter is a dipole receiver antenna while the MNP is a transmitter
nanoantenna.

In Figs. 3.1 and 3.2, γo
rad and γo

nrad are the radiative and non-radiative decay
rates of the molecule in the absence of the MNP, respectively, and γrad in Fig. 3.2
is the radiative energy transfer rate from the MNP to the molecular dipole. The
MNP absorbs the power dissipated by the molecule (a radiating dipole) at a rate
denoted by γabs, which enters the model as a non-radiative decay channel. The
Purcell factor, i.e., the enhancement of the radiative decay rate of the molecule,
denoted by P, and defined in Eq. (3.1b), is evaluated at the emission frequency,
ωem, while the excitation rate enhancement of the emitter in the presence of the
MNP, denoted by Eex, is evaluated at the excitation frequency, ωex.

In the absence of the MNP, the rate of population change of the excited state,
.
ρ

o
e , and the emission rate, γo

em, of the molecule can be written as follows:9

.
ρ

o
e = Iσρo

g − (γo
rad + γo

nrad)ρ
o
e , (3.2a)

γo
em = ρo

e γo
rad, (3.2b)

σ is the absorption cross-section of the molecule, ρo
g = 1− ρo

e and ρo
e are the

probabilities of finding the molecule in the ground and excited states, respectively,
and the superscript ”o” denotes the absence of the MNP. In the presence of the
MNP, the rate of population change of the excited state,

.
ρe, and the emission rate

of the molecule, γem, are respectively:

.
ρe = Eex Iσρg − (Pγo

rad + γo
nrad + γabs)ρe, (3.3a)

γem = ρePγo
rad, (3.3b)
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where ρg = 1− ρe and ρe are the probabilities of finding the molecule in the
ground and excited states, respectively, in the presence of the MNP. Under
steady-state conditions:

.
ρ

o
e = 0,

.
ρe = 0, we obtain

γo
em =

IσYoγo
rad

Yo Iσ + γo
rad

, (3.4a)

γem =
Eex IσPγo

rad

Eex Iσ + γo
rad

[
P +

(
1−Yo

Yo

)]
+ γabs

, (3.4b)

where Yo = γo
rad/(γo

rad + γo
nrad) is the intrinsic quantum yield of the molecule.

The emission rate enhancement or fluorescence enhancement9, 99 is the ratio of γem
to γo

em. Assuming weak-excitation: γo
rad + γo

nrad >> Iσ, Pγo
rad + γo

nrad + γabs >>
Eex Iσ, we obtain

γem

γo
em
≈ Eex

Y
Yo

, (3.5a)

Y = Yo

[
1−Yo

P
+

Yo

η

]−1

, (3.5b)

η = P
[

P +
γabs
γo

rad

]−1

, (3.5c)

where Y denotes the quantum yield enhancement of the molecule, which is
evaluated at the emission frequency, ωem, and η denotes the antenna efficiency.
Here, Eq. (3.5a) shows that enhancement in the emission rate will always occur
provided that Eex > 1 and Y ≥ Yo. However, the latter condition is always met
once η > Yo. On the other hand, Eex depends only on the local field induced on
the molecule by the nanoantenna.98, 99 It does not depend on the photophysical
properties of the molecule.9 Therefore, the PEF phenomenon is characterized
by two independent stages: the excitation stage, where the phenomenon can be
entirely controlled through the optical properties of the MNP, and the emission
stage, where both the optical properties of the molecule and the MNP determine
the occurrence of PEF.

3.3 molecule near a nanosphere

To calculate the enhancement of the excitation and emission rates of a molecule
near a nanosphere (NS), we will use the theoretical method proposed by Gersten
and Nitzan52 and Ford and Weber.62 Their method is based on the electrostatic
approximation and the semiclassical theory of radiation. It involves the following:
the excited molecule is treated as an oscillating point dipole which provides
the source field, both the MNP-molecule distance and the MNP size have to be
small compared to the wavelength of light in the medium, the local, longitudinal
wavevector-independent, complex dielectric function of the metal is used (Eq.
1.10), the electric potentials are solutions of Laplace equation in each region of
interest, the decay rates are obtained from the modified classical power of the
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Figure 3.3: Model geometry of the molecule-nanosphere system. The system is sur-
rounded by a homogeneous dielectric medium of dielectric constant εm. The nanosphere
of radius b, consists of a metal of dielectric constant ε(ω). The molecule, modelled as an
electric point dipole with a dipole moment p = pz ẑ + px x̂, is at a distance d = dẑ from
the metal surface, and oriented at a polar angle θp from the z axis. (Adapted from Ref.62)

molecular dipole via the correspondence principle, and only the dipolar surface
plasmon mode contributes to Purcell effect.

In Fig. 3.3, an electric point dipole, which represents the excited molecule,
oscillates harmonically above a metallic NS of radius b, at a distance r = b + d
from the sphere centre. In the limit where both b and d are small compared to
the wavelength of light in the medium, but not so small that non-local effects
become important,3 the electric potentials inside and outside the NS, Φin and
Φout, respectively, are quasi-static, i.e., they are independent of the propagation
wavevector, k, of the electric field. According to Ref.,62 these potentials can be
written as:

Φin =
1

∑
m=0

∞

∑
l=m

Al

(rs

b

)l
Plm(cos θs) cos mφ, (3.6a)

Φout = Φdip + Φind, (3.6b)

where

Φdip =
1

∑
m=0

(
pxδm,1 − pzδm,0

) ∞

∑
l=m

(
l + 1
l + m

)
rl

s
εmrl+2 Plm(cos θs) cos mφ, (3.7a)

Φind =
1

∑
m=0

∞

∑
l=m

Bl

( b
rs

)l+1
Plm(cos θs) cos mφ. (3.7b)

In Eq. (3.6a), Al is the complex amplitude of the electric potential inside the
NS, where φ is the azimuthal angle of the dipole, and l and m are the angular
momentum and azimuthal numbers, respectively. Here, m = 0 represents
the perpendicular dipole orientation, while m = 1 represents the parallel dipole
orientation, with respect to the NS surface, respectively. PEF parameters of other
dipole orientations are obtained from linear combinations of the above two.97 In
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Eq. (3.7a), the dipole potential due to the molecule, Φdip, has been re-written in
terms of the coordinates: θs and rs, of the NS,62 Φind in Eq. (3.7b) is the induced
potential due to the MNP as a result of interacting with the dipole field of the
molecule, and Plm is the associated Legendre function of the first kind.

We seek an expression for the complex amplitude, Bl , of the induced potential
outside the NS (Eq. (3.7b)), which we can substitute in Eq. (3.7b) to obtain
the multipole polarizability of the NS as well as the induced field at the dipole
position: rs = r, θs = 0, through Eind = −∇Φind. Both the potential and the
normal component of the displacement field are continuous at the boundary.62, 71

By applying the boundary conditions at the interface, the orthogonality property
of the Legendre polynomial of the first kind, and by eliminating Al from the
resulting equations, the induced multipolar field is obtained as:62

Eind(r, θs → 0) =
∞

∑
l=1

αl(ω)

r3
(l + 1)
εmr2l+1

[
pz(l + 1)ẑ +

1
2

lpx x̂
]

, (3.8a)

αl(ω) = a2l+1 l[ε(ω)− εm]

lε(ω) + (l + 1)εm
, (3.8b)

where αl(ω) is the static multipole polarizability of the NS.
Using Eq. (3.8a), the excitation rate enhancement, the Purcell factor, and the

normalized rate of power dissipation by the dipole, are obtained respectively
from the following equations9, 62, 101

Eex =
|Eo + El=1

ind |
2

|Eo|2
, (3.9a)

P =
|p + pind|2
|p|2 , (3.9b)

γabs
γo

rad
=

3εm

2k3
=[p∗.Eind]

|p|2 , (3.9c)

where Eq. (3.9c) was obtained by diving the power dissipated by the point dipole
in the presence of the MNP52, 62 by the power radiated by the point dipole in
free space. Here, k = 2π

√
εm/λ is the wavenumber of light in the medium, λ is

the wavelength, Eo is the source field of the electric dipole, El=1
ind is the induced

dipole field, and pind is the induced dipole moment, obtained by comparing
Φind with Φdip (see Subsection 3.4.1). Using Eqs. (3.9a)–(3.9c), which hold for
different molecule-MNP systems within the QSA, we obtain the following, for
the molecule-NS system:

Eex =

∣∣∣∣1 + α1(ωex)

r3 (2ẑ− x̂)
∣∣∣∣2 , (3.10a)

P =

∣∣∣∣1 + α1(ωem)

r3 (2ẑ− x̂)
∣∣∣∣2 , (3.10b)

γabs
γo

rad
=

3
2(kr)3

∞

∑
l=1
=[αl(ωem)]

(l + 1)
r2l+1

[
(l + 1)ẑ +

1
2

lx̂
]

. (3.10c)
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In the calculation of Purcell factors and excitation rates, we will correct the static
dipole polarizability, α1(ω), for radiation damping. This correction is necessary
for investigating the MNP size-dependence of PEF parameters. Some authors
have prescribed a method that takes into account the first-order correction to the
quasi-static polarizability due to radiation reaction, as we have demonstrated
in Chapter 1. Without this correction, the optical theorem is violated.66, 98, 100

However, in the calculation of the normalized dissipation rate of the dipole,
we will only correct the dipole term of the static multipole polarizability of the
nanoegg for radiation damping. This approach is appropriate for MNPs with
radii less than 80 nm.100, 110

In Refs.,98, 99, 111 the enhancement factors were shown to depend on the
molecule-NS distance, the NS size, the excitation and emission wavelengths,
the intrinsic quantum yield of the molecule, the orientation of the molecular
dipole, as well as the antenna efficiency of the NS. Here, we present the major
literature results, reproduced using the equations we have presented in this
section. Following the approach in Refs.,99, 100, 104 we consider a molecule with
an arbitrary intrinsic quantum yield. The molecule is at certain distance near a
gold nanosphere (AuNS). The host medium is a glass substrate, with εm = 2.25.98

We will assume that the excitation and emission wavelengths are the same,
an approach usually adopted in theory work.67, 99, 100 However, in calculations
involving real molecules,9, 101 this assumption is not used.

Figure 3.4: Emission wavelength dependence of the: (a) radiative rate enhancement, (b)
normalized power dissipation rate, obtained with l = 20 multipoles, and (c) emission
rate enhancement of a molecular with Yo = 0.01. The molecular dipole is at a distance of
5 nm from a AuNS of radius 20 nm. Red curves: perpendicular dipole orientaion. Blue
curves: parallel dipole orientation. Green curve: normalized extinction cross-section of
the AuNS.

The rates are more enhanced in the perpendicular dipole orientation of the
molecule, as shown in Fig. 3.4. This is because it produces a stronger dipolar
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source field compared to the parallel dipole orientation, as we will further show
in the next section. The Purcell factor, Fig. 3.4(a), reaches a maximum at an
emission wavelength that is either blueshifted (in the case of the parallel dipole)
or redshifted (in the case of the perpendicular dipole) from the dipolar LSPR (i.e,
the plasmon peak position, indicated by the peak of the green curve in Fig. 3.4(c))
of the NS. The emission rate enhancement (shown in Fig. 3.4(c)), also displays this
property. This behaviour is attributed to the different dipole contributions in Eq.
(3.10b), i.e., a positive contribution from the perpendicular dipole, and a negative
contribution from the parallel dipole. On the other hand, the normalized power
dissipation rate (Fig. 3.4(b)) due to either the perpendicular or the parallel dipole
orientation, reaches a maximum at an emission wavelength blueshifted from the
dipolar LSPR of the NS, although the peak position of the perpendicular case
is slightly more blueshifted. This has been referred to as dissipative resonance.99

It is due to the higher-order modes present in the dissipation rate, as shown in
Eq. (3.10c). These modes are responsible for plasmon-induced quenching of the
enhanced emission.67, 112 As shown in Fig. 3.4(c), the emission rate enhancement
is nearly zero at/below the dissipative resonance (' 520 nm for the perpendicular
dipole), where the dissipative rate is much greater than the radiative rate. Beyond
520 nm, the dissipative term is decreasing (Fig. 3.4(b)), while the radiative rate
is increasing (until it reaches a maximum at ' 560 nm, Fig. 3.4(a)), causing the
emission rate to increase, until it reaches a maximum at ' 575 nm (where the
radiative term dominates the dissipative term (Fig. 3.4(c))) . In Fig. 3.4(c), we
have set Yo = 1% as the intrinsic quantum yield of the molecule. In order to
demonstrate the effect of this parameter on the emission rate enhancement, we
will revisit this value later in this section.

In Fig. 3.5, we used an emission wavelength of 580 nm, because it is near
the wavelength where the emission rate enhancement (Fig. 3.4(c)) is maximum
for this arbitrary molecule. In the explanations below, we consider only the
contribution from the perpendicular dipole orientation. The excitation rate
enhancement, Fig. 3.5(a), decreases gradually as the AuNS-Molecule distance
increases, due to an inverse power law behaviour of the induced field (Eq.
(3.8a)), that contributes its dipole term to Eq. (3.10a). On the other hand, the
dissipative rate is very high at short AuNS-Molecule distances (Fig. 3.5(b)),
and approaches zero at long distances, in an inverse power law fashion, due to
the nature of Eq. (3.10c). For this reason, the emission rate enhancement (Fig.
3.5(c)) is small at short distances, and reaches a maximum value at ' 5 nm,
where the radiative term dominates the dissipative term. At long distances, the
emission rate enhancement decreases due a decrease in the both the excitation
and radiative rate enhancements. When the AuNS radius is varied at constant
AuNS-Molecule distance, the dissipation rate (Fig. 3.5(e)) decreases almost
linearly with increase in AuNS radius. This is due to the nature of Eq. (3.10c),
which is such that larger particles contribute less to the dissipative rate. However,
the excitation rate enhancement (Fig. 3.5(d)) reaches a maximum around 33 nm –
35 nm. The emission rate enhancement (Fig. 3.5(f)) follows a similar trend. The
size-dependence of PEF in NS-molecule systems has been predicted as ' 30 nm,
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Figure 3.5: (a) Excitation rate enhancement, (b) normalized power dissipation rate,
obtained with l = 20 multipoles, and (c) emission rate enhancement of a molecular dipole
emitting at 580 nm nearby a AuNS of radius 20 nm, as a function of the Molecule-AuNS
distance. Dependence of the: (d) excitation rate enhancement, (e) normalized power
dissipation rate, obtained with l = 20 multipoles, and (f) emission rate enhancement of
a molecular dipole emitting at 580 nm at a distance of 5 nm from Au nanospheres of
different radii. The dashed line in (c) represents the optimal molecule-NS distance, while
the dashed line in (f) represents the optimal NS radius, for a molecule whose Yo = 1%.

for silver nanospheres, based on full electrodynamic calculations.111 Hence, the
QSA prediction is in good agreement with similar models.

For a molecule with an intrinsic quantum yield of 100% (the dashed line
labelled ”Yo = 1.00” in Fig. 3.6(a)), the quantum yield enhancement of the
molecule (Fig. 3.6(a)) and the antenna efficiency of the AuNS (which corresponds
to the black curve labelled ”Y = η” in Fig. 3.6(a)) are equal, i.e., there is no
enhancement in quantum yield. This is due to Eq. (3.5b), which is such that when
Yo −→ 1, Y −→ η (Fig. 3.6(a), black curve). Likewise, when Yo −→ η, Y −→ Yo
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Figure 3.6: Dependence of the: (a) quantum yield enhancement, and (b) emission rate
enhancement on the emission wavelength for different intrinsic quantum yields of the
molecule. The molecule is at distance of 5 nm from a AuNS of radius 35 nm placed
on a glass substrate. For different intrinsic quantum yields (dashed lines, (a)), their
corresponding quantum yield enhancements are plotted in (a) (solid lines), and their
corresponding emission rate enhancements are plotted in (b) (solid lines).

(Fig. 3.6(a), green curve). Since the antenna efficiency of this AuNS reaches a
maximum value of ' 0.22 between ' 675 nm and ' 780 nm (Fig. 3.6(a), black
curve), no enhancement in quantum yield occurs for all Yo ≥ 0.22. On the other
hand, Eq. (3.5b) shows that when Yo << η, Y −→ PYo, leading to a significant
enhancement in both the quantum yield (Fig. 3.6(a), red and blue curves) and the
emission rate of the molecule (Fig. 3.6(b), red and blue curves). This implies that
a MNP acts best as a nanoantenna for PEF when its antenna efficiency is greater
than the intrinsic quantum yield of the molecule. At long emission wavelengths,
away from the dissipative resonance (Fig. 3.5(e)), Y increases dramatically with
increase in wavelength, as shown in Fig. 3.6(a), due to a drastic decrease in the
dissipation rate of the molecular dipole. The implication of a high of Yo on the
emission rate enhancement of the molecule is shown in Fig. 3.6(b) (black curve),
where the Yo = 1.00 molecule leads to nearly-zero enhancement rates for all
emission wavelengths.

Fig. 3.7(a) shows that the emission rate enhancement increases with increase
in AuNS radius before it peaks around 33 nm at an emission wavelength of '
580 nm. This is accompanied by a corresponding redshift in the dipolar LSPR of
the NS, as well as a redshift in the peak emission wavelength. However, in Fig.
3.7(b), the emission rate enhancement increases with decreasing AuNS-Molecule
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Figure 3.7: Density plots of the emission rate enhancement of a molecule with an
intrinsic quantum yield of 0.01. (a) Both the emission wavelength and the AuNS
radius are varied at a constant AuNS-Molecule distance of 5 nm. (b) Both the emission
wavelength and the AuNS-Molecule distance are varied at a constant AuNS radius of 35

nm.

distance before it reaches a maximum around 5 nm at an emission wavelength of
' 580 nm.

3.4 molecule near a nanoegg
1

Nanoeggs belong to a group of tunable asymmetric nanostructures capable of
supporting multiple LSPR.13–15, 66, 71 Their plasmonic behaviour is attributed to
the plasmon hybridization of solid and cavity plasmons with different angular
momentum numbers, which is symmetry-forbidden in concentric nanoshells.13, 14

A similar description suggests that off-setting the core of a concentric nanoshell
causes the dipolar surface plasmon mode to couple to higher-order multi-

1 this section is part of the publications listed in pp. i.
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poles,66, 71 leading to the formation of dipole-active modes. The excitation stage
of PEF, which is characterized by local field enhancements, has been investigated
for nanoeggs,14, 71 and it was found that their field enhancement factors increase
with increasing core-offset. On the other hand, single-particle spectroscopy stud-
ies have shown that the LSPR of nanoeggs undergoes a redshift as the core-offset
increases.13, 15, 66, 71

The emission stage of PEF, which is characterized by enhancement of the
intrinsic quantum yield of a molecule, has not been reported previously, for an
excited molecule near a nanoegg. The present section focuses on the emission
stage of an excited molecule near a dielectric core-metallic shell (DCMS) nanoegg,
surrounded by a dielectric medium. The aim of this study is to investigate the
impact of the dipole-active modes on the radiative decay rate and quantum yield
of the molecule.

Figure 3.8: Model geometry of the molecule-nanoegg system. The system is surrounded
by a homogeneous dielectric medium of dielectric constant εm. The nanoegg consists
of a metallic shell of dielectric constant εs(ω), an off-centre core of dielectric constant
εc, and a core-offset σ. The molecule, modelled as an electric point dipole with a dipole
moment p, is at a distance d = dẑ from the shell surface, and oriented at a polar angle
θp from the z axis.

In addition to the method used to investigate PEF in the AuNS -Molecule
system in the previous section, the solid-harmonic addition theorem (SHAT)71

will be used to express the shell coordinates in terms of the core coordinates at
the core-shell interface of the nanoegg. We will also assume that the molecule is
positioned near the surface of the nanoegg in the direction of the core-offset as
shown in Fig. 3.8. Two different orientations of the molecular dipole with respect
to the nanoegg surface will be considered: the perpendicular orientation, which
constitutes the maximum contribution to enhancement factors, often compared to
experimental values,9, 101 and the parallel orientation, which gives the minimum
contribution.52, 67, 110
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3.4.1 Perpendicular Molecular Dipole

When the molecular dipole is normal to the surface of the MNP, both the dipole
potential and the electric potentials in the core, shell, and medium regions of
the MNP, are independent of the azimuth angle φ of the dipole.62, 113 For the
molecule-nanoegg system, these potentials can therefore be written as62, 71

Φc(rc, θc) =
∞

∑
n=1

An

(rc

a

)n
Pn(cos θc), (3.11a)

Φs(rs, θs) =
∞

∑
n=1

[
Bn

(rs

b

)n
+ Cn

( b
rs

)n+1]
Pn(cos θs), (3.11b)

Φm(rs, θs) = Φdip(rp, θp) + Φind(rs, θs), (3.11c)

where62, 113

Φdip(rp, θp) =
p.z

εmr3
p
=

pz cos θp

εmr2
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=
∞

∑
n=1

En

(rs

b

)n
Pn(cos θs), (3.12a)

En = −
pz(n + 1)bn

εmrn+2 , r = b + d, (3.12b)

Φind(rs, θs) =
∞

∑
n=1

Dn

( b
rs

)n+1
Pn(cos θs). (3.12c)

Here, rc and rs have been normalized with their respective values at the bound-
aries, and Pn(u) is the Legendre function of the first kind, obtained for the
azimuthal number, m = 0, which corresponds to the perpendicular dipole ori-
entation. Coefficients An, Bn and Cn, and Dn are the complex amplitudes of the
electrostatic potential in the core, shell, medium regions of the nanoegg-emitter
system respectively, for the normal dipole, and En is the amplitude of the source
normal dipole potential.

Both the potential and the normal component of the displacement field are
continuous at the boundaries.62, 71 By applying the boundary conditions at the
core-shell and shell-medium interfaces, the SHAT for m = 0114 at the core-shell
interface, the orthogonality property of the Legendre polynomial of the first kind,
and by eliminating An, Bn and Dn from the resulting equations (see Appendix
G), we obtain

−
N

∑
n=1

KlnEnzn =
N

∑
n=1

KlnCnyn + xl

N

∑
n=1

MlnCn, l = 1, 2, ..., N, (3.13)

with
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[
lεc + (l + 1)εs(ω)

]
l
[
εc − εs(ω)

] , yn ≡
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[
εs(ω)− εm

]
[
nεs(ω) + (n + 1)εm

] ,

zn ≡
(2n + 1)εm[

nεs(ω) + (n + 1)εm

] , (3.14)
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and

Kln =

(
n
l

)
alσn−l

bn

{
1, n ≥ l
0, n < l

,

Mln = (−1)l−n
(

l
n

)
bn+1σl−n

al+1

{
1, l ≥ n
0, l < n

, (3.15)

where we have truncated the summation to some finite number N. Kln and Mln
are the coupling constants of solid and cavity plasmons with both the same
(l = n) and different (l 6= n) angular momentum numbers l and n. Here, Eq.
(3.13) forms a system of N× N simultaneous linear equations with N unknowns,
where the Cn terms are the unknowns, since En is given by Eq. (3.12b). Given
the necessary input parameters, we have written a python code that solves Eq.
(3.13) for N = 15, which was numerically sufficient to accurately demonstrate
the multipolar contributions based on the MNP size we considered.

Finding the Cn terms allows us to obtain the Dn terms. Hence, the induced
potential is obtained as

Φind(rs, θs) =
∞

∑
n=1

αn(ω)
pz(n + 1)

εmrn+2

( 1
rs

)n+1
Pn(cos θs), (3.16)

where
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 (2l + 1)εs(ω)
[

Cl
−El

]
+ l
[
εs(ω)− εm

]
lεs(ω) + (l + 1)εm

 , (3.17)

is the static multipole polarizability of the nanoegg. From Eq. (3.12c), we obtain
the induced dipole potential as

Φind(rs, θs)
∣∣∣
n=1

=
pz,ind cos θs

εmr2
s

, (3.18)

so that the induced dipole moment in the case of a perpendicular dipole orienta-
tion is

pz,ind = α1(ω)
2
r3 pz. (3.19)

The induced multipolar field at the dipole position rs = r and θs → 0 is obtained
through Ez,ind(rs, θs) = −∇Φz,ind(rs, θs) as

Ez,ind(rs = r, θs → 0) =
∞

∑
n=1

αn(ω)
pz(n + 1)2

εmr2n+4 ẑ. (3.20)

3.4.2 Parallel Molecular Dipole

When the molecular dipole is tangential to the surface of the MNP, both the
dipole potential and the electric potentials in the core, shell, and medium regions
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of the MNP, are dependent on the azimuth angle φ of the dipole.62, 113 For the
molecule-nanoegg system, these potentials can therefore be written as62, 113
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∞
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where62, 113
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Here, rc and rs have been normalized with their respective values at the bound-
aries, and P1

n(u) is the associated Legendre function of the first kind, obtained
for azimuthal number, m = 1, which corresponds to the parallel orientation of
the dipole. Coefficients An, Bn and Cn, and Dn are the complex amplitudes of the
electrostatic potential in the core, shell, medium regions of the nanoegg-molecule
system respectively, for the tangential dipole, and En is the amplitude of the
source tangential dipole potential.

Since the static polarizability of a spherical MNP remains the same for both
the perpendicular and parallel dipole orientations,62, 113 we assume that the
expression for the polarizability of the nanoegg (Eq. (3.17)) remains the same.
Hence, Eqs. (3.13)–(3.15) are retained. However, the coefficients El in Eq. (3.12a)
and Eq. (3.12b) are now given by Eq. (3.22b), and the induced potential in the
case of a parallel dipole becomes (see Appendix G)
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From Eq. (3.22c), we obtain the induced dipole potential as

Φind(rs, θs)
∣∣∣
n=1

= −
px,ind sin θs cos φ

εmr2
s

, (3.24)

so that the induced dipole moment in the case of parallel dipole orientation is

px,ind = −α1(ω)
1
r3 px. (3.25)

The induced multipolar field at the dipole position rs = r and θs → 0 is obtained
through Ex,ind(rs, θs) = −∇Φx,ind(rs, θs) as

Ex,ind(rs = r, θs → 0) =
∞

∑
n=1

αn(ω)
pxn(n + 1)
2εmr2n+4 x̂. (3.26)
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3.4.3 Results and Discussion

For the perpendicular molecular dipole, the Purcell factor is obtained by sub-
stituting Eq. (3.19) into Eq. (3.9b), while for the parallel molecular dipole, it is
obtained by substituting Eq. (3.25) into Eq. (3.9b). To obtain the normalized
rate of power dissipated by the molecular dipole, we substitute Eq. (3.20) into
Eq. (3.9c), for the perpendicular molecular dipole, and Eq. (3.26) into Eq. (3.9c),
for the parallel molecular dipole. For each dipole orientation, the emission rate
enhancement, the quantum yield enhancement, and the antenna efficiency, are
obtained using Eq. (3.5a), Eq. (3.5b), and Eq. (3.5c), respectively.

We will consider a DCMS nanoegg with a gold shell and a silica core of
dielectric constant εc = 2.13.104 The gold shell is modelled by the local Drude-
Lorentz function given in Eq .(1.10), with the model parameters in table 1. The
dimensions of the nanoegg are a = 15 nm, b = 20 nm, for the following core-
offsets σ = 0.0, 0.5, 1.0, 1.5, and 2.0 nm. The MNP size we have chosen allows us
to discuss the enhancement factors of a weak emitter such as crystal violet (CV)
near the nanoegg. CV molecules have an intrinsic quantum yield of Yo = 2%,
an intrinsic radiative decay rate γo

rad = 1.9 × 107 s−1, and a peak emission
wavelength of 640 nm when excited at 633 nm.9

As mentioned earlier, we will consider the emission stage of PEF in detail, and
mention the overall stage, i.e., excitation and emission, towards the end of this
section. The optimal range of MNP-Molecule distance for PEF varies depending
on both the MNP geometry and the choice of molecule used. It has been reported
as ∼ 3− 5 nm for nanorods,9, 101 ∼ 2− 3 nm for nanospheres,5, 98, 100 and ∼ 2− 7
nm for nanoshells.60, 104, 115 We have chosen to use a fixed MNP-molecule distance
of d = 5 nm. The MNP-Molecule system is surrounded by water which has a
dielectric constant εm ≈ 1.78.

Figs. 3.9(a) and (b) present the normalized rate of non-radiative energy
transfer from an excited molecule at d = 5 nm for the normal and tangential
dipole orientations, respectively. In both plots, the dipolar LSPR undergoes a
redshift from 616 nm at σ = 0.0 nm to 626 nm at σ = 2.0 nm. For the normal
dipole, Fig. 3.9(a), at σ > 0.0 nm, the non-radiative energy transfer rate reaches a
maximum at the dipolar LSPR of the nanoegg, while this occurs for the tangential
dipole at σ > 1.0 nm, Fig. 3.9(b). This is because the dipolar near-field of the
excited molecule is most strongly coupled to the dipolar surface plasmon mode of
the nanoegg. A similar behaviour has been reported for spheres96 and nanorods.9

However, the energy transfer rate of the normal dipole is more than twice that
of the tangential dipole, for the same emission wavelength. The dissipative,
blue-shifted peaks in Figs. 3.9(a) and (b) are due to the coupling of the dipole
field of the excited molecule to higher-order (l ≥ 2) surface plasmon modes
of the nanoegg. The impact of the dipole-active modes on the energy transfer
rate can be seen in the dramatic increase in the peaks as the core is off-set from
σ = 0.0 nm to σ = 2.0 nm. For a CV molecule at d = 5 nm from the nanoegg,
the non-radiative energy transfer rate will therefore increase from ∼ 400× γo

rad
at σ = 0.0 nm to nearly 1500× γo

rad at σ = 2.0 nm, for the normal dipole (Fig.
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Figure 3.9: Dependence of the normalized rate of power dissipation by the molecular
dipole on the core-offset of the nanoegg in the case of (a) perpendicular dipole and (b)
parallel dipole orientations of the molecule near the nanoegg, respectively.

3.9(a) at λ = 640 nm), and from ∼ 100× γo
rad at σ = 0.0 nm to nearly 400× γo

rad
at σ = 2.0 nm, for the tangential dipole (Fig. 3.9(b) at λ = 640 nm).

In Figs. 3.10(a) and 3.11(a), the Purcell factors of an excited molecular dipole
at d = 5 nm from the nanoegg are shown for the normal and tangential dipole
respectively. As the core-offset increases from σ = 0.0 nm to σ = 2.0 nm, both
plots show a redshift in the peak emission wavelength at which radiative decay
rate enhancement occurs. In comparison to Figs. 3.9(a) and (b), the peak emission
wavelengths for the normal dipole are redshifted from the dipolar LSPR, while
the peak emission wavelengths for the tangential dipole are blue-shifted from
the dipolar LSPR. The intrinsic radiative decay rate of the molecule is more
enhanced for the normal dipole because the induced dipole moment is stronger
in the normal orientation of the dipole. For a CV molecule at d = 5 nm from
the nanoegg, the radiative decay rate will therefore increase from ∼ 40× γo

rad at
σ = 0.0 nm to nearly 130× γo

rad at σ = 2.0 nm, for the normal dipole (Fig. 3.10(a)
at λ = 640 nm), and from ∼ 4× γo

rad at σ = 0.0 nm to nearly 25× γo
rad at σ = 2.0

nm, for the parallel dipole (Fig. 3.11(a) at λ = 640 nm).
When embedded in water, the silica core-gold nanoshell is a passive antenna

below 550 nm and an active antenna above 550 nm. This is due to the dependence
of the radiative power on the bright mode of the nanoshell, only. The antenna is
more efficient in the normal dipole orientation (Fig. 3.10(b)) than in the tangential
dipole orientation (Fig. 3.11(b)). This is because a stronger incident dipole field
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Figure 3.10: Dependence of the (a) Purcell factor, (b) antenna efficiency, and (c) quan-
tum yield of the molecular dipole on the core-offset of the nanoegg, in the case of a
perpendicular dipole orientation.

reaches the nanoegg in the normal orientation, causing the antenna to radiate
more power. Due to a much higher increase in the absorbed power compared
to the increase in radiative power of the nanoegg, as the core-offset increases,
the antenna efficiency decreases with increasing core-offset, regardless of the
dipole orientation. Beyond the peak emission wavelength, the antenna efficiency
plateaus for the normal dipole, because both the radiative and absorptive powers
tend towards constant values, while for the tangential dipole, the absorptive
power continues to dominate the radiative power.

For the normal dipole, the peak values of the modified quantum yield of the
molecule occur at emission wavelengths red-shifted from the dipolar LSPR of
the nanoegg (Fig. 3.10(c)), while those of the tangential dipole occur at emission
wavelengths blue-shifted from the dipolar LSPR (Fig. 3.11(c)), due to the different
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Figure 3.11: Dependence of the (a) Purcell factor, (b) antenna efficiency, and (c) quantum
yield of the molecular dipole on the core-offset of the nanoegg, in the case of a parallel
dipole orientation.

contributions from the Purcell factor. For a given emission wavelength and
MNP-molecule distance, the modified quantum yield of the molecule is always
less than the antenna efficiency due to the contribution of the intrinsic non-
radiative decay rate of the molecule to the total decay rate of the MNP-molecule
system. Although the intrinsic radiative decay rate of the excited molecule is
more enhanced near the nanoegg, its intrinsic quantum yield is less enhanced
when compared to those of the same molecule near a concentric nanoshell. This
is due to the high rate of non-radiative energy transfer from the excited molecule
to the nanoegg compared to the nanoshell. The intrinsic quantum yield of the
CV molecule emitting at 640 nm increases from 2% to ∼ 10% at σ = 0 nm and
from 2% to ∼ 8% at σ = 2.0 nm for the normal dipole (Fig. 3.10 (c)), and from
2% to ∼ 3.3% at σ = 0 nm and from 2% to 3% at σ = 2.0 nm for the tangential
dipole (Fig. 3.11(c)). Fig. 3.12 shows that for the CV molecule, the quenching of
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Figure 3.12: Quantum yield enhancement of a CV molecule at the peak emission
wavelength λ = 640 nm, for the core-offsets studied, as a function of its distance from
the nanoegg, for a perpendicularly-oriented molecular dipole.

the intrinsic quantum yield which occurs when Y < Yo, is very unlikely, even at
short distances (d −→ 0) where the dissipation rate is very high. This is due to
the low value of Yo, so that η is always greater than or equal to Yo at the peak
emission wavelength. At large distances, the strength of the dipolar near-field
of the molecule decreases in an inverse power law fashion, causing both the
Purcell factor and the dissipation rate to decrease accordingly. As a result, the
antenna effect weakens, so that Y −→ Yo. Likewise, in Fig. 3.12 at d > 15 nm, Y
approaches the same value regardless of the core-offset. For the core-offsets and
MNP size we studied, the optimal range of CV molecule-nanoegg distance for
quantum yield enhancement is ∼ 3− 15 nm.

We can predict the dependence of the emission rate of the molecule on the
core-offset of the nanoegg by using a method proposed in Ref.99 It makes use
of the optical reciprocity theorem, which gives that the Purcell factor and the
excitation rate enhancement are identical for the perpendicular dipole.26, 99 Thus,
if the molecule is excited at its peak emission wavelength,99 the Purcell factor
is the same as the excitation rate enhancement. The result of this approach is
shown in Fig. 3.13. With increasing core-offset, the increase in excitation rate
enhancement dominates the decrease in quantum yield enhancement. Hence,
the enhanced emission spectrum (Fig. 3.13) of the molecule shows an increase in
emission rate with increasing core-offset.

Khatua et al.9 reported an emission rate enhancement of ∼ 1000 for a CV
molecule at a distance of 5 nm from the tip of a gold nanorod. In Fig. 3.13(a),
our theoretical approach shows that at this distance, ∼ 50% of this enhancement
factor can be achieved in a CV molecule-DCMS nanoegg system, via small
core-offsets in a nanoshell with a radius comparable to the equivalent sphere-
volume radius of the nanorod. However, Fig. 3.13(b) shows that an emission
rate enhancement of ∼ 900 can be achieved in the CV molecule-DCMS nanoegg
system at shorter distances via a core-offset of σ = 2 nm. At short distances
(d −→ 0), the emission rate enhancement does not decrease to zero because the
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Figure 3.13: Emission rate enhancement of a perpendicularly-oriented CV molecule for
the core-offsets studied. (a) At d = 5 nm from the nanoegg as a function of wavelength
assuming that the excitation and emission wavelengths are the same. (b) At the peak
emission wavelength λ = 640 nm as a function of its distance from the nanoegg.

excitation rate enhancement is maximum at d = 0 and Y does not decrease to
zero (Fig. 3.12), while at large distances, the emission rate enhancement tends to
zero because the excitation rate enhancement approaches zero as Y −→ Yo. A
similar behaviour has been reported in the nanorod-CV molecule system of Ref.9

As we have discussed in Chapter 1, the dependence of the dielectric function
of a MNP on the longitudinal propagation wavevector of the incident electric field
causes gold nanoparticles to exhibit a size-dependent response, which differs
from the bulk response given by Eq. (1.10). This non-local hehaviour places an
upper bound on enhancement factors.55 However, the trends in enhancement
factors predicted by both the local and the non-local response remain the same. A
major difference exists only in the lower values of enhancement factors and opti-
mal MNP-molecule distances, as well as size-dependent spectral shifts, predicted
by the non-local response.55, 104
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E X C I T O N - P L A S M O N C O U P L I N G

4.1 introduction to classical plexcitonics

In hybrid MNP–Molecule systems,41–43, 116–118 molecular excitons – localized or
delocalized excitations in molecular aggregates, interact with LSPR of MNPs to
from hybrid modes known as plexcitons.116 Plexcitonics is the study of such inter-
actions,41–43 including the search for molecular resonances that show plasmonic
behaviour, which have led to the sub-field of molecular plasmonics.28 Theoretical
methods in classical plexcitonics are borrowed from the classical description of
spectroscopy. These methods usually start from a coupled harmonic oscillator
(CHO) model (Fig. 4.1), where both the excitonic system and the plasmonic
system are treated as damped harmonic oscillators coupled linearly to each
other, in the presence of an external driving force. Wu et al.42 has shown that

Figure 4.1: A CHO with masses m1 and m2 subjected to different damping rates, γ1

and γ2, respectively. The oscillators with spring constants k1 = m1ω2
1 and k2 = m2ω2

2,
respectively, are coupled linearly through a massless spring of spring constant k. The
first oscillator is driving the second oscillator through an external periodic force, F(t),
whose frequency is ω. (Adopted from Ref.89)

under weak-excitation, where the ground state population of the molecule is
not depleted, the extinction cross-section of the MNP is far greater than that of
the molecule. As a result, the MNP is the driving oscillator while the molecule
is the driven one, since the driving force acting on the molecule is negligible.
Hence, the equations of motion of the CHO model of a plexcitonic system are42

(assuming: m1 = m2 = m = 1):
..
x1 + γ1

.
x1 + ω2

1x1 + k
.
x2 = <[Foe−iωt], (4.1a)

..
x2 + γ2

.
x2 + ω2

2x2 − k
.
x1 = 0, (4.1b)

where in the case of exciton-plasmon coupling: x1(t) = xpl(t), x2(t) = xex(t), γ1 =
γpl, γ2 = γex, ω1 = ωpl, and ω2 = ωex. Here, ωpl denotes the LSPR of the MNP
and ωex denotes the transition frequency of the molecular exciton, γpl and γex

66
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denote the plasmon and exciton linewidths, i.e., their damping rates, respectively,
while k denotes the exciton-plasmon coupling strength. The extinction of the
incident radiation applied to the hybrid system is proportional to the power
dissipated by the driving oscillator during one period of oscillation.42, 89 With
the trial solutions: xpl(t) = <[xo

ple
−iωt] and xex(t) = <[xo

exe−iωt], this is obtained
as follows:

Cext ∝ 〈F(t) .
xpl(t)〉, (4.2a)

〈F(t) .
xpl(t)〉 ∝ ω=

[
ω2

ex −ω2 − iγexω

(ω2 −ω2
pl + iγplω)(ω2 −ω2

ex + iγexω)− (kω)2

]
. (4.2b)

The interaction of excitons with plasmons leads to different plasmon-induced
phenomena, depending on the exciton-plasmon coupling strength. Following the
work of Fofang et al.,116 Antosiewicz et al.41 have shown that a size-dependent
exciton-plasmon coupling in single plexcitonic nanoshells leads to three different
coupling regimes: the weak-coupling regime — where the absorption spectrum
of the hybrid system is enhanced, the induced transparency regime — where the
absorption is partly enhanced and partly reduced, and the strong coupling regime
— where no enhancement in the absorption occurs. In Ref.,118 weak and strong
exciton-plasmon coupling regimes were also identified in an MNP-Molecule
system, based on a quantum plexcitonics approach. In addition to the MNP-
Molecule distance, these coupling regimes also depend on the molecule’s dipole
oscillator strength and transition linewidth of the ground-state absorption,42, 118

as well as on the MNP size.119

4.2 strong versus weak coupling in plexcitonic systems

Resonant interactions between plasmons and excitons occur in plexcitonic sys-
tems where some spectral overlap exist between the absorption spectrum of
the molecule and the extinction spectrum of the MNP.9, 11, 119 In this section, we
will present the extinction spectra of a couple of plexcitonic nanoshells, and
determine their exciton-plasmon coupling strengths through the CHO model.
In addition, we will discuss the MNP-Molecule distance-dependent coupling
regimes in a plexcitonic dimer.

When the MNP resonates with the molecule i.e ωpl ≈ ωex ≈ ωo, also referred
to as zero detuning,43 the normal modes (plexitonic modes) of the CHO, obtained
from the poles of Eq. (4.2b), are two complex frequencies given by:118

ω± = ωo −
i
4
(γpl + γex)±

√
k2 − 1

16
(γpl − γex)2, (4.3)

whose linewidths are the same. Therefore, the strong coupling regime is reached
when k >> 1

4(γpl − γex). This leads to a destructive Fano interference between
the excitonic and plasmonic modes, which causes the effective absorption spec-
trum of the hybrid system to split42 or the splitting of spectral peaks in the
emission spectrum of the molecule.118 This is referred to as Rabi splitting, defined
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as Ω = ω+ − ω−.43 It is an evidence of strong coupling in hybrid optical sys-
tems.43, 77, 118 In some cases, γpl >> γex, so that ko =

1
4 γpl is the critical coupling

constant required for the hybrid system to be strongly coupled.118 On the other
hand, the weak coupling regime is reached when k << 1

4(γpl − γex). Here, Eq.
(4.3) does not lead to new frequencies, instead a constructive Fano interference
occurs. This has been referred to as the energy transfer regime,93 where both
the absorption and emission spectra of the molecule can be enhanced when it
interacts with a MNP.9, 11, 41

4.2.1 Core-Shell Plexcitons

Here, we refer to plasmon-exciton resonances formed as a result of strong
coupling in core-shell geometries, such as those in Figs. 4.2(a) and (b), as core-
shell plexcitons. In these geometries, the molecule is usually modelled as the
shell, with a certain thickness,116, 119 as shown in Figs. 4.2(a) and (b), respectively,
though other configurations exist where a molecular core is used.41, 43

Figure 4.2: (a) and (b): Common model geometries used to investigate exciton-plasmon
coupling regimes in classical plexcitonics. An incident electric field E, is applied in the
direction shown. (c) Normalized extinction spectrum of a J-aggregate dye (2,2’-dimethyl-
8-phenyl-5,6,5’,6’-dibenzothiacarbocyanine chloride), the gold nanoshell, and the hybrid
geometry in (a) based on data from Ref.116 (d) Normalized extinction spectrum of a
TDBC J-aggregate dye, the silver nanospheroid (AgNSr), and the hybrid geometry in (b)
based on data from Ref.119

In Ref.,116 a double core-nanoshell made up of a silica core of radius, 45
nm, and a gold shell of thickness, 15 nm, with an external J-aggregate layer
of thickness, 4 nm, was used to investigate exciton-plasmon coupling. The
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dielectric response of the J-aggregate dye was modelled with a single Lorentzian
function of oscillator strength, 0.02, whose transition frequency is such that:
ωex ≈ ωpl ≈ ω0 = 690 nm, and γex ≈ 0.052 eV, γpl ≈ 0.21 eV, where ωpl
corresponds to the LSPR of the gold nanoshell (AuNSh) with a linewidth, γpl.
The plasmon linewidth is the full width at maximum (FWHM) of the extinction
spectrum of the AuNSh (Fig. 4.2(c), red curve), while the exciton linewidth is
from the data reported in Ref.116 As shown in Fig. 4.2(c), the plasmon linewidth
of the NSh is ≈ 4 times that of the dye. The interaction of the broad NSh
spectrum with the narrow dye spectrum, leads to destrucive Fano interference
in the extinction spectrum of the hybrid geometry, irrespective of the small
extinction of the dye compared to the NSh. The hybrid spectrum therefore splits
into two peaks with nearly equal linewidths (Fig. 4.2(c), blue curve). A similar
situation is shown in Fig. 4.2(d). In this case, a TDBD J-aggregate dye layer of
thickness, 2 nm, and oscillator strength, 0.01, interacts with a prolate AgNSr of
half-length, 49 nm, and half-width, 20 nm, such that: ωex ≈ ωpl ≈ ω0 = 588 nm,
γex ≈ 0.050 eV, and γpl ≈ 0.052 eV (FWHM).119 Here, the exciton and plasmon
linewidths are very close, since the electron damping rates in silver are small
compared to those in gold, as we discussed in Chapter 1. Hence, the Rabi
splitting in Fig. 4.2(d) (blue curve) was also linked to radiation damping,119 since
electron damping alone could not account for the formation of the plexcitonic
resonances and the large exciton induced-transparency dip.

4.2.2 Plexcitons of a Hybrid Dimer

In plexcitonic dimers, i.e., a dimer consisting of a molecule and a MNP77 or a
molecule at the gap of a plasmonic dimer,42 the molecule is often modelled as a
dielectric nanoparticle (DNP). This ensures that both the size and shape of the
molecule are taken into account.42, 77 In such MNP-DNP systems, strong and
weak exciton-plasmon coupling are highly dependent on the MNP–Molecule
distance. This approach allows one to employ the CHO model in determining
the exciton-plasmon coupling strengths, as well as the plexcitonic resonances in
the strong-coupling regime. In addition, Ref.42 has shown that this approach
can reproduce the results of the excitation stage of the point dipole model of
PEF which we discussed in Chapter 3, by simply setting the oscillator strength
of the molecule to zero. One implication of the plexcitonics approach is that it
has revealed that the Gersten-Nitzan model over-predicts the the excitation rate
enhancement, as shown in Ref.,42 during the excitation stage of PEF.

The challenging part of the above approach is the modelling of the dielectric
response of the DNP. Though the use of a Lorentzian function is prevalent in
plexcitonics literature,41–43, 116, 119 it can become quite complicated for complex
molecules that have more than one transition frequency, due to the presence of
several optical bands, as in the case of light-harvesting complexes.11, 117 Another
alternative is to make use of the molecular polarizability,28, 119 but this method is
also not straight-forward beyond a single transition. In the following subsection,
we present some literature results based on a realistic dielectric function of a
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certain semiconductor quantum dot. We will then extend the idea to a plexcitonic
system of interest.

A quantum dot at the gap of a silver spheroid dimer

In Fig. 4.3(a), a CdSe nanocrystal centred at the gap of a silver prolate spheroid
homodimer is modelled as a spherical DNP — a quantum dot (QD). A single
Lorentzian polarizability that reproduces the ground-state absorption of the QD,
is proposed as follows:42

αLP(ω) = sV
ω2

ex
ω2

ex −ω2 − iγexω
, (4.4)

where s denotes the electric dipole oscillator strength of the QD, V is the volume
of the QD, ωex is the transition frequency of the QD exciton, and γex is the exciton
linewidth. Fig. 4.3(b) shows the uncoupled absorption spectra of the QD and
the homodimer, based on a QD of radius, r = 4 nm, s = 0.1, ωex ≈ 2.17 eV, and
γex = 0.01.42 The surface-to-surface distance of the QD from either spheroid is g,
the spheroid dimension is a = 20 nm by b = 5 nm, and an electric field is applied
parallel to the dimer axis, as shown in Fig. 4.3(a).

Figure 4.3: (a) Model geometry of a CdSe quantum dot (QD) centred in the gap of
a silver spheroid dimer. The QD is treated as a spherical DNP of very small radius.
(b) Normalized absorption spectra of the uncoupled LLSPR of the prolate spheroid
homodimer and the CdSe QD ground-state transition. Air is taken as the host medium.
(Reproduced from Ref.42). (c) Normalized absorption spectrum of the coupled system
for different values of g.

When g ≈ 2− 3 nm, and s = 0 (i.e, in the absence of the QD), the LLSPR
of the homodimer is: ωpl ≈ 2.17 eV, so that the homodimer resonates with
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the QD. This leads to destructive Fano interference between the plasmonic and
excitonic spectra, which creates a dip in the absorption spectrum of the coupled
system (Fig. 4.3(c)). It has already been established in Refs.,42, 119 that for a
given plexcitonic system, increasing the oscillator strength or decreasing the
exciton linewidth causes the exciton-plasmon coupling strength to increase. This
is usually evident from the absorption or scattering spectrum of the coupled
system, through an increase in the exciton-induced transparency (EIT) dip.42

Here, we only present how changes in the value of g affect both the EIT dip
and the absorption cross-section. As shown in Fig. 4.3(c), when g increases,
the plexcitonic resonances shift towards the EIT dip, causing the two peaks to
merge at large values of g. Thus, the Rabi splitting disappears at large g, due to
a decrease in the exciton-plasmon coupling strength. This leads to the enhanced
spectrum in Fig. 4.3(c).

A single LHCII near the tip of a gold spheroid

In this subsection, we present some preliminary results of an on-going work
where we aim to investigate exciton-plasmon coupling in an LHCII-gold nanorod
hybrid system. LHCII is the main light-harvesting complex of plants, and certain
algae, whose fluorescence quantum yield in a dilute solution is ≈ 0.26.120 We aim
to investigate how exciton-plasmon coupling in a single LHCII-spheroid system
affects the quantum yield. In Fig. 4.4(a), a single LHCII is modelled as an electric
point dipole at a distance, d, from the tip of a gold prolate spheroid, following
the Gersten-Nitzan approach. Since this approach does not take the molecular
polarizability into account, the plexcitonics approach used in the excitation stage
of PEF in Ref.42 is adopted here. We hope that this latter approach will enable
us to investigate both PEF and strong coupling in the hybrid system. For one of
the NR dimensions studied in Ref.,11 for example, the a = 44 nm by b = 18 nm
NR, ωpl ≈ 675 nm, when we approximate the NR to a prolate spheroid. Hence,
the LLSPR of the NR will interact resonantly with the excitonic mode of the Qy
absorption band of chlorophyll a (chl a) in LHCII, due to the strong spectral
overlap between the uncoupled spectra (Fig. 4.4(b)).

A single Lorenzian polarizability based on Eq. (4.4), that reproduces the
absorption spectrum of the Qy transition of chl a in LHCII is shown in Fig.
4.4(b), with the following model parameters: ωex ≈ 675 nm, γex ≈ 0.063 eV, and
s = 0.1. We treat LHCII as a 3.65 nm×4.5 nm cylindrical DNP, with an equivalent
sphere-volume radius of ≈ 3.56 nm, whose volume is accounted for but not its
dielectric polarizability, in order to avoid a shape-induced resonance in ωex. This
assumption is reasonable, since the spheroid volume is about 316 times that of a
single LHCII. As shown in Fig. 4.4(c), the absorption spectrum of the coupled
system does not show any MNP-Molecule distance-dependent Rabi splitting.
This is because the interaction is dominated by the contribution from the large
dipole polarizability of the spheroid compared to that of LHCII. As explained in
Ref.,119 the exciton-plasmon coupling constant is inversely proportional to the
MNP volume. An attempt to investigate this property for the LHCII-spheroid
system presents some challenge, since smaller nanorods produce blueshifted
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Figure 4.4: (a) Model geometry of a single LHCII-Au spheroid system. In the point
dipole model, the single LHCII is modelled as a point dipole with dipole moment p,
near the tip of the spheroid. In the plexcitonics approach, it is modelled as a DNP with
finite dimensions and a Lorentzian polarizability. (b) Normalized absorption spectra
of the uncoupled LLSPR of the gold spheroid and the Qy bands of LHCII. (c) and (d)
Normalized absorption cross-sections of the coupled system for two different exciton
linewidths. (e) Dependence of the local field near the single LHCII on the excitation
wavelength, in both the point dipole model (s = 0) and the DNP model (s = 0.1).

LLSPR, which will not resonate with the Qy excitons of chl a in LHCII, and will
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involve a different NR size than the experimental data in Ref.,11 which we intend
to reproduce theoretically.

However, in Fig. 4.4(d), some noticeable splitting does occur in the hybrid
spectra when the exciton linewidth is decreased from 0.063 eV to 0.021 eV. This
shows that our Lorentzian model might have been inadequate, since it is too
broad towards the bottom of the spectrum. Therefore, a Gaussian model of
the molecular polarizability of the Qy transition of chl a in LHCII is a better
alternative that we intend to investigate in the near future. Fig. 4.4(e) shows
that the enhanced local field near the molecule, at the LLSPR of the NR, is less
enhanced when the molecule is absorbing i.e when s = 0. In addition, the DNP
model leads to a slightly more redshifted peak position of the enhanced dipole
field. However, away from their peak values (i.e, peak values of the s = 0 and
s = 0.1 curves in Fig. 4.4(e)), the enhancement factors based on both models are
the same. Nevertheless, an inclusion of the Qy transition of chl b in LHCII in a
Lorentzian or Gaussian model of the molecular polarizability might lead to a
different trend in the two models at short excitation wavelengths, since the Qy
transition of chl b occurs around 650 nm, where some spectral overlap does exist
between the NR spectrum and LHCII absorption (Fig. 4.4(b)).



5
C O N C L U S I O N

In Chapter 1, we started by introducing some theoretical background for this
thesis, while presenting an overview of the interdisciplinary field of plasmonics.
Having adopted the QSA, within the LRA, some of its shortcomings were men-
tioned alongside some approaches used in literature to improve the theory. These
improvements allowed us to investigate the size-dependence of the dipolar LSPR
of silver and gold spheres and prolate spheroids, which helped to clarify the issue
of aspect ratio versus size-dependent dipolar LSPR in nanorods (nanospheroids).

We started Chapter 2 by introducing different kinds of plasmons. Of par-
ticular interest to us were surface plasmons, were we investigated some of the
plasmonic behaviour of both propagating and localized surface plasmons. While
the former propagate as surface waves along metal-dielectric interfaces, the latter
are particle-confined oscillations whose resonances depend on particle geometry
and size, as well as on the dielectric environment and light polarization. We
have identified and discussed some important relationships between the LSPR of
the most common plasmonic nanostructures. We believe that these relationships
extend to other plasmonic nanostructures, especially to nanostructures where
hybrid plasmons are present. However, we have limited our discussion to nanos-
tructures with smooth corners in the Rayleigh regime, where both an analytical
approach and a quasistatic description are possible. We derived their dipolar
and multipolar LSPR using a combination of the Drude model, the Rayleigh
approximation, and the Fröhlich condition. Our results have shown that the
LSPR depends strongly on the geometric factors of the nanostructures, which
emphasizes the shape dependence of the LSPR. The approach we adopted led
us to several formulas for calculating the LSPR of the most common nanostruc-
tures in plasmonics literature. Some of these formulas have not been reported
previously (such as the dipolar and multipolar LSPR of a nanorice) especially in
the manner in which we have simplified them using geometric factors and the
mutual relationships between nanostructures. Beside LSPR, these relationships
also exist in other optical properties of the nanostructures, such as the polariz-
ability. Some of the formulas we have derived are handy (those for the dipolar
resonances), and can easily be used for estimating the LSPR of single metallic
nanostructures in different environments. Also discussed in Chapter 2 is the
plasmonic behaviour in dimers, were we investigated plasmon coupling in both
homo and hetero dimers. Our results show that the OSA captures most of the
interesting optical properties of plasmonic dimers, which enabled us to extend
the theory to a NE-NR heterodimer. We have studied the effect of dipole–dipole
plasmon coupling on the scattering and absorption cross-sections of the NE-NR
heterodimer. The dimer consists of a silica core–gold shell NE and a gold NR.
By using a dipolar quasi-static approach, and considering only the case of an
incident electric field parallel to the dimer axis, at constant NE size, we found
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that plasmon coupling in the NE-NR dimer is dependent on both the absorption
cross-section of the NR and the plasmon detuning frequency. This is regardless
of whether the NR is at a blueshifted, resonant, or redshifted plasmon peak posi-
tion with respect to the plasmon peaks of the NE. When the parameters in the
plasmon coupling terms — the NR and NE sizes, their non-interacting polariz-
abilities, and the dimer gap — are kept constant, plasmon-induced transparency
and mode splitting occur in both the absorption and scattering cross-sections
of the dimer as the detuning frequency is tuned via the core-offset of the NE.
However, the plasmon-induced LSPR shifts increase slightly with increasing NR
size. In all NR sizes and plasmon peak positions studied, the absorption and
scattering spectra of the dimer are enhanced compared to the spectra of the
non-interacting NE or NR, respectively. However, larger nanorods lead to more
enhanced spectra due to their large polarizabilities. Compared to a NE-NS dimer,
the NE-NR dimer features more enhanced spectra but the trends that lead to
induced transparency are similar in both dimers.

Chapter 3 focuses on some theory behind one of the most fascinating ap-
plications of plasmonics — plasmon-enhanced fluorescence. The theory was
independently developed by Gersten-Nitzan and Ford-Weber, within the QSA,
though some improvements have been made on theory by several authors in
recent years. The background equations used for calculating PEF parameters
are entirely dependent on MNP size, geometry, and composition, the molecule’s
intrinsic quantum yield, and the host medium. PEF parameters change dra-
matically when any of the above factors is altered. By reviewing some of the
literature on PEF, we presented the PEF parameters of an arbitrary molecule near
a gold nanosphere, where the effect of varying the NS size, the NS-Molecule
distance, and the molecule’s intrinsic quantum, on PEF, were investigated. This
concept was then extended to a nanoegg-molecule system, where we calculated
PEF parameters for a DCMS nanoegg-CV molecule system. Off-setting the core
of the DCMS nanoparticle, embedded in a dielectric medium and placed near
an excited molecule, causes both the dipolar near-field of the molecule and the
dipolar surface plasmon mode to couple to all surface plasmon modes of the
nanoshell. This process leads to the formation of dipole-active modes in the
nanoshell, which increases the induced dipole moment on the molecule. As a
result, the Purcell factor of the molecule increases with increasing core-offset.
Likewise, the non-radiative energy transfer rate from the molecule to the nanoegg
also increases, reaching a maximum at the dipolar LSPR of the nanoegg. Within
the quasistatic limit, we have investigated the impact of these dipole-active modes
on the radiative decay rate and quantum yield of a CV molecule placed near the
nanoegg. The theoretical model we adopted shows that the nanoegg (σ > 0 nm)
is a more efficient antenna for enhancement of the radiative decay rate compared
to the concentric nanoshell (σ = 0 nm), while the concentric nanoshell is a more
efficient antenna for enhancement of quantum yield. However, a method based
on optical reciprocity, has shown that the emission rate of the molecule is more
enhanced near the nanoegg due to the dominant contribution from the excitation
rate enhancement. We have considered both the normal and tangential orien-
tations of the dipole moment of the CV molecule with respect to the nanoegg
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surface. We found that the tangential dipole is less enhanced. In addition, the
peak wavelengths of the optimal enhancement factors are redshifted from the
dipolar LSPR of the nanoegg. This result is consistent with PEF calculations in
other plasmonic nanostructures within the LRA. Compared to a nanorod-emitter
system, our theoretical model also shows that by using a nanoegg whose size is
comparable to the nanorod, it is possible to achieve similar enhancement factors,
via large core-offsets in a nanoegg-emitter system.

In Chapter 4, we have briefly reviewed the concept of strong versus weak
exciton-plasmon coupling in certain plexcitonic systems, based on the CHO
model. Previous studies have already established that PEF and enhanced absorp-
tion are plasmon-induced phenomena associated with weak exciton-plasmon
coupling, while Rabi splitting is an evidence of strong coupling. Also discussed
include the point dipole model versus the DNP model of PEF, in the excitation
stage, were we used the former to investigate exciton-plasmon coupling. Here,
we presented only a couple of preliminary results, and mentioned the challenges
and future directions of an on-going project. Our ultimate goal is to extend
the DNP model to the emission stage of PEF in an LHCII-AuNR system, and
compare the PEF parameters obtained to those of the point dipole model and
experimental data. The proposed model will include only the Qy optical band of
chl a in LHCII. We therefore hope that Occam’s razor will play out, else a model
that also considers the Qy optical band of chl b in LHCII will be required.
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A P P E N D I X A : S TAT I C P O L A R I Z A B I L I T I E S

from nanorice to nanosphere polarizabilities

Following the results of Refs.,73, 74 the multipole polarizability of the nanorice in
Fig. 2.3(a) is:

αlm(ω) = f 2l+1
s Nlm

εs(ω)ylmP′lm(vs)Plm(vs)− εmxlmPlm(vs)P′lm(vs)

εs(ω)ylmP′lm(vs)Qlm(vs)− εmxlmPlm(vs)Q′lm(vs)
, (A.1)

with

xlm = 1 +

 Qlm(vs)
Plm(vs)

[εs(ω)− εc]

εc
Qlm(vc)
Plm(vc)

− εs(ω)
Q′lm(vc)

P′lm(vc)

 (A.2)

and

ylm = 1 +

 Q′lm(vs)

P′lm(vs)
[εs(ω)− εc]

εc
Qlm(vc)
Plm(vc)

− εs(ω)
Q′lm(vc)

P′lm(vc)

 , (A.3)

where the respective symbols retain their usual meanings as defined in Chapter
2.

In the sphere limit, vc = a/ fc and vs = b/ fs, (where fs = fc for confocal
spheroids) we make use of Eq. 2.16 to obtain the following equations:

αl(ω) = b2l+1 l[εs(ω)xl − εmyl]b2l+1

εs(ω)lxl + εm(l + 1)yl
(A.4)

with

xl = 1− (l + 1)[εs(ω)− εc]

lεc + (l + 1)εs(ω)
q2l+1 (A.5)

and

yl = 1 +
l[εs(ω)− εc]

lεc + (l + 1)εs(ω)
q2l+1, (A.6)

where q = a/b is the aspect ratio of the nanoshell, and αl(ω) is the multipole
polarizability of the concentric nanoshell in Fig. 2.3(b).

The multipole polarizability of the solid prolate spheroid is obtained by
setting: εs(ω) = εc, in Eqs. (A.2) and (A.3). This leads to

αs
lm(ω) = f 2l+1

s Nlm
ε(ω)− εm

ε(ω)Qlm(vs)
Plm(vs)

− εm
Q′lm(vs)

P′lm(vs)

. (A.7)
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The multipole polarizability of the cavity prolate spheroid is obtained by changing
εm to εc as well as vs to vc in Eq. A.7 and reversing the positions of ε(ω) and εc
in the resulting equation. This leads to

αc
lm(ω) = f 2l+1

c Nlm
εc − ε(ω)

εc
Qlm(vc)
Plm(vc)

− ε(ω)
Q′lm(vc)

P′lm(vc)

, (A.8)

where74

Nlm = im (l −m)!(l + m)!
(2l − 1)!!(2l + 1)!!

, (prolate) (A.9a)

Nlm = (−1)l+mi−(m+1) (l −m)!(l + m)!
(2l − 1)!!(2l + 1)!!

, v→ iv, (oblate). (A.9b)

Similar steps as above (for example, setting q = 0 in Eqs. (A.5) and (A.6),
and reversing the positions of the dielectric constants in Eq. (A.4)) are used to
obtain the multipole polarizability of the solid and cavity sphere, respectively, as
follows:

αs
l (ω) = b2l+1 l[ε(ω)− εm]

lε(ω) + (l + 1)εm
(A.10)

and

αc
l (ω) = a2l+1 l[εc − ε(ω)]

lεc + (l + 1)ε(ω)
, (A.11)

where a is the cavity sphere radius and b is the solid sphere radius.

dipole polarizabilities of certain plasmonic dimers

Nanosphere Heterodimer

Consider two nearby nanospheres of radii r1 and r2, respectively, with a surface
to surface distance given by g. The centre to centre distance is therefore l =
g + r1 + r2. Following the dipolar-quasistatic approach described in Chapter 2,
the local electric field on each nanosphere, due to an incident field, E0, applied
to the dimer, can be written respectively as:

Eloc
1m = E0 + (−1)m21−m α2Eloc

2m
4πl3 , (A.12a)

Eloc
2m = E0 + (−1)m21−m α1Eloc

1m
4πl3 , (A.12b)

where m = 1 corresponds to the case of a field applied perpendicular to the dimer
axis, and m = 0 corresponds to a field applied parallel to the dimer axis, and
α1 and α2 are the respective effective dipole polarizabilities of the nanospheres.
Solving Eqs. (A.12a) and (A.12b) simultaneously leads to:

Eloc
1m = E0

1 + (−1)m21−m α2
4πl3

1− 22(1−m) α1α2
(4πl3)2

, (A.13a)

Eloc
2m = E0

1 + (−1)m21−m α1
4πl3

1− 22(1−m) α2α2
(4πl3)2

, (A.13b)
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so that the effective dipole polarizability of the dimer is:

αdimer
m =

α1 + α2 + α1α2
(−1)m21−m

2πl3

1− 22(1−m) α2α2
(4πl3)2

. (A.14)

In the homodimer case, r1 = r2 = r, and α1 = α2, Eq. (A.14) therefore reduces to
Eq. (2.30).

Nanorod Heterodimer

We can obtain the longitudinal dipole polarizability of the prolate spheroid dimer
described in Chapter 2 by writing the local field on each of the prolate spheroids,
due to an accident field, E0, parallel to the dimer axis, as follows:

Eloc
1 = E0 + Eloc

2
3α2(1− Lµ2)

4πl(l2 − f 2
2 )

, (A.15a)

Eloc
2 = E0 + Eloc

1
3α1(1− Lµ1)

4πl(l2 − f 2
1 )

, (A.15b)

where the symbols retain their usual meanings as defined in Chapter 2. Solving
Eqs. (A.15a) and (A.15b) simultaneously leads to the following:

Eloc
1 = E0

1 + 3α2(1−Lµ2)

4πl(l2− f 2
2 )

1− 9α1α2(1−Lµ1)(1−Lµ2)

(4πl)2(l2− f 2
1 )(l

2− f 2
2 )

, (A.16a)

Eloc
2 = E0

1 +
3α1(1−Lµ1)

4πl(l2− f 2
2 )

1− 9α1α2(1−Lµ1)(1−Lµ2)

(4πl)2(l2− f 2
1 )(l

2− f 2
2 )

, (A.16b)

from which we obtain the following effective dipole polarizabilties:

α
e f f
1 = α1

1 + 3α2(1−Lµ2)

4πl(l2− f 2
2 )

1− 9α1α2(1−Lµ1)(1−Lµ2)

(4πl)2(l2− f 2
1 )(l

2− f 2
2 )

, (A.17a)

α
e f f
2 = α2

1 +
3α1(1−Lµ1)

4πl(l2− f 2
2 )

1− 9α1α2(1−Lµ1)(1−Lµ2)

(4πl)2(l2− f 2
1 )(l

2− f 2
2 )

, (A.17b)

αdimer = α
e f f
1 + α

e f f
2 , (A.17c)

where αdimer is the dimer polarizability given by Eq. (2.32).
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perpendicular molecular dipole

At the boundaries, both the potential and the normal component of the displace-
ment field must be continuous, leading to the following boundary conditions:71

Φc

(
rc, θc

)∣∣∣
rc=a

= Φs

(
rs, θs

)∣∣∣
rc=a

, (B.1)

Φs

(
rs, θs

)∣∣∣
rs=b

= Φm

(
rs, θs

)∣∣∣
rs=b

, (B.2)

εc

∂Φc

(
rc, θc

)
∂rc

∣∣∣
rc=a

= εs(ω)
∂Φs

(
rs, θs

)
∂rc

∣∣∣
rc=a

, (B.3)

εs(ω)
∂Φs

(
rs, θs

)
∂rs

∣∣∣
rs=b

= εm

∂Φm

(
rs, θs

)
∂rs

∣∣∣
rs=b

. (B.4)

Setting uc ≡ cos θc and us ≡ cos θs, and combining Eqs. (3.11a-3.12c) and Eqs.
(B.1-B.4), we obtain:

∞

∑
n=1

AnPn(uc) =
∞

∑
n=1

[
Bn

(rs

b

)n
+ Cn

( b
rs

)(n+1)]
Pn(us)

∣∣∣
rc=a

, (B.5)

∞

∑
n=1

[Bn + Cn]Pn(us) =
∞

∑
n=1

[En + Dn]Pn(us), (B.6)

εc

∞

∑
n=1

nAnPn(uc) = aεs(ω)
∞

∑
n=1

∂

∂rc

[
Bn

(rs

b

)n
+ Cn

( b
rs

)(n+1)]
Pn(us)

∣∣∣
rc=a

, (B.7)

εs(ω)
∞

∑
n=1

[nBn − (n + 1)Cn]Pn(us) = εm

∞

∑
n=1

[nEn − (n + 1)Dn]Pn(us). (B.8)

Multiplying both sides of Eqs. (B.6 & B.8) each by Pl(uc) and Eqs. (B.5 & B.7)
each by Pl(us), and integrating each one respectively via

βl

∫ 1

−1
Pl(u)Pn(u)du = δln, βl = l +

1
2

, (B.9)

we obtain

Al =
∞

∑
n=1

KlnBn +
∞

∑
n=1

MlnCn, (B.10)

Bl + Cl = El + Dl, (B.11)

εclAl = εs(ω)
[ ∞

∑
n=1

LlnBn +
∞

∑
n=1

NlnCn

]
, (B.12)

εs(ω)[lBl − (l + 1)Cl] = εm[lEl − (l + 1)Dl], (B.13)

80



appendix b: molecule near a nanoegg 81

where

Kln =
βl
bn

∫ 1

−1
rn

s Pn(us)
∣∣∣
rc=a

Pl(uc)duc, (B.14)

Mln = βlbn+1
∫ 1

−1

Pn(us)

rn+1
s

∣∣∣
rc=a

Pl(uc)duc, (B.15)

Lln =
βla
bn

∫ 1

−1

∂

∂rc

[
rn

s Pn(us)
]

rc=a
Pl(uc)duc, (B.16)

Nln = βlabn+1
∫ 1

−1

∂

∂rc

[
Pn(us)

rn+1
s

]
rc=a

Pl(uc)duc. (B.17)

In order to evaluate Eqs. (B.14-B.17), we need to make use of the SHAT in
spherical coordinates. This theorem allows us to express the integrands in Eqs.
(B.14-B.17) in terms of the core coordinates (rc, uc) and the core-offset σ. The
SHAT theorem states that given two off-centre spherical harmonic coordinates r
and r′, then for m = 0114

Rn(r + r′) =
n

∑
k=0

(
n
k

)
Rk(r)Rn−k(r′), (B.18)

Sn(r + r′) =
∞

∑
k=n

(−1)k−n
(

k
n

)
Sk(r)Rk−n(r′), (B.19)

where Rn(r) and Sn(r) are the interior and exterior solutions of the Laplace
equation in spherical coordinates, given as62, 114

Rn(r) = rnPn(u), (B.20)

Sn(r) =
1

rn+1 Pn(u), (B.21)

where r = (r, u) and u = cos θ. From Fig. 1.1, we have rs = R + rc, where
rs = (rs, us), rc = (rc, uc), and R = (σ, 1), since the core-offset lies along the
vertical. Then, setting r = rc, and r′ = R in Eqs. (B.18 & B.19), and making use
of Eqs. (B.20 & B.21) and Pn(1) = 1, we obtain

rn
s Pn(us) =

n

∑
k=0

(
n
k

)
rk

c Pk(uc)σ
n−k, (B.22)

Pn(us)

rn+1
s

=
∞

∑
k=n

(−1)k−n
(

k
n

)
1

rk+1
c

Pk(uc)σ
k−n. (B.23)

Substituting Eq. (B.22) into Eqs. (B.14 & B.16), and substituting Eq. (B.23) into
Eqs. (B.15 & B.17) respectively, leads to

Lln = lKln, (B.24)
Nln = −(l + 1)Mln, (B.25)
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where Kln and Mln are given in Eq. (3.15). Substituting Eq. (B.24) into Eq. (B.12),
and Eq. (B.25) into Eq. (B.12), Eqs. (B.10-B.13) can be re-written as:

Al =
N

∑
n=1

KlnBn +
N

∑
n=1

MlnCn, (B.26)

Bl + Cl = El + Dl, (B.27)

εclAl = εs(ω)
[
l

N

∑
n=1

KlnBn − (l + 1)
N

∑
n=1

MlnCn

]
, (B.28)

εs(ω)[lBl − (l + 1)Cl] = εm[lEl − (l + 1)Dl], (B.29)

where we have truncated the summation to some finite number N.
To obtain the static multipole polarizability of the nanoegg, we need to

express the amplitude of the induced potential Dl in terms of the amplitude
of the incident potential El. Eliminating Bl using Eq. (B.27) and Eq. (B.29), we
obtain

Dl = −El

 (2l + 1)εs(ω)
[

Cl
−El

]
+ l
[
εs(ω)− εm

]
lεs(ω) + (l + 1)εm

 . (B.30)

Next, we eliminate Al using Eq. (B.26) and Eq. (B.28), to obtain

0 =
N

∑
n=1

KlnBn +

[
lεc + (l + 1)εs(ω)

]
l
[
εc − εs(ω)

] N

∑
n=1

MlnCn. (B.31)

Then we eliminate Dl using Eq. (B.27) and Eq. (B.29), to find

Bl =
(2l + 1)εmEl + Cl(l + 1)

[
εs(ω)− εm

]
lεs(ω) + (l + 1)εm

. (B.32)

Now we substitute Bl for Bn (by changing l to n) in Eq. (B.31), and rearrange
terms to finally obtain Eq. (3.13). Substituting Eq. (B.30) in Eq. (3.12c), and
making use of Eq. (3.12b), we obtain Eqs. (3.16 & 3.17).

The induced multipolar field is calculated through Ez,ind(rs, θs) = −∇Φz,ind(rs, θs)
as follows:

Ez,ind(rs, θs) = −
∂Φind

∂rs
r̂s −

1
rs

∂Φind
∂θs

θ̂s

=
∞

∑
n=1

αn(ω)
pz(n + 1)

εmrn+2
s rn+2

[
(n + 1)Pn(cos θs)r̂s −

d
dθs

[
Pn(cos θs)

]
θ̂s

]
, (B.33)

and using the properties of the Legendre function of the first kind:

Pn(cos θs)

cos θs

∣∣∣
θs→0

= 1,
d

dθs

[
Pn(cos θs)

]∣∣∣
θs→0

= 0,

we obtain the induced field at the dipole position rs = r and θs → 0 as

Ez,ind(rs = r, θs → 0) =
∞

∑
n=1

αn(ω)
pz(n + 1)2

εmr2n+4 ẑ, ẑ = cos θsr̂s. (B.34)
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parallel molecular dipole

Setting uc ≡ cos θc and us ≡ cos θs, and combining Eqs. (3.21a-3.22c) and Eqs.
(B.1-B.4), we obtain:

∞

∑
n=1

AnP1
n(uc) =

∞

∑
n=1

[
Bn

(rs

b

)n
+ Cn

( b
rs

)(n+1)]
P1

n(us)
∣∣∣
rc=a

, (B.35)

∞

∑
n=1

[Bn + Cn]P1
n(us) =

∞

∑
n=1

[En + Dn]P1
n(us), (B.36)

εc

∞

∑
n=1

nAnP1
n(uc) = aεs(ω)

∞

∑
n=1

∂

∂rc

[
Bn

(rs

b

)n
+ Cn

( b
rs

)(n+1)]
P1

n(us)
∣∣∣
rc=a

, (B.37)

εs(ω)
∞

∑
n=1

[nBn − (n + 1)Cn]P1
n(us) = εm

∞

∑
n=1

[nEn − (n + 1)Dn]P1
n(us). (B.38)

Multiplying both sides of Eqs. (B.35 & B.37) each by P1
l (uc) and Eqs. (B.36 &

B.38) each by P1
l (us), and integrating each one respectively via

ρl

∫ 1

−1
P1

l (u)P1
n(u)du = δln, ρl =

2l + 1
2l(l + 1)

, (B.39)

we obtain

Al =
∞

∑
n=1

KlnBn +
∞

∑
n=1

MlnCn, (B.40)

Bl + Cl = El + Dl, (B.41)

εclAl = εs(ω)
[ ∞

∑
n=1

LlnBn +
∞

∑
n=1

NlnCn

]
, (B.42)

εs(ω)[lBl − (l + 1)Cl] = εm[lEl − (l + 1)Dl], (B.43)

where

Kln =
ρl
bn

∫ 1

−1
rn

s P1
n(us)

∣∣∣
rc=a

P1
l (uc)duc, (B.44)

Mln = ρlbn+1
∫ 1

−1

P1
n(us)

rn+1
s

∣∣∣
rc=a

P1
l (uc)duc, (B.45)

Lln =
ρla
bn

∫ 1

−1

∂

∂rc

[
rn

s P1
n(us)

]
rc=a

P1
l (uc)duc, (B.46)

Nln = ρlabn+1
∫ 1

−1

∂

∂rc

[
P1

n(us)

rn+1
s

]
rc=a

P1
l (uc)duc. (B.47)

Here, we assume that the interior and exterior solutions of the Laplace equation
for the parallel dipole also obey the SHAT in a similar manner as that of the
perpendicular dipole (although for m = 1, the SHAT is slightly different, see
Ref.114), so that the polarizability of the nanoegg remains the same. Hence, the
values of Eqs. (B.44-B.47) are the same as those of the perpendicular case, so that
Eqs. (B.30-B.32) and Eqs. (3.13-3.15,3.17) are retained. However, the coefficients
El are now given by Eq. (3.22b).
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Substituting Eq. (B.30) into Eq. (3.22c), making use of Eq. (3.22b), we
obtain Eq. (3.23). The induced multipolar field in this case is calculated via
Ex,ind(rs, θs) = −∇Φx,ind(rs, θs) as follows

Ex,ind(rs, θs) = −
∂Φind

∂rs
r̂s −

1
rs

∂Φind
∂θs

θ̂s −
1

rs sin θs

∂Φind
∂φ

φ̂s

=
∞

∑
n=1

αn(ω)
px

εmrn+2
s rn+2

[
− (n + 1)P1

n(cos θs) cos φr̂s

+
d

dθs

[
P1

n(cos θs)
]

cos φθ̂s −
P1

n(cos θs)

sin θs
sin φφ̂s

]
, (B.48)

and using the properties of the associated Legendre function of the first kind:

P1
n(cos θs)

∣∣∣
θs→0

= 0,
1

cos θs

d
dθs

[
P1

n(cos θs)
]∣∣∣

θs→0
=

n(n + 1)
2

,

P1
n(cos θs)

sin θs

∣∣∣
θs→0

=
n(n + 1)

2
,

we obtain the induced field at the dipole position rs = r and θs → 0 as

Ex,ind(rs = r, θs → 0) =
∞

∑
n=1

αn(ω)
pxn(n + 1)
2εmr2n+4 x̂,

x̂ = cos θs cos φθ̂s − sin φφ̂. (B.49)
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