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Abstract
Response reconstruction is used to obtain accurate replication of vehicle structural responses

of field recorded measurements in a laboratory environment, a crucial step in the process of
Accelerated Destructive Testing (ADT). Response Reconstruction is cast as an inverse problem
whereby the desired input is inferred using the measured outputs of a system. ADT typically
involves large shock loadings resulting in a nonlinear response of the structure. A promising
linear regression technique known as Spanning Basis Transformation Regression (SBTR) in con-
junction with non-overlapping windows casts the low dimensional nonlinear problem as a high
dimensional linear problem. However, it is determined that the original implementation of SBTR
struggles to invert a broader class of sensor configurations. A new windowing method called
AntiDiagonal Averaging (ADA) is developed to overcome the shortcomings of the SBTR im-
plementation. ADA introduces overlaps within the predicted time signal windows and averages
them. The newly proposed method is tested on a numerical quarter car model and is shown to
successfully invert a broader range of sensor configurations as well as being capable of describing
nonlinearities in the system.
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Chapter 1

Introduction

In the drive for continual improvement in vehicle engineering design, optimized structures and
components with lower safety margins and greater reliability are sought [34]. Advances in
computational design such as finite element analysis and dynamic modelling combined with
fatigue prediction have furthered this goal tremendously in the design phase of development.
Nevertheless, there is still a need to dynamically test physical prototypes or existing designs in
a controlled laboratory environment. For the analysis to be worthwhile the excitation of the
structure in the laboratory environment must induce responses in the structure as though it were
being tested in real world operating conditions, the end goal of which is to enable Accelerated
Destructive Testing (ADT) of the structure. In ADT the chassis of a vehicle is mounted with
its suspension system on a set of hydraulic actuators. The hydraulic actuators then excite the
system vertically. Laterally acting forces can also be simulated with additional actuators. An
example of an ADT set-up is shown in Figure 1.1.
The excitation of the structure is then carried out for extended periods of time, which allows

for the degradation of the structure to be measured in a controlled environment [34]. The
structure is not typically excited until catastrophic failure but rather until the degradation
in terms of vibration or noise has met a specified threshold [20]. This gives an indication of
possible failure points of the system as well as a means of predicting the healthy lifetime of the
components. Other insights can be gained from dynamic testing such as better understanding of
the dynamics of the system, vibration isolation [34] as well as vibration severities for passenger
ride comfort [26].
The core contribution of this dissertation is a new windowing method called AntiDiagonal

Averaging ADA which extends capabilities of the Spanning Basis Transformation Regression
(SBTR) implementation. This extended linear regression method allows for accurate response
reconstruction, a key component of ADT. ADA introduces overlaps within the predicted time
signal windows and averages them. The newly proposed method is tested on a numerical quarter
car model and is shown to successfully invert a broader range of sensor configurations as well as
being capable of capturing nonlinearities in the system.

1.1 Response Reconstruction

The biggest hurdle with ADT is that the inputs to the system such as the displacements or the
forces acting on the tyres of the vehicle are difficult or impossible to measure directly in the
field. This means the problem must be cast as an inverse modelling or response reconstruction
problem [37]. In inverse problems the outputs of the system Z are used in conjunction with
model parameters β to determine the inputs U , i.e.

U = f(Z, β). (1.1)
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Figure 1.1: An example of an ADT set-up consisting of the rear suspension system of a
motorbike. The hydraulic actuator is used to simulate the loads that the motorbike would
typically experience in the real world. A range of sensors such as accelerometers and strain

gauges are used to capture the dynamic response of the suspension system.
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There are two possible choices for creating a model of the system. A mapping of the system
can be constructed such that the inputs of the system are used to predict the outputs of the
system. This is referred to as the forward problem. The forward problem is then inverted. If
the model used to map the problem is nonlinear, an iterative optimization scheme is employed
to invert the system. However, the optimization scheme may be prone to local minima.
The second approach is to create a direct inverse of the model whereby the outputs of the system

are used to predict the inputs of the system. The inverse method has an inherent stability check
since the solution will only be obtained if the direct inverse model is stable [34]. A graphical
overview of the two approaches to the inverse problem is shown in Figure 1.2. An overview of
the response reconstruction methodology is given in Figure 1.3.

Forward 

Model
Excitation Response

β

System
Identification

Model
Excitation Response

β

Inverse 

Inverse
Model

Excitation Response

β

f

i

Figure 1.2: Inverse problem overview. In the forward problem we require a set of parameters
βf that when combined with a known set of inputs allow us to predict the unknown response
of the system. System identification techniques can be employed to determine βf by using a

set of known inputs and outputs. In the response reconstruction problem we have a known set
of outputs but do not know their corresponding inputs. Therefore a set of parameters βi is
required that maps the outputs to the inputs. There are two possible ways of solving this
problem, either by first mapping the forward problem using system identification and then
inverting the solved forward problem or by using system identification to directly map the

known outputs to the inputs. Figure adapted from Uhl [37].

1.2 Non-minimum Phase Systems

For linear time invariant single input single output systems, the forward problem can be written
in the Laplace domain as a transfer function H(s) in terms of the transformed output Z(s) and
input U(s) such that

H(s) = Z(s)
U(s) . (1.2)

The transfer function can then be interpreted in terms of its poles and zeros. The poles of the
transfer function are the complex values of s that cause the denominator to go to zero and hence
the transfer function to approach infinity. To ensure that the system is stable we require that
the poles sit in the left-hand side of the complex plane. Stability in this context is defined as a
bounded input only resulting in a bounded output. The zeros of the system are the values of
s that cause the numerator to approach zeros and thus cause the transfer function to approach

3



Figure 1.3: Response Reconstruction overview. In the initial phase of response
reconstruction, a set of input signals Utrain are designed in such a manner that they excite the
desired dynamics of the system. The choice of the excitation signal is given in Section 4.1. The

laboratory test rig is then excited by the inputs to obtain the corresponding outputs Ztrain.
With these known inputs and outputs, an inverse model of the system can be mapped. Direct

inverse system identification is used to obtain the model parameters βproposed. Through the
course of this dissertation, we will cover why we cannot directly use the model parameters
βproposed as will need to employ regularisation. A method of determining the amount of
regularisation is cross-validation, which will be covered in Section 4.2. As we will see in
Section 2.3, the input U is not unique for a given output Z, therefore we cannot directly
compare the reconstructed input Ûval against the known input Uval. Instead, we pass the

reconstructed input through the physical model to obtain the reconstructed output Ẑval which
allows for direct comparison against the known output Zval. The discrepancy between Zval and

Ẑval is what we are trying to minimize in the cross-validation step. This means that the
cross-validation step requires a physical forward pass through the physical laboratory model.

The field collected data of the system Ztest (for which we do not know the true inputs Utest) can
then be inverted to obtain an approximation of the real world input Ûtest given the final set of

model parameters βfinal. The approximated input can now be used to recreate an
approximation to the real world response Ẑtest by using the inputs to excite the laboratory test

rig. This final input can then be repeated indefinitely for ADT. An important distinction to
make here is that even though we are employing inverse methods, we are not particularly

interested in the inputs themselves. We are instead interested in the quality of the
reconstructed responses.
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zero. If we instead rewrite the transfer function such that it maps the outputs to the inputs, i.e.
the inverse function H−1

H−1(s) = U(s)
Z(s) , (1.3)

it becomes clear that the roles of the poles and zeros in the original formulation have now
switched. This means that if we require the inverse problem to be stable we require the zeros
of the original forward problem to lie in the left-hand plane. Systems that do not exhibit this
property are said to be non-minimum phase. A large proportion of systems encountered in
response reconstruction are found to be of this nature. The interpretations of poles and zeros do
differ for multiple input multiple output and nonlinear systems, however the concept of pole-zero
reversal during inversion can be extended to these cases.
In order to obtain an exact inversion of a non-minimum phase system in a bounded time

interval, the inversion needs to be performed non-causally. This involves reversing the ordering
of the input and output signals [17, 34]. This can only occur in an offline fashion. Fortunately,
ADT typically consists of short repeated test signals which are amenable to offline non-causal
control.

1.3 System Identification

The forward or inverse system can be identified using three conceptual approaches: white-box,
grey-box and black-box modelling [32]. White-box uses first principles physical laws combined
with prior knowledge to model the system. Black-box modelling uses general mathematical
models to approximate the dynamics of the system. Grey-box modelling is a hybrid of the two
methods whereby the first principle approach is augmented by mathematical models to fill in
the gaps of the knowledge. This is clearly a spectrum of design approaches. In this dissertation
we will be focusing on black-box approaches.
Most common reconstruction techniques are implemented in the frequency domain [1], whereby

the discrete Fourier response is multiplied by an inverse or pseudoinverse frequency response
function [35]. Raath’s Ph.D. thesis [34] highlighted the then known issues of using frequency
response techniques in accelerated fatigue testing. It was shown that the frequency response
was inaccurate for a number of reasons, that include:

• assuming that the input and output signals are periodic when often they were not. These
include sharp impulses from random impacts.

• being unable to model nonlinear models since frequency response analyses assume a linear
model.

• requiring long time signals of the order of hours as opposed to minutes or seconds needed
for the time domain. This ties in with the issue that low frequency information is easily
lost due to spectral leakage where the energy in the lower frequencies is spread over to
higher frequencies.

• failing to capture the sequence or causal effects which play an important role in crack
propagation

Various time domain techniques have been developed to overcome this, however, they have
been shown to be slow or inaccurate [17]. The vehicle structures of interest typically contain
many nonlinear components such as springs and pneumatic dampers. Typical control systems
will overcome this issue by linearising the system around the operation point. It is then assumed
that the system will experience small perturbations around this point. However, in this case it
is expected that the system will experience impact loadings and large displacements, which will
force the system out of its linear region [34].
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1.4 Regularization

For a problem to be well-posed it needs to meet the following criteria [8]:
• The solution is unique.
• A global solution exists for all data.
• The solution to the problem is continuously dependent on the given data.

However, we quickly find that most inverse problems are ill-posed. The first criterion is normally
the offending culprit since its easy to construct a forward problem where two different inputs
result in the same output. Therefore, the inverse solution is typically not unique. If the problem
is ill-posed we may use regularisationtechniques to cast the problem as a more well-behaved
problem. These regularisation techniques include [37]:

• Cross validation
• Singular value decomposition
• Iterative methods
• Data filtering
• Tikhonov regularisation.

Singular value decomposition discards small singular values that may blow up when the system
is inverted and ensures that the condition number of the system is not too large [29]. A similar
technique is used in data filtering where high-frequency signals, that introduce large errors when
the system is inverted, are filtered out.

1.4.1 Sources of Uncertainty

In system identification there are two distinct sources of uncertainty when mapping the model
of the experiment which contribute to the ill-posedness of the problem. These are aleatoric
uncertainty and epistemic uncertainty. Aleatoric uncertainty is due to random noise that will
always be present when measuring the response of the system. Epistemic uncertainty is due
to the difference between the real world model that we wish to recreate and the experimental
model that we use to represent the real world model [2].

Measurement Error

During training the input signal will be generated by the computer controlling the hydraulic
actuators. Therefore, the signal will be deterministic and free of any noise. However, the
hydraulic actuators may not necessarily follow the input signal and are subject to noise. This
will manifest itself as noise in the output signals and as such is treated as output noise [34].

Model Error

Model uncertainty is due to the mismatch between the experimental set-up in the laboratory
and the real world conditions the vehicle will experience. Typically the degrees of freedom of
the system are limited in the laboratory environment since it would be physically impractical to
have actuators exciting all degrees of freedom a vehicle may encounter in the real world. Model
mismatch can be interpreted as a form of extrapolation. The reconstruction algorithms used are
making predictions on signals taken from real world experiments in the testing phase which lie
outside the laboratory domain on which the inverse model was trained on. It has been demon-
strated that regularisation can be used to remedy the effects of model mismatch [2]. By using
regularisation we ensure that latent variables that describe both real world and experimental
models are used.
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1.5 Comparison to Force Identification

A related field to response reconstruction is force identification whereby the inputs of the sys-
tem are of interest. However, we know that the inputs of the system are not unique. Force
identification tackles this problem by enforcing some prior knowledge of the system dynamics
to constrain the inputs to reasonable solutions. Bayesian methods have become prevalent in
force identification literature since they allow the experimenter to incorporate prior knowledge
in a systematic manner [27]. Another benefit of incorporating Bayesian methods is it allows for
confidence intervals on the input predictions and model parameters [3].
A noticeable distinction in force identification literature is that a known finite element model

of the structure is typically assumed, i.e. a known forward model.
The approach taken in this dissertation of solving the issue of non-uniqueness of the input is

mitigated by
• By not focusing on the reconstructed input accuracies.
• Using cross-validation of the reconstructed outputs of the system to determine whether

a given inverse model of the system is satisfactory i.e. using a forward pass through the
physical system in each cross validation step to determine the model accuracy.

A potential drawback to our approach is that, if implemented naively, the cross-validation can
induce undue stress on the system before any ADT can take place.

1.6 Spanning Basis Transformation Regression (SBTR) for Time
Domain System Identification

A new method of creating a direct inverse model of a dynamic system was developed by Crous
et al. [12]. The methodology was shown to produce high response reconstruction accuracy with
low computational cost while using minimal experimental data. The mapping method is based
on SBTR which is a linear mapping regression method that is efficient and accurate in solving
high dimensional regression problems. The high dimensionality is needed in order to create a
flexible linear model that can approximate the nonlinearities of the system. The method can be
broken down into three broad steps:

• Time series representation: A method of representing the time series in high dimen-
sional space is needed. To this end a series of non-overlapping windows were chosen to
represent the inputs and outputs of the system. A graphical overview of this process is
shown in Figure 1.4.

• Regression method: A means of inferring the inputs using the measured outputs are
sought. SBTR was used in order to build a model of this mapping that could deal with the
high dimensionality of the problem as well as collinearity typically encountered in system
identification.

• Active learning: With active learning further training signals are sought that allow for
further improvement of the regression model. A method called generalised bootstrapping
was used to find novel test signals that further enriched the regression models.

In the original implementation of SBTR with non-overlapping windows [12], the system was
validated against a numerical test rig that used the absolute output displacements of the system
to infer the inputs. The absolute displacements of the test rig are rarely available due to
the impracticality of directly measuring them in operational conditions. Therefore, the most
pertinent issue is to validate the SBTR methodology on a more realistic sensor set-up.
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1.7 Non-overlapping Windows

Non-overlapping windows is the method originally used in the implementation of SBTR [12].
The original input and response measurements are given by U ∈ Rm×q and Z ∈ Rm×o where m
is the original sequence length in samples and q and o are the number of actuator and sensor
channels respectively. The original input signal is thus represented in matrix form as

U =



u1(1) · · · uq−1(1) uq(1)
u1(2) · · · uq−1(2) uq(2)

... . . . ...
...

u1(m− 1) · · · uq−1(m− 1) uq(m− 1)
u1(m) · · · uq−1(m) uq(m)


. (1.4)

The windowing principle can be used to represent the responses Z as the predictor matrix
X ∈ Rn×p and the inputs U as the target matrix Y ∈ Rn×r. The number of observations that
the original signal is split into, n, is given by

n =
⌊
m

sw

⌋
, (1.5)

where sw is the window sample length given by the desired window length in seconds Tw
multiplied by the sampling frequency fs

sw = bfsTwc . (1.6)

This occurs for each time sequence for either an actuator or sensor signal, being appended
column-wise, resulting in

p = sw × o, (1.7)
r = sw × q. (1.8)

The final target matrix Y therefore takes on the form

Y =



channel 1︷ ︸︸ ︷
u1(1) u1(2) · · · u1(sw − 1) u1(sw)

channel 2 etc.︷ ︸︸ ︷
· · ·

u1(sw + 1) u1(sw + 2) · · · u1(2sw − 1) u1(2sw) · · ·
...

... . . . ...
...

...
u1((n− 2)sw + 1) u1((n− 2)sw + 2) · · · u1((n− 1)sw − 1) u1((n− 1)sw) · · ·
u1((n− 1)sw + 1) u1((n− 1)sw + 2) · · · u1((n)sw − 1) u1((n)sw) · · ·


.

(1.9)

The predictor matrix X takes on a similar shape (not shown). The windowing process can
easily be reversed to obtain the original input and output matrices but since the number of
rows n were rounded down the reconstructed signal is shortened slightly. A graphical of the
non-overlapping windowing process is shown in Figure 1.5.

1.8 Scope of Research

The goal of this research is to build on the groundwork of SBTR in the space of response
reconstruction. The going concern is that the methodology, as is, cannot be used directly on
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Figure 1.5: An overview for the non-overlapping windowing process. A single actuator signal
is shown.

the sensor signals obtained from an experimental rig. This is due to impracticalities of directly
measuring absolute displacements. A new methodology will be proposed that uses the windowing
method as well as the linear regression concepts used in SBTR but is better suited to a wider
range of problems found in response reconstruction. To test these concepts a numerical quarter
car model will act as our test rig throughout this dissertation.

1.8.1 Suitability as a black-box model

One possibility of ensuring that the methodology works is to numerically integrate the available
signals such that the absolute displacements are obtained. The issue of noise is exacerbated
when double integrating acceleration signals resulting in sensor drift. Methods such as Kalman
filters can be used to mitigate this [34, 28]. This requires some human intervention as well as
prior knowledge of the dynamics of the system to implement.
The proposed methodology will need to be able to handle non-minimum phase systems. As

highlighted in the literature review it is known that inverting a non-minimum phase system
requires that the system be inverted non-causally. This relates to how the sensor signals are
presented to the regression technique. Therefore, the representation of the windows and how
they relate to non-minimum phase systems will be explored in this dissertation.
The main goal of this dissertation is to develop a stand-alone black-box methodology that re-

quires minimal prior knowledge to work and is suited to a wider range of response reconstruction
problems.

1.8.2 Hyper-parameter investigation

It is to be expected that a number of hyper-parameters and design choices will be required to
properly set-up the proposed response reconstruction methodology. These could be determined
by running a series of experiments before starting the ADT process. However, we want to avoid
unnecessary testing of the system before we even begin ADT. Therefore, we need to investigate
methods whereby we can relate these hyper-parameters to easily determined physical constants
of the system. To achieve this we will parameterise the physical constants of the quarter car
model to determine the relationship between them and the hyper-parameters.

1.8.3 Linear regression performance in terms of response reconstruction

Since SBTR was only used with non-overlapping windows it needs to be tested with the newly
proposed windowing methodology to determine whether it confers any specific advantages with
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regards to response reconstruction. It will be compared against related linear regression methods.
In order to measure this, SBTR and related linear regression techniques will be tested in terms
of their ability to handle model mismatch, measurement noise and as well as their ability to
handle non-linear dynamics.

1.9 Document Overview

An overview of the numerical quarter car model set-up used to investigate the methodology
is given in Chapter 2. A derivation and theoretical comparison of related linear regression
methods are given in Chapter 3. The methodology used to determine the parameters that
govern the windowing and regression methods is outlined in Chapter 4. The shortcomings of non-
overlapping windows are highlighted and demonstrated in Section 1.7. The idea of overlapping
windows is then introduced to overcome these shortcomings in Sections 5.2 and 5.3. The newly
proposed windowing technique is then benchmarked using a broader set of sensor configurations
(Sections 5.6) and using a non-minimum phase configuration (Section 5.7). The quarter car
model is then parameterised in order to determine how the physical properties of the test rig
influence the design choice of the windowing parameters in Chapter 6. Chapter 7 focuses on
the performance of the linear regression methods themselves and how they perform in terms
of mapping nonlinearities (Section 7.1), robustness to measurement noise (Section 7.2) and
handling model mismatch (Section 7.3). An analysis of the regression performance of SBTR
in terms of response reconstruction is given in Section 7.4. The proposed methodology is then
compared against related system identification techniques in Section 7.5. The final conclusion
of the document is then given in Chapter 8.
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Chapter 2

Numerical Quarter Car Model

In order to investigate the methods explored in this dissertation a simple two-degree-of-freedom
nonlinear mass-spring-damper system representing a quarter car model will be used. The numer-
ical model employed is shown schematically in Figure 2.1. The sprung mass MA and unsprung
mass MR capture the mass of the body of the vehicle and the suspension-tyre system respec-
tively. These bodies are connected by springs and dampers which represent the dynamics of the
suspension system. The unsprung mass is then connected to the road via a spring characterising
the tyre stiffness. The system is excited by a road profile uroad.

z 
A

M A

M R

z
R

u
road

k
A b

A

k
R

k
NL

Figure 2.1: Two degree-of-freedom mass-spring-damper representation of the nonlinear
quarter car model.

The system behaves according to the following equations of motion:

z̈A = − bA
MA

(żA − żR)− kNL
MA

(zA − zR)3 − kA
MA

(zA − zR), (2.1)

z̈R = + bA
MR

(żA − żR) + kNL
MR

(zA − zR)3 + kA
MR

(zA − zR)− kR
MR

(zR − uroad), (2.2)

where the k and b terms are the stiffness and damping coefficients respectively. The nonlinearity
is introduced by having cubic stiffening of the sprung mass spring which is controlled by the
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kNL term. This gives the following description of the sprung mass spring force, fA,

fA(∆z) = −kA∆z − kNL∆3
z, (2.3)

where we define a new state of the system representing the deflection of the spring, ∆z, such
that

∆z ≡ zA − zR. (2.4)

The kNL term can be varied to change the severity of the nonlinearity of the system or switched
off completely to have the system behave linearly. A hardening spring can be chosen by choosing
kNL > 0. This results in a spring that becomes stiffer as it goes into compression or tension.
Likewise, a softening spring can be implemented by choosing kNL < 0. In this study the linear
component will always be restorative such that kA > 0. An example of the force profiles for
cubic springs, for the softening and hardening cases, is shown in Figure 2.2.
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Figure 2.2: Force profiles of cubic stiffening springs. The force of hardening and softening
springs are compared against that of a linear spring.

If we consider the equilibrium points of the spring system where fA(∆z) = 0, i.e.

∆z(−kA − kNL∆2
z) = 0, (2.5)

we obtain 3 solutions for equilibrium points, namely: ∆z = 0 and ∆z = ±
√
−kA
kNL

. For the
hardening case and restorative linear spring, where kNL > 0 and kA > 0, there is only one real
solution at ∆z = 0. In the case where the linear spring is not restorative but still hardening
i.e. kNL > 0 and kA < 0, all 3 solutions are valid. In the non-restorative case, ∆z = 0, is
an unstable equilibrium point with ∆z = ±

√
−kA
kNL

being stable equilibrium points. By having
two stable equilibrium points, the system can readily switch between oscillating around two
equilibrium points causing highly chaotic behaviour of the system. Chaotic systems are outside
of the scope of this study and for this reason the problem will be limited to the restorative
hardening spring case which has one stable equilibrium point at ∆z = 0.
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In practical applications not all states of the system are directly measurable. Typically the
accelerations of the bodies or the strains of the system or the combination of the two are
measured. Therefore, the default realistic observable states, z, will be chosen as

z = [z̈A,∆z]T , (2.6)

where the strains of the system are approximated by the displacement of the spring ∆z. How-
ever, throughout this dissertation a number of different sensor configurations will be employed.
The model will be simulated using Simulink. The solver type will be set to automatic with

variable-step size. The results are interpolated by Simulink to obtain results sampled at the
specified sampling frequency. The default parameters chosen for the numerical quarter car
model are given in Table 2.1. From these default values the parameters of the quarter car will
be changed depending on the investigation underhand.

Table 2.1: Numerical quarter car model default parameter values and how the system will be
parameterised depending on the investigation underhand.

Parameter Default Value Investigation

MA 70 kg Model mismatch in Section 7.3
MR 12 kg Model mismatch in Section 7.3
kA 1.6× 103 N m−1 Model mismatch in Section 7.3.
kR 80× 103 N m−1 Model mismatch in Section 7.3. Influence on triviality for

the displacement case in Section 5.1.1. Sampling frequency
influence in Section 6.1

kNL 12.8× 106 N m−3 Set to zero when dealing with linear case throughout. Re-
gression performance w.r.t. nonlinearity in Section 7.1

bA 500 N s m−1 Model mismatch in Section 7.3. Window length influence in
Section 6.2

2.1 Nonlinearity

The definition of nonlinearity used in this dissertation is any system that does not follow the
principle of superposition. This vague description arises since the familiar expectation that a
system behaves linearly is a specific but useful assumption that is employed regularly in engi-
neering. However, there are many phenomena that may cause a system to behave nonlinearly.
Researchers may focus on specific cases of nonlinear dynamics but no general definition exists
that describes all cases of nonlinearity [5]. The definition chosen here, nonetheless, does allow
us to easily visually identify whether a system behaves nonlinearly. A visual method of identify-
ing nonlinearity in a dynamic system [33] is demonstrated by means of the simulated nonlinear
quarter car model.

2.1.1 Testing for Nonlinearity

A sinusoidal linear sweep function is used to excite the nonlinear quarter car model covered in
Section 2. The sweep input as a function of time u(t) is given as

u(t) = A sin
(

2π
(
f0 + f1 − f0

T
t

)
t

)
, (2.7)
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where A is the amplitude of the signal, f0 and f1 are the initial and final frequency values and T
is the timespan over which the sweep occurs. The chosen frequency sweep covers the range from
0.1 to 6 Hz over a period of 50 s. By changing the amplitude from 0.02 to 0.04 m we can note
that the envelope of the sprung mass displacement response changes drastically for the nonlinear
system as shown in Figure 2.3a whereas the output for the linear system is simply a scaling of
the smaller amplitude output as seen in Figure 2.3b. In the second test the amplitude is fixed at
0.04 m but the sequencing of the sweep is reversed. The sweep is firstly swept upwards and then
downwards in term of frequency over time. The downward sweep response is then reversed and
overlaid on the upward sweep response. In the linear case, shown in Figure 2.3d, the sequence
effect has no noticeable effect on the shape of the envelope, whereas for the nonlinear system
in Figure 2.3c, we note that the response is heavily distorted by the sequencing of the input.
This demonstration further emphasizes the need for accurate response reconstruction in the time
domain since both sinusoidal sweeps have the same spectral content but resulted in completely
different outputs in the nonlinear case. This method also demonstrates the means of identifying
whether the system is nonlinear, but not necessarily the cause of the nonlinearity.
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2.2 Forward Problem Validation

The purpose of this section is to verify that the model parameters that we will be using are well-
posed for the forward problem. The reasons for this are two-fold. Firstly, we want to ensure that
the model parameters are sufficiently nonlinear but do not experience chaotic behaviour. The
second reason is to ensure that the employed integration methods are suitable for the problems
at hand. We can test whether the system is well-posed by the employing the definition of a
well-posed problem. The first requirement is that a unique solution exists. Secondly, any small
perturbation to the problem statement or the initial condition of the system should result in a
bounded error between the perturbed and the unperturbed system.
To test the first requirement we can verify whether the error norm converges as expected when

the step size h of the solver is decreased. To test this the fourth order Runge-Kutta solver
will be employed which has a local truncation error O(h4) [8]. The solver step size, h, will be
decremented using h1 = 5× 10−4, h2 = 2.5× 10−4 and h3 = 1.25× 10−4. Since the step size is
halved at each iteration, the error norm ratio of the spring displacement outputs is expected to
converge to 16 over consecutive step sizes. The error norm ratio is defined as

enorm ratio = ||z2 − z1||2
||z3 − z2||2

. (2.8)

Two sets of the convergence test will be performed. The first test will be performed over
a range of damping coefficients bA and system nonlinearities kNL. The second test will be
performed by varying the tyre stiffness values kR and system nonlinearities kNL. The range of
parameter values are given in Table 2.2. In order to avoid using a fixed step size solver throughout
this dissertation, MATLAB’s auto-solver with variable step size will be benchmarked alongside
the Runge-Kutta solver. The Amplitude Modulated Pseudo Random Binary Signal (APRBS)
outlined in Section 4.1.1 is used to excite the system.

Table 2.2: Quarter car parameter values used to test the well-posedness of the forward
problem.

Variable Details

kNL 1.28× 10n N m−3 where n = [4, 5, 6, 7, 8]
kR ∈ [5, 10, 20, 40, 80]× 103 N m−1

bA ∈ [50, 2000] N s m−1 with 30 equal divisions

In order to test the second requirement, a small perturbation to the road profile of 0.0001 m
with a duration of 0.001 s will be added at t = 0 . The error norm, defined as

eperturb = ||zperturbed − zunperturbed||2, (2.9)

between the perturbed and unperturbed spring displacement output will be then be compared.
As before this will be tested over a range of damping coefficient and system nonlinearities as
well as a range of tyre stiffness values and system nonlinearities. The Runge-Kutta solver will
be used with step size h = 1.25 × 10−4. To visually demonstrate the effects of the initial
perturbation for a numerically ill-behaved problem, the output of the nonlinear system with
kNL = 1.28× 107 N m−3 and damping coefficient bA = 75 N s m−1 is shown in Figure 2.4a. Note
that the signal has a 4 s dead time. The perturbation occurs at the beginning of the dead time.
The corresponding absolute error plot is shown in Figure 2.4b. At roughly t = 11 s we note that
the system response starts diverging even though only a minute perturbation was introduced
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right in the beginning. This is an indication that the system or the solver is not well-behaved
with regards to this configuration.
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Figure 2.4: Diverging outputs due to a small initial disturbance in the input profile.

The convergence test results are shown in Figure 2.5. For the damping case, as highlighted in
Figure 2.5a, the error ratio eventually converges to 16 for all levels of nonlinearity as the damping
coefficient is increased. It is apparent that more damping is required as the nonlinearity of the
system increases for the convergence rate to approach 16. Therefore care must be taken when
changing the damping parameters to ensure that the system is well-posed. The convergence rate
is unaffected by the tyre stiffness values under consideration. The error norm ratio exceeds 16
for all values studied as shown in Figure 2.5b.
The initial condition perturbation results are shown in Figure 2.6. A similar trend occurs as

noted in the convergence test. For the damping test, the robustness of the forward problem
to an initial condition perturbation decreases as the damping decreases. The robustness also
appears to decrease with an increase in nonlinearity. At a certain point of damping all levels of
nonlinearity achieve the same error results. For the tyre stiffness test, all values of the nonlinear
spring constant achieved the same results. The error due to perturbation increases with the
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Figure 2.5: Error norm convergence validation tests

stiffness of the tyre however the errors were reasonable for the parameters under consideration.
The auto-solver achieves comparable results to the fixed Runge-Kutta method once the system
is using a well-behaved set of parameters.
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Figure 2.6: Error norms as a result of a small initial perturbation.

The validation results give an indication of a suitable range of damping and nonlinear combi-
nations. The suitable parameters are summarised in Table 2.3. For the case where we need to
change the tyre stiffness values, all values under consideration should give reasonable results.
It is only the damping coefficients that we need to be wary of. The use of the auto-solver
with variable step sizes should provide reasonable results provided the determined well-behaved
model parameters are used.

2.3 The Inverse Problem

In the forward problem there are features in the input domain that, if varied significantly, will
have no or only a minute influence on the output features. These features are referred to as
the zeros of the system. In terms of the inverse problem, the opposite problem occurs: small
variations in these insensitive output features map to massive variations in the input features.
The solution is to minimize or completely remove the influence of these perturbations by means
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Table 2.3: Quarter car parameter values deemed to give well-behaved results.

Variable Details

kNL 1.28× 10n N m−3 where 4 ≥ n ≤ 8
kR from 5× 103 to 80× 103 N m−1

bA from 125 to 2000 N s m−1

of regularization.
How we express the input and output domains in terms of these features depends on the

problem at hand. For linear systems a useful basis is the frequency domain since the output
frequencies are only ever linear combinations of the input frequencies. This allows us to easily
express where the outputs are most sensitive and insensitive to the inputs through the use of
a Bode plot. The Bode plot indicates the gain or attenuation of the input frequency in the
output. The Bode plot for the linear quarter car model is plotted in Figure 2.7 in terms of the
spring displacement output as well as the absolute displacements of the system. We note that
the system acts as a bandpass filter for the spring displacement system, since it attenuates the
low and high frequencies. The absolute displacements however act as low-pass filters. For the
spring displacement system we could add a number of very high or very low frequencies to the
input without affecting the output noticeably.
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Figure 2.7: Magnitude Bode plot for the linear quarter car set-up comparing relative
displacement response to that of absolute displacement.

This is demonstrated in Figure 2.8 where a 0.1 Hz and a 100 Hz signal are added to the road
input. The corresponding outputs, plotted in Figure 2.8c, for all 3 inputs are almost identical.
In other words many or infinitely many inputs map to the same output. This highlights two
important considerations when performing direct inverse methods for response reconstruction:

• The importance of the input accuracy is downplayed since there may be infinitely many
valid inputs for a given response. This is referred to as functional reproducibility [31].

• Regularisation is needed in order to obtain sensible input reconstructions since any small
perturbation, for instance due to measurement noise, in the insensitive parts of the outputs
would lead to large unwieldy reconstructed inputs.

If we instead directly analyse the poles of the linear quarter car set-up,
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Figure 2.8: Comparison of spring displacement responses when the corresponding inputs
have either a low or high frequency spurious component added.

20



poles =


−20.8172 + 77.8931i
−20.8172− 77.8931i
−3.5876 + 3.2512i
−3.5876− 3.2512i

 , (2.10)

we note that the poles of the system are all in the left hand plane. This means that the linear
system is stable for the forward model. This is true for all sensor configurations since the poles
are only dependent on the system dynamics and are unaffected by the sensor configurations. If
we then compare the zeros of the different sensor configurations,

zeros∆z =

 0.2146× 10−6

−0.2146× 10−6

 , zeroszA = −3.2, zeroszR =

−3.5714 + 3.1784i
−3.5714− 3.1784i

 ,
(2.11)

we note that the spring displacement zeros ∆z are not in the left hand plane. Therefore the
system that uses the spring displacement as the observable state is not minimum phase. The
system that uses either the sprung or unsprung mass displacements, however, will be a minimum
phase system. It is therefore expected that in order to invert the relative spring displacement
system we will need to perform the inversion non-causally.
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Chapter 3

Linear Regression Techniques

In this chapter an overview of the derivation of SBTR is given. But before doing so, related
linear regression techniques are covered in order to compare the properties of SBTR in terms of
solving linear regression problems.
In linear regression problems the target matrix Y ∈ Rn×q of the system is written as a linear

combination of the predictor matrix X ∈ Rn×p, where n is the number of observations and p

and q are the respective dimension sizes. The approximation of Y , denoted as Ŷ , is written in
terms of constants β ∈ Rp×q, i.e.

Ŷ = Xβ. (3.1)

Ordinarily we write and solve these problems as a minimisation of the square error of the
approximation of Y (Ŷ ) and Y

min
β
||Y −Xβ||2, (3.2)

which has the known solution [21]

β = (X ′X)−1X ′Y. (3.3)

The prime superscript denotes the transpose. (X ′X)−1X ′ can be interpreted as a projection
of X onto Y . X ′X is the covariance matrix for the case when X is mean centred. It is assumed
that X and Y are mean centred throughout the rest of this chapter.
For the direct inverse methods that we will be investigating in this dissertation, the windowed

outputs Z become the predictor X of the regression problem. Likewise the windowed inputs U
become the targets Y . For the type of problems we expect to find in response reconstruction,
a large number of the observations of X will be highly collinear. This means that not every
observation contributes unique information to the underlying phenomenon and causes X to
become singular. Therefore, the inverse of X ′X may not exist or is unstable. To overcome
this shortcoming, structure is sought in the covariance matrix by finding new latent variables
or dimensions which are linear combinations of the original axes. These latent variables seek to
explain the maximum amount of variance in either X or Y or a combination of the two with
the lowest number of latent variables. The latent variables that do not contribute significantly
to the problem are then discarded, thereby reducing the collinearity of the problem.

3.1 Principal Component Analysis (PCA)

A common method of determining the new representations of these dimensions is through the
use of Principal Component Analysis (PCA). In PCA we decompose X into R rank 1 matrices
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X =
R∑
r=1

Mr (3.4)

where Mr is the same size as X and R is the original rank of X. This means that each matrix
Mr individually spans one of the dimensions originally spanned by X. Each of these matrices
MR can then be broken down into the outer products of two vectors t ∈ Rn×1 and p ∈ Rp×1

called the scores and loadings respectively such that

Mr = trp
′
r, (3.5)

or in matrix form as

X = TP ′. (3.6)

The score vectors t can be interpreted as representing the original data points in X projected
onto new orthogonal axes called the principal components. These principal components maxi-
mize the variance in the original data while minimizing the squared distance of the original data
to the new set of axes [21]. The loadings p then represent the cosine of the angles between the
original axes and the principal directions [22]. This gives us an indication of weighting of each
score on the original axis, in other words how important each axis is in contributing to that
score. It also allows for the score to be transformed back into the original axes. A graphical
demonstration of PCA is shown in Figure 3.1.
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original axis of the system contributes to the new

principal component.

Figure 3.1: A graphical overview of PCA [22].

3.1.1 Singular Value Decomposition (SVD)

One method of performing PCA is by using Singular Value Decomposition (SVD) to factorize
X as

X = UxSxV
′
x, (3.7)
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which gives us the left singular vectors U ∈ Rp×r and the right singular vectors V ∈ Rn×r [21].
The singular vectors are unitary orthogonal matrices which have the property

U ′U = I, (3.8)

with I being the identity matrix. S ∈ Rr×r is a diagonal scaling matrix with positive singular
values along the diagonal, placed in descending order. If we go back to the original problem of
finding structure in the covariance matrix

CXX = X ′X, (3.9)

we can diagonalize it, since we know it is symmetric, to obtain

CXX = V ΛV ′ (3.10)

where V represents the eigenvectors arranged by columns and the diagonal matrix Λ repre-
senting the eigenvalues ordered by size along the diagonal. Substituting Equation (3.7) into
Equation (3.9) gives

C = VxS
′
xU
′
xUxSxV

′
x = VxS

2
xV
′
x. (3.11)

From this we can conclude that the right singular vectors V obtained during SVD are the
eigenvectors or principal directions of the covariance matrix and that the eigenvalues of the
covariance matrix λi are the squares of the singular values, i.e.

λi = s2
i . (3.12)

SVD can now be related back to PCA with the loading matrix given as

P = V (3.13)

and the corresponding score matrix given as

T = UxSx = XVx. (3.14)

The SVD can also be used to create a reduced rank approximation of the original matrix
X by selecting the L largest singular values S ∈ RL×L and the corresponding columns of the
left U ∈ Rp×L and right singular vectors V ∈ Rn×L. The smaller singular values and their
associated vectors are then ignored. This has the benefit of reducing memory requirements to
store the original matrix X since only (p × L) + (L × 1) + (n × L) entries need to be stored
as opposed to (p × n). This comes at a cost of loss of information but this is mitigated since
it is normally assumed that the smaller singular values are associated with random noise. The
SVD has complexity of O(min(pn2, p2n)) and is useful when all of the scores and loading are
required [30].

3.2 Principal Component Regression (PCR)

In PCR the input matrix X in Equation (3.1) is replaced with the scores matrix T such that

Ŷ = Tβ, (3.15)

with the scores associated with low variance being discarded [21]. This then has the solution
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β = (T ′T )−1T ′Y. (3.16)

This ensures that T ′T is easily invertible. Solving the collinearity problem as well as reducing
random noise can be achieved by discarding scores of principal components associated with
small eigenvalues. To see why PCR allows for easier inversion, we can substitute T = XV in
Equation (3.15) and T = US in Equation (3.16) to get

Ŷ = XVx(T ′T )−1T ′Y (3.17)
= XVx(S′xU ′xUxSx)−1S′xU

′
xY. (3.18)

Using the property of U ′U = I and the diagonal property of S to get (S′xSx)−1S′x = S−1
x results

in

Ŷ = X(VxS−1
x U ′x)Y. (3.19)

The diagonal S−1
x term is simple to calculate as the diagonals of S−1

x are the reciprocals of each
singular value of S, i.e.

S−1
x,ii = 1

si
. (3.20)

This explains why truncating small singular values helps to improve stability by increasing the
condition number of the problem. The singular values, that are close to zero, are blown up when
inverted. These extreme inverted singular values would otherwise dominate the larger singular
values which are of importance to the underlying model.

3.3 Tikhonov Regularization

Another form of regularization known as Tikhonov regularization can be shown to treat the
truncation of small singular values in a more smooth manner. Tikhonov regularization uses a
regularization matrix Γ with the solution

β = (X ′X + Γ′Γ)−1X ′Y, (3.21)

where Γ is typically chosen as a scaling of the identity matrix, Γ = αI, commonly referred to
as Ridge Regression (RR). RR has the solution in terms of the SVD of X [21]

Ŷ = X(VxDU ′x)Y, (3.22)

where the entries of the diagonal matrix D are given by

Dii = si
s2
i + α2 . (3.23)

Where in PCR there is a sharp cut off of the singular values, RR instead smoothly decays the
inverted singular values through the choice of the parameter α.
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3.4 Spanning Basis Transformation Regression (SBTR)

In PCR we demonstrated that the regression problem is made easier by choosing scores that
maximize the covariance of X. However, there is no direct coupling to the output space Y

when extracting the scores. This means that there is no way to distinguish if the truncated
information is random noise or information that varies poorly in X (hence having low singular
values) but co-varies strongly between Y and X and is therefore useful in predicting Y . One
method to solve this problem is by building an inner relationship between the scores of X and
Y [22]. An outer relationship is built for X in terms of scores and loadings as was done with
PCR, i.e.

X̂ = TP ′. (3.24)

To proceed Y is also decomposed terms of its own scores R and loadings Q, i.e.

Ŷ = RQ′. (3.25)

The outer relationships are then related to one another by mapping their corresponding scores
using a linear relationship

R = Tβ, (3.26)

such that

Ŷ = TβQ′. (3.27)

One way of achieving this is to decompose X and Y independently of one another using PCA
and then map the extracted scores using Equation (3.26). This is referred to as the over-
simplified model [22] and as SBTR [11]. SBTR is presented as a generalized framework that
maps the arbitrarily chosen spanning bases selected from an input to the spanning bases of the
output through the use of scalings and rotations. However, if SVD is used to determine the set
of spanning bases, SBTR reverts to the over-simplified model [22].
We start SBTR by decomposing X as we did in Equation (3.7) and obtain the scores and

loadings using Equations (3.13) and (3.14). Likewise, we decompose Y to get

Y = UySyV
′
y , (3.28)

and then determine the corresponding loadings R and Q

R = UySy, (3.29)
Q = Vy. (3.30)

Solving for β in Equation (3.26) and then substituting Equation (3.13) and using the same
orthogonal properties used to simplify Equation (3.18), gives

β = (T ′T )−1T ′R, (3.31)
= (S′xU ′xUxSx)−1S′xU

′
xR, (3.32)

= S−1
x U ′xR. (3.33)
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We then substitute the solved β into Equation (3.27) to get the prediction equation for Y ,

Ŷ = XPS−1
x U ′xRQ

′. (3.34)

We can expand out the equation in terms of the original SVD matrices to give

Ŷ = XVxS
−1
x U ′xUySyV

′
y . (3.35)

In summary the following remarks can be made about SBTR:
• SBTR can be interpreted as creating weighted sums between the scores extracted from X

and Y which are extracted independently of one another.
• Like PCR we have the choice of choosing the number of scores. In the case of SBTR we

have the choice of selecting the number of retained scores, L, for X and Y independently
of one another. In the original implementation of SBTR [11], the number of retained
scores for X and Y were set equal, i.e. Lx = Ly. This is the method that will be followed
throughout this dissertation.

• SBTR can be interpreted as PCR with an additional step of having a reduced rank ap-
proximation of Y . If all the scores for the outputs Y are retained then SBTR reverts to
PCR.

3.5 Partial Least Squares by Singular Value Decomposition (PLS-
SVD)

In SBTR the scores are still chosen such that they maximize the variance in their own respective
spaces without considering how the chosen scores affect the mapped variance in each other. If
instead the scores were chosen such that they maximized the variance in each other, this would
result in potentially fewer latent variables being required to fully explain all the variance in Y .
This would result in a parsimonious and hopefully more true representation of the underlying
dimensionality of the problem. This is equivalent to finding the scores that maximize the co-
variance of X ′Y . This is the underlying idea behind Partial Least Squares (PLS). PLS can be
performed using either iterative or direct methods. The more popular methods of performing
PLS iteratively are the NIPALS [22] or the SIMPLS algorithms [14]. The NIPALS algorithm
has complexity O(ipql)[30] where i is the number of iterations to convergence, which is relatively
quick, and l is the number of retained scores. Therefore the iterative methods are suitable if
the number of scores required are low. It is also possible to perform PLS using SVD if all the
loadings and scores are required. It is referred to as Robust Canonical Analysis [36] where it
was used for regression and as PLS-SVD [7] where it was used for analysis. We will be referring
to the method as PLS-SVD. However it must be noted that the different methods of performing
PLS are not equivalent and that the scores and loading extracted by the direct methods and
the iterative methods differ from one another [38].
To perform PLS-SVD we decompose the covariance matrix X ′Y using SVD to obtain

X ′Y = UxySxyV
′
xy, (3.36)

where Uxy ∈ Rp×r, Sxy ∈ Rr×r and Vxy ∈ Rq×r. The inputs X are then projected onto the left
singular vectors to obtain the scores for X such that

T = XUxy, (3.37)

while Y is projected on to the right singular vectors to obtain the scores for Y to give

R = Y Vxy. (3.38)
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The corresponding loadings for X and Y are the left and right singular vectors respectively, i.e.

P = Uxy, (3.39)
Q = Vxy. (3.40)

Solving for β in Equation (3.26) and then substituting Equations (3.37) and (3.38), we obtain

β = (T ′T )−1T ′R, (3.41)
= (U ′xyX ′XUxy)−1U ′xyX

′Y Vxy. (3.42)

We then substitute the solved β into Equation (3.27) to get the prediction equation for Y

Ŷ = XUxy(U ′xyX ′XUxy)−1U ′xyX
′Y VxyV

′
xy, (3.43)

= XUxy(U ′xyX ′XUxy)−1U ′xyX
′Y. (3.44)

If we write out the covariance matrix between the scores T and R and expand it in terms of the
original X and Y using Equations (3.37) and (3.38), we obtain

T ′R = U ′xyX
′Y Vxy, (3.45)

where X ′Y is the original covariance matrix. Expanding the original covariance matrix using
Equation (3.36) and using the orthogonal properties of the singular vectors result in

T ′R = U ′xyUxySxyV
′
xyVxy, (3.46)

= Sxy. (3.47)

This means that the covariance matrix of T and R is simply the diagonal matrix containing
the singular values of X ′Y . This results in the solution for the linear relationship between the
scores T and R, in terms of β such that

βii = si
t′iti

, (3.48)

where ti is the ith column of T . The off-diagonals of the β coefficient matrix are equal to 0, i.e.

βij = 0, (3.49)

where i 6= j [36]. However for the implementation in this dissertation the method outlined
in Equation (3.44) will be used. The collinearity problem can be mitigated by truncating the
smaller singular values and their corresponding singular vectors.

3.6 Scaling

The outputs Y and inputs X of the system record different types of signals which will have
different variances across them. We may also find that the sensors contain constant biases that
need to be accounted for. Therefore it would be pertinent to scale the inputs and outputs such
that the rows have a mean of 0 and a variance of 1 [21]. This is achieved using the z-score stated
as

X̄ = X − µp
σp

, (3.50)
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where µp is the row mean

µp = 1
N

N∑
n=1

xp,n, (3.51)

and σp is the row standard deviation

σp =

√√√√ 1
N

N∑
n=1

(xp,n − µp)2. (3.52)

Since the regression methods covered extract the latent variables that explain the greatest
variance in the input and output spaces it makes sense to scale them accordingly such that
one type of signal is not favoured unnecessarily over another. Scaling the matrices also has the
benefit of improving the conditioning of the matrices.

3.7 Conclusion

The regression methods covered seek new orthogonal axes or latent variables that maximize
the explained variance in either X (PCR and RR) or in X ′Y (PLS-SVD) or in X and Y

independently of one another (SBTR). The issue of collinearity can be mitigated by truncating
the number of retained scores. The choice of retained scores will be determined through the use
of cross validation and will be covered in the following chapter.
The latent variables are calculated using iterative methods such as NIPALS or directly using

SVD. Iterative methods scale O(ipnl) whereas direct methods scale O(min(pn2, p2n)). Iterative
methods are used when the number of latent variables required are significantly less than the
original dimensionality of the problem. For easy comparison against the SBTR algorithm,
direct methods that implement SVD will be considered and benchmarked in this dissertation.
Therefore SBTR will be benchmarked against PCR, PLS-SVD and RR.
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Chapter 4

Model Building and Validation

In the previous chapter we demonstrated that the number of retained latent variables L extracted
by the different regression methods need to be truncated in order to solve the collinearity prob-
lem. It was stated in the objectives of this dissertation that the use of overlapping windows
will be investigated. The use of overlap introduces another variable, proportion overlap γ, that
needs to be optimized in addition to the window length Tw. This chapter covers the process of
optimizing for these hyper-parameters.

4.1 Choice of Excitation Signals

Before we can begin building a direct inverse model of our plant we need good quality data since
the quality of the excitation signal places an upper bound on the accuracy of any subsequent
model that we wish to build [32]. In the case of response reconstruction we have the benefit
that we can design the signals we wish to train on. There are two possible methods of designing
excitation signals: model-free and model-based methods. In model-based methods subsequent
excitation signals are chosen such that they improve the accuracy of the model [15]. Initially
we have little prior knowledge of the system and of the real world input signals, therefore we
need to employ model-free methods. In model-free methods we design an excitation signal that
offers the best distributed coverage of the operating condition. We assume we have some prior
knowledge of the range of the operating condition. A popular choice in system identification
literature for this is the Amplitude Modulated Pseudo Random Binary Signal (APRBS).

4.1.1 Amplitude Modulated Pseudo Random Binary Signal

Since we are working with nonlinear structural systems we know that the system responses are
functions of input frequencies as well as the amplitude at which we excite the system. Therefore
a signal that covers the necessary frequencies as well as covering the expected amplitude range
of operations is required. The APRBS attempts to cover the amplitude operating conditions
with a series of step responses that are fairly well distributed over the input range. An example
of an APRBS is shown in Figure 4.1.
In order to specify the profile, a set of N design points dn are chosen to define the amplitudes

of the steps. The design points are sampled from the desired range [umin, u max] using Latin
Hypercube Sampling (LHS). LHS splits the design space into N intervals with one design point
placed randomly in each interval. LHS then iteratively optimises the design points such that
each design point is the maximum distance away from its neighbours. This provides a random
but equally spread set of design points. Since no physical system can achieve an instantaneous
change in displacements required for a true step input, the step is instead approximated by a
ramp function. The slope of the ramp is determined by the maximum allowed velocity vmax

that can safely or accurately be performed by the actuator. The slope of the ramp affects
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Figure 4.1: APRBS example.

the frequency content of the signals with higher velocities resulting in higher frequencies being
excited [16]. The length of the step is then specified by the hold time Th. The testing time is
limited, therefore the maximum number of steps that best cover the input space in the shortest
time is sought. The hold time Th must be small enough to fit as many steps in but must be long
enough that the steps actively excite the system at that point. The hold time Th is typically
set to be at least the length of the largest time constant Tc,max of the system [32]. This can be
determined with a simple step test of the system if no prior knowledge is known.

4.1.2 Road Profile

In order to generate a separate test set to determine how well the direct inverse model performs
on unseen data, the ISO 8608 standard [19] for specifying road profiles will be employed. The
ISO 8608 standard defines inputs that are distinct from APRBS while still being representative of
real world operating conditions. The profiles are characterised by the standard in the frequency
domain where the spectral density Sz is given by

Sz(φ) = A(φ)−n, (4.1)

for the given spatial frequency φ with units m−1. The A term represents the roughness coeffi-
cient of the road whereas n represents the road index of the profile. The A coefficient controls
how large the amplitudes are at each frequency whereas n controls how quickly the amplitudes
decay as functions of frequency. By altering these two coefficients the varying types of profiles
such as ploughed agricultural land to smooth gravel highways can be produced. The spatial
frequencies φ are limited between 0.01 and 10 m−1. The former represents the broad changes
in the landscape which have negligible effects on vehicle dynamics while the upper limit on the
frequency represents small scale variations which are filtered out by the tyre [25]. When gener-
ating the profiles only the amplitude information is given by the ISO 8608 standard, therefore
in order to generate time signals, a uniformly random signal is generated for the phase signal.
This generates a displacement signal as a function of distance. The velocity of the vehicle must
therefore be chosen in order to generate a displacement signal as a function of time.
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4.1.3 Sampling Frequency

When recording our training input and output signals we have the choice in selecting the sam-
pling frequency. It is recommended for the case of correlation and spectral methods to choose a
sampling frequency fs = 10fc where fc is the upper limit of the frequencies we are interested in
[5]. For parameter based models fs = 2.5fc is recommended. For ADT in vehicles we are rarely
interested in frequencies above 100 Hz therefore a default sampling frequency of fs = 1000 Hz
was chosen for training and testing the linear regression techniques. However it is demonstrated
in Section 6.1 that this value can be reduced significantly.

4.1.4 Preprocessing

Certain windowing techniques will truncate some of the samples in the testing and training sets.
To ensure that there is a fair comparison between the different data sets a dead time will be
appended and prepended. The dead times will be excluded when calculating the cost function
during cross validation as well as when reporting the final accuracies of the predictions. The
constant initial and final conditions also allow for different signals to be appended to one another
without introducing unwanted jumps.

4.2 Cross Validation

We know that we cannot use all of the scores extracted due to measurement noise in our obser-
vations, response reconstruction being an ill-posed problem as well as the issue of collinearity.
Therefore we select fewer scores or latent variables than the problem allows while still maxi-
mizing the amount of variance explained. In order to determine the number of retained scores
we can vary the number of retained scores to see how well they predict on an unseen validation
set in a process called cross validation. However, cross validation can be misleading if it is
implemented without considering dependencies between observations. If the validation set is
removed once the data has already been windowed with overlaps, then the validated set will
be correlated to the training set due to the overlaps introduced. If the validation set is first
removed from the middle portion of the dataset and then windowed, then care must be taken
when splitting and merging the training set to ensure that no unintended overlap is introduced
between the separated training segments. A simpler solution to this problem is implemented by
removing a single validation set from either the beginning or end of the dataset before window-
ing. In this work a validation set was created independently of the training set. In the original
implementation of SBTR k-fold cross validation was implemented on the data set after they
were split into windows [12]. This was allowable since overlap was not implemented. It was
also computationally tractable to implement since the number of observations obtained were
low allowing for fast calculations during SVD. The hold out set implemented in this work has
the benefit of reducing the computational overhead introduced by k-fold cross validation but
comes at the cost of producing a more biased estimate of the validation error [6].

4.3 Choice of Cost Function

We have the choice of either using the errors of the approximated inputs or the approximated
outputs as the cost function of the optimisation scheme. In response reconstruction, we are
interested in producing an accurate output response of the system since a unique input may
not exist. The downside of this is that in order to obtain the output error, the approximated
input needs to be passed through the test rig. This needs to occur for every loop in the cross
validation step. This is not an issue for the numerical model since it is cheap to compute,
however, in the real world this would result in significant fatigue of the experimental rig and
would take considerable time to run. Therefore it is necessary to limit the number of forward
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evaluations in the cross validation step. In the evaluation of the methods investigated for
response reconstruction, the output error will be used in the cross validation step. Since we
need to measure and compare response and input reconstruction accuracies across different
types of signals, we need a normalized measure of error. The Mean Fit Function Error (MFFE)
[9] will be used to report the final test accuracies of the reconstructed input and output signals.
MFFE is defined as

MFFE = 100×
∑M
m=1 |e0|∑M
m=1 |z0|

[%], (4.2)

where e0 is the error between the true output z0 and the approximate output ẑ0, i.e.

e0 = z0 − ẑ0. (4.3)

The signals under consideration have been mean centred such that

z0 = z − µz, (4.4)
ẑ0 = ẑ − µẑ. (4.5)

4.4 Training Procedure

The cross validation algorithm consists of two sub-routines: an outer routine which incorporates
the windowing parameter grid search and an inner subroutine which optimises for the number
of latent variables.

4.4.1 Window Loop

A graphical overview of the training process is shown in Figure 4.2 with focus on the window
parameter search. The window optimisation loops over the window length, Tw,i, and the amount
of overlap, γj . The training set Utrain and Ztrain as well as validation output Zval are then
windowed accordingly. The z-score parameters, σij and µij , are then calculated using only the
training dataset and applied to both the training and validation set. The training set is then
decomposed using SVD according to the regression method specified. The full SVD is calculated
so that we can simply truncate it to the required number of latent variables as opposed to
recalculating it every time we want a different number of latent variables. The decomposed
SVD and the range of latent variables Lmax,ij are then passed to the latent variable optimisation
loop.

4.4.2 Latent Variable Loop

A graphical overview of the training latent variable optimisation loop is shown in Figure 4.3.
The regression coefficients βk are then calculated using the reduced number of latent variables,
Lk. The approximated windowed validation inputs Ŷval are then predicted using the windowed
validation outputs X̂val. The approximated windowed validation inputs are rescaled and then
merged using the specified windowing methods to obtain the approximated input Ûval. The
merged inputs are then passed through the test rig to obtain the approximated output Ẑval.
The MFFE is then calculated between the true output Zval and the approximated output Ẑval.
The optimal number of latent variables Lmin and the corresponding minimum MFFE are then
returned from this loop to the windowing loop as seen Figure 4.2. This minimum MFFE result
is then used in the window loop to find the corresponding optimal window parameters Tw,min

and γmin.
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Figure 4.2: Overview of the cross validation procedure
used to determine the optimal hyper-parameters.
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Figure 4.3: Overview of the latent variable optimisation
loop.

4.4.3 Final Training Step

In the final training step, the training set is concatenated with the validation set. This newly
combined set is then windowed with the optimised window paramaters Tw,min and γmin. The
new z-score parameters [σ, µ] are then calculated. The combined set is decomposed and used
in the regression step with the optimised number of latent variables Lmin to determine the final
regression coefficients βfinal.

4.5 Prediction

A graphical overview of the prediction step and the approximation of the output is shown in
Figure 4.4. Once the training step is complete it is relatively straightforward to use the optimized
parameters to make further predictions. The test output signal Ztest needs to be preprocessed
first before predictions can be made. The test signal is windowed and z-scored normalised, using
the parameters determined during the training phase, to obtain the predictor matrix, Xtest. The
prediction step then occurs using the regression coefficients βfinal obtained during training to
obtain the approximate target matrix, Ŷtest. The windowing and z-score normalisation are then
reversed before passing the approximated input Ûtest into the test rig to obtain the approximated
output, Ẑtest.

4.6 Experimental Procedure Summary

The experimental procedures which follow will use the framework outlined in this section so it
is worthwhile giving a high-level overview of the general procedure. Each experiment will tweak
the methodology slightly depending on the variables of interest but in general, they will follow
the general framework:

35



Z-score
Apply

Window
Split

Prediction

Window
Merge

 β

(σ,µ)
X

X test

 

(T  ,γ)  w 

Z-score
reverse

 

Quarter
Car

Model
 

 

X test

Z test

(σ,µ)
Y

Y test

Y test
^

^

(T  ,γ)  w 

Utest
^

Z test
^

Figure 4.4: Overview of the prediction procedure.

1. Generate a set of training and validation input signals using APRBS as outlined in Sec-
tion 4.1.1.

2. Generate a set of test input signals using a road profile as outlined in Section 4.1.2.
3. Pass these input signals through the physical laboratory set-up. In this case, we will be

using a numerical model to simulate this step as outlined in Section 2.
4. Window these input and output pairs using a windowing method, the window parameters

include the window length Tw and the amount of overlap γ. Scale these windowed outputs
and inputs according to Section 3.6.

5. Use the windowed pair of training input and output signals to create a direct inverse linear
regression model with a regularisation term, for most of the regression methods covered
this is the amount retained latent variables L. For the case of ridge regression, it is the
regularisation constant α.

6. Use this regularised inverse model with the validation output to get an approximate win-
dowed validation input. Unscale these inputs.

7. Unwindow the approximate validation input using the appropriate method.
8. Pass the unwidowed approximate validation input through the physical laboratory set-up.

This gives us an approximate validation output signal.
9. Compute response reconstruction error between approximate and true validation outputs

using Equation (4.2).
10. Repeat steps 4-9 using different regularisation constants in a grid search such that the

validation output reconstruction is minimized. (It may be necessary to perform an outer
grid search in step 4 on the window parameters when comparing windowing methods).

11. Window the test output.
12. Use the model that minimizes the response reconstruction error to create an approximate

windowed input given the test output. Reverse the scaling.
13. Unwindow the approximate test input.
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14. Pass this approximate input through the physical experimental set-up to get an approxi-
mated output.

15. Compare the test approximated output and the true output using Equation (4.2).
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Chapter 5

Windowing Methods

Since we are working with physical systems we can take advantage of the fact that the system will
experience damping and that part of the energy of the system will be lost to the environment.
Therefore we can assume that the states of the system will not be influenced by inputs or states
that occurred far back in time. This allows for long measurement sequences to be subdivided
into windows where the final state of the system in that window is only influenced by the events
that occur in that window. Therefore we can treat each window as an independent experiment
allowing for more observations with more manageable sequence lengths. The length of the
window is closely related to the amount of damping in the system. The relationship between
window length and damping will be further explored in Section 6.2.

5.1 Non-overlapping Windows Investigation

In this section the non-overlapping windowing method will be tested using SBTR on a slightly
broader scope of sensor configurations. In this study two types of sensor set-ups will be used. The
first set-up uses the absolute displacements of the sprung and unsprung mass. This represents
the sensor set-up used in the original implementation of SBTR [12]. The second set-up uses the
more practical set-up of using acceleration and displacement readings.
For this investigation the default parameters for the quarter car will be used as stated in

Table 2.1. However, the nonlinearity of the model will be switched off. No measurement noise
will be present as well. This represents the ideal case and is the bare minimum required of
the regression technique. APRBS will be used for training and validation sets. The lengths of
the signals are 26.3 s and 15.9 s respectively. The parameters of the signals, as discussed in
Section 4.1.1, are given in Table 5.1.

Table 5.1: APRBS parameters used to generate the training and validation signals used in
the non-overlapping windows numerical investigation.

Ts [s] Th [s] vmax [ms−1] umax [m] umax [m]

0.001 0.2 10 −0.1 0.1

A 10 s long road profile specified by the ISO 8608 standard will be used for testing the model.
The parameters of the road profile, as discussed in Section 4.1.2, are given in Table 5.2. The
generated signals are shown in Figure 5.1 with a zoomed-in slice of the training signal shown in
Figure 5.2.
The entire investigation will be completed using a 1000 Hz sampling rate. The window sizes

and number of latent variables will determined by grid search with Tw ∈ [0.1, 4] s with 25 equally
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Table 5.2: Road profile parameters used to generate the test signal used in the
non-overlapping windows numerical investigation.

n A φmin [m−1] φmax [m−1] φint [m−1] v [ms−1]

10 6.5× 10−4 0.5 10 3.5× 10−4 5
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(a) Training signal
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(c) Test signal

Figure 5.1: Training, validation and test input signals used in the non-overlapping windows
numerical investigation
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Figure 5.2: Training signal zoomed in.

spaced intervals and L ∈ [1, Lmax] with dL spaced divisions given as

dL = min(40,max(10, dLmax/10e). (5.1)

A plot of the function used to determine the number of latent variable divisions is shown in
Figure 5.3.
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Figure 5.3: The number of grid search divisions used
to determine the number of latent variables as a function

of maximum possible number of latent variables.

For the relative displacement and acceleration set-up the spring displacement MFFE value will
be the cost function. In the absolute displacement case the sprung mass displacement MFFE
value will be the cost function.
A summary of the numerical experiment parameters is given in Table 5.3.

5.1.1 Results

The MFFE values for the reconstructed outputs and inputs are shown in Table 5.4.
The absolute displacement set-up performs remarkably well whereas the acceleration and spring

displacement set-up performs poorly across the outputs and the inputs. There are 3 orders of
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Table 5.3: Experimental design for non-overlapping windowing method performance.
(Variables of interest shown first)

Variable Details

Window method No overlap
Sensor Configuration Absolute displacement on both DOF, Relative Displacement +

Sprung mass acceleration

Window Length Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Regression method SBTR
QC parameters Default values but without the nonlinear term kNL; Table 2.1
Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

Table 5.4: MFFE [%] results for the approximated input and output signals using
non-overlapping windows and SBTR on the linear quarter car model.

Training Validation Test

uroad zA zR uroad zA zR uroad zA zR

Abs. Disp. 5.4×
10−4

5.1×
10−4

6.1×
10−4

5.8×
10−4

1.6×
10−2

2.3×
10−2

1.8×
10−2

1.8×
10−2

1.7×
10−2

uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

Rel. Disp. + Acc. 66.11 47.11 38.96 64.64 28.07 32.61 75.49 80.72 46.66
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magnitude difference in the test MFFE outputs when comparing the two different sensor set-
ups. This is visually confirmed if we compare the recreated test output signals in Figures 5.4
and 5.5. The input results between the two sensor set-ups are compared in Figure 5.6. It
becomes obvious when zooming into the recreated inputs in Figure 5.6b that the acceleration
and relative displacement sensor set-up experiences sharp discontinuities when moving from one
non-overlapping window to the next. This is clearly noticeable at T ≈ 9.45 s and T ≈ 10.05 s.
The discontinuities in the inputs result in large spikes in the acceleration signal as seen in
Figure 5.5a. It is not visually noticeable whether the absolute displacement set-up experiences
this jump between each window.
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(b) Unsprung mass displacement

Figure 5.4: Recreated outputs using non-overlapping windows and SBTR. Absolute
displacement set-up.

There are two potential causes proposed for the discrepancy in performance. The first is that
the stiffness associated with the unsprung mass is too high. If this is the case, the relative
displacement between the input and sprung mass will be negligible. The second cause for the
discrepancy is more fundamental in that the system fails to approximate integration.
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(b) Spring Displacement

Figure 5.5: Recreated outputs using non-overlapping windows and SBTR. Acceleration and
spring displacement set-up.
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(b) Recreated test inputs, zoomed in

Figure 5.6: Comparison between the acceleration and spring displacement set-up and the
absolute displacement set-up test inputs. Non-overlapping windows and SBTR are used.
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Trivially stiff tyre stiffness

If the tyre is too stiff, its absolute displacement would act as an accurate proxy for the input.
This results in a trivial problem. This is demonstrated in Figure 5.7, where the absolute dis-
placement of the unsprung mass is plotted against the road profile input for decreasing values
of the unsprung mass stiffness kR. For the large stiffness values, i.e. kR > 10000, the output
displacements lie close to the inputs. For the less stiff values, the output diverges from the
inputs. To test the influence of the unsprung mass stiffness kR, the absolute displacement set-
up experiment will be repeated except with a range of kR values. The MFFE scores for the
different stiffness values are recorded in Table 5.5. We note that the MFFE test scores for the
inputs and outputs increase with a decreasing sprung mass stiffness, however, the test scores are
all less than 1%. This indicates that the tyre stiffness does play a role in the accuracy of the
non-overlapping window implementation but not enough to explain the discrepancy between the
acceleration and relative displacement set-up and the absolute displacement set-up results.

Figure 5.7: The blue dashed line represents the road profile input. The coloured solid lines
represent the absolute displacement of the unsprung mass at different stiffness values. The stiff

value displacements are almost identical to the input.

Need for integration

The second potential cause for the disparity is that the acceleration set-up needs to perform
integration in order to obtain all the z terms in Equations (2.1) and (2.2). Whereas in the
absolute displacement set-up differentiation needs to be performed to obtain all the z terms.
In an ideal case differentiation can be numerically approximated with just two points in time
allowing for almost instant inversion. Integration would, on the other hand, require a full history
of points in time to approximate the integral or, in the case of damping, up to the point in time
where the energy would have dissipated. The assumption of the non-overlapping window SBTR
method is that each window is an independent observation. The regression technique is therefore
unaware of any inputs or outputs occurring outside of each window. This concept of integration
approximation will be explored further in Section 5.6.
We can visually get an intuition of this by plotting the errors in each independent window on top

of one another to obtain a sense of where the errors occur within each window. The absolute
displacement set-up and the acceleration and spring displacement set-up window errors are
plotted in Figures 5.8 and 5.9 respectively. If we look at the errors for the input of the absolute
displacement in Figure 5.8c we notice large spikes in the beginning and ends of the windows.
The regression method has few or no preceding or proceeding outputs at the extremes of the
window and is therefore penalised in terms of prediction accuracy. These spikes quickly die out
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Table 5.5: Input and output reconstruction MFFE [%] using non-overlapping windows and
SBTR for different unsprung mass stiffness values kR

Training Validation Test

kR uroad zA zR uroad zA zR uroad zA zR

40000 3.4×
10−3

3.2×
10−3

3.8×
10−3

3.6×
10−8

8.5×
10−3

1.1×
10−2

4.0×
10−3

3.9×
10−3

3.7×
10−3

10000 9.0×
10−4

8.1×
10−4

8.8×
10−4

2.4×
10−6

1.5×
10−2

1.8×
10−2

8.8×
10−3

8.0×
10−3

7.6×
10−3

2500 3.4×
10−3

5.2×
10−3

5.3×
10−3

3.8×
10−4

1.2×
10−2

1.1×
10−2

4.0×
10−3

3.0×
10−3

2.5×
10−3

625 2.9×
10−3

9.6×
10−2

1.1×
10−1

3.0×
10−3

2.0×
10−1

2.2×
10−1

1.1×
10−2

2.7×
10−2

3.9×
10−2

150 6.0×
10−3

4.0×
10−2

4.1×
10−2

1.4×
10−1

8.2×
10−2

8.4×
10−2

1.3×
10−2

6.6×
10−2

6.6×
10−2

40 1.5×
10−1

4.4×
10−1

4.4×
10−1

2.8×
100

1.1×
10−1

1.1×
10−1

1.9×
10−1

9.0×
10−2

9.0×
10−2

since the derivatives can be quickly estimated using a small number of points. The error spikes
then manifest themselves as delayed errors in the outputs of the system as seen in Figures 5.8a
and 5.8b. The output errors then converge towards the ends of the window. The output errors
of the acceleration and spring displacement set-up, as shown in Figures 5.9a and 5.9b, follow a
similar trend of starting off widely distributed in the beginning of the window while becoming
narrowly distributed towards the end of the window. However, the corresponding input errors
as plotted in Figures 5.9c follow a different trend as the error distribution increases along the
length of the window.
If we examine the optimised hyper-parameter results of the cross validation in Table 5.6 we

note that the acceleration and spring displacement set-up is highly regularised with 12 out of a
potential 86 latent variables being used. In the absolute displacement set-up the system used
all of the potential latent variables. The system was limited by the number of singular values
available in the decomposition input matrix U . Due to the nature of the SBTR algorithm setting
the number of latent variables from the input and output matrices equal to one another, this has
placed an artificial lower limit in the number of latent variables being extracted from the output
matrix Z. We also note that the absolute displacement set-up used the smallest allowed window
length which is another indication that the absolute displacement system can be inverted almost
immediately.

Table 5.6: Optimised hyper-parameter results and corresponding windowed matrix sizes for
the numerical investigation of non-overlapping windows.

Sensors L Lmax Tw[s] n× r n× p

Abs. Disp. 100 100 0.10 263× 100 263× 200
Rel. Disp. + Acc. 12 86 0.305 86× 305 86× 610
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Figure 5.8: Output and input errors plotted for each sample in each window. Absolute
displacement sensor set-up.
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Figure 5.9: Output and input errors plotted for each sample in each window. Acceleration
and spring displacement sensor set-up.
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5.1.2 Conclusion

In this numerical investigation a substantial flaw in the implementation of the non-overlapping
window method in response reconstruction has been highlighted. The method performs well
when predicting the inputs of the system when absolute displacements of the system are used
but performs poorly when using a more practical sensor set-up of acceleration and spring dis-
placement. The investigation was performed on a base-line system where no nonlinearities or
measurement noise were introduced. It was shown that having a high spring stiffness in the
system may make the system input easier to obtain in the case of the absolute displacement
set-up but it was not the main cause of discrepancy. The most likely cause of the difference in
performance is that in the absolute displacement set-up, the algorithm needs to approximate
differentiation in order to obtain all the states of the system. In the acceleration and spring
displacement set-up the algorithm needs to perform integration over the entire time history to
approximate the states of the system. This places different constraints on parameters of the
windows.
In response reconstruction the selection of sensors may be limited due to practical reasons

and therefore we would want a response reconstruction method that is applicable to a wide
range of reasonable sensor set-ups. A more practical issue in terms of the algorithm is that of
minimizing the known errors in the regions of the window that are known to be high. One way
of overcoming this is to use overlapping windows and then use the parts of the predicted window
that are believed to have low errors and discard the rest.

5.2 Overlapping Windows

In Section 1.7 it was highlighted that, by using non-overlapping windows, errors were introduced
by the discontinuities between each window. Two possible solutions to this problem are explored
in this chapter. The first proposed solution is to introduce overlaps between each window and
then to only use parts of the window that are believed to predict outputs with low errors.
The second proposed solution is to introduce overlap but instead of discarding the unwanted
sections, the predicted overlapping windows are blended using smooth weighted averaging. In
both approaches we need to optimize for a suitable overlap sample length. The overlap sample
length sγ is defined by a proportion γ of the proposed window sample length sw, i.e.

sγ = bγswc . (5.2)

The stride of the window, sτ , is then given by

sτ = sw − sγ . (5.3)

This results in the same number of columns p and r defined by Equations (1.7) and (1.8) except
now the number of rows or observations, n, is equal to

n =
⌊
m− sγ
sτ

⌋
. (5.4)

The target matrix Y therefore has the form
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Y =



channel 1︷ ︸︸ ︷
u1(1) u1(2) · · · u1(sw − 1) u1(sw)

channel 2 etc.︷ ︸︸ ︷
· · ·

u1(sτ + 1) u1(sτ + 2) · · · u1(sτ + sw − 1) u1(sτ + sw) · · ·
...

... . . . ...
... · · ·

u1((n− 2)sτ + 1) u1((n− 2)sτ + 2) · · · u1((n− 2)sτ + sw − 1) u1((n− 2)sτ + sw) · · ·
u1((n− 1)sτ + 1) u1((n− 1)sτ + 2) · · · u1((n− 1)sτ + sw − 1) u1((n− 1)sτ + sw) · · ·


.

(5.5)
The predictor matrix X takes on a similar form (not shown).
The simplest way of reconstructing the approximated input Ũ is to take sγ samples from

the beginning of each observation in window i in the total number of observations n. This is
demonstrated in Figure 5.10a. We do this for each given actuator signal j in the total number
of actuators q, which results in

Û[(i−1)sτ+1:(i)sτ ,j] = Ŷ[i,(j−1)sw+1:(j−1)sw+sτ ]. (5.6)

It is also possible to construct the input using the ends of each window, i.e.

Û[sγ+(i−1)sτ+1:sγ+(i)sτ ,j] = Ŷ[i,(j)sw−sτ :(j)sw]. (5.7)

However we noted earlier that the errors are large at the extremes of the window. Therefore sγ
samples should rather be taken from the middle of the window. The starting point sα is given
by

sα =
⌊
sw − sγ

2

⌋
, (5.8)

which means Û can be constructed as

Û[(i−1)sτ+sα:(i)sτ+sα−1,j] = Ŷ[i,(j−1)sw+sα:(j−1)sw+sα+sτ−1]. (5.9)

An overview of the middle sampling method is shown in Figure 5.10b.
We may find that at times small unwanted discontinuities may arise between the stitched

together segments. The solution is to use a weighted average of prediction that overlap with
one another to smooth these discontinuities. An overview of the weighted averaging merging is
shown in Figure 5.11.
This creates an intermediate averaged windowed target matrix Ŷ ∗. This process can be ex-

pressed as

Ŷ ∗[i,(j−1)sw+sτ+1:(j)sw] = (w) ◦ Ŷ[i,(j−1)sw+sτ+1:(j)sw] + (1− w) ◦ Ŷ[i+1,(j−1)sw+1:(j−1)sw+sγ ] (5.10)

where ◦ denotes the Hadamard product. Since the first sτ samples do not overlap, the first
sτ from the intermediate weighted average matrix remains the same as the original windowed
matrix, i.e.

Ŷ ∗[i,(j−1)sw+1:(j−1)sw+sτ ] = Ŷ[i,(j−1)sw+1:(j−1)sw+sτ ]. (5.11)

If we define w (for the case of two overlapping signals) as

w = 0.5 · 1 (5.12)
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denotes the amount of overlap between

each successive observation.

 

i=1

i=n

[i,(j-1)s  +1:(j)s  ]Y
^

w

αs τs
ws

[1:m,j]U

w

[i+1,(j-1)s  +1:(j)s  ]Y
^

w w

[i+2,(j-1)s  +1:(j)s  ]Y
^

w w

^

(b) Middle merging: sτ samples
beginning at sα are taken for each

observation i , with window length sw, of
the approximate target matrix Ŷ to
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Figure 5.11: An overview of the weighted average merging method. The overlapping
segments of length sγ for each observation i of Ŷ with length sw are weighted averaged with
the corresponding segment in the (i+ 1)th window using w. An intermediate averaged target
matrix Ŷ ∗ is then obtained. Since the first sτ samples do not overlap the first sτ samples are

taken as is from Ŷ .
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where 1 ∈ Rsγ×1 is a vector containing ones, we simply treat each signal with equal weighting.
An alternative is to define the weight using the sigmoid function, given by

w
sγ
k=1 = 1

1 + e
−6+k 12

sγ

(5.13)

and plotted in Figure 5.12.
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Figure 5.12: Sigmoidal weights used in
sigmoidal weighted averaging, created for an

overlap with sγ = 40 samples.

The w term initially weights the ith window highly with w = 1 and then drops off to zero
over the length of the overlap. The 1 − w initially gives no weight to the (i + 1)th window but
eventually gives full weight to the (i+ 1)th window. This attempts to weigh down samples that
are sampled from the beginning of each window observation while emphasizing samples that are
extracted from the middle of the window. Once the intermediate weighted window predictions
Ŷ ∗ are calculated, the approximated input Û can be created by using the middle sampling
method described in Equation (5.9). It can be noted that the ith window may overlap with the
(i + 2)th window and so on, if the overlap exceeds half the length of the previous window i.e.
γ > 0.5. However, the averaging methods covered in this section do not consider the information
contained in the (i + 2)th window. We will explore methods that average over more than two
windows in Section 5.3.

5.2.1 Numerical Investigation

In this section we will test the different methods of merging overlapping windows. The procedure
will follow similarly to that outlined in Section 5.1, however, in this case the overlap proportion
γ needs to be determined by grid search as well. The candidate overlap values are γ ∈ [0, 0.99]
with 20 equal linearly spaced intervals. In this set-up we will only be focusing on the sprung
mass acceleration and spring displacement sensor configuration. Five different window merging
techniques will be investigated, namely:

• First: the prediction is taken from the beginning of the window.
• Middle: the prediction is taken from the middle of the window.
• Last: the prediction is taken from the end of the window.
• Average: two overlapping windows are averaged with equal weighting.
• Sigmoidal: two overlapping windows are averaged using sigmoidal weighting.

The numerical experiment procedure parameters are given in Table 5.7.
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Table 5.7: Experimental design for overlapping windows. (Variables of interest shown first).

Variable Details

Windowing methods First, Middle, Last, Average, Sigmoidal
Window Proportional
overlap γ

∈ [0, 0.99] with 20 equally spaced intervals

Sensor configuration Sprung mass acceleration + spring displacement
Window lengths Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Sampling frequency fs 1000 Hz
Regression method SBTR
QC parameters Default values; Table 2.1 however with no nonlinearity term kNL

Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

Results

The recreated input and output signals using the different window merging techniques are shown
in Figure 5.13.
The MFFE results of the grid search optimisation are shown in Table 5.8.

Table 5.8: MFFE [%] results for the approximated input and output signals using different
windowing methods on the linear quarter car model. The discrepancy between input and

output reconstruction accuracies is due to functional reproducibility, as discussed in
Section 2.3.

Training Validation Test

uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

First 19.06 26.04 13.94 43.70 15.15 10.56 46.97 21.26 14.48
Middle 6.81 13.60 7.56 24.99 12.97 6.05 28.13 10.43 4.92
Last 21.43 9.18 25.92 58.00 19.10 15.48 50.63 22.03 18.94
Average 6.88 12.69 7.35 24.90 9.57 5.58 28.23 9.16 4.66
Sigmoidal 6.81 12.65 7.39 24.77 9.53 5.58 28.27 8.92 4.65

Using the Last, or the First merging techniques produced the worst results as can be seen in the
MFFE results as well as sharp unwanted spikes they produce in the acceleration reconstruction
as demonstrated in Figure 5.13b. The Middle, Average and Sigmoidal produced the best results
and performed similarly. The weighted averaging techniques, Average and Sigmoidal, performed
slightly better than just using Middle alone. When comparing the results from Table 5.8 against
those using non-overlapping windows in Table 5.4, we note that all of the investigated merging
techniques achieved significantly better results than the non-overlapping window techniques
employed for the acceleration and spring displacement set-up.
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(a) Reconstructed input

(b) Reconstructed sprung mass acceleration

(c) Reconstructed spring displacement

Figure 5.13: Recreated input and output reconstruction results using different overlapping
window methods with SBTR. The tests were performed on a linear quarter car.
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The hyper-parameter results of the grid search optimisation are shown in Table 5.9.

Table 5.9: Optimized hyper-parameter results for the numerical investigation of
non-overlapping windows and corresponding training matrix sizes.

Lretained Lmax Tw[s] γ n× r n× p

First 210 633 3.542 0.99 633× 3542 633× 7084
Middle 344 474 4.525 0.99 474× 4524 474× 9048
Last 331 633 3.542 0.99 633× 3542 633× 7084
Average 341 474 4.525 0.99 474× 4524 474× 9048
Sigmoidal 344 474 4.525 0.99 474× 4524 474× 9048

All five windowing methods used the maximum amount of overlap allowed by the grid search
to obtain their best results. This is corroborated by looking at the spring displacement output
reconstruction MFFE results using Sigmoidal merging in Figure 5.14. The MFFE are plotted as
a function of proportional overlap and window length. It can be noted that the MFFE drops off
quickly as the proportional overlap approaches the maximum allowed value of 0.99. It is clear
that the response reconstruction benefits significantly from a large overlap. This suggests that
even better reconstruction accuracy can be achieved by increasing the overlap even further. The
optimised window lengths also increased significantly when compared to the window lengths
obtained using non-overlapping windows.
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Figure 5.14: Spring displacement reconstruction MFFE [%] as a function of window
overlap γ and window length Tw. Sigmoidal window merging was used.
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5.2.2 Conclusion

Overall, these results confirm the need for overlapping windows when performing SBTR with
systems that need to perform integration to obtain the inputs. The best performance results
were achieved when the maximum allowed amount of overlap was used. This suggests that
allowing even more overlap may be beneficial. It was shown that selecting the middle section
of a reconstructed window produces the lowest error as compared to selecting the beginning or
end section of the window.
The slight improvement in MFFE results when employing weighted averaging techniques sug-

gests that combining the different predictions from different windows may be a fruitful method
of producing even better results. The averaging techniques only averaged across two overlapping
windows even though the overlap existed between more than just two windows. The original
but misguided assumption was that introducing some overlap, i.e. γ < 0.5 would be satisfactory
and that averaging over more than two windows would not be required. In the next section the
maximum achievable overlap will be investigated as well as a method of using these omitted
overlapping segments to create the weighted average.

5.3 AntiDiagonal Averaging (ADA)

We noted in Section 5.2 that better reconstruction results could be achieved by setting the
amount of overlapping to the extreme such that the stride is one sample, i.e. sτ = 1. This
results in the following windowed target matrix Y

Y =



channel 1︷ ︸︸ ︷
u1(1) u1(2) · · · u1(sw − 1) u1(sw)

channel 2 etc.︷ ︸︸ ︷
· · ·

u1(2) u1(3) · · · u1(sw) u1(sw + 1) · · ·
...

... . . . ...
... · · ·

u1(n− 1) u1(n) · · · u1(n+ sw − 3) u1(n+ sw − 2) · · ·
u1(n) u1(n+ 1) · · · u1(n+ sw − 2) u1(n+ sw − 1) · · ·


. (5.14)

The windowed predictor matrix X takes on a similar form (not shown). We can simply average
over the anti-diagonals of the windowed data matrix Ŷ to reconstruct the approximated input
Û . To compute the average response û(k) we average all the anti-diagonal terms of Ŷi,j , such
that

û(k) = 1
ndiag

∑
Ŷi,j , (5.15)

for which i+ j = k + 1 and ndiag is the number of elements in the anti-diagonal. This process
is known as Hankelization, called ADA in this dissertation, which is the same process followed
in Singular Spectral Analysis (SSA) [23]. SSA is a time series analysis tool. In time series
analysis the inputs of the system of interest are typically unknown or infeasible to measure.
Time series analysis is typically used in the analysis and forecasting of large complex systems
such as climatology and economics [18]. Time series are then cast as autoregressive problems
for prediction purposes whereby current outputs of the system are a function of past outputs
such that

z(k) = f(z(k − 1), . . . , z(k − n)). (5.16)

In SSA outputs of the system are windowed using a stride of sτ = 1. The corresponding win-
dowed matrix is referred to as the trajectory matrix. This is known as the embedding step in
SSA. The windowed matrix is then decomposed using SVD. The singular values of the system
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are then analysed to separate different types of signals such as linear trends, polynomials and
sinusoids from the noise of the system. The separated signals are then reconstructed using ADA
to achieve an approximated time signal. SSA is closely related to Proper Orthogonal Decompo-
sition (POD) typically used in engineering problems [10]. In POD the separate observations are
separated in space so in effect they use the matrix form given in Equation (1.4) whereas in SSA
the lagged windows of the signal are used as different observations. In this case we are simply
borrowing the concept of ADA from the reconstruction step used in SSA but instead using it in
a regression problem.
An example signal with m = 7 samples windowed with maximum overlap and window length
sw = 3 results in the following equation



û(1) û(2) û(3)
û(2) û(3) û(4)
û(3) û(4) û(5)
û(4) û(5) û(6)
û(5) û(6) û(7)


=



z(1) z(2) z(3)
z(2) z(3) z(4)
z(3) z(4) z(5)
z(4) z(5) z(6)
z(5) z(6) z(7)




β1,1 β1,2 β1,3

β2,1 β2,2 β2,3

β3,1 β3,2 β3,3

 . (5.17)

Here z is the response signal used to predict the inputs u. The linear coefficients β are computed
using any of the techniques presented in Chapter 3. To gain insight into the workings of ADA
we can write out the set of equations that infer û(3), i.e.

û(3)1 = β1,3z(1) + β2,3z(2) + β3,3z(3), (5.18)
û(3)2 = β1,2z(2) + β2,2z(3) + β3,2z(4), (5.19)
û(3)3 = β1,1z(3) + β2,1z(4) + β3,1z(5). (5.20)

We can then average over all the û(3) predictions to get the final prediction of û(3)

û(3) = 1
3 (û(3)1 + û(3)2 + û(3)3) (5.21)

= z(1)
(
β1,3
3

)
+ z(2)

(
β2,3 + β1,2

3

)
+ z(3)

(
β3,3 + β2,2 + β1,1

3

)
+z(4)

(
β3,2 + β2,1

3

)
+ z(5)

(
β3,1
3

)
. (5.22)

If we rewrite the average of the β multiplying with a particular z term as a new constant e.g.
β2 = β2,3+β1,2

2 , we obtain

û(3) = β1
1
3z(1) + β2

2
3z(2) + β31z(3) + β4

2
3z(4) + β5

1
3z(5). (5.23)

Here we note that the ADA emphasizes the middle most term with decreasing emphasis placed
on proceeding and preceding terms. It in effect creates a triangular windowing function. If we
add a corresponding weight term w e.g. w2 = 2

3 we can rewrite the equation generally as

û(k) = β1w1z(k − sw) + · · ·+ βswwswz(k) + · · ·+ βk+swwk+swz(k + sw). (5.24)

This result demonstrates that ADA is an indirect method of creating a weighted moving average
filter. In system identification this is known as a Finite Impulse Response (FIR) model. More
specifically this an example of a non-causal weighted FIR model. The weights can be arbitrary
and are a prior design choice. If we forgo the ADA method and use the weighted FIR model we
can be more creative with the choice of weighting. An overview and comparison of ADA against
FIR models are given in Section 7.5.
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5.3.1 Numerical Investigation

In order to compare the performance of the ADA window merging method, the investigation of
overlapping windows conducted in Section 5.2.1 will be repeated. This time the overlap will be
fixed such that the overlap is maximal. In other words the stride of the window is one sample,
i.e. sτ = 1. The overlapping windowing methods previously covered will be included as well as
the ADA windowing method. An overview of the numerical investigation parameters are shown
in Table 5.10.

Table 5.10: Experimental design for maximum overlap. (Variables of interest shown first).

Variable Details

Windowing methods First, Middle, Last, Average, Sigmoidal, ADA
Window proportional
overlap γ

Maximum

Sensor Configuration Sprung mass acceleration + spring displacement
Window lengths Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Regression methods SBTR
QC parameters Default values; Table 2.1 however with no nonlinearity term kNL

Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

Results

The recreated input and output signals using the different window merging techniques are shown
in Figure 5.15. The reconstruction MFFE results of the grid search optimisation are shown in
Table 5.11.

Table 5.11: MFFE [%] results for the approximated input and output signals using different
windowing methods with maximum overlap on the linear quarter car model. The discrepancy

between input and output reconstruction accuracies is due to functional reproducibility as
discussed in Section 2.3.

Training Validation Test

uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

First 17.52 9.24 10.98 32.24 8.20 7.03 40.83 14.39 12.43
Middle 6.46 2.50 6.43 13.51 2.71 1.97 23.37 4.94 3.75
Last 21.20 10.56 14.92 26.84 9.82 8.92 47.43 17.05 13.20
Average 6.51 2.57 6.43 13.47 2.68 2.15 23.37 4.91 3.75
Sigmoidal 6.49 2.54 6.43 13.51 2.71 1.97 23.37 4.91 3.75
ADA 7.85 0.45 0.37 20.77 0.11 0.46 28.49 0.46 1.41
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(a) Reconstructed input

(b) Reconstructed sprung mass acceleration

(c) Reconstructed spring displacement

Figure 5.15: Recreated input and output results using different overlapping window methods
with maximal overlap.
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All of the previously tested merging methods achieved a small improvement in MFFE results
when compared to the results obtained in Table 5.8. This small improvement comes at a high
cost of computational effort due to the massive increase in the window matrices that need to
be be decomposed. However, if we inspect the ADA results we note a marked improvement
in results. The test results for the reconstructed acceleration signal z̈A dropped by an order
of magnitude when compared to the second best result achieved by Sigmoidal merging. This
confirms our hypothesis that averaging over multiple windowed observations will produce better
response reconstruction results. It is interesting to note that while the output reconstruction
MFFE results decreased, the corresponding input MFFE for ADA actually increased. This is
acceptable for the case of response reconstruction since we know that this current sensor set-up
allows for an off-set in the input results as discussed in Section 2.3.
The hyper-parameter results of the grid search optimisation are shown in Table 5.12. The

number of latent variables available as well as the number of latent variables used have also
increased when compared to the results obtained in Table 5.9. The latent variable results
indicate that the ADA method allows for the use of a larger proportion of latent variables than
the other weighted average methods, i.e. sigmoidal and average.

Table 5.12: Hyper-parameter results and corresponding training matrix sizes for the
numerical investigation of overlapping windows with maximum overlap on the linear quarter

car model.

Lretained Lmax Tw[s] n× r n× p

First 5417 6000 6.000 20307× 6000 20307× 12000
Middle 1189 6000 6.000 20307× 6000 20307× 12000
Last 5468 6000 6.000 20307× 6000 20307× 12000
Average 1002 6000 6.000 20307× 6000 20307× 12000
Sigmoidal 1054 6000 6.000 20307× 6000 20307× 12000
ADA 5421 5754 5.754 20553× 5754 20553× 11508

In order to investigate the effects of the number of retained latent variables on the windowing
method, we need to look at the validation results in the latent variable grid-search. To this
end, the latent variable grid-search results are shown in Figure 5.16. Each plot represents the
validation MFFE results obtained during the latent variable grid-search at the optimal window
length value Tw for each windowing method. All of the plots show a quick drop in MFFE as
the number of latent variables retained are increased. The majority of the MFFE values then
plateau or decrease extremely slowly before rising slightly at the end. This indicates the point
at which the effects of the inversion of the smaller singular values begin to become noticeable. In
this case the upper limit of the number of latent variables extracted from the predictor matrix
X is limited by the size of the target matrix Y since the inputs have less channels than the
outputs. If we instead use PCR, we can increase the upper limit of the number of the number
of latent variables extracted since the number of extracted latent variables is only dependent
on the size (and rank) of X. The latent variable grid-search results using PCR are shown in
Figure 5.17. Here, the detrimental effects of using too many latent variables on the output
validation performance becomes more apparent. The exception to this is the ADA windowing
method which, in both the SBTR and PCR cases, is not penalised by retaining a large number
of latent variables. ADA appears to only suffer from choosing too few latent variables. This
indicates that the ADA is implementing another layer of regularisation by imposing a structure
onto the shape of the β coefficients. However, it is still necessary to perform cross validation to
determine the number of latent variables to retain due to effects such as measurement noise and

60



model mismatch as outlined in Sections 7.2 and 7.3. In this investigation and throughout this
document the full range of latent variables is used for the cross validation step. This is done to
illustrate the need for regularisation as well as to ensure consistent results across experiments. A
more practical approach would be to stop searching once the validation results have plateaued.
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(b) Middle merging
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(c) Last Merging
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(d) Average merging

0 1000 2000 3000 4000 5000 6000

Latent Variables Retained

0

5

10

15

20

25

30

35

M
F

F
E

 [
%

]

Output 1

Output 2

Input

Minimum

(e) Sigmoidal merging
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(f) Anti-diagonal merging

Figure 5.16: Latent variable validation grid-search results for different window merging
methods using SBTR.
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(a) First merging
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(b) Middle merging
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(c) Last Merging
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(d) Average merging
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(e) Sigmoidal merging
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(f) Anti-diagonal merging

Figure 5.17: Latent variable validation grid-search results for different window merging
methods using PCR
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5.4 Complexity

It is worth comparing the matrix sizes created by the different windowing methods used to solve
the response reconstruction problem. The main computational cost in the regression methods
covered is the SVD, which scales O(min(np2, n2p)). The matrix sizes for the best performing
windowing techniques for the spring displacement and acceleration problem in Sections 1.7,
5.2 and 5.3 are compared in Table 5.13. The corresponding number of operations to perform
SVD are also stated. The first thing to note is that the complexity of the problem changes
fundamentally when we go from no overlap to using ADA. The number of operations required
increase by 5 orders of magnitude. The SBTR algorithm is now penalised twice by the increased
complexity, since it needs to decompose both the target Y and predictor matrix X. This is
in comparison to regression methods such as PCR and RR which only need to decompose the
predictor matrix. The introduction of overlapping has somewhat undermined the main benefit
of using the non-overlapping windows method which is its relative computational ease. Clearly,
it is understandable that we would wish to use a windowing method that uses no overlaps
since the matrices are substantially smaller but by adding overlap we allow the algorithm to
solve a more general class of problems. In all the performed numerical experiments, a highly
conservative sampling frequency of 1000 Hz was used so using a more suitable sampling frequency
will alleviate this burden somewhat.

Table 5.13: Training set sizes using different methods of windowing and the corresponding
number of operations needed to perform SVD.

Window Method
Size No. of Operations

X Y X Y

No Overlap 86× 610 86× 305 2.26× 106 4.51× 106

Overlap (γ = 0.99) 474× 9048 474× 4524 1.02× 109 2.03× 109

ADA 20553× 11508 20553× 5754 6.80× 1011 2.72× 1012

5.5 Varying the Stride with ADA

We showed in the Section 5.4 how the complexity of the problem rapidly increases when the
overlap approaches the maximum. At one extreme we explored the method of taking variable
overlaps but we discarded most of the information when making a prediction. On the other hand
we took the maximum overlap and used all the information to make a prediction by taking the
average of all the windows. In this section we will investigate whether there is a happy medium
of the two by exploring the idea of varying the stride and still averaging the prediction.
ADA will be performed on the linear and nonlinear quarter car as done in Section 5.3. The

experiment will be conducted at a range of stride values. The experimental setup overview is
given in Table 5.14.

5.5.1 Result

The MFFE results of the linear and nonlinear experiments are shown in Table 5.15. For the
linear case the best validation MFFE for the recreated spring displacement occurs with a stride
of 16. In the nonlinear case the best recreated validation spring displacement occurs at a stride
length of 2. This is not a significant reduction as compared to the linear case but the stride
can be pushed to between 4 and 8 for the nonlinear case without the recreation error degrading
too much. An obvious reason for the eventual degradation of the performance as the stride
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Table 5.14: Experimental design for ADA with varying strides. (Variables of interest shown
first).

Variable Details

Window Strides sτ [2, 4, 8, 16, 32, 64]
Windowing method ADA

Sensor Configuration Sprung mass acceleration and spring displacement
Window lengths Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Regression method SBTR
QC parameters Default values; Table 2.1
Nonlinearity Constant
kNL

Linear case: 0; Nonlinear case: 1.28× 107 N m−3

Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

increases is that the number of latent variables available eventually decreases. This can be seen
by looking at hyper-parameters in Table 5.16. In both the linear and nonlinear case going from
a stride of 1 to 2 yields the same number of latent variables but comes with the benefit of
reduced computational and memory cost. An interesting point to note is that the proportion of
latent variables retained decreases as the stride length increases. This indicates that the problem
requires more regularization as the stride is increased.
Doubling the stride of the windowing techniques for the a given window length halves the

number of observations. The complexity scales O(min(np2, n2p)), therefore halving the matrix
size can reduce the complexity by half or a quarter. Varying the stride is a viable option to
decrease memory and computational cost but it introduces another hyper-paramter that needs
to be optimised. A practical solution to this would be to fix the stride to 1 and instead use the
sampling frequency as means of reducing the computational expense. A means of choosing the
sampling frequency is given in Section 6.1.

5.6 ADA as a Generalized Black-Box Model

In Section 5.1.1 it was highlighted that one of the reasons why the non-overlapping window
method failed was due to its inability to implicitly approximate integration. This integration is
required to estimate the unmeasured states of the system. The same problem arises in state-
space control whereby the full states of the system are needed to properly control the system. It
is not always possible to measure these states. So typically an “observer” is designed whereby
the system dynamics are used to estimate these unmeasured states through the means of a
Kalman filter. However it is known that a properly implemented general black-box model will
implicitly parameterise this observer [34, 28]. The goal of this section is to demonstrate ADA’s
fitness as a generalised black-box model.
To contrast this black-box approach, we could instead use non-overlapping windows as we

would need to numerically integrate the acceleration signals twice to obtain displacements and
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Table 5.15: MFFE [%] results for the approximated input and output signals using different
stride lengths with ADA. The discrepancy between input and output reconstruction accuracies

is due to functional reproducibility, as discussed in Section 2.3.

Linear Case

Training Validation Test

sτ uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

1 7.79 0.12 0.49 21.03 0.11 0.46 31.65 0.86 2.09
2 7.80 0.12 0.49 20.69 0.11 0.45 31.65 0.86 2.09
4 8.45 0.13 0.51 20.96 0.13 0.45 31.84 0.79 2.05
8 8.52 0.33 0.51 21.08 0.47 0.46 31.86 0.84 2.06
16 6.72 0.55 0.29 18.61 1.31 0.41 32.84 1.56 2.00
32 7.62 0.59 0.45 16.93 2.13 0.84 33.73 1.96 1.42
64 1.43 0.27 0.16 23.61 4.90 2.00 35.06 7.27 2.55

Nonlinear Case

Training Validation Test

sτ uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

1 6.89 0.21 0.16 36.76 0.26 0.22 32.49 1.29 1.97
2 6.88 0.21 0.16 36.76 0.26 0.21 32.49 1.29 1.97
4 6.88 0.23 0.17 36.78 0.27 0.22 32.51 1.28 1.97
8 6.85 0.24 0.23 38.46 0.61 0.30 31.99 0.79 1.23
16 4.47 0.19 0.13 51.59 1.43 0.83 41.62 2.63 2.70
32 8.34 1.04 0.66 69.58 4.47 2.31 66.90 5.10 4.49
64 20.89 4.91 3.44 55.63 11.18 6.08 127.81 17.94 17.47
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Table 5.16: Hyper-parameter results and corresponding training matrix sizes for the
numerical investigation of ADA with differing stride lengths on the linear quarter car model.

Linear Case

sτ Lretained Lmax Tw[s] n× r n× p

1 5607 5753 5.75 20557 × 5750 20557 × 11500
2 5476 5754 5.75 10279 × 5750 10279 × 11500
4 2644 5139 5.75 5140 × 5750 5140 × 11500
8 1095 2570 5.75 2570 × 5750 2570 × 11500
16 749 1270 6.00 1270 × 6000 1270 × 12000
32 487 681 4.52 681 × 4520 681 × 9040
64 330 349 2.07 379 × 2067 379 × 4134

Nonlinear Case

sτ Lretained Lmax Tw[s] n× r n× p

1 5508 5508 5.51 20799 × 5508 20799 × 11016
2 5508 5508 5.51 10400 × 5508 10400 × 11016
4 3656 5161 5.51 5200 × 5508 5200 × 11016
8 1917 2631 5.26 2631 × 5262 2631 × 10524
16 1229 1377 4.28 1377 × 4279 1377 × 8558
32 502 750 2.31 750 × 2312 750 × 4624
64 208 391 1.33 391 × 1329 391 × 2658

66



use these as inputs. This shifts the methodology away from a black-box approach towards a
grey-box approach whereby we need to tailor the methodology using a physical understanding
of the system for it to work. A drawback of this approach is that of sensor drift. Any noise
in the raw acceleration signal will accumulate as an error as a result of numerical integration,
further obscuring the dynamics of the system.

5.6.1 Numerical Investigation

To contrast these two methods we will set-up a numerical experiment whereby we measure the
accelerations on both DOFs of the quarter-car model. We will then numerically integrate these
signals to get the velocities and then integrate again to get the displacements of both DOFs.
At each stage of integration the response reconstruction process will be performed using non-
overlapping windows and the ADA windowing method. Since we expect that the real-world
signals will contain noise, we will repeat the experiment but with a low level of noise. The level
of noise for this investigation is defined in percentage terms, η% , of the standard deviation for
each channel o of the outputs z. The noise is assumed to be Gaussian with zero mean, resulting
in

zo,noisy = zo +N
(
0, η2

% σ
2
zo

)
. (5.25)

A noise level of 2% will be used for this experiment. A zoomed in slice of the test sprung mass
acceleration signal, comparing the noisy signal to the noise-free signal, is shown in Figure 5.18.

Figure 5.18: A zoomed in slice of the sprung mass acceleration signal with and without noise.

A summary of the experimental design is given in Table 5.17.

5.6.2 Results

The results of the integration test are given in Table 5.18. We note that ADA manages to
reconstruct the response of the system using the raw acceleration signals whereas the non-
overlapping windows method does not. When we inspect the noise-free results using the states
of the system that were obtained using numerical integration we note that ADA manages to
reconstruct the responses regardless of what state is fed to it. The non-overlapping window
method only ever achieves a decent reconstruction when displacements are used. If we compare
the noisy results we note that ADA reconstructs the outputs for both the acceleration and
velocity cases fairly well but struggles with the displacement case. It is at this point where the
issue of signal drift begins to dominate. In the case of non-overlapping windows we see that it
struggles with the noisy case for the displacement case due to the signal drift. The main point of
the results is that ADA will implicitly integrate the states of the system with or without noise.
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Table 5.17: Experimental design for integration approximation. (Variables of interest shown
first).

Variable Details

Sensor Configuration Raw Acceleration on both DOFs, Velocity (integrated), Displace-
ment (double integrated)

Noise level, η% off and with 2 %
Windowing method No overlap, ADA

Window length Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Window stride sτ 1 for ADA
Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Sampling frequency fs 1000 Hz
Regression method SBTR
QC parameters Default values; Table 2.1, no nonlinearity term kNL

Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

Table 5.18: MFFE [%] results for the approximated input and output signals for the
integration approximation experiment. The discrepancy between input and output

reconstruction accuracies is due to functional reproducibility, as discussed in Section 2.3.

Training Validation Test

Raw Acceleration uroad z̈A z̈R uroad z̈A z̈R uroad z̈A z̈R

ADA 5.63 0.04 0.11 20.56 0.04 0.10 32.04 0.37 0.79
No Overlap 38.48 25.97 22.73 55.46 29.41 21.80 164.50 73.58 44.73
ADA, Noisy 15.84 3.09 3.36 30.46 2.55 2.69 35.66 2.83 2.92
No Overlap, Noisy 36.64 27.11 24.36 60.75 32.02 25.97 167.46 74.25 45.36

Velocity uroad żA żR uroad żA żR uroad żA żR

ADA 3.59 0.11 0.31 9.10 0.17 0.47 16.92 1.03 1.72
No Overlap 47.05 27.89 27.25 53.31 26.56 26.70 91.57 49.81 42.39
ADA, Noisy 5.35 13.63 5.62 14.78 4.93 1.16 24.45 5.04 5.04
No Overlap, Noisy 40.17 25.40 28.90 50.58 18.56 22.04 115.01 48.70 53.74

Displacement uroad zA zR uroad zA zR uroad zA zR

ADA 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.03 0.02
No Overlap 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.03 0.02
ADA, Noisy 6.23 94.49 212.24 20.63 3.19 8.73 41.77 136.49 36.85
No Overlap, Noisy 23.46 42.50 134.53 28.36 49.09 22.13 59.54 60.20 63.85

68



In Figures 5.19 and 5.20 we see that the non-overlapping window again creates non-smooth
responses for acceleration and velocity configurations. If we look at the displacement reconstruc-
tions in Figure 5.21 we see that for the noisy cases the sensor drift begins to dominate. If we
compare the hyperparameters in Table 5.19 we note that ADA and the non-overlapping window
both choose smaller window lengths for the case of displacement signals when no noise is present.
This indicates that both windowing methods favour shorter windows since differentiation can
be performed with shorter windows.
In summary the results indicate that overlapping windows and by extension ADA allow for a

wider range of problems to be solved by allowing the regression problem to approximate both
numerical integration as well as differentiation.

Table 5.19: Optimized hyper-parameter results and corresponding training matrix sizes for
the numerical investigation of integration approximation.

Raw Acceleration Lretained Lmax Tw[s] n× r n× p

ADA 5753 5999 6.00 20307×6000 20307×12000
No Overlap 28 72 0.35 76×345 76×690
ADA, Noisy 5016 5016 5.02 21291×5016 21291×10032
No Overlap, Noisy 30 69 0.35 76×345 76×90

Velocity Lretained Lmax Tw[s] n× r n× p

ADA 5098 6000 6.00 20307×6000 20307×12000
No Overlap 14 100 0.10 263×100 263×200
ADA, Noisy 3536 4948 5.02 21291×5016 21291×10032
No Overlap, Noisy 27 64 0.35 76×345 76×690

Displacement Lretained Lmax Tw[s] n× r n× p

ADA 85 85 0.10 263×100 263×200
No Overlap 92 100 0.10 263×100 263×200
ADA, Noisy 2575 4770 4.77 21537×4770 21537×9540
No Overlap, Noisy 10 24 1.08 24×1083 24×2166

5.7 Non-minimum Phase Systems

It was highlighted in Section 1.2 that in order to invert a non-minimum phase system, the
inversion would need to occur non-causally. In this section we will demonstrate that ADA is
capable of handling non-minimum phase systems. In Section 2.3 it was shown that the spring
displacement sensor configuration contained an unstable zero:

zeros∆z =

 0.2146× 10−6

−0.2146× 10−6

 . (5.26)

Therefore, we would expect this sensor configuration would need to be inverted non-causally.
To demonstrate this we will compare two different sensor configurations: the aforementioned
spring displacement set-up and a sprung mass only displacement set-up. The latter was chosen
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Figure 5.19: Response reconstructions for the case of raw acceleration sensor values.
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Figure 5.20: Response reconstructions for the case of velocity sensor values. Velocity values
were computed by numerically integrating acceleration readings.
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Figure 5.21: Response reconstructions for the case of displacement sensor values.
Displacement values were computed by numerically integrating acceleration readings twice.
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since we know that it has a singular well-behaved zero sitting in the left hand plane as shown
in Section 2.3:

zeroszA = −3.2. (5.27)

We would thus expect this configuration to be able to be inverted causally. We will invert these
systems using the following windowing methods: No Overlap, First, Middle, Last, ADA. The
First windowing is the completely acausal case since its predictions are based on all the values
ahead of it in the same window period. The Last is the purely causal case since its predictions
are based on all the predictor values preceding it for a given window period. ADA and Middle
sit somewhere inbetween these two in terms of causality. No Overlap, the windowing method
with no overlap is included for completeness. A summary of the experimental design is given in
Table 5.20.

Table 5.20: Experimental design for testing non-minimum phase inversion. (Variables of
interest shown first).

Variable Details

Sensor Configuration Spring displacement only, ∆z, Sprung mass displacement only, zA

Windowing method No Overlap, First, Middle, Last, ADA

Window lengths Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Window Stride sτ 1 for all windowing methods except for No Overlap
Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Sampling frequency fs 1000 Hz
Regression method SBTR
QC parameters Default values; Table 2.1,no nonlinearity term kNL

Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

5.7.1 Results

The response reconstruction results for the spring displacement sensor configuration are shown
in Table 5.21. Here we note that ADA performs the best in terms of the recreated output
with Middle performing second best. If we compare First and Last we note that they perform
similarly with First performing slightly better. The recreated test responses for the different
windows are shown in Figure 5.22. The optimised hyper-parameters for the spring displacement
case are shown in Table 5.22. We note that Middle is heavily regularised.
The response reconstruction results for the sprung mass displacement sensor configuration are

shown in Table 5.23. Here we note that Middle performs the best in terms of the recreated
output with Last coming in a close second, suggesting that a causal inversion is better suited to
this problem. Here we note that First has performed the worst. The recreated test responses
for the different windows are shown in Figure 5.23. The optimised hyper-parameters for the
sprung mass displacement case are shown in Table 5.24.
Comparing the non-minimum to the minimum phase cases it appears that Middle seems to

be the better choice in general but with ADA performing better in the non-minimum phase
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Table 5.21: MFFE [%] results for the approximated input and output signals for the
numerical investigation into non-minimum phase systems. Spring displacement case

(non-minimum phase system). The discrepancy between input and output reconstruction
accuracies is due to functional reproducibility, as discussed in Section 2.3.

Training Validation Test

Window Method uroad ∆z uroad ∆z uroad ∆z

ADA 8.46 0.51 21.04 0.46 31.83 2.05
First 17.51 7.98 32.44 7.03 43.86 11.20
Middle 6.56 2.02 13.58 1.96 22.49 3.93
Last 21.20 9.39 25.38 8.53 47.82 17.16
No Overlap 32.26 19.38 57.79 26.17 96.03 39.26

Table 5.22: Optimized hyper-parameter results and corresponding training matrix sizes for
the numerical investigation into non-minimum phase systems. Spring displacement case

(non-minimum phase system).

Window Method Lretained Lmax Tw[s] n× r n× p

ADA 5342 5753 5.75 20553×5754 20553×5754
First 5580 5999 6.00 20307×6000 20307×6000
Middle 896 6000 6.00 20307×6000 20307×6000
Last 5596 5999 6.00 20307×6000 20307×6000
No Overlap 18 39 0.59 44×591 44×591

Figure 5.22: Reconstructed test response or the numerical investigation into non-minimum
phase systems. Spring displacement case (non-minimum phase system).
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configuration. This makes sense since both methods sit between the two extremes acausal
or fully causal inversion. There are obviously poor choices for windowing these systems with
Last performing worse on the non-minimum phase system and First performing poorly on the
minimum phase system. So in general ADA or Middle would be the preferred choices.

Table 5.23: MFFE results for the approximated input and output signals for the numerical
investigation into non-minimum phase systems. Spring displacement case (minimum phase

system).

Training Validation Test

Window Method uroad zA uroad zA uroad zA

ADA 0.39 0.47 0.64 0.84 0.90 0.95
First 16.92 14.19 17.63 15.36 17.92 20.30
Middle 0.12 0.08 0.16 0.16 0.09 0.11
Last 0.07 0.07 0.16 0.20 0.10 0.12
No Overlap 0.03 0.04 15.77 4.45 17.30 9.09

Table 5.24: Optimized hyper-parameter results and corresponding training matrix sizes for
the numerical investigation into non-minimum phase systems. Sprung mass displacement case

(minimum phase system).

Window Method Lretained Lmax Tw[s] n× r n× p

ADA 6000 6000 6.00 20307×6000 20307×6000
First 22 345 0.35 25962×345 25962×345
Middle 2746 5975 6.00 20307×6000 20307×6000
Last 5048 5507 5.51 20799×5508 20799×5508
No Overlap 24 31 0.84 31×837 31×837

Figure 5.23: Reconstructed test response for the numerical investigation into non-minimum
phase systems. Sprung mass displacement case (minimum phase system).
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5.8 Conclusion

Through the course of this chapter it has been highlighted that non-overlapping windows can
only invert systems where only differentiation is needed to approximate the internal states
of the system. It was initially believed that the issue lay in simply extracting parts of the
window that were expected to be more correct. This is shown to be true to some extent in
the non-minimum phase system investigation (Section 5.7) whereby causality does play a role
in the response reconstruction accuracy. However, the main underlying issue is the ability to
approximate integration. This is shown to be the case in Section 5.6 whereby it was demonstrated
that ADA is a generalised black-box model. This means that it can invert systems where the
unobserved states of the system need to be approximated with integration or differentiation.
ADA produces the most accurate response reconstructions over a wider range of problems as
compared to the other overlapping window methods. It was demonstrated that ADA produces
these results by adding another form of regularisation by imposing a form on the shape of the
linear regression coefficients. The introduction of overlapping windows greatly increased the
computational complexity of the problem as demonstrated in Section 5.4. However, methods
such as varying the stride were shown to mitigate this computational overhead.
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Chapter 6

Choosing Hyper-parameters A Priori

We stated that the one of the goals of this dissertation is to develop a black-box methodology of
creating an inverse model of the system. The number of hyper-parameters that will need to be
determined via cross-validation would be expensive both in terms of computation and in terms
of unnecessary physical testing of the rig. The physical testing is required since we optimise for
the recreated output accuracy of the system. Therefore each cross validation iteration requires
a physical experimental trial. If we relax the requirement of having no prior knowledge of the
system we could perhaps reduce the number of hyper-parameters by choosing them based on
easily determined physical properties of the rig. In this chapter we will look at means of choosing
the sampling frequency and window length based on this assumption.

6.1 Sampling Frequency

Simply choosing a high sampling frequency, as was done in the previous numerical experiments,
may eliminate the need to search for an optimal sampling frequency but choosing too high
a sampling frequency produces significant computational cost and memory requirement. Two
methods will be investigated in order to approximate the required sampling frequency using an
initial test of the test rig. The first method relates the sampling frequency to the fastest time
constants Tc,min of the system through the means of a step input test. The second method uses
correlation tests on the outputs of the system to determine a reasonable sampling frequency.
For the step input test the system is given a displacement step input. The displacements of the

sprung and unsprung masses are then recorded. For the sake of this investigation we are going to
assume that we have access to the absolute displacements of the masses. The time constant Tc for
each mass is then defined as the time the system takes to first reach 63% of the final displacement
value. In order to properly resolve the fastest time constant we would need to sample at least
at the Nyquist rate, which is twice the frequency of interest, i.e. fs = 2fc = 2 1

Tc
[32].

For the autocorrelation tests, the desired sampling frequencies are defined by the first minimum
of the autocorrelation of the outputs φ(z, z), where the correlation function φ(x, y) is given as

φ(x, y) = ΣN−τ
k=1 [x(k)− µx][y(k + τ)− µy]√

ΣN
k=1[x(k)− µx]2

√
ΣN
k=1[y(k)− µy]2

. (6.1)

The autocorrelation of each sensor is then taken and the fastest minimum lag is then used to
determine the frequency of interest. In the case of a linear system it is known that the system
can only produce frequencies in the outputs that are present in the input signal. However,
this is not the case for a nonlinear system where it is possible to produce frequencies that are
much higher than the input content. Therefore, a test that takes this nonlinear relationship into
consideration is required. A proposed method is to look at the autocorrelation of the outputs
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squared i.e. φ(z2, z2) [4]. In the next section the step input and the linear correlation design
will be tested on a linear quarter car set-up. The test will then be performed on a nonlinear
quarter car model using the previous methods as well as the nonlinear autocorrelation method.
The purpose of the tests is to determine the suitability of this method as a rule of thumb when
deciding upon a sampling frequency when using ADA combined with SBTR.

6.1.1 Procedure

In order to test the performance of ADA with regards to different sampling frequencies, the
signals will need to be downsampled before performing regression and prediction on them. To
achieve this, all training signals will be passed through the quarter car model and measured at
1000 Hz. The output and input signals will then be downsampled using MATLAB’s resample
function. The resample function low-pass filters the downsampled signal to avoid anti-aliasing
issues. The regression and prediction steps will then be performed with the downsampled set of
signals. Once a downsampled input approximation is computed it is then upsampled to 1000 Hz
using the resample function. The upsampled approximate input is then passed through the
quarter car model. The corresponding outputs are then compared against the original signal
sampled at 1000 Hz to obtain a final MFFE result. This will then be repeated for a number
of sampling frequencies. To reduce computational overhead, the window length will be fixed to
6 s.
The effects of the downsampling will also be tested at different unsprung mass stiffness kR

configurations. This is done in order to change the time constant of the system. The procedure
is then repeated for the nonlinear case. The autocorrelation tests will be performed using the
APRBS plotted in Figure 5.1a as the input.
An arbitrary benchmark at which the sampling frequency achieves an MFFE of 1% will be

chosen in order to compare the frequencies suggested by the step and autocorrelation methods.
In order to create a rule of thumb for potential initial guesses for the sampling frequency a
ratio, rf , will be calculated that denotes the ratio between the frequency suggested by either
the step method or the correlations method and the corresponding point at which the spring
displacement validation reconstruction reaches 1% MFFE. The ratio rf is then rounded to the
nearest integer, i.e.

rf =
[

f1%

fmethod

]
. (6.2)

An overview of the numerical experiment variables is given in Table 6.1.

6.1.2 Results

The linear system reconstruction results for the input and output channels as functions of
sampling frequency fs are shown in Figures 6.1. The linear system MFFE results for the outputs
show that the error quickly drops off initially. The error then proceeds to decrease slowly as
the sampling rate increases. This suggests that a trade-off is needed. We note in general that
increasing the stiffness of the system requires a higher sampling frequency to achieve the same
MFFE on the outputs. This trend only holds true until the response accuracies start plateauing,
as can be seen in Figure 6.1e.
Visually, the validation results suggest that sampling above 175 Hz is wasteful in terms of the

spring displacement reconstruction accuracy for all of the kR configurations for the linear case.
This value will be used for any linear numerical experiment going forward in the dissertation for
convenience. Fixing this value reduces the computational expense as compared to the 1000 Hz
used previously without having to optimise for the sampling frequency.
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(a) Training: Input displacement
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(b) Validation: Input
displacement
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(c) Test: Input displacement
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(d) Training: Sprung mass
acceleration
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(e) Validation: Sprung mass
acceleration
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(f) Test: Sprung mass
acceleration
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(g) Training: Spring
displacement
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(h) Validation: Spring
displacement
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(i) Test: Spring displacement

Figure 6.1: Input and output reconstruction MFFE results as a function of sampling
frequency. The stiffness value kR was varied to change the time constants of the system.

Performed on the linear quarter car model.

79



Table 6.1: Experimental variables for the investigation into the effects of sampling frequency
on response reconstruction. (Variables of interest shown first).

Variable Details

Sampling Frequency fs ∈ [50, 1000] Hz with 15 equally spaced steps
QC parameters Default values; Table 2.1 with kR ∈ [5, 10, 20, 40, 80]× 103 N m
kNL Linear case: 0; Nonlinear case: 1.28× 107 N m−3

Windowing method ADA
Regression method SBTR
Sensor Configuration Sprung mass acceleration + spring displacement
Window length Tw 6 s
Window proportional
overlap γ

Maximum

Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced steps

Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

The nonlinear system reconstruction results are shown in Figure 6.2. The MFFE results are
noisier than those achieved by the linear system with less noticeable plateauing of the MFFE
values. However there it is still a case of diminishing returns. For convenience sake, 350 Hz will
be used for any nonlinear numerical investigations going forward.

Step Test

The corresponding step input results for tyre stiffness values kR = 80000 N m−1 are plotted
in Figures 6.3. The frequency suggestions, fstep , as provided by the step test methods are
compared in Table 6.2. By using the step input method, it seems that using 2 to 3 times
the fastest frequency suggestion, in this case the value associated with the unsprung mass zR,
provides an adequate sampling rate for the linear case. The rf ratio range widens to between 5
and 14 when switching to the nonlinear case.

Linear Autocorrelation Test

The autocorrelation results of the outputs, for tyre stiffness values kR = 80000 N m−1, are
plotted in Figures 6.4. The frequency suggestions, fφ(z,z), as provided by the linear correlation
test are compared in Table 6.2. The linear autocorrelation methods suggests a frequency ratio
rf range of 3 to 7 times the proposed frequency for the linear case. The range shifts considerably
to between 35 to 40 for the nonlinear case.

Nonlinear Autocorrelation Test

The autocorrelation results of the outputs, for tyre stiffness values kR = 80000 N m−1, are plotted
in Figure 6.5 for the linear and nonlinear case respectively. The frequency suggestions,fφ(z2,z2),
as provided by the linear correlation test are compared in Table 6.2. The frequency ratio values,
rf , provided by the nonlinear autocorrelation test suggest that a range between 2 and 4 would
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(i) Test: Spring displacement

Figure 6.2: Input and output reconstruction MFFE results as a function of sampling
frequency. The stiffness value kR was varied to change the time constants of the system.

Performed on the nonlinear quarter car model.

81



4 4.5 5 5.5 6 6.5 7

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

D
is

p
la

c
e

m
e

n
t 

[m
]

Unsprung Mass

Sprung Mass

Step Input

63% final value

(a) Linear System

4 4.5 5 5.5 6 6.5 7

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

D
is

p
la

c
e

m
e

n
t 

[m
]

Unsprung Mass

Sprung Mass

Step Input

63% final value

(b) Nonlinear System

Figure 6.3: Step responses for the quarter car model with unsprung stiffness kR = 80000.
The step response is used to approximate the time constant of the system by determining the

time taken to reach 63% of the final value.
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(a) Linear quarter car
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Figure 6.4: Linear autocorrelation values of the outputs for the linear quarter car with
unsprung mass stiffness kR = 80000 N m−1.
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work for the linear case. The range widens to between 4 and 20 for the nonlinear system,
however, a value of 10 times the suggested sampling frequency would work for most of the linear
and nonlinear configurations.
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Figure 6.5: Nonlinear autocorrelation values of the outputs for the quarter car with unsprung
mass stiffness kR = 80000.

Table 6.2: Results comparing suggested sampling frequencies suggested by the step test,
fstep , linear autocorrelation test, fφ(z,z) and nonlinear autocorrelation test, fφ(z2,z2). rf denotes
how many times faster the sampling needs to occur to achieve 1% MFFE, f1% , for the spring

displacement reconstruction.

kR
fstep [Hz] fφ(z,z) [Hz] fφ(z2,z2) [Hz] f1% [Hz]

Linear Case

zR rf zA rf z̈A rf ∆z rf z̈A rf ∆z rf ∆z

80000 62.50 2 8.70 8 25.00 3 4.65 15 40.00 2 19.23 4 67.39
40000 41.67 2 8.77 6 16.13 4 4.59 12 26.32 2 7.14 8 52.28
20000 27.03 2 8.06 5 11.24 4 4.46 9 16.95 3 8.33 5 39.65
10000 16.95 2 6.62 5 4.69 7 4.15 8 9.17 4 7.35 5 29.77
5000 10.42 3 5.18 6 4.44 7 3.47 8 8.13 4 6.13 5 27.20

Nonlinear Case

zR rf zA rf z̈A rf ∆z rf z̈A rf ∆z rf ∆z

80000 55.56 5 21.28 11 6.71 35 5.92 39 43.48 6 14.71 16 228.40
40000 19.23 10 15.62 13 5.95 33 5.81 34 50.00 4 12.05 16 192.17
20000 13.89 10 11.36 12 4.57 30 4.44 31 40.00 4 9.01 16 135.42
10000 10.00 14 8.26 16 3.33 40 3.32 40 6.80 20 6.67 20 130.66
5000 6.99 - 6.02 - 2.60 - 2.47 - 5.43 - 5.38 - -
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6.1.3 Conclusion

By increasing the stiffness of the numerical quarter car we were able to influence the sampling
frequency requirement of the response reconstruction algorithm. The linear case demonstrated
the general trend of a stiffer system requiring a higher sampling frequency. The methods out-
lined in this section can be used to help guide the selection of a sampling frequency. However,
the results achieved are at best a rule of thumb that may help identify an initial guess for the ap-
propriate sampling frequency. The results obtained using the nonlinear autocorrelation provided
a reasonable range for an initial guess both for the linear and nonlinear case. It is suggested
that an initial guess of 10 times the frequency suggested by the nonlinear autocorrelation test
is used. The initial estimate can be relaxed if the computational costs are too high or increased
if the reconstruction results are unsatisfactory.

6.2 Window Length

In the previous chapters the search for a suitable window length was determined by a grid search
cross validation over a large range of window length values Tw. Searching over a large range of
potential window lengths using the cross validation method results in multiple experiments on
the physical test rig which leads to unnecessary fatiguing of the system. Therefore, a methodol-
ogy is needed that can narrow down the search for a suitable window length without requiring
multiple experiments. To this end two different approaches will be used to determine an estimate
of the window length Tw.
The first proposed method is to perform a step input test of the system and to use the absolute

displacements of the masses to determine the settling time of the system. The settling time of
the system is defined as the time taken to approach 95 % or 99 % of the final value, denoted as
tstep,95% and tstep,99% respectively.
The second proposed method is to look at the correlation function between the inputs u and

the outputs z of the system to determine the delay of the system. If we use the correlation
function defined in Equation (6.1) we can then use the 95 % confidence interval for the φ(u, z)
value to determine a suitable cut-off point for the window length Tw. An approximation for the
95 % confidence interval for a given correlation function is given as ±1.96/

√
N , where N is the

number of sample points [5].
In the following section the proposed methods will be tested on the numerical quarter car

model.

6.2.1 Procedure

In order to change the settling time of the test rig the damping constant bA of the system will
be varied over a range of values: bA ∈ [125, 250, 500, 1000, 2000] N s m−1. To determine whether
the methodologies will be suitable for linear as well as nonlinear systems, the quarter car will be
tested with kNL set to 0 and 1.28×107 for the linear and nonlinear case. The sampling frequency
of the system will be set to 350 Hz and 400 Hz for the linear and nonlinear case respectively.
The window length at which spring displacement reconstruction MFFE reaches 1 % for the
validation set will be chosen as a benchmark and is denoted as t1%. The correlation between the
inputs and outputs will be performed using the APRBS plotted in Figure 5.1a as the input. An
overview of the numerical experiment variables is given in Table 6.3.
Similarly to choosing a sampling frequency, a rule of thumb for potential initial guesses for the

window length Tw will be determined using a ratio, rt. The value rt denotes the ratio between
the time suggested by either the step method or the correlation method and the corresponding
point at which the spring displacement validation reconstruction reaches 1% MFFE. The ratio
rt is then rounded to the nearest integer, i.e.
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rt =
[

t1%

tmethod

]
. (6.3)

The sensor with the longest suggested window length will be used to determine the window
length ratio.

Table 6.3: Experimental variables for the investigation into the effects of window length on
response reconstruction. (Variables of interest shown first).

Variable Details

Window lengths Tw Linear: ∈ [0.1, 15] s with 30 equally spaced intervals. Nonlinear:
∈ [0.1, 10] s with 20 equally spaced intervals.

QC parameters Default values; Table 2.1 with bA ∈
[125, 250, 500, 1000, 2000] N s m−1

kNL Linear case: 0; Nonlinear case: 1.28× 107 N m−3

Sensor Configuration Sprung mass acceleration + spring displacement for correlation
tests. Absolute Displacements on both DOF for step tests.

Regression method SBTR
Window method ADA
Window proportional
overlap γ

Maximum

Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced steps

Sampling Frequency fs ∈ [50, 1000] Hz with 15 equally spaced steps
Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

6.2.2 Results

The linear MFFE results for the validation and test set for the different damping coefficients are
plotted in Figure 6.6. In the linear case the algorithm experiences overfitting once the window
length exceeds a threshold. This is indicated by the training errors either staying constant or
decreasing while the corresponding validation errors and test errors increase. The test results
seem to be unaffected by the overfitting whereas the validation results experience a sudden jump
in error results. This is possibly due to the fact that the test inputs use the road profile which
do not contain the higher frequency components found in the APRBS. The threshold occurs at
Tw = 13.15 s which is half the length of the original training input signal. This is the point
where the maximum potential rank is achieved. This is highlighted in Figure 6.7. The number
of observations n is equal to the dimension q for the matrix Y at this point. Therefore the
maximum number of latent variables can potentially be extracted which allows the system to
readily overfit. We also note the general observation that as the damping increases the required
window length for a given output MFFE decreases. This is most evident in Figure 6.6f.
The nonlinear case results are plotted in Figure 6.8. The nonlinear MFFE results show a

much clearer minimum as a function of window length. In the case of bA = 250 we note poor
performance in the testing phase of response reconstruction. This dramatic effect is possibly due
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(c) Test: Input displacement

0 5 10 15

Window Length [s]

10 -2

10 -1

10 0

10 1

10 2

M
F

F
E

 [
%

]

b
A

 = 125

b
A

 = 250

b
A

 = 500

b
A

 = 1000

b
A

 = 2000

(d) Training: Sprung mass
acceleration

0 5 10 15

Window Length [s]

10 -2

10 -1

10 0

10 1

10 2

M
F

F
E

 [
%

]

b
A

 = 125

b
A

 = 250

b
A

 = 500

b
A

 = 1000

b
A

 = 2000

(e) Validation: Sprung mass
acceleration

0 5 10 15

Window Length [s]

10 -2

10 -1

10 0

10 1

10 2

M
F

F
E

 [
%

]

b
A

 = 125

b
A

 = 250

b
A

 = 500

b
A

 = 1000

b
A

 = 2000

(f) Test: Sprung mass
acceleration

0 5 10 15

Window Length [s]

10 -2

10 -1

10 0

10 1

10 2

M
F

F
E

 [
%

]

b
A

 = 125

b
A

 = 250

b
A

 = 500

b
A

 = 1000

b
A

 = 2000

(g) Training: Spring
displacement

0 5 10 15

Window Length [s]

10 -2

10 -1

10 0

10 1

10 2

M
F

F
E

 [
%

]

b
A

 = 125

b
A

 = 250

b
A

 = 500

b
A

 = 1000

b
A

 = 2000

(h) Validation: Spring
displacement

0 5 10 15

Window Length [s]

10 -2

10 -1

10 0

10 1

10 2

M
F

F
E

 [
%

]

b
A

 = 125

b
A

 = 250

b
A

 = 500

b
A

 = 1000

b
A

 = 2000

(i) Test: Spring displacement

Figure 6.6: Input and output reconstruction MFFE results as a function of window length.
The damping constant bA was varied to change the settling times of the system. Performed on

the linear quarter car model.
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Figure 6.7: Number of latent variables
available plotted against the window length. At
half the length of the original training input the
number of latent variables reach a maximum.

to the significant ill-posedness of the nonlinear quarter car model as discussed in Section 2.2.

Settling Time

A sample step for the nonlinear system with damping constant bA = 500 N s m−1 is shown in
Figure 6.9. The results of the step test are shown in Table 6.4. If we look at the slowest settling
times for the 95% mark we note that they occur for sprung mass displacements, zA. Using the
slowest settling times suggests a ratio rt from anywhere between 4 and 19 for the linear case and
between 1 and 7 for the nonlinear case. If we look at the slowest settling time, this time setting
the threshold at 99% suggests using a ratio between 2 and 4 for the linear case and between 1
and 6 for the nonlinear case. This is a much tighter range in the linear case. Therefore, the
settling time may be a good indicator for window length for a linear system.

Correlation Test

A sample correlation test for the nonlinear system with damping constant bA = 500 N s m−1 is
shown in Figure 6.10. The results of the correlation test are shown in Table 6.4. In the case
of the correlation test the suggested values tφ(z,u) were larger than t1% . Therefore, the ratio
rt is inverted. Using the inverted ratios rt provided by the correlation test suggests using a
value between 1 and 4 for both the linear and nonlinear case. This renders a tighter and more
reasonable range of values. A sensible suggestion would be to start with an inverted ratio rt of
2.

6.2.3 Conclusion

By varying the damping in the system we were able to influence the required window length
to achieve a given response reconstruction accuracy. In the linear case it was apparent that
increasing the damping coefficient lead to a shorter window being required. We have also
highlighted the need for choosing sensible values for the window length Tw. Unlike the case
of sampling frequency, where being cautious and choosing a high sampling rate results in no
adverse effects in terms of reconstruction error, the window length is sensitive to choosing too
large a value as the reconstruction error quickly deteriorates. A sensible method of choosing a
starting point or at least a range of starting points for the window length has been proposed
using the correlation function between the inputs and outputs of the system.
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(c) Test: Input displacement
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(f) Test: Sprung mass
acceleration
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(h) Validation: Spring
displacement
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Figure 6.8: Input and output reconstruction MFFE results as a function of window length.
The damping constant bA was varied to change the settling times of the system. Performed on

the nonlinear quarter car model.
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Figure 6.9: Step response used to determine
the settling time of the system. Nonlinear case

with bA = 500 N s m−1.
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Figure 6.10: Correlation between input and
spring displacement, φ(∆z, uroad). Used to

approximate the settling time of the system.
Nonlinear case with bA = 500 N s m−1.
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Table 6.4: The results of the step input and auto-correlation tests. The rt term denotes the
ratio rounded up that will result in a 1% MFFE score for the spring displacement

reconstruction. *Denotes the inverse ratio.

bA
tstep,95% tstep,99% tφ(z,u) t1%

Linear Case

zR rt zA rt zR rt zA rt rt ∆z rt z̈A ∆z

125 0.58 18 2.86 4 0.88 12 2.96 4 10.40 1 10.28 1 10.49
250 0.28 14 1.53 3 0.52 8 2.28 2 9.82 2* 9.69 2* 3.96
500 0.14 28 0.90 4 0.31 13 1.09 4 9.76 3* 9.64 2* 3.89
1000 0.09 41 0.67 6 0.21 18 1.55 3 9.27 2* 9.63 2* 3.88
2000 0.20 17 0.17 19 0.24 14 1.33 2 9.54 3* 9.61 3* 3.24

Nonlinear Case

zR rt zA rt zR rt zA rt z̈A rt ∆z rt ∆z

125 2.91 2 2.95 2 2.93 2 2.96 2 12.38 2* 10.11 1 6.85
250 1.93 1 2.87 1 2.46 1 2.94 1 10.11 4* 8.39 3* 2.44
500 0.95 9 1.57 5 1.19 7 2.22 4 9.76 1 8.89 1 8.36
1000 0.55 13 0.74 9 0.77 9 1.28 6 9.74 1 8.83 1 7.07
2000 0.39 6 0.35 7 0.43 6 0.46 5 9.16 4* 9.61 4* 2.44
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Chapter 7

Regression Methods

In the previous chapters we established that ADA is a suitable method of splitting and merging
the sliding windows. In this chapter we will investigate the suitability of the regression methods
that map the windowed outputs to the windowed inputs. For this purpose we will be comparing
SBTR against 3 different linear regression techniques: PLS-SVD, PCR and RR.

7.1 Performance on Varying Degrees of Nonlinearity

In this study we want to compare the performance of the regression techniques in terms of their
ability to handle increasing levels of nonlinearity. To this end the response reconstruction will
take place with the nonlinearity term kNL in Equation (2.1) being ramped up for each iteration.
The values to be used are kNL ∈ 1.28 × 10n N m−3 where n = [4, 5, 6, 7, 8]. The linearised
values for the spring stiffness as a function of spring displacement are shown in Figure 7.1. The
linearised spring stiffnesses are plotted over the expected range of the spring displacement. This
demonstrates how quickly the different values of nonlinearity diverge from a purely linear spring.
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Figure 7.1: The linearised values for the spring stiffness as a function of spring displacement
and increasing levels of the nonlinear spring stiffness constant kNL. The values are plotted for

the expected range of spring displacement values.

A grid search will be performed to find the appropriate window length and amount of regular-
isation. The grid search will be performed for Tw ∈ [0.1, 6] s with 25 equally spaced divisions.
The grid search divisions used to search for the number of latent variables used in PCR and
PLS-SVD will follow the same method as outlined in Equation (5.1). The potential α values used
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to regularise RR will be spaced equally on a log scale within the range α ∈ [smin × 10−5, smax],
where s are the singular values. 30 equally spaced divisions will be used. An overview of the
numerical investigation is given in Table 7.1.

Table 7.1: Experimental design for regression method performance on varying levels of
nonlinearity. (Variables of interest shown first).

Variable Details

Regression method SBTR, PLS-SVD, PCR and RR
QC parameters Default values; Table 2.1 except with varying levels of nonlinearity

kNL

Sensor Configuration Sprung mass acceleration + spring displacement
Window method ADA

Nonlinearity constant
kNL

1.28× 10n N m−3 where n = [4, 5, 6, 7, 8]

Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Ridge regression
regularisation constant α

∈ [smin × 10−5, smax] with 30 divisions spaced logarithmically

Winodw lengths Tw ∈ [0.1 s, 6 s] with 25 equally spaced divisions.
Window proportional
overlap γ

Maximum

Sampling frequency fs 1000 Hz
Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

7.1.1 Results

The training, validation and test results for the various levels of nonlinearity are plotted in
Figure 7.2. The only noticeable difference in performance occurs for the training reconstruc-
tion error for the sprung mass acceleration as demonstrated in Figure 7.2f. Otherwise, there
is remarkably insignificant difference between the various regression methods. Overall the re-
gression methods performed well in reconstructing the outputs of the system over a range of
nonlinear spring stiffness values. The reconstructed inputs and outputs for the nonlinear quarter
car model with kNL = 1.28 × 107 are shown in Figure 7.3. Qualitatively, we can note that the
signals produced by the different regression methods are similar and that they have managed to
recreate the nonlinear response of the system fairly well.
The latent variable cross validation results for the kNL = 1.28 × 107 iteration are shown in

Figure 7.4. Again we note the trend highlighted in Section 5.3 of the ADA cross validation
results flat-lining after a certain number of retained latent variables. PCR and SBTR perform
similarly in that they both begin to converge to the same values at roughly 2000 retained
latent variables. PLS-SVD appears to require significantly more latent variables when used in
conjunction with ADA. The PLS-SVD results converge at roughly 4500 retained latent variables.
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Figure 7.2: Response reconstruction MFFE results for increasing levels of nonlinearity
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Figure 7.3: Reconstructed inputs and outputs using ADA and different regression methods.
Performed on the nonlinear quarter car with nonlinear spring stiffness kNL = 1.28× 107 N m−3.
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Figure 7.4: Cross validation results for the nonlinear quarter car with with nonlinear spring
stiffness kNL = 1.28× 107.
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7.1.2 Conclusion

It appears that the choice of the regression method has little to no effect on performance in
terms of the accuracy of the output reconstruction as a function in terms of the nonlinearity of
the system. One noticeable difference in terms of performance is the number of latent variables
required for the regression methods. It appears that the number of latent variables required
by PLS-SVD is significantly larger than those required by SBTR or PCR. In this dissertation,
we focused on simply ramping up the nonlinearity constant kNL of the system. A more in-
depth approach would be to test against a wider class of nonlinearities such as discontinuities
or saturations.

7.2 Robustness to Measurement Noise

The purpose of this chapter is to determine whether the different linear regression methods
combined with ADA presents differences in accuracy when measurement noise is present in the
output channels. To test this, SBTR will be benchmarked against PCR, RR and PLS-SVD, at
various levels of measurement noise.
The various regression methods will be performed at 3 different noise levels. The noise levels

will be set to 2, 5 and 20 % as defined by Equation (5.25). The spring displacement output
corrupted by the different levels of noise are shown in Figure 7.5.
The numerical investigation will be conducted with a linear and nonlinear quarter car set-up.

Due to the stochastic nature of the numerical experiment, the experiment will be performed
30 times. The corresponding mean and standard deviation of the MFFE between the true and
the approximated noisy signal will be recorded. We can create a baseline MFFE by taking
the average MFFE between the noiseless test outputs and the noisy outputs over all the test
iterations. We would expect that the best approximation that could be achieved is that of the
baseline results. The probabilities of the given regression methods achieving an MFFE less than
that of SBTR, i.e. P (MFFE < MFFESBTR), will be calculated. An overview of the numerical
investigation design is shown in Table 7.2.

7.2.1 Results

For the linear case, whose test reconstruction results are highlighted in Table 7.3, we note that
the input reconstruction accuracy is only slightly affected by the increase in the noise levels.
The mean varies only slightly with the increase in noise. The standard deviation of the input
does, however, increase noticeably with the increase in noise. In terms of the output reconstruc-
tion, the accuracy degrades with the increase in noise levels. If we compare the approximated
MFFE against the baseline MFFE we note that the approximated results are initially close to
the baseline results but the difference between the baseline and the approximated results get
progressively larger as the noise level increases. The probabilities of the other regression method
obtaining a better MFFE for the spring displacement are all close to 0.5 which means there is no
clearly better regression method in terms of spring displacement recreation. This observation
changes slightly when we compare the probabilities for sprung mass acceleration, where RR
obtains a probability in the range 0.2 to 0.4. However the mean values are not significantly dif-
ferent. Overall, for the linear case, it appears that no regression method performs significantly
better than any other method.
By comparing the results for the nonlinear case in Table 7.4, it becomes obvious that PLS-

SVD has failed to produce reasonable results. This is the case even when no noise is present. In
order to reduce the computational time for running 30 experiments, the signals were sampled at
350 Hz whereas in Section 7.1 the signals were sampled at 1000 Hz. The remaining regression
methods performed similarly without being affected by the downsampling. It was revealed in
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(a) Spring Displacement with 2 % measurement noise
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(b) Spring Displacement with 5 % measurement noise

0 2 4 6 8 10 12 14 16 18

Time [s]

-0.04

-0.02

0

0.02

0.04

S
p

ri
n

g
 D

is
p

la
c
e

m
e

n
t 

[m
]

(c) Spring Displacement with 20 % measurement noise

Figure 7.5: Test spring displacement outputs contaminated with increasing levels of noise
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Table 7.2: Experimental design for regression method performance on varying levels of noise.
(Variables of interest shown first).

Variable Details

Reg. method SBTR, PLS-SVD, PCR and RR
QC parameters Default values; Table 2.1
Nonlinearity constant
kNL

Linear: 0, Nonlinear: 1.28× 107 N m−3

Noise level η% ∈ [2, 5, 20] %

Sensor Config. Sprung mass acceleration + spring displacement
Window length Tw 5.5 s
Sampling frequency fs Linear: 250 Hz, Nonlinear: 350 Hz
Window Proportional
overlap γ

Maximum

Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Ridge regression
regularisation constant α

∈ [smin × 10−5, smax] with 30 divisions spaced logarithmically

Windowing method ADA
Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2
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Table 7.3: Linear case: test MFFE [%] results as a function of varying measurement noise
levels η%. The probability of the regression method obtaining an MFFE less than the MFFE
obtained by SBTR is also given. The discrepancy between input and output reconstruction

accuracies is due to functional reproducibility, as discussed in Section 2.3.

Regression
Method

η% = 0 η% = 2 η% = 5 η% = 20

Mean Mean Std
Dev.

Prob. Mean Std
Dev.

Prob. Mean Std
Dev.

Prob.

Input Displacement

SBTR 28.38 28.33 0.15 - 28.41 0.50 - 30.61 1.92 -
PCR 29.30 28.43 0.26 0.37 28.48 0.52 0.46 30.34 1.81 0.54
RR 28.88 28.49 0.45 0.36 28.36 0.86 0.52 29.75 1.78 0.63
PLS-SVD 28.38 28.45 0.18 0.30 28.40 0.48 0.50 29.41 1.88 0.67

Sprung Mass Acceleration

SBTR 0.46 2.03 0.02 - 4.93 0.04 - 18.22 0.27 -
PCR 0.44 2.03 0.02 0.51 4.94 0.05 0.44 18.26 0.16 0.45
RR 0.45 2.04 0.03 0.39 4.98 0.05 0.22 18.43 0.15 0.26
PLS-SVD 0.46 2.03 0.02 0.59 4.92 0.05 0.60 18.18 0.15 0.55
Baseline - 1.45 0.01 - 3.62 0.02 - 14.50 0.14 -

Spring Displacement

SBTR 1.29 2.43 0.02 - 5.23 0.04 - 18.67 0.14 -
PCR 1.17 2.43 0.02 0.48 5.23 0.05 0.48 18.68 0.16 0.49
RR 1.23 2.42 0.04 0.53 5.23 0.03 0.47 18.67 0.19 0.50
PLS-SVD 1.29 2.43 0.02 0.46 5.23 0.03 0.46 18.69 0.13 0.46
Baseline - 1.48 0.01 - 3.70 0.03 - 14.78 0.1 -
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Section 7.1 that PLS-SVD requires significantly more latent variables to achieve similar results
as compared to the other regression methods. Therefore, it appears that the downsampling
has, to the detriment of PLS-SVD, reduced the number of latent variables available. In order
to negate the effects of the downsampling, the nonlinear noise experiment will be repeated for
all the regression methods but with a sampling frequency of 1000 Hz. Only a single iteration
of the experiment will be performed. The results are shown in Table 7.5. It is clear that by
sampling at 1000 Hz that PLS-SVD achieves similar results to the other regression methods
when no noise is present but quickly deteriorates in performance once noise is introduced. This
suggests that the smaller singular values that PLS-SVD requires are dominated by noise. This
results in PLS-SVD achieving poor results.

Table 7.4: Nonlinear case: test MFFE results as a function of varying measurement noise
levels η%. The probability of the regression method obtaining an MFFE less than the MFFE
obtained by SBTR is also given. The discrepancy between input and output reconstruction

accuracies is due to functional reproducibility, as discussed in Section 2.3.

Regression
Method

η% = 0 η% = 2 η% = 5 η% = 20

Mean Mean Std
Dev.

Prob. Mean Std
Dev.

Prob. Mean Std
Dev.

Prob.

Input Displacement

SBTR 27.78 36.16 3.55 - 50.04 4.93 - 70.81 3.63 -
PCR 27.78 33.79 4.38 0.66 47.43 5.23 0.64 69.62 4.54 0.58
RR 27.78 36.63 4.18 0.47 45.34 3.76 0.78 65.57 4.92 0.80
PLS-SVD 124.97 125.59 0.14 0.00 126.03 0.35 0.00 126.27 1.67 0.00

Sprung Mass Acceleration

SBTR 0.65 4.23 0.35 - 9.16 0.92 - 29.52 2.72 -
PCR 0.65 4.49 0.43 0.32 9.15 0.87 0.50 29.64 2.75 0.49
RR 0.65 4.43 0.29 0.33 9.32 0.83 0.45 28.10 2.50 0.65
PLS-SVD 161.52 161.42 0.09 0.00 160.37 0.29 0.00 152.30 0.99 0.00
Baseline - 1.66 0.01 - 4.16 0.03 - 16.65 0.13 -

Spring Displacement

SBTR 0.65 3.16 0.41 - 7.61 1.04 - 26.75 3.22 -
PCR 0.64 3.28 0.45 0.42 7.42 0.78 0.56 26.90 2.92 0.49
RR 0.64 3.25 0.40 0.44 7.49 0.84 0.54 25.04 2.78 0.66
PLS-SVD 111.55 111.52 0.08 0.00 110.81 0.20 0.00 106.09 0.62 0.00
Baseline - 1.40 0.01 - 3.51 0.03 - 14.02 0.12 -

If we ignore the PLS-SVD results and return to the nonlinear results in Table 7.4, we note that
the reconstruction results are similar across the remaining regression methods. RR performed
slightly better at the higher noise levels, by obtaining slightly better probabilities of achieving a
better MFFE at η% = 20. Otherwise, SBTR performed slightly better at the lower noise levels,
η% = 2. The difference between the baseline MFFE and the approximated MFFE for all the

100



Table 7.5: Test MFFE results as a function of varying measurement noise levels η%.
Nonlinear case repeated but at 1000 Hz. The discrepancy between input and output

reconstruction accuracies is due to functional reproducibility, as discussed in Section 2.3.

Regression
Method

η% = 0 η% = 2 η% = 5 η% = 20

Input Displacement

SBTR 29.15 38.23 48.14 69.48
PCR 29.13 35.95 45.41 63.35
RR 29.13 31.89 47.72 66.84
PLS-SVD 29.16 58.85 65.81 86.28

Sprung Mass Acceleration

SBTR 0.97 3.87 7.70 26.23
PCR 0.97 4.48 9.05 30.29
RR 0.97 4.52 9.31 24.20
PLS-SVD 0.97 5.87 13.92 53.52

Spring Displacement

SBTR 0.99 2.95 5.76 22.79
PCR 1.00 3.06 7.22 26.96
RR 1.00 3.21 7.79 21.00
PLS-SVD 0.99 5.45 14.45 47.54
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noise levels appears to be more significant than those achieved by the linear case. It is not
immediately clear as to which of the remaining regression methods are more robust in terms of
noise.
The optimized numbers of retained latent variables for the different regression methods are

shown in Table 7.6. We note the general trend that the number of retained latent variables
decreases as the level of noise increases. This indicates that cross validation is working as it
should and is properly regularising the problem.

Table 7.6: Number of latent variables retained as a function of noise, η%. In the case of RR
the constant α is presented.

Regression
Method

η% = 0 η% = 2 η% = 5 η% = 20

Linear Case

Mean Mean Std Dev. Mean Std Dev. Mean Std Dev.

SBTR 1375 1056.37 204.69 1002.97 228.72 945.30 235.78
PCR 1968 1133.60 312.67 1488.50 702.48 1444.63 751.72
PLS-SVD 1375 1084.57 206.71 954.37 251.42 840.23 324.15
RR 8.06×10−6 1.44 0.99 1.23 1.62 2.72 4.77

Nonlinear Case

Mean Mean Std Dev. Mean Std Dev. Mean Std Dev.

SBTR 2800 2621.50 220.76 2629.53 261.68 2353.20 603.81
PCR 3594 4561.40 1084.44 3983.30 1265.39 3797.57 1522.11
PLS-SVD 2799 2731.20 104.21 2671.63 146.27 2345.50 411.00
RR 0.02 0.13 0.29 0.42 0.89 2.83 3.90

7.2.2 Conclusion

After comparing the regression methods across a range of noise levels for both a linear and
nonlinear quarter car set-up, it was found that the different regression methods offered little
or no benefits in terms of noise robustness when compared to one another. However, it was
determined that PLS-SVD performs poorly in terms of noise. PLS-SVD appears to require a
large number of latent variables for similar performance which suggests that its smaller singular
values are easily dominated by noise.

7.3 Robustness to Model Mismatch

The goal of this section is to investigate the ability of the different regression methods to handle
model mismatch. Model mismatch occurs when the identified system does not truly represent
the physical test rig. In the case of response reconstruction the misrepresentation occurs when
the physical test rig is taken from the real world and recreated and simulated in the laboratory
environment. Typically the degrees of freedom are not fully represented in the laboratory or
the test rig parameters, such as mass, may vary. It is in this laboratory environment that the
process of system identification occurs and therefore we will have mapped a domain that differs
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from the real world domain. When the real world outputs need to be recreated we may find that
the mapped inverse model may be forced to extrapolate into regions in the mapped domain to
find a solution. In other words the inverse model has over-fitted to the laboratory domain and
generalizes poorly with regards to the real world domain. Regularization can be employed to
minimize this error [2]. In the course of this experiment, we will focus on a narrower scope of
model mismatch whereby the model parameters of the system are simply scaled from the real
world environment to that of the laboratory environment. A broader scope of model mismatch
would be to add new dynamics going from one environment to the other. One such dynamic
would be to add or remove a discontinuity i.e. a tyre separating from the road surface. In this
dissertation, we will focus on the narrower view of model mismatch.
In the next section the issue of model mismatch will be investigated on a linear and nonlinear

quarter car set-up. The performance of the different regression methods will also be tested
against model mismatch.
To test the effects of model mismatch, a series of test rigs representing different levels of model

divergence will be used as the laboratory set-up. The default parameters given in Table 2.1 will
be modified such that

MA,mis = MA

(
1− m%

100

)
(7.1)

MR,mis = MR

(
1 + m%

100

)
(7.2)

bA,mis = bA

(
1− m%

100

)
(7.3)

kA,mis = kA

(
1 + m%

100

)
(7.4)

kR,mis = kR

(
1− m%

100

)
(7.5)

where m% is the percentage mismatch. The outputs sampled from the real world rig will be
obtained using the default parameters. For the first set of tests, the validation outputs will come
from the modified laboratory rig with the test output set obtained from the real world rig. In
the second set of tests, the outputs used for the validation will come from a separate validation
set obtained from the real world test rig. The idea behind this is to force the cross validation
to only retain latent variables that allow the laboratory environment to recreate dynamics that
are common to both the real world and the lab environment. An overview of the numerical
experiment parameters are given in Table 7.7.

7.3.1 Results

The test results for the linear case with the laboratory and real world cross-validation sets
are shown in Table 7.8. In the case of laboratory cross validation we note that PCR and RR
have performed poorly with the introduction of model mismatch. However, when we switch
to using the outputs from the real world for validation we note that PCR and RR perform
almost identically to SBTR and PLS-SVD. To gain insight into this behaviour we can turn to
the cross validation latent variable results plotted in Figure 7.6. The cross validation latent
variable results are plotted for model mismatch, m% = 20%. For the case where the real world
outputs were used we note that PCR and RR experience a large jump in the cross validation
MFFE results when too many of the latent variables are retained. This indicates that the
model is overfitting at this point and can not generalize well to the mismatched model. The
cross validation results, while using the laboratory created outputs, cannot distinguish that the
regression model is overfitting. As to why SBTR and PLS-SVD perform the same regardless
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Table 7.7: Experimental design for regression method performance on varying levels of model
mismatch. (Variables of interest shown first).

Variable Details

Regression method SBTR, PLS-SVD, PCR and RR
QC parameters Perturbed as per Equations (7.1) to (7.5) with m% ∈ [0, 2, 5, 10, 20]

Sensor Configuration Sprung mass acceleration + spring displacement
Windowing method ADA
Nonlinearity constant
kNL

Linear: 0, Nonlinear: 1.28× 107 N m−3

Window length Tw 5.5 s
Sampling frequency fs Linear: 250 Hz, Nonlinear: 350 Hz
Window Proportional
overlap γ

Maximum

Number of retained
latent variables L

∈ [1, Lmax] with min(40,max(10, dLmax/10e)) equally spaced divi-
sions

Ridge regression
regularisation constant α

∈ [smin × 10−5, smax] with 30 divisions spaced logarithmically

Noise level η% 0 %
Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2
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is due to the fact that the number of latent variables they can utilize is limited by the size of
the predictor matrix X. The quarter car model has a single input and multiple outputs. This
artificially lowers the upper bound on the number of latent variables that they can extract. A
sample linear reconstruction for the case of model mismatch, m% = 20% is shown in Figure 7.7.

Table 7.8: Linear case: test MFFE [%] results as a function of varying levels of model
mismatch. The discrepancy between input and output reconstruction accuracies is due to

functional reproducibility, as discussed in Section 2.3.

Reg.
Method

m% = 0 m% = 2 m% = 5 m% = 10 m% = 20

Input Displacement

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 29.16 29.16 29.84 29.84 30.85 30.85 32.53 32.53 37.65 37.65
PCR 29.54 29.53 1.21×

105
29.84 2.80×

105
30.85 5.93×

105
32.53 1.12×

106
37.65

RR 29.32 29.28 9.68×
104

29.84 1.32×
105

30.86 1.25×
105

32.55 5.84×
105

37.69

PLS-SVD 29.16 29.16 229.84 29.84 30.85 30.85 32.53 32.53 37.65 37.65

Sprung Mass Acceleration

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 0.50 0.50 0.94 0.94 2.19 2.19 4.53 4.53 9.83 9.84
PCR 0.49 0.49 4.90×

104
0.94 1.12×

105
2.19 2.45×

105
4.53 4.81×

105
9.84

RR 0.50 0.50 4.83×
104

0.94 6.59×
104

2.19 6.43×
104

4.53 2.90×
105

9.84

PLS-SVD 0.50 0.50 0.94 0.94 2.19 2.19 4.53 4.53 9.83 9.84

Spring Displacement

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 1.27 1.27 1.25 1.25 1.25 1.25 1.36 1.36 1.95 1.95
PCR 1.23 1.23 1.05×

105
1.25 2.41×

105
1.25 5.31×

105
1.36 1.02×

106
1.95

RR 1.25 1.25 9.39×
104

1.25 1.34×
105

1.25 1.31×
105

1.36 5.98×
105

1.95

PLS-SVD 1.27 1.27 1.25 1.25 1.25 1.25 1.36 1.36 1.95 1.95

The test results for the nonlinear case are given in Table 7.9. In this case we note that using
the outputs from the real world or from the modified laboratory set-up, for the validation sets,
results in almost identical test performances. A sample nonlinear reconstruction for the case of
model mismatch, m% = 20% is shown in Figure 7.8.
The output reconstruction results are more sensitive to model mismatch for the nonlinear case

as compared to the linear case. The output reconstruction scores become significantly degraded
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Figure 7.6: Cross Validation results using validation outputs from either the laboratory
set-up or from the real world set-up. Linear case with model mismatch m% = 20%
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(a) Spring displacement

(b) Sprung mass acceleration

Figure 7.7: Response reconstructions for the case of model mismatch, m% = 20%. Linear
case.
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(a) Spring displacement

(b) Sprung mass acceleration

Figure 7.8: Response reconstructions for the case of model mismatch, m% = 20%. Nonlinear
case.
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as the level of the model mismatch increases. The cross validation results for the nonlinear case
for the different cross validation set-ups are shown in Figure 7.9. The cross validation results
show less of a pronounced minimum as compared to the linear case when using the real world
outputs for cross validation. The minimums do shift to a lower number of retained variables
when using the real world data set as a validation set, as demonstrated in Table 7.10. However,
the difference in validation scores between using the minimum or all of the latent variables are
small. This effect is noticeable in Figures 7.9d and 7.9h where there are distinct minimums but
the differences in MFFE at the minimums and using all of the latent variables are small. One
possible reason for this is that the linear regression methods have difficulty fitting the nonlinear
system. In other words the regression methods are underfitting and the problem is therefore
regularised in a sense not by the truncated number of latent variables but rather by the form of
the linear regression.

Table 7.9: Nonlinear case: test MFFE [%] results as a function of varying levels of model
mismatch. The discrepancy between input and output reconstruction accuracies is due to

functional reproducibility, as discussed in Section 2.3.

Regression
Method

m% = 0 m% = 2 m% = 5 m% = 10 m% = 20

Input Displacement

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 49.56 49.56 47.48 47.48 44.19 44.19 38.53 38.53 29.86 29.86
PCR 49.53 49.53 47.46 47.46 44.17 44.17 38.51 38.51 29.85 29.85
RR 49.53 49.53 47.46 47.46 44.17 44.17 38.51 38.51 29.85 29.85
PLS-SVD 49.57 49.57 47.49 47.49 44.20 44.20 38.54 38.54 29.86 29.86

Sprung Mass Acceleration

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 1.19 1.19 2.57 2.57 5.66 5.66 10.99 10.99 21.49 21.49
PCR 1.18 1.18 2.55 2.55 5.64 5.64 10.97 10.97 21.48 21.48
RR 1.18 1.18 2.55 2.55 5.64 5.64 10.97 10.97 21.48 21.48
PLS-SVD 1.19 1.19 2.58 2.58 5.67 5.67 11.00 11.00 21.50 21.50

Spring Displacement

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 1.19 1.19 3.36 3.36 7.80 7.80 15.83 15.83 31.06 31.06
PCR 1.18 1.18 3.33 3.33 7.77 7.77 15.80 15.80 31.04 31.04
RR 1.18 1.18 3.33 3.33 7.77 7.77 15.80 15.80 31.04 31.04
PLS-SVD 1.19 1.19 3.37 3.37 7.81 7.81 15.84 15.84 31.07 31.07

In terms of the performance differences between the regression methods themselves, the dif-
ferences are negligible with no apparent benefit in terms of model mismatch compared to one
another. The differences come down to a second decimal place in terms of percentages when a
suitable cross validation method is in place.
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Figure 7.9: Cross Validation results using validation outputs from either the laboratory
set-up or from the real world set-up.. Nonlinear case with model mismatch m% = 20%
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Table 7.10: Number of latent variables retained as a function of model mismatch, m%. In the
case of RR the constant α is presented.

Regression
Method

m% = 0 m% = 2 m% = 5 m% = 10 m% = 20

Linear Case

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 1375 1375 1375 1375 1375 1173 1375 780 1375 760
PCR 1974 1954 2081 1303 2099 1158 2026 743 2007 573
PLS-SVD 1375 1375 1375 1375 1375 1340 1375 780 1375 579
RR 6.6×

10−6
8.7×
10−6

5.4×
10−6

1.9×
10−1

9.5×
10−6

5.6×
10−1

6.3×
10−6

7.5×
10−1

6.8×
10−6

2.51

Nonlinear Case

Lab. Real. Lab. Real. Lab. Real. Lab. Real. Lab. Real.

SBTR 5500 5500 5500 5500 5500 1158 5500 1189 5499 987
PCR 10999 11000 11000 11000 10998 1189 10999 1128 10998 1410
PLS-SVD 5500 5500 5500 5500 5500 4086 5500 4014 5499 3972
RR 1.8×

10−16
1.3×
10−13

1.7×
10−16

1.8×
10−16

6.5×
10−13

4.8×
10−15

5.0×
10−15

1.27 3.5×
10−17

6.7×
10−18

7.3.2 Conclusion

In this chapter it was demonstrated that regularisation can be employed to mitigate the effects
of model mismatch. The use of ADA combined with regularisation is effective when applied
to the linear quarter car model but offers no benefit when applied to the nonlinear quarter car
system. There are no apparent advantages in choosing one regression method over another in
terms of mitigating the effects of model mismatch provided a sensible cross validation method
is used.

7.4 Analysis of SBTR in terms of Direct Inverse Regression for
Response Reconstruction

In the previous chapters we demonstrated that the results obtained from using SBTR as a
regression method performed similarly to PCR and RR. In this section we will demonstrate as
to why we would expect SBTR to perform similarly to PCR in terms of response reconstruction
through the use of direct inverse regression.
To demonstrate this we employ the default linear quarter car set-up. The arguments given

are based on the results discussed in Section 2.3. The linear quarter car set-up will be chosen
since we know that the frequency content of the output of a system can only contain the same
frequency content of the input. The absolute displacement sensor set-up will be used. The
magnitude Bode plot of the quarter car system is shown in Figure 2.7. The Bode plot indicates
the gain of the output of the system for a given frequency in the input. We note that the
higher frequencies of the system are significantly attenuated. In other words if we added a
high frequency component to the input whose frequency is well beyond the cut-off frequency we
would expect the corresponding output of the system to be unaffected by the high frequency
component. This is demonstrated in Figure 2.8 where two inputs are passed through the linear
quarter car. The input signals are identical except the one has a 100 Hz frequency component
added to it with an amplitude that engulfs the signal. However, the corresponding outputs to
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different inputs are identical.
Recall that the target filtering offered by SBTR is done independently of the predictor. There-

fore, it has no insight if it has any effect on the predictor. The target filtering determines the
most significant scores by how much variance it contributes to the total variance of the target
matrix. In this case we added a large amplitude high frequency component to the input that
clearly dominates the variance of the signal. Therefore, we would expect the target filtering to
retain this high frequency content. This is exactly what it does as we can see by the first score of
the target matrix plotted for the different input signals in Figure 7.10. The first scores extracted
by PLS-SVD are also shown. Note that they do not retain the high frequency component.
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Figure 7.10: First scores for the test inputs where the one signal has a large amplitude
100 Hz signal added to it.

As a consequence of the linear system we would expect the frequency components in the
outputs to only covary with the corresponding frequency components in the inputs. If we make
the assumption that certain scores are closely related to certain frequency components, then we
might expect that some input score would only vary with a select few output scores. So for the
case of SBTR with the spurious high frequency in the input we would expect the input score
associated with the spurious signal to covary only with the output score associated with the same
frequency in the output. To demonstrate this the β weights which map the output scores to the
input scores are plotted in Figure 7.11, i.e. using Equation (3.33) for SBTR and Equation (3.42)
for PLS-SVD. The weights for the first 30 scores are shown. The weights obtained by PLS-SVD
are almost identical and show no signs of being influenced by the high frequency component. In
the case of SBTR, the weights are similar except that the weights associated for the spurious
high frequency are close to zero for the first 30 output scores. This indicates that the high
frequency component in the input does not covary with any of the first significant output scores.
The weights only become significant with the much later output scores (not shown). However,
the later output scores are normally truncated since it is the singular values associated with
these predictor score components that cause instability when we invert the system. So if we
included the spurious components or not the truncation of the singular values in the outputs
would remove the influence of the spurious component. This negates the need for the target
filtering that SBTR offers. In other words PCR would achieve the same result.
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Figure 7.11: Comparison of the first 30 β coefficients which map between the input and
output scores.

7.5 Comparison against Finite Impulse Response (FIR) models

In FIR models the current output of the system is a function of past inputs such that

z(k) = f(u(k − 1), . . . , u(k − sw)). (7.6)

This is in contrast to other models such as Autoregressive eXogenous (ARX) which include
output feedback as well, i.e.

z(k) = f(u(k − 1), . . . , u(k − sw), z(k − 1), . . . , z(k − sw)). (7.7)

In this chapter we will be focusing on non-causal inverse implementations of FIR models where
the current input is a function of both past and future outputs, written as

u(k) = f(z(k − sw/2), . . . , z(k + sw/2)). (7.8)

The non-causal form of FIR models will be used and compared against ADA since it was
highlighted in Section 5.2 that using the middle section of the window for window merging
produces the most accurate output reconstruction as compared to using the last or first section
of the window. The middle windowing method is a non-causal implementation since it uses both
future and past outputs to infer the current input. By using the FIR model the predictor matrix
X takes on the form
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X =



channel 1︷ ︸︸ ︷
z1(1) z1(2) · · · z1(sw − 1) z1(sw)

channel 2 etc.︷ ︸︸ ︷
· · ·

z1(2) z1(3) · · · z1(sw) z1(sw + 1) · · ·
...

... . . . ...
... · · ·

z1(m− sw − 1) z1(m− sw) · · · z1(m+ sw − 2) z1(m+ sw − 1) · · ·
z1(m− sw) z1(m− sw + 1) · · · z1(m+ sw − 1) z1(m+ sw) · · ·


, (7.9)

with the corresponding target matrix Y written as

Y =



u1(sw/2) · · · uq−1(sw/2) uq(sw/2)
u1(sw/2 + 1) · · · uq−1(sw/2 + 1) uq(sw/2 + 1)

... . . . ...
...

u1(m− sw/2− 1) · · · uq−1(m− sw/2− 1) uq(m− sw/2− 1)
u1(m− sw/2) · · · uq−1(m− sw/2) uq(m− sw/2)


. (7.10)

It is worth noting that we lose the first and last sw/2 samples of the target matrix Y since we
shifted the inputs to make the system non-causal.
The lack of feedback means that the FIR is inherently stable. This is suitable and sometimes

sought after if the system under consideration is stable, however if the system is unstable it
will only be able to approximate the instability for a short period of time before diverging [32].
FIR models come with the cost of needing significantly more terms than what output feedback
models need to map the same system [32]. In Equation (5.23) we saw that the FIR model can be
structured with predefined weights. A more refined method of achieving this is through the use
of Orthonormal Basis Functions (OBF) [32, 24]. These functions weight each input using filters
that are designed using prior knowledge of the system. Laguerre Filters can be implemented if
the system is lightly damped and an estimate of the dominant pole is known, whereas Kautz
Filters are implemented if the system is highly oscillatory and an estimate of a complex pair of
poles are known. More generalized filters can be implemented by combining the two types of
filters. These filters have the benefit of reducing the number of terms needed to model the system
with FIR if a rough estimate of the system dynamics is known. The use of OBF significantly
reduces the number of terms that need to be incorporated. The use of OBF will not be explored
further in this dissertation.

7.5.1 Numerical Investigation

The goal of this section is to benchmark ADA against FIR in terms of response reconstruction
since ADA can be seen as a subset of FIR. The idea behind this benchmark is to ensure that ADA
is not an indirect method of achieving an FIR implementation. If so, it needs to be determined
whether ADA offers any substantial benefits over using FIR. In Section 5.3 we saw that ADA
acts in such a way that it weights the coefficients of the outputs closest to the input in time and
de-emphasizes the weights further away in time. A similar approach can be achieved through the
use of FIR models combined with Tikhonov regularisation. By using Tikhonov regularisation the
β coefficients can be penalized and thus shaped by the choice of the Γ matrix in Equation (3.21).
To this end 3 choices of the Γ matrix will be implemented, namely: Finite Impulse Response
with Triangular Weighting (FIR-T), Finite Impulse Response with Difference Smoothing and
Triangular Weighting (FIR-DT) and Finite Impulse Response with Ridge Regression (FIR-RR).
In FIR-T the coefficients relating to the outputs further away from the required input (both

forwards and backwards in time) are penalised. This is achieved by setting
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Γ′Γ = αW (7.11)

where W is an inverted triangular set of penalty weights, given as

W = diag
([
sw/2 sw/2− 1 · · · 2 1 2 · · · sw/2− 1 sw/2

])
. (7.12)

and α scales the amount of regularisation we wish to impose. This should ideally mimic the
weighting function achieved by ADA in Equation (5.24). FIR-DT further modifies the triangular
weighting matrix through the use of a first difference matrix A, given as

A =



1 0 · · · 0 0
−1 1 · · · 0 0
0 −1 · · · 0 0
...

... . . . . . . ...
0 0 · · · −1 1


. (7.13)

The first difference matrix ensures that the difference between each successive β coefficient is
small [13]. The difference matrix is then combined with the weighting matrix W to obtain the
final form of the regularisation matrix such that

Γ′Γ = αA′WA. (7.14)

This weighting scheme was originally implemented and developed for a causal FIR system
where the penalty weights increased linearly further back in time [13]. Finally, the last choice
of penalty matrix Γ is that of FIR-RR, i.e.

Γ = αI (7.15)

which is the case where we do not assume any form of β except that we wish to limit the magni-
tude of the weights. This acts as a reference in order to determine whether the regularisation in
terms of the form of the β does in fact contribute to the accuracy of the response reconstruction.

7.5.2 Procedure

The three different regularised FIR implementations will be compared against the ADA com-
bined with RR for two different test cases. The first being the linear system and the second
being the default nonlinear system. The inputs and responses will be sampled at 250 Hz and
350 Hz for the linear and nonlinear system respectively. The window lengths will be determined
via grid search cross validation with the window lengths being sampled from Tw ∈ [0.1, 12] s
with a grid of 50 equally spaced intervals. The window search is made more extensive in this
investigation since no previous window parameter search were performed on the FIR methods.
An overview of the numerical experiment parameters is given in Table 7.11.

7.5.3 Results

The reconstructed inputs and outputs for the linear and nonlinear systems are shown in Fig-
ures 7.12 and 7.13 respectively.
The response reconstruction results for the linear and nonlinear systems are shown in Table 7.12.

For the linear case we note that ADA outperforms the FIR methods in terms of response
reconstruction while achieving a similar input reconstruction score. The results achieved by
FIR-RR and FIR-T are similar whereas FIR-DT performs the worst.
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Figure 7.12: Comparison of recreated input and output results using FIR methods against
ADA. Linear System.
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(a) Reconstructed input

(b) Reconstructed sprung mass acceleration

(c) Reconstructed spring displacement

Figure 7.13: Comparison of recreated input and output results using FIR methods against
ADA. Nonlinear System.
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Table 7.11: Experimental design benchmarking ADA against different forms of FIR models.
(Variables of interest shown first).

Variable Details

Reg. method FIR-T, FIR-DT, FIR-RR and ADA-RR
kNL Linear: 0, Nonlinear: 1.28× 107 N m−3

Sensor config. Sprung mass acceleration + spring displacement
Window length Tw ∈ [0.1, 12] s with a grid of 50 equally spaced intervals
Sampling frequency fs Linear: 250 Hz, Nonlinear: 350 Hz
Window proportional
overlap γ

Maximum

Ridge regression
regularisation constant α

∈ [10−16, 105] with 30 divisions spaced logarithmically

QC parameters Default values; Table 2.1
Noise level η% 0 %
Train. Set APRBS; Table 5.1
Val. Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

For the nonlinear case the results obtained by FIR-DT are significantly better than those
obtained by FIR-RR and FIR-T which indicates that the difference smoothing may be a suitable
fit for the nonlinear system. For the nonlinear case the triangular weighting performed poorly
overall. The output responses offered by ADA significantly outperform the results obtained by
the FIR implementations. The optimized hyper-parameters for the numerical experiment are
shown in Table 7.13.

7.5.4 Illustrative Use Case

In this section, we will create a scenario whereby all the challenges to response reconstruction,
and which are covered in this dissertation, are introduced. These are noise, model mismatch and
nonlinearity. The investigation is not exhaustive but rather proposed to give an illustrative sense
of the performance of the regression methods on a challenging response reconstruction problem.
To this the end, the numerical experiment will be performed with the FIR and ADA regression
methods with noise η% set to 5 % , model mismatch m% set to 10 % and the non-linearity term
kNL set to 1.28 × 107 N m−3. In the case of model mismatch, the validation response set will
come from a “real world” recording as opposed to a laboratory recording. An overview of the
numerical procedure is given in Table 7.14.

Results

The response reconstruction results are shown in Table 7.15 with the corresponding reconstructed
inputs and outputs shown in Figure 7.14. By referring to the results in Table 7.15 we see that
ADA and FIR-DT perform similarly well for the reconstructed test results. These results are
achieved within close enough margin to each other that it probably falls within the uncertainty
introduced by noise. We see that FIR-T performs poorly for the problem at hand. If we compare
the results to the benchmark regression method, FIR-RR, we note that the imposed structure
on the β parameters and the smoothing that both FIR-DT and ADA offer could be key factors
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Table 7.12: MFFE scores for the approximated input and output signals using different FIR
methods. The discrepancy between input and output reconstruction accuracies is due to

functional reproducibility, as discussed in Section 2.3.

Training Validation Test

uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

Linear Case

FIR-RR 12.40 1.26 0.26 12.71 1.63 0.35 3.50 0.91 1.13
FIR-T 12.33 1.38 0.34 12.41 0.46 0.25 3.80 0.90 1.15
FIR-DT 10.57 4.39 2.01 17.98 1.48 1.81 6.98 3.08 3.16
ADA-RR 11.14 0.71 0.16 10.48 0.38 0.23 5.49 0.16 0.35

Nonlinear Case

FIR-RR 25.66 11.33 1.99 43.72 5.03 2.82 20.76 8.13 7.25
FIR-T 38.86 5.92 4.32 59.83 2.34 1.60 38.90 17.56 13.44
FIR-DT 5.22 8.54 4.70 35.94 4.71 3.60 7.50 5.41 4.89
ADA-RR 5.91 0.55 0.13 36.60 0.21 0.16 12.55 0.39 0.40

Table 7.13: Optimized hyper-parameter results for the numerical demonstration using
different FIR methods for an illustrative use case.

α Tw[s]

Linear Case

FIR-RR 11.80 12.00
FIR-T 4.74× 10−2 11.51
FIR-DT 1.04× 10−9 8.11
ADA-RR 8.52× 10−3 10.54

Nonlinear Case

FIR-RR 4.27 3.500
FIR-T 4.80× 10−1 4.471
FIR-DT 4.79× 10−2 7.629
ADA-RR 8.52× 10−3 10.543
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Table 7.14: Experimental design comparing ADA against different forms of FIR models for
an illustrative use case. (Variables of interest shown first).

Variable Details

Regression method FIR-T, FIR-DT, FIR-RR and ADA-RR
Nonlinearity constant
kNL

Nonlinear: 1.28× 107 N m−3

Model mismatch Perturbed as per Equations (7.1) to (7.5) with m% = 10
Noise level η% 5 %

Sensor configuration Sprung mass acceleration + spring displacement
Window lengths Tw ∈ [0.1, 12] s with a grid of 50 equally spaced intervals
Sampling frequency fs 350 Hz
Window proportional
overlap γ

Maximum

Ridge regression
regularisation constant α

∈ [10−16, 105] with 30 divisions spaced logarithmically

QC parameters Default values; Table 2.1
Training Set APRBS; Table 5.1
Validation Set APRBS; Table 5.1
Test Set Road profile; Table 5.2

to their better performances.

Table 7.15: MFFE [%] scores for the approximated input and output signals using different
FIR methods for an illustrative use case.

Training Validation Test

uroad z̈A ∆z uroad z̈A ∆z uroad z̈A ∆z

FIR-RR 15.37 8.78 6.26 46.52 16.26 12.66 24.45 31.56 25.17
FIR-T 56.34 16.12 6.71 62.47 13.79 11.62 71.46 46.49 35.09
FIR-DT 25.72 6.59 11.84 46.65 14.91 11.58 22.20 15.53 14.41
ADA-RR 18.82 6.64 4.68 29.90 16.01 13.85 24.69 14.75 14.23

The hyper-parameters that were optimized for this numerical experiment are shown in Ta-
ble 7.16. Here we note that the different regression methods use similar window lengths, save
for FIR-T which used a significantly shorter window length. Here we also note that the regular-
ization constants α are different orders of magnitude between the various regression methods.

7.5.5 Conclusion

In this section, we compared the performance of ADA to related FIR regression methods. Al-
though the experiments were not exhaustive, the results did indicate that the performance of
ADA is better than the related FIR methods in terms of response reconstruction accuracy. By
repeating the experiment with challenges that require better regularisation we gained insights
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(a) Reconstructed input

(b) Reconstructed sprung mass acceleration

(c) Reconstructed spring displacement

Figure 7.14: Comparison of recreated input and output results using FIR methods against
ADA for an illustrative use case.
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Table 7.16: Optimized hyper-parameter results for the numerical demonstration using
different FIR methods for an illustrative use case.

α Tw[s]

FIR-RR 0.64 8.03
FIR-T 7.23 2.08
FIR-DT 469.42 9.52
ADA-RR 6.81× 10−5 7.04

into how ADA may be performing regularisation. It may be implicitly imposing a shape and
smoothness penalty on the β regression coefficients.
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Chapter 8

Conclusion

The aim of this dissertation was to investigate the use of linear regression techniques in the
problem of response reconstruction. The method was broken down into two parts: the repre-
sentation of the time signals and the regression method used to map between the output and
input signals.
In terms of the representation of the time signals, it was highlighted in Section 1.7 that the

non-overlapping windowing method can only represent sensor set-ups that require differentiation
in order to obtain the internal states of the system. This is a substantial shortcoming. The sen-
sors most commonly used in response reconstruction, such as strain gauges and accelerometers,
require integration to implicitly estimate the states of the system. To remedy this limitation,
overlapping windows were introduced and investigated in Sections 5.2 and 5.3. A windowing
method developed through the course of this dissertation that averaged the predictions over
multiple overlapping predictions, called ADA, was found to produce the most accurate response
reconstructions. The introduction of overlapping windows greatly increased the computational
complexity of the problem as demonstrated in Section 5.4, however, methods such as vary-
ing the stride and choosing a more suitable sampling frequency were shown to mitigate this
computational overhead.
The ADA method was then compared against closely related FIR models in Section 7.5 and

was shown to produce significantly better response reconstructions. Methods that could provide
rough estimates of the parameters needed to define the ADA implementation such as sampling
frequency and window length were explored in Sections 6.1 and 6.2.
Regarding the regression methods employed to map between the outputs and the inputs, four

related regression methods were compared, namely: SBTR, PCR, RR and PLS-SVD. The regres-
sion methods were benchmarked using ADA in terms of handling nonlinearities of the system,
robustness to noise and robustness to model mismatch. In all 3 test cases the difference in terms
of response reconstruction were insignificant. The exception to this was PLS-SVD, which was
found to require a larger number of latent variables and was negatively affected by the introduc-
tion of measurement noise. An explanation as to why SBTR performed no better or worse than
PCR or RR was given in Section 7.4. The only feature that separates SBTR from PCR, namely
its target filtering, can be easily swayed by spurious signals. The target filtering also introduces
significant computational cost that RR or PCR do not incur. The default recommendation
would be to use RR with ADA.
In summary it is shown that ADA combined with an appropriate linear regression is a suitable

black-box method of reconstructing responses in dynamic systems. It has wider application in
response reconstruction in that it can be readily applied to non-linear systems, a broader range
of sensor configuration and non-minimum phase systems.
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8.1 Future Work

The concepts of model mismatch and measurement noise are covered in this dissertation. An
interesting proposal, which lends itself to a more experimental approach, would be to quantify
the contributions of each to the overall noise of the system.
In this dissertation, a narrow view of model mismatch is treated. In this view of model mis-

match, the mismatch is seen as scaled versions of the model parameters. A more in-depth
investigation should be performed on model mismatch whereby the class of the dynamics is
changed from the real-world environment to that of the laboratory environment. For exam-
ple, certain degrees-of-freedom may be introduced or removed when moving to the laboratory
environment. Likewise in the studies of nonlinearity of the system, the non-linearities are sim-
ply scaled up. More insights could be gained if instead different classes of nonlinearities are
introduced such as discontinuities or saturations.
The current implementation of ADA can be seen as a post-processing smoothing step that

occurs after a linear regression prediction. An interesting avenue to explore would be to replace
the linear regression with a non-linear regression method such as a neural network.
In this dissertation the means of reducing the computational complexity of ADA such as down-

sampling and using differing strides have been done independently of one another. For conve-
nience sake, the stride was set to 1 for most of the numerical experiments with ADA. It would
be worthwhile to determine a more rigorous approach to choosing the stride a priori as is the
case with sampling frequency and window length.
ADA has been tested on a single numerical model and has shown promising results but to

ensure that it has wide applicability, ADA needs to be tested on a variety of inverse problems.
Furthermore, ADA needs to be tested on a physical testbed to understand its practical strengths
and shortcomings.
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[15] M. Deflorian, F. Klöpper, and J. Rückert. Online dynamic black box modelling and adaptive
experiment design in combustion engine calibration. IFAC Proceedings Volumes, 43(7):703–
708, 2010.

[16] M. Deflorian and S. Zaglauer. Design of experiments for nonlinear dynamic system identi-
fication. IFAC Proceedings Volumes, 44(1):13179–13184, 2011.

[17] J. J. A. Eksteen. Advances in iterative learning control with application to structural dy-
namic response reconstruction. PhD thesis, University of Pretoria, 2014.

[18] J. B. Elsner and A. A. Tsonis. Singular spectrum analysis: a new tool in time series analysis.

125



Springer Science & Business Media, 2013.
[19] I. O. for Standardization. ISO 8608 : Mechanical Vibration, Road Surface Profiles, Report-

ing of Measured Data: International Standard. International Organization for Standardiza-
tion, ISO, 1995.

[20] M. French. An introduction to road simulation testing. Experimental techniques, 24(3):37–
38, 2000.

[21] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics Springer, Berlin, 2001.

[22] P. Geladi and B. R. Kowalski. Partial least-squares regression: a tutorial. Analytica chimica
acta, 185:1–17, 1986.

[23] H. Hassani. Singular spectrum analysis: methodology and comparison. 2007.
[24] P. S. Heuberger, P. M. van den Hof, and B. Wahlberg. Modelling and identification with

rational orthogonal basis functions. Springer Science & Business Media, 2005.
[25] P. Johannesson and I. Rychlik. Modelling of road profiles using roughness indicators. In-

ternational Journal of Vehicle Design, 66(4):317–346, 2014.
[26] M. S. Kumar and S. Vijayarangan. Analytical and experimental studies on fatigue life

prediction of steel and composite multi-leaf spring for light passenger vehicles using life
data analysis. Materials science, 13(2):141–146, 2007.

[27] Q. Li and Q. Lu. A hierarchical bayesian method for vibration-based time domain force
reconstruction problems. Journal of Sound and Vibration, 421:190 – 204, 2018.

[28] L. Ljung. System identification: theory for the user. PTR Prentice Hall, Upper Saddle
River, NJ, 1999.
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