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INTRODUCTION
All structural steel design codes allow for 
the design of beams that are susceptible to 
buckling. A possible mode of buckling for 
slender beams is lateral-torsional buckling 
(LTB). An elastic critical moment (Mcr) 
is determined, where Mcr dictates the 
resistance of slender beams. The plastic 
moment of resistance (Mp) limits the 
capacity of stocky beams. Transitional 
equations predict the resistance between 
the extremes Mp and Mcr. In the transi-
tional zone out-of-straightness and resid-
ual stresses play a significant role. SANS 
10162-1 (2011) provides effective length 
factors which take the effect of support 
and loading conditions into account. The 
effective length factors for cantilevers 
are simplified numbers and they do not 
take the torsional properties parameter 
or the backspan-to-overhang-length ratio 
into account.

SANS 10162-1 (2011) uses effective 
length factors for cantilevers adapted from 
Ziemian (2010), whose work is based on the 
original research of Kirby and Nethercot 
(1979). Kirby and Nethercot (1979) speci-
fied that the effective length factors were 
limited to beams with overhang effec-
tive lengths greater than or equal to the 

backspan effective length. This limit was 
subsequently omitted by Ziemian (2010) 
and is also not stipulated in SANS 10162-1 
(2011). However, the LTB capacity of a 
beam is dependent on the magnitude of 
warping of the entire beam, which is influ-
enced by adjacent spans.

The purpose of the study was to 
investigate the effect that the backspan has 
on the LTB capacity of a bi-symmetrical 
overhang I-beam. The scope of the study 
was limited to overhang supports restrain-
ing lateral and torsional movement, and 
the application of load was limited to a 
concentrated point force at the free end 
of the overhang beam applied to the shear 
centre or to the top flange. Two methods 
were used to determine the buckling capa
city of overhang beams, namely physical 
experiments and finite element modelling 
(FEM). The physical experiments were 
limited to an I-beam, the IPEAA100. (The 
geometrical properties of this I-section 
are given in Table 10.) The physical 
experiments served as the control to which 
the solid element FEM analyses were 
calibrated and expanded. A parametric 
study using FEM was then conducted with 
the aim of assessing the effect of beam 
size, overhang length, load height and 
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backspan-to-overhang-length ratio on the 
critical buckling moment.

The results of this research point to a 
possible refined approach to the design of 
overhang beams, which includes the effect 
of an adjacent span on the LTB behaviour 
of an overhang beam.

OVERHANG STEEL BEAMS
Overhang beams are continuous beams 
where the end span is cantilevered. The 
main difference between the cantilevered 
segment of a built-in cantilever and over-
hang beam is the warping restraint at the 
support. With a built-in cantilever, warping 
is prevented, whereas in an overhang beam, 
not only is warping allowed, but warping 
also depends on the relative stiffness of 
the adjacent span. The LTB stiffness of the 
adjacent span depends on the size of the 
beam, the laterally unbraced length, and 
the loading on that segment.

Timoshenko and Gere (1961) proved 
that it was possible to formulate a closed-
form solution for elastic lateral-torsional 
buckling for both a simply supported 
beam and a built-in cantilever. They 
considered an unbraced built-in cantilever 

with a point load at the tip of the can-
tilever at the shear centre. The solution 
depends on the length, the torsional 
stiffness and warping rigidity of the beam. 
Elastic LTB refers to buckling that occurs 
without permanent deformation and 
depends on the lateral slenderness of the 
beam. With elastic LTB the yield strength 
and residual stresses are not considered. 
In addition, with this model the interac-
tion with local buckling or distortional 
buckling is not considered.

Kirby and Nethercot (1979) introduced 
an effective length factor to account for 
the various support and loading condi-
tions possible in cantilevers and overhang 
beams. Currently SANS 10162-1 (SANS 
2011) uses Equation 1 to determine the 
LTB capacity of a beam. This formula is 
based on Timoshenko and Gere’s (1961) 
simply supported beam equation, but 
modified to incorporate an effective length 
factor. The effective length factors depend 
on the restraint conditions for rotation 
about the minor axis and the warping 
restraint at the supports, and also on the 
destabilising or normal load conditions. 
No provision is made for the effect of the 
lateral buckling length of an adjacent span 

or the torsional parameter (defined later) 
on the effective length factor. Even though 
Equation 1 is based on a simply supported 
beam, SANS 10162-1 (SANS 2011; also BS 
2008 and Ziemian 2010) uses this equation 
in conjunction with an effective length 
factor for cantilevers and overhang beams 
(ω2 = 1 in the case of a cantilever with no 
effective lateral support for the beam at the 
free end).

Mcr = 
π

kL 
EIyGJ + 

⎧
⎪
⎩

πE

kL
⎧
⎪
⎩

2
IyCw� (1)

Where:
	Mcr	 =	� elastic critical moment of a beam 

segment
	 k	 =	� effective length factor (K in SANS 

10162-1)
	 L	 =	� length of beam segment between 

lateral restraints, projecting length 
of cantilever

	 E	 =	 elastic modulus of steel
	 Iy	 =	� moment of inertia about y-axis 

(minor axis)
	 G	 =	 shear modulus of steel
	 J	 =	� St Venant torsion constant of a 

cross-section
	 Cw	 =	� warping torsional constant.

LIST OF NOTATIONS
	 A	 =	� Design equation factor
	 B	 =	� Design equation factor
	 C	 =	� Torsional rigidity (Timoshenko & Gere 1961), design 

equation factor
	 C1	 =	� Warping rigidity (Timoshenko & Gere 1961)
	C1 & C2	 =	� Expressions used to calculate the buckling moment 

(Andrade et al 2007)
	 Cw	 =	� Warping torsional constant
	 d	 =	� Distance between flange centroids (Trahair et al 2008)
	 E	 =	� Elastic modulus of steel
	 fyl	 =	� Lower yield strength
	 fyu	 =	� Upper yield strength
	 G	 =	� Shear modulus of steel
	 hs	 =	� Distance between flange centroids (Andrade et al 

2007), equivalent to “d”
	 I	 =	� Interaction factor (Essa & Kennedy 1994)
	 It	 =	� St Venant torsion constant of a cross-section (European 

practice)
	 Iw	 =	� Warping torsional constant (European practice)
	 Iy	 =	� Moment of inertia about y-axis, the minor axis (RSA 

and North American practice)
	 Iz	 =	� Moment of inertia about z-axis, the minor axis 

(European practice)
	 J	 =	� St Venant torsion constant of a cross-section (RSA and 

North American practice)
	 K	 =	� Torsional parameter of a segment (Trahair et al 2008)
	 K̄̄̄ 	 =	� Torsional parameter of a segment (Andrade et al 2007)
	 k	 =	� Effective length factor

	 kw	 =	� Effective length factor for end warping restraint 
(Andrade et al 2007)

	 kz	 =	� Effective length factor for end rotations about the 
z-axis, minor axis (Andrade et al 2007)

	 L	 =	� Length of beam between lateral restraints, length of 
cantilever

	 Lb	 =	� Length of the backspan segment
	 Lc	 =	� Length of cantilever (overhang) segment
	 Mb	 =	� Critical moment of the backspan segment that is free to 

warp (Essa & Kennedy 1994)
	 Mc	 =	� Critical moment of cantilever segment that is free to 

warp (Essa & Kennedy 1994)
	 Mcr	 =	� Elastic critical moment of a beam
	 Pcr	 =	� Elastic critical buckling load of a cantilever 

(Timoshenko & Gere 1961)
	 Q	 =	� Critical buckling point load at free end of cantilever 

(Trahair et al 2008)
	 yQ	 =	� Distance between the shear centre and the load applied 

(positive below the shear centre) (Trahair et al 2008)
	 zg	 =	� Distance between shear centre and load applied (posi-

tive above the shear centre) (Andrade et al 2007)
	 γ	 =	� Buckling parameter
	 γ2	 =	� Dimensionless factor (Timoshenko & Gere 1961)
	 κ	 =	� Ratio of the smaller moment to the larger moment at 

opposite ends of the unbraced length
	 ε	 =	� Dimensionless load height parameter (Trahair et al 

2008)
	 ω2	 =	� Equivalent moment factor (Cb in American literature)
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Equation 1 uses one effective length fac-
tor. It will be seen below that Andrade et 
al (2007) employ two different effective 
length factors for the torsional and warping 
stiffness terms.

Recent investigations to determine the 
Mcr use different approaches to obtain the 
LTB capacity of cantilevers and overhang 
beams, and do not use the effective length 
factors published in the codes and by 
Ziemian (2010). Most notably were the 
investigations of Andrade et al (2007) and 
Trahair et al (2008) which are discussed 
below. Special purpose computer programs, 
such as PRFELB (Trahair et al 2008) are 
also available to compute Mcr.

Andrade et al method
Andrade et al (2007) investigated cantilever 
beams that were either prevented from warp-
ing (NW) or free to warp (FW) at the support 
(in the latter case a cantilever with unre-
strained flanges in the longitudinal direction). 
Thus the effect of an adjacent span was 
considered, but not the extent of the effect of 
the LTB stiffness of an adjacent span.

The method proposed by Andrade et al 
(2007) to determine the critical buckling 
moment is a rational approach, which 
extended the “3-factor method” (C1, C2 and 
C3) to include cantilevers and overhang 
beams. The modified formula for free-to-
warp (FW) cantilevers, doubly symmetri-
cal, and for bending about the major axis 
only, is defined as follows:

Mcr = �C1 
π2EIz

(kzL)2
 ×  

⎡
⎢
⎣

⎧
⎪
⎩

kz

kw

⎧
⎪
⎩

2 Iw

Iz
 + 

(kzL)2GIt

π2EIz
 + (C2zg)2

  

– (C2zg)
⎡
⎢
⎣
� (2)

Where: 
	C1 & C2	� are factors that depend on the 

warping restraint, the type of 
load, the distance between the 
shear centre and the load applied, 
and the torsional parameter (see 
Table 1)

	 zg	 =	� vertical distance between the 
shear centre (centroid) and the 
position of the load applied, 
measured as positive if the load is 
applied above the shear centre

	 K̄̄̄ 	 =	
�
π
L  

EIzhs
2

4GIt
 and is the dimen-

sionless torsional parameter, 
0.1 ≤ K̄̄̄  ≤ 2.5

	 hs	 =	� distance between flange centroids
	 kz	 =	� effective length factor for end 

reactions about the minor z-axis 
(taken as = 2.0)

	 kw	 =	� effective length factor for end 
warping restraint (taken as = 1.0)

	 Iz	 =	� moment of inertia about the minor 
z-axis (European equivalent for Iy)

	 It	 =	� torsional constant (European 
equivalent for J)

	 Iw	 =	� warping torsional constant 
(European equivalent for Cw)

	 L	 = length of the cantilever beam.

Andrade et al (2007) also presented similar 
tables for cantilevers with warping pre-
vented at the fixed end. (The results from 
computations with these equations are 
presented in Figure 1 and Table 2.)

Trahair et al method
Trahair et al (2008) presented an equation 
for overhanging beams that are free to 
warp at the support. This equation neglects 
the magnitude of warping restraint due 
to the length of the adjacent span. The 
method by Trahair et al (2008) approxi-
mates the buckling capacity of an overhang 
beam with a point load at the free end with 
the following equation:

QL2

√(EIzGIt)
 = �6 ⎧

⎨
⎩
1 + 

1.5(ε – 0.1)
√1 + 1.52(ε – 0.1)2

⎧
⎨
⎩
 +  

1.5(K – 2)⎧
⎨
⎩
1 + 

3(ε – 0.3)
√1 + 32(ε – 0.3)2

⎧
⎨
⎩
�(3)

Where:
	 Q	 =	� critical point load at the free end and 

Mcr = QL

	 ε	 =	 �yQ
L  

EIy
GJ

 = 
2yQK

dπ
,  the dimensionless 

load height parameter

	yQ	 =	� vertical distance between the shear 
centre (centroid) and the load 
applied, positive below the shear 
centre (or centroid in this case)

	 d	 =	� distance between the flange cen-
troids = h in Andrade et al (2007)

	 K	 =	� torsional parameter of a segment = K̄̄̄ 
in Andrade et al (2007)

	 Iy	 =	� moment of inertia about the y 
(minor) axis = Iz in Andrade et al 
(2007).

Trahair et al (2008) also presented formu-
las for cantilevers with warping prevented 
at the fixed end. (The results from com-
putations with these equations are also 
presented in Figure 1 and Table 2.)

Timoshenko and Gere
The two methods provided above, though 
limited, did provide insight into the mag-
nitude of buckling capacity expected for 
overhang beams. Both approaches have a 
non-dimensional term and a dimensional 

term 
√EIzGJ

L
, similar to the built-in canti

lever (with point load at the tip shear 
centre) equation given by Timoshenko & 
Gere (1961):

Pcr = γ2 
√EIyC

L2
� (4)

Where:
	Pcr	 =	� elastic critical buckling load of a 

built-in cantilever
	γ2	 =	� dimensionless factor depending on 

the ratio of 
L2 C
C1

	 C	 =	� GJ and is the torsional rigidity of a 
beam

	C1	 =	� ECw and is the warping rigidity of a 
beam.

Built-in cantilevers
Andrade et al (2007) and Trahair et al 
(2008) also provide equations for built-in 
cantilevers. The results derived from 
these equations could be compared to 
the equation given by Timoshenko and 
Gere (1961). A built-in W310 × 79 beam 
(equivalent to the South African designation 
306 × 254 × 79 I) was analysed with differ-
ent spans with a point load at the free tip 
centroid. To compare the Mcr results from 
the three methods, effective length factors, 
k, were back-calculated from Equation 1 
with the calculated Mcr values. The effec-
tive length factor values, k, are plotted in 
Figure 1 against the dimensionless torsional 

Table 1 C1 and C2 factors for the “3-factor method” for cantilever beams (Andrade et al 2007)

Free to warp, point load at tip

C1 C2

Top flange loading Bottom flange loading

2.437
√1 + K̄̄̄ 2

 + 
0.613K̄̄̄

√1 + K̄̄̄ 2
 – 

0.105K̄̄̄ 2

√1 + K̄̄̄ 2
0.409 + 1.444K̄̄̄+ 0.07K̄̄̄ 2 0.529 + 0.234K̄̄̄  + 0.149K̄̄̄ 2
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parameter K. For the same beam section (as 
in this case) a smaller value of K indicates a 
longer cantilever length (and a larger value 
of K indicates a shorter cantilever length).

It can be seen that, for this relatively 
simple built-in cantilever problem, the three 
methods give similar results. (The effective 
length value given in codes is a constant.) 
When analysing built-in cantilevers with 
loading on the top flange and overhang 
beams (free to warp at the support) the results 
from different methods have a larger scatter. 
See, for example, Van Rensburg and Skorpen 
(2016). It can also be seen that effective length 
factors given in codes or in Ziemian (2010) for 
different cantilevers or overhang beams, with 
top flange or centroid loading, should not 
actually be constant values.

Essa and Kennedy method
A different approach, which did consider the 
backspan segment, via interaction buckling, 
was investigated by Essa and Kennedy 
(1994). They used interaction buckling in 
their investigation of the LTB of two-span 
continuous overhang beams. Interaction 
buckling is a term which describes the LTB 
of a continuous beam where the buckling 
capacity of each segment has an influ-
ence on the overall buckling capacity. The 
lateral buckling stiffness of the adjacent 
segments influences the buckling-critical 
beam segment (Schmitke & Kennedy 1985). 
Interaction buckling divides a continu-
ous beam into segments: ‘restrained’ and 
‘restraining’. The former is the critical 
unbraced segment (which could buckle first) 
and the latter would decrease the effective 
length of the critical segment. Conversely, 

the effective length of the non-critical 
restraining segments would increase due to 
the restrained critical segment. The concept 
of interaction buckling of continuous beams 
is also described in Trahair et al (2008).

Essa and Kennedy (1994) analysed the 
backspan and overhang segments separate-
ly, and concluded that, if the backspan was 
the critical segment, the effect of interac-
tion buckling is omitted in determining the 
LTB capacity. This conclusion implies that 
the backspan segment could influence the 
buckling capacity of the overhanging seg-
ment, but not vice versa. If the overhanging 
segment was critical, the LTB capacity of 
that segment (and therefore the overhang 
beam) was adjusted:

Mcr = Mc + I(Mb – Mc)� (5)

Top flange loading approximation:

Mc = 1.5 
GJ
d

� (6)

Shear centre loading approximation:

Mc = 
4
Lc

 √EIyGJ� (7)

Mb = 
ω2π
Lb  

EIyGJ + 
⎧
⎪
⎩

πE

Lb

⎧
⎪
⎩

2
IyCw� (8)

Where:
	Mc	 =	� critical moment of the cantilever 

segment that is free to warp at the 
support

	Mb	 =	� critical moment of the backspan 
segment that is free to warp at both 
supports

	 Lc	 =	� length of the unbraced cantilever 
(overhang) segment

	 Lb	 =	� length of the unbraced backspan 
segment

	 d	 =	� distance between the flange 
centroids

	 ω2	 =	� 1.75, as both supports are rollers and 
the end moment ratio becomes zero

	 I	 =	� interaction factor, a function of the 
ratio of backspan to the overhang 
span.

For the case of an overhanging beam with 
a free tip:

I = –0.08 + 0.18 
Lb
Lc

 – 0.009
⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
� (9)

Two questions could be raised regard-
ing these formulae provided by Essa and 
Kennedy (1994). Firstly, according to their 
simple FE models, the critical moment of 
the overhanging segment (top flange load-
ing) was independent of the length of the 
segment, which seems unlikely. Secondly, 
for small ratios of backspan-to-overhang-

lengths 
⎧
⎪
⎩

Lb
Lc

⎧
⎪
⎩
 < 0.5 the interaction equation 

yields unrealistic values. These small ratios 
are perhaps outside the calibrated range of 
the authors; however, no limits regarding 
backspan length to overhang length ratio 
were specified in the paper.

The Essa and Kennedy (1994) equations 
are also applied in Table 2 (see page 9).

PHYSICAL EXPERIMENTS
Physical experiments were conducted to 
determine the buckling capacity of cantilever 
and overhang beams (Figure 2). Four built-in 
cantilevers were tested to ensure that the 
measurements recorded during testing were 
accurate. In total, 20 experiments were 
conducted on overhang beams. The beams 
used for the experiments were IPEAA100 
with a constant cantilever/overhang length 
of 2.5 m. The tests were repeated for both 
shear centre and top flange loading, with the 
backspan-to-overhang ratio ranging from 0.5 
to 2.5, in increments of 0.5. Comprehensive 
details of the experimental program are 
given in Venter (2016).

Overhang beam supports
The overhang beam supports were 
designed to prevent lateral and torsional 
movement but to allow warping. To this 
end, rollers were used for the supports 
and adjustable vertical restraints were 
added next to the beam to prevent lateral 
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Figure 1 �Comparison of three methods for built-in cantilevers with loading at the centroid of free tip
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and torsional movement. The vertical 
restraints were adjustable to account for 
the slight differences in flange widths for 
each beam.

The design of the external support 
(Figure 3) differed slightly from the internal 
support due to the upward reaction, and a 
second roller was provided above the beam. 
The second roller was adjustable to account 

for the difference in beam height for each 
beam. The external roller was also fixed to 
prevent longitudinal movement.

Loading of beams
The beams were loaded by a 1 000 litre 
water tank which was gradually filled 
and attached either at the shear centre of 
the beam or on the top flange. The load 

acted on the shear centre line, and top 
flange loading did not induce a measurable 
eccentric loading. The loading mechanism 
allowed for rotation and twisting of the 
applied load as the beam deflected and 
twisted when it buckled, also ensuring that 
the load applied remained essentially verti-
cal during testing. Figures 4 and 5 show the 
design for the shear centre and top flange 

Figure 4 Design for shear centre loading
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loading, respectively. A one-tonne cali-
brated load cell was attached to the bottom 
of the loading mechanism to measure the 
load. The data was logged and stored via a 
graphical logger (Graphtec Model GL220).

Buckling loads from experiments
The critical buckling moments, Mcr, 
obtained from the experiments are shown 

in Table 2. These loads were based on the 
maximum load obtained during the tests. 
Before testing, the beam dimensions were 
measured. It was noted that the beams were 
somewhat larger than the nominal dimen-
sions given in the Southern African Steel 
Construction Handbook (SASCH 2013), 
but were within the allowable tolerances for 
hot-rolled sections as per the SASCH (2013). 

The out-of-straightness of the beams, as well 
as the material properties, was measured. 
See the discussion below.

For reference purposes, Mcr values 
were also calculated for certain cases. 
The following material values were used: 
E = 200 GPa and G = 77 GPa. The geo-
metrical properties listed in the SASCH 
(2013) were employed.

Figure 5 Design for top flange loading
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For the built-in (fixed) cantilever with 
an unbraced tip and with shear centre 
point loading at the tip (Case Tb2a), 
the average test results are indicated. 
Theoretical values were calculated with 
the Timoshenko and Gere (1961) formula 
(Equation 4) given above, formulas given 
in the Andrade et al (2007) and Trahair 
et al (2008) publications, as well as the 
design code formula with an effective 
length factor = 0.8. The values are in 
reasonable agreement with a more conser-
vative code value.

For the built-in cantilever with an 
unbraced tip and with top flange point 

loading at the tip (Case Tb2b), the average 
test results are indicated. Theoretical val-
ues were again calculated with the formu-
las given in the Andrade et al (2007) and 
Trahair et al (2008) publications, as well as 
the design code formula with an effective 
length factor = 1.4. The code value appears 
to be very conservative.

In order to provide a perspective on 
the Mcr values obtained from the tests for 
overhang beams with an unbraced tip and 
with shear centre point loading at the tip 
(Case Tb2c), the code was applied to sepa-
rately investigate the capacity of the back-
span and overhang segments. Backspan: 

As the interior support is considered to 
be hinged and the unbraced backspan 
(effective length factor = 1) is only loaded 
with the cantilever moment, κ = 0 and 
thus ω2 = 1.75. With an Lb = 3.625 m the 
code gives an Mcr = 5.92 kN.m. Overhang 
segment: For a continuous cantilever 
with a “fork” support, the effective 
length factor = 1 (and ω2 = 1.0), and with 
Lc = 2.5 m the code gives Mcr = 5.09 kN.m.

For Case Tb2c, theoretical values were 
calculated with the formulas of Andrade 
et al (2007) and Trahair et al (2008) (see 
Equations 2 and 3) and are indicated in 
Table 2. The method of Essa and Kennedy 

Table 2 Experimental and certain computed buckling moments

(a) Fixed cantilever: shear centre loading
 Lc Mcr

(b) Fixed cantilever: top flange loading
 Lc Mcr

m kN.m m kN.m

Average test values 2.5 7.62 Average test values 2.5 6.85

Timoshenko & Gere (1961) 2.5 7.89

Andrade et al (2007) 2.5 8.04 Andrade et al (2007) 2.5 6.47

Trahair et al (2008) 2.5 8.04 Trahair et al (2008) 2.5 6.90

SANS 10162-1 (k = 0.8) 2.5 6.59 SANS 10162-1 (k =1.4) 2.5 3.51

(c) Overhang beam: shear centre loading
Lb Lc Lb/Lc

 

Mcr
Comment on buckling

m m kN.m

SANS 10162-1 (k = 1.0 and ω2 = 1.75) 3.625   5.92 Backspan only 

SANS 10162-1 (k = 1.0 and ω2 = 1.0)   2.5   5.09 Cantilever only 

Andrade et al (2007) – free to warp   2.5   6.30 Cantilever only  

Trahair et al (2008) – free to warp   2.5   6.50 Cantilever only  

Overhang, average test values 1.25 2.5 0.5 6.32 Interaction 

Overhang, average test values 2.5 2.5 1.0 7.29 Interaction 

Overhang, average test values 3.625 2.5 1.45 6.31 Interaction

Essa & Kennedy (1994) 3.625 2.5 1.45 6.02 Interaction

Overhang, average test values 5.0 2.5 2.0 5.19 Interaction

Essa & Kennedy (1994) 5.0 2.5 2.0 5.59 Interaction

Overhang, average test values 6.25 2.5 2.5 4.82 Interaction 

(d) Overhang beam: top flange loading
Lb Lc Lb/Lc

 

Mcr
Comment on buckling

m m kN.m

SANS 10162-1 (k =1.0 and ω2 = 1.75) 3.625   5.92 Backspan only 

SANS 10162-1 (k = 2.5 and ω2 = 1.0)   2.5   1.92 Cantilever only 

Andrade et al (2007) – free to warp   2.5   5.23 Cantilever only 

Trahair et al (2008) – free to warp   2.5   5.33 Cantilever only 

Overhang average test values 5 2.5 2 5.01 Interaction

Overhang average test values 6.25 2.5 2.5 4.21 Interaction
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(1994), which considers interaction buck-
ling, was applied (see Equations 5 to 9) 
and the Mcr values indicated. Lastly, the 
average test results are shown and it could 
be observed how Mcr decreases with an 
increase in Lb.

For overhang beams with an unbraced 
tip and with top flange point loading at 
the tip (Case Tb2d), the code was applied 
to investigate the capacity of the overhang 
segment. (The Mcr value for the backspan is 
not affected by the height of load application 
on the cantilever.) Overhang segment: For 
a continuous cantilever with a “fork” sup-
port and destabilising loading, the effective 
length factor = 2.5 and with Lc = 2.5 m the 
code gives Mcr = 1.92 kN.m. Theoretical 
values were calculated with the formulas 
of Andrade et al (2007) and Trahair et al 
(2008) (see Equations 2 and 3) and are also 
indicated in Table 2. The code value again 
appears to be extremely conservative.

The scatter in the buckling loads is 
attributed to variations in initial out-of-
straightness, beam sizes and material 
properties (see below) and, in addition, to 
the surface contact between the beam and 
the supports (rollers and vertical restraints) 
which caused additional friction when the 
beam was loaded. The additional friction in 
the flanges of the beam increased the warp-
ing resistance, causing the beam to resist a 
larger load before buckling occurred. Slight 

initial out-of-straightness also contributed 
to a lower critical moment. Photograph 1 
shows the original and buckled shape of the 
back-span segment of an overhang beam.

Material properties
The material properties of the tested 
beams were determined (Venter 2016) via 
tensile (‘dog bone’) testing. Nine samples 
were cut from the web of an unloaded 
beam. The samples were loaded until 
fracture. The average lower yield strength 
fyl was 362.8 MPa, and the upper yield 
strength fyu was 377.8 MPa, according 
to the ISO 6892-1 (ISO 2009) standard. 
The calculated elastic modulus, via the 
tangent method, was 204.3 GPa. These 
values were used to calibrate the FE solid 
element models with the fixed cantilever 
experimental work.

Geometrical properties
Venter (2016) comprehensively documented 
the variations in beam dimensions and out-
of-straightness. For such a small section, 
the allowable tollerances have a significant 
impact on the stiffness properties of the 
member. Most of the beams had flanges 
that were somewhat tapered. The slightest 
taper towards the web, combined with 
flanges and webs thicker than the nominal 
dimensions dramatically increases, for 
instance, the St Venant torsion constant. 
Maljaars et al (2004, Figure 7) explains the 
significant role of the flange and web junc-
tions on the St. Venant torsion constant.

FINITE ELEMENT METHOD
Finite Element (FE) analysis served two 
purposes in this study – firstly to expand the 
scope of the investigation, and secondly to 
obtain a relationship between the buckling 
capacities and the beam buckling parameters. 
The solid element models were first calibrated 
to the physical models to verify the accuracy 
and consistency of FE modelling when solving 
LTB problems, and then other size beams and 
overhang ratios were considered.

The FE program ABAQUS (2015) was 
used with the Buckling Analysis solver. The 
Buckling Analysis solver determines an 
Eigenvalue using the bifurcation method. An 
Eigenvalue is a load factor relative to the load 
applied to the model, which illustrates the 
ratio between the buckling load and the load 
applied. This FEM approach to obtain a buck-
ling load factor would include the possibility 
of combined LTB and distorsional buckling of 
the overhang beam (Bradford 1994).

Element properties
In the calibration exercise the measured 
properties of the steel were used to 
verify the FE models with the physi-
cal tests. The material properties used 
were: fy = 362.8 MPa, E = 204 GPa and 
G = 77 GPa. For all further analysis on 

(a) (b)

Photo 1 Original position (left) and the buckled position (right)

Table 3 Geometric properties of solid elements

Property Solid element

Shape function Quadratic

Type of element (nodes)
Quadrilateral (15 per wedge)
Quadrilateral (20 per hexahedral)

Aspect ratio
< 6.5:1 (wedge)
< 13.9 (hexahedral)
< 10:0 (ignoring thin web elements)

Element size 25 mm or 50 mm

Elements per cross-section 32
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other beams other than IPEAA100 the 
solid elements were assigned material 
properties of 350W steel ( fy = 350 MPa), 
with E = 200 GPa and G = 77 GPa. 
Residual stresses can reduce the critical 
moment of the beam below the theoreti-
cal elastic buckling moment. However, 
the effect of residual stresses decreases 
as the slenderness of the beam increases. 
Therefore, the FE models do not include 
residual stresses.

The geometric properties of the solid 
elements are provided in Table 3. Both 
hexahedral (20 nodes) and wedge (15 nodes) 
elements were used to improve the accu-
racy of the mesh, especially at the interfaces 
between the web and the flanges. Solid 
elements have six degrees of freedom per 
node. Comparitive analyses with the thick-
ness and width of the flange and web divid-
ed into multiple layers (mesh refinement) 
resulted in a negligible difference in the 

critical moment of the beam. Refinement of 
the mesh also did not improve the results. 
Therefore, to reduce computation time and 
the aspect ratio, only the web thickness was 
divided into two layers. Figure 6 shows the 
boundary conditions and the solid element 
IPEAA100 model.

Model dimensions analysed
The elastic and inelastic ranges of buck-
ling depend on the effective length of the 
beam. The ranges were defined by 0.67 Mp 
and 0.9 Mp for elastic and inelastic, 
respectively. The effective length factors 
provided by SANS 10162-1 (SANS 2011) 
were utilised to determine the length of 
the beam required for elastic LTB. The 
size and overhang lengths of the beams 
modelled using solid elements are pro-
vided in Table 4. The values in parenthesis 
refer to models with top flange loading 
only, which have shorter lengths but 
remain in the elastic range (due to larger 
effective length factors).

SENSITIVITY ANALYSIS
The cross-sections of the tested IPEAA100 
beams were found to vary, and a sensitivity 
analysis was performed to assess the effect 
of varying the beam cross-section geo
metry on the buckling capacity. The sen-
sitivity analyses were based on Equation 1 
and were compared to the ideal fixed can-
tilever beam. For an IPEAA100 cantilever 
beam with a length of 2.5 m, the buckling 
capacities were 6.59 kN.m and 3.51 kN.m 

for the shear centre and top flange loading, 
respectively. Table 5 presents the results of 
the sensitivity analyses.

The nominal dimensions and proper-
ties of the I-beam are based on a parallel 
flange section. It was established that some 
of the beams had thicker flanges than the 
nominal flange thickness, and also a taper. 
For sections with the thicker and tapered 
profiles of the flange this fact was deemed 
to have the largest influence on the buck-
ling capacity. The dimensions of the beams 
tested were measured and were used to 
calibrate the solid element models, together 
with the measured material properties. 
The results of the calibrated models are 
provided and compared to the experiments 
in Table 6. With a maximum difference 
of 3.2%, it was found that the solid ele-
ment models are an accurate numerical 
method to solve LTB problems. However, 
as previously stated, to achieve consist-
ency the parametric study using FE solid 
element models was based on nominal 
dimensions and properties provided by the 
SASCH (2013).

ANALYSIS OF RESULTS

Analysis of solid element results
For a given backspan-to-overhang ratio, 
either the overhang segment or the back-
span segment, or both segments together, 
dictate the critical buckling mode. For 
example, an IPEAA100 beam with a 2.5 m 
overhang length underwent simultaneous 

Figure 6 �Solid finite elements and the 
restraint conditions at supports

Table 4 �Size and lengths of beams analysed 
with solid elements

Beam 
designation

Length of overhang, Lc

IPEAA100 2, 2.5, 3 and 3.5 m

IPE 200 3, 3.5 and 4 m

203 × 133 × 25
(2, 2.5, 3, 3.5), 4, 4.5, 5, 5.5 

and 6 m

305 × 165 × 40
(2, 3, 4), 4.5, 5, 5.5, 6, 7 and 

8 m

406 × 178 × 54 4.5, 5.5 and 6.5 m

406 × 178 × 74
(2, 3, 4), 5, 5.5, 6, 6.5, 7 and 

7.5 m

533 × 210 × 82 (5), 6 and 7 m

533 × 210 × 122 (3, 4, 5), 6, 6.5, 7 and 9 m

Table 5 Sensitivity analyses for a 2.5 m long IPEAA100 cantilever

Dimension / 
property

Change in 
dimension / 

property

Change in Mcr (%) Change in load (%)

Shear centre Top flange Shear centre Top flange

Web thickness +0.2 mm +2.1 +3.4 +2.1 +3.4

Flange thickness +0.2 mm +4.9 +5.1 +4.9 +5.1

Flange width –3 mm –10.6 –5.1 –10.6 –5.1

Beam height +1.3 mm +0.5 +0.3 +0.5 +0.3

Young’s modulus +10 GPa +5.0 +5.1 +5.0 +5.1

Flange profile +0.1 mm +23.5 +26.8 +23.5 +26.8

Table 6 Comparing FE models to experimental results

Beam setup Experimental result (kN.m) FE model (kN.m) Difference (%)

Cantilever 6.79 7.01 +3.2

Lb/Lc = 1.0 6.94 7.11 +2.4

Lb/Lc = 2.0 4.94 5.06 +2.4



Volume 61  Number 4  December 2019  Journal of the South African Institution of Civil Engineering12

buckling in both segments if  
Lb
Lc

 = 1.0. This 

was noted in both the physical experi-
ments and FE solid element modelling, as 
illustrated in Figure 7. The straight line in 
Figure 7 serves as a reference line to indi-
cate buckling in both segments.

The results of the FE modelling of 
the 203 × 133 × 25 I-beam are shown in 
Graphs 1 and 2. The complete results of 
all the beams analysed are provided in 
Appendix A of Venter (2016). The discus-
sions and conclusions that follow were 
based on all the analyses conducted, which 
apply to all beam sizes and lengths.

QQ Increasing the back span ratio Lb/
Lc decreased the critical moment. 
However, for top flange loading, this                                        
observation was less profound.

QQ The buckling capacity became less sen-
sitive to the overhang length Lc as the 
ratio Lb/Lc increased. This statement is 
only for shear centre loading.

QQ Top flange loading significantly 
decreased the buckling capacity of the 
beam.

QQ The reduction in buckling capacity, due 
to top flange loading, diminished as the 
overhang length Lc increased.

QQ These observations were consistent 
with all the beam sizes analysed.

With various overhang lengths Lc, Graphs 1 
and 2 illustrate the observations made above 
for a 203 × 133 × 25 I-beam with shear cen-
tre and top flange loading, respectively.

Comparing FE results 
to experiments
To model the physical test results was a 
challenge, due to the scale of the experimen-
tal setup, the dimensional and material vari-
ations of the beams, the exact restraint con-
ditions provided to the beam and, lastly, the 
method of load application (Venter 2016).

The experimental work (IPEAA100 with 
an overhang length of 2.5 m) and FE solid 
element ABAQUS models are compared in 
Graphs 3 and 4. Two FE models were done, 
firstly one with the nominal design dimen-
sions and parallel flanges, and then a model 
with the measured cross-section dimensions 
(slightly larger) and tapered flanges. It was 
clear that the beam cross-section has a large 
impact on the buckling capacity of a beam, 
as justified by FE solid element modelling.

DESIGN EQUATION
To compare the FE models to the physical 
models, a single-sized beam with a fixed 

Figure 7 Abaqus model buckled shape for simultaneous buckling of both segments
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Graph 1 Critical buckling moments for a 203 × 133 × 25 I-beam with shear centre loading
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overhang length was used. However, to 
draw conclusions based on all the FE 
analyses conducted, a new approach was 
required to incorporate these additional 
parameters.

The closed-form solution of an I-section 
beam with lateral and torsional restraints, 
and under uniform bending, can be written 
as follows:

Mcr = 
π
L

 √EIy GJ + 
π2ECw

L2
� (10)

The solution can be transformed to take 
the following term:

Mcr = γ 
π
L 

√EIyGJ� (11)

Where:
	 Mcr	 =	� critical moment of the overhang 

beam
	 γ	 =	� √1 + K, a buckling parameter

	 K	=	�  π2ECw
GJLc

2  the torsional parameter.

The length of the overhang and the size of 
the beam were combined using the torsion-
al beam parameter K. With this approach, 
all of the models were comparable directly 
with a given loading condition.

The cantilever formula (Equation 4) 
given by Timoshenko and Gere (1961) 
was used as a basis on which the design 
equations were expanded. Equation 10 is 
the basic form of the design equation by 
Timoshenko and Gere (1961). The equation 
has two parts, a beam parameter relating 
the properties of the beam to the buckling 

capacity 
⎧
⎪
⎩

π√EIyGJ
Lc

⎧
⎪
⎩
 and a non-dimensional 

buckling parameter, which takes into 
account the load height, support conditions 
and the backspan-to-overhang ratio.

Mcr = S 
π√EIyGJ

Lc
� (12)

Where: S is a non-dimensional buckling 
parameter.

Rewriting Equation 10 provides a relation-
ship between the critical moment Mcr and 
the nondimensional buckling parameter S, 
given by Equation 13. However, by plotting 
S against K no discernable relationship 
existed between these two parameters. 
Instead, the non-dimensional part of the 
equation was ‘normalised’ by dividing 
it with K (Equation 14). Graphs 5 and 6 
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Graph 3 Comparing FE results and design equation to experimental data for shear centre loading
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illustrate the relationship between the 
‘normalised’ non-dimensional buckling 
parameter (S/K) and the torsional beam 
parameter K for shear centre and top flange 
loading, respectively.

S = 
McrLc

π√EIyGJ
� (13)

S
K

 = 
McrLc

πK√EIyGJ
� (14)

The relationships between K and S/K were 
power functions, with different co-factors 
depending on Lb/Lc (Equation 15).

S
K

 = AKB� (15)

Rewriting the equation to obtain the buck-
ling parameter S and adding an adjustment 
factor C, the design equation takes the 
form of Equation 16. The purpose of fac-
tor C was to ensure that the design equa-
tions were not too conservative (up to 13%) 
and overestimated by less than 1%.

S = AK(B+1) + C� (16)

A, B and C are second-degree polyno-
mial functions of Lb/Lc and are defined 
in Tables 7 and 8. The non-dimensional 
buckling parameter S depends on the size of 
the beam, length of overhang, backspan-to-
overhang ratio and the distance between the 
applied load and shear centre (load height).

To improve the accuracy of the design 
equations, the IPEAA100 beams were 
separated from the ‘universal’ beams. 
Universal beams refer to the beams typi-
cally manufactured in South Africa, i.e. the 
203 × 133 × 25 I-beam. Plotting A and B 
against Lb/Lc revealed a quadratic function 
(Ax2 + Bx + C, with x = Lb/Lc) relating 
the parameters, as shown in Graphs 7 and 
8 (for universal beams). The curves for 

Table 7 Design equation factors for universal beams
Fa

ct
or Universal beams

Shear centre Top flange

A –0.121
⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.2

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 + 1.89 +0.023

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.162

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 + 0.91

B +0.044
⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.205

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 – 0.7 +0.03

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.2

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 – 1.206

C +0.033
⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 + 0.016 +0.016

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 + 0.07

Table 8 Design equation factors for IPE beams

Fa
ct

or IPE beams

Shear centre Top flange

A –0.136
⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.11

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 + 1.8 +0.069

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.225

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 + 1.12

B +0.023
⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩

2
 – 0.15

⎧
⎪
⎩

Lb

Lc

⎧
⎪
⎩
 – 0.75 +0.121

⎧
⎪
⎩

Lb
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⎧
⎪
⎩

2
 – 0.266

⎧
⎪
⎩

Lb

Lc

⎧
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 – 0.99
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Graph 8 Comparing factor B against Lb/Lc for universal beams
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IPEAA100 were similar, with slightly differ-
ent factors for A and B.

Comparing design equations
Table 9 illustrates the maximum and 
minimum differences between the design 
equations and the results obtained from 
the FE solid element modelling. These 
comparisons apply to all overhang lengths 
and backspan-to-overhang ratios analysed. 
A negative value implies a conservative 
result, while a positive value overestimates 
the buckling capacity. Note that the design 
equations were consistent regarding the 
size of the beam. In summary, the over
estimate is always less than 1%.

For the specific case of Lb/‌Lc = 2 and 
Lc = 6 m the percentage under-determi-
nation of the equations’ values of the FEM 
values against the minor radius of gyration, 
ry , is shown in Graph 9 for the universal 
beam sections modelled. No trend could 
be detected.

Since Essa and Kennedy (1994) inves-
tigated the effect of the backspan on LTB 
capacity, it is worth comparing the FE 
results to their design method. Graphs 10, 
11 and 12 illustrate the comparison for an 
IPEAA100 beam with a 2.5 m overhang and 
a 203 × 133 × 25 I-beam with a 4 m and 
5 m overhang, respectively. As depicted in 
the graphs, the buckling capacity for top 
flange loading was highly variable when 
using the method proposed by Essa and 
Kennedy (1994). They stated that, for top 
flange loading, the critical moment of the 
overhang was independent of the overhang 
length. Thus, the buckling capacities were 
either over-conservative or overestimated, 
based on the size of the beam. For small 
backspan to overhang ratios (Lb/‌Lc < 0.75), 
their equation resulted in a decrease in 
buckling capacities, which is clearly incor-
rect as this is the opposite of what was 
observed in both types of FE analyses and 
physical experiments. The data of Essa and 
Kennedy (1994) in the graphs were accord-
ing to the equations they published, but 
they clearly did not intend their formulae 
to be used for small Lb/Lc ratios.

Design examples
Three examples are provided to illustrate 
how these design equations could be used. 
These examples illustrate the ease with 
which the critical moment of an overhang 
can be calculated. The examples are for an 
IPEAA100 beam (top flange loading) and 
a 406 × 178 × 74 I-beam (for both shear 
centre and top flange loading). The beams 

Table 9 Difference between equations and FEM analyses

Beam 
designation

Maximum (%) Minimum (%)

Shear centre Top flange Shear centre Top flange

IPEAA100 –4.8 –7.1 +0.9 +0.97

IPE 200 –5.1 –7.0 –1.2 +0.88

203 × 133 × 25 –6.6 –12.8 –1.4 –5.7

305 × 165 × 40 –5.5 –12.9 +0.1 –4.3

406 × 178 × 54 –6.7 –11.8 +0.5 –5.4

406 × 178 × 74 –4.5 –11.1 –0.9 –1.5

533 × 210 × 82 –5.5 –9.7 –0.9 –3.9

533 × 210 × 122 –3.1 –9.3 +0.5 +0.6
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Graph 9 Percentage under-determination of equations for Lb/Lc = 2 for universal beams analysed
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were provided with lateral and torsional 
restraints at the supports, whereas the load 
was applied to the free end of the overhang 
beam. Table 10 illustrates the nominal 
properties of the two design beams accord-
ing to the SASCH (2013).

IPEAA100:
From Table 8 for top flange loading:

A = +0.069(0.5)2 – 0.225(0.5) + 1.12 = 1.0248 
B = +0.0121(0.5)2 – 0.266(0.5) – 0.99 = –1.0928

K = �
π2ECw

GJLc
2

K = �
π2 × 200 × 103 × 0.272 × 109

77 × 103 × 7.33 × 103 × 2 5002
 = 0.39

S = AK(B+1) = 1.02475(0.39)(–1.09275+1) = 1.118

Mcr = S 
π√EIyGJ

Lc
 

Mcr = 5 300 000 N.mm

Mcr = 5.30 kN.m	�  (Abaqus = 5.5 kN.m)

406 × 178 × 74 I:
From Table 7 for shear centre loading:

A = –0.121(1.5)2 – 0.2(1.5) + 1.89 = 1.3178 
B = +0.044(1.5)2 – 0.205(1.5) – 0.7 = –0.9085 
C = +0.033(1.5) + 0.016 = 0.0655

K = �
π2ECw

GJLc
2

K = �
π2 × 200 × 103 × 610 × 109

77 × 103 × 642 × 103 × 6 0002
 = 0.8226

S �= AK(B+1) + C  
= 1.3178(0.8226)(–0.9085+1) + 0.0655  
= 1.360

Mcr = S 
π√EIyGJ

Lc
 

Mcr = 278 800 000 N.mm

Mcr = 278.8 kN.m�(Abaqus = 287.5 kN.m)

The calculations were repeated for top 
flange loading.

Table 11 compares the proposed design 
equation with the ABAQUS FE solid 
element models, other publications and 
the current SANS 10162-1 (SANS 2011) 
method.

Table 10 Properties of beams

Beam size IPEAA100 406 × 178 × 74 Universal beam

Load height Top flange Shear centre or top flange

Overhang length  Lc 2.5 m 6 m

Backspan length  Lb 1.25 m 9 m

Backspan-to-overhang ratio Lb/ Lc 0.5 1.5

Mass 6.72 kg/m 74.2 kg/m

Depth h 97.6 mm 412.8 mm

Width b 55 mm 179.7 mm

Web thickness tw 3.6 mm 9.7 mm

Flange thickness tf 4.5 mm 16.0 mm

Cross-sectional area A 0.856 × 103 mm2 9.53 × 103 mm2

Moment of inertia about x-axis Ix 1.36 × 106 mm4 274 × 106 mm4

Moment of inertia about y-axis Iy 0.126 × 106 mm4 15.5 × 106 mm4

Torsional constant J 7.33 × 103 mm4 642 × 103 mm4

Warping torsional constant  Cw 0.272 × 109 mm6 610 × 109 mm6
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Graph 12 �Comparing equations to Essa and Kennedy (1994) for 203 × 133 × 25 I-beam with 5 m 
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From Table 11 it could again be 
observed that the method of SANS 10162-1 
(SANS 2011) produces extremely conserva-
tive values for top flange loading. The 
application of the Essa and Kennedy (1994) 
method did not produce realistic results for 
top flange loading.

CONCLUSIONS AND 
RECOMMENDATIONS
The experimental program posed several 
challenges, as discussed, which led to a sig-
nificant scatter in the results. Nevertheless, 
the experimental work illustrated the 
buckling behaviour of overhang beams 
and produced useful data for benchmark-
ing against other methods and the FEM 
results. The FEM method with solid 
elements (rather than shell elements) was 
successfully implemented for this buckling 
problem and also demonstrated the LTB 
behaviour of beams. The results were 
effectively benchmarked against the experi-
mental work and other research data.

Many structural steel design codes, 
including SANS 10162-1 (2011), do not take 
the length of the backspan into account 
when calculating the LTB capacity of an 
overhang beam. Andrade et al (2007) and 
Trahair et al (2008) formulated equations 
for overhang beams by considering free-to-
warp cantilevers, but neglected the effect of 
the length of the backspan. Certain meth-
ods have extended the solution of Mcr for 
single- and double-span beams for different 
boundary and loading conditions by apply-
ing a γ factor, which is a function of more 
than the K parameter only. These extended 
solutions, however, do not include the 
backspan-to-overhang ratio Lb/‌Lc. It was 
shown that the simplicity of the effective 
length approach leads to extremely conser-
vative Mcr values for top flange loading.

This study investigated the effect 
of the backspan on overhang beams 
with supports which prevent lateral and 
torsional movement but allow warping. 
Based on the physical experiments and FE 
analyses, increasing the ratio of backspan 
to overhang reduces the lateral-torsional 
buckling capacity of an overhang beam. 
Also, increasing the overhang length has an 

adverse effect on the buckling capacity. For 
shear centre loading, the buckling capacity 
becomes less sensitive to the overhang 
length ‌Lc as the ratio Lb/‌Lc increases. A 
proposed extended form of the factor 
γ specifically formulated for overhang 
beams is given in Equation 14. The pro-
posed design method was validated using 
experimental investigations and verified by 
FE analysis.

While the limitations of the study are 
acknowledged in terms of the physical 
testing of only one beam size, support 
condition limited to lateral and torsional 
restraint, and only elastic buckling inves-
tigated, the authors believe that this work 
could lead to the start of more accurate 
assessment of the capacity of overhang 
beams. Further testing and analysis for 
other support, bracing and loading condi-
tions could result in further refinement 
and in increasing the scope of the proposed 
design approach.
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Table 11 Summary of results for Mcr (kN.m)

Beam
IPEAA100 

Top flange loading

406 × 178 × 74 I 
Shear centre 

loading

406 × 178 × 74 I 
Top flange loading

Proposed design method 5.3 278.8 179.8

ABAQUS FE model 5.5 287.5 199.0

Andrade et al (2007) 5.23 294.1 174.9

Trahair et al (2008) 5.33 295.3 184.9

Essa and Kennedy (1994) – 272.7 –

SANS 10162-1 method 1.92 265.4 86.3


