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Summary

Two spatial data sets are considered to be similar if they originate from the same stochastic process in terms

of their spatial structure. Many tests have been developed over recent years to test the similarity of certain

types of spatial data, such as spatial point patterns, geostatistical data and images. This research develops

a similarity test able to handle various types of spatial data, for example images (modelled spatially),

point patterns, marked point patterns, geostatistical data and lattice patterns. The test consists of three

steps. The �rst step creates a pixel image representation of each spatial data set considered. In the

second step a local similarity map is created from the two pixel image representations from step one. The

local similarity map is obtained by either using the well-known similarity measure for images called the

Structural SIMilarity Index (SSIM) when having continuous pixel values or a direct comparison in the case

of discrete pixel values. The calculation of the �nal similarity measure is done in the third step of the test.

This calculation is based on the S-index of Andresen's spatial point pattern test. The S-index is calculated

as the proportion of similar spatial units in the domain where si is used as a binary indicator of similarity.

In the case of discrete pixel values, si are still used as a binary input whereas in the case of continuous

pixel values the resulting SSIM values are used as a non-binary si input. The proposed spatial similarity

test is tested with a simulation study where the simulations are designed to have comparisons that are

either 80% or 90% identical. With the simulation study it is concluded that the test is not sensitive to

the resolution of the pixel image. The application is done on property valuations in Johannesburg and

Cape Town. The test is applied to the similarity of property prices in the same area over di�erent years

as well as testing the similarity of property prices between the di�erent areas of properties.
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Chapter 1

Introduction

In a forest, the way in which certain species of trees grow may re�ect some information about the species'

ability to grow in the speci�c location. The di�erent patterns which results from the di�erent tree

species, may also re�ect the speci�c species' ability to survive the competion to grow [22]. Furthermore,

the comparison of criminal activity maps can assist researchers to identify the factors that increase the

likelihood of those activities occuring [3]. The comparisons mentioned here are examples where tests for

spatial similarity are needed which focus on whether the two spatial data sets originate from the same

stochastic process in terms of their spatial structure [9]. In this mini-dissertation, we develop a generic

similarity test for spatial data.

In traditional statistics, a random variable is de�ned as the desirable quantity to measure. An experiment

is then conducted to obtain observations from this random variable. Each time an experiment is per-

formed under identical conditions, the measured observations di�er [6]. In spatial statistics, the random

variable is a spatial process from which spatial data are observed [6]. As in traditional statistics, we are

concerned about the random variable (spatial process) rather than the speci�c observations (spatial data)

[6]. However, we still use the spatial data as a representation of the process as the process itself is not

tangible.

Spatial data can take on three main forms, namely geostatistical data, lattice data and point patterns

[13]. Geostatistical data are measured at �xed locations and is a partial realisation of the spatial process.

Then an interpolation method, usually Kriging, is used to predict values where measurements are not

taken [13]. In Figure 1.1 a continuous map, created by Kriging, is shown of Swiss rainfall which is an

example of geostatistical data1.

1Seen on: http://www.gitta.info/ContiSpatVar/en/html/Interpolatio_learningObject3.xhtml. Assessed on: 26 Januray

2021
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CHAPTER 1. INTRODUCTION 12

Figure 1.1: Example of geostatistical data. This is an example of the continuous map when the interpo-

lation method, Kriging, is applied on the sample measurements taken.

Figure 1.2: Example of lattice data.

Lattice data occur when the observational region is divided into prede�ned subregions (either a regular

grid or an irregular grid) [40]. The spatial data can be observed at the individual subregions and can

either be continuous or discrete. Figure 1.2 shows an example of a lattice data set on an irregular grid

[33], where the sudden infant deaths of 1974 are shown in North Carolina. The state of North Carolina is

divided into the counties. The number of sudden infant deaths for the county in that year are the value

observed at each region.

An image is a lattice pattern with a regular grid. The subregions of an image are called pixels. Figure 1.3

is an example of a simple image with 100 pixels. The number of observed values at each pixel depends on

the type of image. RGB images have three values for each pixel. The three values range from 0 to 255

for the red, green and blue indices respectively. The three values together form the colour displayed in

the pixel. In the case of a greyscale image, each pixel has only one value that can range from 0 to 255.

Spatial point patterns consist of the locations of certain events [6]. In the case where only the locations of

one event type is present, we call it an unmarked spatial point pattern (Figure 1.4(a)). Extra information
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Figure 1.3: Example of a simple image data.

can be presented within the spatial point pattern by associating a value (mark) to each point. This is then

called a marked spatial point pattern. This mark can be discrete (Figure 1.4(b)) or continuous (Figure

1.4(c)).

(a) (b) (c)

Figure 1.4: Examples of (a) unmarked, (b) multitype and (c) multivariate spatial point patterns.

Figure 1.4 shows three representations of a data set containing the locations of beta ganglion cells in a

cat's retina [42, 46]. All three representations come from the same data set, therefore each of the cells and

the locations are identical in all three patterns. The unmarked spatial point pattern in Figure 1.4(a) only

shows the locations of the cells. In Figure 1.4(b), there are discrete marks attached to each observation

indicating whether the cell is on or o�. This is also called a multitype spatial point pattern [6]. The

continuous marks in Figure 1.4(c) indicate the area of each cell. This is also called a multivariate spatial

point pattern [6].

As far as the authors can determine, there are no spatial similarity tests that are able to handle more

than one type of spatial data, that is, are generalisable. The currently available tests, only cover the

more popular spatial data which is images, unmarked spatial point patterns and geostatistical data but
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in di�erent manners. We discuss these next.

In the literature, the tests of similarity between unmarked spatial point patterns can be divided into

two main groups [2]. The �rst group is distance-based methods. These methods focus on the placement

of the points relative to the other points. An example of a test is the comparison of the K-functions

of the patterns [7, 20]. If both of the spatial patterns have similar structures, their K-functions are

equal [20]. In [25], a more formal method for comparing K-functions is developed by using a studentized

permutation test. The test statistic is based on the Behrens-Fisher-Welch t-statistic. The comparison of

the K-functions was extended to be used with a Monte Carlo simulation in [16].

In 2012, a more formal test for the similarity of spatial patterns was developed [17]. This test involves

the construction of a test statistic through the use of kernel smoothing. The construction of the kernel

estimator involves the distances between the points. This test may not produce a nominal signi�cance

level and in [20] it was extended by making use of a bootstrap calibration to be able to compare smaller

patterns as well. The biggest disadvantage of this method is its computational complexity, especially when

comparing bigger patterns. This method is used in [9] on the covariate measurements at the locations

within the point pattern.

The second type of similarity test is area-based methods. These methods work by aggregating the points

into smaller regions, such as neighbourhood boundaries (irregular) or regular grids [2]. The tests are then

based on the number of events in each region [7, 13]. Andresen's spatial point pattern test is the most

commonly used test amongst geographers and criminologists [2]. This is a simple test that uses bootstrap

sampling to create a non-parameteric 95% con�dence interval on one of the patterns for each region. This

is compared to the number of points in the corresponding region from the other pattern and then a global

similarity index, the S-index, is calculated. This S-index can also be seen as the proportion of regions

where the number of points in the one pattern is contained in the con�dence interval.

In a follow-up paper, it was mentioned that the two patterns can be identi�ed as similar if S > 0.8 [3].

Kirsten et al developed more sensible similarity bounds based on the appearance of the point patterns

by making use of a simulation study [28, 29]. In 2018, this test was improved by the proposal of two

alternative methods [47]. Our suggestion is that the calculation of the S-index can be improved by

changing the calculation so that the S-index is the mean value of the local similarity throughout the

observational region instead of the proportion of similar spatial units.

Another area-based test for unmarked spatial point patterns was proposed by [1] in 2016. They suggested

testing the similarity of spatial patterns by making use of space-�lling curves to order the space. This

can be used in any n dimensional space. In recent years, the development of similarity tests for unmarked

spatial point patterns using kernel density estimates have become more and more popular [14, 24, 35]. In

[24], three two-sample density tests were developed. All three of these tests are based on the Maximum
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Mean Discrepancy (MMD) that is also known as tests where the test statistic is the di�erence between

the means of two distributions. The �rst two tests make no assumption regarding the two distributions,

whereas the third test is based on the asymptotic distribution of the previous test statistic.

For the testing of spatial similarity between images, the Structural SIMilarity index (SSIM) is used [10].

This method works with a sliding window approach that measures the mean, variance and covariance

of the pixel values from the two images for the sliding window to calculate a luminance, constrast and

structure component that is multiplied together to equal the SSIM value for the pixel in the centre of the

sliding window. This results in an SSIM value for each pixel. A global SSIM value can be obtained by

taking the mean of the individual SSIM values for the pixels.

Before the development of the SSIM, [23] tested the similarity of images by computing an error matrix

through direct comparison. The overall similarity statistic is based on the K̂ statistic developed in [12]. In

[31], image retrieval is done by using spatial similarity testing between the di�erent images. The algorithm

used for the image retrieval takes the number of objects that are common between the two images.

The testing of similarity between geostatistical data is not that well used. A measure that can be useful

for such a test was used in 2016 by [18]. In this paper, hierarchical clustering was done on geostatistical

data. To perform hierarchical clustering, a dissimilarity matrix is constructed before the actual clustering

is done. This dissimilarity measure can possibly be used as a measure of similarity between geostatistical

data sets. This measure uses non-parametric kernel estimation on the spatial dependence. A more

formal method for the testing of similarity between geostatistical data sets was developed in 2010 [38].

This method uses geostatistical entropy to measure the similarity. This method works by calculating the

Kriging distortions of the prediction vectors. The average of the two calculated distortions is the similarity

measure.

In this mini-dissertation we propose a test for spatial similarity that is generalised to be able to handle any

type of spatial data, namely geostatistical data, lattice data, point patterns, marked point patterns as well

as images. The test consists of three steps where the �rst step involves creating a pixel image representation

of both the spatial data sets considered. The pixel image representation is obtained di�erently for each

spatial data type, which is discussed in detail in the remaining chapters. In the second step, the SSIM is

used to create a local similarity map when the pixel values are continuous. An SSIM value is calculated for

each pixel. In the case of discrete pixel values, the local similarity map is created by direct comparison of

the pixel values. The calculation of the �nal similarity measure is done in the third step of the test. This

calculation is based on the S-index of Andresen's spatial point pattern test [2]. The S-index is originally

calculated as the proportion of similar spatial units in the domain, S =

n∑
i=1

si

n , where si is a binary value.

In the case of discrete pixel values, si is still binary whereas in the case of continuous pixel values, the

resulting SSIM values are used as a non-binary si input.
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In this mini-dissertation, we aim to:

� Propose a generalisable spatial similarity test

� Develop a method to represent each spatial data type as a pixel image representation

� Compare the pixel image representations to form a local similarity map

� Develop a global similarity index based on Andresen's S-index with a non-binary input

� Apply the test on property prices in the same area over di�erent years

� Apply the test on property prices of the same year over di�erent areas

In Chapter 2 we describe di�erent types of spatial data and di�erent methods used for the new test. In

Chapter 3 the new similarity test is discussed in depth with a simulation study in Chapter 4. Chapter 5

includes an application of the method on property prices in Johannesburg and Cape Town for the years

2017, 2018 and 2019. A summary and discussion of the work is outlined in Chapter 6.



Chapter 2

Theoretical background

In this chapter, the notation for the di�erent types of spatial data is discussed followed by theory about

density estimation, SSIM index, Andresen's spatial point pattern test, Kriging and the k-NN estimation.

The types of spatial data that we consider are geostatistical data, lattice data and point patterns [13].

We consider the spatial process [13]

Z(s) = {Z(s1),Z(s2), . . . ,Z(sn)}

=
n⋃
i=1

{Z(si), si ∈ D ⊂ Rp},
(2.1)

where si ∈ Rp is a spatial location in the p-dimensional space, and D is a subset of the p-dimensional

space also known as the spatial domain where the spatial random variable is de�ned [41]. Each spatial

location, si, is de�ned by the speci�c coordinates si = (si1, si2, . . . , sip) which can either be discrete or

continuous.

The spatial domain is the area where spatial data are observed. We also call this a window. The boundary

of the spatial domain consists of multiple connected curves or straight lines that do not cross each other

[6]. These windows are either rectangular in shape or any other polygonal shape. A spatial domain

frequently used is the boundaries of a country, province, city etc.

2.1 Geostatistical data

As mentioned previously, the spatial location si may be either discrete or continuous. In the case where

it is continuous over the spatial domain, it is called geostatistical data [13]. For this, the spatial process

17
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in Equation (2.1) is de�ned ∀ si ∈ D [41].

Geostatistical data are measured at sampled locations, therefore it is a partial realisation of Z(s) [13, 41].

Through an interpolation method such as Kriging, predictions are made regarding the unobserved values

of the spatial process [41]. This allows each possible spatial location in the spatial domain to vary

continuously [13].

2.2 Lattice data

For lattice data, as in Figure 1.2, the spatial process in Equation (2.1) is de�ned for a �xed set of spatial

locations [13]. We then say that si is discrete in the case of lattice data. The realisation of Z(si) is the

vector of the values observed at spatial location si.

Each spatial location is a region which makes up part of the spatial domain. The collection of all the

spatial locations is equal to the spatial domain [41]. Therefore, the spatial locations can be seen as a

partition as de�ned in De�nition 1. We denote the regions of the lattice data as si and call it spatial

locations for the sake of being consistent. However, other sources may denote the separate regions as Ai

to make it clear that the data is observed over regions.

De�nition 1. P is a partition [26] of a set X if and only if:

(1) P does not contain an empty subset, ∅ /∈ P

(2) The elements of P are disjoint, if A ∈ P and B ∈ P , then A ∩B = ∅

(3) The union of all subsets of P is the set X,⋃
i=1,...,n∀Ai∈P

Ai = X

Each spatial region can be represented by a representative point. The chosen point can either be the

centroid of the region or any other appropriate point, for example the capital city of a country or province.

As with the window, these regions can also be either regular or irregularly shaped. When the spatial

domain over which the spatial process is observed is for example South Africa, the spatial regions can for

instance be each of the provinces. In this case, the regions are irregularly shaped and we are then dealing

with an irregular lattice. Regular shaped regions are obtained when D is divided into a number of grid

cells which forms a regular lattice.

A special case of a regular lattice pattern is an image [41]. With an image, the spatial domain is divided

into equally shaped regular regions. Each region is better known as a pixel. The realisation of the spatial

process for each pixel is either a single value (in the case of greyscale images) or a vector of multiple values.
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When each pixel value has between three and ten values, we are dealing with multispectral images [43].

The well known RGB images has three values (red, green and blue) and is a special case of a multispectral

image. In the case of more than 10 values, we are dealing with hyperspectral images [43]. Hyperspectral

images can have many values per pixel.

2.3 Point patterns

As mentioned before, a point pattern consists of the locations of a certain event. This type of spatial data

need a special case of the spatial process from Equation (2.1) because with geostatistical and lattice data,

the spatial locations are �xed and the realisations of the spatial process are the measurements observed

at the speci�c spatial location. With the point pattern, the type of event is known beforehand and the

desired variable is the location at which this event occured.

The spatial point process is a random variable speci�cally for point patterns and is the stochastic mecha-

nism that generated each point in the point pattern. A point process is a random variable whose outcome

is a point pattern [6].

De�nition 2. A �nite point process, X [6], in a p-dimensional space is de�ned to be any stochastic

mechanism for which:

(1) every possible outcome is a �nite point pattern, and

(2) for every spatial domain D ⊂ Rp, the number of points falling in D is a well-de�ned random variable.

A spatial point pattern is a realisation of a point process and can be de�ned as

x = {x1,x2, . . . ,xn}.

Each xi denotes a point in the spatial point pattern that consists of n data points. A point pattern can

either be unmarked or marked. In the case of an unmarked spatial point pattern, the only variable for

the event represents the speci�c location in Rp

xi = (xi1, xi2, . . . , xip).

In the case of a marked spatial point pattern, apart from the variables representing the location of the

event, there is also one or more variables representing a value or a mark. The mark can be de�ned as

extra information about that speci�c event

xi = (xi1, xi2, . . . , xip,mi = m(xi1, xi2, . . . , xip)),

where m(xi1, xi2, . . . , xip) is a function that includes the mark(s) [5]. This function can either be discrete,

continuous or both.
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2.4 Estimation of the intensity of a spatial point process

The intensity of a spatial point process is based on the average number of events per area [6]. This is the

most basic and important form of descriptive analysis for spatial data and is equivalent to the calculation

of the mean of standard data. The calculation of the intensity is used to study the arrangement of the

individual events.

The intensity function of the spatial point process is denoted as

λ(s) = lim
|ds|→0

E[N(ds)]

|ds|
, (2.2)

where ds is an in�nitesimal area containing the point s, |ds| is the area of ds and N(ds) is the number of

points in ds [19, 21]. In the case where λ(s) is constant, the spatial point process is homogeneous and does

not vary across the spatial domain. If this is not the case, the spatial point process is inhomogeneous.

As mentioned before, the spatial point process is the random variable. Therefore, the intensity of the

spatial point process is estimated by using the spatial point pattern. This is done by using kernel density

estimation [6] which is a nonparametric estimator of the intensity and can be calculated as

λ̃(u) =

n∑
i=1

κ(u− xi), (2.3)

where u is a spatial location in the spatial domain and κ(·) is the kernel function. According to [15], the

choice of the kernel function is not that important.

It is always better to have an unbiased estimator, therefore we want to determine whether the estimator

is unbiased or not. For this calculation, the following result will come in handy and is called Campbell's

formula [5]

E

(
n∑
i=1

f(xi)

)
=

∫
R2

f(u)λ(u)du. (2.4)

Following this, we de�ne a function at a �xed spatial location v [6]

f(u) =

 κ(v − u) if u ∈ D

0 if u /∈ D
. (2.5)

So, then from applying Equation (2.5)
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λ̃(v) =

n∑
i=1

κ(v − xi) =

n∑
i=1

f(xi). (2.6)

By applying Equation (2.4) to the expected value of the function in Equation (2.3), we obtain

E
(
λ̃(v)

)
= E

(
n∑
i=1

f(xi)

)
=

∫
f(u)λ(u)du

=
∫
D
κ(v − u)λ(u)du.

(2.7)

From Equation (2.7), we see that E
(
λ̃(v)

)
6= λ(u) and therefore Equation (2.3) is not an unbiased

estimator of the true intensity, λ(u). If we assume homogeneity, λ(u) = λ, we still have a biased estimator

E
(
λ̃(v)

)
= λ

∫
D

κ(v − u)du. (2.8)

From this, we can de�ne an unbiased estimator for Equation (2.3) under the assumption of homogeneity

as [6]

λ̃U (u) =
1∫

D
κ(v − u)du

n∑
i=1

κ(u− xi). (2.9)

Seeing that the assumption of homogeneity in a spatial point process cannot be taken lightly, we aim for

the best possible estimate of the intensity of a spatial point process. Although homogeneity does exist in

spatial data, the data will be more often than not be non-homogeneous and thus should be tested for as it

a�ects your modelling approach. This estimator is called Diggle's kernel estimator [6] which outperforms

the other estimators in terms of the mean squared error. This means that among the other estimators,

Diggle's kernel estimator has the lowest mean squared error. It is given as

λ̃D(u) =

n∑
i=1

1∫
D
κ(xi − v)dv

κ(u− xi). (2.10)

The estimator in Equation (2.10) takes care of the edge e�ects present. Edge e�ects are present in spatial

data as we only observe the data in a certain window. For example, when the spatial point pattern shows

the locations of crimes in a neighbourhood, the true crime locations are not limited to the window where

our spatial point pattern is observed. There are also criminal activities occurring outside the window that

may have an in�uence on the events in the spatial point pattern which are not observed [6]. Therefore we

de�ne Diggle's edge correction factor as

e(xi) =
1∫

D
κ(xi − v)dv

. (2.11)
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In the case of a marked spatial point pattern, an estimate for the intensity function can also be calculated.

The estimator for the intensity function of a marked spatial point pattern is called the Nadaraya-Watson

smoother [6, 36]

m̃(u) =

n∑
i=1

miκ(u− xi)
n∑
i=1

κ(u− xi)
, (2.12)

where mi is the real-valued mark associated with point xi. Equation (2.12) is calculated for each spatial

location u. Diggle's edge correction can also be applied to this estimator [6] as

m̃D(u) =

n∑
i=1

miκ(u− xi)/e(xi)
n∑
i=1

κ(u− xi)/e(xi)
, (2.13)

where e(xi) is de�ned as in Equation (2.11).

2.5 Structural similarity index

The structural similarity index (SSIM) was �rst developed as a quality index for images and later on used

as a similarity index between images [44, 45]. The algorithm works by using a sliding window to move

pixel-by-pixel across the two images. In each sliding window, the SSIM is calculated.

The calculation for the SSIM consists of three terms: contrast, structure and luminance [45]. Let x1 be

the non-negative real number pixel values from the sliding window in the �rst image and let x2 be the

non-negative real number pixel values from the sliding window in the second image, then we can calculate

the separate components as

Luminance: `(x1,x2) =
2µx1

µx2
+ C1

µ2
x1
µ2
x2

+ C1
(2.14)

Contrast: c(x1,x2) =
2σx1

σx2
+ C2

σ2
x1
σ2
x2

+ C2
(2.15)

Structure: s(x1,x2) =
2σx1,x2 + C3

σx1
σx2

+ C3
(2.16)

where
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µx1
= 1

N

N∑
i=1

x1i µx2
= 1

N

N∑
i=1

x2i

σ2
x1

= 1
N−1

N∑
i=1

(x1i − µx1)
2

σ2
x2

= 1
N−1

N∑
i=1

(x2i − µx2)
2

(2.17)

and

σx1,x2
=

1

N − 1

N∑
i=1

(x1i − µx1
) (x2i − µx2

)

and where C1 = (K1L)2, C2 = (K2L)2 and C3 = C2

2 are constants to avoid unstable results in the case

where the sum of the squared means as well as the sum of the variances in the sliding window approaches

zero [45], N is the number of pixels within the sliding window, K1,K2 � 1 are small constants and L is

the range of the values for the pixels in the image. It is suggested in [45] that the constant values can be

used as, K1 = 0.01 and K2 = 0.03. The SSIM can then be calculated as

SSIM(x1,x2) = [`(x1,x2)]
α

[c(x1,x2)]
β

[s(x1,x2)]
γ
, (2.18)

where α > 0, β > 0 and γ > 0. Usually in literature α = β = γ = 1 which assigns an equal importance

to each term [45]. The SSIM is bounded between -1 and 1.

As the SSIM is calculated for each pixel, we map the values for each pixel. This creates an image visualising

where the two images being compared are more similar and where not. An overall index for the two images

is calculated as the mean value of the SSIM values for each pixel.

2.6 Andresen's spatial point pattern test and the S-index

In 2009, Andresen developed a nonparametric test to calculate the similarity between two spatial point

patterns [2]. This test uses an area-based approach for the similarity testing and is not concerned with the

statistical distribution of the points in the spatial point pattern but rather if the points in two di�erent

spatial point patterns are similarity located or not. The outcome of this test is a proportion, called the

S-index, that indicates the degree of similarity between the two spatial point patterns.

Considering two spatial point patterns, X1 = {p11, p21, . . . , pn11} and X2 = {p12, p22, . . . , pn22}, observed

over the same spatial domain. The pattern X1 is called the base pattern and X2 the test pattern. The

spatial domain is divided into m prede�ned number of regions Ai, i = 1, 2, . . . ,m. These regions can be

either regular with a grid or irregular by using the neighbourhood boundaries, for example. Then, the

percentage of points in X1 is calculated for each Ai
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ti =

n1∑
k=1

I(pk1 ∈ Ai)

n1
. (2.19)

For r = 1, 2, . . . , 200, a simple random sample is taken from X2, Br = {q1r, q2r, . . . , qnrr} where nr =

0.85× n2. The pattern Br is divided into the same regions as above, namely Ai. Then the percentage of

points from pattern Br in each Ai is calculated

bir =

nr∑
k=1

I(qkr ∈ Ai)

nr
. (2.20)

This step is repeated 200 times for the sake of being conservative [2]. A sample of 85% is taken following

the research done by [39] that if a random sample is taken on a spatial point pattern, the spatial pattern

is lost if less than 85% of the points in the spatial point pattern are used.

Let bi = (bi1, bi2, . . . , bi200)′ be the vector of all the percentages of points in region Ai for r = 1, 2, . . . , 200

and ci be the con�dence interval for each region Ai. Then the 2.5th percentile of bi is the lower limit of

ci and the 97.5th percentile is the upper limit of ci. The S-index is then calculated as

S =

m∑
i=1

I(ti ∈ ci)

m
. (2.21)

A threshold of 0.8 for the S-index has been used to indicate that the two spatial point patterns being

compared are similar [3, 4].

2.7 Kriging

Kriging [30] is a popular interpolation method used to estimate the unobserved spatial locations within

the spatial domain. The general formula to use when we are interested in the value at spatial location u

is

Ẑ(u) =
∑
i

wiZ(si) + ε, (2.22)

where wi is the weight depending on how far si is from u1. The restriction on the weights are that they

should sum to 1 [13].

1Seen on: https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm. Assessed on:

17 August 2020
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The estimation is done based on the semi-variogram that estimates the dependency within the spatial

data. The semi-variogram can be obtained from the following formula2

γ(si, sj) =
1

2

∑
i

∑
j

(Z(si)− Z(sj))2

N
. (2.23)

The weights from Equation (2.22) can be obtained by using

ŵ = A−1b, (2.24)

where A is a matrix containing γ(si, sj) and b is a vector containing γ(snew, si) where snew is the spatial

location where the prediction is made.

2.8 k nearest neighbour classi�cation

With k nearest neighbour classi�cation, we consider the distance (for simplicity, Euclidean distance)

between each spatial data point, xi, and the spatial location where the prediction should be made, u [27].

In the case of the use of Euclidean distance, we use,

di = ‖xi − u‖. (2.25)

The prediction at u is the modal value of the k nearest spatial data points considered.

(a) (b)

Figure 2.1: Example of the principle of k nearest neighbours classi�cation. (a) The discrete marked point

pattern used in the example. This point pattern has discrete marks indicting whether each of the points

fall within one of three categories. (b) The principle when estimating the value of the black dot. When

k = 4, the four closest points to the black dot is considered. Two of these four points fall within category

one and one in category two and three. Therefore, the black dot is estimated to be in the �rst category.

2Seen on: https://www.youtube.com/watch?v=J-IB4_QL7Oc. Assessed on: 25 August 2020
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Figure 2.1 is an example illustrating the principle of k nearest neighbours classi�cation. Figure 2.1(a) is

the marked point pattern with discrete marks used in the explanation. This pattern has marks indicating

whether the points fall in one of the three categories. In Figure 2.1(b), we want to estimate in which

category the black dot should be. The black dot is the spatial location at which the prediction should be

made, u. We consider k = 4, which means that we are looking at the four closest points to the black dot.

The black dot is estimated to fall in the modal category of the four closest points. In this case, it would

be the �rst category, as there are two red points within the four closest points.

2.9 Conclusion

In this chapter, the notation of the spatial data types considered are discussed. This is followed by the

theory of the methods considered in the proposed spatial similarity test. The estimation of the intensity

of a spatial point pattern, Kriging as well as k nearest neighbour classi�cation are used to create the pixel

image representations in the proposed spatial similarity test. The Structural SIMilarity index (SSIM) is

used to compare the pixel image representations to form a local similarity map. The calculation of the

global similarity index is based on the S-index from Andresen's spatial point pattern test.

In the next chapter the proposed spatial similarity test and these principles will be discussed in detail.



Chapter 3

Proposed spatial similarity test

We propose a generalised method for the testing of similarity between two spatial data sets. The aim of

this test is to be able to handle any type of spatial data, namely point patterns, geostatistical and lattice

data and calculate a percentage of similarity between the two data sets. The new test consists of three

steps which is outlined in detail throughout this chapter.

The two data sets to be compared are called X1 and X2. The goal of the �rst step is to represent each

of the spatial data types in the same way. This is what makes the test generic. We create a pixel image

representation of X1 and X2 and denote this as Y1 and Y2. In the second step, we create a local similarity

map indicating a local similarity value for each pixel from Y1 and Y2. The �nal step involves the calculation

of a similarity percentage from the pixel values in the local similarity map.

The new spatial similarity test is outlined step-by-step in Figure 3.1. The test starts by creating a

pixel image representation of both the data sets considered. The pixel image representation is obtained

di�erently for each spatial data type which is indicated by Figure 3.1. When dealing with point patterns, a

kernel density estimation is used to obtain the pixel image representation. For unmarked point patterns,

Diggle's edge corrected estimator is used as in Equation (2.10) explained in Section 2.4. For marked

point patterns with continuous marks, the Nadaraya-Watson smoother is used as in Equation (2.12) from

Section 2.4. In the case of discrete marks in a marked point pattern, kNN estimation is used to create the

pixel image representation as explained in Section 2.8. The pixel image representation for irregular lattice

data is slightly less involved as the pixel takes on the value of the spatial location (region) the centroid

falls in. This is the same for both continuous and discrete values. For regular lattice data, such as images,

are already in a pixel format and the �rst step is skipped in this case. For the geostatistical data, the

pixel image is obtained by using the well known interpolation method of Kriging from Section 2.7. The

second step of creating a local similarity map is done with direct comparison for pixel images containing

27
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Figure 3.1: Diagram explaining the structure of the proposed spatial similarity test.



CHAPTER 3. PROPOSED SPATIAL SIMILARITY TEST 29

discrete values and the SSIM index applied to each pixel for the continuous valued pixel images which is

explained in Section 2.5. The third step which involves the calculation of the �nal similarity measure is

done using the values in the local similarity map. This calculation is based on the �nal calculation of the

S-index from Andresen's spatial point pattern test as outlined in Section 2.6.

3.1 Step 1: Create a pixel image representation

In this step of the proposed spatial similarity test, we represent the two spatial data sets, X1 and X2 as

pixel images, Y1 and Y2. The resolution (that is, the number of pixels) is decided by the user before-hand.

For the purpose of this chapter, we consider only spatial data in two dimensions. Hence we work in R2.

Consider the spatial data sets in Figure 3.2. Figure 3.2(a) shows a geostatistical data set, Figure 3.2(b)

a lattice data set with irregular regions and Figure 3.2(c) an unmarked spatial point pattern. These data

sets are used throughout this section to explain the method of creating a pixel image representation. Take

note that although the window for the point pattern in Figure 3.2 is rectangular; this serves only an

example and the window may be any polygonal shape.

(a) (b) (c)

Figure 3.2: Three di�erent spatial data sets that are used as the example throughout this section. The

three data sets are each of a di�erent data type namely (a) geostatistical, (b) lattice with irregular regions

and (c) an unmarked spatial point pattern.

To obtain the pixel image representation, the �rst step divides the spatial domain, D, into an m × m

grid. Each grid cell represents a pixel. We then need to de�ne spatial locations at the centroids of each

of the M = m2 pixels as u = (u1,u2, . . . ,uM ). For illustration purposes, let us consider m = 7. Figure

3.3 shows the way in which the spatial domain, D, is divided into pixels for each data type. The most

intuitive way to obtain the pixels and the locations of the centres is to enclose the spatial domain with the

smallest rectangular window. The enclosed rectangular window is then divided into pixels. If the centre

of the pixel falls outside of the domain, the pixel has an empty value (or an NA value) for the pixel image

representation.

At each spatial location, uj for j = 1, 2, . . . ,M , a value for the corresponding pixel needs to be determined.
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(a) (b) (c)

Figure 3.3: Illustration of how the spatial domain for each data type is divided into pixels when m = 7.

The red dots represent the uj 's. (a) is a geostatistical data set, (b) is a lattice data set and (c) is a point

pattern data set. With the point patterns, the grey dots represent the xi's and with the geostatistical

data, the grey dots represent the si's. Recall that the centres of the grid cells are denoted as uj and the

spatial data points in a point pattern are denoted with xi. Also, the measurements of a geostatistical

data set are taken at the spatial locations denoted by si.

For each type of spatial data, this is done in a di�erent manner which is explained in the following

subsections.

3.1.1 Spatial point patterns

With a spatial point pattern, the pixel image representation is obtained by estimating the intensity of the

spatial point process, using a kernel density estimation. This is done by calculating Diggle's corrected

density estimate at the representative point (uj 's) of each pixel [6].

Diggle's corrected density estimate is used for the calculation as it outperforms the other estimators in

terms of the mean squared error [6]

λ̃D(uj) =

n∑
i=1

1

e(xi)
κ(uj − xi), (3.1)

where the kernel, κ(·), we use a bivariate Gaussian density f(d) = 1

2π|Σ|
1
2

exp
{
− 1

2dΣ−1d′
}
with Σ =

bandwidth ×I2. The bandwidth is the standard deviation of the kernel density and can be seen as the

smoothing parameter of the kernel. The larger the bandwith, the smoother the estimation. There are

di�erent methods of calculating the bandwidth. A popular bandwidth method is Diggle's bandwidth [6].

Although the calculation of Diggle's bandwidth assumes a Cox process, this is the bandwidth used for the

purpose of this mini-dissertation as choosing the optimal bandwidth is beyond the scope of the work.

Another advantage of Diggle's corrected density estimate, is the edge correction factor [6]. The edge
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correction factor in Equation (3.1) is

e(xi) =

∫
D

κ(xi − vk)dvk, (3.2)

which is estimated using numerical integration. This is done by dividing the spatial domain, D, into a

�ner g × g grid. It is important to note that this is a separate calculation as the calculation of the kernel

density estimate. The approaches are similar but should be treated separately.

Again, the centroids of the Q = g2 grid cells is used as the spatial locations, v = (v1,v2, . . . ,vQ). Then,

the calculation of Equation (3.2) through numerical integration involves that for each observation in the

spatial point pattern, xi, i = 1, . . . , n, we calculate the di�erences, de = (d1,d2, . . . ,dQ), between the

coordinates of the point xi and the spatial locations vk, k = 1, 2, . . . , Q. The edge correction factor is

then calculated as

e(xi) =
area(D)

Q

Q∑
k=1

f(dk), (3.3)

where f(dk) is again the bivariate Gaussian density.

(a) (b)

Figure 3.4: Resulting pixel image representations of the unmarked point pattern in Figure 3.2(c) with

two di�erent resolutions. (a) m = 7 and (b) m = 20.

Figure 3.4 is the resulting pixel image representation when m = 7 in Figure 3.4(a) and m = 20 in Figure

3.4(b) from applying Equation (3.1). It can be seen that the pixel image representations have similar

appearances with Figure 3.4(b) with much more detail. From this we can conclude that as m increases,

more smaller detail in the patterns is visible.

However, not all spatial point patterns are unmarked. In the case of a marked spatial point pattern we

need a slightly di�erent approach as the spatial data points have a mark that needs to be taken into

account. As mentioned is Section 2.3, these marks can either be continuous or discrete.
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When the marked spatial point pattern has continuous marks, we estimate the intensity of the marked

spatial point process using the Nadaraya-Watson smoother with Diggle's edge correction factor [6]

m̃D(uj) =

n∑
i=1

miκ(uj − xi)/e(xi)

n∑
i=1

κ(uj − xi)/e(xi)
, (3.4)

where the kernel, κ(·) is again the bivariate Gaussian density, mi denotes the real-valued mark of point

xi and e(xi) is the edge-e�ect factor de�ned Equation (2.11).

With a marked spatial point pattern that has discrete marks, the Nadaraya-Watson smoother in Equation

(3.4) is not valid as the marks are now categorical instead of real-valued. The approach to obtain a pixel

image representation for a marked spatial point pattern with discrete marks involves a k nearest neighbour

classi�cation as discussed in Section 2.8.

A prediction is made at each grid centre, uj . Therefore, the distance between each spatial data point and

the grid centres are calculated

di(uj) = ‖xi − uj‖. (3.5)

The predicted value is the modal value of the k closest points to the spatial location uj . The choice of k

is completely up to the user. Care should be taken that the value for k should be strictly less than the

number of spatial data points. For the purpose of this mini-dissertation, the value of k is chosen as 10%

of the number of points in the pattern.

3.1.2 Lattice data

Compared to spatial point patterns, there is no intensity to be estimated with lattice data. To obtain a

pixel image representation of lattice data, we again divide the spatial domain into a grid. Each grid cell

takes on the value of the region in which its centroid falls.

Before dividing the spatial domain into a grid, we �nd the smallest rectangular window that encloses the

entire spatial domain. Then this window is divided into a grid and representative points for each pixel is

obtained. This is illustrated in Figure 3.3.

The spatial location (area) of the lattice pattern in which uj is contained should be determined. If uj ∈ si

then uj = Z(si). Also, if uj /∈ D, then the grid block can be omitted. Whether the Z(si) values are

discrete or continuous, the method stays the same.

Figure 3.5 is the resulting pixel image representations with m = 7 in Figure 3.5(a) and m = 20 in Figure
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(a) (b)

Figure 3.5: Resulting pixel image representation of the lattice data in Figure 3.2(b) with two di�erent

resolutions. (a) m = 7 and (b) m = 20.

3.5(b). The same detail can be seen in both the pixel image representations, however in Figure 3.5(b),

the di�erent spatial locations are more visible than in Figure 3.5(a).

3.1.3 Geostatistical data

With geostatistical data, it is observed at sampled locations, however the location of measurement is

considered �xed and the value observed a random variable [13]. With geostatistical data in general, we

are interested in estimating a continuous map throughout the entire spatial domain, which is obtained

with an interpolation method called Kriging, for example by predicting the unobserved values [13]. For

the pixel image representation of a geostatistical data set, we divide the spatial domain into pixels and

then Krige at each uj as outlined in Section 2.7.

3.2 Step 2: Create a similarity map

The SSIM [44] was �rst designed as a quality index for images and then later on used to test the similarity

between images. In this step of our proposed similarity test, we use the SSIM index to obtain a similarity

map between the two spatial data sets. For this, we use the two pixel images constructed for the spatial

data sets in the previous step as the input images for this algorithm. For illustration purposes, let us

consider the two pixel images in Figure 3.6. Each of the pixel images has 49 pixels with one value for each

pixel. For the calculation of the SSIM, the values of the pixels should be real-valued and not discrete.

The images are ultimately considered in the calculations as an array rather than an image.

The SSIM algorithm [44] uses a sliding window approach to move across the image pixel-by-pixel simul-

taneously for the two images. For each sliding window, an SSIM value is calculated for the centre pixel.

In our approach, we always use an odd number of pixels as the length and width. This is so that the pixel

considered is right at the centre of the sliding window. For this example, we consider a sliding window of
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(a) (b)

Figure 3.6: Two sample pixel images for illustration.

size 3× 3.

Figure 3.7 shows the two pixel images from Figure 3.6 each with two di�erent sliding windows. The red

sliding windows represent the scenario when the centre pixel is close to the border causing the sliding

window to have empty pixels. In this case, we only consider the pixels of the sliding window overlapping

with the pixel image, the rest of the pixels are omitted. The second scenario, shown by the blue sliding

window, is when the centre pixel is closer to the middle of the image.

(a) (b)

Figure 3.7: Two examples of where the sliding window may occur. The red window is an example of what

happens when the centre pixel of the sliding window occurs on the border of the image while the blue

window is an example of a centre pixel in the centre of the image.

The next step in the SSIM algorithm is to calculate an SSIM value for the centre pixel in the sliding
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window. As mentioned before in Section 2.5, the SSIM consists of three terms, namely contrast, structure

and luminance, which are calculated separately.

The values from the sliding window are used as a vector of values for each image. Consider the example

and the sliding windows indicated in Figure 3.7.

To calculate the three terms for the SSIM, we need the mean, variance and covariance of the vectors of

pixel values. The means for the red sliding window are calculated as: µx1 = 0.5785 and µx2 = 0.5165.

The means for the blue sliding window are calculated as: µx1 = 0.426 and µx2 = 0.2894444. The

variance and covariance values for the red sliding window are as follows: σ2
x1

= 0.1433, σ2
x2

= 0.0307 and

σx1,x2 = −0.0013. The variance and the covariance values for the blue sliding window are as follows:

σ2
x1

= 0.0403, σ2
x2

= 0.0266 and σx1,x2 = −0.0032.

The last values needed to calculate the luminance, contrast and structure terms are the constants. As

mentioned in Section 2.5, the constants are used in order to avoid inconsistency [45]. The constants are

C1 = (K1L)2, C2 = (K2L)2 and C3 = C2

2 where we choose K1 = 0.01 and K2 = 0.03 [45]. Also, L is the

range of pixel values in the image. It is the di�erence between the maximum pixel value from the two

images and the minimum pixel value. The three terms are calculated separately and multiplied together

for the SSIM value.

Luminance: `(x1,x2) =
2µx1µx2 + C1

µ2
x1
µ2
x2

+ C1
(3.6)

Contrast: c(x1,x2) =
2σx1

σx2
+ C2

σ2
x1
σ2
x2

+ C2
(3.7)

Structure: s(x1,x2) =
2σx1,x2

+ C3

σx1
σx2

+ C3
. (3.8)

Figure 3.8 shows the SSIM values for each of the pixels in the image. The result in Figure 3.8 forms the

local similarity map between the two pixel image representations obtained from Step 1. In the case of

a non-rectangular pixel image, that is when some of the pixel values are omitted, the calculation is the

same as for the rectangular pixel image. The di�erence being that if a pixel values are omitted from the

pixel image representations, the corresponding pixel in the local similarity map is also omitted.

In the case of discrete, speci�cally categorical, pixel values, the SSIM is not sensible to compare the

images. In such a case, we compare the pixel values directly. This means that if the pixel in position (i, j)

from the �rst image is the same as the corresponding pixel from the second image, then the pixel in the

same position in the similarity map has a value of 1. If the two pixels are not the same, the pixel in the

similarity map has a value of -1.
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Figure 3.8: The resulting SSIM values for each pixel.

3.3 Step 3: Calculate global similarity index

In this �nal step of the proposed spatial similarity test, we calculate the percentage of similarity between

the two spatial data sets. Up to now in the test, we have represented the di�erent spatial data sets

as a pixel image. This is done di�erently for each of the spatial data types. The reason for the pixel

image representation is so that di�erent spatial data types is transformed to a general type that eases

the following steps. In the next step, the pixel images created in the �rst step are used to create a local

similarity map.

From the similarity map in the second step, we calculate a global similarity index that is the �nal result

of the test. In the case of continuous pixel values in the local similarity map, the global similarity is

calculated similarly as Andresen's S-Index in Equation (2.21),

GS =

M∑
j=1

SSIM(uj)

M
, (3.9)

where SSIM(uj) is the SSIM value for the pixel with centroid uj and M the number of pixels in the

pixel image. SSIM(uj) is a non-binary input for Andresen's S-Index. This is expected to improve the

accuracy of the test by providing a mean similarity value instead of a proportion of similar areas within

the domain.

In the case of the similarity map containing discrete values, the global similarity is calculated as a pro-

portion of similar values as indicated by the local similarity map.
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3.4 Conclusion

In this chapter, the proposed spatial similarity test was presented. The test consists of three steps and is

generic by design to handle any type of spatial data. The �rst step in this test is to create a pixel image

representation from each of the two spatial data sets being compared. This step is the most involved of

the three steps as it is done di�erently for each type of spatial data. In the second step, a local similarity

map is created from the two pixel images and the third step involves the calculation of a similarity index

using the similarity map. The calculation of the similarity index in step three is based on the calculation

of the S-index from Andresen's spatial point pattern test.



Chapter 4

Simulation study

In this chapter, a simulation study is conducted to test this method on the various spatial data types. This

is a popular method to test a statistical method [34]. It involves the creation of data with the main reason

that the user knows what the outcome of the method should be. In our simulation study, we simulate

several data sets for each of the spatial data types considered. Each data type is handled separately to

see how this method reacts in each case.

Seeing that we developed a method to test the similarity of spatial data, we want to simulate spatial data

sets to compare that are known to be either 80% or 90% identical. To do this, we simulate several spatial

data sets to be used as X1. For X2, a certain percentage of the data points are replaced with some other

data points. After this, we expect the comparison between each pair of data sets, should yield an answer

of about 80% or 90%.

Recall that the �rst step of the test is to obtain a pixel image representation of the spatial data sets. As

mentioned in Chapter 3, the resolution of the pixel image representation should be decided by the user

before-hand. In our simulation, we are also interested to explore the in�uence of the resolution of the

pixel image on the outcome of the test, as it is user-de�ned. For this reason we repeat the test for each

comparison for three di�erent resolutions. We use a 10× 10 image, 20× 20 image and a 50× 50 image.

We start with the geostatistical simulations, followed by the lattice data and then the di�erent point

patterns. A detailed discussion is included at the end of the chapter.

38



CHAPTER 4. SIMULATION STUDY 39

4.1 Geostatistical simulations

For the geostatistical simulations, a built-in R data set is used. This data set is contained within the sp

package [8, 37] and is called meuse. An illustration of the data set is given in Figure 4.1. The data set

consists of 155 spatial locations with six di�erent measurements taken at each point. Measurements were

taken of metals in the topsoil alongside the Meuse river �owing through France, Belgium and Netherlands.

(a) (b)

Figure 4.1: Examples of two X1 geostatistical data sets of two metals observed in the top soil alongside

the Meuse river. (a) Measurements of the copper and (b) Measurements of the lead.

The two data sets to compare are obtained by taking the spatial locations and each of the measurement

(separately) as the data sets used as X1 in the test. Then, the X2 data set is obtained by randomly

removing and replacing either 10% or 20% of the locations, attributes or both. In the case where the

spatial locations are replaced, either 10% or 20% of the locations within the data set is replaced with

other simulated spatial points. The attributes remain unchanged. When the attributes are changed,

the spatial locations remain the same but new measurements are simulated as random uniform numbers.

These values are simulated to be between the minimum and maximum of the original values. When both

the locations and the attributes are changed, the above mentioned is done simultaneously.

Figure 4.2 is a visual representation of the results from applying the proposed spatial similarity test to

the geostatistical simulations for di�erent pixel image resolutions. Figure 4.2(a), (c) and (e) shows the

results from all the simulations where X1 and X2 are 80% identical and Figure 4.2(b), (d) and (f) shows

the results from all the simulations where X1 and X2 are 90% identical. Figure 4.2(a) and (b) are the

visual representation of the results where the spatial locations are changed in X2. Figure 4.2(c) and (d)

are the visual representation of the results where the attributes are changed and Figure 4.2(e) and (f) are

the visual representation of the results where both the spatial locations and the attributes are changed.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Visual representation of the results from applying the proposed spatial similarity test to

the geostatistical simulations to di�erent pixel image resolutions. (a), (c) and (e) represent the results

where the geostatistical data sets are 80% identical and (b), (d) and (f) represent the results where the

geostatistical data sets are 90% identical. (a) and (b) represent the results of the geostatistical simulations

where the spatial locations are changed while all the attributes remained the same. (c) and (d) represent

the results of the geostatistical simulations where the attributes are changed while all the spatial locations

remained the same. (e) and (f) represent the results of the simulations where both the spatial locations

and the attributes are changed. The mean for each pixel image resolution group are indicated with a star.
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4.2 Lattice data simulations

To simulate lattice data sets, we use the South African borders as the spatial domain and the spatial

locations as the municipalities in South Africa. This is shown in Figure 4.3. The values for each spatial

location is simulated as random uniform numbers. For these values, there are three groups where the

range of values di�er. The �rst group of data sets has simulated values between 0 and 50, the second

between 0 and 100 and the third between 0 and 1000. To obtain the testing data sets, either 10% or

20% of the values are removed and replaced with other random uniform numbers within the same range.

Figure 4.4(a) is a visual representation of the results from applying the proposed spatial similarity test

to the lattice data sets which are 80% identical for di�erent pixel image resolutions. Figure 4.4(b) is the

representation of results for the lattice data sets which are 90% identical.

Figure 4.3: The spatial domain which is used for the simulation of the lattice data sets. The South African

borders are used as the spatial domain and the separate municipalities as the spatial locations.

(a) (b)

Figure 4.4: Visual representation of the results from applying the proposed spatial similarity test to the

lattice simulations to di�erent pixel image resolutions. (a) represents the results from the data sets being

compared that are 80% identical and (b) represents the results from the data sets being compared that

are 90% identical. The mean for each pixel image resolution group are indicated with a star.
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4.3 Point pattern simulations

When simulating spatial point patterns, it is important to cover many possible scenarios. Therefore, we

simulate regular as well as clustered spatial point patterns on both a rectangular and polygonal window.

The spatial point patterns are simulated with di�erent intensities (constant and non-constant). Also, for

three di�erent pattern sizes: Small (±100 points), Medium (±500 points) and Large (±1000 points).

The simulations of the spatial point patterns are done by using built-in R functions. The function that

we use to simulate the regular spatial point patterns is the rSSI function [6] while the clustered spatial

point patterns are simulated with the rMatClust function [6].

To add more variety to the simulation study, we use three approaches for the simulations. The �rst

approach being to create noisy patterns. In this approach, the regular and clustered point patterns is

simulated with the above functions. When we replace some of the data points to create X2, the spatial

data points is replaced with any other simulated points. In the case of clustered spatial point patterns, it

creates visible noise within the pattern.

The goal of the second simulation approach is to create spatial point patterns with strong clusters. For

this approach, the centres are simulated as a regular spatial point pattern with a large inhibition distance.

The clusters are then simulated as discs around these points. The replaced data points are then simulated

to be contained within these strong clusters. With the third approach, we create a comparison with

uneven patterns. This happens by only removing either 10% or 20% of the spatial data points from X1

to X2.

4.3.1 Unmarked point patterns

(a) (b) (c)

Figure 4.5: Examples of some of the X1 data sets for simulated unmarked point patterns. (a) and (b)

are simulations using the �rst method of simulations with (a) being the regular pattern and (b) the noisy

clustered pattern. (c) is a simulation from the second method of simulations where the aim is to have

strict clusters in the pattern.
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For the unmarked spatial point patterns, the above simulations are used as is. The method is applied

to each of the X1 and X2 pairs, Figure 4.5 shows three examples of X1 data sets. Figure 4.5(a) and (b)

are from the �rst method of simulations with Figure 4.5(a) a regular point pattern and (b) a clustered

point pattern which contains some noise in between the clusters. Figure 4.5(c) is an example of the second

method of simulations with the strict clusters. Hence, there is no noise between the clusters. The replaced

points in X2 are simulated to be again within the strict clusters. The data sets from the third method of

simulations are similar to the simulations from the third method.

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Visual representation of the results from applying the proposed spatial similarity test to the

point pattern simulations to di�erent pixel image resolutions. (a), (c) and (e) represent the results where

the unmarked point pattern data sets are 80% identical and (b), (d) and (f) represent the results where

the unmarked point pattern data sets are 90% identical. (a) and (b) represent the results of the �rst

method of simulations. (c) and (d) represent the results of the second method of simulations. (e) and (f)

represent the results of the third method of simulations. The mean for each pixel image resolution group

are indicated with a star.
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Figure 4.6(a) and (b) are visual representations of the results from the �rst method of simulations. Figure

4.6(c) and (d) are visual representations of the results from the second method of simulations. Figure

4.6(e) and (f) are visual representations of the results from the third method of simulations.

4.3.2 Continuous marked point patterns

The simulation of the marked point patterns is done by taking the unmarked point patterns from the

�rst method of simulations and simply adding a continuous value for the mark. This continuous value is

simulated as random uniform numbers. For these values, there are three groups where each group have a

di�erent range of values. For the �rst group, the random uniform numbers range from 0 to 20. For the

second group, they range from 0 to 50. And for the last group, they range from 0 to 100. Figure 4.7 is a

continuous marked pattern with marks between 0 and 50.

Figure 4.8 is a visual representation of the results from applying the proposed similarity test to the

continuous marked point pattern simulations for di�erent pixel image resolutions. Figure 4.8(a) and (b)

are visual representations of the results where the locations were changed.Figure 4.8(c) and (d) are a

visual representation of the results where the attributes are changed.

Figure 4.7: Example of one of the point patterns with continuous marks.
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(a) (b)

(c) (d)

Figure 4.8: Visual representation of the results from applying the proposed spatial similarity test to the

continuous marked point pattern simulations to di�erent pixel image resolutions. (a) and (c) represent

the results where the marked point pattern data sets are 80% identical and (b) and (d) represent the

results where the marked point pattern data sets are 90% identical. (a) and (b) represent the results

of the marked point pattern simulations where the spatial locations are changed while all the attributes

remained the same. (c) and (d) represent the results of the marked point pattern simulations where the

attributes are changed while all the spatial locations remained the same. The mean for each pixel image

resolution group are indicated with a star.

4.3.3 Discrete marked point patterns

The simulation of the marked point patterns are done by taking the unmarked point patterns from the

�rst method of simulations and simply adding a discrete value for the mark. This value is simulated so

that the pattern has either two, three or four di�erent categories. Figure 4.9 is one of the simulated point

patterns with discrete marks used. This pattern has three categories.

Figure 4.10 is a visual representation of the results from applying the proposed spatial similarity test to

the simulations with discrete marks. This is done for di�erent pixel image resolutions. Figure 4.10(a) and

(b) are visual representations of the results where the locations were changed.Figure 4.10(c) and (d) are

a visual representation of the results where the attributes are changed.
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Figure 4.9: Example of one of the point patterns with discrete marks.

(a) (b)

(c) (d)

Figure 4.10: Visual representation of the results from applying the proposed spatial similarity test to

the discrete marked point pattern simulations to di�erent pixel image resolutions. (a) and (c) represent

the results where the marked point pattern data sets are 80% identical and (b) and (d) represent the

results where the marked point pattern data sets are 90% identical. (a) and (b) represent the results

of the marked point pattern simulations where the spatial locations are changed while all the attributes

remained the same. (c) and (d) represent the results of the marked point pattern simulations where the

attributes are changed while all the spatial locations remained the same. The mean for each pixel image

resolution group are indicated with a star.
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4.4 Comparison of resolution choice

As can be seen from Figure 4.2, 4.4, 4.6, 4.8 and 4.10, the means of the di�erent pixel image resolutions

seem to be close to each other. If it is the case that the means can be classi�ed as equal, we can consider

this proposed spatial similarity test as not sensitive to the resolution of the pixel image representation.

We test the hypothesis of equal means across the three groups to the alternative hypothesis of at least

one of the means being unequal to the rest of them.

The Kruskal-Wallis test was applied to the results of the newly proposed similarity test to test whether

the means of the di�erent pixel image resolutions are equal. As the assumption of normality is rejected

in all the cases at a 5% level of signi�cance, the Kruskal-Wallis test was applied instead of an ANOVA

test. Table 4.1 shows the p-values of the Kruskal-Wallis test.

Table 4.1: P-values of the Kruskal-Wallis test.

P-value (80%) P-value (90%)

Geostatistical data

Locations changed 0.9076 < 0.0001

Attributes changed 0.8991 < 0.0001

Both changed 0.971 < 0.0001

Lattice data 0.9805 0.6028

Unmarked point patterns

Method one 0.9047 0.832

Method two 0.923 0.9153

Method three 0.935 0.9456

Continuous marked

Location changed 0.8263 0.7601

Attributes changed 0.8005 0.7765

Discrete marked

Location changed 0.9997 0.9457

Attributes changed 0.9789 0.9688

From Table 4.1, it can be clearly seen that the hypothesis of equal means cannot be rejected in all the

cases except for the geostatistical simulations that are 90% identical. From Figure 4.2(b), (d) and (f),

it is visually clear that the mean of the results for the 10 × 10 pixel image resolution is lower than the

means for the other two groups. From doing a pairwise Wilcoxon test it is concluded that the mean for
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the 10 × 10 pixel image resolution di�ers from the other two means at a 5% level of signi�cance, while

the other two groups (20× 20 and 50× 50) does not di�er signi�cantly from each other at a 5% level of

signi�cance.

Table 4.2: Summary statistics of the results from the proposed spatial similarity test.

Identical Mean Median Standard Coe�cient

Deviation of variation

Geostatistical data

Locations changed 80% 0.7220 0.7645 0.1310 0.1814

90% 0.8202 0.8577 0.1281 01562

Attributes changed 80% 0.6610 0.7047 0.1712 0.2590

90% 0.7523 0.8144 0.1614 0.2145

Both changed 80% 0.6302 0.6691 0.1495 0.2372

90% 0.7302 0.7740 0.1531 0.2097

Lattice data 80% 0.7740 0.7846 0.0751 0.0970

90% 0.9043 0.9079 0.0394 0.0436

Unmarked point patterns

Method one 80% 0.8195 0.8166 0.0667 0.0814

90% 0.8992 0.9060 0.0536 0.0596

Method two 80% 0.9654 0.9755 0.0329 0.0341

90% 0.9763 0.9847 0.0266 0.0272

Method three 80% 0.9409 0.9598 0.0591 0.0628

90% 0.9732 0.9815 0.0252 0.0259

Continuous marked

Locations changed 80% 0.5066 0.5736 0.2344 0.4627

90% 0.6057 0.7178 0.2596 0.4286

Attributes changed 80% 0.7571 0.7656 0.1074 0.1419

90% 0.8771 0.8860 0.0760 0.0866

Discrete marked

Locations changed 80% 0.6624 0.6750 0.1187 0.1792

90% 0.7514 0.7700 0.1104 0.1469

Attributes changed 80% 0.7550 0.7600 0.0942 0.1248

90% 0.8399 0.8500 0.0785 0.0935
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From the above, it can be concluded that the proposed spatial similarity test is not sensitive to the user-

de�ned choice of the resolution of the pixel image representation. Seeing that the mean from smaller

resolution for the geostatistical data di�ers from the rest of the means, while the �ner resolutions did

not di�er from each other, it is advisable to rather use a �ner pixel image resolution when working with

geostatistical data.

4.5 Discussion

For a deeper look into the results from the proposed spatial similarity test for the di�erent spatial data

sets, we consider some summary statistics such as the mean, median, standard deviation and coe�cient

of variation. These values are given in Table 4.2. The method can be classi�ed as accurate if the mean or

the median is close to the known similarity of the data sets with a rather small standard deviation and

coe�cient of variation.

When looking at the geostatistical summary statistics in Table 4.2, it can be seen that the means and

medians of the results do tend to the true similarity of the data sets with the values for the 80% similar

spatial data pairs lower than for the 90% similar data. However, the standard deviations and the coe�-

cients of variation are still large. The inaccuracy of this data type can be accounted for due to the method

of Kriging that may be too general for the type of data used. A more optimal model for the Kriging may

yield to better results [32].

From Table 4.2, the proposed spatial similarity test seems to compare the similarity between two lattice

data sets quite accurately with the means and medians of the results close to the theoretical values. The

standard deviations and the coe�cients of variation are also small which is also an indication that this

method performs well in the case of lattice data.

For the unmarked point patterns, it can be seen in Table 4.2 that the method does perform well on the

simulations from the �rst method. This can be said since the means and the medians of the results

are close to the theoretical values and the standard deviations and the coe�cients of variation are small.

However, for the strong clustered patterns (second method of simulations) and the unequal patterns (third

method of simulations), this test yields large similarity values. For the second method of simulations, it

may be the case that the way in which the pixel image representations are obtained may not be designed

to pick up such small di�erences in the pattern. Recall that the second method of simulations is designed

to keep the two patterns visually as similar as possible by simulating the original points as well as the

replaced points within the same clusters. This case is highly theoretical and will possibly not occur in real

life. In the third method of simulations, some of the points are removed to obtain the X2. The reason the

method may yield such high similarity values may be in the way in which the pixel image representations
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are obtained.

This proposed spatial similarity test can still be improved to perform better on marked spatial point

patterns with continuous values as the summary statistics in Table 4.2 show that the mean and the

median is far from the theoretical values with large standard deviations and coe�cients of variation. In

the case where the locations of the points are changed, this method does not perform ultimately. This

may be again due to the way in which the pixel image representation are obtained. When the attributes

of some of the points are changed, this method performs better again. However, in reality it will happen

more often that we have a scenario that the attributes are changed than the locations.

In the case of marked spatial point patterns with discrete values, the method performs better when the

attributes are changed than when we change the locations. The summary statistics in Table 4.2 indicated

closer means and medians to the theoretical values when the attributes are changed. The standard

deviation and coe�cient of variation is also smaller.

4.6 Conclusion

In this chapter, the proposed spatial similarity test was tested using a simulation study. Each type of

spatial data, considered in this mini-dissertation, was simulated. For each comparison, an X1 and X2 data

set were simulated. As we are interested in testing a similarity test, the two data sets being compared are

simulated to be either 80% or 90% identical. Therefore we expect the test to result in either an 80% or

90% result.

The resolution for the pixel images are user-de�ned and therefore we were interested in providing a

guideline for the user as to how to pick an appropriate resolution. The test for the simulations was

performed on di�erent pixel image resolutions and evaluated with a Kruskal-Wallis hypothesis test. It

was concluded that the proposed spatial similarity test is not sensitive for the choice of the resolution of

the pixel image. The only exception is in the case of the geostatistical simulations where the mean for

the 10×10 pixel image resolution was signi�cantly di�erent from the means of the other two pixel image

resolutions. It is then suggested that a �ner pixel image resolution should be considered in the case of

geostatistical data.

The proposed spatial similarity test works well on lattice data and in some unmarked point pattern cases.

Some work can still be done on to improve the test on geostatistical data and marked point patterns.



Chapter 5

Application

5.1 Study area and data

A data set provided by Lightstone1,2 consists of the evaluation prices of 1018 properties in the City of

Cape Town and City of Johannesburg metros. In both these metros, there are two blocks of properties

and each property has three evaluation prices, one for each 2017, 2018 and 2019. We apply the proposed

spatial similarity test on each block within the two metros.

(a) (b)

Figure 5.1: Locations of the properties in the provided data set within the two metros. Each metro

consists of two blocks of properties. (a) The City of Cape Town and (b) The City of Johannesburg.

Figure 5.1(a) shows the property locations of the two blocks in the City of Cape Town metro and Figure

5.1(b) is the property locations of the two blocks in the City of Johannesburg. It is evident that property

locations for the entire metro is not included in both the metros. Therefore, the four blocks of properties

are handled separately. The window of each block of properties is obtained by taking the enclosing convex

1https://lightstone.co.za/
2Data was provided by Lightstone. The right to use this data was approved by the NAS ethics committee NAS078/2020.
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hull around the points.

Figure 5.2(a)-(d) are separate spatial point patterns for the four blocks of properties. The prices of

these properties are of interest over the three years. The price of each property is considered as the

continuous mark in a marked spatial point pattern. Figure 5.2(a) and (b) are the two blocks in the City

of Johannesburg metro and Figure 5.2(c) and (d) are the two blocks in the City of Cape Town metro.

(a) (b) (c) (d)

Figure 5.2: The four separate blocks of property locations that is considered in this application section.

(a) and (b): Two blocks in the City of Johannesburg metro and (c) and (d): Two blocks in the City of

Cape Town metro.

5.2 Analysis

Figure 5.3(a)-(d) is density plots of the property prices over the di�erent years within the four blocks of

properties. Figure 5.3(a) is the density plot of the property prices in the �rst block of properties in the

City of Johannesburg metro and Figure 5.3(b) is the second block of properties. These blocks consist of

423 and 120 properties respectively. Figure 5.3(c) is the density of the property prices in the �rst block

of properties in the City of Cape Town metro. This block consists of 168 properties. Figure 5.3(d) is the

property prices in the second block of 307 properties.

Three comparisons are made for each of the four blocks. The �rst comparison is between the property

prices of 2017 and the property prices of 2018. While the second comparison is between the prices of

2018 and 2019 and the third comparison is between the prices of 2017 and 2019. After the �rst step of

obtaining the pixel image representations is done for the three comparisons is each of the four blocks, we

create a local similarity map in the second step of the proposed spatial similarity test, see Figure 5.4.

Figure 5.4 consists of the local similarity maps obtained by the proposed spatial similarity test.

These local similarity maps are useful in the sense that they allow the user to see where the potential

di�erences lie between the two spatial data sets considered. They can also be used to identify the areas

in the spatial data sets that have a high similarity between them. The global similarity index, from the

third step, is calculated by simply taking the mean of the values from the local similarity map.

For the purpose of this chapter, the pixel image representations used have a resolution of 30 × 30. The
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(a) (b)

(c) (d)

Figure 5.3: Density plots for the property prices for the di�erent years within the four blocks of properties.

(a) The property prices for the �rst block in Johannesburg and (b) the second block. (c) The property

prices in the �rst block of properties in Cape Town and (d) the second block.

bandwidth used is Diggle's bandwidth [6]. The windows of the patterns are the same as displayed in

Figure 5.2(a)-(d) which is obtained by taking the enclosed convex hull around the points. The sliding

window in the SSIM calculation is chosen to be of size 11 × 11. This choice is made with reference to

[10, 45].

The similarity maps show a high similarity between the property prices across years of three of the blocks

of properties (Johannesburg Block 1 and 2, Cape Town Block 2). Lower similarity is observed for all three

of the comparisons of the �rst block of properties in the City of Cape Town metro.

The global similarity indices can be seen in Table 5.1. These values support the observations from the

similarity maps in Figure 5.4. It also indicated that something signi�cant happened with the property

prices from the �rst block of the City of Cape Town metro.

When comparing the similarity of the property prices between the di�erent areas, we need to take a

slightly di�erent approach. The �rst step of the test where the data sets are represented as pixel images
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City of Johannesburg City of Cape Town

Block 1 Block 2 Block 1 Block 2
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Figure 5.4: Local similarity maps for each comparison done on the four blocks of property prices by year.

stays the same. When calculating the local similarity map, we �rst determine which pixels of the pixel

images contain values in both representations. In the case where either none of them or only one of them

contains values, the pixel are omitted from the local similarity map. The calculation of the �nal similarity

measure stays the same again.

With the comparison of spatial data with di�ering windows, it should be taken into account that the areas

cannot always be compared as is. Therefore, we consider numerous rotations of one of the data sets before

applying the proposed spatial similarity test. This gives us a better idea of the spatial similarity between

the two data sets observed over di�erent areas as compared to only looking at one of the rotations. The

�rst data set in the comparisons stays as is whereas the second data set is rotated at 0◦, 45◦, 90◦, 135◦,

180◦, 225◦, 270◦ and 315◦.

We consider the following comparisons between the areas:

1. Johannesburg Block 1 vs Johannesburg Block 2

2. Johannesburg Block 1 vs Cape Town Block 1

3. Johannesburg Block 1 vs Cape Town Block 2

4. Johannesburg Block 2 vs Cape Town Block 1
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City of Johannesburg City of Cape Town

Comparison Block 1 Block 2 Block 1 Block 2

2017 vs 2018 0.8696 0.9636 0.7371 0.9216

2018 vs 2019 0.9105 0.8773 0.4182 0.8407

2017 vs 2019 0.7969 0.8527 0.3183 0.8342

Table 5.1: Similarity indices from the newly proposed similarity test

5. Johannesburg Block 2 vs Cape Town Block 2

6. Cape Town Block 1 vs Cape Town Block 2

Table 5.2 contains the results from applying the proposed spatial similarity test to the property prices

between the four di�erent blocks on all the rotations. From this, it can be concluded that there exists

di�erences between the property prices among the blocks. It can also be seen that although there are slight

di�erences in the results between the rotations, the values are close to each other. It will be bene�cial to

do a more in depth study on the optimal rotations when comparing spatial data on di�erent domains.

(a) (b) (c)

Figure 5.5: Local similarity maps of three comparisons whose results are in Table 5.2. (a) Comparison of

the second block in Johannesburg and the second block in Cape Town for the year 2017 where none of

the data sets are rotated. (b) Comparison of the �rst block in Johannesburg and the �rst block in Cape

Town for the year 2018 where the Cape Town block is rotated 180◦. (c) Comparison of the �rst block in

Cape Town and the second block in Cape Town for the year 2019 where the second block in Cape Town

is rotated 45◦.

Three local similarity maps from applying the proposed spatial similarity test on the six comparisons

and the di�erent rotations are shown in Figure 5.5. Figure 5.5(a) is the comparison of the second block

in Johannesburg and the second block in Cape Town for the year 2017 where none of the data sets are

rotated. Figure 5.5(b) is the comparison of the �rst block in Johannesburg and the �rst block in Cape
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Town for the year 2018 where the Cape Town block is rotated 180◦. Figure 5.5(c) is the comparison of

the �rst block in Cape Town and the second block in Cape Town for the year 2019 where the second block

in Cape Town is rotated 45◦.

Table 5.2: Results from applying the proposed similarity test on the property prices between four di�erent

blocks in the data set. The largest values for each rotation and year is shown in italics.

Comparison

Rotation Year 1 2 3 4 5 6

0◦ 2017 0.0565 0.1204 0.0729 0.0718 0.0719 0.0333

2018 0.0571 0.1662 0.0449 0.0695 0.0678 0.0431

2019 0.0498 0.1725 0.0463 0.0629 0.0549 0.1105

45◦ 2017 0.0511 0.0655 0.0472 0.0843 0.0795 0.1104

2018 0.0430 0.0741 0.0176 0.0776 0.0707 0.1062

2019 0.0357 0.1258 0.0308 0.0667 0.0631 0.1216

90◦ 2017 0.0343 0.0000 0.0533 0.0807 0.0665 0.0522

2018 0.0323 0.0503 0.0501 0.0768 0.0754 0.0684

2019 0.0291 0.0690 0.0905 0.0707 0.0647 0.0473

135◦ 2017 0.0743 0.0381 0.0000 0.0663 0.0928 0.0988

2018 0.0735 0.1300 0.0491 0.0662 0.0855 0.0532

2019 0.0548 0.1347 0.0165 0.0520 0.0667 0.0433

180◦ 2017 0.0398 0.1200 0.0795 0.0934 0.1186 0.0777

2018 0.0374 0.1678 0.0668 0.0834 0.1291 0.0868

2019 0.0328 0.1607 0.0647 0.0712 0.0969 0.1036

225◦ 2017 0.0255 0.0398 0.0314 0.0791 0.1183 0.0640

2018 0.0257 0.0796 0.0844 0.0786 0.1202 0.0939

2019 0.0229 0.0450 0.0672 0.0755 0.0974 0.0845

270◦ 2017 0.0550 0.1041 0.0458 0.0731 0.0232 0.0159

2018 0.0476 0.1538 0.0448 0.0713 0.0227 0.0161

2019 0.0370 0.1670 0.0326 0.0581 0.0238 0.0484

315◦ 2017 0.0518 0.0753 0.0000 0.0831 0.0275 0.0851

2018 0.0440 0.0808 0.0000 0.0768 0.0263 0.0851

2019 0.0370 0.1335 0.000 0.0665 0.0196 0.0896
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5.3 Conclusion

In this chapter, the proposed spatial similarity test was applied to property prices in Cape Town and

Johannesburg. Two blocks of properties were considered separately in each city. The proposed spatial

similarity test was used to test the similarity of property prices within each block between 2017 and 2018,

2018 and 2019 and lastly 2017 and 2019. High similarity is observed between the property prices across

the years for the two block of properties in Johannesburg and one block of properties in Cape Town. Low

similarity is observed between the property prices of di�erent years for one block of properties in Cape

Town.

This test was also applied to test the spatial similarity of the property prices between the blocks of

properties. Di�erent rotations of X2 were considered. Low similarity was observed for these comparisons.

From Figure 5.3(a) and (b), the property prices are relatively similar between the di�erent years. This

can also be seen in the similarity maps in Figure 5.4(a) and (b) which indicates a high similarity. Figure

5.3(c) and (d) shows that the property prices for these properties di�er between the years. This relates

to Figure 5.4(c) that also indicates low similarity between the property prices. However, Figure 5.4(d)

indicates a higher similarity than expected after seeing the density plot. This indicates that our proposed

method works well to identify spatial similarity between property prices.



Chapter 6

Conclusion

Up to now in literature, only a few spatial similarity tests have been developed. These test the similarity

between two spatial data sets for only a certain type of data. In this mini-dissertation, a new spatial

similarity test is proposed. This test determines the spatial similarity between two spatial data sets of

any type, namely geostatistical data, lattice patterns, unmarked point patterns and marked point patterns.

The proposed spatial similarity test consists of three steps. The �rst being where the spatial data set is

represented as a pixel image. This is obtained di�erently for each type of spatial data. In the second step,

a local similarity map is created that shows where the two data sets are locally similar and where they

di�er. The �nal global similarity measure is calculated in the third step of the test by using the values

from the local similarity map. Future work that can be considered is to extend the �nal global similarity

measure to take the variation of the pixel values in the local similarity map into account.

In Chapter 4, a simulation study was done to test the accuracy of the proposed test. For a future study,

a larger simulation study is suggested. A larger simulation study will allow more variation to be covered.

The simulation can also be done by using real data and changing some of the data points to mimic the

similarity aspect. The simulations will then be less theoretical and more realistic.

In the �rst step of the spatial similarity test for geostatistical data, investigation on the in�uence of the

speci�c Kriging method on the outcome of the test should be done [32]. This will bring insight in choosing

the optimal Kriging model when applying the test. For the lattice data, the pixel image representation

can be obtained by using a more re�ned method. Instead of only assigning the value of the spatial location

in which the centroid of the pixel falls to the speci�c pixel, a weighted average across the spatial locations

falling within the pixel to calculate the value of that pixel could be more representative.

In the case of unmarked point patterns and marked point patterns with continuous marks, a suggestion
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for a future study can be to optimise the bandwidth selection [6]. A study can also be conducted to

investigate the in�uence of the bandwidth on the outcome of the test. For marked point patterns with

discrete marks, the choice of k can be investigated. Recall that k is the number of closest points considered

in the estimation of k nearest neighbour classi�cation. Guidelines can also be put in place on how to choose

the value of k such that the test gives the most accurate result.

It is also possible to vary the α, β and γ parameters within the SSIM calculation [11]. This adjusts the

importance of each component in the calculation. A study can be done on the in�uence of the change in

these parameters.

The proposed spatial similarity test was applied to property prices in Chapter 5. We considered four

blocks of properties with prices over three years. We �rst used the test to compare the property prices

over di�erent years within the same block of properties. A future study can investigate the possibility

of using the proposed spatial similarity test to test for a trend in longitudinal data. The test indicating

similarity can then be an indication of a lack in trend. With this, is will be valuable to extend the proposed

methodology so that more than one spatial data set can be compared simultaneously. Then the test was

applied between the property prices of the di�erent blocks. For this, di�erent rotations of one of the data

sets are considered.

In this mini-dissertation, we:

� Proposed a new generalised spatial similarity test

� Developed a method to create a pixel image representation for each type of spatial data

� Obtained local similarity maps by comparing the pixel image representations

� Developed a global similarity index that is calculated from the local similarity map

� Extended the S-index from Andresen's spatial point pattern test to have non-binary input.

� Applied this test on the property prices in Johannesburg and Cape Town over di�erent years

� Applied this test on the property prices of the same year over di�erent areas
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