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Abstract

A dynamic non-linear model was fitted to the grind curve data of an industrial semi-autogenous grinding
(SAG) mill by means of a step-wise procedure. Grind curves give the steady-state values of the performance
variables throughput, power draw, and grind in terms of the mill filling and critical mill speed. The grind
curves indicate the operable region of the grinding mill. An analysis and dynamic simulation of the model
show that the model captures the main dynamics of the grinding mill. Further simulations demonstrate that
the model represents the full range of steady-state conditions defined by the grind curves. In other words,
the dynamic model is quantitatively accurate as it settles at the correct steady-state for the operable region
of the grinding mill. Therefore, the model is suitable as a simulator to test and develop optimizing control
strategies for global operating conditions rather than only for local operating conditions.

Keywords: comminution, grinding mill, grind curves, modelling, process control, plant-wide control,
simulation

1. Introduction

Since grinding mills have a significant impact on the final economic performance of a mineral processing
plant (McIvor and Finch, 1991; Sosa-Blanco et al., 2000), it is important to operate them at the point
which will optimize the economic performance of the plant (Cramer, 2008; ?). Grinding mill processes
are difficult to control as the control strategy has to contend with time-varying ore characteristics, non-
linearities, constraints on manipulated and controlled variables, and a lack of quality measurements (Wei
and Craig, 2009).

The general control objectives are to maximize the process throughput, maintain the grind at a set
point that enables optimal downstream recovery, and use as little power as possible. Throughput, grind and
power draw are also the three main variables which affect the economic performance of the mill (Le Roux
and Craig, 2019). A comprehensive or plant-wide control strategy for a grinding mill comprises a regulatory,
supervisory, and optimization layer. The regulatory layer stabilizes the plant, the supervisory layer main-
tains the economic controlled variables at set point by sending set points to the regulatory layer, and the
optimization layer determines the set points of the economic controlled variables (Skogestad, 2004). In this
paper, throughput is defined as the rate at which content discharges from the mill. Although throughput
equals feed-rate at steady-state, they are not necessarily equal during dynamic changes. In addition, the
grind of the mill is defined as the fraction of material in the discharge smaller than a specification size.

Grind curves provide the steady-state relationship between the throughput, grind, and power to the vol-
umetric filling and rotational speed of the grinding mill (Powell and Mainza, 2006). As the volumetric filling
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and rotational speed of the grinding mill varies, the mill goes through a non-linear dynamic response. There-
fore, the grind curves can be regarded as quazi-steady-state or approximately steady-state representations
of the feasible operating conditions of the mill.

Grind curves assist in finding the set points of the economic controlled variables that optimize the eco-
nomic performance of the mill (Le Roux and Craig, 2019). By way of example, Craig et al. (1992) developed
a throughput-optimizer based on the grind curves of an industrial single-stage closed semi-autogenous grind-
ing (SAG) mill circuit. It was observed that the maximum throughput occurred at a slightly lower mill filling
than where maximum power is drawn. A heuristic power-peak-seeking algorithm was used to determine at
which milling filling maximum power is drawn, and then operate at a slightly lower mill filling to maximize
throughput. The controller was also required to maintain an acceptable product particle size as chosen by
operating staff. Similarly, Steyn and Sandrock (2013) aimed to optimize grind for an industrial single-stage
closed autogenous grinding (AG) mill circuit. Grind curves were developed in terms of mill filling and mill
inlet water and indicated an approximate region where optimal grind occurs. A supervisory model predictive
controller was used to maintain the plant at the optimal operating condition given by the grind curves. For
both examples above, economic performance assessments showed that the control strategies significantly
increased the profitability of the plant.

Before implementing an optimizing controller on an industrial plant, it is preferable to test the con-
trol strategy in simulation (Sbarbaro and del Villar, 2010). To evaluate a plant-wide control strategy in
simulation a model is required which describes the dynamics of the process controlled by the regulatory
and supervisory layers, as well as the range of steady-state conditions controlled by the optimization layer
(Le Roux and Craig, 2019).

A common approach to model industrial grinding mills is to derive linear time-invariant models from step-
test data. These type of models are common to design controllers for grinding mills (Craig and MacLeod,
1996; Pomerleau et al., 2000; Chen et al., 2007), even though the model parameters are subject to consider-
able uncertainty (Craig and MacLeod, 1995). Since the models represent a linearization of the system at a
specific operating condition, they provide a locally limited description of the system dynamics. In addition,
because the mineralogy of the ore changes over time (Tungpalan et al., 2015), the models require frequent
state and parameter updates (Olivier and Craig, 2013).

Fundamental phenomenological models are more suited to describe the non-linear dynamic response of
a grinding mill (Valery and Morrell, 1995; Salazar et al., 2009; Hinde and Kalala, 2009). These models
are often used to develop supervisory control strategies such as model predictive control for grinding mills
(Apelt and Thornhill, 2009; Salazar et al., 2014). However, these fundamental models generally contain
large parameter sets which are difficult to estimate and update from the scarce measurements available on
industrial plants (Le Roux et al., 2017). The dynamic model presented by Le Roux et al. (2013) uses a
significantly reduced parameter set while producing qualitatively accurate model responses, i.e., the model
captures the correct direction of controlled variables for movements in manipulated variables but does not
accurately represent the full range of feasible steady-state conditions. Although the model is not suitable for
the physical design of a grinding mill, the model serves as a good basis for controller development (Coetzee
et al., 2010; Le Roux and Craig, 2013; Le Roux et al., 2016).

A significant challenge when modelling grinding mills is to separate the characteristics of the ore from
the characteristics of the grinding environment (Powell and Morrison, 2007). This is especially true for
models of the breakage rate as the models have to represent the full range of operating conditions given by
the grind curves. The mill filling and rotational speed have a large impact on the breakage rates in the mill
(Van der Westhuizen and Powell, 2006; Morrell, 2004).

The novel contribution of this article is a quantitatively accurate dynamic simulation model of a grinding
mill, i.e., the model describes the short-term dynamics and the steady-state behaviour as represented by
grind curves. The rotational speed of the mill is included as a manipulated variable in the simulation model.
The purpose of the simulation model is to serve as a platform to evaluate and develop hierarchical control
strategies over a wide range of operating conditions. Therefore, the model not only allows evaluation of
controllers in the regulatory and supervisory layers at various operating conditions, but also the interplay
between the optimization layer and the supervisory layer over the full range of feasible steady-state operating
conditions (Le Roux and Craig, 2019). The article presents a step-wise procedure to fit the model to grind
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curve data measured at industrial mills, such that the model can be used by practitioners to characterize
their own plant and evaluate their control strategy in simulation.

The paper is organized as follows: Section 2 describes the process and the process model. Section 3
discusses grind curve data from industrial plants. Section 4 shows a step-wise procedure to fit the model to
measured grind curve data. Section 5 presents the dynamic and steady-state characteristics of the model in
simulation and Section 6 gives a brief conclusion.

2. Process

This section provides a description of the SAG mill shown in Fig. 1. The model of the SAG mill is
discussed and presented in state-space form.

2.1. Process Description

The variables for the SAG mill illustrated in Fig. 1 are listed in Table 1. The mill receives three streams:
mined ore (uo) (t/h), water (uw) (m3/h), and steel balls (ub) (t/h). The mill charge is a mixture of grinding
media and slurry. Grinding media refers to the steel balls and rocks which break the ore, and slurry refers
to the mixture of solids and water. The fraction of the mill filled with charge is denoted by JT .

The mill is rotated along its longitudinal axis by a motor. The charge in the mill is lifted by the inner
liners on the walls of the mill to a certain height from where it cascades down. The cascading motion of
the charge causes the ore to break through impact breakage, abrasion, and attrition. The rotational speed

Mill inlet water
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Mill feed balls
(ub)

Mill feed ore
(uo)

Mill filling
(JT )

Mill power
(Pmill)

Mill

Mill speed

Grind
(ψ)

Throughput
(QS)

(uφ)

Figure 1: A semi-autogenous (SAG) mill.

Table 1: Description of comminution circuit variables.

Variable Unit Description
JT [-] Fraction of mill volume filled with charge
Pmill [kW] Power draw
QF [m3/h] Fines discharge flow-rate
QS [m3/h] Solids discharge flow-rate
QW [m3/h] Water discharge flow-rate
ρQ [t/m3] Slurry density
ψ [-] Grind (volume fraction of particles in discharge < 150 µm)
ub [t/h] Feed-rate of steel balls
uo [t/h] Feed-rate of ore
uw [m3/h] Flow-rate of feed water
uφ [-] Fraction of critical mill speed
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of the mill is generally expressed as a fraction of the critical mill speed (uφ), which is the rotational speed
where the centrifugal acceleration of a particle at the mill shell equals the gravitational acceleration. The
power draw (Pmill) (kW) of the motor turning the mill is an indicator of the kinetic and potential energy
imparted to the charge.

The ground ore in the mill mixes with water to create a slurry. The density of the slurry is given by
ρQ (t/m3). The slurry is discharged through an end-discharge grate which limits the particle size of the
discharged slurry. Ore too large to pass through the end-discharge grate are referred to as rocks and must
be broken further. All ore small enough to pass through the end-discharge grate are referred to as solids.
The flow-rate of solids and water discharging from the mill is given by QS and QW (m3/h) respectively.
Therefore, QS and QW represent the volumetric throughput of ore and water through the mill respectively.

The aim of the milling circuit is to grind the ore to below a specification size, e.g., 150 µm. The mill
grind (ψ) is the volume fraction of material in the discharge of the mill below the specification size. The
broken ore below the specification size are referred to as fines. The flow-rate of fines discharging from the
mill is given by QF (m3/h). Note, whereas solids refer to all ore small enough to discharge from the mill,
fines refer to the portion of solids smaller than the specification size. Therefore, solids are a combination of
fine ore and coarse ore, where coarse ore refers to the portion of solids larger than the specification size.

2.2. Dynamic Process Model

The SAG mill in Fig. 1 is modelled with the continuous time phenomenological non-linear population
balance model of Le Roux et al. (2013). This simulation model is used in a variety of grinding mill control
studies (Coetzee et al., 2010; Olivier and Craig, 2013; Le Roux et al., 2016; Aguila-Camacho et al., 2017;
Wakefield et al., 2018). A brief overview of the model is given below. The model nomenclature is shown in
Table 2.

Table 2: Parameter values. (Dimensionless parameters are shown without units.)

Parameter Unit Description
αf [-] Volume fraction of fines in the feed ore
αr [-] Volume fraction of rocks in the feed ore
δs [-] Power parameter for volume fraction of solids in the slurry
δv [-] Power parameter for volume of mill filled
dq [h-1] Discharge rate constant
ε0 [-] Maximum volume fraction of solids in the slurry at zero slurry flow
ϕN [-] Rheology normalization factor

JTPmax [-] Fraction of mill volume filled at maximum power draw
Kfp [kWh/t] Fines production factor
Krc [kWh/t] Rock consumption factor
Pmax [kW] Maximum mill power draw
ρo [t/m3] Density of ore
ρw [t/m3] Density of water
vmill [m3] Mill volume
xb [m3] Volumetric filling of balls in mill
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2.2.1. Population Balance

The population volume balance model describes four states: water (xw), solids (xs), rocks (xr), and fines
(xf ) (m3):

ẋw = uw −QW (1a)

ẋs = (1− αr)
uo
ρo
−QS +QRC (1b)

ẋr = αr
uo
ρo
−QRC (1c)

ẋf = αf
uo
ρo
−QF +QFP , (1d)

where αf and αr represent the fraction of fines and rocks in uo respectively, ρo (t/m3) is the ore density,
QRC (m3/h) is a rock consumption term that indicates the volumetric rate of rocks broken into solids, and
QFP (m3/h) is a fines production term that indicates the volumetric rate of ore broken into fines.

Although there are various ways to describe the consumption of steel balls in the mill (Apelt et al., 2002;
Salazar et al., 2009; Le Roux et al., 2013), a constant ball volume (xb) (m3) is assumed for the purposes of
this study. In practice operators often assume a linear proportionality between the total mass of ore milled
and the consumption rate of steel balls. Based on this assumption, ub is set at a ratio of uo to maintain xb
constant (Gupta and Yan, 2006; Le Roux and Craig, 2019).

The fraction of the mill filled with charge (JT ) is given by:

JT =
xw + xs + xr + xb

vmill
, (2)

where vmill (m3) is the total volume of the mill. It is assumed the void filling fraction is one.
The slurry density (ρQ) is defined as:

ρQ =
ρwxw + ρoxs
xw + xs

(3)

where ρw = 1 t/m3 is the density of water.
The total discharge slurry mass flow-rate can be expressed as MT = MS + MW (t/h), where MS

and MW are the total solids and water mass flow-rates respectively. Similarly, the total discharge slurry
volumetric flow-rate can be expressed as QT = QS + QW (m3/h), where QS = MS

ρo
and QW = MW

ρw
.

Therefore, QT = MT

ρQ
= MS

ρo
+ MW

ρw
. If there is 75% solids by mass in the slurry, then: MS = 0.75MT and

MW = (1− 0.75)MT . Therefore, the slurry density in (3) can also be expressed as:

1

ρQ
=

0.75

ρo
+

0.25

ρw
. (4)

2.2.2. Power

The mill power draw (Pmill) is modelled as:

Pmill
(
JT , uφ

)
=

1− δv

(
JT

JTPmax(uφ)
− 1

)2

− δs
(
ϕ

ϕN
− 1

)2
Pmax(uφ), (5)

where δv is the power change parameter for volume of mill filled, δs is the power change parameter for the
volume fraction of solids in the slurry, ϕ is the rheology factor, and ϕN is a normalization factor. For ϕ = ϕN ,

Pmill reaches a maximum in terms of the volume fraction of solids in the slurry. Pmax(uφ) =
∑
k c

(JT )
k ukφ (kW)

is the maximum mill power draw parametrized as a polynomial function of uφ with coefficients contained

in c(JT ). JTPmax(uφ) =
∑
k c

(Pmax)
k ukφ is the fraction of the mill filled at maximum power draw and is

parametrized as a polynomial function of uφ with coefficients contained in c(Pmax).
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The rheology factor ϕ is an empirically defined function that incorporates the effect of the fluidity and
density of the slurry on the performance of the mill:

ϕ =


√

1−
(
ε−1

0 − 1
)
xs
xw

; xs
xw
≤
(
ε−1

0 − 1
)−1

0 ; xs
xw

>
(
ε−1

0 − 1
)−1

(6)

where ε0 = 0.6 is the maximum fraction of solids by volume of slurry at zero slurry flow (Song et al., 2008).
A rheology factor of one corresponds to xs

xw
= 0 indicating the slurry consists only of water. A rheology

factor of zero corresponds to xs
xw

= 1.5 indicating the slurry is a non-flowing mud.

2.2.3. Breakage

The rock consumption (QRC) and fines production (QFP ) are defined as:

QRC =
Pmill

(
JT , uφ

)
ρoKrc

(
JT , uφ

) (7a)

QFP =
Pmill

(
JT , uφ

)
ρoKfp

(
JT , uφ

) . (7b)

Krc

(
JT , uφ

)
(kWh/t) is the rock consumption factor and indicates the energy required per tonne of rocks

broken. Kfp

(
JT , uφ

)
(kWh/t) is the fines production factor and indicates the energy required per tonne

of fines produced. The general formulation of the breakage equations is similar to the cumulative breakage
rates expressions of Amestica et al. (1996) and Hinde and Kalala (2009).

The grind of the mill (ψ) is defined as:

ψ =
xf
xs

=
QF
QS

. (8)

2.2.4. Discharge

The mill discharge flow-rates are defined as:

QW = dqxwϕ

(
xw

xs + xw

)
(9a)

QS = dqxwϕ

(
xs

xs + xw

)
(9b)

QF = dqxwϕ

(
xf

xs + xw

)
, (9c)

where dq (1/h) is the discharge rate constant. Parameter dq is used as a fitting parameter to account for
different discharge grate designs (Latchireddi and Morrell, 2003a,b) and is representative of the pressure or
driving force applied to the slurry to discharge from the mill. The discharge rate constant is multiplied with
xw in (9) as the main contributor to the driving force and with ϕ to consider the effect of xs. The terms
in brackets in (9) provide the fraction of water, solids or fines that can discharge from the mill through the
end-discharge grate.

2.3. State-Space Representation

The model can be represented in state-space form as:

d
dtx(t) = f

(
t,x,u,p1,p2,Krc,Kfp, dq

)
y(t) = h

(
t,x,u,p1,p2,Krc,Kfp, dq

)
,

(10)
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where the states are x =
[
xw, xs, xr, xf

]T
, the manipulated variables are u =

[
uw, uo, uφ

]T
, and the mea-

surable system outputs are y = [JT , Pmill, QS , ψ]
T

. Function f(·) is given by (1) and function h(·) by (2),
(5), (9b), and (8).

The set of known parameters in (10) are p1 =
[
αf , αr, ε0, ρo, vmill, xb

]T
. It is assumed that an on-line

analysers measures αf and αr. It is also assumed that plant operators have a general estimate of xb from
regular sampling campaigns.

The mill power Pmill in (5) depends on the parametrization of Pmax(uφ) and JTPmax(uφ) as polynomial

functions of the mill speed uφ. The unknown parameters for Pmill are p2 =
[
δs, δv, ϕPmax , c

(JT )T , c(Pmax)T
]T

.

The other unknown parameters are the ore breakage rates Krc and Kfp, and the discharge rate constant
dq. An initial state x(t = 0) = x∗ is required to simulate (10) using an appropriate numerical integration
routine.

3. Grind Curves

Grind curves show the steady-state responses of Pmill, QS , and ψ as functions of JT and uφ. The term
grind curves was introduced by Powell and Mainza (2006) (see also Van der Westhuizen and Powell (2006)
and Powell et al. (2009)) to describe these well-known relationships in the mineral processing industry (Craig
et al., 1992; Powell et al., 2001).

Powell and Mainza (2006) discuss the basic tools required to determine grind curves and illustrate the
method for a pilot mill and an industrial SAG mill. This method is applied by Van der Westhuizen and
Powell (2006) to an open circuit SAG mill to obtain a comprehensive set of grind curves. Similar grind
curves for a variety of other mills are documented by Powell et al. (2011). Powell et al. (2009) discuss
practical calibration issues to measure the grind curves and provide general guidelines on how to fit grind
curves to measured data. Grind curves tend to change as the hardness and size distribution of the ore varies.
A significant change in the general shape and position of the grind curves will usually indicate that a new
type of ore is being processed (Viklund et al., 2006; Powell et al., 2009).

The grind curves measured by Van der Westhuizen and Powell (2006) are shown in Fig. 2. The commonly
observed phenomenon responsible for the characteristic parabolic shape of the curves in terms of JT is
described by Van der Westhuizen and Powell (2006) and Le Roux and Craig (2019). In the case of Van der
Westhuizen and Powell (2006), it is clear that the peaks of QS and Pmill do not coincide in terms of JT ,
the curve shapes are dramatically changed by uφ, the peak values change according to changes in uφ, QS
increases as uφ increases, and ψ reduces as uφ increases. An optimising controller has to balance these
competing interactions to control a grinding mill.

Table 3 gives the parabolic expressions of the grind curves in Fig. 2, the location of their peaks, and

the valid ranges of JT ∈
[
JT , JT

]
. The ranges of JT ensure that the grinding mill does not enter infeasible

operating conditions, e.g., for uφ = {0.6; 0.65} in Fig. 2 the throughput QS approaches 0 m3/h as JT
increases.

4. Parameter Fitting

The aim of this section is to describe a step-wise procedure to obtain the unknown model parameters in
(10) from grind curve data so that the model produces both the dynamics and steady-state response of the
grinding mill. This section is organized as follows:

• Section 4.1 discusses the initial data, assumptions, and the known parameters p1.

• Section 4.2 describes the parameter estimation of the unknown parameters p2 for Pmill in (5).

• Section 4.3 parametrizes the unknown breakage rates Krc and Kfp in (7) in terms of JT and uφ.

• Section 4.4 establishes the unknown discharge rate constant dq in (9) and an initial condition x∗ for
(10).
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4.1. Data set

The procedure is illustrated with the data of Van der Westhuizen and Powell (2006) but can also be
applied to similar data sets. The data of Van der Westhuizen and Powell (2006) is valuable in the open
literature as it reports a wide range of uφ and JT whereas most other reports of grind curves are limited to
a single value of uφ.

The grind curves of Van der Westhuizen and Powell (2006) were obtained for an industrial open-circuit
SAG mill of size vmill = 208 m3 (diameter: 7.8 m, length: 4.35 m) by running the mill to steady-state for a
range of JT between 0.2 and 0.45 and a range of uφ between 0.60 and 0.75. The following conditions were
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Figure 2: Grind curves for an open circuit SAG mill reproduced from Van der Westhuizen and Powell (2006). The range of
JT is limited for uφ = 0.60 and uφ = 0.65 as indicated in Table 3. (The three operating conditions in Table 4 are indicated as
follows: Condition 1 - ◦, Condition 2 - 4, Condition 3 - �.)

Table 3: Grind curve polynomials Y�i(JT ) as defined in (11) and their respective peak values (Van der Westhuizen and Powell,
2006). († indicates peaks extrapolated outside JT range limits where JT is the minimum and JT is the maximum.)

Variable i uφ Polynomial Peak Range:
[
JT , JT

]
1 0.60 (−11.5J2

T + 12.4JT + 0.249)× 103 YPmill1(0.54†) = 3600 (0.2, 0.31)
YPmilli(JT ) 2 0.65 (−12.1J2

T + 13.3JT + 0.266)× 103 YPmill2(0.55†) = 3930 (0.2, 0.40)

[kW]
3 0.70 (−17.0J2

T + 15.9JT + 0.282)× 103 YPmill3(0.47†) = 4030 (0.2, 0.45)
4 0.75 (−24.6J2

T + 19.2JT + 0.299)× 103 YPmill4(0.39) = 4040 (0.2, 0.45)
1 0.60 (−2.98J2

T + 1.07JT )× 103 YQS1
(0.18†) = 96.7 (0.2, 0.31)

YQSi(JT ) 2 0.65 (−1.76J2
T + 0.812JT )× 103 YQS2

(0.23) = 93.3 (0.2, 0.40)

[m3/h]
3 0.70 (−1.26J2

T + 0.779JT )× 103 YQS3
(0.31) = 121 (0.2, 0.45)

4 0.75 (−1.28J2
T + 0.897JT )× 103 YQS4

(0.35) = 157 (0.2, 0.45)
1 0.60 −2.27J2

T + 2.86JT + 0.1 Yψ1
(0.63†) = 1.00 (0.2, 0.31)

Yψi(JT ) 2 0.65 −2.50J2
T + 2.90JT + 0.1 Yψ2

(0.58†) = 0.94 (0.2, 0.40)

[-]
3 0.70 −4.31J2

T + 3.19JT + 0.1 Yψ3
(0.37) = 0.69 (0.2, 0.45)

4 0.75 −4.22J2
T + 2.79JT + 0.1 Yψ4

(0.33) = 0.56 (0.2, 0.45)
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kept approximately constant during operation of the mill:

• Ball filling: xb = 0.079vmill = 16.4 m3.

• Ore density: ρo = 2.7 t/m3.

• Slurry density: ρQ = 1.9 t/m3.

As mentioned previously, plant operators do not measure the ball filling xb on-line and only have a
general estimate from sampling campaigns. The assumption of a constant ball filling is not restrictive as
grind curves retain their parabolic shape for variations in the ball filling (Powell et al., 2009).

To maintain ρQ constant, uw is controlled as a ratio of uo. Therefore, ρQ remains at approximately
1.9 t/m3 for all steady-state conditions given by the grind curves. Since a slurry density of ρQ = 1.9 t/m3

corresponds to 75% solids by mass in the slurry, the ratio is βws = QW
QS

= (1−0.75)ρo
0.75ρw

= 0.9 (see (4)). Note,

this ratio is valid at steady-state, but not during dynamic changes. (Although not considered in this study,
the dimensionality of the grind curves can be extended by evaluating the response of Pmill, QS and ψ to
changes in uw (Steyn and Sandrock, 2013).)

Van der Westhuizen and Powell (2006) do not provide any dynamic data or ore feed data. The following
assumptions are made regarding the input to the mill at steady-state:

• uo = ρoQS : The feed-rate of ore into the mill equals the flow of ore exiting the mill.

• uw = QW : The flow-rate of water into the mill equals the flow of water exiting the mill.

• The feed size distribution is (αf , αr) = (0.1, 0.5). (This is not a restrictive assumption. The feed size
distribution values can be updated given periodic sample measurements, or by measurements from an
on-line instrument.)

Given the data above, the set of known parameters are:

p1 =
[
αf , αr, ε0, ρo, vmill, xb

]T
= [0.1, 0.5, 0.6, 2.7 t/m

3
, 208 m3, 16.4 m3]T .

The curves in Fig. 2 are second order polynomials in terms of JT for fixed values of uφ:

Y�i(JT ) =

2∑
k=0

ckJ
k
T , (11)

where i = 1, . . . , 4 correspond to uφi = {0.6; 0.65; 0.7; 0.75}, ck are constants, and � is a place holder for
Pmill, QS , and ψ.

4.2. Mill Power Draw

The mill power draw model in (5) is fitted to the data in Table 3. The set of unknown parameters are
given by p2. The following information can be gleaned from the available data described in Section 4.1:

• βws = xw
xs

= 0.9 for all steady-state conditions since a controller maintains ρQ approximately constant.
Therefore, ϕ = 0.509 from (6). Since no further information is available regarding the change in mill
power with respect to a change in the fraction of solids in the slurry, it is assumed that ϕN = 0.509.

• Since the grind curves relate JT to Pmill, it is possible to estimate δv in (5) from available data.
However, since ϕ = ϕN = 0.509 at steady-state, the term associated with δs in (5) is zero for the
steady-state conditions represented by the grind curves. Therefore, unless further information is
available to relate ρQ to Pmill (see Steyn and Sandrock (2013)), it is not possible to estimate δs
independently. Similar to Le Roux et al. (2013) and Coetzee et al. (2010), it is assumed in this case
that δs = δv.
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• As seen from Table 3, as uφ increases, peak power is achieved for different values of JT . The functions
JTPmax(uφ) and Pmax(uφ) are parametrized as quadratic functions of uφ.

The remaining unknown parameters are estimated as follows:

min(
δs,c

(JT ),c(Pmax)
)

4∑
i=1

∫ JTi

JTi

∥∥∥∥YPmilli (JT )− Pmill(JT , uφi ,p2)

max(YPmilli )

∥∥∥∥
2

dJT . (12)

The result of this minimization is

• δs = δv = 0.928

• JTPmax(uφ) = −7.52u2
φ + 9.06uφ − 2.18

• Pmax(uφ) = (−2.70u2
φ + 3.92uφ − 1.02)× 104 [kW].

Based on the estimated parameters, the comparison between Pmill(JT , uφ) in (5) and YPmilli (JT ) in (11) is
shown in Fig. 3. The normalized root mean squared error (NRMSE) is 6.10%.

4.3. Breakage Rates

The breakage rates Krc and Kfp in (7) do not stay constant for changes in JT and uφ. The breakage
rates can be back-calculated in terms of the grind curve variables in (11) by setting (1c) and (1d) equal to
zero for steady-state where uo = ρoQS . The result is:

K∗rci(JT ) =
YPmilli (JT )

ρoαrYQSi (JT )
(13a)

K∗fpi(JT ) =
YPmilli (JT )

ρo
(
Yψi(JT )− αf

)
YQSi (JT )

, (13b)

where K∗σi indicates a back-calculated value, i = 1, . . . , 4 indicates the four different mill speeds uφ =
{0.6; 0.65; 0.7; 0.75}, and σ ∈ {rc, fp}. Note, the ranges of JT indicated in Table 3 should be obeyed,
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Figure 3: Left: Fit of Pmill(JT , uφ) model (data markers) to grind curves YPmilli
(lines). Centre: Fit of model of Krc(JT , uφ)

(data markers) to back-calculated values of K∗
rci
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(JT ) (lines).
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otherwise QS will approach zero at high JT and low uφ. Eq. (13) describes the breakage rates as functions
of JT for fixed values of uφ. However, for simulation purposes it is also necessary to express the breakage
rates as functions of uφ. Therefore, the breakage rates are approximated as:

Kσ(JT , uφ) =

N∑
n=0

M∑
m=0

cm,nu
m
φ J

n
T , (14)

where the coefficients cm,n are estimated by minimising the error between (13) and (14):

min
cm,n

4∑
i=1

∫ JTi

JTi

∥∥∥K∗σi(JT )−Kσ(JT , uφi)

max
(
K∗σi

) ∥∥∥
2

dJT . (15)

Eq. (15) is solved using the downhill simplex method after Nelder and Mead (1965). This is a well-known
heuristic algorithm for multidimensional unconstrained non-linear optimization without derivatives. The
result for M = N = 3 is:

Krc(JT , uφ) =
(

(−0.478u3
φ − 3.06u2

φ + 1.55uφ − 0.183)J3
T

+(2.68u3
φ + 5.13u2

φ − 2.92uφ + 0.355)J2
T

+(−3.15u3
φ − 2.61u2

φ + 1.78uφ − 0.226)JT

+(1.05u3
φ + 0.361u2

φ − 0.352uφ + 0.0472)
)
× 106

Kfp(JT , uφ) =
(

(−3.73u3
φ + 0.602u2

φ + 0.301uφ − 0.0487)J3
T

+(8.76u3
φ − 1.97u2

φ − 0.453uφ + 0.0877)J2
T

+(−6.82u3
φ + 1.91u2

φ + 0.180uφ − 0.0501)JT

+(1.77u3
φ − 0.581u2

φ − 0.00728uφ + 0.00882)
)
× 106.

Fig. 3 shows a comparison between K∗rci(JT ) in (13a) and Krc(JT , uφ) in (14). The NRMSE is 5.03%. Fig.
3 shows a comparison between K∗fpi(JT ) in (13b) and Kfp(JT , uφ) in (14). The NRMSE is 5.20%.

4.4. Mill States and Discharge Rate Constant

The initial state x∗ =
[
x∗w, x

∗
s, x
∗
r , x
∗
f

]T
in (1) is unknown. For industrial mills, the states inside the mill

are not measured (Le Roux et al., 2017) and only reasonable assumptions can be made. In order to simulate
the model, an initial state is required. Given a specific operating condition (JT ,uφ), the initial states x∗ can
be calculated as follows:

1. Choose a value of dq. A high dq generally results in a high x∗r and a low x∗s, and vice versa.

2. Use (9b), (11) and βws = xw
xs

= 0.9 to calculate: x∗s =
(βws+1)YQSi

(JT )

dqβwsϕ
.

3. Calculate: x∗w = βwsx
∗
s.

4. Use (2) to calculate: x∗r = vmillJT − xb − x∗s − x∗w.

5. Use (8) and (11) to calculate: x∗f = Yψi(JT )x∗s.

6. Evaluate the ratio: x∗r/x
∗
s. If the ratio is too high or too low, choose a different dq and return to the

first step.

In this study, a desired ratio x∗r/x
∗
s = 1.5 was chosen for the three operating conditions k = 1, 2, 3 in

Table 4. Based on the steps above, dq < 0 was estimated for all three conditions as:

dq = arg min
dq

3∑
k

∥∥∥∥∥
(
x∗
r

x∗
s

)
k
− 1.5

max
(
x∗
r

x∗
s

)
k

∥∥∥∥∥
2

. (16)

The result is dq = 36.4 h-1 and the NRMSE for the minimization is 3.57%.
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5. Simulations and Results

The aim of this section is to show that the model (10) produces realistic dynamic responses to input
changes, and that it settles at the steady-states defined by the grind curves. Therefore, there are two
simulation experiments:

1. Dynamic response to steps in uw, uo and uφ.

Table 4: Evaluation of three steady-state operating conditions for dq = 36.4 h-1.

Operating condition 1: (JT , uφ) = (0.26, 0.65)

Initial conditions x∗ =


9.42
10.5
17.7
7.16

; u∗ =

 82.6
248
0.65

; y∗ =


0.26
2950
91.7

0.684


Process matrices A =


−25.9 15.4 0 0
−19.1 8.35 −0.0283 0
0.0283 0.0283 0.0283 0
−12.4 12.3 0.599 −8.77

; B =


1.00 0 0

0 0.187 199
0 0.183 −199
0 0.0389 194


Eigenvalues Λ = diag {−8.77, − 8.78− 0.959i, − 8.78 + 0.959i, 0.0279}

Eigenvectors T =


0 0.239 + 0.402i 0.239− 0.402i 0.00555
0 0.240 + 0.462i 0.240− 0.462i 0.00933
0 −0.00122− 0.00291i −0.00122 + 0.00291i −0.998

1.00 0.715 0.715 −0.0627


Operating condition 2: (JT , uφ) = (0.30, 0.70)

Initial conditions x∗ =


12.4
13.8
19.8
9.20

; u∗ =

 109
326
0.70

; y∗ =


0.30
3510
120

0.669


Process matrices A =


−25.9 15.4 0 0
−19.0 8.45 0.0810 0

−0.0810 −0.0810 −0.0810 0
−12.3 11.9 0.467 −8.77

; B =


1.00 0 0

0 0.185 319
0 0.185 −319
0 0.0365 126


Eigenvalues Λ = diag {−8.77, − 10.4, − 7.10, − 0.0847}

Eigenvectors T =


0 −0.700 0.479 0.0173
0 −0.706 0.584 0.0289
0 −0.0111 0.0123 0.997

1.00 −0.104 0.655 0.0689


Operating condition 3: (JT , uφ) = (0.36, 0.75)

Initial conditions x∗ =


16.1
17.9
24.4
9.95

; u∗ =

 141
424
0.75

; y∗ =


0.36
4020
156

0.556


Process matrices A =


−25.9 15.4 0 0
−19.1 8.31 −0.0664 0
0.0664 0.0664 0.0664 0
−10.9 9.25 −0.286 −8.77

; B =


1.00 0 0

0 0.185 814
0 0.185 −814
0 0.0368 299


Eigenvalues Λ = diag {−8.77, − 8.80− 1.46i, − 8.80 + 1.46i, 0.0641}

Eigenvectors T =


0 0.598− 0.0512i 0.598 + 0.0512i 0.0127
0 0.668 0.668 0.0213
0 −0.00928− 0.00115i −0.00928 + 0.00115i −0.999

1.00 0.385 + 0.214i 0.385− 0.214i 0.0391
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2. Steady-state response to set point changes in JT and steps in uφ.

The model (10) is integrated using the explicit fourth-order Runge-Kutta method with a sampling time of
10 s. The parameters are obtained as described in Section 4. A constant value of dq = 35 h-1 is used.

5.1. Dynamic Response

Three separate steady-state operating conditions as indicated in Table 4 are used to initialize the system
and evaluate its dynamic response to steps in the inputs. There is no feedback controller to stabilize the
outputs of the grinding mill. The model is linearized at each of the three initial states, and the dynamic
response is evaluated based on the eigenvalues and eigenvectors for each operating condition.

5.1.1. Linearization, Eigenvalues and Eigenvectors

A brief overview of linear system theory is given below to support the eigenvalue analysis to follow.
Readers familiar with linear system theory may glance over this section.

The non-linear model (10) is linearized at each steady-state condition (x∗,u∗) as follows:

˙̃x = Ax̃ + Bũ, (17)

where A = ∂f
∂x |x∗,u∗ , B = ∂f

∂u |x∗,u∗ , x̃ = x− x∗, and ũ = u− u∗.
For this case A is a square 4 × 4 matrix. The eigenvalues λl and eigenvectors tl (l = 1, . . . , 4) are the

non-trivial solutions of:
(A− Iλl) tl = 0 ⇔ Atl = λltl.

The eigenvalues λl are collected as diagonal elements in the matrix Λ = diag(λ1, . . . , λ
T
4 ) and the correspond-

ing eigenvectors tl as the columns in the matrix T = [t1, . . . , t4]. If the eigenvalues λl are mutually distinct,
the eigenvectors tl are linearly independent and a new state vector can be defined: z = T−1x̃ ⇔ x̃ = Tz.
Therefore, the linearized system in (17) can be rewritten as:

Tż = ATz + Bũ ⇔ ż = Λz + T−1Bũ, (18)

which is a set of decoupled differential equations in terms of the transformed states z (i.e., zl is associated with
the corresponding λl and tl). Since x̃ = Tz, the eigenvector tl indicates to what extent the corresponding
eigenvalue λl influences each state in x̃.

The unforced solution (i.e. ũ = 0) for each state z in (18) is:

zl(t) = z∗l exp (λlt) ,

where z∗l is the initial value of zl(t). The eigenvalue λl indicates the rate at which the state decreases or
increases exponentially over time. If the real part of λl is strictly smaller than zero the state is asymptotically
stable (zl → 0 as t → ∞). Otherwise the state is unstable (zl → ∞ as t → ∞). Consequently, the linear
system (17) is asymptotically stable if and only if all the real parts of the eigenvalues of A are strictly
smaller than zero.

Therefore, although the eigenvalue analysis does not describe the global response of the non-linear system,
it provides a valuable description of the response of the non-linear system within the local region where it
was linearized (Skogestad and Postlethwaite, 2005).

5.1.2. Eigenvalue Analysis

Table 4 shows the operating condition in terms of JT and uφ, the initial states as obtained from Section
4.4, the linearized system matrices, as well as its eigenvalues and eigenvectors.

Compared to the data in Table 3, the first operating condition at (JT , uφ) = (0.26, 0.65) is such that JT
is above the point where the peak of QS is reached, but below the point where the peak of ψ is reached. The
second operating condition at (JT , uφ) = (0.30, 0.70) is such that JT is marginally below the point where the
peak of QS is reached, and below the point where the peak of ψ is reached. The third operating condition
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at (JT , uφ) = (0.36, 0.75) is at the highest speed and is marginally above the point where the peak of QS is
reached, and above the point where the peak of ψ is reached.

As seen in Table 4, λ1 = −8.77 for all three operating conditions. The corresponding eigenvector
t1 = [0, 0, 0, 1]T indicates that λ1 is associated exclusively with xf . Similarly, eigenvectors t2 and t3

indicate that λ2 and λ3 are associated predominantly with the three states: xw, xs, and xf . The eigenvalues
λ1, λ2, and λ3 are all stable and of similar magnitude. Therefore, the dynamic response of the states xw,
xs, and xf are stable and change at comparable rates.

The fourth eigenvalue λ4 is associated predominantly with xr. The magnitude of λ4 is close to zero
and implies that the state has a very slow integrating response. This integrating response is expected as
xr only enters the mill and does not discharge from the mill. The state xr is stable for operating condition
2 (λ4 < 0), but is unstable for operating conditions 1 and 3 (λ4 > 0). As seen from the matrix entry A23

for operating conditions 1 and 3, an increase in xr reduces xs, i.e., xr is not consumed rapidly enough to
produce xs and there is a slow unstable growth in xr. Thus, the instability is related to the rate at which
rocks are consumed compared to the total mass of rocks broken into solids. A general rule of thumb to
ensure λ4 is stable is to operate at a high uφ where JT is less than the value that maximizes QS (see Table
3).

5.1.3. Simulation Results

The normalized step changes in the inputs for the three operating conditions in Table 4 are shown in Fig
4. The normalized responses of the states are shown in Fig. 5, and the normalized responses of the outputs
in Fig. 6. (The values are normalized with respect to the initial conditions given in Table 4 of the relevant
operating condition.)

The states xw, xs, and xf in Fig. 5 follow similar trends. As expected, the rates of change of these three
states are comparable. As uo reduces, xs and xf reduces, the slurry becomes more fluid and discharges
from the mill quicker. The state xr in Fig. 5 and the output JT in Fig. 6 exhibit integrating behaviour for
changes in uo.

Changes in uw do not produce similar responses as changes in uo. When uw increases, it causes the
slurry in the mill to become fluid very quickly and effectively ‘washes’ xs and xf out of the mill. There is
little to no effect on xr as per definition the rocks are too large to discharge from the mill. The effect of uw
on JT is a slight decrease which stabilizes fairly quickly. Finally, as expected, the movement of QS and ψ
reflects the movement in uo and xf respectively.

As seen from t = 14 h to t = 20 h in Fig. 5 and 6, the step-change in uφ in Fig. 4 has a strong non-linear
effect on the operation of the mill. The decrease in uφ causes a reduction in Pmill, which means that less
energy is available to break ore. Because less ore is being broken, there is a rapid accumulation of rocks xr
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Figure 4: Open-loop step changes in manipulated variables. (The superscript N indicates that values are normalized according
to the initial conditions shown in Table 4.)
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and a subsequent increase in JT . When uφ returns to its nominal value at t = 16 h, JT does not reduce
accordingly since insufficient energy is applied to break the accumulated rocks xr.

As seen in Fig. 6, the movement of ψ for Condition 3 is different to the other two conditions. Since the
operating condition for Condition 3 is past the point where maximum ψ is reached in terms of JT , it will
respond in the opposite direction as the first two conditions. Similarly, since the operating condition for
Condition 3 is so close to the peak of QS , it exhibits similar behaviour to the other two conditions.

Similar to a sump operating with a discharge pump, a mill acts as an integrator. Therefore, unless
a feedback controller is applied to regulate JT , the mill may become unstable for step-changes in input
variables (Le Roux and Craig, 2019).

5.2. Steady-State Response

The mill is initialized at the second operating condition in Table 4. A series of set point changes to
JT and step changes to uφ are made in order to recreate the full range of grind curve conditions. As
mentioned above, a feedback controller is necessary to regulate changes in JT . Therefore, a Proportional-
Integral controller manipulates uo to control JT according to its set point. Since the grind curves assumed
a constant ρQ, a Proportional controller manipulates uw to maintain the ratio βws = QW

QS
= 0.9.

Fig. 7 shows the response of the manipulated variables uw and uo, as well as the series of step changes
to uφ. Fig. 8 shows the controlled variable JT and the controlled ratio βws = QW

QS
. The response of the

mill states are shown in Fig. 9. The output variables Pmill, QS , and ψ are shown in Fig. 10, where a data
marker (◦) is placed at the end of each set point change period to highlight an approximately steady-state
condition. As expected, there is a large change in the output variables whenever there is a step change in
uφ. Note, xr goes to 0 m3 at approximately t = 39 h where JT is very low and uφ high.

Fig. 11 shows the data markers (◦) of the output variables Pmill, QS , and ψ in Fig. 10 versus the data
markers of JT in Fig. 8. The original grind curves (11) are also shown in Fig. 11. The figure shows that
the simulation model reproduces the steady-states as given by grind curves.

The system is linearized at each of the steady-state conditions indicated by the data markers (◦) in Fig.
11. Similar to the analysis in Section 5.1.2, the eigenvalues for each of the linearized models are calculated
and the results are plotted in Fig. 12. For uφ = {0.70, 0.75}, all eigenvalues are real and negative when JT is
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below the point where the maximum QS is achieved. When JT surpasses this point, λ2 and λ3 form complex
conjugate pairs and λ4 becomes positive. Therefore, when the operating condition surpasses maximum
throughput at high uφ, there is an instability associated with xr and oscillatory behaviour associated with
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Figure 10: Measured variables for set point changes in JT and step changes in uφ. The data markers (◦) show the steady-state
conditions and correspond to the data markers in Fig. 11.
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Figure 12: Plot of eigenvalues of system linearized at each steady-state indicated by the data markers (◦) in Fig. 11.

xw and xs. This agrees with the results in Table 4, where for Condition 3 there are complex conjugate pairs
and one unstable eigenvalue when operating past the point where QS is a maximum, but where for Condition
2 there are real and stable eigenvalues when operating before the point where QS is a maximum in terms
of JT . However, the eigenvalues behave differently for the case where uφ = {0.60, 0.65}. When operating
below this point for uφ, eigenvalues λ2 and λ3 form complex conjugate pairs and λ4 remains positive both
above and below the point where QS is a maximum in terms of JT . This confirms the general rule of thumb
mentioned previously that the mill is stable for a relatively high uφ where JT is less than where the peak of
QS is reached.

6. Conclusion

A dynamic non-linear model was fitted to the grind curve data of an industrial SAG mill by means
of a step-wise procedure. The grind curves define the quasi-steady-state operation of the power draw,
throughput, and grind of the mill in terms of the mill filling and mill rotational speed. Although only one
data set was used, the procedure can be generalized for similar data sets. As seen in Section 5.1, the model
produces realistic dynamic responses at each operating condition. As seen in Section 5.2, the model achieves
the different steady-state conditions defined by the grind curves. Future work involves validating the model
against time-series data measured while establishing the grind curves for an industrial grinding mill.

The non-linear model was linearized at three different steady-state operating conditions to evaluate the
dynamic response of the model. The nature of the three linear models was analysed according to the
eigenvalues and eigenvectors of the respective system matrices. The three linear models exhibit similar
dynamics and capture the main trends of the model states. Depending on the operating condition, there
may be an instability in terms of the volume of rocks in the mill. However, this is a slowly changing state
and can be controlled with a simple feedback controller.

To evaluate the ability of the model to reach the various steady-state operating conditions defined by the
grind curves, the model was simulated dynamically with step changes in the mill filling set point and the
mill rotational speed. The mill was stabilized to steady-state for each step change with a simple feedback
controller. Analysis of the performance variables - power draw, throughput, and grind - indicate that the
model represents the range of quasi-steady-states given by the grind curves.

The model can be used for the development and analysis of supervisory and optimization control strate-
gies which need to consider the full range of operating conditions and the associated dynamics of a grinding
mill. For example, extremum seeking control (ESC) is an attractive control strategy to optimize the economic
performance of the grinding mill (Krst́ıc and Wang, 2000). The advantage of ESC is that the controller
can be agnostic to plant model as long as the economic performance index can be measured and has a
peak. In practice such a control strategy implies that the expensive and difficult process to obtain the grind
curves may not be necessary. The model presented in this paper was developed to simulate and test such a
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control strategy. Future work involves the development of an ESC strategy to optimize the performance of
a grinding mill.
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