

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING – FACULTY OF ENGINEERING AND
THE BUILT ENVIRONMENT – UNIVERSITY OF PRETORIA, SOUTH AFRICA

Reentrant permutation flow shop
scheduling with a deteriorating

schedule
Matsebe Juliet Makgoba

29218552

January 2021

A dissertation submitted in partial fulfilment of the requirements for MEng in Industrial Engineering

i

Abstract

The classic flow shop problem assumes that jobs make only single passes through the

processing machines and that the processing times are not affected by the length of the delay

before jobs are processed. These assumptions are being relaxed in recent papers that consider

reentrance problems and those with schedule deterioration. In this study, these two

assumptions are both relaxed, and a model of a reentrant flowshop with a deteriorating

schedule is considered. A linear programming formulation of the problem is first presented.

Three solution heuristics are considered under different deterioration scenarios. It was

observed that both Nawaz Enscor and Ham (NEH) algorithm and Genetic Algorithm (GA)

performed much better than the Campbell Dudek and Smith (CDS) algorithm. Overall, when

considering both the quality of solution and computational time together, the NEH algorithm

seems to have performed much better than the others as the size of problems increases. This

model would find useful applications in some metallurgical and manufacturing processes where

such problems are usually encountered.

ii

Acknowledgements

My most generous gratitude goes to the person who played a significant role in guiding me to

make this research possible, Dr Olufemi Adetunji. His guidance enabled me to gather all the

knowledge possible, starting with the very basics of the subject. He motivated me to keep going

up to the last stage. Through his guidance, I was able to enhance my research skills. I am

thankful for the time he selflessly afforded to assist me on this journey.

I much appreciate the support I received from my family and their understanding of all the

missed social events and gatherings. The support and encouragement received from friends

and colleagues made it possible for me to focus on achieving the end goal.

iii

Table of Contents

Abstract .. i

Acknowledgements ... ii

Chapter 1: Introduction and background ... 1

1.1. Introduction .. 2

1.1.1. Scheduling notation .. 3

1.2. Problem classification, research objectives and contributions to literature 7

1.3. Outline of the following chapters ... 8

Chapter 2: Literature review ... 9

2.1. Flowshop scheduling ... 10

2.2. Reentrant flowshop problem .. 12

2.3. Deterioration ... 16

2.4. Solution techniques for flowshop scheduling ... 18

2.4.1. Johnson’s algorithm .. 19

2.4.2. CDS Algorithm ... 22

2.4.3. NEH algorithm ... 23

2.4.4. Genetic Algorithm (GA) ... 24

2.4.5. Other solution techniques .. 27

Chapter 3: Model development and solution approach .. 30

3.1. Model eyeballing ... 31

3.1.1. Reentrant flowshop model ... 32

3.1.2. Deterioration model ... 33

3.2. Reentrant flowshop with deteriorating jobs model ... 34

3.3. Solution algorithms ... 36

Chapter 4: Model solution .. 40

4.1. Experimental design .. 41

4.1.1. Data generation .. 41

4.1.2. Design of experiment .. 44

4.2. Results ... 48

4.2.2. Minimum makespan attainment .. 48

iv

4.2.3. Average computation times .. 53

4.2.4. GA parameter variation .. 53

4.3. Statistical analysis ... 65

4.3.2. Makespan output analysis .. 65

4.3.3. Statistical test of significance of differences ... 69

Chapter 5: Conclusions and recommendations .. 73

References .. 76

Annexure A: Minimum makespan graphs... 81

Annexure B: Makespan analysis ... 91

Annexure C: Computation times ... 96

Annexure D: GA parameter variations .. 100

v

List of Figures

Figure 1: Process-Product alignment matrix for production volume alignment .. 5

Figure 2: Schematic diagram of a reentrant flowshop ... 12

Figure 3: Basic GA structure .. 25

Figure 4: Minimum makespan plots for small problems with same data range for scenario 2 50

Figure 5: Minimum makespan plots for small problems with unique data range for scenario 2 50

Figure 6: Minimum makespan plots for medium problems with same data range for scenario 2 51

Figure 7: Minimum makespan plots for medium problems with unique data range for scenario 2 51

Figure 8: Minimum makespan plots for large problems with scenario 2 ... 52

Figure 9: Minimum makespan of various mutation rates with scenario 3 ... 55

Figure 10: Minimum makespan for various mutation rates with scenario 4 ... 56

Figure 11: Minimum makespan for various population sizes with scenario 3 ... 59

Figure 12: Minimum makespan of various population sizes with scenario 4 ... 60

Figure 13: GA solution convergence for a 15x15x5 problem size with various penalty scenarios 61

Figure 14: GA solution convergence for a 25x25x8 matrix for various mutation rates with scenario 3 62

Figure 15: GA solution convergence for a 30x30x5 matrix for various population sizes with scenario 4 .. 63

Figure 16: Minimum makespan plots for small problems and same data range with scenario 1 81

Figure 17: Minimum makespan plots for small problems and unique data range with scenario 1 82

Figure 18: Minimum makespan for medium problems and same data range with scenario 1 82

Figure 19: Minimum makespan plots for medium problems and unique data range with scenario 1 83

Figure 20: Minimum makespan plots for large problems with scenario 1 ... 84

Figure 21: Minimum makespan plots for small problems and same data range with scenario 3 85

Figure 22: Minimum makespan plots for small problems and unique data range with scenario 3 85

Figure 23: Minimum makespan plots for medium problems and same data range with scenario 3 86

Figure 24: Minimum makespan plots for medium problems and unique data range with scenario 3 86

Figure 25: Minimum makespan plots for large problems with scenario 3 ... 87

Figure 26: Minimum makespan plots for small problems and same data range with scenario 4 88

Figure 27: Minimum makespan plots for small problems and unique data range with scenario 4 88

Figure 28: Minimum makespan plots for medium problems and same data range with scenario 4 89

Figure 29: Minimum makespan plots for medium problems and unique data range with scenario 4 89

Figure 30: Minimum makespan plots for large problems with scenario 4 ... 90

Figure 31: GA solution convergence for a 30x30x5 matrix with scenario 3 for various population sizes 100

Figure 32: GA solution convergence for a 25x25x8 matrix with scenario 4 for various mutation rates .. 101

vi

List of Tables
Table 1: Levels of planning .. 3

Table 2: Example of bounds setting for a 3x3x3 matrix .. 43

Table 3: Example of processing times for a 3x3x3 matrix .. 43

Table 4: Scenarios for delay penalty ... 44

Table 5: Parameter setting for GA .. 45

Table 6: Average computation times .. 53

Table 7: Average computation times for various mutation rates ... 57

Table 8: Average computation times for various population sizes... 61

Table 9: Count of minimum makespan attainment .. 65

Table 10: Average proportion above global minimum makespan ... 66

Table 11: Count of minimum makespan for various mutation rates .. 68

Table 12: Count of minimum makespan for various population sizes ... 68

Table 13: t Stat values for the count of minimum makespan ... 70

Table 14: Significance of t Stat values for the count of minimum makespan .. 70

Table 15: t Stat values for proportion falling beyond the minimum makespan ... 71

Table 16: Significance of t Stat values for proportion falling beyond the minimum makespan 72

Table 17: Count of minimum makespan for small problems with SDR data set .. 91

Table 18: Count of minimum makespan for small problems with UDR data set 91

Table 19: Count of minimum makespan for medium problems with SDR data set 92

Table 20: Count of minimum makespan for medium problems with UDR data set................................... 92

Table 21: Count of minimum makespan for large problems with SDR data set ... 92

Table 22: Count of minimum makespan for large problems with UDR data set .. 93

Table 23: Average proportion above minimum makespan for small problems with SDR data set 93

Table 24: Average proportion above minimum makespan for small problems with UDR data set 93

Table 25: Average proportion above minimum makespan for medium problems with SDR data set 94

Table 26: Average proportion above minimum makespan for medium problems with UDR data set 94

Table 27: Average proportion above minimum makespan for large problems with SDR data set 94

Table 28: Average proportion above minimum makespan for large problems with UDR data set 95

Table 29: Average computation times for small problems with scenario 1 ... 96

Table 30: Average computation times for medium problems with scenario 1 .. 96

Table 31: Average computation times for large problems with scenario 1 ... 96

Table 32: Average computation times for small problems with scenario 2 ... 97

Table 33: Average computation times for medium problems with scenario 2 .. 97

Table 34: Average computation times for large problems with scenario 2 ... 97

Table 35: Average computation times for small problems with scenario 3 ... 98

Table 36: Average computation times for medium problems with scenario 3 .. 98

vii

Table 37: Average computation times for large problems with scenario 3 ... 98

Table 38: Average computation times for small problems with scenario 4 ... 99

Table 39: Average computation times for medium problems with scenario 4 .. 99

Table 40: Average computation times for large problems with scenario 4 ... 99

Chapter 1: Introduction and

background

2

This chapter gives a brief background on job scheduling in a flowshop environment and the

variants to the problem which have been studied since its introduction. It also discusses the

research objectives and outline of the study.

1.1. Introduction

In the current global market, companies strive to build more competitive supply chains to get

their products to the market faster and cheaper than their competition. A supply chain is a

network of activities that include the sourcing and conversion of raw materials into useable

goods and the delivery of the goods to end-users (Simchi-Levi, 2008). A successful supply chain

is the one that can deliver products efficiently and cost-effectively. The process of converting

system inputs to outputs within a supply chain is often loosely considered as manufacturing.

However, service industries such as information management, transportation and distribution

are also an essential part of converting system inputs to outputs (Pinedo, 2016). One of the

main drivers of supply chain competition is customer service, i.e. the ability of a business to

continually meet its customers’ requirements, which affords it a competitive advantage against

their opposition. This research focuses on scheduling, which is concerned with the sequencing

of jobs or operations during manufacturing.

Scheduling is an area of study within planning and control in the field of operations

management. Planning and control involve the determination of quantities to be produced, at

appropriate timing and with sound quality. The following planning aspects related to task

performance are addressed; nature of task, time, date, location, and responsible personnel.

Planning is composed of three levels; strategic, tactical, and operational (Stevenson, 2002). The

strategic plan sets the direction for the business and is long-term. The tactical plan has a

medium-term planning horizon and is focused on the operational part of the company. The

operational plan is focused on the day-to-day operations of the shop-floor. In controlling, the

system is monitored to determine if the organization is operating according to plan, and the

arrangements required to get back to plan if it is no longer followed. Both planning and control

3

are necessary for realizing the target levels of organizational objectives. Table 1 indicates the

extent of planning and control for the different levels of planning.

Table 1: Levels of planning

 Planning Control Activities

Strategic High Low Resource planning &

Rough cut capacity planning

Tactical Medium Medium Detailed capacity planning

Operational Low High Shop floor control

(loading, scheduling, sequencing)

Note: Compiled with information from Operations Management Instructor slides, McGraw-Hill/Irwin, 2012

Scheduling is focused on determining the timing for allocating jobs to resources. The resources

can be machines, facilities or people. Scheduling activities occur in every organization; for

example, in the manufacturing industry, schedules are created for workers or a set of jobs. In a

hospital environment, schedules can be for surgical procedures to be conducted during a

specified period. In the beauty industry, places like salons use appointment systems to create

schedules while the schooling environment schedules classes for teachers/instructors. Like any

field of study, scheduling has its jargon used to describe the problems. The next subsection

gives a brief description of the terminology (notations) used in job scheduling. This is necessary

for the purpose of uniformity when describing the problems.

1.1.1. Scheduling notation

Graham et al. (1979) introduced the classic method of describing scheduling problems through

the use of the three-field notation (α | β |). The notation describes the machine environment

(α), the problem constraints and characteristics (β), and the scheduling objective (). This

notation is generally accepted as a standard framework for problem classification in scheduling.

The description and examples of the fields of the notation are as follows.

4

Machine environment

The machine environment field is used to indicate the type of operation (open, job or flowshop)

or the layout of the facility (one machine, machines and machines in series or parallel). The

type of operation and set-up for a facility is decided based on the types of products or process

steps required for production. For example in a job shop, jobs visit the machines in no particular

order and may not be processed on all the machines within the system. In an open shop, jobs

are scheduled at the discretion of the planner or the scheduler and in a flowshop, jobs follow

the same machine ordering. The flowshop configuration is a widely researched problem with

work that dates back to the 1950s, with the seminal work done by Johnson in 1953.

Figure 1 gives the distinction between the different manufacturing process types and the

specific industries in which each of these process types can be applied. The requirement for

high customization of project and job shop processes makes manufacturing of such processes in

high volumes unsuitable as it may lead to unnecessarily high inventory level and consequently

high holding cost. Flowshops and continuous production processes are better suited to

products that need high volume production. The choice of an appropriate process type to make

a product also influences machine layouts with product layout being suitable for high volume

discrete manufacturing while (flowshop) and process layout for discontinuous manufacturing

(job shop) processes. Also, flowshop production machines’ layout may comprise of identical

parallel machines, unrelated parallel machines, and/or parallel machines with different speeds.

5

Figure 1: Process-Product alignment matrix for production volume alignment

Job Constraints and characteristics

In some scheduling problems, this field is left blank. A blank field implies that the problem will

not be subjected to any specific constraint. Constraints that can be set for scheduling problems

include job precedence, preemptions, due date and release times. A brief description of how

these frequently used constraints are applied follows:

 Job precedence: this constraint is used to set the sequence to be followed in the

schedule. Precedence between two jobs implies that a particular job may not be started

unless the other one has been completed.

 Preemptions: Operations may be interrupted and then resumed at a later stage. This

characteristic can be useful when quality checks do not yield satisfactory results. The job

can be corrected offline while another job is processed.

 Due date: a date on which a job is expected to be completed. A job can be completed

either before or after the due date. The due date is an important constraint that can be

used as a guideline for determining job sequences during planning.

6

 Release times: the release time/date is said to be the earliest possible time at which a

job can be started. Not all jobs can be ready for processing at the beginning of the

planning horizon as there may be initial processing steps required on some jobs.

Scheduling objectives

Objectives in scheduling can also be referred to as performance measures; they are factors that

can be used to determine the effectiveness of the process. Systems may be subjected to single

or multiple objectives. Some of the commonly used objectives are flowtime, makespan, and

lateness.

 Flow time: the flowtime of a job is a measure of the completion time of that job on the

last machine in the process. This time is inclusive of the waiting time before processing

and transportation time between the machines, and not only composed of the actual

processing time of the job (Stevenson, 2002). This measure is vital in an environment

where there is a need to manage work-in-process inventory levels and meeting product

delivery dates. The typical performance measures being studied in this category are the

total flowtime and the mean flowtime.

 Makespan: the time between the processing of the first job on the first machine and

completion of the last job on the last machine. Unlike the flowtime, the measure of

makespan focuses on the overall time required to process all the jobs within a planning

horizon and not individual jobs. The minimisation of makespan as a performance

measure translates to determining the shortest time needed to process all jobs.

 Lateness: job lateness is the difference between the actual completion time of a job and

the promised delivery date. A job is considered to be late if it does not meet its due

date. Lateness can either be positive (tardiness) or negative (earliness). Tardiness is an

important criterion to consider in planning to ensure that no penalty costs are incurred

due to products being delivered later than the promised date. Finishing a job earlier

than its due date is also problematic as it increases inventory holding cost. The holding

cost is described as a cost that is accrued per unit product, per time period stock is being

7

kept (Simchi-Levi et al., 2008). It is thus vital that products are delivered in time for the

required purposes.

1.2. Problem classification, research objectives and

contributions to literature

In the general scheduling notation, there aren’t standard representations for re-entrance and

schedule deterioration in most standard documentations available. Al-Harkan (n.d.), however,

used recrc (recirculation) for reantrant jobs, while the notation for deterioration is not standard

in any text and “deter” is adopted here. This study, therefore, focuses on a problem classified

as / / . The problem is that of a flowshop setup, with a permutation

constraint with the objective being to minimise makespan. The study involves scheduling a

reentrant flowshop with deteriorating jobs. The reentrant flowshop problem has been studied

for various machine environments, however, work on deteriorating jobs has significantly been

on one and two machine environments. To date, there is no evidence of work published which

integrates the reentrant problem with deteriorating jobs, and this serves as a motivation to

consider this problem. This study aims to develop a mathematical programming model and

utilize heuristic algorithms to solve problems related to scheduling of jobs on machines in

a reentrant permutation flowshop with schedule deterioration. The problem is related to

operations such as steel manufacturing, wherein certain production steps may need to be

repeated to achieve the desirable product features. Scheduling of jobs in a manner that will

optimise some production objectives while keeping customer satisfaction high is a challenge

many production planners need to handle. Makespan minimisation in this type of production

environment can lead to improved productivity and thus cost-effective running of the

operations. Some known heuristics were modified to suit and solve the problem at hand as may

be necessary. Solutions achieved by the various heuristics were compared to each other to

determine the one which can be said to lead to finding the least makespan value within

reasonable computational time.

8

1.3. Outline of the following chapters

A brief overview of how this document is arranged is discussed next. This document consists of

five (5) chapters, and the outline of remaining chapters is provided as follows:

In Chapter 2, the literature review of the relevant scheduling areas including the important

variants of flowshop scheduling problem that are pertinent such as job reentrance and

deteriorating jobs is conducted. The manner in which research in this field has evolved is also

reviewed. The various solution techniques available in literature for solving flowshop

scheduling problems are then discussed. The focus of chapter 3 is the development of the

solution approach to solve the problem. A plan of action regarding the selection of solution

techniques used in solving the problem of interest is discussed. Chapter 4 presents the results

and analysis of experimental computations. Results obtained from the various solution

techniques are also compared to one another. In chapter 5, concluding remarks on the solution

technique that resulted in the lowest makespan are made. Recommendations regarding

possible areas for further study of the topic are also proposed.

9

Chapter 2: Literature

review

10

This chapter focuses on basic flow-shop scheduling problem and its diverse modifications

and/or variants. A discussion on general flow-shop scheduling is presented first, followed by the

two variants which are the bases of this study, i.e. the flowshop problem which incorporates

job reentrance and schedule deterioration.

2.1. Flowshop scheduling

In manufacturing, a facility is referred to as a flowshop when its machine set-up is in series and

all jobs follow the same order during processing (Pinedo, 2016). For a flowshop with

machines, each job is processed on the first machine in the series, followed by the second

machine and so on, until it reaches the machine and all the jobs follow the same sequence.

Flowshop scheduling was first studied by Johnson (1953), who based his research on two and

three machine problems and provided solution methods. Systems with machines less than or

equal to three can be solved successfully using Johnson’s algorithm. The study focused on the

generation of an optimal schedule for a two and three-stage production facility. In two machine

flowshop problems for minimization of makespan, the shortest processing time (SPT)

dispatching rule is often used. Solving a scheduling problem for a three machine environment

proved not to be an easy task, hence the modified Johnson’s rule was developed. This method

compresses the three machine environment into a two machine environment to solve the

problem using Johnson’s algorithm, provided the problem meets the set criteria for application

of the rule.

In practice, manufacturing facilities can have more than three machines on which jobs need to

be processed. The issue with these types of operations is that there are no efficient exact

solution procedures that are known to solve the scheduling problems (Tyagi et al., 2013).

Relaxing some of the assumptions made with Johnson’s rule to address the flowshop problems

introduces some complexity to the system. These complex flowshop problems need to be

solved using heuristic methods. Complexities may arise, for instance, when scheduling a

flowshop with jobs on machines, a permutation flowshop arrangement, or perhaps a

11

hybrid flowshop arrangement. Permutation and hybridization are typical complexities in

flowshop scheduling, which have been researched in the past, and they are discussed next.

Permutation flowshop scheduling

In flowshop scheduling, all jobs have the same processing order; however, this doesn’t imply

that jobs will be processed on all the machines in the system. The constraint which gives a

guarantee that jobs will not pass any machine in the shop is termed permutation. In their

paper, Rios-Mercado and Bard (1999) scheduled jobs on machines for a permutation

flowshop. They developed a branch and bound enumeration scheme for minimizing the

makespan. The model incorporated lower and upper bounding, a dominance elimination logic

and a partial enumeration strategy. Upper and lower bounding serves to limit the search space

and thus ensuring that a solution can be achieved within a reasonable computation time.

Genetic algorithm solution (GAs) has also proven to be aloe to successfully find near-optimal

solutions for complex scheduling problems, where methods such as the branch and bound

failed due to the time complexity of exact solutions (Iyer and Saxena, 2004). In this paper, an

improved GA heuristic was used in finding solution for a permutation flowshop in an assembly

line whose objective is to minimize the makespan. The improved GA solution was implemented

by ensuring that it matches the structural information of the system being studied. It was

shown in the study that the modified GA performs better than the standard GA.

Hybrid flowshop scheduling

A hybrid flowshop, also known as a multi-processor, is a type of flowshop arrangement with

two or more production stages in series. Each production stage is composed of identical

machines, working in parallel. This characteristic offers some flexibility to the system while

increasing productivity. Choi and Lee (2007) studied a two-stage hybrid flowshop with the

objective of minimizing the number of tardy jobs. They utilized the branch and bound method

to develop their solution. The heuristic they developed resulted in optimal solutions for

moderately sized problems, i.e., with four machines at each stage and fifteen jobs.

12

The work in flowshop scheduling has caught the attention of a lot of researchers, and some

variants have been explored, owing to the maiden two- and three machine problems. One such

variant is the reentrant characteristic and is discussed next.

2.2. Reentrant flowshop problem

The traditional classification of manufacturing systems differentiates the systems by referring

to them as either a job shop or flowshop. The classical flowshop is characterized by jobs that

are processed on each machine within the system only once. Chen et al. (2008), however,

stated that in reality, this assumption is sometimes violated. The allowance of jobs to return to

one or more machines for further processing is termed reentrance.

The reentrant property is observed in processes such as semiconductor manufacturing (Chen et

al., 2008) wherein components need to be processed more than once before the final product

is achieved and cold drawing operations in steel tube manufacturing. Reentrance can also be

used in tool machining shops (Graves et al., 1983), where a particular tool might require a

polishing stage or heat treatment in between the machining stages to achieve the final tooling

finish. This system is referred to as a reentrant flowshop, and Figure 2 shows a simple

illustration of the reentrant property for a permutation flowshop.

Figure 2: Schematic diagram of a reentrant flowshop

A job is processed on all machines in the shop and then returns into the system for the next

level’s operation. The illustration is somewhat overly simplified as jobs will not necessarily

return into the system just once; jobs may return for the number of passes or levels required to

M1 M2... Mn

13

yield the end product or service based on the system requirements. To describe the process,

one may compare the reentrant shop with the traditional flowshop set-up. In a conventional

flowshop, scheduling a set of jobs { } on machines { }

require that all jobs in set are processed in the sequence then up to only once. In

a reentrant shop, jobs in set are processed in the sequence then up to and return

to the same set of machines for a second, third or pass operation while following the same

sequence as in the first pass.

For decades, the reentrant flowshop problem has attracted the attention of many researchers,

and this can be attributed to the drive to reduce operating costs and increase profits by

manufacturing facilities. Instead of procuring two or more machines that can perform the same

operation, a single machine can be used. The number of machines within a shop is directly

linked to the number of operators required to operate them, and as such, the reentrant shop

can also result in lower labour costs (a portion of fixed costs).

The earliest work identified on reentrant flowshop scheduling was that of Graves et al. (1983).

These were one of the first researchers to realize that not all of the existing models would be

beneficial if applied in different types of systems. The manufacturing process that was used for

their study is that of an integrated circuit fabrication facility. It was initially suggested that the

system could be operated as a job shop with the use of sequencing rules to determine an

optimal sequence of jobs at each machine. This implied that a simple Gantt chart for

sequencing of jobs in this system could be used; however, for a large number of jobs, it would

be nearly impossible to manage. A heuristic algorithm was, thus, developed to minimize the

throughput time using a cyclic scheduling method at specified production rates. The heuristic

developed was referred to as a cyclic Gantt chart. In the cyclic schedule, the chart is divided

into manageable cycle times to enable the scheduler to know the number of cycles required to

complete a single job. One of the unique features about the model is that the schedule that is

generated could be adapted when conditions in the system such as shutdowns, machine

breakdowns, and operator unavailability arose. The downside, however, was that the model

was developed as a computer program from which the results needed to be transferred onto a

14

shop schedule. Any errors that take place during the transfer of the schedule from the program

to the workshop can change the entire process. Since the program was developed, there have

been various technological advancements, which in the current times are an added advantage

to reducing human error.

Despite slow progress in the research of reentrant flowshop problems, Pan and Chen (2003)

furthered work in this field with a focus on the minimization of makespan in a reentrant

permutation flowshop. They proved that the reentrant flowshop problem is NP-hard, even for a

two-machine shop. The duo developed several heuristics in their search for a solution approach

for the problem. Chen (2006) extended the work done on the reentrant permutation flowshop

by developing a branch and bound algorithm. For the algorithm to reach an optimal solution

quickly, a branching rule, upper and lower bounding rule, and a fathoming rule were utilised.

Chen et al. (2007) developed an integer programming model and used heuristics to find an

initial solution. Tabu search was then applied to improve the initial solution in scheduling jobs

in a reentrant machine environment to minimize makespan. The combination of the pure

Tabu search with neighborhood search heuristics enhances the efficiency of the Tabu search by

ensuring that the local minima are also explored.

Rios-Mercado and Bard (1999) had earlier presented research conducted on scheduling by

using a branch and bound algorithm for permutation flowshops with sequence-dependent set-

up times. Their algorithm included the use of lower and upper bounding procedures,

dominance rules and partial enumeration to reach a solution. As more and more researchers

explored the ability of the branch and bound approach to solve the various reentrant problems,

the possibility of incorporating the traditional scheduling heuristics for finding upper bounds

were also taken into consideration (Choi and Kim, 2007).

In the paper of He et al. (2011), they opted to use a different approach to model the reentrant

problem. A model based on partial differential equations was presented. The model has the

ability to handle a large number of jobs on many processing stages. In the first part of their

study, they presented a basic continuum model for material flows. They proved using

computational examples that it results in an inaccurate solution for the reentrant problem. The

15

inaccuracies were then corrected by modifying the continuum model and incorporating the

reentrant degree/ factor of the products. The impact of varying degrees of the reentrant factor

on total system behaviour was also studied through computational experimentation.

More recent work includes scheduling a reentrant no-wait shop and systems with multiple

objectives. One such problem was studied by Rifai et al. (2016) wherein three objective

functions, namely maximum completion time, total production cost, and average tardiness,

were considered. A multi-objective adaptive large neighborhood search (MOALNS) algorithm

was developed to find near-optimal solution for the problem. TasoujiHassanpour et al. (2015)

proved that the no-wait reentrant problem is NP-hard and utilized heuristic algorithms to solve

the problem. Genetic algorithm, bottleneck based heuristic and simulated annealing heuristic

were used to solve the problem. The simulated annealing algorithm out-performed the genetic

algorithm and the bottleneck based algorithm in terms of finding the best solution within

reasonable computation time.

The majority of flowshop problems in the study only involve a single machine at each

production stage. There is, however, another type of flowshop referred to as a hybrid flowshop.

This type of flowshop involves the use of more than one machine at each production stage

(Moursli, 1999). The hybrid flowshop is common in semiconductor production facilities (Kim

and Lee, 2008). Much like the use of the reentrant property, using multiple machines per

production stage is aimed at improving the productivity and efficiency of the facility. The

reentrant property has also been studied in this type of flowshop environment with work

including that of Choi et al. (2009), Kim and Lee (2008) and Zhang and Chen (2017). Heuristic

methods have been used to solve various scheduling problems. Choi et al. (2009) applied the

branch and bound algorithm. They compared it to modified heuristics (Johnson’s, CDS and NEH)

to schedule a two-stage reentrant hybrid flowshop to minimize makespan under the maximum

allowable due dates. Kim and Lee (2008) adopted the same methodology and applied the

modified CDS and NEH heuristics for scheduling jobs in a reentrant hybrid flowshop with

unrelated parallel machines.

16

In cases where more than two passes or levels of processing are required, the sequence of

operation is repeated. The repeated cycles that the jobs need to go through may lead to

deterioration as the jobs queue to be processed. The deterioration factor affects the total

processing time of jobs and can lead to high operating costs. The next section focuses on the

deterioration factor and how it affects permutation flowshop scheduling.

2.3. Deterioration

The deterioration of jobs can be described in various ways. It can refer to deterioration while

waiting for service due to the unavailability of machines or deterioration caused by fatigue or

tiredness of machine operators. The deterioration factor of jobs can also be influenced by

scheduled maintenance or cleaning of machines (Bank et al., 2012). In some instances, jobs

require a preparation step before processing; the cold-drawn tube manufacturing is a typical

example. The input to the process is prepared by applying lubricants and warming it up. The

material loses temperature while it waits to be processed and will need to be re-heated to

ensure it is at the correct temperature. Ingot and bloom rolling can also be affected by the

deterioration of processing times. In these steel rolling operations, the input material is

reheated to a predetermined temperature before rolling. Each steel grade has a critical

temperature below which rolling becomes difficult and may cause machine damage. Below this

temperature, the input ingots/blooms are said to have deteriorated and require a reheating

cycle. In all cases of deteriorating jobs, the result is processing times that increase with an

increase in waiting time before processing. A deteriorating job is thus referred to as a job that

will take more time to be processed later than when it is processed first in the schedule.

The job deterioration problem is relatively new, currently spanning only three decades of

research. Despite that, the job deterioration problem has had variants of the original problem

studied since its inception. The first decade did not see much development. Studies were

conducted with a focus on single machine problems with the objective being minimization of

makespan (Browne and Yechiali, 1990, and Kubiak and van de Velde, 1998) and minimisation of

flowtime (Mosheiov, 1991). Browne and Yechiali (1990) pioneered the study of deteriorating

17

jobs, with a focus on a single machine problem with simple linear deterioration and an

objective of makespan minimization. The duo proved that the processing time of a job

increases linearly in relation to the waiting time, and they used scheduling policies to develop a

solution.

Meanwhile, Mosheiov (1991) studied the minimization of flowtime for jobs on a single

machine and proved that the optimal sequence for the problem is V-shaped. The V-shape

property essentially means that the first set of jobs to be scheduled is arranged in decreasing

order of the deterioration rate. In contrast, the remaining set of jobs is scheduled in increasing

order of their deterioration rate.

A study proving the NP-hardness of a two- and three-machine scheduling problem for

deteriorating jobs was conducted by Kononov et al. (2001). The types of deteriorating jobs

studied were the simple linear and proportional deterioration with the objective of minimizing

the makespan. Hindi and Mhlanga (2001) also studied the simple linear deterioration but

coupled it with the study of jobs with basic processing times. The difference between the two

types of deteriorating jobs in this study is that in simple linear deterioration, it is assumed that

jobs are only available at a positive time and that for jobs with basic processing time, the

scheduling horizon starts at for all jobs. The total processing time of jobs with basic

processing time is made up of two components; the time component induced by deterioration

and the actual processing time component. Thus, the longer a job waits in the queue before

processing, the longer it will take to be completed. Heuristics were used to schedule jobs for

the parallel machine environment to minimise makespan. The choice of the solution technique

was based on the fact that scheduling problems with parallel machines are NP-hard, and thus

introducing deterioration increases the complexity of the problem.

Wang et al. (2006) presented a paper on the study of minimization of total completion time in a

two-machine flowshop with deteriorating jobs. An assumption that the deterioration has a

linear function in relation to the processing time was made. A branch and bound algorithm was

used together with several dominance properties and two lower bounds to speed up the

elimination process during enumeration. Bank et al. (2012) studied a similar problem with the

18

objective, however, being to minimize total tardiness. The same approach was used to develop

the solution, where a branch and bound with dominance properties and upper and lower

bounds were used to reach an efficient schedule. Job tardiness is extremely important in cases

where companies are more concerned with meeting their customer’s expectations in terms of

due dates, and supply chains are striving to out-perform each other with regards to customer

satisfaction.

A lot of focus for the scheduling of deteriorating jobs has been on manufacturing facilities with

machines that are less than or equal to three. Single machine scheduling of deteriorating jobs

has been studied by Browne and Yechiali (1990), Mosheiov (1991), Wang and Xia (2005), Ji and

Cheng (2010) and Wang et al. (2011). Shiau et al. (2007) and Wang et al. (2006) studied

deteriorating jobs for two machine manufacturing systems. Jafari et al. (2017) studied three

machine problems. Wang et al. (2019), however, studied an machine (m > 3) problem for

scheduling deteriorating jobs. They utilized a metaheuristic called multi-verse optimizer (MVO)

to find a solution to the problem. They were one of the few identified in literature to have

studied the problem for machines.

The review of the different studies conducted in the scheduling of manufacturing systems is

indicative of the various solution methods available in the literature. The next subsection

focuses on an in-depth analysis of some of these solution methods.

2.4. Solution techniques for flowshop scheduling

There is a vast range of solution methods available in literature that can be applied to flowshop

scheduling. Ruiz and Maroto (2005) compared the performance of twenty-five (25) solution

methods to evaluate their performance for scheduling a permutation flowshop. Tyagi et al.

(2013) in their own survey of flowshop scheduling showed how solution methods have evolved

over six decades. They grouped the solution methods discovered per decade and also arranged

them according to the categories they belong to, i.e., exact methods, heuristics and meta-

19

heuristics. This subsection focuses on the popular solution techniques available in literature for

scheduling flowshop problems, reviewing how the methods function and how they have been

used in literature. The review of these methods is necessary for the selection of suitable

methods for solving the problem of interest. The algorithms and heuristics to be discussed are

Johnson’s algorithm, CDS, NEH, genetic algorithm (GA), general sequencing rules, branch and

bound algorithm and Tabu search. The main review focus would be on the techniques adopted

in solving the problem of interest.

2.4.1. Johnson’s algorithm

Johnson (1953) pioneered the study of flowshop scheduling with the maiden research focused

on the two and three machine problems. Johnson’s rule can only be applied to two and a

specific type of three machine problems. There are some conditions that a three machine set-

up needs to satisfy for Johnson’s rule to be used. The requirements for scheduling a three

machine flowshop will be discussed later in this subsection. Assumptions made to apply

Johnson’s algorithm in scheduling two and three machine problems are that:

 All jobs are available from time zero

 All job processing times are known

 There are no machine breakdowns

 There is unlimited space for jobs waiting to be processed

 Pre-emption is not allowed

 Machine set-up times are included in the processing time

 Each machine can only handle one job at a time

 All of the job processing times are known

 Only one machine of each type is used

20

The original Johnson’s algorithm

Johnson’s algorithm was developed during an era when technological advancements were

slow. The algorithm was designed in such a way as to enable it to be used manually, and still, be

able to achieve an optimum schedule. Steps followed for execution of Johnson’s rule are

detailed in Algorithm 1.

Algorithm 1: Johnson’s two-machine algorithm

Step 1: For a set of jobs to be scheduled on two machines, let be the processing time of job

 on machine

Step 2: Put in set I all jobs for which contain

Step 3: Put in set II all jobs for which contain

Step 4: Jobs with can be placed in either set

Step 5: Arrange jobs in set I in increasing order, and those in set II in decreasing order. If there

are any ties, break them arbitrarily.

Step 6: Create an optimal sequence by combining jobs in set I and set II

Step 7: Compute the objective function

The limitation of Johnson’s algorithm was that it could only be applied to two machine

problems, and thus needed an extension. The extended version of the algorithm was aimed at

scheduling a three machine problem by manual computation.

The modified Johnson’s algorithm

The modified Johnson’s algorithm applies to a three machine problem, which satisfies either or

both of the following conditions:

 The maximum processing time of job on the second machine is less than or equal to

the minimum processing time of job on the first machine, i.e. ()

 The maximum processing time of job on the second machine is less than or equal to

the minimum processing time of job on the third machine, i.e. ()

21

Algorithm 2: Johnson’s three-machine algorithm

Step 1: Check for the minimum value of processing time on machines and and check

for the maximum value of processing time on machine

Step 2: Subject the problem to the three machine conditions

Step 3: Generate and ; where and

Step 4: Apply Johnson’s two-machine algorithm using and

Step 5: Use the optimal sequence in step 4 to evaluate the objective function in the original

problem

Johnson’s algorithm in application

Johnson’s algorithm is undoubtedly the cornerstone of flowshop scheduling and has, in many

instances, been modified to match the problems being addressed. Hsu et al. (2006) opted to do

just that when they modified Johnson’s rule and combined it with despatching rules to solve

the problem of minimizing the makespan in a two-stage flowshop with a function constraint on

alternative machines. They proved that combining their version of the modified Johnson’s rule

with the First-Fit despatching rule performed better than the pure form of the heuristic.

Regardless of the original algorithm only being applied to two-machine and some three-

machine problems, it can be said with confidence that with any necessary modifications,

Johnson’s rule can be used on several variants of the classic flowshop problem.

Choudhari and Khanna (2017) presented a scheduling problem with four machines and jobs

and an objective of minimizing makespan. Due to the restrictions on the number of machines,

the duo could not use the pure form of Johnson’s algorithm to solve the problem at hand. They

developed an algorithm that converted the four-machine problem into a three-machine, and

then a two-machine problem. The job sequence obtained by applying Johnson’s rule was then

substituted back into the original problem to compute for the makespan.

22

2.4.2. CDS Algorithm

With further advancements in the scheduling of jobs on several machines, the trio of Campbell,

Dudek, and Smith made their contribution to the study in the year 1970 (Tyagi et al., 2013). This

gave rise to their now well-known algorithm for scheduling of jobs on machines, the CDS

algorithm. The algorithm converts a machine problem (i.e., more than two) into several

surrogate two machines (Campbell et al., 1970). In so doing, the problem gets reduced to a

two-machine problem as with the modified Johnson’s algorithm. Algorithm 3 is a short

description of how the CDS algorithm is executed.

Algorithm 3: CDS algorithm

Step 1: Formulate (-1) 2-machine surrogate problems from the original problem. The data is

generated for and , the surrogate machines in the following manner:

 For and

 ∑

 and ∑

Step 2: Use Johnson’s algorithm to schedule the surrogate problems

 For the set of jobs to be scheduled on two machines, let be the processing time

of job on machine

 Generate set I for jobs that contain

 Generate set II for jobs that contain

 Jobs with can be placed in either set

 Order jobs in set I in increasing order, and those in set II in decreasing order. Break

any ties arbitrarily.

 Create an optimal sequence by combining jobs in set I and set II

 Evaluate the objective function

Step 3: Select the schedule which satisfies the objective function

23

CDS in application

The original CDS algorithm was developed to allow for scheduling of large problems. The

current trend of research in this area of study is the modification of the original algorithm. Choi

et al. (2009), for instance, modified the algorithm to suit scheduling a two-stage hybrid

reentrant flowshop with an objective of minimizing makespan. The performance of the

modified algorithm was compared to other algorithms that had also been modified, such as

Johnson’s and NEH. The CDS algorithm is relatively adaptable to various types of scheduling

problems and can result in near-optimal solutions.

2.4.3. NEH algorithm

Nawaz, Enscore and Ham developed the NEH algorithm in 1983 (Tyagi et al., 2013). This

solution method has a unique feature. The algorithm uses what is called insertion to establish

the optimal schedule for the problem (Baskar 2016), as is described in Algorithm 4.

Algorithm 4: NEH algorithm

Step 1: Calculate the total processing time of each job and arrange the jobs in decreasing order

Step 2: Schedule the first two jobs from the list, i.e. the ones with the highest processing time.

Form two partial sequences by interchanging the place of the jobs.

Step 3: Evaluate the objective function for the partial sequences

Step 4: Retain the partial sequence that minimizes the objective function; term it “the

incumbent sequence.”

Step 5: Insert the next job from the list in all possible places of the incumbent

sequence. Evaluate the objective function for the partial sequences.

Step 6: Retain the schedule that results in the minimum, and discard the rest.

Step 7: End if all jobs have been scheduled, else go to step 5

24

NEH in apaplication

The power of insertion of the NEH algorithm was tested by Baskar (2016), wherein seven

variants of the algorithm were created by varying the method of selecting the initial sequence

and then comparing them with the original version. This study proved that even the simplest

versions of the NEH algorithm are capable of arriving at an optimal solution. In a survey of

permutation flowshop scheduling, it was demonstrated that the NEH out-performs other

algorithms and heuristics if tested against Taillard’s instance benchmark (Ruiz and Maroto

2005).

2.4.4. Genetic Algorithm (GA)

The genetic algorithm (GA) was developed by John Holland, together with his colleagues and

students. The main aim of their research development was to relate artificial systems with

natural systems (Goldberg, 1989). This search method can easily be adapted to any kind of

optimization problem. GA is a search algorithm that was developed based on Darwin’s

biological theory of natural selection. This algorithm operates on an initial large population,

selects schedules that out-perform the others, and carries them over to the next generation to

re-create new schedules. New generations of the population are the evolved version of the

previous generations.

The basic structure of the genetic algorithm consists of population initialization, fitness

evaluation, GA operators (selection, crossover, and mutation), survivor selection, and

termination. The basic GA structure is represented in Figure 3. The different components of GA

are discussed next.

Objective and cost functions: In developing a GA, one needs to identify a variable within the

system, which is to be optimized.

25

Population initialization: The initial population consists of randomly generated job

sequences, which are often referred to as chromosomes.

Figure 3: Basic GA structure

Fitness evaluation: The evaluation step is created to apply the theory of natural selection. A

fitness function is used to assess the fittest sequences of the population.

Selection: The fittest sequences that will form part of the next generation are selected and are

subjected to the GA operators to get diversification in the system.

Crossover: This is the operation responsible for the generation of a new population (child) from

the parent population. Murata et al. (1996) reviewed several crossover operators, including

one-point crossover, two-point crossover, and position-based crossover. Multi-point crossover

operations are disruptive and thus assist in converging to the fittest chromosomes quicker.

Initial population

Fitness evaluation

Selection

Crossover

Mutation

Survivor selection

Terminate? Output of the best
solution

GA operators

Yes No

26

Mutation: Mutation is an operation that is applied to a schedule to alter the job sequence

deliberately. This is done in the hope of finding a better solution in the neighbourhood.

Adjacent two-job change, arbitrary two-job change, and shift change are some of the mutation

operators that are widely used (Murata et al., 1996).

Survivor selection: The mutated schedules are evaluated against the objective function using

the local search heuristics. The job schedule that returns an optimal or a near-optimal solution

gets carried over to the next generation. One can perform this step using one heuristic, which

has been proven to out-perform its counterparts (Pan and Chen, 2003) or apply all of the

identified heuristics and compare their performance in their specific case.

Termination: The decision to terminate the algorithm can be based on whether the returned

solution satisfies the objective function or not or after a certain number of iterations. The

decision to end the algorithm after several iterations is usually based on some form of

experience from observing how the GA converges when performing computational

experiments.

The GA tends to yield superior results compared to its counterpart search methods. A

comparison of the Genetic Algorithm to the traditional search methods indicates the following

(Goldberg, 1989):

 GA searches from a population of points and not from a single point.

 GA doesn’t need any derivative information or other auxiliary information; the set

objective and fitness functions influence the search space.

 GA uses probabilistic transition rules rather than deterministic.

Some of the known advantages of using GA over other algorithms were discussed by Pinedo

(2016) and are as follows:

 GA can easily be coded

 GA can be applied to problems whose structural properties are not known

27

GA in application

GA has been widely used in scheduling due to its ability to be adapted to various types of

problems. Modifications to the basic steps have been presented by different researchers for

objective functions such as makespan minimization in a reentrant flowshop (Chen et al., 2008)

and a reentrant no-wait flowshop (TasoujiHassanpour et al., 2015).

2.4.5. Other solution techniques

The previous subsection focused on solution methods which are foundational to the area of

scheduling and are being considered for solving a reentrant flowshop problem with

deteriorating jobs. This subsection gives a brief background of some other popular solution

methods that have been successfully applied to scheduling flowshops. The solution methods to

be discussed are sequencing rules, branch and bound algorithm and the Tabu search. These

methods have either been used as stand-alone solution methods, or in combination with

others. Although reviewed, these methods will not be used in solving the problem of interest.

Some shortfalls of these methods, which led to them not being considered for this study, are

highlighted in this subsection.

Sequencing rules

Some flowshop problems are solved using sequencing rules. Sequencing rules are used due to

their simplicity of implementation. The sequencing rules can also be applied as a method for

generating an initial solution, which gets improved on by the use of global search methods such

as GA. Some disadvantages linked to the sequencing rules are that the quality of the solution

cannot be guaranteed and that it is not easy to determine how far the solution is from optimal

(Tyagi et al., 2013). The sequencing rules that are often used include:

 First-in first-out (FIFO) – jobs are sequenced in the order that they arrived at the

machine.

28

 Shortest processing time (SPT) – job sequences are determined based on processing

times, and as the name states the job with the shortest processing time is scheduled

first.

 Longest processing time (LPT) – job sequences are determined based on processing

times, and jobs with the longest processing times are scheduled first.

 Earliest due date (EDD) – jobs are sequenced in the order that they are due for delivery.

Branch and bound

The branch and bound algorithm is widely used in classic flowshop scheduling as it searches the

entire space for the best solution. The size of the search space results in n! possible schedules.

The n! combinations can be generated on an enumeration tree, however, this can be inefficient

(Chen, 2006) and may lead to non-optimal solutions due to the necessity to truncate the

search. The branch and bound algorithm is often used for simple three machine environments.

Yet, with the rising interest in applying the branch and bound algorithm in reentrant shops,

researchers such as Rios-Mercado and Bard (1999) and Chen (2006) have explored the

possibility of applying the algorithm to a job, machine environment. Choi et al. (2009) also

used the branch and bound algorithm for a two-stage reentrant hybrid flowshop for minimizing

makespan under the maximum allowable due dates.

Tabu search

As described by Pinedo (2016), the Tabu search algorithm is an improvement type algorithm,

meaning that it starts with a schedule (which can be generated arbitrarily) and work on

manipulating and improving it until the best solution is achieved. This search algorithm can

simply be combined with other methods, especially for creating the initial schedule. Eren and

Güner (2007) used the EDD sequencing rule to generate the initial sequence. Chen et al. (2007)

opted for a hybridized method, where they used a combination of a sequencing rule with a

heuristic to generate the initial solution and then applied the Tabu search to improve the

solution. Hybridization of the Tabu search ensures that the best solution doesn’t get trapped in

29

the local minima. The Tabu search appears to perform best with the hybrid approach for initial

schedule generation (Ruiz and Maroto, 2005). A successful selection of an initialization method

requires prior knowledge of how the problem behaves.

At this point, it may be necessary to summarise what has been done in this chapter and

consider what follows. The general flowshop scheduling problem together with its variants was

reviewed. Further to that, reentrance and the deterioration factor were discussed to evaluate

research progress made till date in this field. The review of the various types of environments

studied uncovered the vast number of solution methods available in literature. The

functionality and application of some of the solution methods was, thus, discussed. The next

chapter focuses on developing a model for solving the problem of product reentrance and

deteriorating jobs and the selection of solution methods to be used.

30

Chapter 3: Model

development and solution

approach

31

This chapter focuses on model design based on advancements already made in this area of

study by other researchers. Two models, one based on reentrance, and the other based on

deteriorating jobs, will be presented. For the scheduling problem being considered, the

assumptions made are stated, and the linear programming model is formulated. The last

section of the chapter presents the solution algorithms for solving the problem of interest.

3.1. Model eyeballing

In this section, two models that are foundational to the problem of deteriorating jobs in a

reentrant flowshop are presented. The notation to be used throughout the section is

introduced first, followed by the two models.

Notation:

Symbol Description

 job index set; { }, where is the number of jobs

 machine index set; { }, where is the number of

machines

number of levels of job ; { }, where is the number of

levels

 position of job in the sequence

 1, if job is scheduled in the th position at each level; 0 otherwise

 the starting time of a job scheduled in the th position of level on

machine

 the deterioration rate of a job scheduled in the th position of level on

machine

 the deterioration rate of a job

 the normal processing time of the operation of job on machine at level

 the actual processing time of the operation of job on machine at level ,

where

 completion time of the last job in the sequence

 completion time of job

32

3.1.1. Reentrant flowshop model

Pan and Chen (2003) were the first to formulate models for the reentrant permutation

flowshop (RPFS); which they had derived from models previously presented by other

researchers focused on modelling permutation flowshops. Computations performed proved

that the formulation derived from Wilson’s model performs well with the modified heuristics.

The modified Wilson’s model is presented as follows:

Minimize (1)

Subject to ∑

 (2)

 ∑
 (3)

 (4)

 ∑

 (5)

 ∑

 (6)

 ∑

 (7)

 ∑

 (8)

 ∑

 (9)

 ∑

 (10)

 ∑

 (11)

 ∑

 { } (12)

 ∑

 (13)

 ∑

 (14)

33

 (15)

Equation (1) is the objective function. Constraints (2) and (3) describe the decision variables.

They ensure that every job is in only one position and that each position has only one job

assigned to it. Constraint (4) describes the starting time of the first operation scheduled at the

first level of the first machine. Constraints (5) and (11) are expressions for the starting time of

any job, on any machine at the first operation level, while (6) – (10), (12) and (13) enforce the

precedence relations. Constraint (14) defines to be the finish time of the last job

processed on (the last machine) at the last level. Constraint (15) enforces the non-negativity

and binary restrictions.

3.1.2. Deterioration model

Two types of deterioration models were studied by Hindi and Mhlanga (2001); simple linear

deterioration and jobs with basic processing time. Simple linear deterioration applies to

problems where all jobs are subject to a deterioration rate and the processing time of a specific

job is calculated by . The basic processing time model is aimed at problems with jobs

that are available from time . All jobs have a job-specific processing time. However, the

total processing time is influenced by the delay a job incurs while it waits to be processed and,

thus, the total processing time grows linearly with the delay. The focus of this study is on the

model for jobs with basic processing time. Only the deterioration part of the model is being

considered due to its similarity to other flowshop problems. The model for a single machine is

presented as follows:

 (16)

 ∑

 (17)

 () (18)

 ∑ ∏

 (19)

34

 ∑

 ∏

 (20)

Constraint (16) defines the total processing time of a deteriorating job. Constraint (17) is the

expression of the completion time of a specific job for index set { }. Constraints

(18) and (19) are expressions for the completion time of job , with a deterioration rate.

Constraint (20) defines , the completion time of the last job processed on the machine.

3.2. Reentrant flowshop with deteriorating jobs model

To model the problem of the reentrant flowshop with deteriorating jobs, a linear programming

model that incorporates the models presented earlier is formulated.

The assumptions made to solve the problem are as follows:

- All jobs are available from time zero (batch processing)

- Each machine can only process a single job at a time

- Jobs visit every machine in the same order (permutation)

- No machine breakdowns

- All job processing times are known

- There is unlimited storage space for jobs waiting to be processed

- Pre-emption is not allowed

- Machine set-up times are included in the processing time

The model presented in this section considers a flowshop scheduling problem in which the jobs

are both reentrant and the processing time deteriorates as a result of the delay before the

commencement of processing of the jobs. This problem, hence, has the feature of the two

models presented earlier in this chapter.

35

The linear programming model for the reentrant flowshop with deteriorating jobs is as follows:

Minimize (21)

Subject to ∑

 (22)

 ∑

 (23)

 (24)

 ∑

 (25)

 ∑

 (26)

 ∑

 (27)

 ∑

 (28)

 ∑

 (29)

 ∑

 (30)

 ∑

 (31)

 ∑

 { } (32)

 ∑

 (33)

 ∑

 ∏

 (34)

 (35)

Equation (21) is the objective function. Constraints (22) and (23) describe the decision variables

for the problem ensuring that each job is scheduled in only a single position and that a position

has only a single job allocated to it, while constraint (24) describes the starting time of the first

operation scheduled at the first level of the first machine. Constraints (25) and (30) define the

starting time of any job, on any machine at the first operation level. Constraints (26) to (29) and

36

(31) to (33) describe the precedence of jobs in the process. Constraint (34) is the expression for

calculating the makespan of the system, allowing for deterioration of processing time, while

constraint (35) enforces the non-negativity and binary restrictions.

3.3. Solution algorithms

Various solution methods for scheduling flowshop problems were presented in the previous

chapter. The following techniques, CDS, NEH, and GA, were selected for scheduling the

flowshop problem with reentrance and deteriorating jobs. These methods have been proven to

work well with large problem sizes and are relatively adaptable to various types of scheduling

problems. The NEH was specifically selected to test submissions made by Ruiz and Maroto

(2005) where they demonstrated that the NEH out-performs other algorithms and heuristics for

scheduling problems, and by Baskar (2016) which indicated that even the simplest versions of

the NEH algorithm are capable of arriving at an optimal solution.

The iconic CDS, NEH, and GA, with the incorporation of reentrance and deterioration, are

presented as pseudo-codes 1, 2, and 3, respectively. The pseudo-codes are modifications to the

original algorithms, made to accommodate reentrance and the deterioration of jobs.

Pseudo-code 1: CDS algorithm

//Create an aggregate processing time for each job for each machine across all levels
For every job across all levels

 ∑

EndFor
//solve surrogate two machine problems
Set makespan to a large number
For varying from to
 For every job, , on two pseudo machines,

 and

Create two surrogate processing times as follows

 ∑

 as processing time of job on

 ∑

 as processing time of job on

 EndFor
 Solve sequencing problem for

 and
 using Johnson’s Algorithm

 If makespan from sequence is better
Update makespan
Update optimum sequence

 EndIf
EndFor

37

Johnson’s Algorithm
Create two sets, and such that
 If

 <
 allocate job to set

 ElseIf
 <

 allocate job to set

 Else allocate to either set
 EndIf
Sort set in non-decreasing order of

Sort set in non-increasing order of

Append set to set

Pseudo-code 2: NEH algorithm

For each job, ,

Determine the work content,
 , from

 ∑ ∑

EndFor
Sort jobs into set in decreasing order of work content,

 ,

Take the first two jobs out of set and form two partial sequences with them
Retain the partial sequence with the minimum makespan of the two
While there exists an unscheduled job in set
 Remove the next job (with largest work content)
Form a set of new partial sequences by inserting the job in all possible positions in the currently retained
partial sequence
 Retain one of the new partial sequence which has minimum makespan
EndWhile

Pseudo-code 3: GA

Set current iteration to 1
Generate initial population
Evaluate fitness and rank chromosomes based on makespan
Store the best chromosome
While current iteration is less than the required iterations

Evaluate fitness and rank chromosomes based on makespan
Update the best chromosome found
Retain top performers and discard the remaining chromosomes
Cross breed top performers to create new chromosomes make up population
Mutate the top chromosomes
Increment current iteration

EndWhile

38

The various components of GA, including the crossover and mutation operators that were

modified to incorporate reentrance and deterioration, are discussed next.

Chromosome representation

A chromosome representation is designed as a vector of the same length as the number of jobs

to be sequenced. It is created and populated with a random number between 1 and the total

number of jobs. The representation is in such a way as to guarantee that every job is placed in

exactly one position only in the vector.

Crossover Implementation

The crossover algorithm makes use of a logic termed herein as autogamy, meaning a

chromosome is crossed with itself. The advantages of this procedure are twofold. The first is

that it ensures that all jobs are placed precisely in one position after crossover. This is

important because it is easy for some jobs to be missing while others are present in more than

a single position after the crossover process. The second advantage is that it preserves some

partial sequences of schedules that have performed well so that the benefit of promising

sequences is not lost while trying to explore other areas during the search. The procedure

randomly selects, through a probability mechanism, a breeding chromosome. It then randomly

generates the crossover point. From the crossover point, two partial sequences (the head and

the tail) are created. The tail partial sequence is swapped to the head position as a block while

the head sequence is also swapped to the tail position as a block. This way, the promising

partial sequences are preserved with minimum disturbance. If further mix in the sequence is

desired, more than one crossover procedures may be implemented in a single reproduction

process. How the partial sequences are repositioned may also alter the new sequences formed.

Mutation implementation

In implementing the mutation process, there is also the need to ensure that all jobs are

sequenced in exactly one position. To do this, a swap procedure is implemented. Two random

positions are generated within the sequence, and the jobs in these two positions are swapped.

This procedure is repeated for the number of mutations required per chromosome.

39

It is apt at this point to recap what has been discussed in this chapter and provide a view of

what comes next. This chapter focused on modelling the problem and was divided into three

subsections. The first subsection concentrated on the review of models already presented in

literature for reentrant flowshop and for jobs with deteriorating processing times. The second

subsection was dedicated to developing a model which integrates the reentrance model and

that of jobs with deteriorating schedules. The last subsection presented the modified

algorithms as solution models for the problem of interest. The next chapter will address the

design of model solution procedure and implementing same, i.e. generation of test data,

conducting computational experiments and reporting on findings.

40

Chapter 4: Model solution

41

The model solution is composed of the experimental design, discussion of results and statistical

analysis of model output. In the experimental design section, data generation methods

previously used by researchers in the field of scheduling are evaluated to devise an approach

for the problem of interest. The procedure for data generation used and the motivation for

selecting it is explained. The results of the experiment on the three solution methods, CDS,

NEH, and GA, are discussed. Since the data used for experimentation was randomly generated,

the results are statistically analysed to determine the best performing solution method and the

significance of the difference in the values achieved by the three algorithms.

4.1. Experimental design

Experimental design involves a discussion on the generation of data and the design of the

experiments. Under data generation, the method of generating processing times and the rate

of deterioration/ penalty to experiment with are discussed. The classification of test instances

and implementation of the experiments are discussed under the design of experiments.

4.1.1. Data generation

There are various ways in which data for testing can be generated. It can either be done

randomly, in a way that the test instances are similar to real manufacturing (Choi and Kim,

2007) or by benchmarking based on previous researchers’ studies. Reeves (1995), Ruiz and

Maroto (2005) and Baskar (2016), have all used Taillard’s benchmark instances in their studies.

Another option of data generation is the use of data for which an optimal solution is known.

Chen (2006) used a set of data with known optimal solutions to compare the new methods

proposed with those previously tested by other researchers. With no study known to date

which integrates the reentrant problem with deteriorating jobs, the approach of the use of data

with known optimal solutions was eliminated. Alternative methods for data generation were

thus considered for this study.

42

Data generation for processing times

In generating data for experimentation, the practical number of machines and operational

levels to study in relation to the type of manufacturing environment had to be considered. Test

data sizes and the method of data generation used by Chen et al. (2007) for minimizing

makespan in reentrant flowshops were adopted. The method involves the use of a wide range

of data sizes. It tackles scheduling of jobs in manufacturing facilities with as few as two

operational levels to as much as ten operational levels. Widening the test data range allows for

observations to be made on the effect that manufacturing facility configurations have on the

makespan.

Parameters used in the experimental environment are described as ; where

 represents the number of jobs, the number of machines and the number of operational

levels. The test data is divided into three categories: small, medium, and large problem sizes.

The small problems are composed of eight matrix sizes: , , , , ,

 , , and . Medium problems also consist of eight matrix sizes: , ,

 , , , , , and . The large problems include five matrix

sizes: , , , , and . Data was generated randomly

as no benchmark data was available. Two types of data sets were generated. The first set of

processing times was generated in the range [1, 100] on all machines since most benchmark

data is generated within this range (Chen et al., 2007). The set was then termed the same data

range (SDR) set. This is because in this first approach to data generation, every machine

involved in the scheduling process has a possible lower bound of 1 time unit and an upper

bound of 100 time units. This is unlike the second approach that was termed the unique data

range (UDR) in which each of the machines has different lower and upper bounds of data range,

but all these bounds were between zero and hundred. The second set was generated by first

randomly setting unique upper and lower bounds for the processing times of each machine in

within the range [1, 100]. Every data point for such machine is then generated within its own

randomly generated lower and upper bounds. An example of the upper bound (UB) and the

lower bound (LB) setting for a matrix is illustrated in Table 2.

43

Table 2: Example of bounds setting for a 3x3x3 matrix

Machine 1 Machine 2 Machine 3

UB LB UB LB UB LB

71 14 88 72 59 70

These unique data ranges were then applied to all jobs on all operational levels and, hence,

called the unique data range (UDR) set. Table 3 shows an example of an instance full set of a

 processing time matrix.

Table 3: Example of processing times for a 3x3x3 matrix

Levels → 1 2 3

Machines→
Jobs↓ 1 2 3 1 2 3 1 2 3

1 63 84 66 22 86 65 21 75 62

2 33 73 63 18 75 66 31 81 61

3 67 80 70 57 88 70 35 84 70

A set of five instances of such processing time matrices was generated for each of the data set

types (i.e. SDR and UDR) for each of the specified matrix dimensions, , mentioned in

each of the categories of problem sizes. The unique processing time ranges per machine were

introduced to mimic typical manufacturing. In manufacturing, machines often have specific

processing times based on their function.

Data generation for penalty matrices

Penalty matrices were generated to evaluate the effect of deterioration of processing times.

The matrices were generated randomly as no benchmark data for a similar problem is available.

Hindi and Mhlanga (2001), Jafari et al. (2017), Wang et al. (2006), Mazdeh et al. (2010), and

Wang et al. (2011) all used job deterioration rates in the range [0, 1]. Jobs in a manufacturing

facility may deteriorate at various rates. Thus Wang et al. (2011), Jafari et al. (2017), and

Mazdeh et al. (2010) incorporated this in their studies by subjecting jobs to different

deterioration rates within a selected range.

44

In this study of scheduling a reentrant flowshop with deteriorating jobs, a range of [0, 0.1] was

used. This range was selected to test the effect of a rate that was considered as small by Ng et

al. (2010) in their study of a two-machine flowshop problem with deteriorating jobs. Four delay

scenarios were created within this range (see Table 4).

Table 4: Scenarios for delay penalty

Scenario # Scenario Details

1 No penalty To observe the effect of job reentrance

system without deterioration (delay

penalty).

2 Penalty of 0.1 only on the first

machine in the first operational

level for jobs not scheduled first

To determine the effect of uniformly

penalising delay only on the first machine.

3 0.1 penalty on the first machine

and 0.05 penalty for all other jobs

not scheduled first

To determine the effect of uniformly

penalising all delays on all machines, with

the delay on the first machine incurring a

higher penalty

4 Random penalty in the range

[0.01, 0.1] on all jobs not scheduled

first

To determine the effect of random

deterioration rates on all machines.

4.1.2. Design of experiment

Development of test instances

A test instance refers to a computation conducted on a particular processing time matrix.

Computations were run for all four penalty scenarios on CDS, NEH and GA algorithms for the

three test categories (i.e. small, medium and large problems). Unlike the CDS and NEH

heuristics, the GA algorithm requires more information in addition to the processing time and

deterioration rate. The additional GA parameters are discussed next.

45

GA parameter setting

Parameters required for the execution of the GA include population size, mutation rate,

retention rate and the number of iterations (stopping criteria). The same mutation and

retention rates were used for all problem sizes. In this section, a value of 0.5 was used for the

retention and mutation rate.

Table 5: Parameter setting for GA

Problem size Matrix size Population size Number of iterations

Small 3x3x3 4 10

3x3x4 4 10

3x4x2 5 10

4x3x3 4 10

4x4x3 4 10

4x5x3 10 30

4x4x4 8 30

4x5x4 10 30

Medium 6x6x2 100 30

6x8x5 150 30

6x9x3 200 30

7x7x5 150 30

7x8x4 150 30

8x8x3 200 60

9x9x2 300 150

10x10x2 500 150

Large 12x12x10 600 250

15x15x5 800 350

20x20x4 1000 700

25x25x8 1200 700

30x30x5 1500 700

46

The sensitivity of the solution to this rate is presented in a subsequent section. The population

sizes and the number of iterations were varied for the different matrix sizes. The population

sizes were chosen in relation to the number of machines for the matrix. For the small problems,

fewer population sizes were used. Problems with fewer machines tend to repeat chromosomes

due to the limited number of possible combinations. Limiting the population size to a small

number eliminates this challenge. The number of iterations for each matrix size was selected if

the minimum makespan values appear always to converge (or stabilise) within the chosen

number of runs. Detailed parameters used for each problem size are presented in Table 5.

GA parameter variation

The influence of input parameters on the performance of the GA algorithm was studied by

conducting simulations with parameter changes for mutation rate and population size. The

effect of the mutation rate was evaluated while keeping all other parameters (i.e. population

size, retention rate and the number of iterations) constant. Likewise, the effect of varying the

population was evaluated while keeping all other parameters constant. In addition to testing a

mutation rate of 0.5; rates of 0.3 and 0.7 were applied. The selected rates are a chosen to be 50

percent higher and lower than the initially selected mutation rate. The population sizes were

also varied for selected matrix sizes. The effects of changes in this parameter were studied with

half and then with a quarter of the initial population to maintain uniformity to understand how

this might affect the speed of convergence of the algorithm and the quality of solution

obtained. The parameter variation was only performed on the large problem sizes for scenarios

3 and 4 as these are expected to be the most significant data sets that would be influenced by

these changes as the smaller matrices all return identical results in identical time for all

previous experiments.

Implementation

The three algorithms, CDS, NEH, and GA, were coded in MATLAB R2019a, and all computational

experiments were performed with these codes. The experiment was run on all categories of

test instances. For each category, computations for makespan, subject to varying degrees of

penalty described in Table 4 were performed using the three algorithms.

47

During experimentation, the minimum makespan values achieved and their corresponding

computation times were recorded. Graphs for the comparison of the minimum makespan

values achieved by the three solution methods were plotted in MATLAB. Additionally,

computations were performed for GA, with varied test parameters. The performance indicators

evaluated for the parameter variations are the minimum makespan values achieved, their

corresponding computational times and the speed of convergence of the solution. Graphs of

the makespan values achieved for varied test parameters were plotted. Lastly, graphs

demonstrating how the minimum makespan converges with the number of iterations were

plotted for GA.

The makespan output analysis and statistical testing were performed in MS Excel. The output

analysis was conducted by applying two measures; the count of the number of times that any

given algorithm returned the lowest makespan value and the average proportion above the

minimum makespan when an algorithm did not return the lowest makespan value. The

procedure followed in executing the counting exercise involved several steps. It was mentioned

earlier that data instances were generated for each type of data range (SDR and UDR) for a

matrix dimension (). The five makespan values returned for each matrix size per data

range were evaluated. A value of one was allocated for the test instances that returned the

lowest makespan value, and zero otherwise. The count of instances is, however, not mutually

exclusive per test algorithm; i.e. a test instance of one algorithm is counted for as long as it

returned the lowest value, regardless of another algorithm being counted for the same test

instance if it also returns the same value.

The procedure for determining the average value above the minimum makespan was also

stepwise. The minimum makespan value of the three algorithms for each of the matrix sizes

and data range was determined. This was then termed the global minimum. The average of the

five instances of makespan values was calculated for each matrix size within the data range for

the three algorithms. The proportional value above the global minimum was then calculated by

subtracting the global minimum from the average makespan for the instance and then dividing

by the global minimum.

48

Statistical testing was applied to all instances of makespan values for each of the matrix sizes.

The t-test was selected as the test of choice due to the random nature of the data and the small

sample sizes being evaluated. Two sets of t-tests were performed; one for the count of

minimum makespan values and the other one for the proportion of values above the global

minimum makespan. The paired t-test for sample means was executed for the counts of

minimum makespan and the proportion above minimum makespan.

4.2. Results

The presentation of the results is divided into three parts; minimum makespan, average

computation times and the effects of the GA parameter variation. The minimum makespan and

computational time results compare values achieved under the different test instances. The GA

parameter variation part focuses on the results for computations conducted for the various

mutation rates and population sizes. The influence of the varied test parameters on the

makespan values attained and their corresponding computation times are evaluated.

4.2.2. Minimum makespan attainment

The makespan values obtained for all test categories using the different solution algorithms

were plotted against each other to determine the best performing method as test conditions

change. Figure 4 to Figure 8 are plots for the minimum makespan values of penalty scenario 2

(i.e. deterioration only on the first machine). Plots for other penalty scenarios are documented in

Annexure A. The discussion of the makespan values achieved is sub-sectioned based on the

various problem sizes.

Small problems

Since five instances were generated for each matrix dimension, the minimum makespan for set

of data for each matrix was determined. The three algorithms returned similar minimum

makespan values for the majority of the small problem sizes. Penalty scenario 3 (i.e. uniform

49

deterioration on all machines, with the first machine incurring the highest penalty) and scenario

4 (i.e. random deterioration on all machines) resulted in significant increase in the minimum

makespan values for every given problem size. The increase in minimum makespan values is

attributed to the fact that all the machines are subjected to deterioration. The NEH and GA

performed better than CDS as test conditions changed, i.e. increasing the number of operations

and subjecting the processing times to deterioration.

Medium problems

NEH and GA returned the lowest makespan values for the majority of the test instances of the

medium problem sizes as opposed to CDS. Subjecting the system to a penalty on all operational

levels, with the CDS algorithm returns makespan values that are up to twice as those achieved

by the other two algorithms.

Large problems

The CDS algorithm could not find the minimum makespan values for all test instances of the

large problem sizes, (i.e. no deterioration). Introducing penalty on all operational levels (i.e.

scenarios 3 and 4) for the large problem sizes widens the gap between the makespan values

achieved by CDS and those by NEH and GA even further as compared to the small and medium

problem sizes. Generally, the NEH and GA solution methods returned the lowest makespan

values when compared to CDS as test conditions changed.

The NEH and GA algorithms appear to successfully return minimum makespan values for

various problem sizes and penalty scenarios. GA, being a meta-heuristic method, strives to

improve the solution with each iteration. The NEH’s functionality, insertion, also ensures that

only the best solutions are retained. The computation times required to reach the minimum

makespan values for the tested solution methods are addressed next.

50

Figure 4: Minimum makespan plots for small problems with same data range for scenario 2

Figure 5: Minimum makespan plots for small problems with unique data range for scenario 2

51

Figure 6: Minimum makespan plots for medium problems with same data range for scenario 2

Figure 7: Minimum makespan plots for medium problems with unique data range for scenario 2

52

Same data range

Unique data range

Figure 8: Minimum makespan plots for large problems with scenario 2

53

4.2.3. Average computation times

The average computation times, indicating the minimum and maximum times attained by each

solution method, are presented in Table 6. Detailed computation times for all penalty scenarios

are reported in Annexure C. The CDS algorithm had the shortest computation times, followed

by NEH. The computation times increased slightly from the small problem size to the large

problems for both the CDS and NEH algorithms for all penalty scenarios. The GA algorithm had

the longest computation times for the large problem size. The time complexity for GA is

influenced by the large population sizes and the large number of iterations related to the

problem sizes.

Table 6: Average computation times

Penalty
type

Solution
method

Small problems Medium problems Large problems

Min
computation
time

Max
computation
time

Min
computation
time

Max
computation
time

Min
computation
time

Max
computation
time

Scenario 1

CDS 0.0003 0.0393 0.0005 0.1402 0.0043 0.1017

NEH 0.0002 0.0153 0.0006 0.0075 0.0157 0.5409

GA 0.0252 0.2008 0.0993 0.8794 38 872

Scenario 2

CDS 0.0003 0.0890 0.0005 0.0650 0.0044 0.0993

NEH 0.0003 0.0282 0.0009 0.0234 0.0166 0.2481

GA 0.0251 0.3108 0.1589 7 42 915

Scenario 3

CDS 0.0003 0.0789 0.0005 0.0495 0.0051 0.0828

NEH 0.0003 0.0558 0.0008 0.0995 0.0178 0.2942

GA 0.0242 0.1700 0.1348 6 40 970

Scenario 4

CDS 0.0003 0.0468 0.0005 0.1554 0.0051 0.1385

NEH 0.0003 0.0073 0.0007 0.0059 0.0174 0.3294

GA 0.0313 0.1935 0.1735 7 46 874

4.2.4. GA parameter variation

The parameter variation aims to demonstrate the influence of varying the GA test parameters

on the minimum makespan and the corresponding computation times to find the solutions. The

convergence of the solution to a minimum makespan value is evaluated to determine if

54

changing the test parameters can result in a better solution within a reasonable or shorter

computation time. The minimum makespan results are presented graphically, while the

computation times are tabulated. Plots for the rate of convergence are also presented.

Influence of mutation rate (mutrate)

The initial mutation rate used was 0.5, while 0.3 and 0.7 were the selected rates to use in

evaluating the reaction of the algorithm to changes in mutation rate. In some cases for scenario

3 (for SDR set and for UDR set), the same makespan values were recorded

for all mutation rates (see Figure 9). The observation made for scenario 4 in Figure 10 is that the

differences in makespan values among the various mutation rates become apparent as the

number of machines and levels increase. Overall, the mutation rate of 0.3 resulted in slightly

lower makespan values than the other two mutation rates. The computation times for the

mutation rate of 0.3 are, however, in the same range as that for the other mutation rates used.

The detailed computation times are presented in Table 10. Using a mutation rate of 0.3 seems

to sometime achieve some marginally lower makespan value at about the same computation

time, but such is seems not very significant.

55

Same data range

Unique data range

Figure 9: Minimum makespan of various mutation rates with scenario 3

56

Same data range

Unique data range

Figure 10: Minimum makespan for various mutation rates with scenario 4

57

Table 7: Average computation times for various mutation rates

Problem
size

Scenario 3 Scenario 4

Same data range Unique data range Same data range Unique data range

0.5
mutrate

0.3
mutrate

0.7
mutrate

0.5
mutrate

0.3
mutrate

0.7
mutrate

0.5
mutrate

0.3
mutrate

0.7
mutrate

0.5
mutrate

0.3
mutrate

0.7
mutrate

12x12x10 40.2 40.4 41.6 40.7 38.9 42.1 46.6 45.0 38.8 38.1 44.9 38.4

15x15x5 68.5 68.8 39.6 41.1 52.1 48.9 81.8 80.7 36.8 37.0 36.9 37.2

20x20x4 286.7 233.1 174.0 174.5 166.8 159.7 255.6 235.5 165.0 163.1 162.8 162.5

25x25x8 750.8 941.2 615.4 592.0 709.4 517.7 798.6 761.7 550.8 544.7 525.1 581.5

30x30x5 970.2 862.9 828.4 820.2 812.0 902.2 867.2 874.3 834.2 761.3 814.5 810.8

58

Influence of population size

The initial population sizes differed for the various problem sizes experimented on, and thus

the reduced population sizes were also different. The reduction of the population size for a

genetic algorithm implies that there are fewer data points to operate on. The matrix

had slight differences in the makespan values attained for the different population sizes for

scenario 3. The other matrix sizes, also subject to the same penalty, however, did not exhibit

any significant difference in the makespan values achieved. Some of the instances of the bigger

matrices (i.e. , and) returned the same makespan values for

penalty scenario 3. It appears that randomising the penalty (i.e. scenario 4) also plays a role in

the minimum makespan value attained. Slight differences in the makespan values were noticed

for the bigger matrix sizes. Table 8 lists the average computation times, and as would be

expected, there is a considerable reduction in the computation times for the smaller population

sizes.

59

Same data range

Unique data range

Figure 11: Minimum makespan for various population sizes with scenario 3

60

Same data range

Unique data range

Figure 12: Minimum makespan of various population sizes with scenario 4

61

Table 8: Average computation times for various population sizes

 Problem
size

Scenario 3 Scenario 4

Same data range Unique data range Same data range Unique data range

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

12x12x10 40.2 40.4 19.2 18.2 9.4 9.4 46.6 45.0 17.6 18.2 8.6 8.6

15x15x5 68.5 68.8 16.9 17.9 8.5 8.4 81.8 80.7 16.7 17.0 7.7 7.8

20x20x4 286.7 233.1 79.8 78.2 34.8 33.9 255.6 235.5 72.8 73.0 34.8 34.0

25x25x8 750.8 941.2 282.5 280.8 122.9 122.1 798.6 761.7 248.2 257.2 147.6 135.2

30x30x5 970.2 862.9 177.7 182.3 361.2 346.4 867.2 874.3 360.9 351.9 175.1 165.9

Solution convergence

Scenario 1

Number of iterations

Scenario 3

Number of iterations

Scenario 4

Number of iterations

Figure 13: GA solution convergence for a 15x15x5 problem size with various penalty scenarios

M
ak

es
p

an

M
ak

es
p

an

M
ak

es
p

an

62

Mutation rate = 0.5

Number of iterations

Mutation rate = 0.3

Number of iterations

Mutation rate = 0.7

Number of iterations

Figure 14: GA solution convergence for a 25x25x8 matrix for various mutation rates with scenario 3

M
ak

es
p

an

M
ak

es
p

an

M
ak

es
p

an

63

Population size = 1500

Number of iterations

Population size = 750

Number of iterations

Population size = 375

Number of iterations

Figure 15: GA solution convergence for a 30x30x5 matrix for various population sizes with scenario 4

M
ak

es
p

an

M
ak

es
p

an

M
ak

es
p

an

64

To determine the effect of the different parameters on the convergence of the minimum

makespan, graphs for the minimum makespan values were plotted. The parameters of interest,

in this case, are penalty, mutation rate and population size. Figure 13 to Figure 15, together with

figures in Annexure D, are used to demonstrate this effect.

The solution converged to a minimum value quicker for scenario 1 as compared to scenarios 3

and 4; i.e. subjecting the scheduling problem to a penalty lengthens the time to reach the

lowest makespan value. The time to converge for the two deterioration penalties (scenarios 3

and 4) are similar.

The mutation rate of 0.3 led to a faster convergence for scenario 3 than scenario 4, and the

opposite was observed for the mutation rates of 0.5 and 0.7. No definite trend can be observed

on how the various mutation rates affect the convergence and stability of the minimum

makespan value.

Figure 15 represents convergence in relation to the reduction of the population of the initial

computation. A reduction of the population size by half does not seem to lead to a significant

difference in the time taken for the model to converge, but reducing it to a quarter of the initial

population does. It should be noted, however, that such convergence seems to sacrifice the

quality of solution in a number of instances as the minimum makespan value returned is higher

than what was initially observed when the original population size was used.

65

4.3. Statistical analysis

Statistical analysis is divided into two sections, makespan output analysis and statistical test of

significance of differences. The makespan output analysis was conducted for computation of

the three algorithms and also for GA with varied parameters.

4.3.2. Makespan output analysis

The total number of counts of when a solution method results in the lowest makespan value for

the various test instances is presented in Table 9. The asterisks beside the counts indicate the

algorithm(s) with the most number of lowest makespan for each test category. It should be

noted that the maximum count obtainable for small and medium-sized problems is 40, while

for large-sized problems it is 25. Results showing the counts per matrix size are documented in

Annexure B.

Table 9: Count of minimum makespan attainment

Problem

size

Same data range (SDR) Unique data range (UDR)

CDS NEH GA CDS NEH GA

Scenario 1

Small 14 36 39* 8 34 35*

Medium 0 20 34* 1 11 39*

Large 0 15* 10 0 19* 7

Scenario 2

Small 11 35* 29 5 32* 30

Medium 0 16 32* 1 16 33*

Large 0 4 21* 0 13* 13*

Scenario 3

Small 0 33* 10 0 40* 3

Medium 0 27* 13 0 32* 9

Large 0 8 17* 0 18* 7

Scenario 4

Small 0 33* 8 0 33* 8

Medium 0 10 30* 0 23* 17

Large 0 10 15* 0 15* 10

The CDS algorithm reported several test instances that had the lowest makespan values for the

small problems of scenario 1 (i.e. no deterioration) and scenario 2 (i.e. deterioration only on the

first machine) for the SDR data set. The CDS algorithm also returned a few instances with the

66

lowest makespan values for the small and medium problems of scenarios 1 and 2 for the UDR

data set. Overall, the NEH and GA algorithms returned the most number of the lowest

makespan values. For the SDR data set, GA returned more instances of the lowest makespan

values than NEH. On the other hand, the NEH algorithm returned the most instances for the

UDR data set, while dominating scenario 3 (i.e. uniform deterioration on all machines, with the

first machine incurring the highest penalty) and scenario 4 (i.e. random deterioration on all

machines).

Table 10: Average proportion above global minimum makespan

Problem

size

Same data range (SDR) Unique data range (UDR)

CDS NEH GA CDS NEH GA

Scenario 1

Small 0.157 0.114 0.113* 0.116 0.089* 0.089*

Medium 0.121 0.073 0.067* 0.038 0.023 0.019*

Large 0.076 0.021* 0.024 0.036 0.010* 0.011

Scenario 2

Small 0.159 0.119 0.117* 0.122 0.097* 0.097*

Medium 0.124 0.076 0.068* 0.041 0.028 0.024*

Large 0.109 0.058 0.031* 0.077 0.042 0.029*

Scenario 3

Small 0.893 0.178* 0.269 0.738 0.088* 0.406

Medium 2.189 0.070* 0.085 2.124 0.055* 0.075

Large 6264 1.029* 1.605 3264 0.050* 0.069

Scenario 4

Small 1.209 0.184* 0.247 1.013 0.105* 0.174

Medium 4.097 0.125* 0.317 4.320 0.093* 0.109

Large 99723 0.195 0.100* 100254 0.197 0.182*

The proportional values above the global minimum for the CDS algorithm got significantly large

for the medium and large problem sizes of scenarios 3 and 4 as compared to scenarios 1 and 2

for both the SDR and UDR data sets. The NEH and GA returned the lowest proportional values,

for the same number of instances of the SDR data set. The NEH, however, had the lowest

proportional values, mostly for scenarios 3 and 4. For the UDR data set, the NEH returned the

most instances of the lowest proportional values. As with the SDR data set, NEH dominated

scenarios 3 and 4.

As the analysis for the varied GA parameters was conducted on large problems only, the

maximum count obtainable for each parameter is 25. The mutation rate of 0.3 resulted in most

67

cases of the minimum makespan values for both data ranges. The mutation rate of 0.7 resulted

in the least minimum values for both data ranges. The initial population sizes returned the most

minimum makespan values for all problem sizes for test instances experimented on. Reducing

the population sizes, thus, seems to degrade the quality of the solution as some of the

minimum makespan values achiever earlier were no longer attained.

68

Table 11: Count of minimum makespan for various mutation rates

Problem
size

Scenario 3 Scenario 4

Same data range Unique data range Same data range Unique data range

0.5
mutrate

0.3
mutrate

0.7
mutrate

0.5
mutrate

0.3
mutrate

0.7
mutrate

0.5
mutrate

0.3
mutrate

0.7
mutrate

0.5
mutrate

0.3
mutrate

0.7
mutrate

12x12x10 1 4 0 0 3 2 1 3 1 0 4 1

15x15x5 2 3 0 2 3 3 2 0 3 2 2 1

20x20x4 2 3 0 4 5 1 3 1 1 3 2 0

25x25x8 3 2 0 2 3 0 3 2 1 3 1 2

30x30x5 2 3 0 1 3 1 1 2 2 0 3 2

TOTAL 10 15 0 9 17 7 10 8 8 8 12 6

Table 12: Count of minimum makespan for various population sizes

 Problem
size

Scenario 3 Scenario 4

Same data range Unique data range Same data range Unique data range

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

Initial
population

 ½
Initial
Pop.

 ¼
Initial
Pop.

12x12x10 3 1 1 2 1 3 3 0 2 3 2 1

15x15x5 0 5 0 4 0 2 1 3 1 4 0 1

20x20x4 1 1 3 4 3 3 3 2 0 3 2 0

25x25x8 4 0 1 3 1 1 4 1 1 1 4 0

30x30x5 2 1 2 3 1 1 0 3 2 0 2 3

TOTAL 10 8 7 16 6 10 11 9 6 11 10 5

69

4.3.3. Statistical test of significance of differences

Statistical testing was performed to determine if the difference in the count of the number of

instances in which each of the algorithms found the minimum makespans was significant or

not. The null hypothesis, H0, is that two algorithms being compared have no significant

difference in the makespan values at 5 percent level of significance (alpha = 0.05). The

alternative hypothesis, H1, is that the algorithms have a significant difference in makespan

values. This is important because the data were randomly generated. The statistical test values

achieved are presented in Table 13 and Table 15 for the count of the minimum makespan and

proportion above the minimum makespan value respectively. The absolute values of the t

statistic are of interest in determining the algorithm(s) resulting in the minimum makespan. The

evaluation of the significance of the t stat values returned against the t critical value is

presented in Table 14 and Table 16. Instances for which there is no significant difference

between the two algorithms are denoted by N, and S represents results with a significant

difference. Additionally, the algorithm that performed better for a particular problem size or

penalty scenario is indicated in brackets for instances with a significant difference.

Count of minimum makespan

The NEH-GA comparison generally returned instances with the lowest t-stat values, however,

with a few exceptions. The CDS-NEH comparison returned the lowest t stat values for scenario

2 (large problem sizes) and scenario 4 (medium problem sizes) for the SDR data set, and

scenario 1 (medium problem sizes) for the UDR data set. The CDS-GA comparison returned the

lowest t stat values for scenario 3 (small problem sizes) and scenario 4 (small problem sizes) for

the SDR data set, and scenario 4 (small problem sizes) for the UDR data set. GA was the better

performing algorithm for cases where there was a significant difference for the SDR data set.

The NEH algorithm returned the majority of instances with the minimum makespan counts for

the UDR data set. The difference in makespans was significant for any algorithm compared to

CDS, with the CDS algorithm being the worst-performing. It is for this reason that there is no

indication of the algorithm which performs better for CDS-NEH and CDS-GA comparisons.

70

Table 13: t Stat values for the count of minimum makespan

Problem

size

Same data range (SDR) Unique data range (UDR)

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small -6.2973 -1.3556 -8.0623 -8.5105 -0.2981 -8.1219

Medium -6.245 -3.0095 -14.8661 -3.6056 -8.5732 -27.2213

Large -6 1 -4 -8.7178 2.753 -3.0551

Scenario 2

Small -6.958 1.5246 -5.1523 -8.1219 0.4953 -7.3193

Medium -5.099 -3.1225 -12.49 -4.8374 -3.4426 -12.49

Large -2.1381 -4.5434 -11.225 -5.099 0 -5.099

Scenario 3

Small -13.5594 4.6577 -3.6056 UNDEF 21.9317 -1.7782

Medium -9 2.3333 -4.3333 -12.49 4.4733 -3.3649

Large -3.3607 -1.8904 -7.1414 -7.8558 2.4004 -3.0551

Scenario 4

Small -13.5594 5.1058 -3.1225 -13.5594 5.1058 -3.1225

Medium -3.6056 -3.6056 -10.8167 -7.2639 0.9475 -5.369

Large -4 -1 -6 -6 1 -4

Table 14: Significance of t Stat values for the count of minimum makespan

Problem

size

Same data range (SDR) Unique data range (UDR)

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S N S S S (NEH) S

Scenario 2

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S S (GA) S S N S

Scenario 3

Small S S (NEH) S N S (NEH) N

Medium S S (NEH) S S S (NEH) S

Large S N S S S (NEH) S

Scenario 4

Small S S (NEH) S S S (NEH) S

Medium S S (GA) S S N S

Large S N S S N S

71

Proportion beyond minimum makespan

In the test for a proportion of values above the minimum makespan, the same observation was

made for all penalties and problem sizes. The NEH-GA comparison resulted in the lowest t-stat

values. The paired test of CDS with any method resulted in a higher t-stat value, suggesting that

the CDS method returned the most makespan values greater than the minimum for each matrix

size. The NEH-GA comparison was also the only one to produce a t-stat value lower than t

critical. There was no significant difference between the t-stat value and the t critical value for

scenarios 1 and 2 for both data ranges of small problems. Medium problems returned a t-stat

value lower than t critical for scenario 4 with both data ranges. Large problems returned lower

t-stat values for scenarios 1 and 3 for SDR, and scenarios 2 and 4 for UDR.

Table 15: t Stat values for proportion falling beyond the minimum makespan

 Problem

size

Same data range (SDR) Unique data range (UDR)

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small 5.2017 0.9105 5.2271 3.9067 0.3697 4.0086

Medium 9.3686 3.1116 10.2402 6.774 4.1266 9.8536

Large 21.2569 -1.7356 20.4309 24.4516 -3.0656 21.3496

Scenario 2

Small 4.9676 0.8628 5.1592 3.5914 -0.4565 3.5985

Medium 9.1832 3.3348 10.6583 5.5364 3.0074 9.4545

Large 6.9113 3.4371 6.3809 4.7638 1.3925 6.0476

Scenario 3

Small 15.3478 -3.5605 10.9191 17.5279 -2.9098 3.4483

Medium 12.9587 -2.2846 12.997 12.4692 -5.3536 12.4092

Large 3.3186 -1.3395 3.3186 2.9278 -2.2007 2.9278

Scenario 4

Small 11.6613 -5.1845 11.3359 12.7631 -5.3719 11.8116

Medium 12.2037 -0.7797 8.344 12.2398 -1.4284 12.2818

Large 2.7558 2.4267 2.7558 2.7092 0.3481 2.7091

72

Table 16: Significance of t Stat values for proportion falling beyond the minimum makespan

 Problem

size

Same data range (SDR) Unique data range (UDR)

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA

Scenario 1

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S N S S S (NEH) S

Scenario 2

Small S N S S N S

Medium S S (GA) S S S (GA) S

Large S S (GA) S S N S

Scenario 3

Small S S (NEH) S S S (NEH) S

Medium S S (NEH) S S S (NEH) S

Large S N S S S (NEH) S

Scenario 4

Small S S (NEH) S S S (NEH) S

Medium S S (GA) S S N S

Large S N S S N S

The evaluation of the significance of t-stat values for the count of the minimum makespan and

proportion beyond minimum value indicated that there are several test instances where the

NEH and GA returned similar makespan values. The CDS algorithm, on the other hand, fails to

find the minimum makespan values.

This chapter’s summary is now presented. The chapter focused on the design and

implementation of computational experiments. The design of the experiment involved data

generation to suit the problem of interest and the classification of test blocks. The method of

execution of the computational experiments was discussed for the various test instances.

Results of the experimentation were presented, discussed, and analysed. The next chapter will

provide a summation of the findings of this research, and recommendations regarding further

study on the topic are proposed.

73

Chapter 5: Conclusions and

recommendations

74

In this chapter, concluding remarks are made, followed by this study’s contributions to

literature and recommendations for further research.

Conclusions

The problem of scheduling a reentrant permutation flow shop with deteriorating jobs having

the objective of minimising makespan was studied. The model formulation was presented, and

CDS, NEH and GA algorithms were utilised to solve the problem. The study involved test

problems classified as small, medium and large. Simulations for various deterioration rates

were conducted. The GA parameters, mutation rate, and population size were studied to

evaluate their influence on the performance of the meta-heuristic in determining the minimum

makespan.

The algorithms performed similarly for small problems that are not exposed to deterioration of

processing time. The GA and NEH algorithms performed better than the CDS algorithm as the

problem sizes increased (i.e. both in the number of jobs and machines). The NEH achieved the

lowest makespan within reasonable computation times as problem sizes got bigger, and the

complexity of deterioration of processing times increased. Essentially, the NEH algorithm is

capable of handling changes that are introduced into the system being scheduled. In instances

where the NEH achieved minimum makespan values above the global minimum, the

proportional difference was small.

The performance of a GA may be affected by the parameters selected to conduct

computational experiments. Two parameters: mutation rate and population size, were used to

test this. The lowest mutation rate used, 0.3 resulted in the lowest of makespan values

compared to 0.5 and 0.7; however, the computation times remained longer than NEH.

Reducing the population size to a quarter of the initial value resulted in the shortest

computation times, but also seems to have compromised the quality of the makespan value

attainable. The NEH algorithm, thus, appears to be the overall best performing algorithm.

75

Contributions to literature

Despite the decades-long study of reentrant flowshops and deteriorating jobs, no evidence of

work that merges the two factors could be found. A lot of focus on deterioration has been

mainly on one and two machine flowshops. This study contributes to the scheduling of a

machine flowshop with deteriorating jobs. It is unlikely that a production facility can have only

one production step. Thus the solution developed can be adapted in various production

processes with deteriorating jobs. Schedulers and production planners alike can use the

proposed scheduling solution to improve the efficiency of their operations. By utilising the

proposed method, production schedules can be set up in a manner which ensures jobs in

processes such as tube rolling, and ingot forging are prepared just in time for them to be

processed, and not earlier. Using the NEH would be beneficial in providing a schedule

timeously, and without having to determine supplementary information as compared to the GA

algorithm.

Recommendations

For future studies, the NEH algorithm can be compared with other solution methods such as

Palmer’s, branch and bound and meta-heuristics like Simulated Annealing (SA). These methods

are known to have yielded satisfactory results in previous studies of flowshop scheduling. The

problem sizes can also be increased and be evaluated with the same solution methods as were

proposed for this work. Recent work in flowshop scheduling considers the evaluation of

multiple objectives. In light of supply chain improvement, the due date is proposed as an

additional objective to study.

76

References

1. Al-harkan, Ibrahim M. (n.d.) Algorithms for sequencing and scheduling.

https://docplayer.net/14716133-Algorithms-for-sequencing-and-scheduling-ibrahim-m-

alharkan.html. Accessed 3rd July, 2020.

2. Bank M., Fatemi Ghomi S.M.T., Jolai F., Behnamian J., 2012. Two-machine flow shop

total tardiness scheduling problem with deteriorating jobs. Applied Mathematical

Modelling, 36, 5418–5426.

3. Baskar A., 2016. Revisiting the NEH algorithm- the power of job insertion technique for

optimizing the makespan in permutation flow shop scheduling. International Journal of

Industrial Engineering Computations, 7, 353–366.

4. Browne S. and Yechiali U., 1990. Scheduling deteriorating jobs on a single processor.

Operations Research, 38(3), 495-498.

5. Campbell H.G., Dudek R.A. and Smith M.L., 1970. A heuristic algorithm for the n job, m

machine sequencing problem. Management Science, 6(10), B-631 – B-637.

6. Chen J-S., 2006. A branch and bound procedure for the reentrant permutation flow-

shop scheduling problem. Int J Adv Manuf Technol, 29, 1186–1193.

7. Chen J-S., Pan J.C-H. and Wu C-K., 2007. Minimizing makespan in reentrant flow-shops

using hybrid tabu search. Int J Adv Manuf Technol, 34, 353-361.

8. Chen J-S., Pan J.C-H. and Lin C-M., 2008. A hybrid genetic algorithm for the reentrant

flow-shop scheduling problem, Expert Systems with Applications, 34, 570–577.

9. Choi H-S. and Lee D-H., 2007. A Branch and Bound Algorithm for Two-Stage Hybrid Flow

Shop Scheduling: Minimizing the Number of Tardy Jobs. Journal of the Korean Institute

of Industrial Engineers, 33(2), 213-220.

10. Choi H-S, Kim H-W, Lee D-H, Yoon J., Yun C.Y. and Chae K.B., 2009. Scheduling

algorithms for two-stage reentrant hybrid flow shops: minimizing makespan under the

maximum allowable due dates. Int J Adv Manuf Technol, 42, 963–973.

77

11. Choi S-W. and Kim Y-D., 2007. Minimizing makespan on a two-machine reentrant flow

shop. Journal of the Operational Research Society, 58, 972-981.

12. Choudhari S.D. and Khanna R., 2017. Flow Shop Scheduling Problem with Four Machines

N-Job for Minimizing Makespan. International Journal of Engineering Research &

Technology, 6(2), 532-536.

13. Eren T. and Güner E., 2007. Minimizing total tardiness in a scheduling problem with a

learning effect. Applied Mathematical Modelling, 31, 1351–1361.

14. Graham R. L., Lawler E. L., Lenstra J. K. and RinnooyKan A. H. G., 1979. Optimization and

approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete

Mathematics, 5, 287–326.

15. Graves S.C., Meal H.C., Stefek D. and Zeghmi A.H., 1983. Scheduling of reentrant flow

shops. Massachusetts Institute of Technology.

16. Goldberg D.E., 1989. Genetic Algorithms in search, optimization, and machine learning.

The University of Alabama.

17. He F., Dong M. and Shao X., 2011. Modelling and analysis of material flows in reentrant

supply chain networks using modified partial differential equations. Journal of applied

mathematics, 2011, 1-14.

18. Hindi K.S. and Mhlanga S., 2001. Scheduling deteriorating jobs on parallel machines: a

simulated annealing approach. Production Planning & Control, 12(1), 76-80.

19. Hsu C-J., Kuo W-H., Yang D-L. and Chern M-S., 2006. Minimizing the makespan in a two-

stage flowshop scheduling problem with a function on alternative machines. Journal of

Marine Science and Technology, 14(4), 213-217.

20. Iyer S.K. and Saxena B., 2004. Improved genetic algorithm for the permutation flowshop

scheduling problem. Computers & Operations Research, 31, 593–606.

21. Johnson S.M., 1953. Optimal two- and three-stage production schedules with setup

times included. The Rand Corporation.

22. Jafari A-A., Khademi-Zare H, Lotfi M.M. and Tavakkoli-Moghaddam R., 2017. A note on

“On three-machine flow shop scheduling with deteriorating jobs”. International Journal

of Production Economics, 191, 250–252.

78

23. Ji M., Cheng T.C.E., 2010. Scheduling resumable simple linear deteriorating jobs on a

single machine with an availability constraint to minimise makespan. Computers &

Industrial Engineering, 59, 794–798.

24. Kim H-W. and Lee D-H., 2008. Heuristic algorithms for reentrant hybrid flow shop

scheduling with unrelated parallel machines. IMechE: J. Engineering Manufacture,

223(Part B), 433-442.

25. Kononov A. and Gawiejnowicz S., 2001. NP-hard cases in scheduling deteriorating jobs

on dedicated machines. Journal of the Operational Research Society, 52, 708-718

26. Kubiak W. and van de Velde S., 1998. Scheduling Deteriorating Jobs To Minimise

Makespan. Naval Research Logistics, 45, 511-523.

27. Mazdeh M.M., Zaerpour F., Zareei A., Hajinezhad A., 2010. Parallel machines scheduling

to minimise job tardiness and machine deteriorating cost with deteriorating jobs.

Applied Mathematical Modelling, 34, 1498–1510.

28. Mosheiov G., 1991. V-shaped policies for scheduling deteriorating jobs. Operations

Research. 39(6), 979-991.

29. Moursli O., 1999. The hybrid flowshop scheduling problem. PhD thesis: Université

Catholique de Louvain, ESPO, Belgium.

30. Murata T., Ishibuchi H., Tanaka H., 1996. Genetic algorithms for flowshop scheduling

problems. Computers and Industrial Engineering, 30(4), 1061-1071.

31. Ng C.T., Wang J.-B., Cheng T.C.E. and Liu L.L., 2010. A branch-and-bound algorithm for

solving a two-machine flow shop problem with deteriorating jobs. Computers

&Operations Research, 37, 83-90.

32. Pan JC-H. and Chen J-S., 2003. Minimizing makespan in reentrant permutation flow

shops. Journal of the Operational Research Society, 54, 642-653.

33. Pinedo M., 2016. Scheduling: theory, algorithms and systems. 5th Edition. New York:

Springer.

34. Reeves C.R., 1995. A genetic algorithm for flowshop sequencing. Computers Ops Res.,

22(1), 5-13.

79

35. Rifai A.P., Nguyen H-T., Dawal S.Z.M., 2016. Multi-objective adaptive large

neighborhood search for distributed reentrant permutation flow shop scheduling.

Applied Soft Computing, 40, 42–57.

36. Rios-Mercado R.Z. and Bard J.F., 1999. A branch and bound algorithm for permutation

flow shops with sequence dependent setup times. IIE Transactions, 31, 721-731.

37. Ruiz R. and Maroto C., 2005. A comprehensive review and evaluation of permutation

flowshop heuristics to minimise flowtime. European Journal of Operational Research,

DOI: 10.1016/j.ejor.2004.04.017

38. Simchi-Levi D., Kaminsky P., Simchi-Levi E, 2008. Designing and managing the supply

chain: Concepts, Strategies and Case Studies. 3rd Edition. New York: McGraw-Hill.

39. Shiau Y-R., Lee W-C, Wu C-C and Chang C-M., 2007. Two-machine flowshop scheduling

to minimise mean flow time under simple linear deterioration. Int J Adv Manuf Technol,

34, 774–782.

40. Stevenson W.J., 2002. Operations Management. 7th Edition. New York: McGraw-Hill

Irwin.

41. TasoujiHassanpour S., Amin-Naseri M. R. and Nahavandi N., 2015. Solving Reentrant No-

wait Flow shop Scheduling Problem. International Journal of Engineering (IJE),

TRANSACTIONS C: Aspects, 28(6), 903-912.

42. Tyagi N., Varshney R.G. and Chandramouli A.B., 2013. Six Decades of Flowshop

Scheduling Research. International Journal of Scientific & Engineering Research, 4(9),

854-864.

43. Wang H, Huang M. and Wang J., 2019. An effective metaheuristic algorithm for

flowshop scheduling with deteriorating jobs. Journal of Intelligent Manufacturing,

30, 2733–2742.

44. Wang J-B., Ng C.T.D, Cheng T.C.E., Liu L-L., 2006. Minimizing total completion time in a

two-machine flow shop with deteriorating jobs. Applied Mathematics and Computation,

180, 185–193.

45. Wang J-B., Wang J-J. and Ji P., 2011. Scheduling jobs with chain precedence constraints

and deteriorating jobs. Journal of the Operational Research Society, 62, 1765–1770.

80

46. Wang J-B and Xia Z-Q, 2005. Scheduling jobs under decreasing linear deterioration.

Information Processing Letters, 94, 63–69.

47. Zhang X.Y. and Chen L., 2017. A reentrant hybrid flow shop scheduling problem with

machine eligibility constraints. International Journal of Production Research, DOI:

10.1080/00207543.2017.1408971

81

Annexure A: Minimum makespan graphs

Figure 16: Minimum makespan plots for small problems and same data range with scenario 1

82

Figure 17: Minimum makespan plots for small problems and unique data range with scenario 1

Figure 18: Minimum makespan for medium problems and same data range with scenario 1

83

Figure 19: Minimum makespan plots for medium problems and unique data range with scenario 1

84

Same data range

Unique data range

Figure 20: Minimum makespan plots for large problems with scenario 1

85

Figure 21: Minimum makespan plots for small problems and same data range with scenario 3

Figure 22: Minimum makespan plots for small problems and unique data range with scenario 3

86

Figure 23: Minimum makespan plots for medium problems and same data range with scenario 3

Figure 24: Minimum makespan plots for medium problems and unique data range with scenario 3

87

Same data range

Unique data range

Figure 25: Minimum makespan plots for large problems with scenario 3

88

Figure 26: Minimum makespan plots for small problems and same data range with scenario 4

Figure 27: Minimum makespan plots for small problems and unique data range with scenario 4

89

Figure 28: Minimum makespan plots for medium problems and same data range with scenario 4

Figure 29: Minimum makespan plots for medium problems and unique data range with scenario 4

90

Same data range

Unique data range

Figure 30: Minimum makespan plots for large problems with scenario 4

91

Annexure B: Makespan analysis
Table 17: Count of minimum makespan for small problems with SDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

3x3x3 3 5 5 1 5 3 0 4 2 0 4 2

3x3x4 5 5 5 4 5 4 0 3 3 0 5 0

3x4x2 2 5 5 2 5 5 0 5 0 0 3 2

4x3x3 0 3 5 1 2 4 0 5 1 0 4 1

4x4x3 1 5 4 0 5 2 0 3 2 0 5 0

4x5x3 1 5 5 1 5 3 0 4 1 0 4 1

4x4x4 1 4 5 1 4 4 0 5 0 0 5 0

4x5x4 1 4 5 1 4 4 0 4 1 0 3 2

TOTAL 14 36 39 11 35 29 0 33 10 0 33 8

Table 18: Count of minimum makespan for small problems with UDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

3x3x3 0 3 3 0 4 4 0 5 0 0 5 0

3x3x4 1 4 3 1 4 5 0 5 0 0 5 0

3x4x2 2 5 5 1 4 5 0 5 0 0 4 2

4x3x3 0 5 5 0 5 3 0 5 0 0 5 0

4x4x3 3 4 4 2 3 2 0 5 0 0 4 1

4x5x3 0 5 5 0 5 4 0 5 0 0 2 3

4x4x4 1 3 5 1 4 4 0 5 3 0 4 1

4x5x4 1 5 5 0 3 3 0 5 0 0 4 1

TOTAL 8 34 35 5 32 30 0 40 3 0 33 8

92

Table 19: Count of minimum makespan for medium problems with SDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

6x6x2 0 2 5 0 2 5 0 4 1 0 3 2

6x8x5 0 3 5 0 2 4 0 3 2 0 0 5

6x9x3 0 4 5 0 4 3 0 4 1 0 1 4

7x7x5 0 1 5 0 2 4 0 3 2 0 0 5

7x8x4 0 2 5 0 2 3 0 4 1 0 3 2

8x8x3 0 2 4 0 1 5 0 4 1 0 1 4

9x9x2 0 4 2 0 3 3 0 3 2 0 2 3

10x10x2 0 2 3 0 0 5 0 2 3 0 0 5

TOTAL 0 20 34 0 16 32 0 27 13 0 10 30

Table 20: Count of minimum makespan for medium problems with UDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

6x6x2 0 3 5 0 3 3 0 4 1 0 3 2

6x8x5 0 1 5 0 1 5 0 4 1 0 1 4

6x9x3 1 2 5 1 3 5 0 4 2 0 2 3

7x7x5 0 2 4 0 3 2 0 5 0 0 3 2

7x8x4 0 0 5 0 2 5 0 4 1 0 4 1

8x8x3 0 0 5 0 1 4 0 3 2 0 3 2

9x9x2 0 1 5 0 1 5 0 3 2 0 3 2

10x10x2 0 2 5 0 2 4 0 5 0 0 4 1

TOTAL 1 11 39 1 16 33 0 32 9 0 23 17

Table 21: Count of minimum makespan for large problems with SDR data set

Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

12x12x10 0 1 4 0 2 3 0 3 2 0 2 3

15x15x5 0 2 3 0 2 3 0 1 4 0 2 3

20x20x4 0 3 2 0 0 5 0 0 5 0 4 1

25x25x8 0 4 1 0 0 5 0 0 5 0 0 5

30x30x5 0 5 0 0 0 5 0 4 1 0 2 3

TOTAL 0 15 10 0 4 21 0 8 17 0 10 15

93

Table 22: Count of minimum makespan for large problems with UDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

12x12x10 0 4 1 0 2 4 0 3 2 0 4 1

15x15x5 0 3 3 0 3 2 0 3 2 0 4 1

20x20x4 0 4 1 0 5 0 0 5 0 0 5 0

25x25x8 0 5 0 0 3 2 0 5 0 0 0 5

30x30x5 0 3 2 0 0 5 0 2 3 0 2 3

TOTAL 0 19 7 0 13 13 0 18 7 0 15 10

Table 23: Average proportion above minimum makespan for small problems with SDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

3x3x3 0.289 0.267 0.267 0.295 0.267 0.269 1.042 0.396 0.446 1.124 0.394 0.445

3x3x4 0.139 0.139 0.139 0.140 0.139 0.140 0.609 0.108 0.137 0.777 0.079 0.171

3x4x2 0.151 0.114 0.114 0.151 0.116 0.116 0.552 0.161 0.573 0.533 0.152 0.192

4x3x3 0.126 0.048 0.044 0.127 0.075 0.049 0.570 0.067 0.097 0.837 0.072 0.111

4x4x3 0.112 0.061 0.064 0.115 0.071 0.078 0.964 0.256 0.308 1.064 0.238 0.323

4x5x3 0.111 0.052 0.052 0.112 0.056 0.059 0.874 0.085 0.125 1.280 0.138 0.194

4x4x4 0.219 0.167 0.164 0.220 0.168 0.164 1.027 0.156 0.190 1.737 0.192 0.259

4x5x4 0.112 0.060 0.057 0.114 0.062 0.060 1.509 0.196 0.279 2.321 0.211 0.279

Average 0.157 0.114 0.113 0.159 0.119 0.117 0.893 0.178 0.269 1.209 0.184 0.247

Table 24: Average proportion above minimum makespan for small problems with UDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

3x3x3 0.089 0.063 0.055 0.089 0.063 0.062 0.487 0.053 0.106 0.623 0.059 0.156

3x3x4 0.080 0.053 0.059 0.080 0.053 0.048 0.712 0.061 0.187 0.970 0.069 0.260

3x4x2 0.461 0.406 0.406 0.449 0.399 0.397 0.893 0.375 2.491 0.877 0.423 0.458

4x3x3 0.151 0.088 0.088 0.151 0.087 0.093 0.500 0.047 0.088 0.729 0.067 0.142

4x4x3 0.029 0.022 0.024 0.084 0.089 0.098 0.665 0.052 0.121 0.718 0.055 0.102

4x5x3 0.040 0.021 0.021 0.033 0.016 0.017 0.731 0.037 0.076 1.060 0.079 0.099

4x4x4 0.042 0.033 0.029 0.042 0.037 0.036 0.792 0.039 0.075 1.310 0.030 0.061

4x5x4 0.034 0.029 0.029 0.049 0.029 0.028 1.128 0.035 0.102 1.813 0.061 0.112

Average 0.116 0.089 0.089 0.122 0.097 0.097 0.738 0.088 0.406 1.013 0.105 0.174

94

Table 25: Average proportion above minimum makespan for medium problems with SDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

6x6x2 0.114 0.055 0.048 0.119 0.057 0.051 0.751 0.059 0.075 1.191 0.067 2.041

6x8x5 0.109 0.057 0.049 0.108 0.060 0.052 3.854 0.043 0.079 7.130 0.154 0.093

6x9x3 0.113 0.070 0.068 0.103 0.060 0.061 2.088 0.059 0.110 3.119 0.095 0.057

7x7x5 0.124 0.075 0.057 0.107 0.060 0.045 3.281 0.061 0.068 5.630 0.159 0.031

7x8x4 0.105 0.044 0.037 0.110 0.052 0.054 2.797 0.063 0.086 6.620 0.068 0.071

8x8x3 0.129 0.088 0.083 0.125 0.079 0.073 1.663 0.021 0.031 3.744 0.167 0.067

9x9x2 0.208 0.154 0.152 0.211 0.162 0.154 1.520 0.169 0.179 2.296 0.227 0.160

10x10x2 0.067 0.038 0.038 0.105 0.074 0.052 1.557 0.083 0.054 3.046 0.067 0.018

Average 0.121 0.073 0.067 0.124 0.076 0.068 2.189 0.070 0.085 4.097 0.125 0.317

Table 26: Average proportion above minimum makespan for medium problems with UDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

6x6x2 0.025 0.010 0.009 0.030 0.015 0.013 0.653 0.065 0.088 1.162 0.129 0.153

6x8x5 0.038 0.033 0.029 0.038 0.033 0.029 4.099 0.069 0.103 7.361 0.123 0.120

6x9x3 0.042 0.024 0.022 0.043 0.024 0.022 1.930 0.053 0.069 3.437 0.130 0.080

7x7x5 0.067 0.030 0.029 0.068 0.037 0.037 3.154 0.040 0.070 5.849 0.068 0.078

7x8x4 0.026 0.014 0.013 0.026 0.014 0.013 2.585 0.039 0.049 7.711 0.141 0.231

8x8x3 0.043 0.018 0.015 0.034 0.026 0.017 1.838 0.087 0.100 3.844 0.051 0.060

9x9x2 0.031 0.033 0.019 0.034 0.037 0.022 1.288 0.055 0.071 2.171 0.056 0.063

10x10x2 0.032 0.020 0.016 0.052 0.039 0.038 1.447 0.032 0.051 3.027 0.043 0.092

Average 0.038 0.023 0.019 0.041 0.028 0.024 2.124 0.055 0.075 4.320 0.093 0.109

Table 27: Average proportion above minimum makespan for large problems with SDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

12x12x10 0.078 0.037 0.035 0.077 0.035 0.032 235 0.044 0.027 1501 0.149 0.093

15x15x5 0.080 0.021 0.017 0.078 0.025 0.028 33 0.100 0.065 180 0.133 0.084

20x20x4 0.085 0.019 0.021 0.090 0.054 0.027 52 0.104 0.094 383 0.136 0.204

25x25x8 0.053 0.008 0.014 0.057 0.040 0.019 16257 0.204 0.085 452975 0.338 0.060

30x30x5 0.085 0.018 0.032 0.244 0.137 0.048 14746 4.692 7.752 43578 0.219 0.057

Average 0.076 0.021 0.024 0.109 0.058 0.031 6264 1.029 1.605 99723 0.195 0.100

95

Table 28: Average proportion above minimum makespan for large problems with UDR data set

 Problem
size

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA

12x12x10 0.043 0.017 0.019 0.044 0.018 0.016 227 0.029 0.035 1539 0.120 0.200

15x15x5 0.033 0.004 0.005 0.028 0.005 0.007 32 0.024 0.036 195 0.145 0.182

20x20x4 0.035 0.009 0.010 0.055 0.023 0.038 51 0.030 0.067 502 0.157 0.333

25x25x8 0.032 0.007 0.012 0.107 0.038 0.044 14156 0.095 0.148 457061 0.303 0.016

30x30x5 0.036 0.010 0.010 0.149 0.124 0.042 1855 0.073 0.058 41973 0.259 0.177

Average 0.036 0.010 0.011 0.077 0.042 0.029 3264 0.050 0.069 100254 0.197 0.182

96

Annexure C: Computation times
Table 29: Average computation times for small problems with scenario 1

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

3x3x3 0.0044 0.0003 0.0130 0.0004 0.0281 0.0298

3x3x4 0.0393 0.0080 0.0153 0.0003 0.0269 0.0252

3x4x2 0.0003 0.0003 0.0003 0.0002 0.0257 0.0269

4x3x3 0.0003 0.0003 0.0003 0.0004 0.0276 0.0292

4x4x3 0.0290 0.0004 0.0004 0.0004 0.2008 0.0426

4x5x3 0.0162 0.0005 0.0005 0.0004 0.0405 0.0361

4x4x4 0.0003 0.0004 0.0005 0.0004 0.0336 0.0312

4x5x4 0.0005 0.0005 0.0005 0.0005 0.0423 0.0283

Table 30: Average computation times for medium problems with scenario 1

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

6x6x2 0.0584 0.0005 0.0007 0.0006 0.0993 0.1330

6x8x5 0.0010 0.0011 0.0042 0.0017 0.2586 0.2425

6x9x3 0.0034 0.0009 0.0011 0.0075 0.2919 0.2625

7x7x5 0.0010 0.0011 0.0044 0.0017 0.2724 0.2295

7x8x4 0.1402 0.0319 0.0038 0.0014 0.4973 0.3452

8x8x3 0.0013 0.0009 0.0017 0.0016 0.3150 0.2888

9x9x2 0.0009 0.0008 0.0016 0.0024 0.4771 0.4534

10x10x2 0.0667 0.0279 0.0026 0.0026 0.8568 0.8794

Table 31: Average computation times for large problems with scenario 1

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

12x12x10 0.0047 0.1017 0.5409 0.0157 38.8601 38.8154

15x15x5 0.0044 0.0043 0.0202 0.0186 39.5828 38.2834

20x20x4 0.0072 0.0079 0.0402 0.0470 178.4229 173.2750

25x25x8 0.0836 0.0272 0.2105 0.2008 609.1398 541.6924

30x30x5 0.0274 0.0252 0.3879 0.3440 865.3643 872.3942

97

Table 32: Average computation times for small problems with scenario 2

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

3x3x3 0.0460 0.0003 0.0268 0.0003 0.2414 0.0286

3x3x4 0.0197 0.0003 0.0138 0.0003 0.0277 0.0362

3x4x2 0.0890 0.0003 0.0282 0.0003 0.0263 0.0279

4x3x3 0.0003 0.0003 0.0005 0.0004 0.1929 0.3108

4x4x3 0.0005 0.0004 0.0005 0.0006 0.0281 0.0251

4x5x3 0.0544 0.0004 0.0005 0.0005 0.0466 0.0368

4x4x4 0.0004 0.0005 0.0005 0.0005 0.0621 0.0332

4x5x4 0.0004 0.0005 0.0005 0.0005 0.0371 0.0389

Table 33: Average computation times for medium problems with scenario 2

Matrix
size

CDS NEH GA

SD UD SD UD SD UD

6x6x2 0.0008 0.0005 0.0020 0.0009 0.1589 0.1715

6x8x5 0.0513 0.0011 0.0015 0.0016 0.2710 0.2951

6x9x3 0.0537 0.0008 0.0027 0.0011 0.4115 0.3682

7x7x5 0.0009 0.0007 0.0017 0.0019 0.3820 0.3531

7x8x4 0.0010 0.0009 0.0234 0.0016 0.3935 0.3686

8x8x3 0.0650 0.0012 0.0024 0.0022 0.7371 0.7125

9x9x2 0.0010 0.0010 0.0022 0.0023 2.5197 2.5222

10x10x2 0.0014 0.0013 0.0029 0.0025 7.4478 6.3323

Table 34: Average computation times for large problems with scenario 2

Matrix
size

CDS NEH GA

SD UD SD UD SD UD

12x12x10 0.0955 0.0107 0.0467 0.0166 42.5583 42.1651

15x15x5 0.0265 0.0049 0.0205 0.0197 69.3522 120.4441

20x20x4 0.0079 0.0044 0.0462 0.0614 230.1981 259.2478

25x25x8 0.0239 0.0993 0.1972 0.1954 768.6413 799.5785

30x30x5 0.0284 0.0330 0.2481 0.2468 915.1942 880.6319

98

Table 35: Average computation times for small problems with scenario 3

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

3x3x3 0.0376 0.0003 0.0004 0.0004 0.1700 0.0357

3x3x4 0.0229 0.0003 0.0004 0.0003 0.0283 0.0268

3x4x2 0.0003 0.0114 0.0003 0.0003 0.0283 0.0268

4x3x3 0.0003 0.0004 0.0558 0.0080 0.0292 0.0256

4x4x3 0.0005 0.0004 0.0005 0.0004 0.0242 0.0269

4x5x3 0.0432 0.0004 0.0004 0.0004 0.0744 0.0367

4x4x4 0.0004 0.0789 0.0005 0.0004 0.0382 0.0330

4x5x4 0.0016 0.0005 0.0005 0.0004 0.0383 0.0370

Table 36: Average computation times for medium problems with scenario 3

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

6x6x2 0.0005 0.0005 0.0008 0.0008 0.1348 0.1566

6x8x5 0.0384 0.0012 0.0013 0.0015 0.3576 0.3219

6x9x3 0.0010 0.0008 0.0011 0.0028 0.3577 0.3401

7x7x5 0.0455 0.0010 0.0995 0.0017 0.6113 0.3814

7x8x4 0.0495 0.0011 0.0017 0.0015 0.3265 0.3275

8x8x3 0.0009 0.0008 0.0017 0.0018 0.7582 0.7321

9x9x2 0.0008 0.0008 0.0556 0.0020 2.8332 2.6490

10x10x2 0.0010 0.0011 0.0033 0.0029 5.5785 5.6356

Table 37: Average computation times for large problems with scenario 3

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

12x12x10 0.0116 0.0203 0.0178 0.0181 40.2420 40.3960

15x15x5 0.0134 0.0051 0.0190 0.0196 68.5193 68.8014

20x20x4 0.0443 0.0085 0.0507 0.0475 286.6765 233.1291

25x25x8 0.0256 0.0296 0.2436 0.2278 750.8251 941.1693

30x30x5 0.0255 0.0828 0.2684 0.2942 970.1836 862.8904

99

Table 38: Average computation times for small problems with scenario 4

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

3x3x3 0.0435 0.0003 0.0041 0.0003 0.1935 0.0379

3x3x4 0.0468 0.0250 0.0071 0.0003 0.1007 0.0327

3x4x2 0.0003 0.0003 0.0004 0.0003 0.0569 0.0313

4x3x3 0.0137 0.0003 0.0005 0.0004 0.0352 0.0321

4x4x3 0.0068 0.0004 0.0073 0.0005 0.0315 0.0314

4x5x3 0.0004 0.0004 0.0005 0.0005 0.0427 0.0384

4x4x4 0.0004 0.0004 0.0005 0.0005 0.0386 0.0408

4x5x4 0.0005 0.0005 0.0005 0.0005 0.0431 0.0358

Table 39: Average computation times for medium problems with scenario 4

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

6x6x2 0.0639 0.0005 0.0009 0.0007 0.1735 0.2254

6x8x5 0.0011 0.0227 0.0014 0.0015 0.3685 0.4032

6x9x3 0.0009 0.0009 0.0011 0.0010 0.3834 0.3674

7x7x5 0.1554 0.0010 0.0024 0.0018 0.3639 0.3279

7x8x4 0.0010 0.0380 0.0016 0.0018 0.2642 0.3407

8x8x3 0.0008 0.0009 0.0059 0.0017 0.7296 0.6878

9x9x2 0.0498 0.0027 0.0025 0.0020 2.8699 3.4503

10x10x2 0.0009 0.0012 0.0030 0.0031 7.3924 7.4732

Table 40: Average computation times for large problems with scenario 4

Problem
size

CDS NEH GA

SDR UDR SDR UDR SDR UDR

12x12x10 0.0798 0.0054 0.0460 0.0174 46.6065 45.5247

15x15x5 0.0051 0.0055 0.0235 0.0245 81.8296 80.6558

20x20x4 0.0110 0.0091 0.0478 0.0477 255.6345 235.4703

25x25x8 0.1385 0.0287 0.2311 0.2422 798.6494 761.6909

30x30x5 0.0322 0.0306 0.3294 0.2889 867.2491 874.3069

100

Annexure D: GA parameter variations
Population size = 1500

Number of iterations

Population size = 750

Number of iterations

Population size = 375

Number of iterations

Figure 31: GA solution convergence for a 30x30x5 matrix with scenario 3 for various population sizes

M
ak

es
p

an

M
ak

es
p

an

M
ak

es
p

an

101

Mutation rate = 0.5

Number of iterations

Mutation rate = 0.3

Number of iterations

Mutation rate = 0.7

Number of iterations

Figure 32: GA solution convergence for a 25x25x8 matrix with scenario 4 for various mutation rates

M
ak

es
p

an

M
ak

es
p

an

M
ak

es
p

an

102

