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Abstract 
 

The classic flow shop problem assumes that jobs make only single passes through the 

processing machines and that the processing times are not affected by the length of the delay 

before jobs are processed. These assumptions are being relaxed in recent papers that consider 

reentrance problems and those with schedule deterioration. In this study, these two 

assumptions are both relaxed, and a model of a reentrant flowshop with a deteriorating 

schedule is considered. A linear programming formulation of the problem is first presented. 

Three solution heuristics are considered under different deterioration scenarios. It was 

observed that both Nawaz Enscor and Ham (NEH) algorithm and Genetic Algorithm (GA) 

performed much better than the Campbell Dudek and Smith (CDS) algorithm. Overall, when 

considering both the quality of solution and computational time together, the NEH algorithm 

seems to have performed much better than the others as the size of problems increases. This 

model would find useful applications in some metallurgical and manufacturing processes where 

such problems are usually encountered. 
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This chapter gives a brief background on job scheduling in a flowshop environment and the 

variants to the problem which have been studied since its introduction. It also discusses the 

research objectives and outline of the study. 

1.1. Introduction 
 

In the current global market, companies strive to build more competitive supply chains to get 

their products to the market faster and cheaper than their competition. A supply chain is a 

network of activities that include the sourcing and conversion of raw materials into useable 

goods and the delivery of the goods to end-users (Simchi-Levi, 2008). A successful supply chain 

is the one that can deliver products efficiently and cost-effectively. The process of converting 

system inputs to outputs within a supply chain is often loosely considered as manufacturing. 

However, service industries such as information management, transportation and distribution 

are also an essential part of converting system inputs to outputs (Pinedo, 2016). One of the 

main drivers of supply chain competition is customer service, i.e. the ability of a business to 

continually meet its customers’ requirements, which affords it a competitive advantage against 

their opposition. This research focuses on scheduling, which is concerned with the sequencing 

of jobs or operations during manufacturing.  

Scheduling is an area of study within planning and control in the field of operations 

management. Planning and control involve the determination of quantities to be produced, at 

appropriate timing and with sound quality. The following planning aspects related to task 

performance are addressed; nature of task, time, date, location, and responsible personnel. 

Planning is composed of three levels; strategic, tactical, and operational (Stevenson, 2002). The 

strategic plan sets the direction for the business and is long-term. The tactical plan has a 

medium-term planning horizon and is focused on the operational part of the company. The 

operational plan is focused on the day-to-day operations of the shop-floor. In controlling, the 

system is monitored to determine if the organization is operating according to plan, and the 

arrangements required to get back to plan if it is no longer followed. Both planning and control 
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are necessary for realizing the target levels of organizational objectives. Table 1 indicates the 

extent of planning and control for the different levels of planning. 

Table 1: Levels of planning 

 Planning Control Activities 

Strategic High Low Resource planning & 

Rough cut capacity planning 

Tactical Medium Medium Detailed capacity planning 

 

Operational Low High Shop floor control 

(loading, scheduling, sequencing) 

Note: Compiled with information from Operations Management Instructor slides, McGraw-Hill/Irwin, 2012  

Scheduling is focused on determining the timing for allocating jobs to resources. The resources 

can be machines, facilities or people. Scheduling activities occur in every organization; for 

example, in the manufacturing industry, schedules are created for workers or a set of jobs. In a 

hospital environment, schedules can be for surgical procedures to be conducted during a 

specified period. In the beauty industry, places like salons use appointment systems to create 

schedules while the schooling environment schedules classes for teachers/instructors. Like any 

field of study, scheduling has its jargon used to describe the problems. The next subsection 

gives a brief description of the terminology (notations) used in job scheduling. This is necessary 

for the purpose of uniformity when describing the problems. 

1.1.1. Scheduling notation 
 

Graham et al. (1979) introduced the classic method of describing scheduling problems through 

the use of the three-field notation (α | β |  ). The notation describes the machine environment 

(α), the problem constraints and characteristics (β), and the scheduling objective ( ). This 

notation is generally accepted as a standard framework for problem classification in scheduling. 

The description and examples of the fields of the notation are as follows. 



  

4 
 

Machine environment 

The machine environment field is used to indicate the type of operation (open, job or flowshop) 

or the layout of the facility (one machine,   machines and machines in series or parallel). The 

type of operation and set-up for a facility is decided based on the types of products or process 

steps required for production. For example in a job shop, jobs visit the machines in no particular 

order and may not be processed on all the machines within the system. In an open shop, jobs 

are scheduled at the discretion of the planner or the scheduler and in a flowshop, jobs follow 

the same machine ordering. The flowshop configuration is a widely researched problem with 

work that dates back to the 1950s, with the seminal work done by Johnson in 1953.  

Figure 1 gives the distinction between the different manufacturing process types and the 

specific industries in which each of these process types can be applied. The requirement for 

high customization of project and job shop processes makes manufacturing of such processes in 

high volumes unsuitable as it may lead to unnecessarily high inventory level and consequently 

high holding cost. Flowshops and continuous production processes are better suited to 

products that need high volume production. The choice of an appropriate process type to make 

a product also influences machine layouts with product layout being suitable for high volume 

discrete manufacturing while (flowshop) and process layout for discontinuous manufacturing 

(job shop) processes. Also, flowshop production machines’ layout may comprise of identical 

parallel machines, unrelated parallel machines, and/or parallel machines with different speeds. 
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Figure 1: Process-Product alignment matrix for production volume alignment 

 

Job Constraints and characteristics 

In some scheduling problems, this field is left blank. A blank field implies that the problem will 

not be subjected to any specific constraint. Constraints that can be set for scheduling problems 

include job precedence, preemptions, due date and release times. A brief description of how 

these frequently used constraints are applied follows: 

 Job precedence: this constraint is used to set the sequence to be followed in the 

schedule. Precedence between two jobs implies that a particular job may not be started 

unless the other one has been completed. 

 Preemptions: Operations may be interrupted and then resumed at a later stage. This 

characteristic can be useful when quality checks do not yield satisfactory results. The job 

can be corrected offline while another job is processed. 

 Due date: a date on which a job is expected to be completed. A job can be completed 

either before or after the due date. The due date is an important constraint that can be 

used as a guideline for determining job sequences during planning. 
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 Release times: the release time/date is said to be the earliest possible time at which a 

job can be started. Not all jobs can be ready for processing at the beginning of the 

planning horizon as there may be initial processing steps required on some jobs.  

Scheduling objectives 

Objectives in scheduling can also be referred to as performance measures; they are factors that 

can be used to determine the effectiveness of the process. Systems may be subjected to single 

or multiple objectives. Some of the commonly used objectives are flowtime, makespan, and 

lateness. 

 Flow time: the flowtime of a job is a measure of the completion time of that job on the 

last machine in the process. This time is inclusive of the waiting time before processing 

and transportation time between the machines, and not only composed of the actual 

processing time of the job (Stevenson, 2002). This measure is vital in an environment 

where there is a need to manage work-in-process inventory levels and meeting product 

delivery dates. The typical performance measures being studied in this category are the 

total flowtime and the mean flowtime. 

 Makespan: the time between the processing of the first job on the first machine and 

completion of the last job on the last machine. Unlike the flowtime, the measure of 

makespan focuses on the overall time required to process all the jobs within a planning 

horizon and not individual jobs. The minimisation of makespan as a performance 

measure translates to determining the shortest time needed to process all jobs.  

 Lateness: job lateness is the difference between the actual completion time of a job and 

the promised delivery date. A job is considered to be late if it does not meet its due 

date. Lateness can either be positive (tardiness) or negative (earliness). Tardiness is an 

important criterion to consider in planning to ensure that no penalty costs are incurred 

due to products being delivered later than the promised date. Finishing a job earlier 

than its due date is also problematic as it increases inventory holding cost. The holding 

cost is described as a cost that is accrued per unit product, per time period stock is being 
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kept (Simchi-Levi et al., 2008). It is thus vital that products are delivered in time for the 

required purposes. 

 

1.2. Problem classification, research objectives and 

contributions to literature 
 

In the general scheduling notation, there aren’t standard representations for re-entrance and 

schedule deterioration in most standard documentations available. Al-Harkan (n.d.), however, 

used recrc (recirculation) for reantrant jobs, while the notation for deterioration is not standard 

in any text and “deter” is adopted here.  This study, therefore, focuses on a problem classified 

as   /                /     . The problem is that of a flowshop setup, with a permutation 

constraint with the objective being to minimise makespan. The study involves scheduling a 

reentrant flowshop with deteriorating jobs. The reentrant flowshop problem has been studied 

for various machine environments, however, work on deteriorating jobs has significantly been 

on one and two machine environments.  To date, there is no evidence of work published which 

integrates the reentrant problem with deteriorating jobs, and this serves as a motivation to 

consider this problem. This study aims to develop a mathematical programming model and 

utilize heuristic algorithms to solve problems related to scheduling of   jobs on   machines in 

a reentrant permutation flowshop with schedule deterioration. The problem is related to 

operations such as steel manufacturing, wherein certain production steps may need to be 

repeated to achieve the desirable product features. Scheduling of jobs in a manner that will 

optimise some production objectives while keeping customer satisfaction high is a challenge 

many production planners need to handle. Makespan minimisation in this type of production 

environment can lead to improved productivity and thus cost-effective running of the 

operations. Some known heuristics were modified to suit and solve the problem at hand as may 

be necessary. Solutions achieved by the various heuristics were compared to each other to 

determine the one which can be said to lead to finding the least makespan value within 

reasonable computational time.  
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1.3. Outline of the following chapters 
 

A brief overview of how this document is arranged is discussed next. This document consists of 

five (5) chapters, and the outline of remaining chapters is provided as follows: 

 

In Chapter 2, the literature review of the relevant scheduling areas including the important 

variants of flowshop scheduling problem that are pertinent such as job reentrance and 

deteriorating jobs is conducted. The manner in which research in this field has evolved is also 

reviewed. The various solution techniques available in literature for solving flowshop 

scheduling problems are then discussed.  The focus of chapter 3 is the development of the 

solution approach to solve the problem. A plan of action regarding the selection of solution 

techniques used in solving the problem of interest is discussed. Chapter 4 presents the results 

and analysis of experimental computations. Results obtained from the various solution 

techniques are also compared to one another. In chapter 5, concluding remarks on the solution 

technique that resulted in the lowest makespan are made. Recommendations regarding 

possible areas for further study of the topic are also proposed. 
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This chapter focuses on basic flow-shop scheduling problem and its diverse modifications 

and/or variants. A discussion on general flow-shop scheduling is presented first, followed by the 

two variants which are the bases of this study, i.e. the flowshop problem which incorporates 

job reentrance and schedule deterioration.  

 

2.1. Flowshop scheduling 
 

In manufacturing, a facility is referred to as a flowshop when its machine set-up is in series and 

all jobs follow the same order during processing (Pinedo, 2016). For a flowshop with   

machines, each job is processed on the first machine in the series, followed by the second 

machine and so on, until it reaches the     machine and all the jobs follow the same sequence. 

Flowshop scheduling was first studied by Johnson (1953), who based his research on two and 

three machine problems and provided solution methods. Systems with machines less than or 

equal to three can be solved successfully using Johnson’s algorithm. The study focused on the 

generation of an optimal schedule for a two and three-stage production facility. In two machine 

flowshop problems for minimization of makespan, the shortest processing time (SPT) 

dispatching rule is often used. Solving a scheduling problem for a three machine environment 

proved not to be an easy task, hence the modified Johnson’s rule was developed. This method 

compresses the three machine environment into a two machine environment to solve the 

problem using Johnson’s algorithm, provided the problem meets the set criteria for application 

of the rule. 

In practice, manufacturing facilities can have more than three machines on which jobs need to 

be processed. The issue with these types of operations is that there are no efficient exact 

solution procedures that are known to solve the scheduling problems (Tyagi et al., 2013). 

Relaxing some of the assumptions made with Johnson’s rule to address the flowshop problems 

introduces some complexity to the system. These complex flowshop problems need to be 

solved using heuristic methods. Complexities may arise, for instance, when scheduling a 

flowshop with   jobs on   machines, a permutation flowshop arrangement, or perhaps a 
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hybrid flowshop arrangement. Permutation and hybridization are typical complexities in 

flowshop scheduling, which have been researched in the past, and they are discussed next. 

Permutation flowshop scheduling 

In flowshop scheduling, all jobs have the same processing order; however, this doesn’t imply 

that jobs will be processed on all the machines in the system. The constraint which gives a 

guarantee that jobs will not pass any machine in the shop is termed permutation. In their 

paper, Rios-Mercado and Bard (1999) scheduled   jobs on   machines for a permutation 

flowshop. They developed a branch and bound enumeration scheme for minimizing the 

makespan. The model incorporated lower and upper bounding, a dominance elimination logic 

and a partial enumeration strategy. Upper and lower bounding serves to limit the search space 

and thus ensuring that a solution can be achieved within a reasonable computation time. 

Genetic algorithm solution (GAs) has also proven to be aloe to successfully find near-optimal 

solutions for complex scheduling problems, where methods such as the branch and bound 

failed due to the time complexity of exact solutions (Iyer and Saxena, 2004). In this paper, an 

improved GA heuristic was used in finding solution for a permutation flowshop in an assembly 

line whose objective is to minimize the makespan. The improved GA solution was implemented 

by ensuring that it matches the structural information of the system being studied. It was 

shown in the study that the modified GA performs better than the standard GA. 

Hybrid flowshop scheduling 

A hybrid flowshop, also known as a multi-processor, is a type of flowshop arrangement with 

two or more production stages in series. Each production stage is composed of identical 

machines, working in parallel. This characteristic offers some flexibility to the system while 

increasing productivity. Choi and Lee (2007) studied a two-stage hybrid flowshop with the 

objective of minimizing the number of tardy jobs. They utilized the branch and bound method 

to develop their solution. The heuristic they developed resulted in optimal solutions for 

moderately sized problems, i.e., with four machines at each stage and fifteen jobs.  
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The work in flowshop scheduling has caught the attention of a lot of researchers, and some 

variants have been explored, owing to the maiden two- and three machine problems. One such 

variant is the reentrant characteristic and is discussed next. 

2.2. Reentrant flowshop problem 
 

The traditional classification of manufacturing systems differentiates the systems by referring 

to them as either a job shop or flowshop. The classical flowshop is characterized by jobs that 

are processed on each machine within the system only once. Chen et al. (2008), however, 

stated that in reality, this assumption is sometimes violated. The allowance of jobs to return to 

one or more machines for further processing is termed reentrance.  

The reentrant property is observed in processes such as semiconductor manufacturing (Chen et 

al., 2008) wherein components need to be processed more than once before the final product 

is achieved and cold drawing operations in steel tube manufacturing. Reentrance can also be 

used in tool machining shops (Graves et al., 1983), where a particular tool might require a 

polishing stage or heat treatment in between the machining stages to achieve the final tooling 

finish. This system is referred to as a reentrant flowshop, and Figure 2 shows a simple 

illustration of the reentrant property for a permutation flowshop.  

 

Figure 2: Schematic diagram of a reentrant flowshop 

A job is processed on all machines in the shop and then returns into the system for the next 

level’s operation. The illustration is somewhat overly simplified as jobs will not necessarily 

return into the system just once; jobs may return for the number of passes or levels required to 

M1 M2... Mn 



  

13 
 

yield the end product or service based on the system requirements. To describe the process, 

one may compare the reentrant shop with the traditional flowshop set-up. In a conventional 

flowshop, scheduling a set of jobs    {          }  on machines    {          } 

require that all jobs in set   are processed in the sequence    then    up to    only once. In 

a reentrant shop, jobs in set   are processed in the sequence    then    up to    and return 

to the same set of machines for a second, third or     pass operation while following the same 

sequence as in the first pass.  

For decades, the reentrant flowshop problem has attracted the attention of many researchers, 

and this can be attributed to the drive to reduce operating costs and increase profits by 

manufacturing facilities. Instead of procuring two or more machines that can perform the same 

operation, a single machine can be used. The number of machines within a shop is directly 

linked to the number of operators required to operate them, and as such, the reentrant shop 

can also result in lower labour costs (a portion of fixed costs).  

The earliest work identified on reentrant flowshop scheduling was that of Graves et al. (1983). 

These were one of the first researchers to realize that not all of the existing models would be 

beneficial if applied in different types of systems. The manufacturing process that was used for 

their study is that of an integrated circuit fabrication facility. It was initially suggested that the 

system could be operated as a job shop with the use of sequencing rules to determine an 

optimal sequence of jobs at each machine. This implied that a simple Gantt chart for 

sequencing of jobs in this system could be used; however, for a large number of jobs, it would 

be nearly impossible to manage. A heuristic algorithm was, thus, developed to minimize the 

throughput time using a cyclic scheduling method at specified production rates. The heuristic 

developed was referred to as a cyclic Gantt chart. In the cyclic schedule, the chart is divided 

into manageable cycle times to enable the scheduler to know the number of cycles required to 

complete a single job. One of the unique features about the model is that the schedule that is 

generated could be adapted when conditions in the system such as shutdowns, machine 

breakdowns, and operator unavailability arose. The downside, however, was that the model 

was developed as a computer program from which the results needed to be transferred onto a 
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shop schedule. Any errors that take place during the transfer of the schedule from the program 

to the workshop can change the entire process. Since the program was developed, there have 

been various technological advancements, which in the current times are an added advantage 

to reducing human error. 

Despite slow progress in the research of reentrant flowshop problems, Pan and Chen (2003) 

furthered work in this field with a focus on the minimization of makespan in a reentrant 

permutation flowshop. They proved that the reentrant flowshop problem is NP-hard, even for a 

two-machine shop. The duo developed several heuristics in their search for a solution approach 

for the problem. Chen (2006) extended the work done on the reentrant permutation flowshop 

by developing a branch and bound algorithm. For the algorithm to reach an optimal solution 

quickly, a branching rule, upper and lower bounding rule, and a fathoming rule were utilised. 

Chen et al. (2007) developed an integer programming model and used heuristics to find an 

initial solution.  Tabu search was then applied to improve the initial solution in scheduling jobs 

in a reentrant   machine environment to minimize makespan.  The combination of the pure 

Tabu search with neighborhood search heuristics enhances the efficiency of the Tabu search by 

ensuring that the local minima are also explored. 

Rios-Mercado and Bard (1999) had earlier presented research conducted on scheduling by 

using a branch and bound algorithm for permutation flowshops with sequence-dependent set-

up times. Their algorithm included the use of lower and upper bounding procedures, 

dominance rules and partial enumeration to reach a solution. As more and more researchers 

explored the ability of the branch and bound approach to solve the various reentrant problems, 

the possibility of incorporating the traditional scheduling heuristics for finding upper bounds 

were also taken into consideration (Choi and Kim, 2007). 

In the paper of He et al. (2011), they opted to use a different approach to model the reentrant 

problem. A model based on partial differential equations was presented. The model has the 

ability to handle a large number of jobs on many processing stages. In the first part of their 

study, they presented a basic continuum model for material flows. They proved using 

computational examples that it results in an inaccurate solution for the reentrant problem. The 
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inaccuracies were then corrected by modifying the continuum model and incorporating the 

reentrant degree/ factor of the products. The impact of varying degrees of the reentrant factor 

on total system behaviour was also studied through computational experimentation. 

More recent work includes scheduling a reentrant no-wait shop and systems with multiple 

objectives. One such problem was studied by Rifai et al. (2016) wherein three objective 

functions, namely maximum completion time, total production cost, and average tardiness, 

were considered. A multi-objective adaptive large neighborhood search (MOALNS) algorithm 

was developed to find near-optimal solution for the problem. TasoujiHassanpour et al. (2015) 

proved that the no-wait reentrant problem is NP-hard and utilized heuristic algorithms to solve 

the problem. Genetic algorithm, bottleneck based heuristic and simulated annealing heuristic 

were used to solve the problem. The simulated annealing algorithm out-performed the genetic 

algorithm and the bottleneck based algorithm in terms of finding the best solution within 

reasonable computation time. 

The majority of flowshop problems in the study only involve a single machine at each 

production stage. There is, however, another type of flowshop referred to as a hybrid flowshop. 

This type of flowshop involves the use of more than one machine at each production stage 

(Moursli, 1999). The hybrid flowshop is common in semiconductor production facilities (Kim 

and Lee, 2008). Much like the use of the reentrant property, using multiple machines per 

production stage is aimed at improving the productivity and efficiency of the facility. The 

reentrant property has also been studied in this type of flowshop environment with work 

including that of Choi et al. (2009), Kim and Lee (2008) and Zhang and Chen (2017). Heuristic 

methods have been used to solve various scheduling problems. Choi et al. (2009) applied the 

branch and bound algorithm. They compared it to modified heuristics (Johnson’s, CDS and NEH) 

to schedule a two-stage reentrant hybrid flowshop to minimize makespan under the maximum 

allowable due dates. Kim and Lee (2008) adopted the same methodology and applied the 

modified CDS and NEH heuristics for scheduling jobs in a reentrant hybrid flowshop with 

unrelated parallel machines. 
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In cases where more than two passes or levels of processing are required, the sequence of 

operation is repeated. The repeated cycles that the jobs need to go through may lead to 

deterioration as the jobs queue to be processed. The deterioration factor affects the total 

processing time of jobs and can lead to high operating costs. The next section focuses on the 

deterioration factor and how it affects permutation flowshop scheduling. 

2.3. Deterioration 
 

The deterioration of jobs can be described in various ways. It can refer to deterioration while 

waiting for service due to the unavailability of machines or deterioration caused by fatigue or 

tiredness of machine operators. The deterioration factor of jobs can also be influenced by 

scheduled maintenance or cleaning of machines (Bank et al., 2012). In some instances, jobs 

require a preparation step before processing; the cold-drawn tube manufacturing is a typical 

example. The input to the process is prepared by applying lubricants and warming it up. The 

material loses temperature while it waits to be processed and will need to be re-heated to 

ensure it is at the correct temperature. Ingot and bloom rolling can also be affected by the 

deterioration of processing times. In these steel rolling operations, the input material is 

reheated to a predetermined temperature before rolling. Each steel grade has a critical 

temperature below which rolling becomes difficult and may cause machine damage. Below this 

temperature, the input ingots/blooms are said to have deteriorated and require a reheating 

cycle. In all cases of deteriorating jobs, the result is processing times that increase with an 

increase in waiting time before processing. A deteriorating job is thus referred to as a job that 

will take more time to be processed later than when it is processed first in the schedule. 

The job deterioration problem is relatively new, currently spanning only three decades of 

research. Despite that, the job deterioration problem has had variants of the original problem 

studied since its inception. The first decade did not see much development. Studies were 

conducted with a focus on single machine problems with the objective being minimization of 

makespan (Browne and Yechiali, 1990, and Kubiak and van de Velde, 1998) and minimisation of 

flowtime (Mosheiov, 1991). Browne and Yechiali (1990) pioneered the study of deteriorating 
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jobs, with a focus on a single machine problem with simple linear deterioration and an 

objective of makespan minimization. The duo proved that the processing time of a job 

increases linearly in relation to the waiting time, and they used scheduling policies to develop a 

solution. 

Meanwhile, Mosheiov (1991) studied the minimization of flowtime for   jobs on a single 

machine and proved that the optimal sequence for the problem is V-shaped. The V-shape 

property essentially means that the first set of jobs to be scheduled is arranged in decreasing 

order of the deterioration rate. In contrast, the remaining set of jobs is scheduled in increasing 

order of their deterioration rate.  

A study proving the NP-hardness of a two- and three-machine scheduling problem for 

deteriorating jobs was conducted by Kononov et al. (2001). The types of deteriorating jobs 

studied were the simple linear and proportional deterioration with the objective of minimizing 

the makespan. Hindi and Mhlanga (2001) also studied the simple linear deterioration but 

coupled it with the study of jobs with basic processing times. The difference between the two 

types of deteriorating jobs in this study is that in simple linear deterioration, it is assumed that 

jobs are only available at a positive time    and that for jobs with basic processing time, the 

scheduling horizon starts at     for all jobs. The total processing time of jobs with basic 

processing time is made up of two components; the time component induced by deterioration 

and the actual processing time component. Thus, the longer a job waits in the queue before 

processing, the longer it will take to be completed. Heuristics were used to schedule jobs for 

the parallel machine environment to minimise makespan. The choice of the solution technique 

was based on the fact that scheduling problems with parallel machines are NP-hard, and thus 

introducing deterioration increases the complexity of the problem. 

Wang et al. (2006) presented a paper on the study of minimization of total completion time in a 

two-machine flowshop with deteriorating jobs. An assumption that the deterioration has a 

linear function in relation to the processing time was made. A branch and bound algorithm was 

used together with several dominance properties and two lower bounds to speed up the 

elimination process during enumeration. Bank et al. (2012) studied a similar problem with the 
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objective, however, being to minimize total tardiness. The same approach was used to develop 

the solution, where a branch and bound with dominance properties and upper and lower 

bounds were used to reach an efficient schedule. Job tardiness is extremely important in cases 

where companies are more concerned with meeting their customer’s expectations in terms of 

due dates, and supply chains are striving to out-perform each other with regards to customer 

satisfaction. 

A lot of focus for the scheduling of deteriorating jobs has been on manufacturing facilities with 

machines that are less than or equal to three. Single machine scheduling of deteriorating jobs 

has been studied by Browne and Yechiali (1990), Mosheiov (1991), Wang and Xia (2005), Ji and 

Cheng (2010) and Wang et al. (2011). Shiau et al. (2007) and Wang et al. (2006) studied 

deteriorating jobs for two machine manufacturing systems. Jafari et al. (2017) studied three 

machine problems. Wang et al. (2019), however, studied an   machine (m > 3) problem for 

scheduling deteriorating jobs. They utilized a metaheuristic called multi-verse optimizer (MVO) 

to find a solution to the problem. They were one of the few identified in literature to have 

studied the problem for     machines. 

The review of the different studies conducted in the scheduling of manufacturing systems is 

indicative of the various solution methods available in the literature. The next subsection 

focuses on an in-depth analysis of some of these solution methods.  

 

2.4. Solution techniques for flowshop scheduling  
 

There is a vast range of solution methods available in literature that can be applied to flowshop 

scheduling. Ruiz and Maroto (2005) compared the performance of twenty-five (25) solution 

methods to evaluate their performance for scheduling a permutation flowshop. Tyagi et al. 

(2013) in their own survey of flowshop scheduling showed how solution methods have evolved 

over six decades. They grouped the solution methods discovered per decade and also arranged 

them according to the categories they belong to, i.e., exact methods, heuristics and meta-
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heuristics. This subsection focuses on the popular solution techniques available in literature for 

scheduling flowshop problems, reviewing how the methods function and how they have been 

used in literature. The review of these methods is necessary for the selection of suitable 

methods for solving the problem of interest. The algorithms and heuristics to be discussed are 

Johnson’s algorithm, CDS, NEH, genetic algorithm (GA), general sequencing rules, branch and 

bound algorithm and Tabu search. The main review focus would be on the techniques adopted 

in solving the problem of interest.  

2.4.1. Johnson’s algorithm 
 

Johnson (1953) pioneered the study of flowshop scheduling with the maiden research focused 

on the two and three machine problems. Johnson’s rule can only be applied to two and a 

specific type of three machine problems. There are some conditions that a three machine set-

up needs to satisfy for Johnson’s rule to be used. The requirements for scheduling a three 

machine flowshop will be discussed later in this subsection. Assumptions made to apply 

Johnson’s algorithm in scheduling two and three machine problems are that: 

 All jobs are available from time zero 

 All job processing times are known 

 There are no machine breakdowns  

 There is unlimited space for jobs waiting to be processed 

 Pre-emption is not allowed 

 Machine set-up times are included in the processing time 

 Each machine can only handle one job at a time 

 All of the job processing times are known 

 Only one machine of each type is used 
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The original Johnson’s algorithm 

Johnson’s algorithm was developed during an era when technological advancements were 

slow. The algorithm was designed in such a way as to enable it to be used manually, and still, be 

able to achieve an optimum schedule. Steps followed for execution of Johnson’s rule are 

detailed in Algorithm 1. 

Algorithm 1: Johnson’s two-machine algorithm 

Step 1: For a set of jobs to be scheduled on two machines, let     be the processing time of job 

  on machine   

Step 2: Put in set I all jobs for which contain           

Step 3: Put in set II all jobs for which contain           

Step 4: Jobs with           can be placed in either set 

Step 5: Arrange jobs in set I in increasing order, and those in set II in decreasing order. If there 

are any ties, break them arbitrarily. 

Step 6: Create an optimal sequence by combining jobs in set I and set II 

Step 7: Compute the objective function 

 

The limitation of Johnson’s algorithm was that it could only be applied to two machine 

problems, and thus needed an extension. The extended version of the algorithm was aimed at 

scheduling a three machine problem by manual computation.  

The modified Johnson’s algorithm 

The modified Johnson’s algorithm applies to a three machine problem, which satisfies either or 

both of the following conditions: 

 The maximum processing time of job   on the second machine is less than or equal to 

the minimum processing time of job   on the first machine, i.e.    (    )            

 The maximum processing time of job   on the second machine is less than or equal to 

the minimum processing time of job   on the third machine, i.e.    (    )            
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Algorithm 2: Johnson’s three-machine algorithm 

Step 1: Check for the minimum value of processing time on machines    and    and check 

for the maximum value of processing time on machine    

Step 2: Subject the problem to the three machine conditions 

Step 3: Generate     and    ; where            and            

Step 4: Apply Johnson’s two-machine algorithm using     and     

Step 5: Use the optimal sequence in step 4 to evaluate the objective function in the original 

problem  

 

Johnson’s algorithm in application 

Johnson’s algorithm is undoubtedly the cornerstone of flowshop scheduling and has, in many 

instances, been modified to match the problems being addressed. Hsu et al. (2006) opted to do 

just that when they modified Johnson’s rule and combined it with despatching rules to solve 

the problem of minimizing the makespan in a two-stage flowshop with a function constraint on 

alternative machines. They proved that combining their version of the modified Johnson’s rule 

with the First-Fit despatching rule performed better than the pure form of the heuristic. 

Regardless of the original algorithm only being applied to two-machine and some three-

machine problems, it can be said with confidence that with any necessary modifications, 

Johnson’s rule can be used on several variants of the classic flowshop problem. 

Choudhari and Khanna (2017) presented a scheduling problem with four machines and   jobs 

and an objective of minimizing makespan. Due to the restrictions on the number of machines, 

the duo could not use the pure form of Johnson’s algorithm to solve the problem at hand. They 

developed an algorithm that converted the four-machine problem into a three-machine, and 

then a two-machine problem. The job sequence obtained by applying Johnson’s rule was then 

substituted back into the original problem to compute for the makespan.  
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2.4.2. CDS Algorithm 
 

With further advancements in the scheduling of jobs on several machines, the trio of Campbell, 

Dudek, and Smith made their contribution to the study in the year 1970 (Tyagi et al., 2013). This 

gave rise to their now well-known algorithm for scheduling of   jobs on   machines, the CDS 

algorithm. The algorithm converts a   machine problem (i.e., more than two) into several 

surrogate two machines (Campbell et al., 1970). In so doing, the problem gets reduced to a 

two-machine problem as with the modified Johnson’s algorithm. Algorithm 3 is a short 

description of how the CDS algorithm is executed. 

Algorithm 3: CDS algorithm 

Step 1: Formulate ( -1) 2-machine surrogate problems from the original problem. The data is 

generated for     and    , the surrogate machines in the following manner: 

           For           and         

                ∑    
   
    and     ∑    

 
        

Step 2: Use Johnson’s algorithm to schedule the surrogate problems  

 For the set of jobs to be scheduled on two machines, let     be the processing time 

of job   on machine   

 Generate set I for jobs that contain           

 Generate set II for jobs that contain           

 Jobs with           can be placed in either set 

 Order jobs in set I in increasing order, and those in set II in decreasing order. Break 

any ties arbitrarily. 

 Create an optimal sequence by combining jobs in set I and set II 

 Evaluate the objective function 

Step 3: Select the schedule which satisfies the objective function  
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CDS in application 

The original CDS algorithm was developed to allow for scheduling of large problems. The 

current trend of research in this area of study is the modification of the original algorithm. Choi 

et al. (2009), for instance, modified the algorithm to suit scheduling a two-stage hybrid 

reentrant flowshop with an objective of minimizing makespan. The performance of the 

modified algorithm was compared to other algorithms that had also been modified, such as 

Johnson’s and NEH. The CDS algorithm is relatively adaptable to various types of scheduling 

problems and can result in near-optimal solutions.  

 

2.4.3. NEH algorithm 
 

Nawaz, Enscore and Ham developed the NEH algorithm in 1983 (Tyagi et al., 2013). This 

solution method has a unique feature. The algorithm uses what is called insertion to establish 

the optimal schedule for the problem (Baskar 2016), as is described in Algorithm 4. 

Algorithm 4: NEH algorithm 

Step 1: Calculate the total processing time of each job and arrange the jobs in decreasing order 

Step 2: Schedule the first two jobs from the list, i.e. the ones with the highest processing time. 

Form two partial sequences by interchanging the place of the jobs.  

Step 3: Evaluate the objective function for the partial sequences 

Step 4: Retain the partial sequence that minimizes the objective function; term it “the 

incumbent sequence.” 

Step 5: Insert the next job from the list in all possible places of the incumbent 

sequence. Evaluate the objective function for the partial sequences. 

Step 6: Retain the schedule that results in the minimum, and discard the rest. 

Step 7: End if all jobs have been scheduled, else go to step 5 

 

 



  

24 
 

NEH in apaplication 

The power of insertion of the NEH algorithm was tested by Baskar (2016), wherein seven 

variants of the algorithm were created by varying the method of selecting the initial sequence 

and then comparing them with the original version. This study proved that even the simplest 

versions of the NEH algorithm are capable of arriving at an optimal solution. In a survey of 

permutation flowshop scheduling, it was demonstrated that the NEH out-performs other 

algorithms and heuristics if tested against Taillard’s instance benchmark (Ruiz and Maroto 

2005). 

 

2.4.4. Genetic Algorithm (GA) 
 

The genetic algorithm (GA) was developed by John Holland, together with his colleagues and 

students. The main aim of their research development was to relate artificial systems with 

natural systems (Goldberg, 1989). This search method can easily be adapted to any kind of 

optimization problem. GA is a search algorithm that was developed based on Darwin’s 

biological theory of natural selection. This algorithm operates on an initial large population, 

selects schedules that out-perform the others, and carries them over to the next generation to 

re-create new schedules. New generations of the population are the evolved version of the 

previous generations.  

The basic structure of the genetic algorithm consists of population initialization, fitness 

evaluation, GA operators (selection, crossover, and mutation), survivor selection, and 

termination. The basic GA structure is represented in Figure 3. The different components of GA 

are discussed next. 

Objective and cost functions: In developing a GA, one needs to identify a variable within the 

system, which is to be optimized.  
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Population initialization: The initial population consists of   randomly generated job 

sequences, which are often referred to as chromosomes. 

 

Figure 3: Basic GA structure 

Fitness evaluation: The evaluation step is created to apply the theory of natural selection. A 

fitness function is used to assess the fittest sequences of the population. 

Selection: The fittest sequences that will form part of the next generation are selected and are 

subjected to the GA operators to get diversification in the system. 

Crossover: This is the operation responsible for the generation of a new population (child) from 

the parent population. Murata et al. (1996) reviewed several crossover operators, including 

one-point crossover, two-point crossover, and position-based crossover. Multi-point crossover 

operations are disruptive and thus assist in converging to the fittest chromosomes quicker.  

Initial population 

Fitness evaluation 

Selection 

Crossover 

Mutation 

Survivor selection 

Terminate? Output of the best  
solution 

GA operators 

Yes No 
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Mutation: Mutation is an operation that is applied to a schedule to alter the job sequence 

deliberately. This is done in the hope of finding a better solution in the neighbourhood. 

Adjacent two-job change, arbitrary two-job change, and shift change are some of the mutation 

operators that are widely used (Murata et al., 1996). 

Survivor selection: The mutated schedules are evaluated against the objective function using 

the local search heuristics. The job schedule that returns an optimal or a near-optimal solution 

gets carried over to the next generation. One can perform this step using one heuristic, which 

has been proven to out-perform its counterparts (Pan and Chen, 2003) or apply all of the 

identified heuristics and compare their performance in their specific case. 

Termination: The decision to terminate the algorithm can be based on whether the returned 

solution satisfies the objective function or not or after a certain number of iterations. The 

decision to end the algorithm after several iterations is usually based on some form of 

experience from observing how the GA converges when performing computational 

experiments. 

The GA tends to yield superior results compared to its counterpart search methods. A 

comparison of the Genetic Algorithm to the traditional search methods indicates the following 

(Goldberg, 1989): 

 GA searches from a population of points and not from a single point. 

 GA doesn’t need any derivative information or other auxiliary information; the set 

objective and fitness functions influence the search space. 

 GA uses probabilistic transition rules rather than deterministic. 

Some of the known advantages of using GA over other algorithms were discussed by Pinedo 

(2016) and are as follows: 

 GA can easily be coded 

 GA can be applied to problems whose structural properties are not known 
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GA in application 

GA has been widely used in scheduling due to its ability to be adapted to various types of 

problems. Modifications to the basic steps have been presented by different researchers for 

objective functions such as makespan minimization in a reentrant flowshop (Chen et al., 2008) 

and a reentrant no-wait flowshop (TasoujiHassanpour et al., 2015). 

 

2.4.5. Other solution techniques 
 

The previous subsection focused on solution methods which are foundational to the area of 

scheduling and are being considered for solving a reentrant flowshop problem with 

deteriorating jobs. This subsection gives a brief background of some other popular solution 

methods that have been successfully applied to scheduling flowshops. The solution methods to 

be discussed are sequencing rules, branch and bound algorithm and the Tabu search. These 

methods have either been used as stand-alone solution methods, or in combination with 

others. Although reviewed, these methods will not be used in solving the problem of interest. 

Some shortfalls of these methods, which led to them not being considered for this study, are 

highlighted in this subsection. 

Sequencing rules 

Some flowshop problems are solved using sequencing rules. Sequencing rules are used due to 

their simplicity of implementation. The sequencing rules can also be applied as a method for 

generating an initial solution, which gets improved on by the use of global search methods such 

as GA. Some disadvantages linked to the sequencing rules are that the quality of the solution 

cannot be guaranteed and that it is not easy to determine how far the solution is from optimal 

(Tyagi et al., 2013). The sequencing rules that are often used include: 

 First-in first-out (FIFO) – jobs are sequenced in the order that they arrived at the 

machine. 
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 Shortest processing time (SPT) – job sequences are determined based on processing 

times, and as the name states the job with the shortest processing time is scheduled 

first. 

 Longest processing time (LPT) – job sequences are determined based on processing 

times, and jobs with the longest processing times are scheduled first. 

 Earliest due date (EDD) – jobs are sequenced in the order that they are due for delivery. 

Branch and bound 

The branch and bound algorithm is widely used in classic flowshop scheduling as it searches the 

entire space for the best solution. The size of the search space results in n! possible schedules. 

The n! combinations can be generated on an enumeration tree, however, this can be inefficient 

(Chen, 2006) and may lead to non-optimal solutions due to the necessity to truncate the 

search. The branch and bound algorithm is often used for simple three machine environments. 

Yet, with the rising interest in applying the branch and bound algorithm in reentrant shops, 

researchers such as Rios-Mercado and Bard (1999) and Chen (2006) have explored the 

possibility of applying the algorithm to a   job,   machine environment. Choi et al. (2009) also 

used the branch and bound algorithm for a two-stage reentrant hybrid flowshop for minimizing 

makespan under the maximum allowable due dates.  

Tabu search 

As described by Pinedo (2016), the Tabu search algorithm is an improvement type algorithm, 

meaning that it starts with a schedule (which can be generated arbitrarily) and work on 

manipulating and improving it until the best solution is achieved. This search algorithm can 

simply be combined with other methods, especially for creating the initial schedule. Eren and 

Güner (2007) used the EDD sequencing rule to generate the initial sequence. Chen et al. (2007) 

opted for a hybridized method, where they used a combination of a sequencing rule with a 

heuristic to generate the initial solution and then applied the Tabu search to improve the 

solution. Hybridization of the Tabu search ensures that the best solution doesn’t get trapped in 
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the local minima. The Tabu search appears to perform best with the hybrid approach for initial 

schedule generation (Ruiz and Maroto, 2005). A successful selection of an initialization method 

requires prior knowledge of how the problem behaves. 

At this point, it may be necessary to summarise what has been done in this chapter and 

consider what follows. The general flowshop scheduling problem together with its variants was 

reviewed. Further to that, reentrance and the deterioration factor were discussed to evaluate 

research progress made till date in this field. The review of the various types of environments 

studied uncovered the vast number of solution methods available in literature. The 

functionality and application of some of the solution methods was, thus, discussed. The next 

chapter focuses on developing a model for solving the problem of product reentrance and 

deteriorating jobs and the selection of solution methods to be used. 
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This chapter focuses on model design based on advancements already made in this area of 

study by other researchers. Two models, one based on reentrance, and the other based on 

deteriorating jobs, will be presented. For the scheduling problem being considered, the 

assumptions made are stated, and the linear programming model is formulated. The last 

section of the chapter presents the solution algorithms for solving the problem of interest.  

 

3.1. Model eyeballing 

 

In this section, two models that are foundational to the problem of deteriorating jobs in a 

reentrant flowshop are presented. The notation to be used throughout the section is 

introduced first, followed by the two models. 

Notation: 

Symbol Description 

  job index set;   {         }, where   is the number of jobs 

  machine index set;   {         }, where   is the number of 

machines 

   

 

number of levels of job  ;   {         }, where   is the number of 

levels 

  position of job   in the sequence 

    1, if job   is scheduled in the  th position at each level; 0 otherwise 

     the starting time of a job scheduled in the  th position of level   on 

machine   

     the deterioration rate of a job scheduled in the  th position of level   on 

machine   

   the deterioration rate of a job   

      the normal processing time of the operation of job   on machine   at level   

      the actual processing time of the operation of job   on machine   at level  , 

where                       

      completion time of the last job in the sequence 

    completion time of job   
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3.1.1. Reentrant flowshop model 
 

Pan and Chen (2003) were the first to formulate models for the reentrant permutation 

flowshop (RPFS); which they had derived from models previously presented by other 

researchers focused on modelling permutation flowshops. Computations performed proved 

that the formulation derived from Wilson’s model performs well with the modified heuristics. 

The modified Wilson’s model is presented as follows: 

Minimize               (1) 

Subject to   ∑    
 
                              (2) 

    ∑                          
        (3) 

                 (4) 

                                   ∑         
 
                           (5) 

              ∑    
 
                                             (6) 

              ∑    
 
     

                                  (7) 

              ∑    
 
     

                                            (8) 

              ∑    
 
     

                                                 (9) 

              ∑    
 
                                              (10) 

              ∑    
 
                                  (11) 

              ∑    
 
     

                                            {     } (12) 

                ∑    
 
                                          (13) 

          ∑    
 
                 (14) 
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                                          (15) 

Equation (1) is the objective function. Constraints (2) and (3) describe the decision variables. 

They ensure that every job is in only one position and that each position has only one job 

assigned to it. Constraint (4) describes the starting time of the first operation scheduled at the 

first level of the first machine. Constraints (5) and (11) are expressions for the starting time of 

any job, on any machine at the first operation level, while (6) – (10), (12) and (13) enforce the 

precedence relations. Constraint (14) defines      to be the finish time of the last job 

processed on    (the last machine) at the last level. Constraint (15) enforces the non-negativity 

and binary restrictions. 

 

3.1.2. Deterioration model 
 

Two types of deterioration models were studied by Hindi and Mhlanga (2001); simple linear 

deterioration and jobs with basic processing time.  Simple linear deterioration applies to 

problems where all jobs are subject to a deterioration rate and the processing time of a specific 

job   is calculated by        . The basic processing time model is aimed at problems with jobs 

that are available from time    . All jobs have a job-specific processing time. However, the 

total processing time is influenced by the delay a job incurs while it waits to be processed and, 

thus, the total processing time grows linearly with the delay. The focus of this study is on the 

model for jobs with basic processing time. Only the deterioration part of the model is being 

considered due to its similarity to other flowshop problems. The model for a single machine is 

presented as follows: 

                      (16) 

   ∑   
 
               (17) 

   (    )                 (18) 

   ∑    ∏       
 
     

 
            (19) 
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     ∑    
 
   ∏       

 
             (20) 

Constraint (16) defines the total processing time of a deteriorating job. Constraint (17) is the 

expression of the completion time of a specific job   for index set   {       }. Constraints 

(18) and (19) are expressions for the completion time of job  , with a deterioration rate. 

Constraint (20) defines     , the completion time of the last job processed on the machine. 

 

3.2. Reentrant flowshop with deteriorating jobs model 

 

To model the problem of the reentrant flowshop with deteriorating jobs, a linear programming 

model that incorporates the models presented earlier is formulated.  

The assumptions made to solve the problem are as follows: 

- All jobs are available from time zero (batch processing) 

- Each machine can only process a single job at a time 

- Jobs visit every machine in the same order           (permutation) 

- No machine breakdowns 

- All job processing times are known 

- There is unlimited storage space for jobs waiting to be processed 

- Pre-emption is not allowed 

- Machine set-up times are included in the processing time 

 

The model presented in this section considers a flowshop scheduling problem in which the jobs 

are both reentrant and the processing time deteriorates as a result of the delay before the 

commencement of processing of the jobs. This problem, hence, has the feature of the two 

models presented earlier in this chapter.  

 

 



  

35 
 

The linear programming model for the reentrant flowshop with deteriorating jobs is as follows:  

Minimize               (21) 

Subject to   ∑    
 
                              (22) 

    ∑                         
 
        (23) 

                 (24) 

                                        ∑        
 
                           (25) 

                   ∑    
 
                                            (26) 

                   ∑    
 
                                                    (27) 

                   ∑    
 
                                      (28) 

                   ∑    
 
                                             (29) 

                   ∑    
 
                                   (30) 

                     ∑    
 
                                          (31) 

                  ∑    
 
                                             {     } (32) 

                   ∑    
 
                                          (33) 

     ∑     
 
   ∏       

 
             (34) 

                                              

                                          (35) 

Equation (21) is the objective function. Constraints (22) and (23) describe the decision variables 

for the problem ensuring that each job is scheduled in only a single position and that a position 

has only a single job allocated to it, while constraint (24) describes the starting time of the first 

operation scheduled at the first level of the first machine. Constraints (25) and (30) define the 

starting time of any job, on any machine at the first operation level. Constraints (26) to (29) and 
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(31) to (33) describe the precedence of jobs in the process. Constraint (34) is the expression for 

calculating the makespan of the system, allowing for deterioration of processing time, while 

constraint (35) enforces the non-negativity and binary restrictions. 

3.3. Solution algorithms 

Various solution methods for scheduling flowshop problems were presented in the previous 

chapter. The following techniques, CDS, NEH, and GA, were selected for scheduling the 

flowshop problem with reentrance and deteriorating jobs. These methods have been proven to 

work well with large problem sizes and are relatively adaptable to various types of scheduling 

problems. The NEH was specifically selected to test submissions made by Ruiz and Maroto 

(2005) where they demonstrated that the NEH out-performs other algorithms and heuristics for 

scheduling problems, and by Baskar (2016) which indicated that even the simplest versions of 

the NEH algorithm are capable of arriving at an optimal solution. 

The iconic CDS, NEH, and GA, with the incorporation of reentrance and deterioration, are 

presented as pseudo-codes 1, 2, and 3, respectively. The pseudo-codes are modifications to the 

original algorithms, made to accommodate reentrance and the deterioration of jobs.  

Pseudo-code 1: CDS algorithm 

//Create an aggregate processing time for each job for each machine across all levels 
For every job across all levels          

    
  ∑     

 
    

EndFor  
//solve     surrogate two machine problems 
Set makespan to a large number 
For   varying from   to     
 For every job,  , on two pseudo machines,   

  and   
  

Create two surrogate processing times as follows 
     

  ∑     
  

    as processing time of job   on   
  

    
  ∑     

  
          as processing time of job   on   

  

 EndFor 
 Solve sequencing problem for   

  and   
  using Johnson’s Algorithm 

 If makespan from sequence is better 
Update makespan 
Update optimum sequence 

 EndIf 
EndFor 
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Johnson’s Algorithm 
Create two sets,   and    such that 
 If     

  <      
  allocate job to set   

 ElseIf     
   <      

  allocate job to set    

 Else allocate to either set  
 EndIf 
Sort set   in non-decreasing order of     

  

Sort set    in non-increasing order of     
  

Append set    to set   

 

Pseudo-code 2: NEH algorithm 

For each job,  , 

Determine the work content,   
 , from   

  ∑ ∑     
 
   

 
    

EndFor 
Sort jobs into set   in decreasing order of work content,   

 ,  

Take the first two jobs out of set   and form two partial sequences with them 
Retain the partial sequence with the minimum makespan of the two 
While there exists an unscheduled job in set   
 Remove the next job (with largest work content) 
Form a set of new partial sequences by inserting the job in all possible positions in the currently retained 
partial sequence 
 Retain one of the new partial sequence which has minimum makespan 
EndWhile 

 

Pseudo-code 3: GA 

Set current iteration to 1  
Generate initial population 
Evaluate fitness and rank chromosomes based on makespan 
Store the best chromosome 
While current iteration is less than the required iterations 

Evaluate fitness and rank chromosomes based on makespan 
Update the best chromosome found 
Retain top performers and discard the remaining chromosomes 
Cross breed top performers to create new chromosomes make up population 
Mutate the top chromosomes 
Increment current iteration 

EndWhile 
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The various components of GA, including the crossover and mutation operators that were 

modified to incorporate reentrance and deterioration, are discussed next. 

Chromosome representation 

A chromosome representation is designed as a vector of the same length as the number of jobs 

to be sequenced. It is created and populated with a random number between 1 and the total 

number of jobs. The representation is in such a way as to guarantee that every job is placed in 

exactly one position only in the vector. 

Crossover Implementation 

The crossover algorithm makes use of a logic termed herein as autogamy, meaning a 

chromosome is crossed with itself. The advantages of this procedure are twofold. The first is 

that it ensures that all jobs are placed precisely in one position after crossover. This is 

important because it is easy for some jobs to be missing while others are present in more than 

a single position after the crossover process. The second advantage is that it preserves some 

partial sequences of schedules that have performed well so that the benefit of promising 

sequences is not lost while trying to explore other areas during the search. The procedure 

randomly selects, through a probability mechanism, a breeding chromosome. It then randomly 

generates the crossover point. From the crossover point, two partial sequences (the head and 

the tail) are created. The tail partial sequence is swapped to the head position as a block while 

the head sequence is also swapped to the tail position as a block. This way, the promising 

partial sequences are preserved with minimum disturbance. If further mix in the sequence is 

desired, more than one crossover procedures may be implemented in a single reproduction 

process. How the partial sequences are repositioned may also alter the new sequences formed. 

Mutation implementation 

In implementing the mutation process, there is also the need to ensure that all jobs are 

sequenced in exactly one position. To do this, a swap procedure is implemented. Two random 

positions are generated within the sequence, and the jobs in these two positions are swapped. 

This procedure is repeated for the number of mutations required per chromosome. 



  

39 
 

It is apt at this point to recap what has been discussed in this chapter and provide a view of 

what comes next. This chapter focused on modelling the problem and was divided into three 

subsections. The first subsection concentrated on the review of models already presented in 

literature for reentrant flowshop and for jobs with deteriorating processing times. The second 

subsection was dedicated to developing a model which integrates the reentrance model and 

that of jobs with deteriorating schedules. The last subsection presented the modified 

algorithms as solution models for the problem of interest. The next chapter will address the 

design of model solution procedure and implementing same, i.e. generation of test data, 

conducting computational experiments and reporting on findings. 
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The model solution is composed of the experimental design, discussion of results and statistical 

analysis of model output. In the experimental design section, data generation methods 

previously used by researchers in the field of scheduling are evaluated to devise an approach 

for the problem of interest. The procedure for data generation used and the motivation for 

selecting it is explained. The results of the experiment on the three solution methods, CDS, 

NEH, and GA, are discussed. Since the data used for experimentation was randomly generated, 

the results are statistically analysed to determine the best performing solution method and the 

significance of the difference in the values achieved by the three algorithms.  

 

4.1. Experimental design 
 

Experimental design involves a discussion on the generation of data and the design of the 

experiments. Under data generation, the method of generating processing times and the rate 

of deterioration/ penalty to experiment with are discussed. The classification of test instances 

and implementation of the experiments are discussed under the design of experiments. 

4.1.1. Data generation 
 

There are various ways in which data for testing can be generated. It can either be done 

randomly, in a way that the test instances are similar to real manufacturing (Choi and Kim, 

2007) or by benchmarking based on previous researchers’ studies. Reeves (1995), Ruiz and 

Maroto (2005) and Baskar (2016), have all used Taillard’s benchmark instances in their studies. 

Another option of data generation is the use of data for which an optimal solution is known. 

Chen (2006) used a set of data with known optimal solutions to compare the new methods 

proposed with those previously tested by other researchers. With no study known to date 

which integrates the reentrant problem with deteriorating jobs, the approach of the use of data 

with known optimal solutions was eliminated. Alternative methods for data generation were 

thus considered for this study. 
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Data generation for processing times 

In generating data for experimentation, the practical number of machines and operational 

levels to study in relation to the type of manufacturing environment had to be considered. Test 

data sizes and the method of data generation used by Chen et al. (2007) for minimizing 

makespan in reentrant flowshops were adopted. The method involves the use of a wide range 

of data sizes. It tackles scheduling of jobs in manufacturing facilities with as few as two 

operational levels to as much as ten operational levels. Widening the test data range allows for 

observations to be made on the effect that manufacturing facility configurations have on the 

makespan.  

Parameters used in the experimental environment are described as          ; where 

  represents the number of jobs,   the number of machines and   the number of operational 

levels. The test data is divided into three categories: small, medium, and large problem sizes. 

The small problems are composed of eight matrix sizes:      ,      ,      ,      ,      , 

     ,      , and      . Medium problems also consist of eight matrix sizes:       ,      , 

     ,      ,      ,      ,      , and        . The large problems include five matrix 

sizes:         ,        ,        ,        , and        . Data was generated randomly 

as no benchmark data was available. Two types of data sets were generated. The first set of 

processing times was generated in the range [1, 100] on all machines since most benchmark 

data is generated within this range (Chen et al., 2007). The set was then termed the same data 

range (SDR) set. This is because in this first approach to data generation, every machine 

involved in the scheduling process has a possible lower bound of 1 time unit and an upper 

bound of 100 time units. This is unlike the second approach that was termed the unique data 

range (UDR) in which each of the machines has different lower and upper bounds of data range, 

but all these bounds were between zero and hundred. The second set was generated by first 

randomly setting unique upper and lower bounds for the processing times of each machine in 

within the range [1, 100]. Every data point for such machine is then generated within its own 

randomly generated lower and upper bounds.  An example of the upper bound (UB) and the 

lower bound (LB) setting for a       matrix is illustrated in Table 2. 
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Table 2: Example of bounds setting for a 3x3x3 matrix 

Machine 1 Machine 2 Machine 3 

UB LB UB LB UB LB 

71 14 88 72 59 70 

 

These unique data ranges were then applied to all jobs on all operational levels and, hence, 

called the unique data range (UDR) set. Table 3 shows an example of an instance full set of a 

      processing time matrix. 

Table 3: Example of processing times for a 3x3x3 matrix 

Levels → 1 2 3 

Machines→ 
Jobs↓ 1 2 3 1 2 3 1 2 3 

1 63 84 66 22 86 65 21 75 62 

2 33 73 63 18 75 66 31 81 61 

3 67 80 70 57 88 70 35 84 70 

 

A set of five instances of such processing time matrices was generated for each of the data set 

types (i.e. SDR and UDR) for each of the specified matrix dimensions,          , mentioned in 

each of the categories of problem sizes. The unique processing time ranges per machine were 

introduced to mimic typical manufacturing. In manufacturing, machines often have specific 

processing times based on their function.  

Data generation for penalty matrices 

Penalty matrices were generated to evaluate the effect of deterioration of processing times. 

The matrices were generated randomly as no benchmark data for a similar problem is available. 

Hindi and Mhlanga (2001), Jafari et al. (2017), Wang et al. (2006), Mazdeh et al. (2010), and 

Wang et al. (2011) all used job deterioration rates in the range [0, 1]. Jobs in a manufacturing 

facility may deteriorate at various rates. Thus Wang et al. (2011), Jafari et al. (2017), and 

Mazdeh et al. (2010) incorporated this in their studies by subjecting jobs to different 

deterioration rates within a selected range.  
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In this study of scheduling a reentrant flowshop with deteriorating jobs, a range of [0, 0.1] was 

used. This range was selected to test the effect of a rate that was considered as small by Ng et 

al. (2010) in their study of a two-machine flowshop problem with deteriorating jobs. Four delay 

scenarios were created within this range (see Table 4). 

Table 4: Scenarios for delay penalty 

Scenario # Scenario Details 

1 No penalty To observe the effect of job reentrance 

system without deterioration (delay 

penalty). 

2 Penalty of 0.1 only on the first 

machine in the first operational 

level for jobs not scheduled first   

To determine the effect of uniformly 

penalising delay only on the first machine. 

3 0.1 penalty on the first machine 

and 0.05 penalty for all other jobs 

not scheduled first   

To determine the effect of uniformly 

penalising all delays on all machines, with 

the delay on the first machine incurring a 

higher penalty 

4 Random penalty in the range  

[0.01, 0.1] on all jobs not scheduled 

first 

To determine the effect of random 

deterioration rates on all machines. 

 

4.1.2. Design of experiment 
 

Development of test instances 

A test instance refers to a computation conducted on a particular processing time matrix. 

Computations were run for all four penalty scenarios on CDS, NEH and GA algorithms for the 

three test categories (i.e. small, medium and large problems). Unlike the CDS and NEH 

heuristics, the GA algorithm requires more information in addition to the processing time and 

deterioration rate. The additional GA parameters are discussed next. 
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GA parameter setting  

Parameters required for the execution of the GA include population size, mutation rate, 

retention rate and the number of iterations (stopping criteria). The same mutation and 

retention rates were used for all problem sizes. In this section, a value of 0.5 was used for the 

retention and mutation rate.  

Table 5: Parameter setting for GA 

Problem size Matrix size Population size Number of iterations 

Small 3x3x3 4 10 

3x3x4 4 10 

3x4x2 5 10 

4x3x3 4 10 

4x4x3 4 10 

4x5x3 10 30 

4x4x4 8 30 

4x5x4 10 30 

Medium 6x6x2 100 30 

6x8x5 150 30 

6x9x3 200 30 

7x7x5 150 30 

7x8x4 150 30 

8x8x3 200 60 

9x9x2 300 150 

10x10x2 500 150 

Large 12x12x10 600 250 

15x15x5 800 350 

20x20x4 1000 700 

25x25x8 1200 700 

30x30x5 1500 700 
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The sensitivity of the solution to this rate is presented in a subsequent section. The population 

sizes and the number of iterations were varied for the different matrix sizes. The population 

sizes were chosen in relation to the number of machines for the matrix. For the small problems, 

fewer population sizes were used. Problems with fewer machines tend to repeat chromosomes 

due to the limited number of possible combinations. Limiting the population size to a small 

number eliminates this challenge. The number of iterations for each matrix size was selected if 

the minimum makespan values appear always to converge (or stabilise) within the chosen 

number of runs. Detailed parameters used for each problem size are presented in Table 5. 

GA parameter variation 

The influence of input parameters on the performance of the GA algorithm was studied by 

conducting simulations with parameter changes for mutation rate and population size. The 

effect of the mutation rate was evaluated while keeping all other parameters (i.e. population 

size, retention rate and the number of iterations) constant. Likewise, the effect of varying the 

population was evaluated while keeping all other parameters constant. In addition to testing a 

mutation rate of 0.5; rates of 0.3 and 0.7 were applied. The selected rates are a chosen to be 50 

percent higher and lower than the initially selected mutation rate. The population sizes were 

also varied for selected matrix sizes. The effects of changes in this parameter were studied with 

half and then with a quarter of the initial population to maintain uniformity to understand how 

this might affect the speed of convergence of the algorithm and the quality of solution 

obtained. The parameter variation was only performed on the large problem sizes for scenarios 

3 and 4 as these are expected to be the most significant data sets that would be influenced by 

these changes as the smaller matrices all return identical results in identical time for all 

previous experiments.  

Implementation  

The three algorithms, CDS, NEH, and GA, were coded in MATLAB R2019a, and all computational 

experiments were performed with these codes. The experiment was run on all categories of 

test instances. For each category, computations for makespan, subject to varying degrees of 

penalty described in Table 4 were performed using the three algorithms.  
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During experimentation, the minimum makespan values achieved and their corresponding 

computation times were recorded. Graphs for the comparison of the minimum makespan 

values achieved by the three solution methods were plotted in MATLAB. Additionally, 

computations were performed for GA, with varied test parameters. The performance indicators 

evaluated for the parameter variations are the minimum makespan values achieved, their 

corresponding computational times and the speed of convergence of the solution. Graphs of 

the makespan values achieved for varied test parameters were plotted. Lastly, graphs 

demonstrating how the minimum makespan converges with the number of iterations were 

plotted for GA.  

The makespan output analysis and statistical testing were performed in MS Excel. The output 

analysis was conducted by applying two measures; the count of the number of times that any 

given algorithm returned the lowest makespan value and the average proportion above the 

minimum makespan when an algorithm did not return the lowest makespan value. The 

procedure followed in executing the counting exercise involved several steps. It was mentioned 

earlier that  data instances were generated for each type of data range (SDR and UDR) for a 

matrix dimension (         ). The five makespan values returned for each matrix size per data 

range were evaluated. A value of one was allocated for the test instances that returned the 

lowest makespan value, and zero otherwise. The count of instances is, however, not mutually 

exclusive per test algorithm; i.e. a test instance of one algorithm is counted for as long as it 

returned the lowest value, regardless of another algorithm being counted for the same test 

instance if it also returns the same value.  

The procedure for determining the average value above the minimum makespan was also 

stepwise. The minimum makespan value of the three algorithms for each of the matrix sizes 

and data range was determined. This was then termed the global minimum. The average of the 

five instances of makespan values was calculated for each matrix size within the data range for 

the three algorithms. The proportional value above the global minimum was then calculated by 

subtracting the global minimum from the average makespan for the instance and then dividing 

by the global minimum. 
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Statistical testing was applied to all instances of makespan values for each of the matrix sizes. 

The t-test was selected as the test of choice due to the random nature of the data and the small 

sample sizes being evaluated. Two sets of t-tests were performed; one for the count of 

minimum makespan values and the other one for the proportion of values above the global 

minimum makespan.  The paired t-test for sample means was executed for the counts of 

minimum makespan and the proportion above minimum makespan. 

 

4.2. Results 
 

The presentation of the results is divided into three parts; minimum makespan, average 

computation times and the effects of the GA parameter variation. The minimum makespan and 

computational time results compare values achieved under the different test instances. The GA 

parameter variation part focuses on the results for computations conducted for the various 

mutation rates and population sizes. The influence of the varied test parameters on the 

makespan values attained and their corresponding computation times are evaluated. 

4.2.2. Minimum makespan attainment 
 

The makespan values obtained for all test categories using the different solution algorithms 

were plotted against each other to determine the best performing method as test conditions 

change. Figure 4 to Figure 8 are plots for the minimum makespan values of penalty scenario 2 

(i.e. deterioration only on the first machine). Plots for other penalty scenarios are documented in 

Annexure A. The discussion of the makespan values achieved is sub-sectioned based on the 

various problem sizes. 

Small problems 

Since five instances were generated for each matrix dimension, the minimum makespan for set 

of data for each matrix was determined. The three algorithms returned similar minimum 

makespan values for the majority of the small problem sizes. Penalty scenario 3 (i.e. uniform 
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deterioration on all machines, with the first machine incurring the highest penalty) and scenario 

4 (i.e. random deterioration on all machines) resulted in significant increase in the minimum 

makespan values for every given problem size. The increase in minimum makespan values is 

attributed to the fact that all the machines are subjected to deterioration. The NEH and GA 

performed better than CDS as test conditions changed, i.e. increasing the number of operations 

and subjecting the processing times to deterioration. 

Medium problems 

NEH and GA returned the lowest makespan values for the majority of the test instances of the 

medium problem sizes as opposed to CDS. Subjecting the system to a penalty on all operational 

levels, with the CDS algorithm returns makespan values that are up to twice as those achieved 

by the other two algorithms.  

Large problems 

The CDS algorithm could not find the minimum makespan values for all test instances of the 

large problem sizes, (i.e. no deterioration). Introducing penalty on all operational levels (i.e. 

scenarios 3 and 4) for the large problem sizes widens the gap between the makespan values 

achieved by CDS and those by NEH and GA even further as compared to the small and medium 

problem sizes. Generally, the NEH and GA solution methods returned the lowest makespan 

values when compared to CDS as test conditions changed. 

The NEH and GA algorithms appear to successfully return minimum makespan values for 

various problem sizes and penalty scenarios. GA, being a meta-heuristic method, strives to 

improve the solution with each iteration. The NEH’s functionality, insertion, also ensures that 

only the best solutions are retained. The computation times required to reach the minimum 

makespan values for the tested solution methods are addressed next.
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Figure 4: Minimum makespan plots for small problems with same data range for scenario 2 

  
Figure 5: Minimum makespan plots for small problems with unique data range for scenario 2 
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Figure 6: Minimum makespan plots for medium problems with same data range for scenario 2 

  
Figure 7: Minimum makespan plots for medium problems with unique data range for scenario 2 
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Same data range 

 

Unique data range 

 
Figure 8: Minimum makespan plots for large problems with scenario 2 
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4.2.3. Average computation times 
 

The average computation times, indicating the minimum and maximum times attained by each 

solution method, are presented in Table 6. Detailed computation times for all penalty scenarios 

are reported in Annexure C. The CDS algorithm had the shortest computation times, followed 

by NEH. The computation times increased slightly from the small problem size to the large 

problems for both the CDS and NEH algorithms for all penalty scenarios. The GA algorithm had 

the longest computation times for the large problem size. The time complexity for GA is 

influenced by the large population sizes and the large number of iterations related to the 

problem sizes.  

Table 6: Average computation times 

Penalty 
type 

Solution 
method 

Small problems Medium problems Large problems 

Min 
computation 
time 

Max 
computation 
time 

Min 
computation 
time 

Max 
computation 
time 

Min 
computation 
time 

Max 
computation 
time 

Scenario 1 

CDS 0.0003 0.0393 0.0005 0.1402 0.0043 0.1017 

NEH 0.0002 0.0153 0.0006 0.0075 0.0157 0.5409 

GA 0.0252 0.2008 0.0993 0.8794 38 872 

Scenario 2 

CDS 0.0003 0.0890 0.0005 0.0650 0.0044 0.0993 

NEH 0.0003 0.0282 0.0009 0.0234 0.0166 0.2481 

GA 0.0251 0.3108 0.1589 7 42 915 

Scenario 3 

CDS 0.0003 0.0789 0.0005 0.0495 0.0051 0.0828 

NEH 0.0003 0.0558 0.0008 0.0995 0.0178 0.2942 

GA 0.0242 0.1700 0.1348 6 40 970 

Scenario 4 

CDS 0.0003 0.0468 0.0005 0.1554 0.0051 0.1385 

NEH 0.0003 0.0073 0.0007 0.0059 0.0174 0.3294 

GA 0.0313 0.1935 0.1735 7 46 874 

 

4.2.4. GA parameter variation 
 

The parameter variation aims to demonstrate the influence of varying the GA test parameters 

on the minimum makespan and the corresponding computation times to find the solutions. The 

convergence of the solution to a minimum makespan value is evaluated to determine if 
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changing the test parameters can result in a better solution within a reasonable or shorter 

computation time. The minimum makespan results are presented graphically, while the 

computation times are tabulated. Plots for the rate of convergence are also presented. 

Influence of mutation rate (mutrate)  

The initial mutation rate used was 0.5, while 0.3 and 0.7 were the selected rates to use in 

evaluating the reaction of the algorithm to changes in mutation rate. In some cases for scenario 

3 (        for SDR set and         for UDR set), the same makespan values were recorded 

for all mutation rates (see Figure 9). The observation made for scenario 4 in Figure 10 is that the 

differences in makespan values among the various mutation rates become apparent as the 

number of machines and levels increase. Overall, the mutation rate of 0.3 resulted in slightly 

lower makespan values than the other two mutation rates. The computation times for the 

mutation rate of 0.3 are, however, in the same range as that for the other mutation rates used. 

The detailed computation times are presented in Table 10. Using a mutation rate of 0.3 seems 

to sometime achieve some marginally lower makespan value at about the same computation 

time, but such is seems not very significant. 
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Same data range 

 

Unique data range 

 

Figure 9: Minimum makespan of various mutation rates with scenario 3  
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Same data range 

 
 

Unique data range 

 

Figure 10: Minimum makespan for various mutation rates with scenario 4  
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Table 7: Average computation times for various mutation rates 

Problem 
size  

Scenario 3 Scenario 4 

Same data range Unique data range Same data range Unique data range 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

12x12x10 40.2 40.4 41.6 40.7 38.9 42.1 46.6 45.0 38.8 38.1 44.9 38.4 

15x15x5 68.5 68.8 39.6 41.1 52.1 48.9 81.8 80.7 36.8 37.0 36.9 37.2 

20x20x4 286.7 233.1 174.0 174.5 166.8 159.7 255.6 235.5 165.0 163.1 162.8 162.5 

25x25x8 750.8 941.2 615.4 592.0 709.4 517.7 798.6 761.7 550.8 544.7 525.1 581.5 

30x30x5 970.2 862.9 828.4 820.2 812.0 902.2 867.2 874.3 834.2 761.3 814.5 810.8 
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Influence of population size 

The initial population sizes differed for the various problem sizes experimented on, and thus 

the reduced population sizes were also different. The reduction of the population size for a 

genetic algorithm implies that there are fewer data points to operate on. The          matrix 

had slight differences in the makespan values attained for the different population sizes for 

scenario 3. The other matrix sizes, also subject to the same penalty, however, did not exhibit 

any significant difference in the makespan values achieved. Some of the instances of the bigger 

matrices (i.e.        ,         and        ) returned the same makespan values for 

penalty scenario 3. It appears that randomising the penalty (i.e. scenario 4) also plays a role in 

the minimum makespan value attained. Slight differences in the makespan values were noticed 

for the bigger matrix sizes. Table 8 lists the average computation times, and as would be 

expected, there is a considerable reduction in the computation times for the smaller population 

sizes. 
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Same data range 

 

Unique data range 

 

Figure 11: Minimum makespan for various population sizes with scenario 3 
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Same data range 

 

Unique data range 

 

Figure 12: Minimum makespan of various population sizes with scenario 4  
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Table 8: Average computation times for various population sizes 

 Problem 
size 

Scenario 3  Scenario 4  

Same data range Unique data range Same data range Unique data range 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

12x12x10 40.2 40.4 19.2 18.2 9.4 9.4 46.6 45.0 17.6 18.2 8.6 8.6 

15x15x5 68.5 68.8 16.9 17.9 8.5 8.4 81.8 80.7 16.7 17.0 7.7 7.8 

20x20x4 286.7 233.1 79.8 78.2 34.8 33.9 255.6 235.5 72.8 73.0 34.8 34.0 

25x25x8 750.8 941.2 282.5 280.8 122.9 122.1 798.6 761.7 248.2 257.2 147.6 135.2 

30x30x5 970.2 862.9 177.7 182.3 361.2 346.4 867.2 874.3 360.9 351.9 175.1 165.9 

 

Solution convergence  

Scenario 1  

 
Number of iterations 

Scenario 3 

 
Number of iterations 

Scenario 4  

 
Number of iterations 

Figure 13: GA solution convergence for a 15x15x5 problem size with various penalty scenarios 
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Mutation rate = 0.5 

 
Number of iterations 

 

Mutation rate = 0.3 

 
Number of iterations 

Mutation rate = 0.7 

 
Number of iterations 

Figure 14: GA solution convergence for a 25x25x8 matrix for various mutation rates with scenario 3  
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Population size = 1500 

 
Number of iterations 

 

Population size = 750 

 
Number of iterations 

 

Population size = 375 

 
Number of iterations 

 

Figure 15: GA solution convergence for a 30x30x5 matrix for various population sizes with scenario 4  
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To determine the effect of the different parameters on the convergence of the minimum 

makespan, graphs for the minimum makespan values were plotted. The parameters of interest, 

in this case, are penalty, mutation rate and population size. Figure 13 to Figure 15, together with 

figures in Annexure D, are used to demonstrate this effect. 

The solution converged to a minimum value quicker for scenario 1 as compared to scenarios 3 

and 4; i.e. subjecting the scheduling problem to a penalty lengthens the time to reach the 

lowest makespan value. The time to converge for the two deterioration penalties (scenarios 3 

and 4) are similar.  

The mutation rate of 0.3 led to a faster convergence for scenario 3 than scenario 4, and the 

opposite was observed for the mutation rates of 0.5 and 0.7. No definite trend can be observed 

on how the various mutation rates affect the convergence and stability of the minimum 

makespan value. 

Figure 15 represents convergence in relation to the reduction of the population of the initial 

computation. A reduction of the population size by half does not seem to lead to a significant 

difference in the time taken for the model to converge, but reducing it to a quarter of the initial 

population does. It should be noted, however, that such convergence seems to sacrifice the 

quality of solution in a number of instances as the minimum makespan value returned is higher 

than what was initially observed when the original population size was used.  
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4.3. Statistical analysis  
 

Statistical analysis is divided into two sections, makespan output analysis and statistical test of 

significance of differences. The makespan output analysis was conducted for computation of 

the three algorithms and also for GA with varied parameters. 

4.3.2. Makespan output analysis 
 

The total number of counts of when a solution method results in the lowest makespan value for 

the various test instances is presented in Table 9. The asterisks beside the counts indicate the 

algorithm(s) with the most number of lowest makespan for each test category. It should be 

noted that the maximum count obtainable for small and medium-sized problems is 40, while 

for large-sized problems it is 25. Results showing the counts per matrix size are documented in 

Annexure B. 

Table 9: Count of minimum makespan attainment 

  
Problem 

size  

Same data range (SDR) Unique data range (UDR) 

CDS  NEH GA CDS  NEH GA 

Scenario 1  

Small 14 36 39* 8 34 35* 

Medium 0 20 34* 1 11 39* 

Large 0 15* 10 0 19* 7 

Scenario 2 

Small 11 35* 29 5 32* 30 

Medium 0 16 32* 1 16 33* 

Large 0 4 21* 0 13* 13* 

Scenario 3 

Small 0 33* 10 0 40* 3 

Medium 0 27* 13 0 32* 9 

Large 0 8 17* 0 18* 7 

Scenario 4 

Small 0 33* 8 0 33* 8 

Medium 0 10 30* 0 23* 17 

Large 0 10 15* 0 15* 10 

 

The CDS algorithm reported several test instances that had the lowest makespan values for the 

small problems of scenario 1 (i.e. no deterioration) and scenario 2 (i.e. deterioration only on the 

first machine) for the SDR data set. The CDS algorithm also returned a few instances with the 
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lowest makespan values for the small and medium problems of scenarios 1 and 2 for the UDR 

data set. Overall, the NEH and GA algorithms returned the most number of the lowest 

makespan values. For the SDR data set, GA returned more instances of the lowest makespan 

values than NEH. On the other hand, the NEH algorithm returned the most instances for the 

UDR data set, while dominating scenario 3 (i.e. uniform deterioration on all machines, with the 

first machine incurring the highest penalty) and scenario 4 (i.e. random deterioration on all 

machines). 

Table 10: Average proportion above global minimum makespan 

  
Problem 

size  

Same data range (SDR) Unique data range (UDR) 

CDS  NEH GA CDS  NEH GA 

Scenario 1  

Small 0.157 0.114 0.113* 0.116 0.089* 0.089* 

Medium 0.121 0.073 0.067* 0.038 0.023 0.019* 

Large 0.076 0.021* 0.024 0.036 0.010* 0.011 

Scenario 2 

Small 0.159 0.119 0.117* 0.122 0.097* 0.097* 

Medium 0.124 0.076 0.068* 0.041 0.028 0.024* 

Large 0.109 0.058 0.031* 0.077 0.042 0.029* 

Scenario 3 

Small 0.893 0.178* 0.269 0.738 0.088* 0.406 

Medium 2.189 0.070* 0.085 2.124 0.055* 0.075 

Large 6264 1.029* 1.605 3264 0.050* 0.069 

Scenario 4 

Small 1.209 0.184* 0.247 1.013 0.105* 0.174 

Medium 4.097 0.125* 0.317 4.320 0.093* 0.109 

Large 99723 0.195 0.100* 100254 0.197 0.182* 

 

The proportional values above the global minimum for the CDS algorithm got significantly large 

for the medium and large problem sizes of scenarios 3 and 4 as compared to scenarios 1 and 2 

for both the SDR and UDR data sets. The NEH and GA returned the lowest proportional values, 

for the same number of instances of the SDR data set. The NEH, however, had the lowest 

proportional values, mostly for scenarios 3 and 4. For the UDR data set, the NEH returned the 

most instances of the lowest proportional values. As with the SDR data set, NEH dominated 

scenarios 3 and 4. 

As the analysis for the varied GA parameters was conducted on large problems only, the 

maximum count obtainable for each parameter is 25. The mutation rate of 0.3 resulted in most 
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cases of the minimum makespan values for both data ranges. The mutation rate of 0.7 resulted 

in the least minimum values for both data ranges. The initial population sizes returned the most 

minimum makespan values for all problem sizes for test instances experimented on. Reducing 

the population sizes, thus, seems to degrade the quality of the solution as some of the 

minimum makespan values achiever earlier were no longer attained.  
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Table 11: Count of minimum makespan for various mutation rates 

Problem 
size  

Scenario 3 Scenario 4 

Same data range Unique data range Same data range Unique data range 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

0.5 
mutrate 

0.3 
mutrate 

0.7 
mutrate 

12x12x10 1 4 0 0 3 2 1 3 1 0 4 1 

15x15x5 2 3 0 2 3 3 2 0 3 2 2 1 

20x20x4 2 3 0 4 5 1 3 1 1 3 2 0 

25x25x8 3 2 0 2 3 0 3 2 1 3 1 2 

30x30x5 2 3 0 1 3 1 1 2 2 0 3 2 

TOTAL 10 15 0 9 17 7 10 8 8 8 12 6 

 

Table 12: Count of minimum makespan for various population sizes 

 Problem 
size 

Scenario 3 Scenario 4 

Same data range Unique data range Same data range Unique data range 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

Initial 
population 

 ½ 
Initial 
Pop. 

 ¼ 
Initial 
Pop. 

12x12x10 3 1 1 2 1 3 3 0 2 3 2 1 

15x15x5 0 5 0 4 0 2 1 3 1 4 0 1 

20x20x4 1 1 3 4 3 3 3 2 0 3 2 0 

25x25x8 4 0 1 3 1 1 4 1 1 1 4 0 

30x30x5 2 1 2 3 1 1 0 3 2 0 2 3 

TOTAL 10 8 7 16 6 10 11 9 6 11 10 5 
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4.3.3. Statistical test of significance of differences 
 

Statistical testing was performed to determine if the difference in the count of the number of 

instances in which each of the algorithms found the minimum makespans was significant or 

not. The null hypothesis, H0, is that two algorithms being compared have no significant 

difference in the makespan values at 5 percent level of significance (alpha = 0.05). The 

alternative hypothesis, H1, is that the algorithms have a significant difference in makespan 

values. This is important because the data were randomly generated. The statistical test values 

achieved are presented in Table 13 and Table 15 for the count of the minimum makespan and 

proportion above the minimum makespan value respectively. The absolute values of the t 

statistic are of interest in determining the algorithm(s) resulting in the minimum makespan. The 

evaluation of the significance of the t stat values returned against the t critical value is 

presented in Table 14 and Table 16. Instances for which there is no significant difference 

between the two algorithms are denoted by N, and S represents results with a significant 

difference. Additionally, the algorithm that performed better for a particular problem size or 

penalty scenario is indicated in brackets for instances with a significant difference. 

Count of minimum makespan 

The NEH-GA comparison generally returned instances with the lowest t-stat values, however, 

with a few exceptions. The CDS-NEH comparison returned the lowest t stat values for scenario 

2 (large problem sizes) and scenario 4 (medium problem sizes) for the SDR data set, and 

scenario 1 (medium problem sizes) for the UDR data set. The CDS-GA comparison returned the 

lowest t stat values for scenario 3 (small problem sizes) and scenario 4 (small problem sizes) for 

the SDR data set, and scenario 4 (small problem sizes) for the UDR data set. GA was the better 

performing algorithm for cases where there was a significant difference for the SDR data set. 

The NEH algorithm returned the majority of instances with the minimum makespan counts for 

the UDR data set. The difference in makespans was significant for any algorithm compared to 

CDS, with the CDS algorithm being the worst-performing. It is for this reason that there is no 

indication of the algorithm which performs better for CDS-NEH and CDS-GA comparisons. 
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Table 13: t Stat values for the count of minimum makespan 

  
Problem 

size  

Same data range (SDR) Unique data range (UDR) 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small -6.2973 -1.3556 -8.0623 -8.5105 -0.2981 -8.1219 

Medium -6.245 -3.0095 -14.8661 -3.6056 -8.5732 -27.2213 

Large -6 1 -4 -8.7178 2.753 -3.0551 

Scenario 2 

Small -6.958 1.5246 -5.1523 -8.1219 0.4953 -7.3193 

Medium -5.099 -3.1225 -12.49 -4.8374 -3.4426 -12.49 

Large -2.1381 -4.5434 -11.225 -5.099 0 -5.099 

Scenario 3 

Small -13.5594 4.6577 -3.6056 UNDEF 21.9317 -1.7782 

Medium -9 2.3333 -4.3333 -12.49 4.4733 -3.3649 

Large -3.3607 -1.8904 -7.1414 -7.8558 2.4004 -3.0551 

Scenario 4 

Small -13.5594 5.1058 -3.1225 -13.5594 5.1058 -3.1225 

Medium -3.6056 -3.6056 -10.8167 -7.2639 0.9475 -5.369 

Large -4 -1 -6 -6 1 -4 

 

Table 14: Significance of t Stat values for the count of minimum makespan 

  
Problem 

size  

Same data range (SDR) Unique data range (UDR) 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small S N  S S N  S 

Medium S S (GA) S S S (GA) S 

Large S N  S S S (NEH) S 

Scenario 2 

Small S N  S S N  S 

Medium S S (GA) S S S (GA) S 

Large S S (GA) S S N  S 

Scenario 3 

Small S S (NEH) S N S (NEH) N 

Medium S S (NEH) S S S (NEH) S 

Large S N  S S S (NEH) S 

Scenario 4 

Small S S (NEH) S S S (NEH) S 

Medium S S (GA) S S N S 

Large S N  S S N  S 
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Proportion beyond minimum makespan 

In the test for a proportion of values above the minimum makespan, the same observation was 

made for all penalties and problem sizes. The NEH-GA comparison resulted in the lowest t-stat 

values. The paired test of CDS with any method resulted in a higher t-stat value, suggesting that 

the CDS method returned the most makespan values greater than the minimum for each matrix 

size. The NEH-GA comparison was also the only one to produce a t-stat value lower than t 

critical. There was no significant difference between the t-stat value and the t critical value for 

scenarios 1 and 2 for both data ranges of small problems. Medium problems returned a t-stat 

value lower than t critical for scenario 4 with both data ranges. Large problems returned lower 

t-stat values for scenarios 1 and 3 for SDR, and scenarios 2 and 4 for UDR. 

Table 15: t Stat values for proportion falling beyond the minimum makespan 

  
 Problem 

size 

Same data range (SDR) Unique data range (UDR) 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small 5.2017 0.9105 5.2271 3.9067 0.3697 4.0086 

Medium 9.3686 3.1116 10.2402 6.774 4.1266 9.8536 

Large 21.2569 -1.7356 20.4309 24.4516 -3.0656 21.3496 

Scenario 2 

Small 4.9676 0.8628 5.1592 3.5914 -0.4565 3.5985 

Medium 9.1832 3.3348 10.6583 5.5364 3.0074 9.4545 

Large 6.9113 3.4371 6.3809 4.7638 1.3925 6.0476 

Scenario 3 

Small 15.3478 -3.5605 10.9191 17.5279 -2.9098 3.4483 

Medium 12.9587 -2.2846 12.997 12.4692 -5.3536 12.4092 

Large 3.3186 -1.3395 3.3186 2.9278 -2.2007 2.9278 

Scenario 4 

Small 11.6613 -5.1845 11.3359 12.7631 -5.3719 11.8116 

Medium 12.2037 -0.7797 8.344 12.2398 -1.4284 12.2818 

Large 2.7558 2.4267 2.7558 2.7092 0.3481 2.7091 
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Table 16: Significance of t Stat values for proportion falling beyond the minimum makespan 

  
 Problem 

size 

Same data range (SDR) Unique data range (UDR) 

CDS - NEH NEH - GA CDS - GA CDS - NEH NEH - GA CDS - GA 

Scenario 1  

Small S N  S S N  S 

Medium S S (GA) S S S (GA) S 

Large S N  S S S (NEH) S 

Scenario 2 

Small S N  S S N  S 

Medium S S (GA) S S S (GA) S 

Large S S (GA) S S N  S 

Scenario 3 

Small S S (NEH) S S S (NEH) S 

Medium S S (NEH) S S S (NEH) S 

Large S N  S S S (NEH) S 

Scenario 4 

Small S S (NEH) S S S (NEH) S 

Medium S S (GA) S S N S 

Large S N  S S N  S 

 

The evaluation of the significance of t-stat values for the count of the minimum makespan and 

proportion beyond minimum value indicated that there are several test instances where the 

NEH and GA returned similar makespan values. The CDS algorithm, on the other hand, fails to 

find the minimum makespan values.  

This chapter’s summary is now presented. The chapter focused on the design and 

implementation of computational experiments. The design of the experiment involved data 

generation to suit the problem of interest and the classification of test blocks. The method of 

execution of the computational experiments was discussed for the various test instances. 

Results of the experimentation were presented, discussed, and analysed. The next chapter will 

provide a summation of the findings of this research, and recommendations regarding further 

study on the topic are proposed. 
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Chapter 5: Conclusions and 

recommendations 
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In this chapter, concluding remarks are made, followed by this study’s contributions to 

literature and recommendations for further research. 

Conclusions 

The problem of scheduling a reentrant permutation flow shop with deteriorating jobs having 

the objective of minimising makespan was studied. The model formulation was presented, and 

CDS, NEH and GA algorithms were utilised to solve the problem. The study involved test 

problems classified as small, medium and large. Simulations for various deterioration rates 

were conducted. The GA parameters, mutation rate, and population size were studied to 

evaluate their influence on the performance of the meta-heuristic in determining the minimum 

makespan. 

The algorithms performed similarly for small problems that are not exposed to deterioration of 

processing time. The GA and NEH algorithms performed better than the CDS algorithm as the 

problem sizes increased (i.e. both in the number of jobs and machines). The NEH achieved the 

lowest makespan within reasonable computation times as problem sizes got bigger, and the 

complexity of deterioration of processing times increased. Essentially, the NEH algorithm is 

capable of handling changes that are introduced into the system being scheduled. In instances 

where the NEH achieved minimum makespan values above the global minimum, the 

proportional difference was small.  

The performance of a GA may be affected by the parameters selected to conduct 

computational experiments. Two parameters: mutation rate and population size, were used to 

test this. The lowest mutation rate used, 0.3 resulted in the lowest of makespan values 

compared to 0.5 and 0.7; however, the computation times remained longer than NEH. 

Reducing the population size to a quarter of the initial value resulted in the shortest 

computation times, but also seems to have compromised the quality of the makespan value 

attainable. The NEH algorithm, thus, appears to be the overall best performing algorithm.  
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Contributions to literature 

Despite the decades-long study of reentrant flowshops and deteriorating jobs, no evidence of 

work that merges the two factors could be found. A lot of focus on deterioration has been 

mainly on one and two machine flowshops. This study contributes to the scheduling of a   

machine flowshop with deteriorating jobs. It is unlikely that a production facility can have only 

one production step. Thus the solution developed can be adapted in various production 

processes with deteriorating jobs. Schedulers and production planners alike can use the 

proposed scheduling solution to improve the efficiency of their operations. By utilising the 

proposed method, production schedules can be set up in a manner which ensures jobs in 

processes such as tube rolling, and ingot forging are prepared just in time for them to be 

processed, and not earlier. Using the NEH would be beneficial in providing a schedule 

timeously, and without having to determine supplementary information as compared to the GA 

algorithm.  

Recommendations 

For future studies, the NEH algorithm can be compared with other solution methods such as 

Palmer’s, branch and bound and meta-heuristics like Simulated Annealing (SA). These methods 

are known to have yielded satisfactory results in previous studies of flowshop scheduling. The 

problem sizes can also be increased and be evaluated with the same solution methods as were 

proposed for this work. Recent work in flowshop scheduling considers the evaluation of 

multiple objectives. In light of supply chain improvement, the due date is proposed as an 

additional objective to study. 
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Annexure A: Minimum makespan graphs 
 

  
Figure 16: Minimum makespan plots for small problems and same data range with scenario 1 
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Figure 17: Minimum makespan plots for small problems and unique data range with scenario 1 

  
Figure 18: Minimum makespan for medium problems and same data range with scenario 1 
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Figure 19: Minimum makespan plots for medium problems and unique data range with scenario 1 
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Same data range 

 

Unique data range 

 

Figure 20: Minimum makespan plots for large problems with scenario 1 
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Figure 21: Minimum makespan plots for small problems and same data range with scenario 3 

  
Figure 22: Minimum makespan plots for small problems and unique data range with scenario 3 
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Figure 23: Minimum makespan plots for medium problems and same data range with scenario 3 

  
Figure 24: Minimum makespan plots for medium problems and unique data range with scenario 3 
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Same data range 

 

Unique data range 

 
Figure 25: Minimum makespan plots for large problems with scenario 3 
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Figure 26: Minimum makespan plots for small problems and same data range with scenario 4 

  
Figure 27: Minimum makespan plots for small problems and unique data range with scenario 4 
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Figure 28: Minimum makespan plots for medium problems and same data range with scenario 4 

  
Figure 29: Minimum makespan plots for medium problems and unique data range with scenario 4 
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Same data range  

 

Unique data range 

 
Figure 30: Minimum makespan plots for large problems with scenario 4 
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Annexure B: Makespan analysis 
Table 17: Count of minimum makespan for small problems with SDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

3x3x3 3 5 5 1 5 3 0 4 2 0 4 2 

3x3x4 5 5 5 4 5 4 0 3 3 0 5 0 

3x4x2 2 5 5 2 5 5 0 5 0 0 3 2 

4x3x3 0 3 5 1 2 4 0 5 1 0 4 1 

4x4x3 1 5 4 0 5 2 0 3 2 0 5 0 

4x5x3 1 5 5 1 5 3 0 4 1 0 4 1 

4x4x4 1 4 5 1 4 4 0 5 0 0 5 0 

4x5x4 1 4 5 1 4 4 0 4 1 0 3 2 

TOTAL 14 36 39 11 35 29 0 33 10 0 33 8 
 

Table 18: Count of minimum makespan for small problems with UDR data set 

 Problem 
size  

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

3x3x3 0 3 3 0 4 4 0 5 0 0 5 0 

3x3x4 1 4 3 1 4 5 0 5 0 0 5 0 

3x4x2 2 5 5 1 4 5 0 5 0 0 4 2 

4x3x3 0 5 5 0 5 3 0 5 0 0 5 0 

4x4x3 3 4 4 2 3 2 0 5 0 0 4 1 

4x5x3 0 5 5 0 5 4 0 5 0 0 2 3 

4x4x4 1 3 5 1 4 4 0 5 3 0 4 1 

4x5x4 1 5 5 0 3 3 0 5 0 0 4 1 

TOTAL 8 34 35 5 32 30 0 40 3 0 33 8 
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Table 19: Count of minimum makespan for medium problems with SDR data set 

 Problem 
size  

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

6x6x2 0 2 5 0 2 5 0 4 1 0 3 2 

6x8x5 0 3 5 0 2 4 0 3 2 0 0 5 

6x9x3 0 4 5 0 4 3 0 4 1 0 1 4 

7x7x5 0 1 5 0 2 4 0 3 2 0 0 5 

7x8x4 0 2 5 0 2 3 0 4 1 0 3 2 

8x8x3 0 2 4 0 1 5 0 4 1 0 1 4 

9x9x2 0 4 2 0 3 3 0 3 2 0 2 3 

10x10x2 0 2 3 0 0 5 0 2 3 0 0 5 

TOTAL 0 20 34 0 16 32 0 27 13 0 10 30 
 

Table 20: Count of minimum makespan for medium problems with UDR data set 

 Problem 
size  

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

6x6x2 0 3 5 0 3 3 0 4 1 0 3 2 

6x8x5 0 1 5 0 1 5 0 4 1 0 1 4 

6x9x3 1 2 5 1 3 5 0 4 2 0 2 3 

7x7x5 0 2 4 0 3 2 0 5 0 0 3 2 

7x8x4 0 0 5 0 2 5 0 4 1 0 4 1 

8x8x3 0 0 5 0 1 4 0 3 2 0 3 2 

9x9x2 0 1 5 0 1 5 0 3 2 0 3 2 

10x10x2 0 2 5 0 2 4 0 5 0 0 4 1 

TOTAL 1 11 39 1 16 33 0 32 9 0 23 17 

 

Table 21: Count of minimum makespan for large problems with SDR data set 

Problem 
size   

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

12x12x10 0 1 4 0 2 3 0 3 2 0 2 3 

15x15x5 0 2 3 0 2 3 0 1 4 0 2 3 

20x20x4 0 3 2 0 0 5 0 0 5 0 4 1 

25x25x8 0 4 1 0 0 5 0 0 5 0 0 5 

30x30x5 0 5 0 0 0 5 0 4 1 0 2 3 

TOTAL 0 15 10 0 4 21 0 8 17 0 10 15 
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Table 22: Count of minimum makespan for large problems with UDR data set 

 Problem 
size   

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

12x12x10 0 4 1 0 2 4 0 3 2 0 4 1 

15x15x5 0 3 3 0 3 2 0 3 2 0 4 1 

20x20x4 0 4 1 0 5 0 0 5 0 0 5 0 

25x25x8 0 5 0 0 3 2 0 5 0 0 0 5 

30x30x5 0 3 2 0 0 5 0 2 3 0 2 3 

TOTAL 0 19 7 0 13 13 0 18 7 0 15 10 

 

Table 23: Average proportion above minimum makespan for small problems with SDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

3x3x3 0.289 0.267 0.267 0.295 0.267 0.269 1.042 0.396 0.446 1.124 0.394 0.445 

3x3x4 0.139 0.139 0.139 0.140 0.139 0.140 0.609 0.108 0.137 0.777 0.079 0.171 

3x4x2 0.151 0.114 0.114 0.151 0.116 0.116 0.552 0.161 0.573 0.533 0.152 0.192 

4x3x3 0.126 0.048 0.044 0.127 0.075 0.049 0.570 0.067 0.097 0.837 0.072 0.111 

4x4x3 0.112 0.061 0.064 0.115 0.071 0.078 0.964 0.256 0.308 1.064 0.238 0.323 

4x5x3 0.111 0.052 0.052 0.112 0.056 0.059 0.874 0.085 0.125 1.280 0.138 0.194 

4x4x4 0.219 0.167 0.164 0.220 0.168 0.164 1.027 0.156 0.190 1.737 0.192 0.259 

4x5x4 0.112 0.060 0.057 0.114 0.062 0.060 1.509 0.196 0.279 2.321 0.211 0.279 

Average 0.157 0.114 0.113 0.159 0.119 0.117 0.893 0.178 0.269 1.209 0.184 0.247 

 

Table 24: Average proportion above minimum makespan for small problems with UDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

3x3x3 0.089 0.063 0.055 0.089 0.063 0.062 0.487 0.053 0.106 0.623 0.059 0.156 

3x3x4 0.080 0.053 0.059 0.080 0.053 0.048 0.712 0.061 0.187 0.970 0.069 0.260 

3x4x2 0.461 0.406 0.406 0.449 0.399 0.397 0.893 0.375 2.491 0.877 0.423 0.458 

4x3x3 0.151 0.088 0.088 0.151 0.087 0.093 0.500 0.047 0.088 0.729 0.067 0.142 

4x4x3 0.029 0.022 0.024 0.084 0.089 0.098 0.665 0.052 0.121 0.718 0.055 0.102 

4x5x3 0.040 0.021 0.021 0.033 0.016 0.017 0.731 0.037 0.076 1.060 0.079 0.099 

4x4x4 0.042 0.033 0.029 0.042 0.037 0.036 0.792 0.039 0.075 1.310 0.030 0.061 

4x5x4 0.034 0.029 0.029 0.049 0.029 0.028 1.128 0.035 0.102 1.813 0.061 0.112 

Average 0.116 0.089 0.089 0.122 0.097 0.097 0.738 0.088 0.406 1.013 0.105 0.174 
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Table 25: Average proportion above minimum makespan for medium problems with SDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

6x6x2 0.114 0.055 0.048 0.119 0.057 0.051 0.751 0.059 0.075 1.191 0.067 2.041 

6x8x5 0.109 0.057 0.049 0.108 0.060 0.052 3.854 0.043 0.079 7.130 0.154 0.093 

6x9x3 0.113 0.070 0.068 0.103 0.060 0.061 2.088 0.059 0.110 3.119 0.095 0.057 

7x7x5 0.124 0.075 0.057 0.107 0.060 0.045 3.281 0.061 0.068 5.630 0.159 0.031 

7x8x4 0.105 0.044 0.037 0.110 0.052 0.054 2.797 0.063 0.086 6.620 0.068 0.071 

8x8x3 0.129 0.088 0.083 0.125 0.079 0.073 1.663 0.021 0.031 3.744 0.167 0.067 

9x9x2 0.208 0.154 0.152 0.211 0.162 0.154 1.520 0.169 0.179 2.296 0.227 0.160 

10x10x2 0.067 0.038 0.038 0.105 0.074 0.052 1.557 0.083 0.054 3.046 0.067 0.018 

Average 0.121 0.073 0.067 0.124 0.076 0.068 2.189 0.070 0.085 4.097 0.125 0.317 

 

Table 26: Average proportion above minimum makespan for medium problems with UDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

6x6x2 0.025 0.010 0.009 0.030 0.015 0.013 0.653 0.065 0.088 1.162 0.129 0.153 

6x8x5 0.038 0.033 0.029 0.038 0.033 0.029 4.099 0.069 0.103 7.361 0.123 0.120 

6x9x3 0.042 0.024 0.022 0.043 0.024 0.022 1.930 0.053 0.069 3.437 0.130 0.080 

7x7x5 0.067 0.030 0.029 0.068 0.037 0.037 3.154 0.040 0.070 5.849 0.068 0.078 

7x8x4 0.026 0.014 0.013 0.026 0.014 0.013 2.585 0.039 0.049 7.711 0.141 0.231 

8x8x3 0.043 0.018 0.015 0.034 0.026 0.017 1.838 0.087 0.100 3.844 0.051 0.060 

9x9x2 0.031 0.033 0.019 0.034 0.037 0.022 1.288 0.055 0.071 2.171 0.056 0.063 

10x10x2 0.032 0.020 0.016 0.052 0.039 0.038 1.447 0.032 0.051 3.027 0.043 0.092 

Average 0.038 0.023 0.019 0.041 0.028 0.024 2.124 0.055 0.075 4.320 0.093 0.109 

 

Table 27: Average proportion above minimum makespan for large problems with SDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

12x12x10 0.078 0.037 0.035 0.077 0.035 0.032 235 0.044 0.027 1501 0.149 0.093 

15x15x5 0.080 0.021 0.017 0.078 0.025 0.028 33 0.100 0.065 180 0.133 0.084 

20x20x4 0.085 0.019 0.021 0.090 0.054 0.027 52 0.104 0.094 383 0.136 0.204 

25x25x8 0.053 0.008 0.014 0.057 0.040 0.019 16257 0.204 0.085 452975 0.338 0.060 

30x30x5 0.085 0.018 0.032 0.244 0.137 0.048 14746 4.692 7.752 43578 0.219 0.057 

Average 0.076 0.021 0.024 0.109 0.058 0.031 6264 1.029 1.605 99723 0.195 0.100 
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Table 28: Average proportion above minimum makespan for large problems with UDR data set 

 Problem 
size 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CDS NEH GA CDS NEH GA CDS NEH GA CDS NEH GA 

12x12x10 0.043 0.017 0.019 0.044 0.018 0.016 227 0.029 0.035 1539 0.120 0.200 

15x15x5 0.033 0.004 0.005 0.028 0.005 0.007 32 0.024 0.036 195 0.145 0.182 

20x20x4 0.035 0.009 0.010 0.055 0.023 0.038 51 0.030 0.067 502 0.157 0.333 

25x25x8 0.032 0.007 0.012 0.107 0.038 0.044 14156 0.095 0.148 457061 0.303 0.016 

30x30x5 0.036 0.010 0.010 0.149 0.124 0.042 1855 0.073 0.058 41973 0.259 0.177 

Average 0.036 0.010 0.011 0.077 0.042 0.029 3264 0.050 0.069 100254 0.197 0.182 
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Annexure C: Computation times 
Table 29: Average computation times for small problems with scenario 1 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

3x3x3 0.0044 0.0003 0.0130 0.0004 0.0281 0.0298 

3x3x4 0.0393 0.0080 0.0153 0.0003 0.0269 0.0252 

3x4x2 0.0003 0.0003 0.0003 0.0002 0.0257 0.0269 

4x3x3 0.0003 0.0003 0.0003 0.0004 0.0276 0.0292 

4x4x3 0.0290 0.0004 0.0004 0.0004 0.2008 0.0426 

4x5x3 0.0162 0.0005 0.0005 0.0004 0.0405 0.0361 

4x4x4 0.0003 0.0004 0.0005 0.0004 0.0336 0.0312 

4x5x4 0.0005 0.0005 0.0005 0.0005 0.0423 0.0283 

 

Table 30: Average computation times for medium problems with scenario 1 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

6x6x2 0.0584 0.0005 0.0007 0.0006 0.0993 0.1330 

6x8x5 0.0010 0.0011 0.0042 0.0017 0.2586 0.2425 

6x9x3 0.0034 0.0009 0.0011 0.0075 0.2919 0.2625 

7x7x5 0.0010 0.0011 0.0044 0.0017 0.2724 0.2295 

7x8x4 0.1402 0.0319 0.0038 0.0014 0.4973 0.3452 

8x8x3 0.0013 0.0009 0.0017 0.0016 0.3150 0.2888 

9x9x2 0.0009 0.0008 0.0016 0.0024 0.4771 0.4534 

10x10x2 0.0667 0.0279 0.0026 0.0026 0.8568 0.8794 

 

Table 31: Average computation times for large problems with scenario 1 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

12x12x10 0.0047 0.1017 0.5409 0.0157 38.8601 38.8154 

15x15x5 0.0044 0.0043 0.0202 0.0186 39.5828 38.2834 

20x20x4 0.0072 0.0079 0.0402 0.0470 178.4229 173.2750 

25x25x8 0.0836 0.0272 0.2105 0.2008 609.1398 541.6924 

30x30x5 0.0274 0.0252 0.3879 0.3440 865.3643 872.3942 
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Table 32: Average computation times for small problems with scenario 2 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

3x3x3 0.0460 0.0003 0.0268 0.0003 0.2414 0.0286 

3x3x4 0.0197 0.0003 0.0138 0.0003 0.0277 0.0362 

3x4x2 0.0890 0.0003 0.0282 0.0003 0.0263 0.0279 

4x3x3 0.0003 0.0003 0.0005 0.0004 0.1929 0.3108 

4x4x3 0.0005 0.0004 0.0005 0.0006 0.0281 0.0251 

4x5x3 0.0544 0.0004 0.0005 0.0005 0.0466 0.0368 

4x4x4 0.0004 0.0005 0.0005 0.0005 0.0621 0.0332 

4x5x4 0.0004 0.0005 0.0005 0.0005 0.0371 0.0389 
 

Table 33: Average computation times for medium problems with scenario 2 

Matrix 
size 

CDS NEH GA 

SD UD SD UD SD UD 

6x6x2 0.0008 0.0005 0.0020 0.0009 0.1589 0.1715 

6x8x5 0.0513 0.0011 0.0015 0.0016 0.2710 0.2951 

6x9x3 0.0537 0.0008 0.0027 0.0011 0.4115 0.3682 

7x7x5 0.0009 0.0007 0.0017 0.0019 0.3820 0.3531 

7x8x4 0.0010 0.0009 0.0234 0.0016 0.3935 0.3686 

8x8x3 0.0650 0.0012 0.0024 0.0022 0.7371 0.7125 

9x9x2 0.0010 0.0010 0.0022 0.0023 2.5197 2.5222 

10x10x2 0.0014 0.0013 0.0029 0.0025 7.4478 6.3323 

 

Table 34: Average computation times for large problems with scenario 2 

Matrix 
size 

CDS NEH GA 

SD UD SD UD SD UD 

12x12x10 0.0955 0.0107 0.0467 0.0166 42.5583 42.1651 

15x15x5 0.0265 0.0049 0.0205 0.0197 69.3522 120.4441 

20x20x4 0.0079 0.0044 0.0462 0.0614 230.1981 259.2478 

25x25x8 0.0239 0.0993 0.1972 0.1954 768.6413 799.5785 

30x30x5 0.0284 0.0330 0.2481 0.2468 915.1942 880.6319 
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Table 35: Average computation times for small problems with scenario 3 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

3x3x3 0.0376 0.0003 0.0004 0.0004 0.1700 0.0357 

3x3x4 0.0229 0.0003 0.0004 0.0003 0.0283 0.0268 

3x4x2 0.0003 0.0114 0.0003 0.0003 0.0283 0.0268 

4x3x3 0.0003 0.0004 0.0558 0.0080 0.0292 0.0256 

4x4x3 0.0005 0.0004 0.0005 0.0004 0.0242 0.0269 

4x5x3 0.0432 0.0004 0.0004 0.0004 0.0744 0.0367 

4x4x4 0.0004 0.0789 0.0005 0.0004 0.0382 0.0330 

4x5x4 0.0016 0.0005 0.0005 0.0004 0.0383 0.0370 

 

Table 36: Average computation times for medium problems with scenario 3 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

6x6x2 0.0005 0.0005 0.0008 0.0008 0.1348 0.1566 

6x8x5 0.0384 0.0012 0.0013 0.0015 0.3576 0.3219 

6x9x3 0.0010 0.0008 0.0011 0.0028 0.3577 0.3401 

7x7x5 0.0455 0.0010 0.0995 0.0017 0.6113 0.3814 

7x8x4 0.0495 0.0011 0.0017 0.0015 0.3265 0.3275 

8x8x3 0.0009 0.0008 0.0017 0.0018 0.7582 0.7321 

9x9x2 0.0008 0.0008 0.0556 0.0020 2.8332 2.6490 

10x10x2 0.0010 0.0011 0.0033 0.0029 5.5785 5.6356 

 

Table 37: Average computation times for large problems with scenario 3 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

12x12x10 0.0116 0.0203 0.0178 0.0181 40.2420 40.3960 

15x15x5 0.0134 0.0051 0.0190 0.0196 68.5193 68.8014 

20x20x4 0.0443 0.0085 0.0507 0.0475 286.6765 233.1291 

25x25x8 0.0256 0.0296 0.2436 0.2278 750.8251 941.1693 

30x30x5 0.0255 0.0828 0.2684 0.2942 970.1836 862.8904 
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Table 38: Average computation times for small problems with scenario 4 

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

3x3x3 0.0435 0.0003 0.0041 0.0003 0.1935 0.0379 

3x3x4 0.0468 0.0250 0.0071 0.0003 0.1007 0.0327 

3x4x2 0.0003 0.0003 0.0004 0.0003 0.0569 0.0313 

4x3x3 0.0137 0.0003 0.0005 0.0004 0.0352 0.0321 

4x4x3 0.0068 0.0004 0.0073 0.0005 0.0315 0.0314 

4x5x3 0.0004 0.0004 0.0005 0.0005 0.0427 0.0384 

4x4x4 0.0004 0.0004 0.0005 0.0005 0.0386 0.0408 

4x5x4 0.0005 0.0005 0.0005 0.0005 0.0431 0.0358 

 

Table 39: Average computation times for medium problems with scenario 4  

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

6x6x2 0.0639 0.0005 0.0009 0.0007 0.1735 0.2254 

6x8x5 0.0011 0.0227 0.0014 0.0015 0.3685 0.4032 

6x9x3 0.0009 0.0009 0.0011 0.0010 0.3834 0.3674 

7x7x5 0.1554 0.0010 0.0024 0.0018 0.3639 0.3279 

7x8x4 0.0010 0.0380 0.0016 0.0018 0.2642 0.3407 

8x8x3 0.0008 0.0009 0.0059 0.0017 0.7296 0.6878 

9x9x2 0.0498 0.0027 0.0025 0.0020 2.8699 3.4503 

10x10x2 0.0009 0.0012 0.0030 0.0031 7.3924 7.4732 
 

Table 40: Average computation times for large problems with scenario 4  

Problem 
size 

CDS NEH GA 

SDR UDR SDR UDR SDR UDR 

12x12x10 0.0798 0.0054 0.0460 0.0174 46.6065 45.5247 

15x15x5 0.0051 0.0055 0.0235 0.0245 81.8296 80.6558 

20x20x4 0.0110 0.0091 0.0478 0.0477 255.6345 235.4703 

25x25x8 0.1385 0.0287 0.2311 0.2422 798.6494 761.6909 

30x30x5 0.0322 0.0306 0.3294 0.2889 867.2491 874.3069 
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Annexure D: GA parameter variations 
Population size = 1500 

 
Number of iterations 

 

Population size = 750 

 
Number of iterations 

 

Population size = 375 

 
Number of iterations 

 
Figure 31: GA solution convergence for a 30x30x5 matrix with scenario 3 for various population sizes 
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Mutation rate = 0.5 

 
Number of iterations 

 

Mutation rate = 0.3 

 
Number of iterations 

 

Mutation rate = 0.7 

 
Number of iterations 

 
Figure 32: GA solution convergence for a 25x25x8 matrix with scenario 4 for various mutation rates 
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