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Highlights

+ Deep generative models as deep digital twins.

+ Simulate asset responses to operating conditions directly from data.
+ Unsupervised health indicator from only healthy data.

+ Track degradation over asset lifecycle.

+ Suitable for non-stationary operating conditions.
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Abstract

A generic framework for prognostics and health monitoring (PHM) which is
rapidly deployable to heterogeneous fleets of assets would allow for the
automation of predictive maintenance scheduling directly from operational data.
Deep learning based PHM implementations provide part of the solution, but their
main benefits are lost when predictions still rely on historical failure data and
case-by-case feature engineering. We propose a solution to these challenges in the
form of a Deep Digital Twin (DDT). The DDT is constructed from deep generative
models which learn the distribution of healthy data directly from operational data
at the beginning of an asset’s life-cycle. As the DDT learns the distribution of
healthy data it does not rely on historical failure data in order to produce an
estimation of asset health. This article presents an overview of the DDT framework
and investigates its performance on a number of datasets. Based on these
investigations, it is demonstrated that the DDT is able to detect incipient faults,
track asset degradation and differentiate between failure modes in both stationary

and non-stationary operating conditions when trained on only healthy operating
data.
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1. Introduction

As heavy industries such as power generation, manufacturing and mining
continue to digitise at a rapid pace, the amount the data produced by industrial
facilities is greater than ever before. In order to capitalise on the vast amount of
process and plant data available in modern industrial complexes, it is critical that
modern prognostics and health management strategies are designed for scalable
deployment to heterogeneous fleets of assets under both stationary and non-
stationary conditions.

One primary constraint to the practical deployment of data driven system health
management is the requirement for large amounts of both healthy and unhealthy
data in order to train supervised learning approaches [19]. This includes state-of-
the-art deep learning architectures, that include Autoencoders, Variational



Autoencoders, ladder networks and Convolutional Neural Networks, that are
mostly employed in a supervised setting using fully labelled healthy and unhealthy
datasets or a semi-supervised setting using sparsely labelled healthy and
unhealthy datasets [20]. Unfortunately, obtaining a large number of run to failure
datasets of critical assets is problematic due to the long operational lifespans of
critical assets. In addition, during the life-cycle of an asset, the timespan over
which damage can be recorded is usually only a fraction of the total life. For
example, an asset that fails due to a crack will spend 85-90% of its life in the
healthy regime, 5-8% of its life in the damaged regime and 1—2% of its life in the
near failure regime — as given by the Paris Law [42]. In addition it is problematic
to align failure events and sensor data in a practical industrial setting as
maintenance logs and sensor data usually exist in separate databases without clear
connections between them. Moreover, supervised learning approaches are
inapplicable to newly procured assets where there is no possibility to leverage
historical data.

A recent review on the state of deep learning on system health management [20],
revealed that although the field of data driven prognostics and health monitoring
has begun to migrate towards using deep learning for system health monitoring,
many implementations in literature are still constrained to specific equipment or
applications. Khan [20] highlights that the current case-by-case methodology and
ad hoc approach does not allow for the scalable deployment of deep learning
implementations for system health management. Khan further motivates that in
order for deep learning based implementations to gain widespread adoption it is
necessary to develop a single framework which can systematically be extended to
all aspects of system health management.

The development this framework is challenging due to the diverse nature of assets
that need to be monitored as well as the uncertainties regarding the available data.
Consequently, such a framework must:

1. Use only healthy (nominal) operational data for training.

2. Have the ability to be trained online—not require historical data from similar
assets or fleets.

3. Be applicable to equipment operated under stationary and non-stationary
conditions.

4. Have the ability to be applied at different asset resolutions—component, sub-
system, system, fleet.



5. Be extendible to adding additional functionality as data becomes available.

As a step towards the development of a single framework for system health
management—which falls under the general ambit of prognostics and health
monitoring (PHM)—this paper proposes a strategy, based on unsupervised deep
learning, to construct a Deep Digital Twin (DDT) of a real world asset from sensor
data. The proposed DDT which is trained only on healthy data, aims to learn a
probabilistic representation of the real world asset from which it is possible to
sample “Generated” sensor readings given current operational conditions and
observed healthy data. Therefore, this generative model is a probabilistic digital
twin of the asset that is constructed from the dataset. The primary benefit of the
DDT is that it is automatically able to produce a health indicator from only healthy
data.

The focus of this study is to investigate whether the DDT does indeed conform to

the requirements of a PHM framework for predictive maintenance and system

health monitoring. To this end, it is necessary to evaluate whether the DDT is able

to satisfy each of the three phases of PHM as outlined by Randall [37]:

1. Detection: The first phase of PHM requires that an implementation is able to
detect anomalous or faulty behaviour.

2. Diagnostics: The second phase of PHM requires that an implementation is able
to differentiate various types anomalous events (failure modes).

3. Prognostics: The third phase of PHM requires that an implementation is able
to provide a measure of system health which allows for the tracking of
degradation.

2. Deep Digital Twins

Traditionally, Digital Twins have relied on deterministic physics based simulations
to approximate the system being monitored [38]. Unfortunately, for complex
systems it is generally not possible to simulate each individual asset within a fleet
of homogeneous assets due to manufacturing and material uncertainties [44].
Moreover, if digital twin technology is to be deployed to a heterogeneous fleet of
assets, the implementation becomes significantly more complex as each unique
asset class will require its own physics based model [44]. Consequently,
simulation based digital twin technology is only economically feasible for high-
cost and high-risk assets.



In order to circumvent the practical constraints of implementing physics based
Digital Twins it is proposed to use deep learning to develop Digital Twins directly
from the operational data of an asset, this will be known as a Deep Digital Twin
(DDT). The primary goal of a DDT is to obtain a digital representation of the
expected behaviour of a real world asset directly from data using a deep generative
model. Once such a representation is obtained, it becomes possible to simulate
system responses by sampling from the distribution ¢(x|y, z) of the DDT where x
is the system response to the conditional (operational setting) y and the
underlying latent variables which describe the system behaviour z . Sampling from
the DDT in this manner allows asset owners and operators to predict how the
asset will respond in various hypothetical operational settings (engine speed,
RPM, ambient temperature, feed rate, throttle position, etc.); as well as comparing
the predicted behaviour of the asset to the ground truth. However, the primary
motivation for the implementation of a DDT is inevitably the benefits it provides
to the life-cycle management of an asset. DDTs are particularly useful for
prognostics and health monitoring (PHM) due to their probabilistic nature. The
probabilistic nature of a DDT allows asset owners and operators to interrogate the
likelihood or likelihood-ratio of the current observed asset state given the
historical healthy data. Consequently, a DDT is able to automatically produce a
health indicator by means of either the likelihood or likelihood ratio.

Using deep generative methods for creating Deep Digital Twins, as opposed to
simulation based approaches, do not explicitly simulate the physics of the entire
system. Instead the Deep Digital Twin approach uses sensor data collected while
the asset is operational to create a probabilistic model of the system.

DDT may be defined as:
+ An implicit physics model of an asset learned from healthy asset data, requiring
no explicit physics knowledge.

+ A digital representation from which sensor values can be sampled under both
stationary and non-stationary operational settings such as rotational speed,
throttle and load.

+ A data driven model which does not require any asset specific feature
engineering.

+ A probabilistic model which is able to automatically produce a health indicator
which is a metric of the deviation from the healthy asset data.



In the Deep Digital Twin framework, all sensor measurements are treated as
random variables denoted x and the control inputs of the system as random
variables y. The DDT assumes there exists some distribution p ., (x|y,z*) which
perfectly describes the behaviour of the system given the control inputs and a
number of unobserved latent variables z*—which represents additional hidden
variables which are not observed directly but could be approximated given enough
observations of x and y. The goal of the DDT training is to learn some
approximation ¢(x|y, z) which closely matches the true distribution p,,,, (x|y, z*),
where z* represent the true unobserved latent variables and z are a learned
approximation to z*, such that the DDT instance is representative of p ... (x|y, z*)-
This allows for the interrogation of p,,,, (x|y, z*) through q(x|y, z), which is
embedded in the DDT instance. In this study, we specifically focus on constructing
DDT instances of assets’ healthy state only, which allows us to infer when
operating conditions deviate from the healthy state and estimate the probability of
damage.

To ensure that the DDT instance is useful and reliable for PHM, it is important

that:

1. The DDT instance has captured the entire distribution or manifold of the
training dataset.

2. The DDT does not embed spurious information present in the dataset in the
learned manifold, or assign high likelihood to nonsensical observations.

3. Itis possible to test whether 1 and 2 are satisfied.

4. Track the degradation of an asset such that it is possible to infer the condition
of an asset from the DDT.

The following paper will outline the implementation of a Deep Digital Twin for
asset condition monitoring. Once trained, it is possible to sample system
simulated responses from the distribution g(x|y, z) which is assumed to be a good
representation of the true data distribution p_,, (x|y, z). In addition to the ability
to simulate by sampling from q(x|y, z) the DDT is also able to produce a non-
parametric estimation of the current system health given observed values of x and
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3. Deep generative models as deep digital twins

Currently there exist two forms of deep generative models which may be suitable
for implementing and constructing a DDT. Namely:
+ Explicit probabilistic models

+ Implicit probabilistic models

The primary difference between the explicit and implicit models is that explicit
models provide an explicit parametrisation of the distribution of the observed
variable x by specifying a log-likelihood function log(p,(x)). On the other hand

implicit probabilistic models do not assume a tractable form of the log-likelihood

Piuta (XY, 2)
(xy.z)

explicit models are able to provide an estimation of the likelihood of an

function but rather learn a likelihood ratio r — . Consequently while

observation p,(x), implicit models are only able provide the ratio of the likelihood
between the observed data distribution and the generated data distribution. Both
the likelihood and likelihood ratio provide an indication of the chance that
observed data belongs to the healthy data distribution.

3.1. Health indicator construction

The key advantage of the use of a deep generative model for the construction of a

DDT is the automatic ealculation of a health indicator. Namely:

+ For explicit models it is proposed that a health indicator can be constructed by
evaluating the likelihood of an observation p,(x) given the parametric model of
healthy data.

+ For implicit models it is proposed that the health indicator can be obtained by
evaluating the likelihood-ratio between an observation x and the generated
data distribution g(x|y, z)

3.2. Explicit deep digital twins

In the explicit setting the DDT will be constructed using a Variational Autoencoder
(VAE) as the deep generative model. Variational Autoencoders are explicit deep
generative models which from part of a group of statistical models that perform
approximate inference in latent variable models [22]. A latent variable model
assumes that some set of observed variables x are generated by a random process
which is dependent on some parameters #* and unobserved latent variables =.



The two main goals of machine learning (and by extension deep learning) within
the context of latent variable models are inference and learning. Inference is the
evaluation of the posterior distribution

po(alx, %) — Lot =5l ®
of the latent variables z given the observed data x and some parameters 8. On the
other hand, learning is the maximisation of the model evidence. That is, given
some probability distribution p, parametrised by 8 which approximates the true
distribution 8% , maximise the likelihood of the data « given the distribution
parameters 8: Maximise the evidence,

pel®) = IPB(3’|Z}P3(3) dz. (2)

In the context of VAEs, the estimated posterior pg(x|z) is parametrised by a neural
network (gg(z)), known as the decoder. From this perspective the VAE can be seen
as a neural network architecture which contains two neural networks, an encoder
(fs(x)) network and a decoder (g4 (2z)) as shown in Fig. 1. The task of the encoder
network is to take the original input data of dimension D;,,,; and map the data
into a lower dimension Djy.,; to give an under-complete (Djgtent < Dinput)
representation of the input data. The encoder takes the observed variables @ and
outputs the natural parameters (£) of the assumed prior distribution, where the
parameters £ are dependent on the values of ¢ as

£,:|!|- = f.;}_’; {ﬂ.-";‘ )'
Conv2 Conv3 Deconvl Deconv?2
Convl : Deconv3

Realfnput X @ Xrecreate

Fig. 1. Basic architecture of a Variational Autoencoder (VAE) with convolutional and de-
convolutional layers, dashed lines denote sampling from a stochastic node. On the left side of
the graph is the encoder network g, (z|x, ¢); On the right is the decoder network py(x|z).



For example, consider the case where £ parametrises a Gaussian distribution

qe(2zlx, @) = A (2|, o¢)

the components of £ will be the mean and the variance of the latent variables for
each data-point x; to obtain £, = (s, .02, ).

After the real data is passed through the encoder it becomes possible to sample the
encoded latent variables from the posterior distribution ¢, (z|x, ¢) using the
statistical parameters y,, o, by means of the re-parametrisation trick

Z = i + €0¢ (3)
where,
e = A(0,I).

After passing through the encoder, the posterior z samples are fed through the
decoder which attempts to reconstruct the input given the latent representation.

Viewing the VAE in this manner results in a loss function which only consists of
minimising the mean squared error (MSE) between the true input x and the
recreated input g4 (2) (where z = f;(x))). Unfortunately minimising the recreation
error alone results in the VAE learning a non-smooth latent variable space which
may have no overlapping support between learned clusters. This behaviour is
undesirable as it does not constrain the latent variable space distribution. If the
latent variable space’s distribution is unconstrained it becomes possible for the
VAE to simply memorise the data and assign each data point to an arbitrary
location in the latent space, while disregarding any inherent structure in the data.

To circumvent this the VAE optimisation process does not simply consist of a MSE
loss but also includes a regularisation term to ensure that the encoded prior
distribution g, (z|¢) matches the assumed prior distribution p(z) (usually a unit
standard deviation factored Gaussian). This regularisation is applied by adding a
penalty term which penalises dissimilarity between the encoded prior distribution
q¢ (2| ¢) and the assumed prior distribution p(z). The penalty term penalises the
VAE based on the KL divergence between g, (z|¢) and p(z), is given by

N ID,I, (4)
DKL{QE{ |¢]||p Z w Z J'-'!'E.;_r —|—|:r$! lﬂgtﬂ'm”!} - 15

i=1



for the standard case where p(z) is assumed to be a factorised Gaussian with unity
standard deviation and zero mean.

Including the KL penalty along with the MSE between the recreated input and the
real input results in the following VAE loss function:

N Dhyten
Tt et ) (5)
Lyag = ||ge(fp(x)) — x||, + Z * Z Wiy + 0%, —loglos,) — 1,
i d

for the health indicator (HI) of the VAE the likelihood of the observed point under
the learned parameters is obtained by Monte Carlo sampling to obtain the integral
given in Eq. (2). This is done by encoding an observation into the latent space and
sampling multiple simulated ‘observations’ from the posterior distribution and
calculating the likelihood of the observed point under the learned probability
distribution

Hlvag = pg(x). (6)

3.3. Implicit deep digital twins

In the implicit deep generative network setting the DDT will be constructed from a
Generative Adversarial Network (GAN) as shown in Fig. 2. The GAN training
process is cast as a two player non-cooperative game where each player has
control over its own parameters (the weights of each network that constitute either
the Generator (G) or Discriminator (D) as shown in Fig. 2). The goal of the game is
for each player to minimise its own loss function .# by tuning these parameters
[12].

During Training After Training

Latent Sampling
Healthy

Discriminator All Data Discriminator Linhealing

Healthy Data

Fig. 2. Diagram demonstrating the GAN DDT. The left depicts the GAN training process and
the right image demonstrates the process of producing a health indicator is shown.
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In the GAN training framework, the two opposing networks D (Discriminator) and
G (Generator) are each parametrised by a different set of weights and biases.
Where D is parametrised by @ and G is parametrised by ¢. By changing @ the
optimiser associated with D aims to minimise some loss function %},(8, ¢).
Similarly, by changing ¢ the optimiser associated with G aims to minimise its own
loss function % (8, ¢)-

At each iteration G samples from a latent variable space z which is assumed to be a
multivariate factorised Gaussian distribution with & = 0 and & = 1. The samples
from the latent variable space are passed through the parametric distribution g,
generating output samples x*

x* = G(z),

which are fake examples conditioned on the sampled latent variable. As training
progresses the divergence between the true data distribution p and the learned
distribution ¢, becomes smaller as samples generated from g, begin to resemble
samples from the true distribution p. During training the discriminator becomes
better at identifying data that does not come from the true distribution p.
Consequently, the discriminator may be seen as learning a discrepancy function, a
function which assigns a high probability to points which are close to the manifold
of real data and a low probability everywhere else. Thus the health indicator (HI),
as shown in Fig. 2, is the output of the discriminator (D) of the GAN after learning
the manifold of healthy data and equates to the density ratio between the observed
point and the learned distribution

HI = D(x). W)

The goal of GAN training is to reach Nash equilibrium [16], [39]. Nash equilibrium
is defined as a game state in a non-cooperative game where it is impossible for any
player to improve its score by only changing their own strategy [30]. In the context
of a GAN, Nash equilibrium is a state of the game between the Generator and
Discriminator at which the samples ¢, created by the Generator match the true
distribution p and the Discriminator is unable to distinguish between data
sampled from p and data sampled from ¢, as they are the same distribution [45].
This is outlined in Fig. 3(a)—(b), where given some operational data (two
dimensional in the illustration) with numerous observations of p (black dots), the
GAN, when training is successful, is able to learn a lower dimensional (one
dimensional in the illustration) embedded probabilistic representation of the data
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q, (green line). Observations that deviates from the learned manifold is associated
with being less likely. Consider Fig. 3(c), where the data of two operational faults
are indicated as cyan and magenta dots. As the operational faults have a lower
probability of operating on the learned manifold, it becomes more evident that
there is a high likelihood for a fault. However, should the GAN training have failed
and only be representative of a subset of the healthy and normal operational data,
we would misclassify normal operational data as having a low probability of lying
on the manifold as depicted in Fig. 3(d). This is known as mode collapse, where
essentially the generator, G(z, ¢), produces samples of limited diversity or even
the same sample independent of the value of the random latent variable z. It is
therefore important to ensure and confirm that the GAN represents the entire
healthy dataset and not just a subset. The techniques to establish whether mode
collapse has occurred or not is covered in detail in the appendix.

® Normal ® Normal
. Operation Operation
. . == Leamed
i o8 g Manifold
o =2
7 (02}
g @ ..' ¢ z
g ® .. g
dimension 1 dimension 1
(@) (b)
® Normal e Normal
Operation " Operation
== |earned o 0® == Manifold
- Manifold | [& o o Mode
k=] .0
g e Fault1 : N 3 Collapse
15 o Fault2 | |5 .0
dimension 1 dimension 1
() (d)

Fig. 3. (a) Normal operating data used to (b) train a GAN to resolve an underlying lower
dimensional manifold that describes the data. A deviation from the learned manifold can be
a result of the onset of operating conditions that deviate from the normal operating

conditions due to (¢) faults or (d) when the learned manifold only describes a subset of the
normal operating conditions due to mode collapse.
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One significant advantage of the GAN approach is that unlike most regression and
system identification methods, it does not require the minimisation of a Mean
Squared Error (MSE) loss. Instead the D approximates the density ratio between
the observed data and the generated data and the G minimises some divergence
between g, and p. These training dynamics allow the GAN to become very
sensitive to even low magnitude deviations from the manifold. Moreover, since the
GAN discriminator is based on a density ratio approach as opposed to a least
squares approach, it is sensitive to the direction of the deviations from the
manifold—not only the Euclidean distance of the deviations as in a least squares
approach. This is clear in Fig. 3, where only an observation of the least squares
loss between the manifold and either fault, directional information would be lost
when computing the Euclidean distance. For the full details of the GAN
implementation used in this work, please refer to the appendix.

4. Simulation based experiments

In order to assess the capabilities of the DDT approach for prognostics and health
monitoring, two simulation based datasets were selected to evaluate the different

capabilities of the DDT.

+ Gearbox:
—Detection—Is the DDT able to detect unhealthy data when only trained on
healthy data?

—Prognostics—Does the HI produced by the DDT decrease monotonously
with an increase in damage?

—Robustness—Are the DDT’s predictions (HI and Generated samples)
robust to non-stationary data over continuously varying operating
conditions?

—System Identification—Is the DDT able to generate realistic vibration
spectra as a function of operating condition (RPM)

+ CMAPSS:
—Detection—Is the DDT able to detect the inception of unhealthy behaviour
from individual assets when trained on healthy fleet data?

—Prognostics—Does the health indicator produce a clear degradation curve
over an assets operational life?
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—Diagnostics— Is the DDT able to differentiate between different failure
modes when producing the HI?

—Robustness—Are the DDT’s predictions (HI and generated samples) robust
to non-stationary data from various discrete operational settings?

—System Identification—Is the DDT able to generate realistic sensor data
over a number of different operational settings?

4.1. Gearbox

The Gearbox data set is representative of the effect of a broken tooth within a one
stage spur gear transmission. This gearbox model is presented in Chaari et al. [5],
[6]. The model is highly non-linear due to the effect of tooth damage on the
vibration of the system as investigated in Chaari et al. [5]. The data used in this
investigation was provided by Schmidt [41]. No theoretical investigation was
performed on the data, however, the correlation between the performance of fault
identification algorithms on this simulated dataset and experimental gearbox data
i3 well documented in Schmidt [41].

4.1.1. Data structure

Each data point within the dataset consists of an acceleration signal (a(t)) (which
is treated as the x parameter) sampled at 50 kHz for one second. The gearbox
dataset is representative of the gearbox’s acceleration response over a range of
different torque and angular velocities. The data consists of healthy gearbox data
and unhealthy gearbox data over a range of damage severity ranging from 1%
damage to 20% damage.

Shown in Fig. 4 is the multiple degree of freedom (MDOF) non-linear simulation
of a one stage spur gear transmission where shafts are treated as torsional springs
and the bearing supports as standard springs. The non-linear spring
approximation to the gear mesh stiffness k,,, (t) is also clearly indicated between
the gear and the pinion.
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Fig. 4. Diagram of Gearbox Simulation.

4.1.2. Simulated damage

Damage was introduced by means of a reduction in the stiffness of the gear mesh.
Fakher et al. [5] demonstrated that there exists a linear relationship between the
depth of the crack on a damaged tooth and the gear mesh stiffness. In addition,
there exists a critical crack length at which the gear tooth will fail [42]. As a result,
the gear mesh stiffness can be seen as representative of the amount of damage in a
system. The relationship between damage and gear mesh stiffness is given in [41]
as

"I":_t?m “} = [1 - aj'%gm (t}:

where o corresponds to the % fraction of damage (between 0 and 1) which is
inversely proportional to the crack depth and k,,, (¢) is the healthy gear mesh
stiffness.

4.1.3. Data preprocessing

As the gearbox dataset consists of observations at various rotational speeds it is
important to normalise the data with respect to the rotational speed, known as
order tracking. Order tracking involves transforming the data in a manner which
represents the inherent periodicity of the data. For a gearbox the inherent
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periodicity of the data is a function of angular displacement (1) as opposed to time
(). In order to perform order tracking it is assumed that the true rotational speed
(w* which is treated as the conditional parameter y) of the machine is not known
exactly, but a noisy approximation (w) is available. For the purposes of this
investigation the rotational speed was sampled from a normal distribution

w = A (w*,5) [RPM)|.

Using the known rotational speed and the fact that the speed is assumed to be
constant over the observation period it is possible to calculate the angular
displacement (1)) as,

2w,
The maximum RPM which was considered was 1500 RPM, equivalent to 25
rotations per second, which corresponds to a maximum 2000 samples per shaft
rotation. Consequently, after calculating the angular displacement the signal was
re-sampled using linear interpolation at 2048 times per revolution.

After the order tracking process each 1 s sample was then subjected to a time
synchronous averaging (TSA) procedure [37]. A TSA procedure involves averaging
the signal over the recording period using a window, where the size of the window
used for the averaging process is determined by the nature of the data being
averaged. For example, in the case of a gearbox the size of the window should
correspond to one revolution of the largest gear. The synchronous averaging
procedure with an averaging window period ¥ is given by

. 8
aat:g(’ﬁl")} S f_l{ Za{”gﬂ* + k'I"}, ( )
k=0

where K refers to the number of observed rotations over the one second
observation window. Evidently, ¥ = 27 corresponds to a window of one
revolution.

The effect of the order tracking and synchronous averaging procedure on the
signal is given in Fig. 5. From Fig. 5 it is clear that the TSA highlights clear
periodicity over a single rotation; as well as significantly compressing the data and
damping the effects of transients in the signal before 0.25 s.
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Fig. 5. Raw accelerometer readings before (a, b) and after (e, d) order tracking and TSA.

4.1.4. Gearbox results

In order to quantify the relationship between damage and the HI, it is necessary to
investigate the behaviour of the two DDT implementations on data containing
various levels of damage. To this end, the gearbox dataset was constructed with
healthy data and unhealthy data of varying severity (1, 5, 10, 15, 20% damage).

This investigation into the performance of the DDT implementations under
varying levels of damage aims to establish whether the GAN and the VAE are able
to represent increasing levels of damage as a monotonically decreasing HI. This is
a highly desirable property for condition monitoring as it allows the severity of the
damage to be tracked using the output of the DDT under the assumption that the
HI is a continuous metric representing the level of damage present, rather than a
binary prediction of failure.

4.1.5. Convergence evaluation

In order to determine the similarity between the simulated and generated spectra
we adopt the notion of spectral divergence as discussed in Georgiou [13] as a
distance metric. This spectral divergence measure is given in Eq. (9), where Sis
the power spectral density (PSD) of a signal
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lug{p{Sg,SI]]—lug( o Edt)—1 Tizlug(ﬁ)dt. (9)

In Georgiou [13] it is shown that Eq. (9) is analogous to the Kullback-Leibler
divergence between the two spectra. Moreover, Georgiou [13] also showed that it
is possible to calculate the geodesic d, distance between two spectra and that this

metric is analogous to the classical notion of standard deviation, which is evident
from

d, (S0, 81) = \,fff; log (29)" 0 _ (7 10g (20) 2", (10)

Consequently, the metrics from Egs. (9), (10) may be used to evaluate the degree
to which the generated vibration data matches the observed data, and the
histogram thereof may be used to detect mode collapse. As the gearbox dataset
represents a gearbox at various rotational speeds it is possible to plot a cascade
plot of the data which represents the PSD (S) as a function of rotational speed. The
cascade plot for the simulated healthy and unhealthy data along with the
generated samples for the GAN and the VAE (Fig. 6) clearly illustrates that both
the GAN and the VAE learn the manifold of the healthy data to some extent. Most
notably, both methods learn the relationship between the natural frequencies of
the gearbox and RPM, this may be observed at around 50 orders and its
harmonics where both algorithms capture the migration of the natural frequency
line with changing RPM. From Fig. 6 it is evident that the GAN learns a much
‘sharper’ representation of the data manifold than the VAE. This is highlighted by
the fact that the VAE does not capture the resonance which occurs at a normalised
RPM of 0.16. The difference between the representation learned by the VAE and
the GAN becomes more apparent when considering the plot of the difference
between the generated healthy data for both algorithms and the real healthy data.

In Fig. 7, the VAFE’s failure to capture the resonance band at a normalised RPM of
0.16 is clearly visible around order 100 where the VAE significantly under-
represents the magnitude of the vibrations. On the other hand the GAN seems to
exaggerate the resonance band at a normalised RPM of 0.28. The expected
spectral difference log(p(S ake, Sreat)) 8s well as the expected geodesic distance

dg (S fake » Srear) between the real healthy data and the generated GAN and VAE data
is given in Table 1. It is clear that the GAN represents a better approximation of
the real data manifold when compared to the VAE, as quantified by the
significantly lower divergence variance from the real data by the GAN as compared
to the VAE.
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Fig. 6. Cascade plots of the gearbox PSD for the (a) healthy and (b) unhealthy data as well as

the healthy gsenerated data from the (¢) GAN and the (d) VAE.

Discrepancy between healthy and GAN Discrepancy between healthy and VAE
500

400

g E
—E 10 "g
S 300 § =3
2 5 2 B
9‘ bl =} 2
=, 200 =,
g 0 g
<Y =
100 =
0 -10
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalised RPM Normalised RPM
(a) GAN (b) VAE

Fig. 7. Cascade plots of the difference between gearbox PSD for the simulated healthy data
and the healthy generated data from the (a) GAIN and the (b) VAE.
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Table 1. Average Spectral Difference and Geodesic Distances PSD over the entire RPM range.

Algorithm log(p( 5 sake s Srear)) g (S ke + Srear }
GAN 0.2574 0.7353
VAE 0.41606 0.94
A 28% 21.7%

In addition to evaluating the expected Spectral Differences and Geodesic
Differences between the GAN and VAE for all RPMs, we also quantify both
divergences in terms of their relationship to RPM with variances included as
presented in Fig. 8. The expected values are depicted as dark orange and purple,
whereas one standard deviation from the expected values are depicted as solid
black lines. It is evident that the GAN outperforms the VAE at every RPM.

Comparison of VAE and GAN Spectral Difference Comparison of VAE and GAN Geodesic Distance
T d T T T T 1 T T T v

Spectral Difference
Geodesic Distance

o] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalised RPM Normalised RPM

Fig. 8. (a) Spectral differences and (b) Geodesic distances of the GAN and VAE, as a function
of RPM for the Gearbox dataset.

4.1.6. Comparison of GAN and VAE health thresholds

After training, both the GAN and the VAE’s outputs on healthy data were used to
determine the healthy/unhealthy threshold. This threshold was selected
arbitrarily as the point at which either model would have a 10% false positive rate.
This value corresponded to a GAN HI of 0.5842 and a py(x) of 0.975. At this
threshold the GAN significantly outperforms the VAE obtaining a true positive
rate of 84.8% compared to the VAE’s true positive rate of 61.4%. The cumulative
distribution of the healthy data is given in Fig. ga and b for the GAN and the VAE
respectively.
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Fig. 9. Cumulative Distribution Function of DDT over the training data for both the GAN and
VAE.

From the cumulative distributions given in Fig. 9a and b it is clear that the VAE
assigns high probabilities to healthy data, the distribution py generated by the
VAE has a low variance with more than 90% of the training data having values of
pg = 0.975. As opposed to the VAE, the GAN has a much larger variance on its
outputs. Using the threshold of a 10% false positive rate it is clear that the GAN
significantly outperforms the VAE, particularly for the lower levels of damage.

4.1.7. Receiver operating characteristic curve comparison

Laslty we consider the practical performance differences between the GAN and
VAE at various damage levels and threshold levels of p,(x), by plotting receiver
operating characteristic (ROC) curves. ROC curves depict the relationship between
the true positive rate (TPR) against the false positives rate (FPR) as p,(x) and
damage is varied. The TPR indicates the probability of detection, while the FPR
indicates the probability of a false alarm, essentially a horisontal straight line at
TPR = 1is the ideal ROC curve.

The GAN and VAE ROC curves at damage levels of 1, 5, 10, 15, 20% are depicted in
Fig. 10. From Fig. 10 it is interesting to note that the VAE ROC has a significant
increase in the TPR at a FPR of approximately 0.55. This suggests that some of the
failure data while being clustered around one value of pg(x) is deeply embedded
within the distribution of healthy data. This embedding of the unhealthy data
within the distribution of healthy data seems to affect the performance of the VAE.
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Fig. 10. Receiver operating characteristic for the GAN and VAE.

4.1.8. Degradation tracking

In addition to comparing the performance of the VAE and the GAN for various
levels of damage, the gearbox dataset was also constructed to test whether either
model is able to track degradation. Effective degradation tracking requires that the
output of the algorithm—be it the HI or py(x)—decreases monotonically as the
level of damage increases. The relationships between the DDT health indicators (
pg and GAN HI) and the level of damage are depicted in Fig. 11. From Fig. 11 it is
clear that both models display a monotonically decreasing expected value of the
output for increasing levels of damage. However, the GAN seems to maintain a
constant variance over the levels of damage, as opposed to the VAE which displays
a significant increase in the variance of its outputs as the damage increases.
Maintaining a constant or decreasing variance as the damage increases is highly
desirable, as this enhances identification potential of faults as well as the reliable
tracking of asset degradation. On the other hand the increase in the VAE’s
variance for increased damage is problematic as samples drawn from the
distribution of unhealthy data at a damage level of 0.2 overlaps significantly with
samples drawn at lower damage levels. In other words, the amount of overlapping
support between healthy distributions and unhealthy distributions does not
decrease significantly as damage increases for the VAE, which is in contrast to the
GAN where overlapping support between distributions for different damage levels
decreases significantly.
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Fig. 11. Boxplot of GAN and VAE outputs as a function of the level of damage present in the
system.

4.1.9. Discussion

The gearbox dataset was selected as a benchmark dataset to compare the explicit
deep digital twin (VAE) to the implicit deep digital twin (GAN) as well as
evaluating the generative, detective and prognostic abilities of the DDT under non-
stationary operating conditions. From the investigation it is evident that although
both implementations are able to learn the manifold of healthy data to some
extent over the entire RPM range. The investigation into the behaviour of the DDT
under varying levels of damage demonstrates that the implicit digital twin is
significantly more sensitive to deviations from healthy behaviour compared to the
VAE. It is suspected that this behaviour stems from the VAE’s optimisation of the
least squared error as opposed to the GAN’s adversarial loss. In addition both DDT
implementations seemed to be robust to the non-stationary nature of the data.
Following the investigation on the Gearbox dataset, subsequent experiments will
focus on demonstrating the capabilities and performance of the Implicit DDT.

Capability assessment:
+ Detection—From Fig. 10 it is evident that both the implicit and explicit DDT are
able to detect the presence of a fault when trained only on healthy data.

+ Prognostics—From Fig. 11 it may be observed that both DDT health metrics
increase proportionally to the severity of the fault.

+ Robustness—As the faults detected in this investigation occurred at various
RPMs it is clear that the learned health indicators are invariant to the operating
condition.
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+ System Identification—From Fig. 6 it is evident that although the models are
only trained on the acceleration data waveforms, the spectra of the sampled
waveforms is consistent with the spectra of the real data. Albeit more so for the
GAN than the VAE.

4.2. CMAPSS

4.2.1. Dataset overview

The turbofan dataset consists of simulated sensor data of the entire life-cycle of
multiple turbofan assets. The data is generated using the Commercial Modular
Aero-Propulsion System Simulation (CMAPSS) developed by NASA. Each example
within the dataset is a time series signal of various sensor data and operating
condition data [36] which is measured periodically over the life-cycle of the
turbofans.

4.2.2. Simulation

The dataset consists of a number of simulated turbofan engines each with varying
internal initial conditions. This is to simulate real world engines which will
invariably have different initial wear due to manufacturing differences. In
addition, the sensor data is severely corrupted by noise. The data from the
simulation which is included in the dataset is not vibration data but rather sensor
data from the aircraft such as fan speed, pressures and turbofan temperatures.
Each full run to failure trajectory of a turbofan is considered to be a single
temporal observation which consists of a number of observations over time.

4.2.3. Dataset characteristics

Effectively, CMAPSS dataset contains 4 distinct datasets of varying complexity and
failure characteristics. Datasets 1 and 3 represent only one operating condition.
That is, all data was collected at constant altitude, Mach Number and throttle.
Datasets 2 and 4 contain data from turbines at varying operating conditions
throughout the life of the engine. In datasets 1 and 2 the only failure mode is high
pressure compressor degradation whereas datasets 3 and 4 contain an additional
failure mode—fan degradation. The characteristics of the datasets are summarised
below in Table 2 [35].
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Table 2. Characteristics of the CMAPSS datasets.

Dataset No. of Failure modes No. of Operating Conditions
#1 1 1
#2 1 &
#3 2 1
#4q 2 3]

4.2.4. Investigation

For the CMAPSS dataset the implicit DDT implementation was evaluated on all
four sub-datasets, encompassing each possible failure mode and operating
condition. It is hypothesised that a GAN trained on the first part of the time series
data will be able to represent the state of damage within the system as well as
learning the behaviour of a healthy asset. To investigate this, a GAN was trained
on the sensor values® of the first 20 cycles of the Turbofan dataset (first 5-10% of
life), as these are assumed to be representative of healthy turbofans. This is
opposed to conventional approaches that use full run to failure cycles in order to
determine a HI [35], [36].

Once trained, it is possible to sample generated sensor responses from the GAN at
various operating conditions. As the turbofans degrade over time the Health
Indicator of the GAN should decrease once a fault manifests and continue to
decrease as the turbofans degrade to the end of life.

4.2.5. System identification

In order to determine whether the GAN is indeed able to capture the sensor
response of the CMAPSS engines under the various operating conditions the
simulated and real sensor values are compared in Fig. 12. From Fig. 12, which is a
histogram of the sensor values over all times, it is evident that the GAN is able to
learn the distribution of healthy data for engines with one or multiple operating
conditions.
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Fig. 12. Histogram of sampled sensor values from GAN compared with real healthy and
unhealthy sensor values from datasets 3 and 4.

4.2.6. Condition monitoring

In addition to learning the distribution of healthy data, the GAN is also able to
provide a non-parametric HI which is indicative of the current level of degradation
in the system through the discriminator. In order to evaluate the efficacy of the
GAN in generating a HI, the health of the DDT may be compared to the HI
produced by the RULCLIPPER algorithm of Ramasso [35] which currently is the
best performing algorithm on the CMAPSS dataset. To this end, Figs. 1 and g in
Ramasso [35] are recreated in Fig. 13, Fig. 14. In Ramasso [35] the three cases P1
(Run 178 Train Dataset #4,% P2 (Run 100 Train Dataset #4) and P3 (Run 1 Test
Dataset #4 RUL:22) are shown in Fig. 13. Each were selected to demonstrate a
pathological limitation of the health indicator used by the RULCLIPPER
algorithm:
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+ P1: Ramasso [35] noted the “Healing” behaviour of the asset at ¢ = [225, 275,
which was attributed to a change in the operating conditions. The healing
behaviour is to be expected as the authors of Saxena et al. [40], from which the
dataset stems, explain that in the creation of the data the fault severity is a

function of the operating conditions.

+ P2: Ramasso [35] observed that the estimated HI for this engine increases as
the engine degrades as opposed to decreasing. This behaviour is not observed

for the GAN output and the HI correctly decreases as expected.

+ P3: Ramasso [35] observed a large variance in the HI between ¢ < [10, 75|. This
phenomenon was not observed in the HI generated by the GAN.
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Fig. 13. Recreation of Fig. 1 from Ramasso [35] compared to the GAN Health Indicator (HI).
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Fig. 14. Output of the GAN Health Indicator (HI) for all four CMAPSS datasets over engine
life cycle. Data used for training the GAN is highlighted in green. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9 of Ramasso [35] displays all the HI outputs for the fleet of dataset #2. It may
be observed that the output of the GAN shown in Fig. 14 is visually similar despite
the fact that it was only trained on 8% of the dataset as opposed to using the full
dataset. One clear difference between the GAN output and the HI from Ramasso
[35] is the behaviour of the HI in the beginning of life. The HI from Ramasso [35]
is obtained via least squares minimisation in order to fit the health index to the
functional form

HI = 1-exp(“Eit), ¢ € [0.05T:,0.95T;). (11)
This is opposed to the GAN HI, which does not assume a functional form for the

HI. A limitation of the loss minimised by Ramasso [35] is that the model is
constrained to generate a HI of a fixed functional form e.g. exponential as in Eq.
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(11). This is problematic as the assumed functional form may not be representative
of the true degradation pattern of the data.

The degradation pattern of the CMAPSS dataset is given in Saxena et al. [40],
where the true health indicator HI is defined as:

HI = min(m g, mpgpc, muer, meer), (12)

where 'm pun, mupc, mupr, meer| correspond to the stall margins of 4
components—the two failure modes from dataset #4 are Fan failure and HPC
(High-Pressure Compressor). The failure modes are characterised by flow f(t) and
efficiency e(t) parameters defined as:

e(t) =1 —d. — exp(a.(t)t"") (13)
f(t) =1 —ds —exp(as(t)t*") (14)

where d. and d; are random initial wear parameters defined by the generalised
exponential wear equation, w = Ae”® . It follows that degradation trajectories
defined by Egs. (13), (14) could produce a similar pattern to the trajectories shown
in Fig. 14 as the HI produced by Eq. (12) would remain constant until the wear of
the degrading component becomes larger than the initial wear of all the other
components [14].

4.2.7. Data manifold

It is expected that the GAN is able to capture the manifold of healthy data and be
able to represent the manner in which the observed data deviates from the learned
manifold. In order to ascertain whether the GAN is indeed able to distinguish
between different failure modes it is useful to visualise the embedding of
degradation trajectories in the feature space of the last layer of the GAN
discriminator. This visualisation is given below in Fig. 15 using the first two
principal components to project the high dimensional space into 2D. By inspection
it is clear that the GAN learns a representation able to automatically differentiate
between the failure modes. Hence the Discriminator architecture once trained can
easily be used for diagnostics if labels are available by simply using the weights of
the DDT discriminator and replacing the 1 dimensional output layer with a K
dimensional output layer which can then be fine tuned (where K corresponds to
the number of failure modes).
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Fig. 15. 2D PCA plot of the embedding learned by the last laver of the GAIN discriminator (8
hidden units).

4.3. Discussion

The CMAPSS dataset was primarily selected to investigate the ability of the DDT
to represent the state of damage of an asset over its operational lifespan. From this
investigation it is clear that the DDT is able to produce a health indicator which is
consistent with the expected degradation profiles of the dataset without using
entire run-to-failure examples nor assuming a functional form for the degradation.
Moreover the DDT is able to generate sensor data which is indistingunishable from
healthy sensor data for a number of different discrete operating modes. This
investigation has also demonstrated that the implicit DDT learns a representation
of health which is sensitive to the nature of the deviation, allowing it to be used as
a diagnostic tool.
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Capability Assessment:

+ Detection—From Fig. 14 it is clear that when trained less than 5% of the initial
life of the asset the DDT is able to maintain its healthy state until the initial
inception of the fault at which the health indicator begins to decrease rapidly.

+ Prognostics—From both Fig. 13, Fig. 14 it is clear that the DDT is able to output
a health indicator that decreases proportionally to the level of degradation
present.

+ Diagnostics— From Fig. 15 it is demonstrated that the embedding learned by
the DDT is able to map different between degradation trajectories into different
regions of the learned embedding space.

+ Robustness—From Fig. 14 it is apparent that the DDT’s health indicator is
invariant to the varying operating conditions and allows for health to be
compared over various operating conditions.

+ System Identification—From Fig. 12 it is clear that the DDT is able to learn the
distribution of healthy data under both stationary and non-stationary operating
conditions. In addition it is apparent that mode collapse has not occurred as all
operational modes are learnt by the DDT.

5. Real experimental data: IMS bearing dataset

The IMS dataset [34] was selected to evaluate the performance of the DDT ona
real asset over its operational life. In addition the IMS data was selected to
investigate the behaviour of the DDT when producing multiple independent health
indicators from different sensors on the same asset. The IMS dataset contains the
vibration signals of a shaft with four bearings on it over its entire lifespan. Of the
four bearings, B3, B4 failed at the end of the test and the other two bearings (B1,
B2) remained healthy until the experiment was stopped.

The experimental set up consists of a rotating shaft which is connected to four
Rexnord ZA-2115 bearings [34] corresponding to B1, B2, B3 and B4 as shown in
Fig. 16. Each of the four bearings were monitored by two PCB 353B33 High
Sensitivity Quartz ICP accelerometers [34]. Each accelerometer took 1 s
acceleration recordings every 20 min, at a sampling rate of 20480 Hz. The
accelerometer Si observed vibrations in the x direction and S2 observed vibrations
in the y direction. During the experiment the shaft was driven at a constant
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angular velocity of 2000 RPM and was loaded by 26.7 kN distributed over B2 and
B3. According to Qiu et al. [34] the experiment was carried out for 35 days in total
and was stopped when ‘a significant amount of metal debris was found on the
magnetic plug of the test bearing.’ The state of each bearing at the end of the trial
is tabulated in Table 3.

Radial Load 26.7kN
y
B1 YYIYYYY YYYYYY B4 S2
- (O
; = = S

Fig. 16. Diagram of IMS Bearing Dataset experimental set up.
Table 3. IMS Bearings’ health at end of test.

Component Healith Nature of Failure

B1 Healthy —

Bz Healthy —

Ba Failed Inner race defect

B4 Failed Roller element and outer race defects

5.0.1. Data preprocessing

The bearing dataset consists of 2156 observations of length 20480 per sensor per
bearing over 35 days. This was considered in [11] to be insufficient for data driven
prognostics, however it is proposed that this dataset should be sufficient as it
corresponds to 71867 observed revolutions per sensor per bearing—as the
revolutions represent the inherent periodicity which the GAN needs to learn.

In order to present the data to the GAN, the one second signals of 20480
observations are randomly cropped to length 4080 using a randomly positioned
window over the entire 20480 signal. This is to reduce computational time and to
improve the diversity of the training samples. Once again, the GAN was only
trained on healthy data (first 5 days of asset life).
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5.1. IMS dataset results

For the IMS dataset each bearing was coupled with 2 DDTs, one for each sensor
(in total 8 DDTs). This was done to investigate the level of agreement between two
independent DDT’s trained on the same component but with different sensors. In
addition, as GAN training is path dependent, training two DDTs on the same
underlying asset with different sensors gives an indication of the sensitivity of the
produced HI to the training process.
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Fig. 17. PSD for (a)-(b) bearing 1 sensor 1 and (c}-(d) bearing 3 sensor 3 depicting the GAN
predicted spectrum, average, healthy and unhealthy PSD.

5.1.1. Convergence evaluation

To demonstrate that the GAN is able to capture the manifold of healthy data,
consider the PSD given in Fig. 17 for bearing 1 sensor 1 and bearing 3 sensor 3. It is
clear, from Fig. 17, that the spectrum of the vibration signals generated by the
GAN are essentially indistinguishable from the spectrum of the true healthy
vibrations. It is also evident from Fig. 17 that the spectrum for unhealthy data
deviates from both the healthy real and generated signals. Evidently, the GAN is a
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representative DDT instance of the asset as captured by the information of the
respective sensors. To conclude the study we investigate and demonstrate that the
GAN is able to track continuous degradation of assets, which are the four bearings
in this case. This is in contrast to the fixed levels of damage investigated previously

on the simulated gearbox dataset.
5.1.2. Degradation tracking

5.1.2.1. Bearing 1

Bearing 1 did not fail during the run till failure experiment, this is consistent with
the HI in Fig. 18a of both GANSs. In Fig. 18a it is clear that the HI decreases from
0.85 to around 0.6, over the course of the experiment until near total system
failure. In the time directly preceding total system failure the HI on sensor 1 drops
significantly to around 0.2, this is most probably due to the system approaching
failure which results in unhealthy behaviour elsewhere in the system leaking over
into the other bearings.
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Fig. 18. Health indicator over the duration of the entire experiment.
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5.1.2.2_ Bearing 2

Bearing 2 displays similar behaviour to bearing 1 as both bearings did not fail
during the run to failure experiment. It is clear in Fig. 18b that the HI decreases
from around 0.75 near the beginning of life to around 0.6, near total system
failure. In the time directly preceding total system failure the HI drops to near
zero. As bearing 2 is closer to the failed bearings (3,4) than bearing 1, it is expected
that the unhealthy response before total system failure is significantly more
apparent in the HI of bearing 2 than bearing 1.

5.1.2.3. Bearing 3

Bearing 3 experienced an inner race defect which is clearly represented in both
GANSs as the HI degrades from around 0.75 to 0.2 near the end of life and falls to
zero immediately before total system failure. Both GANSs display a similar output
over the entire bearing life, with both HIs decreasing monotonously to zero over
the bearing life.

5-1.2.4. Bearing 4

Bearing 4 failed due to both an outer race and roller element defect, the
degradation of the bearing is well represented in the HI for the GANs for both
sensors. Although the correlation between the output of the GANs for both sensors
is the weakest for bearing 4 compared to the other bearings. There is still a clear
pattern to the degradation where the HI initially falls sharply then recovers and
degrades again. In the initial investigation by the researchers who compiled the
IMS dataset the researchers also found a “healing” phenomenon which they
attributed to the damage propagation procedure the fault [34].

Evidently, the GAN trained on healthy data can be interrogated continuously to
estimate the condition of an asset and hence track asset degradation, delivering a
DDT instance that can be deployed for PHM online monitoring or at in-field on
the Edge Deployment.

5.2. Comparison

In order to verify the performance of the GAN based DDT on the bearing dataset,
the performance of the model is compared to two state of the art signal processing
techniques. Namely, cyclostationary improved envelope spectrum (IES) and
minimum entropy deconvolution — spectral Kurtosis — normalized squared
magnitude of the squared envelope spectrum (MED-SK-NES). These two
techniques are explored in detail and benchmarked on the same dataset in [1].
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For comparative purposes the two techniques are implemented for both the
bearing fundamental train frequency (FTF) and the inner ball pass frequency
(BPFTI). It should be noted that the implementation of these two techniques
requires prior knowledge regarding the geometry of the bearing as well as a pre-

emption of the nature of the fault which will occur.
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Fig. 19. MED-SE-INES degradation indicator over bearing experiment for both the
fundamental train frequency (FTF) and the inner ball pass frequency (BPFI).

From Fig. 19, Fig. 20 it is observed that the signal processing based methods are
indeed able to detect the faults. However, it is clear that the indicators are
significantly less sensitive to the initial degradation than the proposed DDT based
approach. Moreover, the nature of the fault dictates which of the fundamental
frequencies (BPFI, FTF) will carry the fault signal. For bearing 3 the BPFI based
metric is more sensitive for both methods and for bearing 4 the FTF is more
sensitive for both methods.
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Fig. 20. Cyclostationary IES degradation indicator over bearing experiment for both the
fundamental train frequency (FTF) and the inner ball pass frequency (BPFI).

Although both methods clearly demonstrate anomalous behaviour near the end of
life they do not demonstrate the early degradation behaviour observed in Fig. 18c
and d.

5.3. Discussion

It is clear that the DDT is able to produce a health indicator which is consistent
over numerous sensors and demonstrates a clear degradation trend. This
behaviour is most apparent in Bearing 3 where the outputs for the health indicator
for the different sensors is almost identical. For Bearing 4 although the HIs do not
overlap entirely the overall form of the trend is consistent. From the bearing
investigation it is clear that a DDT can be implemented ‘on-line’ with no historical
data from similar assets or fleets or prior information regarding the asset
geometry.
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The DDT based indicator was compared to advanced signal processing techniques
and demonstrated higher sensitivity to the faults. Moreover the DDT provides a
monotonically decreasing degradation metric near the end of life as opposed to the
signal processing based approaches which do not provide degradation trends
which monotonically decrease from near end of life to end of life. These
characteristics of the DDT make it a powerful choice for prognostics applications
as the prediction of remaining useful life requires a metric which reaches a
minimum immediately before failure.

The ability of the DDT to embed different failure modes into different regions of
its final layer embedding is also demonstrated in detail in Baggerchr et al. [2].

6. Discussion

This study demonstrated the role deep learning can play in PHM to construct
Deep Digital Twin (DDT) instances that are representative of the information
manifold of healthy data embedded in the data captured by a sensor network of
the asset for two synthetic datasets and one real dataset. In particular, we
identified the generative adversarial network (GAN), as a well suited deep learning
framework to construct the Deep Digital Twin. For the synthetic gearbox dataset,
we demonstrated that the generative adversarial network (GAN) is better suited to
a variational auto-encoder (VAE) to instantiate DDT instances.

In addition, the discriminator used during GAN training has learned to
differentiate probability densities from the healthy probability density by
considering density ratios. This allows for the discriminator to be used as a Health
Indicator (HI), to track and monitor the degradation of an asset over its life-cycle
as well as identify various failure modes within a fleet. This was demonstrated on a
synthetic gearbox dataset for discrete levels of damage as well as the IMS bearing
dataset for actual continuous degradation of an asset.

The DDT is a low-cost alternative to expensive physics-based digital twin instances
with the additional benefit of providing a HI. Due to the implicit nature of the
DDT and its provision of a HI, the methodology enables asset users to implement
their own digital twin based asset management and maintenance strategies
without OEM support over a heterogeneous fleet of assets.

In Fig. 21 the role of the DDT in PHM is demonstrated in the situation where only
nominal operational data is available and illustrates how the method enables
additional PHM steps such as time to failure and semi-supervised diagnostics
when sparse failure and run-to failure data is available.
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6.1. Future work

Although the DDT framework has been introduced and evaluated in terms of
Variational Autoencoders for the case of explicit probabilistic models and
Generative Adversarial networks for implicit probabilistic models. There do exist
other deep generative models which are suitable for DDT implementations whose
performance has not been investigated in the DDT setting. Some examples which
are:
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Explicit deep generative models:
+ Masked Autoregressive Flows (MAF) [33].

+ Non-linear Independent Components Estimation (NICE) [8].

+ Real-valued Non-volume Preserving transformations (real NVP) [9]
+ The Neural Autoregressive Distribution Estimator (NADE) [23].

+ Pixel Recurrent Neural Networks (Pixel RNN) [32].

+ Wavenet [31].

Implicit deep generative models:
+ Deep Generative Stochastic Networks (GSN) [3].

+ Tnfo-GAN [7].
« BIGAN [10].

+ Noise-contrastive Estimation [17].

Even though the DDT is able to produce an estimate of the health of the asset
being monitored, it is imperative that the use of the health indicator is extended
into a prognostics framework for predicting time till failure. This may be done by
using the health indicator as a change-point detection algorithm in order to
correctly train supervised time till failure models without a piecewise linear
heuristic as used in Heimes et al. [18].

In addition when using a DDT in practise it may be desirable to interrogate the
source of the degradation, to this end it may be useful to investigate the counter-
factual reasoning abilities of a DDT.

It has been shown that the DDT is able to discern between different failure modes.
In order to use these learned representations for diagnostic purposes it is
necessary to explore semi-supervised learning approaches which may be used for
fault diagnosis. These approaches would use the learned embeddings of the DDT
and sparse labelled failure data to ‘annotate’ the failure classes within the learned
embedding.
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Appendix A. GAN Training for DDT instances

GAN training is still a developing and active field in Deep Learning research since
GANss are notoriously hard to train. For example, it is well known that the
standard GAN training method may not converge as expected [15]. As the
performance of the GAN is directly dependent on the convergence characteristics
of the GAN training, it is necessary to modify the standard GAN training, in order
to successfully train the GAN to be useful as a DDT instance. These modifications
are:

1. Modification to the Generator loss function [29], [43].

2. Addition of a zero-centred gradient penalty [25].

3. Use of simultaneous gradient descent [24].

4. Use of Spectral Normalisation [28].

5. Use of Projection Discriminator for conditional data [27].

6. ReLU Latent space [4].

All modifications except 1 and 2 have been widely reported as modifications to
standard GAN training when considering modern GAN architectures [4], [25]. The
first non-standard modification used is to change the Generator loss function to
directly minimise the KL divergence Dy, (¢|p), during training, as given by:

Dy(Gy(2)))

1D Galz)) (15)

%:(0,6) = —log
The second non-standard modification used is a zero centred gradient penalty of a
similar form to the R2 gradient penalty from Mescheder et al. [25]. However,
unlike the R2 gradient penalty in Mescheder et al. [25], the gradient penalty used
for the GAN aims to encourage the discriminator output to be invariant to small
changes within the latent space. The R2 penalty for the GAN is given by:

R2gan = ||[VaDg(G4(2))|] (16)

This R2 penalty cannot be applied to the Generator as this would result in it
producing samples which are invariant to z. To this end the R2 penalty is applied
as a one-sided gradient penalty on the discriminator [25], resulting in the
modified GAN training loss, which is given by Eq. (17) for the discriminator and by
Eq. (18) for the generator. Note A is a regularisation constant that needs to be
found by hyper-parameter search.
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ZLp(0, ) = —3log(Dy(x)) — 3log(1 — Dy(Gy(2))) + Al|V,Dp(Gy(2))| (7)

Z5(6,¢) = —log a2 (18)
Although these modifications significantly enhance the probability of successful
GAN training it does not guarantee the absence of mode collapse, which would be
catastrophic for our application of the GAN. It is therefore pertinent to confirm
the proper training of the GAN. See Brock et al. [4] for a full investigation into the
instabilities of GAN training.

A.1. Detecting mode collapse

As pointed out, GAN training is susceptible to mode collapse, which is reflected by
a generator, G(z, ¢), failing to produce diverse samples regardless of the value of
the random latent variable z. G(z, ¢) may even return the same sample
irrespective of the value of the random latent variable z.

One metric to quantify mode collapse introduced by Metz et al. [26] is known as
Inference via Optimization (IvO). IvO quantifies the ability of the generative
model to generate a sample from the training set by finding the location z,,, in the
latent variable space z which minimizes the recreation error

Lo = | Xopt — Xreat||2 (19)

where
: 2
Zopt = g, | |G(za 0,5} = Xreal ||2+

IvO is able to detect mode collapse as it is expected that the generator will not be
able to create samples from regions in the training data where mode collapse has
occurred. To illustrate mode-collapse detection using IvO, consider the problem of
fitting a disconnected Gaussian mixture distribution. Two GANs were trained on
the Gaussian mixture, one which experienced mode collapse, and another which
did not. When the optimisation is run on the GAN which experienced mode
collapse it is clear that there are domains where the GAN is unable to recreate the
real data (Fig. 22a). On the other hand for a GAN which did not suffer from mode
collapse it is clear that the Generator is able to accurately recreate the real data
over the entire data manifold, which indicates that the Generator is able to
produce samples from the entire distribution of healthy data (Fig. 22b).
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Fig. 22, GAN trained on Gaussian mixture comparing effects of mode collapse.

Although it is still possible to visually observe the GAN’s coverage of the data
domain in three-dimensional space, this will not be possible in higher dimensional
spaces. Therefore in order to determine whether mode collapse has occurred or
not it is useful to plot the histogram of recreation errors. The intuition is that each
additional mode of the histogram of recreation errors should correspond to a
mode which has not been captured by the generative distribution of the Generator,
this behaviour is visible in Fig. 23 for the GANs trained on the mixture
distribution.
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Fig. 23. Effect of mode collapse on histogram of Iv0 recreation error.
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Although IvO should be sufficient to detect mode collapse on conventional
problems—for vibration data, the RMSE between a real signal and a recreated
signal is not necessarily a good measure of how well the GAN approximates the
training data. The reason for this is the GAN may be able to recreate the large scale
components of the vibration signal very well, resulting in a small RMSE between
the real and recreated signals. However, this does not guarantee that other
components of the signal—which may have smaller magnitudes—are recreated.

In order to compare recreated and observed vibration signals, it is suggested that
instead of using the RMSE between the two signals in the time domain, the IvO
metric should rather be based on the distance between the power spectral
densities (PSD) given in Eq. (9).

Appendix B. Network architectures and hyper-parameter
choices

B.1. Gearbox dataset

Both the VAE and the GAN used for this investigation used three convolutional
layers. Both networks used the ReLU activation function for all layers except the
output. The encoder of the VAE was constrained to represent the latent variable
space z as a 200 dimensional conditionally independent Gaussian distribution.
Both networks were trained using Adam [21] with a learning rate of 0.0005
exponentially decayed over training. The GAN was trained using simultaneous
gradient descent coupled with the R2 gradient penalty (A = 3.5 halved every 2500
updates). Both networks were trained for a total of 2000 epochs. The noisy
rotational speed was included into the networks as a conditional variable y (See
Table 4, Table 5).
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Table 4. GAIN model architecture for the gearbox dataset.

Layer GAN Generator GAN Diseriminator
Input z=[200 = 1],y = [1 = 1] x = [2048 = 1],ruy = [1 = 1]
1 Densegyg: (RellT) Convgs.o5)| seridejz) (ReLTT)

2 Deconttygg..o5) siride=1] (ReLlT) Convgy.op)| siridejz) (ReLTT)

3 Deconvgy..a) seride—(2) (BeLU) Conttyas..ps)| seride|s) (ReLT)
4 Deconuvys.. s seride— 1 (ReLU) Conwgzg.. 05| Seride)s) (ReLT)
5 Deconvy .95 seride—4) (Tanh) Densesss (RellN

6 Dense) (Sigmoid)

Table 5. VAE model architecture for the gearbox problem.

Layer VAE Decoder VAE Encoder

Input == [200 x 1],y = [1 x 1] x = [2048 x 1]

1 Densegyz(Rell) Conugy.. 25/ stride|2) (ReLU)

2 Deconvygg. a5 stride=1) (ReL1T) Convgy. o5 stridejs) (ReL)

3 Deconvgy. 25 stride—4 (ReLU) Conyzs . og)| strige s (ReL)

4 Deconvsy . 35/ stride—4) (ReLU) Coniggg. 25| stride|s| (ReLU)

5 Deconvy . 25 stride—(4) (Tanh) p = Dense;(Tanh):e = Dense; (Softplus)
6 Dense; (Sigmoid)

B.2. CMAPSS dataset

For the CMAPSS dataset the GAN was trained using simultaneous gradient
descent coupled with the R2 gradient penalty (A = 3.5 halved every 2500 updates).
The network was trained for a total of 2000 epochs using Adam [21] with a
learning rate of 0.0005 exponentially decayed over training. Z was sampled from a
4 dimensional conditionally independent Gaussian latent variable space. The 3
flight conditions are included into the network as conditional variables y (See
Table 6).
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Table 6. GAN model architecture for the C-MAPSS.

Layer
Input
1

2

GAN Generator
z=[4 = 1],y =[3 = 1]
Denseg(Belll)
Denseyg (Rel1T)
Denses (RellT)
Densegy (RellT)

Densey (Linear)

B.3. IMS bearing dataset

GAN Diseriminator
x=[21x1],y=[3 = 1]
Densegy (Rel1T)
Densesy (RelTT)
Denseys (RelllT)
Denseg(Rell)

Densep (Sigmoid)

The GAN used for the bearing investigation had four convolutional layers with
ReLU non-linearities in all layers bar the last. The GAN samples from a 100
dimensional conditionally independent Gaussian latent variable space. The
network was trained using simultaneous gradient descent coupled with the R2
gradient penalty (A = 3.5 halved every 2500 updates). The GAN was trained for a
total of 2000 epochs using Adam with a learning rate of 0.0005 exponentially
decayed over training (See Table 7).

Table 7. GAN model architecture for the IMS Bearing problem.

Layer
Input
i

2

GAN Generator

z = [100 x 1]
Denseypus(Rell)
Deconvygs.. a5/ stride—4) (ReLU)
Deconvgy. 25 stride=4) (ReLU)
Deconvay . a5/ stride—4 (ReLU)

Deconvy . g5 strige— (Tanh)

GAN Discriminator

x = [4096 x 1|

Convsg . 35| sride(z) (BeLU)
Conugy. 26|| Stride|3] (EeLll)
Clonuyag.. o5 seride(s) (ReLlT)
Convasg.. 25| stride)s) (ReLl)
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