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Recurrent Neural Networks (RNNs) are variants of Neural Networks that are able to

learn temporal relationships between sequences presented to the neural network. RNNs

are often employed to learn underlying relationships in time-series and sequential data.

This dissertation examines the extent of RNN’s memory retention and how it is influ-

enced by different activation functions, network structures and recurrent network types.

To investigate memory retention, three approaches (and variants thereof) are used. First

the number of patterns each network is able to retain is measured. Thereafter the

length of retention is investigated. Lastly the previous experiments are combined to

measure the retention of patterns over time. During each investigation, the effect of

using different activation functions and network structures are considered to determine

the configurations’ effect on memory retention.

The dissertation concludes that memory retention of a network is not necessarily im-

proved when adding more parameters to a network. Activation functions have a large

effect on the performance of RNNs when retaining patterns, especially temporal patterns.

Deeper network structures have the trade-off of less memory retention per parameter in

favour of the ability to model more complex relationships.
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Chapter 1

Introduction

Neural networks (NNs) have been described as universal approximators by Hornik et al.

[28]. From a theoretical standpoint, NNs have no constraints on what can be modelled

when the appropriate input, weights and architecture is defined. However, this theorem

does not cater for the complexity of learning the parameters or architecture required.

Failings of NNs are described by Hornik et al. [28] as a failing in learning, incorrect

architecture or a lack of relationship between the input and output mappings. However,

multi-layer perceptions do not have the ability to remember information from previous

patterns which makes it ill-suited for time series (temporal) predictions.

Recurrent Neural Networks were first introduced in 1986 by Rumelhart et al. [42]

to allow NNs knowledge retention of previous observed patterns. Since the RNN can

infer knowledge from past observations, the reasoning was that the recurrent connections

would be able to learn patterns in temporal (sequential) data where current observations

are reliant on previously observed data points. Caveats of simple RNNs were soon

discovered. Training RNNs using gradient based optimization methods resulted in either

the gradient vanishing or the network weights to grow disproportionately large which

had an adverse effect on the effectiveness of these networks [26].

To address these shortcomings, the Long-Short Term Memory (LSTMs) unit was in-

troduced by Hochreiter and Schmidhuber in 1997 [26]. LSTMs remove the vanishing

gradient problem of back propagation through time, by introducing gates which control

1



Chapter 1. Introduction 2

the flow of internal information within the LSTM unit, also referred to as the cell’s state.

LSTM’s are able to retain state information or forget irrelevant stored information when

it is required. However, maintaining and forgetting state information is computation-

ally expensive when compared to other more simplistic RNNs, which may lead to an

excessive number of training iterations.

Gated Recurrent Unit (GRU) was introduced as an alternative to LSTMs. GRU’s reduce

the number of parameters required by LSTMs while still retaining the same capabilities

[11][12].

The precise impact of different unit types on the memory capacity of RNNs is not well

studied. Thus it is difficult to justify using a specific recurrent unit structure as opposed

to another. Thus, this dissertation serves to explore different recurrent units and to

compare how effective each parameter in the network is utilised for memory capacity

and retention.

1.1 Motivation

RNNs were invented to allow NNs to be effectively used for solving temporal learning

problems [11][26][42]. However, it is not well known how far back in time steps these

networks are able to retain information or how much can be retained. Reasoning about

the effectiveness of RNNs information retention have been more indirectly assessed via

overall model performance. Usually architectures are iteratively evolved until the per-

formance of the network provide the satisfactory performance.

Performance of the RNN itself is problem dependent as well. If an RNN has a high per-

formance on a temporal set which only contains short-term dependencies, no conclusions

on the retention or memory capacity of longer term dependencies can be inferred.

1.2 Objectives

This dissertation is a study of the duration of memory retention and capacity of RNNs.

It is also investigated what effect different activation functions and training algorithms



Chapter 1. Introduction 3

have on RNNs with regards to memory retention and capacity. Additionally, the effect

of increasing the input dimension on these metrics is also investigated.

The primary objectives of this dissertation are summarised as follows:

• Determine the number of patterns that can be retained by the RNNs (memory

capacity)

• Determine the length of the sequence that can be retained by the RNNs (memory

length)

• Test the frame capacity of RNNs. Where frame capacity refers to finding a rela-

tionship between the length of the sequences and the number of sequences retained.

1.3 Publication Derived from the Dissertation

From the research done within this dissertation, a single journal article has been pro-

duced titled ”In Time Memory Capacity of Recurrent Neural Networks”. The produced

journal article has been submitted to Elsevier to be reviewed and possibly published

under the Neurocomputing journal 1.

1.4 Dissertation Outline

The rest of the dissertation is structured as follows: First the relevant theories on the

RNNs which are considered in this dissertation is discussed in chapter 2. Previous

works done on memory retention and capacity within RNNs is discussed in chapter 3.

Following the background on neural networks, memory retention and capacity, various

training algorithms are discussed in chapter 4. Background information on performance

metrics for neural networks are then discussed in chapter 5. Thereafter the experimental

setup for the various cases investigated are discussed in chapter 6. The experimental

findings and discussion is presented in chapter 7. Finally, the findings of this dissertation

are summarised in chapter 8.
1The home page of the Neurocomputing journal can be found here https://www.journals.elsevier.

com/neurocomputing

https://www.journals.elsevier.com/neurocomputing
https://www.journals.elsevier.com/neurocomputing


Chapter 2

Background: Neural Networks

This chapter provides a detailed description of RNNs, starting with NN fundamentals,

followed by a discussion of previous work done relating to memory retention. First the

concept of Neural Networks is discussed in section 2.1. Building on the NN fundamentals,

RNNs are discussed in section 2.2 accompanied by two classic architectures; the Jordan

RNN 2.2.1 and Elman RNN in section 2.2.2. More complex RNN Neurons follow in

sections 2.3.1 and 2.3.2 with a detailed discussion of the Long-short Term Memory

(LSTM) and the Gated Recurrent Units (GRU) respectively.

2.1 Neural Networks

The artificial neural network, more commonly referred to as a neural network (NN) is

a machine learning model that learns from labelled data ingested by updating weights,

combining these weights and adjusting thresholds for decision boundaries. The NN is

inspired by the functioning of neurons and synapses within the brain of biological life

such as humans [40]. Within a neural network, neurons are commonly referred to as

nodes and synapses as edges in literature [30].

For a neural network to learn, a typical strategy that is followed is back-propagation of

an error signal using gradient descent which was first invented by Werbos et al. in 1974

[47] and popularised by Rumbelhart et al. in 1986 [42]. Back propagation of the error

4



Chapter 2. Background: Neural Networks 5

adjusts weights on the synapses intelligently as to improve future mappings of input to

expected output (details of which is presented in section 4.1.1).

2.1.1 Functioning of an Artificial Neuron

Neurons are simplistic units of computation. Input is received by multiplying the values

presented to incoming edges with the weight value associated with each respective edge.

The result of the products is summed together and presented to an activation function.

The activation function then produces a value that is fed along the output edges of the

neuron [30].

nety = (v · x + b) (2.1)

y = σ(nety) (2.2)

The functioning of the neuron is presented in equations (2.1) and (2.2) where x is the

input vector, v the weight vector, b the bias of a neuron, · element-wise multiplication,

σ represents the activation function which is typically non-linear and y is the output

[30]. The functioning of a neuron is also visually represented in figure 2.1.

Artificial neurons, as described earlier in this section, are combined together to form

neural networks. Neurons are divided into layers based on where in the structure they

occur in. These networks contain at least an input layer and an output layer, however

it is common practice to use one or more hidden layers. The architecture of a basic feed

forward artificial neural network is presented in figure 2.2.

2.1.2 Feed Forward Neural Network

The structure of a typical Feed Forward Neural Network (FNN) with one hidden layer is

presented in figure 2.2. In this figure, hidden nodes are represented by h1 up to hJ . Input

nodes by x1 to xI and output nodes as y1 to yK . Weights connecting a neuron i in the
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v1

x1

vixi

vI

xI

y

vI+1

-1

b

Figure 2.1: The internal workings of an artificial neuron [33]

input layer to a neuron j in the hidden layer represented as vji. A connection connecting

neuron j in the hidden layer to neuron k in the output layer is then represented by wkj .

v11

v21

vJ1

x1 w11h1 y1

v1i

xi

w1j

hj yk

v1I

xI wKJ

w1J

hJ yK

v1I+1

-1

wkj+1

-1

xI+1 hJ+1

Figure 2.2: The architecture of a basic artificial neural network [18]

A FFNN is the connection of many neurons in layers. A typical FFNN consists only of

three layers namely: input, hidden and output layers. However, many hidden layers can

be used. The resulting activation values from one layer is passed to the next, applying a
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weight to each neuron’s activation value. Thus feeding the information from the input

layer across the network to output layer. To calculate the output of a neuron yk for a

single pass through the network using input x and the output vector h of the hidden

layer; the equation (2.3) is used. Equations (2.3) utilises equation (2.1). Here σyk is the

activation of neuron yk and σhj the activation of hidden neuron hj .

yk = σyk

(
netyk

)
(2.3)

= σyk

( J+1∑
j=1

wkjσhj (nethj )
)

(2.4)

= σyk

( J+1∑
j=1

wkjσhj (
I+1∑
i=1

vjixi)
)

(2.5)

2.1.3 Introduction to Computational Graphs

Computational graphs are used to indicate the flow of a set of operations. Computa-

tional graphs are well suited to conceptualise the flow of operations of neural networks,

especially the more complex these neural networks become. The representation discussed

in this section follows the notation and standards used by Theano [6] and Tensorflow

[2]. The representation standard is also followed by Goodfellow et al. in their landmark

book Deep Learning [22].

A node in computational graphs represent a variable which can be scalar, vector, matrix,

tensor, or any other appropriate representation of a variable. Directed edges between

nodes represent operations. Multiple edges flowing into the same node from other nodes

represent a single operation. Operations only produce one output variable which would

then be represented as a node. Intermediate expressions, which are not named in the

algebraic representation of the operation, are named in the graph. To highlight these

expressions, they are expressed as u(i), indicating the i-th intermediate step.

An example of a computational graph for the functioning of a single neuron is given in

figure 2.3.
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x

product

V

u(1) u(2)

b

+
yσ

Figure 2.3: Computational Graph of a Neuron

In figure 2.3, x is the input vector and V is the weight matrix which are then combined

through a product operation to produce the intermediate step value u(1). A bias b

is added to u(1) which produces u(2). Thereafter an activation function σ is applied

resulting in the output value y.

A more condensed form of the computational graph language is then used to indicate

flow of operations at a higher level to keep the graph from becoming convoluted [22].

Instead of representing the weight matrices as nodes, the edge represents an operation

on xt that is parametrised by the weight matrix V. The computation on the edges

implies that the activation function will also be applied to the resulting set. The bias

variable also becomes a part of the input variable and is not represented explicitly. The

condensed representation of a single neuron would then be represented as in figure 2.4.

Vxt  yt

Figure 2.4: Condensed Computational Graph of a Neuron

2.1.4 Computational Graph of FFNN

A neural network can also be represented using a computational graph as in figure 2.5.

The computational graph of a FFNN is simplistic, however it is useful for expanding

intuition of state transition between the presentation of patterns to the network when

comparing against other architectures such as the recurrent neural networks.

Vxt Wht yt

Figure 2.5: Condensed Computational Graph of a FFNN
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2.2 Recurrent Neural Networks

Recurrent neural networks were first introduced by Rumelhart et al. [42], and designed

to keep track of the internal state of the network within the context layer. The premise

is that, since RNN’s keep track of their internal state, these networks would work well

with temporal data. The computational graph containing the unrolled operations of the

RNN is presented in figure 2.6, which illustrates the feedback of information over time.

Unrolling operations is the process of presenting the output ot−1 and the activation

vector ht−1 of the RNN at the previous time step t − 1 as inputs to the RNN at the

current time step t alongside the current input vector xt. At time step t, ht is the

current activation vector of the hidden layer, V is the weight matrix between input and

hidden layers. U is the weight matrix between hidden state transitions and W is the

weight matrix between the hidden and output layer.

V

xt

W
U

ht

ot

V

xt-1

W
U

ht-1

ot-1

V

xt+1

W

ht+1

ot+1

LtLt-1 Lt+1

ytyt-1 yt+1

V

xt-1

W
U

ht-1

ot-1

Lt-1

yt-1

Unfold

Figure 2.6: Computational graph of a RNN

At time t the current input vector xt is fed into the RNN. The previous hidden activation

vector ht−1 is fed back into the hidden layer. The hidden layer first computes the

weighting of xt by multiplying the vector with the weight matrix V , then the same

is done between ht−1 and U . The resulting vectors are then combined and activation

functions σh in each hidden node are applied to produce the new hidden state ht. Since

the previous state is also used to produce the new activation, the network is able to learn
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from previous information. The ht vector is then fed into the output layer, weighted by

W . The output layer then produces vector ot by applying activation functions σo for

each node. Once the output of the network has been obtained, it is compared to the

desired vector yt using the computed loss Lt determined by some loss function.

The equations for the computational graph shown in figure 2.6 are presented in equations

(2.6) and (2.7). Bias constants bh and by, which are constant vectors usually set to 1

or −1, are also included in the calculation of the activation values in the hidden and

output layer respectively.

ht = σh

(
V xt +Uht−1 + bh

)
(2.6)

yt = σy

(
Wht + by

)
(2.7)

Expanding on this concept, two general types of simple RNNs can be formed, namely

the Elman and Jordan RNNs. Both simple RNNs follow the same state transition as

described in this section, however which layer’s state is transferred back differs.

2.2.1 Jordan Recurrent Neural Networks

The Jordan Recurrent Neural network was introduced by Jordan in 1986 [32]. In the

introductory work a three layer NN was presented which feeds the previous time step’s

activation vector weighted back into the hidden layer. The previous output of the net-

work is stored in a state layer [32]. Jordan reasoned that by explicitly representing the

temporal data of the previous time step, the network would be capable of determining

relationships between patterns at different time steps [32]. Plan vectors (weights be-

tween the hidden and state layer) would then contain, encoded within them, underlying

relationships in the temporal data. These weights are updated as the network trains

as they should continuously be updated over time [32]. The architecture of the Jordan

RNN is presented in figure 2.7. In this figure the previous output stored in z and the

effect thereof on the current hidden state, is controlled by the weight matrix U .
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v11

v21
vJ1

x1  w11h1 y1

v1i

xi wkj

w1j 

hj  yk

v1I

xI wKJ

w1J

hJ  yK

u11
uj1
uJ1

z1 

u1k
uJk zk

ujk

u1K

uJK

zK

v1,I+1 

1 

wk,j+1

1 

xI+1 hJ+1

ujk

Figure 2.7: Architecture of the Jordan RNNs

The state transition for the Jordan network is calculated using equations (2.8), (2.9)

and (2.10), as defined in section 2.2. Here z is the output vector of the network at time

step t− 1, and the value of z is referred to as the state space.

z = yt−1 (2.8)

ht = σh

(
V xt +Uz + bh

)
(2.9)

yt = σy

(
Wht + by

)
(2.10)

Building upon these equations, the computational graph of the Jordan RNN is presented

in figure 2.8

Vx W

U

h o L

yz

Z

Figure 2.8: Computational Graph of the Jordan RNNs
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2.2.2 Elman Recurrent Neural Networks

Elman RNN was introduced in 1990 by Elman [17]. Elman RNN’s store the previous

hidden state in a context layer instead of the previous output vector in the state layer

of the network as in the case of the Jordan RNN [17]. Elman’s reasoning for this is that

by using the previous output vector, as is the case with a Jordan RNN, the network

loses the ability to discriminate between relative and absolute temporal information.

Figure 2.9 presents the architecture of the Elman RNN. Here the U represents the weight

matrix between the context and hidden layer. This weight matrix controls the effects of

the previous hidden state on the current hidden state.

v11

v21

vJ1

x1  w11h1 y1

v1i

xi wkj

w1j 

hj  yk

v1I

xI wKJ

w1J

hJ  yK

u11

uj1 uJ1
z1 

ujj
u1j

uJj
zj

uJJ

u1JujJ zJ

v1,I+1 

1 

wk,j+1

1 

xI+1 hJ+1

Figure 2.9: Architecture of the Elman RNNs

The Elman RNN is fully defined by equations (2.11), (2.12) and (2.13).

z = ht−1 (2.11)

ht = σh

(
V xt +Uz + bh

)
(2.12)

yt = σy

(
Wht + by

)
(2.13)
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In equations (2.11), (2.12) and (2.13); z represents the output vector of the hidden layer

at time step t−1, also known as the context layer [17]. This contains the previous hidden

state of the current layer into which it is fed, with the effects thereof controlled by the

weight matrix U.

Building upon these equations, the computational graph of the Elman RNN is presented

in figure 2.10

Vx W

U

h o L

y
zzzzz

z

Figure 2.10: Computational Graph of the Elman RNNs

2.3 Advanced RNNs

Simple RNNs, such at the Elman and Jordan RNN, have a critical flaw called the van-

ishing gradient problem [5][25]. Vanishing/exploding gradients was first discovered in

deep neural networks. As these networks have many layers and weights, the gradient

of the error observed in the output layer becomes more obfuscated as it is backwards

propagated through to train the NN [5][25]. This results in either the gradient having no

effect on the weights of layers further from the output layer, or that these weights would

change too much. The continued use of the chain rule in obtaining the gradient of the

error, with respect to a weight far back in the model, leads to products that either col-

lapse to near zero to become increasingly large as depth is increased. This phenomenon

typically happens as RNNs are unfolded, essentially becoming deep FFNN’s, leading to

RNNs being unable to capture long term dependencies [5][25]. To address the issue of

the gradient vanishing, more advanced RNN neuron structures were developed, as will

be discussed next in sections 2.3.1 and 2.3.2.
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2.3.1 Long Short-Term Memory

Long Short-Term Memory is a type of recurrent neural unit introduced by Hochreiter

and Schmidhuber in 1997 [26]. An improvement on this structure was presented in 1999

with the inclusion of the forget gate by Gers et al. [21]. This addition was such a large

contribution that research regards this inclusion as the basic LSTM. The forget gate

addressed a fundamental flaw of the LSTM; As sequences became longer, the network

would become unstable as the information learned would interfere with the expected

outcome. However, the original LSTM RNNs performed considerably better than the

classic RNNs [26]. With the inclusion of the forget gate, the LSTM RNNs become more

stable as the LSTM gained the ability to reset its own memory when new sequences

were observed [21].

The architecture of a LSTM neuron is presented in figure 2.11. The equations explained

within this section will heavily refer back to this figure. It is important to note that

this is only a single node of the network and not a whole network on it’s own. In figure

2.11 nodes contained within double circles represent state/context nodes which stores

the state of the network and passes it on in the next iteration. Here xt is the input

vector at time step t. Activation functions are represented by σ, τ and µ. The output

produced from these activation functions at the current time step is represented by ft,

it and Ot respectively. Nodes marked by × are the dot product of vectors flowing in.

Nodes marked with + represent the vectors sum of vectors flowing in. The context

vector of the neuron at the current time step is Ct and Ct−1 is at the previous time

step. Similarly, the output vector of the LSTM neuron at the current time step is ht.

Thus ht−1 represents the previous output vector at time step t− 1.

Initially the input vector xt and the previous output vector ht−1 are added after each

has been multiplied with a weight matrix. Then an activation function σ is applied to

generate a factor ft as in equation (2.14). This step is what is called the forget gate [21].

Here Wfx and Wfh−1 represents the weight matrices of the forget gate and bf is the

bias vector.
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Figure 2.11: Architecture of the LSTM Neuron

ft = σ
(
Wfxxt + Wfh−1ht−1 + bf

)
(2.14)

The next step is to determine factor it, which is the output of the input gate as in

equation (2.15)[21]. Here Wix and Wih−1 are the input weight matrices and bi the bias

vector.

it = σ
(
Wixxt + Wih−1ht−1 + bi

)
(2.15)

The intermediate context factor Qt is calculated as in equation (2.16).

Qt = τ
(
Wqxxt + Wqh−1ht−1 + bq

)
(2.16)
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Combining the input factor and the context factor determines how much of the current

information context state will be kept and fed back into the network. The old state

Ct−1 is then multiplied by ft to determine how much information from the past to

forget. These two calculations are combined to form the new state Ct for the current

time step as in equation (2.17).

Ct = ft ◦Ct−1 + it ◦Qt (2.17)

In the last phase the output of the neuron ht is determined. For the vectors of ht−1

and xt are first weighted by matrices Woht−1 and Wox respectively. A bias bo is then

added and an activation function σ applied to produce the output of the output gate

[21] as in equation (2.18). An activation function ρ is then applied to the current state

Ct. Both the results of these operations are multiplied together to produce the output

ht of the neuron at the current time step as described in equations (2.19) and (2.20).

ot = σ
(
Woxxt + Woh−1ht−1 + bo

)
(2.18)

lt = ρ(Ct) (2.19)

ht = ot ◦ lt (2.20)

The full computational graph of a single LSTM node is presented in figure 2.12.

In figure 2.12 multiple occurrences of x and ht−1 nodes are presented, however each

represents the input vector and the previous step’s hidden state respectively. These

nodes are used to make the graph less complex. All other symbols represent the steps

outlined in equations (2.14), (2.15), (2.16), (2.17), (2.18), (2.19) and (2.20).

Figure 2.13 represents the functioning of the LSTM neural network over time steps and

utilizes the equations as discussed for figure 2.12. Here the context state of the LSTM

is highlighted to distinguish itself from other RNN variants.
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Figure 2.12: Computational Graph of the LSTM Neuron
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Figure 2.13: Simplified Computational Graph of the LSTM network

2.3.2 Gated Recurrent Units

The Gated Recurrent Units (GRU) was introduced by Cho, et al. to address machine

translation using an encoder and decoder RNN [9]. The GRU replaces the forget and

input gate in the LSTM with a single update gate. The reasoning for doing so, is to

create a neuron that is simpler to implement and compute [9]. The architecture of the

GRU is presented in figure 2.14. In figure 2.14 rt represents the output of the reset

gate and zt is the output of update gate. The other elements are consistent to those

previously explained for the LSTM in section 2.3.1.

The output of the update gate is calculated as in equation (2.21). This gate determines

by how much the previous neuron output ht−1 will be used to generate the current
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Figure 2.14: Architecture of the GRU Neuron

output ht. The update gate acts as the memory cell of the LSTM and can be regarded

as an adaptive leaky-integration unit, which allows the network to retain long-term

dependencies while maintaining stability [9].

zt = σ
(
Wzxxt + Wzh−1ht−1

)
(2.21)

A reset gate is used to manage the propagation of the previous hidden state ht−1 of the

neuron. When the reset gate outputs 0, only the current input is used to determine the

current output of the neuron and the previous hidden state is ignored. Thus allowing

the network to ignore any irrelevant information from the past [9]. The reset gates’s

output is calculated using equation (2.22) and the weighting of the reset factor is applied

in equation (2.23) to produce the intermediate hidden state Qt.



Chapter 2. Background: Neural Networks 19

rt = σ
(
Wrxxt + Wrht−1ht−1

)
(2.22)

Qt = τ
(
WQxxt + WQht−1(rt ◦ ht−1)

)
(2.23)

Finally the output of the neuron ht is calculated as in equation (2.24). This demonstrates

how the update gate and the intermediate state are weighted combined to produce ht

[9].

ht = (1− zt) ◦ ht−1 + zt ◦Qt (2.24)

The full computational graph of a single GRU node is presented in figure 2.15.

o(1) σ
x

ht-1 Wzh-1

Wzx

o(2) σ
x

ht-1 Wrh-1

Wrx

zt

ht-1
o(3)

1-
zt

o(6) ht

rt

ht-1

o(4)

x

τ

o(5)

Figure 2.15: Computational Graph of the GRU Neuron

Figure 2.15 is a graphical representation of the GRU node’s equations as the computa-

tional graph indicates the process flow of calculating the hidden state. A summarised

version of this graph is presented in figure 2.16.

2.4 Bidirectional RNNs

First introduced in 1997 by Schuster and Paliwal, the Bidirectional RNNs (BRNNs)

network architecture is configured to utilise information from the past, the present and

the future patterns presented to it [43]. This is done by using two parallel hidden layers

which form the bidirectional layer. The first hidden layer, referred to as the forward
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Figure 2.16: Simplified Computational Graph of the GRU unit

layer, receives the hidden states from the previous time steps as in the case of normal

RNNs, The second layer, referred to as the reverse layer, however receives hidden states

from future time steps. These future time steps can only be learned from once the whole

input sequence has been presented to the network. Both these layers are then connected

to the next layer, however they do not interact with one another [43].

The Bidirectional RNN configuration can be used with any of the RNN units presented

in this chapter. As noted by the authors of the BRNN, updating the network state

would be the same as other networks as only the order in which the input sequence

is presented to nodes is different. Over the course of training, the network learns the

optimal look-back periods in both the forward and backward sequences to find the best

relationship between them.

BRNNs were developed with language models in mind where the current text is depen-

dant on the context of future text yet to be presented. More specifically, the authors

applied this architecture successfully to the TIMIT1 phoneme database. In the work

of Schuster and Paliwal, it was indicated that the Elman RNN achieved a recall rate

of 64.32% whereas the BRNN achieved 68.53%, thus substantially outperforming the

Elman RNN.

The computational graph of the BRNN is presented in figure 2.17. Here the forward

layer and its components are presented using the subscript f and the reverse layer by

subscript r.

1TIMIT is a corpus of English text aligned with audio recordings each being read. See
https://catalog.ldc.upenn.edu/LDC93S1



Chapter 2. Background: Neural Networks 21

Vf  Vr

xt 

W Uf

ht 

ot 

Vf  Vr

xt1 

W Uf

ht1 

ot1 

Vf  Vr

xt+1 

W

ht+1 

ot+1 

Lt Lt1  Lt+1 

yt yt1  yt+1 

Vf 

xt1 

W
Uf

ht1 

ot1 

Lt1 

yt1 

Unfold 

ht1 

Vr 

Ur 
ht1 

Ur

ht 

Ur

ht+1 

Figure 2.17: Computational Graph of the Bidirectional Neural Network
Architecture

BRNNs are trained similarly to other RNNs. However if a variant of back-propagation

through time (BPTT)2 is used, the forward and backward weights cannot be updated

simultaneously as the forward and backward layers do not directly interact. Initially,

the BRNN is unfolded into both the forward and backward states. Once unfolded both

the forward pass is run as well as the backwards pass. After both the forwards and

backwards passes have been completed, the weights of each layer is updated. When

the forward and backward states are not known at the current time step, the unknown

derivatives are set to zero [43].

2.5 Summary

In this chapter the basic foundation of artificial neural networks are discussed and ex-

panded on by introducing recurrent neural networks (RNNs). A few variants of the RNN

were presented namely the Elman RNN and Jordan RNN. RNN neurons, the LSTM and

GRU, have also been discussed. The LSTM unit is presented in section (2.3.1). Lastly

the Bidirectional RNN was presented in section 2.4 alongside the reasoning for utilising

its architecture.

2An explanation of back-propagation through time is presented in section 4.5
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RNN modules under investigation in this dissertation are limited to those discussed

in sections (2.2.1), (2.2.2), (2.3.2) and (2.4). Future work may include investigating

Peephole Augmented LSTMs [20], Connectionist Temporal Classification (CTC) in 2006

[23] and more as there are numerous variants of RNNs, each with their own advantages.



Chapter 3

Memory Retention of RNNs

Chapter 3 discusses a review of previous work. The previous work on Memory retention

of RNNs reviewed in this chapter, will form the basis of the experiments conducted in

later chapters.

3.1 Capacity of Neural Networks

According to Cover’s Function Counting Theorem released in 1965 [13] as noted by

many authors [8][19][14] a single Perception is able to recognise at most 2N linearly

separable patterns, where N is the number of inputs to the Perception. For non-linearly

separable input spaces the capacity is reduced to one pattern per neuron in the sense

that a neuron would be able to distinguish whether input is of the stored pattern or

not [35]. In non-linearly separable input spaces, a neuron represents a single decision

boundary. When adding neurons to the hidden layer, the network combines decision

boundaries to form more complex boundaries. Thus hidden layer neurons are required

only when the data is not non-linearly separated.

Huang and Guang-Bin [29] formally proved that a two layer FFNN is able to correctly

classify N patterns using L1 =
√

(o+ 2)N + 2
√

N
(o+2) neurons in the first layer and

L2 = o
√

N
(o+2) neurons in the second layer where o is the number of neurons in the

23
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output layer. Using the formulas presented, the RNNs should be able to recognise at

least the same number of patterns as a FFNN using the same architecture.

3.2 Retention metrics

To quantify the retention of patterns between different neural network architectures, the

per parameter capacity metric is employed. The per parameter capacity metric is used

by Collins et al. [12] to compare the retention of patterns in RNN. The per parameter

capacity ratio comprises of dividing the number of correctly classified patterns by the

number of parameters in the RNN as is presented in equation (3.1).

Capacity Ratio =
#Patterns Retained

#Parameters In Network
(3.1)

The higher the per parameter capacity ratio, the more effective the RNN is at utilising

the parameters allocated in the RNN’s architecture.

3.3 Memory Retention of Jordan and Elman RNN’s

The number of studies relating to the sequence length retention in RNNs are limited.

The problem with RNN’s capacity is not only how many patterns are retained, but also

for what time span over the observed set these patterns can be recalled. Furthermore it

has been shown by Siegelmann and Sontag in 1992 that any commutable function can

be represented by a finite RNNs [44].

3.4 Memory Retention of LSTMs

In the original LSTM paper, Hochreiter and Schmidhuber ran six experiments to test the

LSTM’s capacity [26]. Each experiment relied on a synthetically constructed benchmark,

which was designed to demonstrate specific aspects of model retention. Hochreiter and
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Schmidhuber used the embedded Reber grammar in the first experiment, which tests

short time lags to demonstrate the benefit of the LSTM’s output gates [26]. Thereafter,

the author’s next experiment consisted of noise free constructed sequences consisting

of up to 1000 time lags [26]. The third experiment conducted consisted of applying

noise to the 2-Sequence problem 1. The 2-Sequence problem consists of classifying

a presented sequence pattern as being one of either two sequences, during which the

presented sequence may only be a partial representation of the full sequence. In the

third experiment a 10000 sequences were used with a maximal lag of 100 [26]. The

fourth experiment consisted of teaching the network to add a sequence of numbers until

some marker was encountered in the sequence [26]. Lags of length up to 500 were used

in the fourth experiment with 2000 sequences [26]. Experiment five consisted of the

same structure as experiment four, except it was a multiplication problem using a lag

of 50 and 2000 sequences [26]. The last experiment set out to test temporal ordering by

generating input signals which appear at different lags, but which retained information

when observed in a specific order in the sequence. Input lengths between 100 and 110

were used with 4 classes that could be output [26]. A maximum of 2560 sequence lengths

were used [26]. Hochreiter and Schmidhuber concluded in each experiment that the

LSTM nodes outperformed each other RNN considered in the experiments conducted.

Another paper Hochreiter contributed to, alongside Schmidhuber and Jürgen, looked

at solving non-trivial time lag problems [27]. The authors specified the difference be-

tween trivial and non-trivial tasks. Tasks that fall into the trivial class include the

”2-Sequence”, latch, parity problems as well as Tomita grammars [27]. These problems

could be solved using a simple random search through the weight space of the applied

neural networks [27]. Non-trivial problems were those that required many free param-

eters and/or high weight precision to be solved [27]. Hochreiter et. al used the adding

problem as a non-trivial task to test the LSTM. The adding problem requires the net-

work to add all values seen until some stop character was reached [27]. It was shown

that the LSTM could correctly produce the correct results in 2557 out of 2560 cases for

sequences ranging up to 1000 time lags [27].

1The 2-Sequence problem was first presented by Bengio et al [5]
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The approach used by Collins et al. [12] is to generate unique stochastic binary input-

output pairs. From the experiments executed, Colins et al. found that for numerous

RNNs investigated, namely; the Elman, LSTM, GRU. Update-Gate RNN and more,

RNN neurons are able to retain 5 bits per network parameter.

3.5 Memory Retention of GRUs

With regards to memory capacity of the GRU, the only study that provided some insight

was by Collins et al. in 2017 [12]. In this study the authors noted that the memory

retention ratios of the Elman RNN’s, LSTMs and GRUs are the almost the same with

the Elman RNN being able to retain more information if the same number of parameters

were used across the network. However, this paper noted that for deep architectures

and more complex function spaces, the GRU is much more trainable than the LSTM or

Elman RNN.
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Training Algorithms

There are many gradient based algorithms for training neural networks. Each algorithm

provides a different method for updating the weights that parameterise the neural net-

work based model. The best training algorithm to use in practice depends on both the

underlying data set and the architecture under consideration. In this chapter the set of

training algorithms used in the experiments are discussed. The training algorithms pre-

sented, serve to ensure that the results produced were not skewed by a single algorithm

that failed to train an otherwise superior RNN architecture.

Within the equations contained inside of this chapter θ represents the weights within

the NN being optimised, η the learning rate, J is the loss function being optimised, x

represents pattern presented to the network, y the target vector, v the error gradient

vector, i the current iteration.

4.1 Gradient Descent

4.1.1 Algorithms

4.1.1.1 Batch Gradient Descent

Batch gradient descent, which is also the first and most simplest form of gradient descent,

computes the gradient between the error function and each entry in the data set during

27
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an epoch [41]. This implies that the whole data set needs to be considered for one error

propagation through the weights of the NN being trained. The propagation of batch

gradient decent is presented in equation (4.1), the notation of which was taken from

Ruder et al. [41]. Adding to the previously stated parameters, ∇θ represents the sum

of errors between the expected target and the output produced.

θ = θ − η∇θJ(θ) (4.1)

4.1.1.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) follows a more robust methodology by updating the

weights of the NN for each element presented to the neural network [41]. By updating

the weights when an element is presented to the network, SGD allows the NN to learn

as patterns are presented to it, thus the data set can be much larger than the memory

available of the machine on which the NN is trained. SGD also has the ability to jump out

of local minima which would have trapped a NN trained using Batch gradient descent.

The reason SGD can get out of local minima better than Batch gradient descent is that

the variance of the gradient update is larger. Since the variance is larger, SGD is able to

explore more of the feature space. However, the larger variance in the gradient update

may also cause that SGD to overstep solutions. To handle the overstepping of optima,

gradually reducing the learning rate over time, has been shown to increase the rate of

convergence on a solution. The equation for SGD, is presented in equation (4.2) and

follows the notation used by Ruder et al. [41]. In equation (4.2) i represents the current

pattern index being presented to the network, which indicates the update happens at

each iteration.

θ = θ − η∇θJ(θ;x(i); y(i)) (4.2)
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4.1.1.3 Mini-batch Gradient Descent

Mini-batch gradient descent combined both Batch and Stochastic gradient descent by

using a sub-sample of size n of the training set to update the weights of the NN in

question [41]. The training process is repeated until all sub-samples of the training set

is presented to the NN which forms an epoch. In using Mini-batch gradient descent,

the variance in the gradient update is reduced leading to better rates of convergence, as

well as enabling the ability to matrix algebra to optimise the computation of the error

gradient. Borrowing from Ruder et al. [41], the computation for Mini-batch gradient

descent is presented in equation (4.3).

θ = θ − η∇θJ(θ;x(i;i+n); y(i;i+n)) (4.3)

4.1.2 Momentum

As mentioned in section 4.1.1, when computing gradients step-wise as in the case of

SGD or Mini-batch gradient descent, the variance in the gradient update can cause the

NN to step over possible optima. Gradient based training algorithms also struggle with

increasing the rate of convergence when the optima is clear, and reducing the rate of

convergence when the feature space is more stochastic.

A common used strategy to improve the performance of gradient based training algo-

rithms is to introduce a momentum term [38]. A momentum term increases the rate of

convergence while decreasing the sporadic update in the error gradient propagated back

in the NN. Momentum uses the previous error gradient vector v at t− 1 weighted down

by a scalar γ ∈ (0, 1) in the current update of the weights in the network. The update

is then calculated as in equations (4.4) and (4.5).

vt = γvt−1 + η∇θJ(θ;x(i;i+n); y(i;i+n)) (4.4)

θ = θ − vt (4.5)
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4.2 Nesterov Accelerated Gradient

Yurii Nesterov proposed a method for utilizing the momentum term γ during the back

propagation phase of the gradient descent algorithm that greatly improves convergence

of NNs. The Nesterov gradient descent algorithm computes an expected (approximate)

gradient update by taking in consideration the previous gradient [37][41]. The updates

for the gradient are presented in equations (4.6) and (4.7):

vt = γvt−1 + η∇θJ(θ − γvt−1;x
(i;i+n); y(i;i+n)) (4.6)

θ = θ − vt (4.7)

Nesterov Accelerated Gradient (NAG) thus first propagates the momentum term com-

bined with the partial gradient which is approximated. Thereafter the gradient change

at the current epoch is applied. By doing so, the weights are first propagated into the di-

rection of the previous epoch’s momentum and is then corrected into the right direction

using the current gradient update [37].

The idea behind the NAG algorithm is that it prevents the momentum from becoming

unbounded and pulling the network out of the optima being exploited, by overshooting,

causing the update to be more granular.

The NAG algorithm specifically increased the performance of RNN’s on various task [4],

however the NAG algorithm is flawed in that, the same learning rate is applied when

updating the weights of NNs.

4.3 RPROP

Resilient Propagation (RPROP) was introduced in 1993 by Riedmiller and Braun to

address problems with learning rate propagation [39]. Riedmiller and Braun reasoned

that the magnitude of the gradient changes for each layer of the neural network. By

adjusting the learning rate considering only a single gradient, overshooting of good local
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positions often occur [39]. All learning rates are set to some global learning rate and

thereafter gets adjusted relatively. When the signs of the current back-propagating

gradient and the previous are the same, increase the learning rate so as to increase the

step size of the gradient update to induce exploration. When the signs differ, decrease

the learning rate to increase exploitation [39]. Calculation of the gradient for each

parameter j at time step t will thus be as presented in equation (4.8). The gradient

propagation is presented in equation (4.9) and the learning rate adapts using (4.10) with

the learning rate η constraint as in equation (4.11).

gt,j = ∇θtJ(θt,j) (4.8)

θt+1,j = θt,j − η · gt,j (4.9)

η =

η+, if gt,j · gt−1,j > 0

η−, otherwise
(4.10)

0 < η− < 1 < η+ (4.11)

4.3.1 RMSPROP

Problems arose with RPROP when using batch learning. The magnitude of gradients for

observations in the same batch would cancel one another, stagnating training. In 2012

Tieleman and Hinton et al. devised the RMSPROP algorithm [24]. RMSPROP (Root

Mean Squared Error Propagation) keeps the moving average of the squared gradient for

each weight which is then used to update the weights as in equations (4.12) and (4.13).

In equations (4.12) and (4.13), MSE represents the mean squared error function as is

defined in section 5.1 and ε is an arbitrarily small term to avoid division by zero, which

is set to a value smaller or equal to 0.00000001.
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MSE[g2]t = 0.9MSE[g2]t−1 + 0.1g2t (4.12)

θt+1 = θt −
η√

MSE[g2]t−1 + ε
gt (4.13)

4.4 Adam

Diederik Kingma and Jimmy Ba presented the Adam training algorithm in 2014 [34].

Adam is short for Adaptive Moment Estimation as it adapts learning rates for each

weight as needed. It does this much in the same way as RPROP. For each weight it

adapts the learning rates using the exponential average of the gradient and the squared

gradient. The step size of these gradients are controlled by the parameters β1 and β2

respectively as it decays as needed. A caveat with this approach is that β1 and β2

are initialised close to 1 which introduces a bias towards 0. To alleviate this problem

the bias estimates are first calculated and only thereafter bias-corrected estimates are

determined. The calculation of the Adam optimiser is as presented in equation (4.14)

as defined by Kingma and Ba [34].

mt = β1mt−1 + (1− β1)gt (4.14)

vt = β2vt−1 + (1− β2)g2t (4.15)

m̂t =
mt

1− (β1)t
(4.16)

k̂t =
kt

1− (β2)t
(4.17)

θt+1 = θt −
η√
ŝt + ε

m̂t (4.18)

In equation (4.14) mt represents the first moment state and kt the second. m̂t is the

first bias correction and k̂t the second. The last step in the equation is the gradient

propagation through the network. Kingma and Ba [34] recommend values of 0.9 for β1

and 0.999 for β2.
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4.5 Back Propagation Through Time

Back Propagation Through Time (BPTT) is the extension of traditional gradient decent

based algorithms to handle the recurrently defined models that make up RNNs. BPTT

is used to train RNN’s by propagating errors and updating weights over time [48].

BPTT functions by unrolling all time steps it received, meaning that it keeps a ”copy”

of the neural network, input and output for each time step that it is unrolled for [48]. By

doing so, errors are accumulated for each time step and then propagated back through

each time step. The unrolling of the network is usually limited to a set look-back

interval. Unrolling of the network incurs much more computational cost. The longer

the look-back period, the more the network is unrolled, the longer training will take.

Here expected and predicted output is defined as ot and yt at time t respectively. The

matrices of all expected and predicted output are O and Y with the maximum number

of time steps presented as T . From this representation, an arbitrary loss function is

represented by ` as in equation (4.19):

`(Y,O) =

T∑
t=1

`t
(
yt, ot

)
(4.19)

The steps involved in the BPTT algorithm is presented in equations (4.20), (4.21), (4.22).

In the BPTT equations, activation functions are represented by f . Furthermore, the

weight matrices are represented by W, U and V between the recurrent state s, input x

and the output vectors o.

∂`

∂W
=

∂

∂W

T∑
t=1

`t
(
yt, ot

)
(4.20)

=
∂

∂W

T∑
t=1

`t
(
yt, g(Vf(Uxt + Wst−1))

)
(4.21)

=
T∑
t=1

∂`t
∂g

∂g

∂f

∂

∂W
f(Uxt + Wst−1) (4.22)
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When considering that st1 = f(Uxt−1 + Wst−2), the use of the chain rule and the

product rule are used for each step of the unrolling of the RNN.



Chapter 5

Experiment Performance Metrics

In this chapter an example is presented to illustrate that the traditional mean squared

error loss function, while effective for training the underlying model, is not sufficient for

accessing the memory retention ability of the model. For this reason, the F1-score is

applied to determine true retention.

This chapter follows the format in which the mean squared error (MSE) function is

presented in section 5.1. Section 5.2 describes how retention is measured within this

dissertation. Lastly, section 5.3 describes how measurements are made when the exper-

iment is structured as a regression problem statement.

5.1 Mean Squared Error

The mean squared error is defined as in equation (5.1). In equation (5.1) ot is the

expected output and yt is the predicted result. Furthermore N represents the number

of elements in the output vector as the length of yt and ot would be equivalent.

`tmse =
1

N

∑
(ot − yt)2 (5.1)
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The MSE function can be utilised as the objective function the NN is trained to minimize.

The MSE can be utilised when working with both regression and classification problems,

though the former is more common. One of the largest critiques of the MSE loss function

points to the use of squaring each term. By using the square function, the MSE weighs

larger discrepancies between ot and yt values higher. In doing so this leads the variance

of the error to increase drastically if there are many outliers in the training set [7].

For the experimental formulation, the shortfalls of MSE is addressed by not introducing

outliers into the training data sets.

5.2 Measuring Memory Retention Performance

To enable measurement of the patterns recalled, the confusion matrix is utilised to

calculate precision and recall values of the trained models [46]. A confusion matrix

has four elements, which shows the number of patterns correctly classified and those

incorrectly classified for each possible output class. Recall specifies how many of the

patterns observed were correctly classified as a specific class by also factoring in if all

instances of the specific class was correctly classified and is defined as in equation (5.2)

[15].

True positives are the number of patterns which are correctly classified as the expected

class which is also referred to the positive cases. True negatives are the number of

patterns which correctly state that the prediction is not the positive case. False negatives

are the number of patterns for which the expected class is the positive case, however

the model incorrectly produced the opposite. False positives are the cases in which the

model produces the positive case of a class when the negative case is expected.

recall =
true positives

true positives + false negatives
(5.2)
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Precision is the metric that indicates how well our model is at discriminating data points

[15].

precision =
true positives

true positives + false positives
(5.3)

Precision and recall is forever in a trade-off when the algorithm does not overfit the input

space [15]. An example of the trade-off in which recall is increased is when increasing

the number of correctly classified instances of a specific class may have the effect that

more false positives increase. In the case that precision is preferred, an example would

be when the number of false positives decrease, however the number of false negatives

increase which reduces recall. To balance this trade off between precision and recall, the

F1-score is used.

F1 =
2 ∗ (precision ∗ recall)

precision + recall
(5.4)

In the experimentation conducted in this dissertation, the training of the neural network

is only halted once it has achieved a F1-score of 1, which indicates that the relationship

between input and output has been retained.

5.3 Structuring Regression as a Classification task

Within this dissertation an investigation to compare the effect of structuring the ex-

periments as either a regression or classification task will be investigated. However,

the main metric to measure retention is the F1-score as presented in section 5.2, which

only supports classification tasks. For this reason the regression experiments need to

be structured as classification tasks as well. To achieve this, one node is used as the

output node using some activation function. The output is scaled to be between [0, 1].

The output of the network is then compared to the expected categories using euclidean

distance. The category with the closest euclidean distance is then chosen as the category

which the neural network predicted.
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As an example, consider the case in which three classes are to be predicted using the

sigmoid activation function. The first class would encompass the range [0, 33], the second

class range (0.33, 0.66] and the third (0.66, 1.0]. Thus binning is applied to structure a

regression task as a classification task.



Chapter 6

Investigation of the Retention

Length and Memory Capacity of

Recurrent Neural Networks

To test the memory retention capacity and length of RNN’s, multiple experiments will

be conducted. The structure of these experiments will be discussed in this chapter.

Within this chapter the inability of the RNNs to learn is quantified by measuring the

decrease in loss of the network. When the network’s loss-rate plateaus for a period of

100 epochs, it is deemed that training has been exhausted. After the training of the

RNN is stopped, the retention is determined by the F1-score.

6.1 Experiment Design

The experiments discussed in this section are inspired from the original LSTM paper by

Hochreiter and Schmidhuber [26] and also the work done by Collins et al. [12] which is

discussed in section 3.4.
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6.1.1 Constraints Ensuring Fairness of Comparison

In order to compare RNN’s capacity, the total number of parameters in all networks

for a single experiment are made equal. Using a equal number of parameters is the

standard practice to ensure fairness in comparison [3][12][31][49]. With the LSTM and

GRU being much more complex than the Jordan and Elman RNNs, more nodes will be

required for the latter models to ensure an equal number of parameters are present. In

addition it must be ensured that all networks being compared have the same number of

hidden layers. If one RNN is given more layers than another, the former has the benefit

of additional abstraction which has the potential to unnecessarily skew results.

A RNN node has multiple internal parameters (weights) which facilitates recursive be-

haviour. These internal parameters are not to be confused between the edges (weights)

that connect nodes from one layer to the next. A single LSTM node consists of 12

parameters, a GRU node consists of 9 parameters and the Elman RNN consist only of 3

parameters per node. To be able to compare the performance of the Elman RNN to the

LSTM network, for each LSTM node, 4 nodes in the corresponding layer needs to be

included for the Elman to ensure a fair comparison. To compare networks consisting of

LSTM’s to those of GRU’s, the same concept applies, however the number of parameters

in corresponding layers need to be divisible by both 12 and 9 such as 36. The calculation

of the per parameter capacity ratio is presented in section 3.3.

Unfortunately, the Jordan RNN’s increase the number of parameters depending on the

number of nodes in the next layer. This makes comparison between this network and

the other more difficult. However, if the performance of the network is normalised to

the performance per parameter, RNNs can be compared as long as the RNNs have the

same number of hidden layers.

6.1.2 Spearman Rank Correlation Coefficient

The Spearman Rank Correlation Coefficient (SRCC) is used to measure the strength of

a linear relationship between two variables. In this dissertation, the effects of various

parameters are correlated to the outcome of experiments. The formula for the SRCC
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is presented in equation (6.1). In equation (6.1) di represents the difference between

the ranks of the corresponding pattern in each set being compared and n represents

the number of observations. Rank is assigned from 1 to n where 1 is the highest rank

assigned to the highest value in the set being ranked and n to the lowest value in the

current set being ranked. After both sets are ranked independently, the ranked value

rspearman is calculated as in equation (6.1). The resulting value of rspearman is in the range

of [−1, 1]. A value of 1 indicates a perfect positive relationship, whereas, −1 indicates a

perfect negative relationship.

rspearman = 1− 6
∑
d2i

n(n2 − 1)
(6.1)

6.1.3 Activation Functions to be tested

As stated by Collins et al.[12] the activation functions used have a direct effect on

the capacity of the parameters. The Rectified Linear Unit (relu) activation function

reduced memory capacity, however using it increases trainability of the networks. The

same observation is made within this dissertation.

In all cases it is better to be able to train a network at the cost of having more parameters

and a reduction in memory retention per parameter. In other words, if a small network is

unable to infer any information from the training set, but a larger network is, it is better

to use the larger network as long as overfitting is accounted for, and the computational

cost of running the model is still feasible for the target application area.

The activation functions considered are contained within table 6.1. The choice of acti-

vation functions are due to a combination of popularity of use and availability within

the Keras package [10]. In table 6.1 x refers to the input scalar or vector passed to the

activation function.
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Activation function Equation

elu (Exponential Linear Unit) =


x if x > 0

α(ex − 1) if x < 0

linear = x

relu (Rectified Linear Unit) = max(0, x)

hard sigmoid =


0 ifx < −2.5

1 ifx > 2.5

0.2x+ 0.5 if− 2.5 <= x <= 2.5

softmax = ex−max(x)∑
(ex−max(x))

softplus = log(ex + 1)

softsign = x
(abs(x)+1)

sigmoid = 1
1+e−x

tanh = (ex−e−x)
(ex+e−x)

Table 6.1: Activation functions considered in experiments

6.2 Experiments

The experiments conducted are outlined within the subsections contained within. The

experiment formulation for sequence length retention is presented in section 6.2.1 which

further consists of a regression and classification version in sections 6.2.1.1 and section

6.2.1.2 respectively. To determine the number of patterns which can be retained by RNNs

the second experiment is proposed in section 6.2.2. The pattern retention experiments

are also formulated in a regression and classification component which are presented in

section 6.2.2.1 and 6.2.2.2. Lastly, the frame of retention experiment formulation and

justification of using regression only is presented in section 6.2.3.



Chapter 6. Investigation of the Retention Length and Memory Capacity of Recurrent
Neural Networks 43

6.2.1 Experiment 1: Length of Retention

6.2.1.1 Version 1: Regression

The goal of this experiment is to determine the number of time steps (which will be

referred to as length) the networks are able to retain patterns over a number of epochs.

To investigate length of retention, a counting problem is employed. A sequence of binary

numbers is generated to form patterns of length bn. During time step t a single bit is

presented to the network. The network is tasked to count the number of 1’s between

observed 0’s and to output the result. The length between 1’s will gradually be increased

until the network is unable to learn. The length desired at the output state must be

within the range [0, 1] to allow for the use of different activation functions. Thus if the

count is 3, the expected output will be 1
3 or 0.333333.

Example: Given bn = 3 the mapping between input to output over number of time

steps is presented in table 6.2. In table 6.2 T1 represents the first time step, the input

and the expected output is shown in the corresponding row.

Time step Input Output

T1 1 1.0000

T2 0 0.0000

T3 0 0.0000

T4 0 0.0000

T5 1 0.5000

T6 0 0.0000

T7 1 0.3333

T8 0 0.0000

T9 0 0.0000

Table 6.2: Experiment 1: version 1 example mapping
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6.2.1.2 Version 2: One-hot encoding classification

To study the effects of the way the modelling problem is presented, experiment 6.2.1.1

is repeated with the modification that the output is represented as a one-hot encoded

sequence. Thus each time the maximum count increases, another node is added to the

output layer. The output node with the largest activation is then chosen to represent

the count predicted by the network.

Example: Given bn = 3 the mapping between input to output over number of time

steps is presented in table 6.3. In table 6.3 T1 represents the first time step, the input

and the expected output is shown in the corresponding row.

Time step Input Output

T1 1 [1.0000, 0.0000, 0.0000]

T2 0 [1.0000, 0.0000, 0.0000]

T3 0 [1.0000, 0.0000, 0.0000]

T4 0 [1.0000, 0.0000, 0.0000]

T5 1 [0.0000, 1.0000, 0.0000]

T6 0 [0.0000, 1.0000, 0.0000]

T7 1 [0.0000, 0.0000, 1.0000]

T8 0 [0.0000, 0.0000, 1.0000]

T9 0 [0.0000, 0.0000, 1.0000]

Table 6.3: Experiment 1: version 2 example mapping

6.2.2 Experiment 2: Number of Patterns Retained

6.2.2.1 Version 1: Regression

Capacity is defined as the number of patterns that can be recognized. During a single

experiment, a vector of random real numbers are generated as possible input, which

map to another vector of randomly generated real numbers, as the target vector. To

ensure that no underlying pattern exists between the sets, we apply a Spearman Rank
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Correlation [16]. The Spearman Rank Correlation generates a correlation coefficient ρ

and a probability value p. For each set generated, the set is accepted if p > 0.05 or

ρ ∈ [−0.1, 0.1] which indicates that no pattern exists in the set.

Example: Given the number of elements is 3, the mapping between input to output is

presented in table 6.4. In table 6.4 T1 represents the first time step, the input and the

expected output is shown in the corresponding row. Table 6.5 demonstrates that there

is not a time dependence.

Time step Input Output

T1 0.5000 0.3000

T2 0.1000 0.7000

T3 0.3000 0.2000

Table 6.4: Experiment 2: version 1 example mapping

6.2.2.2 Version 2: One-hot encoding classification

In the same vein as experiment 1, a classifications variant of the experiment is also used.

Here, for each pattern that should be retained, a corresponding output node exists.

When the pattern is observed, the network should assign a higher probability to that

node, which is also used in the second part of the first experiment in subsection 6.2.1.2.

Example: Given the number of elements is 3 a possible set could be as is presented in

table 6.5.

Time step Input Output

T1 0.5000 [1.0000, 0.0000, 0.0000]

T2 0.1000 [0.0000, 1.0000, 0.0000]

T3 0.3000 [0.0000, 0.0000, 1.0000]

Table 6.5: Experiment 2: version 2 example mapping
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6.2.3 Experiment 3: Frame of Retention

Frame of retention is defined as the number of patterns of increasing sequence length

the neural network is able to retain. Building off of experiments 6.2.1 and 6.2.2, this

experiment is also formulated as a counting problem. Given a sequence of numbers, the

network is tasked to count the number of times it has encountered the element presented

to it at each time step. Stochastic sequences will be presented to the network. After

the network’s loss function has plateaued, it’s frame of retention is determined. If the

network is able to retain all patters in an experiment, another element is included into

the set of possible integers and a new sequence is generated. This is repeated until the

network is unable to retain the count of each element. The maximum count will be

specified ahead of the experiment and will be used to control the maximum number of

times an element may appear in the sequence presented to the network. Scaling of the

elements will be done using the maximum number of elements to identify plus 1 and the

output will be scaled using the maximum count plus 1. The formula discussed to scale

input and output is defined in equation (6.2). In equation (6.2) x represents a single

element within a set of real numbers, ∀x indicates for all elements within the set and

xscaled is the scaled value produced for the current element considered in the set.

xscaled =
x

max(∀x) + 1
(6.2)

Example: Given the number of elements is 3 we will generate

{[[[1]], [[1]], [[1]], [[3]], [[1]], [[2]], [[2]], [[3]], [[1]], [[1]]]} and expect the network to output

[[[1]], [[2]], [[3]], [[1]], [[4]], [[1]], [[2]], [[2]], [[5]], [[6]]]. After scaling the sequence will be

{[[[0.25]], [[0.25]], [[0.25]], [[0.75]], [[0.25]], [[0.5]], [[0.5]], [[0.75]], [[0.25]], [[0.25]]]} with the out-

put being [[[0.14]], [[0.29]], [[0.43]], [[0.14]], [[0.57]], [[0.14]], [[0.29]], [[0.29]], [[0.71]], [[0.86]]]

given maximum number of elements is 3 and maximum count is 6. This example map-

ping is also demonstrated in table 6.6.
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Time step Input Output

T1 0.25 0.14

T2 0.25 0.29

T3 0.25 0.75

T4 0.75 0.14

T5 0.25 0.57

T6 0.5 0.14

T7 0.5 0.29

T8 0.75 0.29

T9 0.25 0.71

T10 0.25 0.86

Table 6.6: Example of Experiment 3: Frame of retention

6.2.4 Format of each Experiment

A single experiment cycle will consist of training on the training set using a training

algorithm as discussed in chapter 4, a specific activation function (section 6.1.3) and a

fixed architecture. The performance on the test set will then be recorded. Training is

only stopped when the error produced by the neural network converges and does not

improve over 100 epochs. There is no upper limit on the amount of epochs for which

training will be done.

For each of the discussed experiments, the training set, a 100 instances of each pattern

that needs to be recognised will be generated and for the test set 10 samples for each

pattern. This is done to balance computational cost while still allowing the network to

train on a sufficient number of data points. During training the samples are fed in at

a batch size of 10. Training is stopped when the loss of the neural network does not

improve over 100 epochs. It is important to note that a sequence is seen as one sample.

Thus if the sequence is set to 3, each of the 300 vectors will be shown to the RNN.
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Learning rate starts at 0.9 and thereafter is set to decay when the network plateaus

after 10 epochs at a rate of 0.01 with the smallest learning rate being 0.0000000000001.

6.2.5 Implementation Details

The experimental work within the dissertation was implemented using a python library

called Keras utilising a Tensorflow back-end [1][10]. Keras is used as it specifies a simple

interface for creating NN architectures.

All parameters for the implementation steps are kept at Keras default such as the learn-

ing rate and momentum factors since these parameters originate from the original papers

in which each algorithm is implemented such as the Adam training algorithm [10]. For

the LSTM nodes, the forget gate is reset after each batch as done by Akash Singh [45].



Chapter 7

Results

This chapter serves to present the results of the experiments described in chapter 6.

In this chapter three types of experiments are investigated namely: sequence length

retention, number of patterns that could be retained (referred to as the capacity of the

network) and in combining the sequence length with number of patterns experiments,

the frame retention rate per parameter experiment is formulated.

7.1 Experiment 1: Length of Retention

In this section the results of the length of retention experiment as described in section

6.2.1 are presented. In short, this experiment sets out to determine the sequences length

that can be retained relative to the number of parameters in RNNs and how this rela-

tionship is effected by factors such as network size, activation function choices, and the

training algorithm used. To investigate the effect of the problem statement formulation,

each experiment is run as a regression and as a classification problem as stated in section

6.2.2.

The analysis starts off by investigating the overall performance of all RNNs, compared to

one another on an aggregated level over each configuration, in section 7.1.1. Thereafter,

the effects of using different activation functions evaluated is shown in section 7.1.2.

Next in line is the investigation of the relationship between the per parameter sequence

49
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capacity and the number of hidden layers in section 7.1.3. Lastly the effect of using

different training algorithms on the retention of RNNs is presented in section 7.1.4.

7.1.1 Average Per Parameter Sequence Length Retention for each

RNN

The overall performance of each RNN is evaluated in this subsection to determine the

overall behaviour of the various networks when applied to retain sequences of increasing

length.

Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 and 7.8 show the average sequence length retained

with increasing number of parameters. For this specific experiment it is clear that after a

certain point, increasing the number of parameters causes the sequence length retained

by the network to plateau or even decrease regardless of classification or regression

formulation. This result is counter intuitive as one would expect the network to be

able to retain longer sequences the larger it is. The implication thereof is that simply

increasing the network’s size, does not necessarily increase it’s ability to retain longer

sequences and may even hinder sequence retention in some cases. Furthermore, this also

implies that larger RNNs are more susceptible to local minima. The observed behaviour

of larger architectures not necessarily increasing retention may be due to too many

parameters interfering with the training of the RNNs increasing noise throughout the

networks.



Chapter 7. Results 51

Number of Parameters in Model0

2

4

6

8

10

12

Av
er

ag
e 

Le
ng

th
 

 o
f P

at
te

rn
s r

et
ai

ne
d

Classification

0 5000 10000 15000 20000 25000
Number of Parameters in Model

0

2

4

6

8

10

12

Av
er

ag
e 

Le
ng

th
 

 o
f P

at
te

rn
s r

et
ai

ne
d

Regression

Figure 7.1: Effect of the number of parameters on the ability to retain
patterns for the bidirectional Elman RNN
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Figure 7.2: Effect of the number of parameters on the ability to retain
patterns for the bidirectional GRU RNN
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Figure 7.3: Effect of the number of parameters on the ability to retain
patterns for the bidirectional Jordan RNN
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Figure 7.4: Effect of the number of parameters on the ability to retain
patterns for the bidirectional LSTM RNN
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Figure 7.5: Effect of the number of parameters on the ability to retain
patterns for the Elman RNN
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Figure 7.6: Effect of the number of parameters on the ability to retain
patterns for the GRU RNN
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Figure 7.7: Effect of the number of parameters on the ability to retain
patterns for the Jordan RNN
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Figure 7.8: Effect of the number of parameters on the ability to retain
patterns for the LSTM RNN
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From figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 and 7.8 it appears that for smaller networks,

regression formulation is able to retain longer sequences. In fact, for all networks, outside

of the bidirectional Elman and bidirectional Jordan, the regression formulated RNNs

retained longer sequences than the classification formulated counterparts. However, as

observed previously, the regression formulated RNNs sequencer retention decays more as

the number of parameters increased, whereas more parameters are more advantageous

to the classification formulated counterparts.

Now that the classification- and retention formulated RNNs have been compared, the

next investigation will focus on the RNNs themselves. The bidirectional GRU and

bidirectional LSTM are observed to have the least decay in retention and thus can

utilise an increase in the number of parameters more effectively than other RNNs before

plateauing as illustrated in figures 7.2 and 7.4. For all RNNs excluding the Jordan

RNN, regardless of the formulation of the problem statement, adding a bidirectional

component increased the sequence retention ability of the RNN.

RNN Classification Regression

Bidirectional Elman 0.08614 -0.16808

Bidirectional GRU 0.42559 -0.26096

Bidirectional Jordan -0.02675 -0.16129

Bidirectional LSTM 0.28802 -0.15808

Elman 0.12050 -0.15766

GRU 0.39138 -0.08353

Jordan 0.01249 -0.14990

LSTM 0.36145 -0.09158

Table 7.1: Spearman correlation between the number of patterns retained and the
number of network parameters

To verify the relationship between the number of patterns retained and the number of

network parameters, a further evaluation of the Spearman coefficient is presented in table

7.1. Here, from the coefficient presented, it is clear that all regression formulated RNN’s

sequence retention is negatively correlated to the number of parameters in the model,
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whereas most classification formulated RNN’s are positively correlated. The RNN which

gains the most benefit of increasing the number of parameters is the bidirectional GRU

for the classification formulation, with a Spearman correlation coefficient of 0.42559.

Interestingly the network which has the most negative correlation to the number of

parameters is the bidirectional GRU for the regression formulation. Furthermore, it is

clear that the bidirectional GRU is the most sensitive formulation choice with the largest

correlation change. This confirms behavioural consistency in the claims made in this

dissertation.

To confirm how effective each RNN type is at utilising the number of parameters given

to it, the per parameter sequence capacity ratio is presented in figures 7.9, 7.10, 7.11,

7.12, 7.13, 7.14, 7.15 and 7.16. It is clear that in all cases, the per parameter sequence

capacity decays as more parameters are added to the RNNs as observed previously.

Initially the degradation is rapid, but as the more parameters are added, the more

this ratio approaches zero, causing the illusion that the degradation in per parameter

sequence capacity plateaus. Generally, RNNs which are more effective would be able

to utilise more parameters to retain longer sequences. RNNs which are not as effective,

may not be able to retain as much information as the number of parameters increase or

may focus on a subset of patterns, a local optima.
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Figure 7.9: Effect of increasing the number of parameters on the per pa-
rameter capacity of the LSTM RNN
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Figure 7.10: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Jordan RNN
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Figure 7.11: Effect of increasing the number of parameters on the per pa-
rameter capacity of the bidirectional Jordan RNN
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Figure 7.12: Effect of increasing the number of parameters on the per pa-
rameter capacity of the GRU RNN
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Figure 7.13: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Elman RNN
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Figure 7.14: Effect of increasing the number of parameters on the per pa-
rameter capacity of the bidirectional Elman RNN
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Figure 7.15: Effect of increasing the number of parameters on the per pa-
rameter capacity of the bidirectional LSTM RNN
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Figure 7.16: Effect of increasing the number of parameters on the per pa-
rameter capacity of the bidirectional GRU RNN
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Further inspecting the per parameter sequence capacity ratios, as presented in table

7.2, there is a clear advantage in using the regression formulation for this problem

statement. In all cases the RNNs achieve higher per parameter sequence capacity ratios

in the regression formulated experiments when compared to the classification formulated

experiments. This may have to do with the very nature of classification problems which

require more output nodes. Upon further inspection, there is a clear advantage in using

bidirectional layers, as the effectiveness of each parameter increases for the most part.

Unsurprisingly, the RNN which had the best sequence capacity ratio is the bidirectional

GRU, making it the most parameter efficient RNN in retaining longer sequences. This

is unsurprising as the bidirectional GRU has the highest Spearman Rank coefficient as

presented in table 7.1.

RNN Classification Regression

Bidirectional Elman 0.00011 0.00014

Bidirectional GRU 0.00014 0.00030

Bidirectional Jordan 0.00011 0.00016

Bidirectional LSTM 0.00012 0.00023

Elman 0.00012 0.00015

GRU 0.00013 0.00021

Jordan 0.00012 0.00014

LSTM 0.00012 0.00016

Table 7.2: Average Number of patterns retained per single network parameter over
all network configurations

7.1.2 Average Per Parameter Sequence Length Retention for each Ac-

tivation Function

In this section, the effect that the activation choice has on RNN sequence length retention

is investigated.

The average sequence length that was retained by each activation function over increas-

ing number of parameters are shown in figures 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, 7.23,

7.24, 7.25 and 7.26. For all activation functions, the average pattern length retained
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decays as the parameter count increases. From the aforementioned figures it can be seen

that the elu activation function resulted in the longest sequence retained at 6.3 patterns

on average. However the network loses this ability as the number of parameters increase

as observed in figure 7.20. The relu activation function had a better retention ratio as

the number of parameters increased when compared to the effect of other activation

functions on average. If a comparison is made between the classification and regression

cases, it can clearly be determined that all activation functions favour the regression

problem statement for this experiment. Similar results were obtained in section 7.1.1.

The same per parameter degradation can be seen as observed in the previous section

7.1.1 with the most effected activation functions being elu, linear, relu, selu, sigmoid and

tanh. The least affected being: softmax, softplus and softsign. The activation functions

least affected could be due to the range and form of these functions. Although elu is

similar to softplus, the slope of the softplus is slightly more gradual than the former

which might be advantageous.
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Figure 7.17: Effect of the number of parameters on the ability to retain
patterns over each activation function: elu
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Figure 7.18: Effect of the number of parameters on the ability to retain
patterns over each activation function: hard sigmoid
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Figure 7.19: Effect of the number of parameters on the ability to retain
patterns over each activation function: linear
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Figure 7.20: Effect of the number of parameters on the ability to retain
patterns over each activation function: relu
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Figure 7.21: Effect of the number of parameters on the ability to retain
patterns over each activation function: selu
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Figure 7.22: Effect of the number of parameters on the ability to retain
patterns over each activation function: sigmoid
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Figure 7.23: Effect of the number of parameters on the ability to retain
patterns over each activation function: softmax
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Figure 7.24: Effect of the number of parameters on the ability to retain
patterns over each activation function: softplus
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Figure 7.25: Effect of the number of parameters on the ability to retain
patterns over each activation function: softsign
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Figure 7.26: Effect of the number of parameters on the ability to retain
patterns over each activation function: tanh

To determine which activation function is affected the worst by an increase in the number

of parameters, the Spearman Rank correlation, as defined in section 6.1.2, between

the length of the pattern retained and the number of parameters is presented in table

7.3 and 7.4. As shown in tables 7.3 and 7.4 the most negatively correlated activation

functions are the elu and tanh with coefficients −0.2842 and −0.2997 in the regression

case respectively, indicating that the performance of networks using these activation

functions will be most negatively affected when increasing the number of parameters.

For classification, the softplus activation function using the Jordan RNN had the most

negatively correlated relationship between activation function used and per parameter

capacity with coefficient −0.4182. On the opposite side, the most correlated increase

in sequence retention as the number of parameters grew, is the relu activation function

applied to bidirectional GRU during the classification problem statement with coefficient

0.7625. Thus, this configuration should have the best overall sequence retention when

applied to classification formulation of this experiment. Since the behavioural traits

between the per parameter capacity and activation function used have been explored,
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the next investigation will determine how the activation functions affect the performance

length capacity ratio of each network.

Figures 7.27, 7.28, 7.29, 7.30, 7.31, 7.32, 7.33, 7.34, 7.35 and 7.36 capture the per param-

eter sequence retention capacity for an increasing number of parameters for each RNN

type under each considered activation function. In general the behavioural traits for

each RNN type under each considered activation function remain the same as observed

in section 7.1.1.
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Figure 7.27: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the elu activation function
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Figure 7.28: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the hard sigmoid activation function
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Figure 7.29: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the linear activation function
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Figure 7.30: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the relu activation function
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Figure 7.31: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the selu activation function
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Figure 7.32: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the sigmoid activation function
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Figure 7.33: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the softmax activation function
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Figure 7.34: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the softplus activation function
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Figure 7.35: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the softsign activation function
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Figure 7.36: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the tanh activation function

Table 7.5 captures the per parameter sequence capacity ratio for each RNN using dif-

ferent activation functions in both the regression and classification formulation of this

experiment. In the case of regression, the best pairing of elu activation function and

RNN type is the bidirectional GRU using the elu activation function at 0.00047 patterns

per parameter. Followed by the same configuration, but using the sigmoid activation

function which resulted in 0.00038 patterns per parameter. For the classification formu-

lation the best configuration is still the bidirectional GRU paired with the elu activation

function, which resulted in 0.00016 patterns per parameter retained. However, the tanh

activation function achieved the highest average per parameter sequence capacity over

all RNNs in both the regression and classification formulation with an average of 0.00026

and 0.00014 patterns per parameter retained respectively.
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7.1.3 Relationship between Sequence Length Retention and the Num-

ber Of Layers

The section investigates the impact that increasing the number of layers has on the

ability of RNNs to retain sequences of increasing length. Here an average is taken across

all configurations of RNNs using multiple different activation functions as presented in

the previous section 7.1.2.

The findings of the effect of increasing the number of layers in RNNs has on the length

of pattern retained, is illustrated in figures 7.37, 7.38, 7.39, 7.40, 7.41, 7.42, 7.43 and

7.44. For each network the average length of a pattern that was retained degraded

drastically from using one hidden layer to two. Thereafter a slight rise in the average

length of patterns retained was observed for the all RNNs except for the bidirectional

GRU when using three hidden layers. Increasing the number of hidden layers did not

yield much longer sequence retention. For finer granular analysis of behavioural traits

for each network at different layer configurations, the Spearman correlations reported in

table 7.6 is considered.
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Figure 7.37: Effect of increasing number of layers on the ability to retain
patterns for the Bidirectional Elman RNN
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Figure 7.38: Effect of increasing number of layers on the ability to retain
patterns for the Bidirectional GRU RNN
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Figure 7.39: Effect of increasing number of layers on the ability to retain
patterns for the Bidirectional Jordan RNN
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Figure 7.40: Effect of increasing number of layers on the ability to retain
patterns for the bidirectional LSTM RNN
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Figure 7.41: Effect of increasing number of layers on the ability to retain
patterns for the Elman RNN
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Figure 7.42: Effect of increasing number of layers on the ability to retain
patterns for the GRU RNN
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Figure 7.43: Effect of increasing number of layers on the ability to retain
patterns for the Jordan RNN
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Figure 7.44: Effect of increasing number of layers on the ability to retain
patterns for the LSTM RNN

In table 7.6 the Spearman Rank correlation is calculated between the number of layers

and the average length of pattern retained over all configurations. At a first glance,

there is no consistent behaviour in any RNN when increasing the number of layers.

One of the more peculiar aspects of this, is that the bidirectional RNNs do not have

the same behaviour as their single directional counterparts. Adding a bidirectional

component to the RNN fundamentally changes the utilisation of parameters. For each

increase in layer a different RNN either benefits or degrades. However, if the averages

are taken into account, it is clear that those RNNs which were applied to the regression

formulation, have a more negative correlation to sequence retention with an increase in

the number of layers. The RNNs applied to the classification experiment, have more

positive correlations to increasing the number of layers and retention ratios. To make

definitive conclusions on the effects of increasing the number of layers, the per parameter

sequence capacity ratio at each layer for each RNN will be evaluated next.
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RNN Number of layers

1 2 3 4 5 Average

Bidirectional Elman Classification -0.0664 0.0249 0.0000 0.0080 0.0480 0.00290

Regression -0.0823 -0.2806 -0.0468 -0.0163 -0.0382 -0.09284

Bidirectional GRU Classification 0.0006 0.4537 0.0580 0.0809 -0.2566 0.06732

Regression -0.2103 -0.2180 0.0240 -0.0228 -0.0496 -0.09534

Bidirectional Jordan Classification 0.0000 0.0015 0.0000 0.0000 0.0000 0.00030

Regression -0.0991 -0.0853 0.0220 0.0277 0.0059 -0.02576

Bidirectional LSTM Classification -0.0505 0.3804 0.0720 0.0046 -0.0923 0.06284

Regression -0.1811 0.1629 0.0063 0.0791 -0.0648 0.00048

Elman Classification -0.0345 0.1763 -0.1563 -0.0557 -0.0998 -0.03400

Regression -0.0780 -0.1096 0.0080 0.0305 -0.0128 -0.03238

GRU Classification 0.0000 0.2788 -0.0911 0.1836 0.0338 0.08102

Regression -0.1990 0.1929 -0.0511 -0.0091 0.0153 -0.01020

Jordan Classification 0.0531 0.2956 0.0583 0.0507 -0.1613 0.05928

Regression -0.0197 0.3212 0.0356 -0.0513 0.0762 0.07240

LSTM Classification 0.0000 0.0000 0.0766 -0.0023 -0.1146 -0.00806

Regression -0.2020 0.2536 0.1041 -0.1100 -0.0336 0.00242

Table 7.6: Spearman correlation between number of patterns retained and the number
of network parameters for increasing NN depth for each RNN

The findings of the effect increasing the number of hidden layers have on the sequence

capacity per parameter, is illustrated in figures 7.45, 7.46, 7.47, 7.48, 7.49, 7.50, 7.51

and 7.52 will be referred to, followed by an inspection of table 7.7. The figures indicate

that the per parameter capacity drastically drops from using one hidden layer to two.

Thereafter the degradation plateaus as the number of hidden layers are increased. The

degradation is more severe in the regression case than for classification. The degradation

can be further seen in table 7.7 where, in the worst case, the sequence capacity per

parameter in the regression formulation for the GRU decreased from 0.00094 to 0.00018,

when transitioning from one hidden layer to two. As illustrated by table 7.7 it is clear to

see as the number of layers increase, so does the per parameter sequence length capacity

decrease. When increasing the number the retention ratio of each parameter goes down
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as the number of parameters increases in the network, however a loss of precision happens

between layers and is only exaggerated as the depth of the network increases.
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Figure 7.45: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the LSTM RNN
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Figure 7.46: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the Jordan RNN
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Figure 7.47: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the Bidirectional Jordan RNN
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Figure 7.48: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the GRU RNN
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Figure 7.49: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the Elman RNN
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Figure 7.50: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the Bidirectional Elman RNN
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Figure 7.51: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the Bidirectional LSTM RNN



Chapter 7. Results 87

Number of Layers in Model
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Av
er

ag
e 

Le
ng

th
 C

ap
ac

ity
 

 R
at

io
 P

er
 P

ar
am

et
er

Classification

1 2 3 4 5
Number of Layers in Model

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Av
er

ag
e 

Le
ng

th
 C

ap
ac

ity
 

 R
at

io
 P

er
 P

ar
am

et
er

Regression

Figure 7.52: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network when increasing the number of layers for

the Bidirectional GRU RNN
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Number of layers

RNNs 1 2 3 4 5 Average

Bidirectional Elman Classification 0.00040 0.00015 0.00008 0.00006 0.00005 0.00015

Regression 0.00087 0.00015 0.00010 0.00007 0.00005 0.00025

Bidirectional GRU Classification 0.00039 0.00016 0.00012 0.00008 0.00006 0.00016

Regression 0.00215 0.00028 0.00015 0.00010 0.00009 0.00055

Bidirectional Jordan Classification 0.00038 0.00014 0.00008 0.00006 0.00004 0.00014

Regression 0.00079 0.00016 0.00010 0.00007 0.00005 0.00023

Bidirectional LSTM Classification 0.00040 0.00015 0.00010 0.00007 0.00005 0.00015

Regression 0.00144 0.00020 0.00014 0.00010 0.00008 0.00039

Elman Classification 0.00040 0.00014 0.00008 0.00006 0.00005 0.00015

Regression 0.00082 0.00014 0.00009 0.00007 0.00005 0.00023

GRU Classification 0.00040 0.00015 0.00011 0.00007 0.00006 0.00016

Regression 0.00094 0.00018 0.00015 0.00010 0.00008 0.00029

Jordan Classification 0.00041 0.00014 0.00008 0.00006 0.00005 0.00015

Regression 0.00068 0.00014 0.00009 0.00007 0.00005 0.00021

LSTM Classification 0.00039 0.00014 0.00009 0.00007 0.00006 0.00015

Regression 0.00069 0.00015 0.00011 0.00008 0.00006 0.00022

Table 7.7: Per parameter capacity for each RNN type at various layer count

7.1.4 Relationship between Sequence Length Retention and Different

Training Algorithms

The last aspect of Experiment 1 under consideration is the relationship between the

length of pattern retained per parameter and the optimisation algorithm used to train

each of the RNN types.

To determine this relationship, the same format is followed as the previous experiments

in this section. The average sequence length retained is compared to the number of

parameters used in the RNNs using a specific training algorithm, as illustrated in figures

7.53, 7.54, 7.55 and 7.56. Here it is clear that the RPROP and Adam training algorithms

enable RNNs to retain the longest sequence length per parameter. As found in sections

7.1.1 to 7.1.3 the regression formulation resulted in better sequence length retention.
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Figure 7.53: Effect of using Adam training algorithm on the ability to retain
patterns
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Figure 7.54: Effect of using Nesterov training algorithm on the ability to
retain patterns
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Figure 7.55: Effect of using RPROP training algorithm on the ability to
retain patterns
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Figure 7.56: Effect of using SGD training algorithm on the ability to retain
patterns
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Continuing the analysis, the correlation of the length of sequence retained given each

training algorithm for each RNN is presented in table 7.8. From table 7.8, the largest

correlation between number of parameters and the longest sequence retained can be seen

to be that of the bidirectional GRU using the Adam training algorithm, followed by the

bidirectional GRU using RPROP. However, each RNN type seems to favour different

training algorithms depending on the experiment type. For example the bidirectional

LSTM favoured standard gradient descent (SDG) achieving the highest Spearman rank

correlation coefficient of 0.3198 using the Nesterov optimisation algorithm in the regres-

sion formulation and 0.3015 using the SDG optimisation algorithm in the classification

formulation.

Training algorithms

RNN Adam Nesterov RPROP SGD

Bidirectional Elman Classification 0.0792 0.0511 0.1594 0.0765

Regression -0.0487 -0.2697 0.0945 -0.2741

Bidirectional GRU Classification 0.4476 0.4142 0.4192 0.4110

Regression -0.4367 0.3331 -0.4119 0.3384

Bidirectional Jordan Classification -0.0013 -0.0480 -0.0098 -0.0350

Regression -0.0877 -0.2265 -0.0546 -0.2646

Bidirectional LSTM Classification 0.2706 0.2917 0.2833 0.3015

Regression -0.2770 0.3198 -0.3086 0.2308

Elman Classification 0.1714 0.0365 0.1532 0.1271

Regression 0.0061 -0.2817 0.2166 -0.2602

GRU Classification 0.4087 0.3753 0.3890 0.3796

Regression -0.1459 0.3332 -0.2276 0.3302

Jordan Classification -0.0489 0.0361 0.1558 0.0807

Regression 0.0123 -0.2370 0.2249 -0.2704

LSTM Classification 0.3714 0.3574 0.3517 0.3549

Regression -0.1455 0.0413 -0.1483 0.0110

Table 7.8: Spearman correlation between number of patterns retained and the number
of network parameters using different training algorithms for each RNN

The effect of different training algorithms on the various RNN types is illustrated in

figures 7.57, 7.58, 7.59 and 7.60.
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Figure 7.57: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the SGD training algorithm
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Figure 7.58: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the Nesterov training algorithm
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Figure 7.59: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the RPROP training algorithm
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Figure 7.60: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using the Adam training algorithm
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From figures 7.57, 7.58, 7.59 and 7.60 previous claims are validated; both RPROP and

the Adam training algorithms result in the largest per parameter sequence capacity. To

determine which configuration had the best per parameter sequence capacity ratio, table

7.9 will be further analysed.

Training algorithms

RNN Adam Nesterov RPROP SGD

Bidirectional Elman Classification 0.00013 0.00011 0.00010 0.00011

Regression 0.00013 0.00017 0.00011 0.00016

Bidirectional GRU Classification 0.00015 0.00013 0.00013 0.00013

Regression 0.00044 0.00016 0.00043 0.00016

Bidirectional Jordan Classification 0.00012 0.00011 0.00011 0.00011

Regression 0.00014 0.00017 0.00013 0.00019

Bidirectional LSTM Classification 0.00014 0.00012 0.00012 0.00012

Regression 0.00027 0.00015 0.00035 0.00015

Elman Classification 0.00013 0.00011 0.00011 0.00011

Regression 0.00014 0.00017 0.00011 0.00019

GRU Classification 0.00014 0.00012 0.00012 0.00012

Regression 0.00025 0.00015 0.00028 0.00015

Jordan Classification 0.00013 0.00011 0.00011 0.00011

Regression 0.00013 0.00016 0.00011 0.00016

LSTM Classification 0.00014 0.00012 0.00012 0.00012

Regression 0.00018 0.00014 0.00017 0.00013

Table 7.9: Per parameter capacity between number of patterns retained and the
number of network parameters using different training algorithms for each RNN

Table 7.9 presents the average per parameter capacity ratio achieved by each RNN

type using specific training algorithms for both the classification and regression experi-

ments. From table 7.9, the best per parameter sequence capacity ratio is achieved using

the Adam training algorithm for the bidirectional GRU, followed by the bidirectional

LSTM trained using RPROP for both the regression and classification variants of the

experiment. When comparing the results between using the Adam and RPROP opti-

miser for the bidirectional GRU, there is only a slight increase when using the Adam

training algorithm. The observed behaviour may be attributed to the stochastic nature
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of neural networks training, thus no best training algorithm can be definitively deter-

mined. However, considering the bidirectional LSTM the disparity between capacity

ratio using the Adam and RPROP training algorithms is more apparent. The disparity

in performance of the bidirectional LSTM trained using the Adam and RPROP training

algorithms would indicate that the RPROP training algorithm is more suited to train

RNNs if the goal is to optimise per sequence capacity ratio for each parameter used in

a RNN, based on the current experimentation.

7.2 Experiment 2: Number of patterns retention

The analysis in this section follows the same format as the analysis done in section 7.1.

Here the investigation looks at the total number of patterns retained by each network

and the per parameter pattern capacity ratio. This experiment has two components, a

regression and classification formulation of the problem statement as described in section

6.2.2.

The results are presented as follows: The average number of patterns retained by each

RNN is presented in section 7.2.1. This is followed by investigating the use of different

activation functions evaluated in section 7.2.2. Thereafter the relationship between

the per parameter pattern capacity and the number of hidden layers is investigated in

section 7.2.3. Closing this section off, the influence of different training algorithms on

the number of pattern retained is inspected in section 7.2.4.

7.2.1 Average Per Parameter Capacity Retention for each RNN

The average number of patterns retained by each RNN is presented in figures 7.61, 7.62,

7.63, 7.64, 7.65, 7.66, 7.67 and 7.68. Similarly to the sequence retention experiment,

for all the RNNs, the total number of patterns retained was better when using the

regression formulation of the experiment as opposed to the classification formulation

of the experiment. This could be a coincidence, however the results of this warrant

further investigation. As a speculation, the performance dominance of the regression

formulation over the classification may be the way in which the classification formulation



Chapter 7. Results 96

is structured. If the classification formulation was structured differently, it may increase

performance. However, a refactoring of the classification formulation can be investigated

in future work.

From the figures 7.66 and 7.68, it is observed that the bidirectional LSTM and bidirec-

tional GRU were able to more linearly increase their pattern retention as the number

of parameters increased in the networks for the regression experiment. However, in the

classification formulation the bidirectional LSTM and bidirectional GRU RNNs were

more susceptible to local minima, as can be seen from figures 7.62 and 7.64 as the

number of patterns retained varies between network configurations where in some cases,

smaller network configurations out performs larger networks. For the Elman and Jordan

RNNs, bidirectional layers did not increase the pattern retention ratios. Bidirectional

layers helping the GRU and LSTM RNNs more than their less complex counterparts

indicates that the GRU and LSTM RNNs have better capabilities in retaining an in-

creasing number of patterns for this experiment and that the complex structures of the

GRU and LSTM are justified. To investigate the relationship between the number of

patterns retained and the increase in the number of parameters the Spearman rank

correlation of this relationship will be scrutinised.
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Figure 7.61: Effect of the number of parameters on the ability to retain
patterns for the bidirectional Elman RNN
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Figure 7.62: Effect of the number of parameters on the ability to retain
patterns for the bidirectional GRU RNN
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Figure 7.63: Effect of the number of parameters on the ability to retain
patterns for the bidirectional Jordan RNN

Number of Parameters in Model0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Nu
m

be
r 

 o
f P

at
te

rn
s r

et
ai

ne
d

Classification

0 5000 10000 15000 20000 25000
Number of Parameters in Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Nu
m

be
r 

 o
f P

at
te

rn
s r

et
ai

ne
d

Regression

Figure 7.64: Effect of the number of parameters on the ability to retain
patterns for the bidirectional LSTM RNN
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Figure 7.65: Effect of the number of parameters on the ability to retain
patterns for the Elman RNN
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Figure 7.66: Effect of the number of parameters on the ability to retain
patterns for the GRU RNN
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Figure 7.67: Effect of the number of parameters on the ability to retain
patterns for the Jordan RNN
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Figure 7.68: Effect of the number of parameters on the ability to retain
patterns for the LSTM RNN
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Table 7.10 explores the Spearman rank correlation between the number of patterns re-

tained and the number of parameters in the various RNNs. The same behaviour is

observed as in the figures 7.61, 7.62, 7.63, 7.64, 7.65, 7.66, 7.67 and 7.68 previously

discussed, where the bidirectional GRU and bidirectional LSTM have the highest cor-

relation between number of patterns retained and the number of parameters in the net-

work in the regression experiment. For the classification experiment, the bidirectional

GRU and GRU have the highest correlation. Upon inspecting the GRU and LSTM

more closely, the LSTM has a higher correlation coefficient in the regression experiment

whereas the GRU has a higher coefficient in the classification experiment. The Elman

and Jordan RNNs coefficients indicate these RNNs are more suited for the classification

experiment as compared to the regression experiment, which is investigated next.

RNN Classification Regression

Bidirectional Elman -0.08784 -0.20633

Bidirectional GRU 0.30532 0.21190

Bidirectional Jordan 0.03103 -0.11337

Bidirectional LSTM 0.18325 0.20004

Elman 0.13788 -0.21105

GRU 0.18828 0.08863

Jordan 0.01996 -0.14631

LSTM 0.06968 0.16480

Table 7.10: Spearman correlation between number of patterns retained and the num-
ber of network parameters

To investigate the performance of the per parameter pattern capacity ratio, figures 7.69,

7.70, 7.71, 7.72, 7.73, 7.74, 7.75 and 7.76 will be evaluated followed by interrogating

table 7.11. Upon inspecting these figures, it is clear that the per parameter pattern

capacity ratio decreases rapidly in both the regression and classification experiments.

The decrease in per parameter pattern capacity ratio was also observed in section 7.1.1.

The plateauing of the degradation is just an effect of the ratio’s in which these figures are

presented. Thus, the degradation does not reach a set equilibrium where the increasing of
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the number of parameters does not further decrease the per parameter pattern capacity.

Rather, the ratio approaches zero the more number of parameters are increased in the

network. To conclusively determine which RNN had the best per parameter capacity

ratio, refer to table 7.11.
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Figure 7.69: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Bidirectional Elman RNN
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Figure 7.70: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Bidirectional GRU RNN
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Figure 7.71: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Bidirectional Jordan RNN
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Figure 7.72: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Bidirectional LSTM RNN
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Figure 7.73: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Elman RNN
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Figure 7.74: Effect of increasing the number of parameters on the per pa-
rameter capacity of the GRU RNN
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Figure 7.75: Effect of increasing the number of parameters on the per pa-
rameter capacity of the Jordan RNN
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Figure 7.76: Effect of increasing the number of parameters on the per pa-
rameter capacity of the LSTM RNN

Table 7.11 represents the average per parameter capacity ratios for this experiment

in both the regression and classification formulations. In the classification experiment

the per parameter pattern capacity is similar for all RNNs, which is indicative that

the problem formulation was difficult for all networks. However, if we investigate the

regression case, it is clear that the bidirectional component assisted all but the Elman

RNNs. The bidirectional layers thus, in general, increase the effectiveness of RNNs

in using the number of parameters allotted to the network which may indicate that

seeing the pattern in the opposite direction as well may have an advantageous effect

on the updating of weights. In this experiment the bidirectional LSTM had the largest

per parameter pattern capacity ratio of 0.0003331 patterns per parameter, followed by

the LSTM RNN at 0.0003281. The LSTM RNN variants were more effective in this

experiment than the others overall which may be attributed to the complexity of the

internal state of the LSTM nodes which can keep track of more relevant information

than other RNN nodes.
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RNN Classification Regression

Bidirectional Elman 0.0000963 0.0001547

Bidirectional GRU 0.0001088 0.0003215

Bidirectional Jordan 0.0000973 0.0001552

Bidirectional LSTM 0.0001056 0.0003331

Elman 0.0001051 0.0001693

GRU 0.0001045 0.0002964

Jordan 0.0000966 0.0001474

LSTM 0.0001019 0.0003281

Table 7.11: Number of patterns retained per single network parameter

7.2.2 Average Per Parameter Capacity Retention for each Activation

Function

As the overall performance of the RNNs were investigated in the previous section (sec-

tion 7.2.1), this section analyses the impact various activation functions have on the

effectiveness of pattern retention across RNNs.

The average number of patterns retained when using each activation function is presented

in figures 7.77, 7.78, 7.79, 7.80, 7.81, 7.82, 7.83, 7.84, 7.85 and 7.86. Unsurprisingly, all

under performed in the classification experiment. In the regression experiment, the

results were more sporadic, fluctuating between retaining the patterns and not. As

can be seen, the variance in patterns retained increases as the number of parameters

increase for the elu, linear, selu, softmax and softplus activation functions. For the

hard sigmoid and sigmoid the variance decreases as the number of parameters increase.

However the number of patterns retained also decreased, indicating that RNNs using

either hard sigmoid or sigmoid activation functions converge faster onto local optima

than RNNs using other activation functions which may be due to the small range of these

functions’ search space which is constraint to [0, 1) leading to faster vanishing gradients

due to arithmetic errors in floating point rounding. The relu activation function had

less variance overall outside of a few peaks, such as when 12 patterns were retained as

can be observed in figure 7.80. The activation function which had the best increase in
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number of patterns retained is the softsign, which had a near linear increase in pattern

retention. The pattern retention rate of the softsign may be due to this function having

the range of (−1, 1) which may help the neural network to detect irrelevant patterns

more easily discard specific patterns previously learned.
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Figure 7.77: Effect of the number of parameters on the ability to retain
patterns over each activation function: elu
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Figure 7.78: Effect of the number of parameters on the ability to retain
patterns over each activation function: hard sigmoid
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Figure 7.79: Effect of the number of parameters on the ability to retain
patterns over each activation function: linear
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Figure 7.80: Effect of the number of parameters on the ability to retain
patterns over each activation function: relu
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Figure 7.81: Effect of the number of parameters on the ability to retain
patterns over each activation function: selu
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Figure 7.82: Effect of the number of parameters on the ability to retain
patterns over each activation function: sigmoid
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Figure 7.83: Effect of the number of parameters on the ability to retain
patterns over each activation function: softmax



Chapter 7. Results 112

Number of Parameters in Model0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Nu
m

be
r 

 o
f P

at
te

rn
s r

et
ai

ne
d

Classification

0 5000 10000 15000 20000 25000
Number of Parameters in Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Nu
m

be
r 

 o
f P

at
te

rn
s r

et
ai

ne
d

Regression

Figure 7.84: Effect of the number of parameters on the ability to retain
patterns over each activation function: softplus
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Figure 7.85: Effect of the number of parameters on the ability to retain
patterns over each activation function: softsign



Chapter 7. Results 113

Number of Parameters in Model0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Nu
m

be
r 

 o
f P

at
te

rn
s r

et
ai

ne
d

Classification

0 5000 10000 15000 20000 25000
Number of Parameters in Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e 

Nu
m

be
r 

 o
f P

at
te

rn
s r

et
ai

ne
d

Regression

Figure 7.86: Effect of the number of parameters on the ability to retain
patterns over each activation function: tanh

The observed relation between the activation function used by the RNNs and number

of patterns retained per parameter is further analysed using table 7.12. Where table

7.12 captures the Spearman rank correlation coefficients for each activation function

for each RNN and the number of patterns retained. The purpose of this table is to

determine which activation function RNN pair would have the most benefit in increasing

the number of parameters used.

Considering the regression experiment first, the most negatively correlated pairs are:

bidirectional Elman-softplus, bidirectional GRU-hard sigmoid, bidirectional Jordan- soft-

plus, bidirectional LSTM-hard sigmoid, Elman-elu, GRU-softmax, Jordan-softplus and

the LSTM-sigmoid. Since the sigmoid activation function is used in the internal workings

of the LSTM, the results observed indicates that replacing this activation function in

the LSTM node itself may lead to better performance. However investigating the effects

of replacing the internal activation functions of the LSTM is not within the scope of this

dissertation. The most positively correlated to performance increase are: bidirectional



Chapter 7. Results 114

Elman-softsign, bidirectional GRU-softplus, bidirectional Jordan-softsign, bidirectional

LSTM-softplus, Elman-softsign, GRU-softsign, Jordan-softsign and the LSTM-softplus.

The behaviour between the regression and classification experiments differ significantly.

For the classification case the most positively correlated pairs are: bidirectional Elman-

softsign, bidirectional GRU-relu, bidirectional Jordan-softsign, bidirectional LSTM-tanh,

Elman-tanh, GRU-selu, Jordan-softsign and the LSTM-tanh. Thus it is clear that the

only RNNs that have a consistent behaviour profile between these experiments are the

bidirectional Elman, bidirectional Jordan and Jordan. This indicates that RNN be-

haviour is dependant on the problem formulation. Next the actual per parameter pattern

capacity ratio will be inspected.

Figures 7.87, 7.88, 7.89, 7.90, 7.91, 7.92, 7.93, 7.94, 7.95 and 7.96 illustrate the per pa-

rameter pattern capacity ratio achieved on average for all neural networks using specific

activation functions, in order to retain the most number of patterns for both classifica-

tion and regression variants of the experiment. As seen previously, the same degradation

in per parameter capacity ratio as discussed in section 7.2.1 is observed. In all cases the

regression experiment ensured a larger per parameter capacity ratio than the classifica-

tion experiment. To be more granular in the analysis, table 7.13 needs to be referenced as

to gauge the average per parameter pattern capacity ratio for each RNN using different

activation functions.
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Figure 7.87: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using elu activation function
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Figure 7.88: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using hard sigmoid activation function
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Figure 7.89: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using linear activation function
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Figure 7.90: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using relu activation function
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Figure 7.91: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using selu activation function
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Figure 7.92: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using sigmoid activation function
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Figure 7.93: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using softmax activation function
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Figure 7.94: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using softplus activation function
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Figure 7.95: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using softsign activation function
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Figure 7.96: Effect of increasing the number of parameters on the per pa-
rameter capacity of the network using tanh activation function
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Table 7.13 reports the average per parameter pattern capacity achieved by each ac-

tivation function applied to each RNN. Upon inspection of the regression versus the

classification formulation of the experiment, it is clear that in all cases, the per param-

eter capacity is larger for the regression experiment. This corresponds to findings made

in the sequence length retention as discussed in section 7.1.2 which alludes to RNNs

responding better to regression problems than the classification counterparts. However,

the number of experiments is too small to make any true conclusions. The observed be-

haviour of RNNs being more applicable to regression than classification problem state-

ments may be attributed to how the classification problem was formulated or it may

be due to the increase in parameters in the network. The discrepancy in performance

of RNNs in the regression compared to classification variants of experiments warrants

further investigation, however the investigation thereof is outside of the scope of this

dissertation.

Evaluating the effectiveness of the RNNs, using different activation functions, it is clear

that the most effective per parameter pattern capacity is achieved by the LSTM RNN

using the selu activation function followed by the bidirectional LSTM also using selu.

However the difference between the per parameter pattern capacity is only marginal.

Despite this, the activation function which achieved the highest per parameter pattern

capacity over all the RNNs was the softplus. The softplus activation function has a large

range (0,+∞) and a smooth slope which might make it more versatile to use across

various RNNs, however further investigation is required to validate this statement.

7.2.3 Relationship between the Number of Patterns and Number Of

Layers

In this section the relationship between the number of patterns retained and the number

of hidden layers used in the network will be investigated.

The average number of patterns retained per additional hidden layer for each RNN is

presented in figures 7.97, 7.98, 7.99, 7.100, 7.101, 7.102, 7.103 and 7.104. From these

figures it is clear that in the classification experiment, increasing the number of hidden

layers did not improve the performance of any RNN. In the regression experiment the
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picture changes. The average pattern retention reduced for the bidirectional Elman,

bidirectional Jordan, the Elman and Jordan RNNs as more hidden layers were added.

In the case of the bidirectional GRU, the bidirectional LSTM, GRU and LSTM RNNs

a pattern can be observed. The number of patterns retained increases as the number of

layers do. However between the increase from two hidden layers to three, there seems

to be a decrease or no increase in retention on average, which is rather peculiar and

may be an artifact of the experiment itself. The behaviour of no increase or even a

decrease in retention when increasing the number of layers from two to three, would be

an ideal candidate for further research. To investigate further behavioural traits of how

the RNNs react to an increasing number of layers, an analysis of table 7.14 is done next.
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Figure 7.97: Effect of increasing number of layers the on the ability to retain
patterns for the bidirectional Elman RNN
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Figure 7.98: Effect of increasing number of layers the on the ability to retain
patterns for the bidirectional GRU RNN
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Figure 7.99: Effect of increasing number of layers the on the ability to retain
patterns for the bidirectional Jordan RNN
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Figure 7.100: Effect of increasing number of layers the on the ability to
retain patterns for the bidirectional LSTM RNN
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Figure 7.101: Effect of increasing number of layers the on the ability to
retain patterns for the Elman RNN
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Figure 7.102: Effect of increasing number of layers the on the ability to
retain patterns for the GRU RNN
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Figure 7.103: Effect of increasing number of layers the on the ability to
retain patterns for the Jordan RNN
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Figure 7.104: Effect of increasing number of layers the on the ability to
retain patterns for the LSTM RNN

The Spearman rank correlation between the number of patterns retained and the number

of hidden layers is captured in table 7.14. From this table it can be observed that the

behaviour of the RNNs between the classification and regression cases do not align

as discussed when evaluating figures 7.97, 7.98, 7.99, 7.100, 7.101, 7.102, 7.103 and

7.104. However, this table does also indicate that the relationship observed between

the transition between two to three hidden layers exists. On average the RNN which is

the most positively correlated to a performance increase when increasing the number of

hidden layers is the GRU in the classification experiment and the bidirectional Jordan for

the regression experiment. To determine which RNNs are the most effective in retaining

patterns, an evaluation of the per parameter pattern capacity will be performed next.

Figures 7.105, 7.106, 7.107, 7.108, 7.109, 7.110, 7.111 and 7.112 illustrate the per pa-

rameter pattern capacity for an increasing number of layers. Here it is clear that the

per parameter capacity ratio decreases as more layers are added. The largest of which

occurs when increasing from one to two layers in both the classification and regression

experiments. A more granular analysis will be done using table 7.15.



Chapter 7. Results 128

R
N

N
N

u
m

b
er

of
la

y
er

s
1

2
3

4
5

A
ve

ra
ge

B
id

ir
ec

ti
on

a
l

E
lm

an
C

la
ss

ifi
ca

ti
on

0.
03

26
0.

00
00

0.
00

00
-0

.0
83

6
-0

.1
34

0
-0

.0
37

00
R

eg
re

ss
io

n
0.

00
72

-0
.2

53
3

-0
.0

11
4

-0
.0

95
6

-0
.0

46
3

-0
.0

79
88

B
id

ir
ec

ti
o
n

al
G

R
U

C
la

ss
ifi

ca
ti

on
0.

00
00

0.
00

00
-0

.0
29

3
-0

.1
25

7
0.

08
26

-0
.0

14
48

R
eg

re
ss

io
n

0.
07

91
-0

.1
17

3
0.

00
15

0.
12

08
0.

04
00

0.
02

48
2

B
id

ir
ec

ti
o
n

a
l

J
or

d
a
n

C
la

ss
ifi

ca
ti

on
0.

00
14

0.
08

43
0.

00
00

0.
02

11
-0

.0
98

3
0.

00
17

0
R

eg
re

ss
io

n
-0

.0
05

2
0.

19
97

0.
04

59
-0

.0
20

1
-0

.0
47

2
0.

03
46

2
B

id
ir

ec
ti

on
al

L
S

T
M

C
la

ss
ifi

ca
ti

on
0.

00
00

0.
00

00
0.

09
52

0.
06

38
0.

06
23

0.
04

42
6

R
eg

re
ss

io
n

0.
03

44
-0

.0
52

8
0.

01
11

0.
03

74
0.

04
65

0.
01

53
2

E
lm

an
C

la
ss

ifi
ca

ti
on

0.
00

00
0.

00
00

0.
01

39
-0

.0
57

0
0.

00
28

-0
.0

08
06

R
eg

re
ss

io
n

0.
08

90
-0

.1
89

3
0.

05
30

-0
.1

20
5

-0
.0

03
3

-0
.0

34
22

G
R

U
C

la
ss

ifi
ca

ti
on

0.
00

00
0.

11
28

-0
.0

07
5

0.
00

00
0.

31
11

0.
08

32
8

R
eg

re
ss

io
n

0.
04

01
-0

.0
92

9
0.

01
74

-0
.0

08
4

-0
.0

03
4

-0
.0

09
44

J
or

d
a
n

C
la

ss
ifi

ca
ti

on
0.

07
26

0.
16

60
0.

05
95

-0
.0

21
1

0.
14

37
0.

08
41

4
R

eg
re

ss
io

n
0.

01
19

0.
20

86
0.

09
83

-0
.1

14
4

-0
.0

43
7

0.
03

21
4

L
S

T
M

C
la

ss
ifi

ca
ti

on
0.

00
00

0.
00

00
0.

06
51

0.
01

92
0.

13
68

0.
04

42
2

R
eg

re
ss

io
n

0.
02

83
0.

01
08

-0
.0

59
8

0.
10

57
0.

03
95

0.
02

49
0

T
a
b
l
e
7
.1
4
:

S
p

ea
rm

an
co

rr
el

at
io

n
b

et
w

ee
n

th
e

n
u

m
b

er
o
f

p
a
tt

er
n

s
re

ta
in

ed
a
n

d
th

e
n
u

m
b

er
o
f

n
et

w
o
rk

p
a
ra

m
et

er
s

fo
r

in
cr

ea
si

n
g

N
N

d
ep

th
fo

r
ea

ch
R

N
N



Chapter 7. Results 129

Number of Layers in Model0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Av
er

ag
e 

Nu
m

be
r o

f P
at

te
rn

 C
ap

ac
ity

 
 R

at
io

 P
er

 P
ar

am
et

er

Classification

1 2 3 4 5
Number of Layers in Model

0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Av
er

ag
e 

Nu
m

be
r o

f P
at

te
rn

 C
ap

ac
ity

 
 R

at
io

 P
er

 P
ar

am
et

er

Regression

Figure 7.105: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Jordan RNN
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Figure 7.106: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the bidirectional Jordan RNN
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Figure 7.107: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the LSTM RNN
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Figure 7.108: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the GRU RNN
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Figure 7.109: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Elman RNN
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Figure 7.110: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the bidirectional Elman RNN
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Figure 7.111: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the bidirectional LSTM RNN
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Figure 7.112: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the bidirectional GRU RNN
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The results of the per parameter pattern capacity ratio as the number of hidden layers

are increased for each RNN, is reported in table 7.15. The configuration that lead to the

highest per parameter pattern retention was the bidirectional LSTM using one hidden

layer at 0.00098 in the regression case, followed by the LSTM RNN at 0.00098 in the

regression case. In the classification the highest per parameter pattern retention was

achieved by three RNNs; the bidirectional Elman, Elman RNN and GRU RNN, achiev-

ing a ratio of 0.00040. The bidirectional LSTM also performed the best as the number

of layers increased from one to five which attained a parameter pattern retention ratio

of 0.00043 on average in the regression case, indicating that for deeper networks, bidi-

rectional LSTM are more effective at retaining a larger array of patterns per parameter

used. In the classification case, on average all RNNs achieved the same average param-

eter pattern retention ratio of 0.00014 which indicates that the bidirectional layers did

not increase the effectiveness in retention ratios on average in this experiment. Since the

bidirectional layers did not increase the effectiveness of the RNNs in the classification

cases, but did increase the parameter pattern retention ratios in the regression case, it

indicates that the classification formulation may be interfering with the performance of

the bidirectional layers. The interference of the classification formulation on the per-

formance of bidirectional layers may be attributed to loss of information in the latter

layers as the number of parameters needs to be consistent across all experiments.

7.2.4 Relationship between the Number of Patterns and Different Train-

ing Algorithms

This section investigates the effects of using different training algorithms on the per

parameter pattern retention of various RNNs.

Figures 7.113, 7.114, 7.115 and 7.116 show the average number of patterns retained

for increasing the number of model parameters. Behavioural traits observed previously,

are also observed here. These training algorithms are more effective in the case of

regression as opposed to the classification experiment. Here it is clear that the Adam

and RPROP training algorithms resulted in higher retention of patterns. However, this

ability decreases as the number of model parameters increases. Interestingly enough the
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SGD and Nesterov enable the RNNs to retain a larger number of patterns the more

parameters are used in the RNNs. To investigate the behaviour of SGD and Nesterov

increasing effectiveness of pattern retention further, refer to table 7.16.
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Figure 7.113: Effect of using Adam training algorithm on the ability to
retain patterns
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Figure 7.114: Effect of using Nesterov training algorithm on the ability to
retain patterns
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Figure 7.115: Effect of using RPROP training algorithm on the ability to
retain patterns
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Figure 7.116: Effect of using SGD training algorithm on the ability to retain
patterns

The Spearman rank correlation for each RNN using different training algorithms and

the average number of patterns retained is presented in table 7.16 for both the regression

and classification experiments. In general, the correlation between the number of pat-

terns retained and the number of parameters in the model has less variance within the

classification experiments, whereas this relationship is more variate during the regression

experiments for all training algorithms utilised.

The highest correlation coefficient between the number of patterns retained and the

number of parameters in the RNNs, was observed for the bidirectional GRU using the

SGD training algorithm followed again by the same RNN using the Nesterov train-

ing algorithm during the regression experiment. Since the highest Spearman correlation

coefficient was achieved by bidirectional GRU using the SGD and Nesterov training algo-

rithms it is indicative of these training algorithms being more linear in their performance

contribution as the number of parameters increase in the network. For the classification

experiment, the most positive correlation coefficient of 0.6044 was also achieved by the

bidirectional GRU using SGD. The most negatively correlated pair is the Elman RNN
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using RPROP in the case of regression with a correlation coefficient of −0.3376. For

the classification experiment the bidirectional Elman was the most negatively correlated

when using SGD to train it, with a correlation coefficient of −0.1328.

Figures 7.117, 7.118, 7.119 and 7.120 serve to show how per parameter pattern capacity

decreases as the number of parameters in the RNNs increase. The impact of the training

algorithms on the per parameter capacity ratio seem consistent across the classification

experiment. During the regression experiment, the degradation happens more gradually

when using the RPROP training algorithm. Here the Adam training algorithm performs

well initially, but the retention rate drops sharply. This will further be explored in table

7.17.
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Figure 7.117: Effect of increasing the number of parameters on the per
parameter capacity of the network using Adam training algorithm
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Figure 7.118: Effect of increasing the number of parameters on the per
parameter capacity of the network using SGD training algorithm
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Figure 7.119: Effect of increasing the number of parameters on the per
parameter capacity of the network using Nesterov training algorithm
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Figure 7.120: Effect of increasing the number of parameters on the per
parameter capacity of the network using RPROP training algorithm

The average per parameter pattern capacity ratio using different training algorithms for

each RNN, is presented in table 7.17. From table 7.17 initially, as in all other experiments

the RNNs retained less information per parameter for the classification experiments than

the regression experiments. Comparing the per parameter pattern capacity between all

RNNs, it is found that in the regression case the bidirectional LSTM trained using the

Adam training algorithm was able to achieve the highest ratio of 0.00051 followed by

the bidirectional GRU also trained using Adam which achieved a per parameter pattern

retention ratio of 0.00050. In the classification experiment the same configurations

performed best with per parameter pattern retention ratios of 0.00012 and 0.00010

respectively. The Adam training algorithm allows for more granular weight updates in

the current time step, which is probably why the RNNs trained are able to use their

parameters more effectively when applied to the pattern retention problem statement.
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7.3 Experiment 3: Frame of Retention

Experiment three combines experiment one, length of sequence retention, and experi-

ment two, the number of patterns retained. Experiment three is designed to determine

how many patterns of increasing sequence length can be retained as described in sec-

tion 7.2. Here the retention ratio will be referred to as the frame capacity of retention

per parameter. This experiment differs from the previous as in the current experiment

there was only a regression experiment conducted. The reasoning behind using only the

regression component of previous experiments, is that RNNs performed better in the re-

gression experiments than the classification experiment for both the length of sequence

retention and the number of patterns retained experiment.

This analysis follows the same format as 7.1 and 7.2, that is a holistic view over all

RNNs for the frame capacity is investigated in section 7.3.1. The effect of using different

activation functions on the frame retention capability of RNNs is evaluated in section

7.3.2. Thereafter the relationship between the per parameter pattern capacity for in-

creasing number of hidden layers is investigated in section 7.3.3. Closing this section off,

the influence of different training algorithms are inspected in section 7.3.4.

7.3.1 Average Per Parameter Capacity Retention for each RNN

This section investigates the frame capacity per parameter for each RNN overall.

Figures 7.121, 7.122, 7.123, 7.124, 7.125, 7.126, 7.127 and 7.128 presents the average

frame retained by each RNN for increasing number of parameters in the networks. In the

aforementioned figures, a frame of two patterns of time length two will be represented by

a 2 on the y-axis. Considering the general trend observed in figures 7.121, 7.122, 7.123,

7.124, 7.125, 7.126, 7.127 and 7.128, it is clear that all RNNs struggled with frame

retention. The struggle RNNs face with frame retention, may be a result of the way in

which the experiment was structured, as RNNs are generally performant when applied to

time-series retention. Regardless of the difficulties faced by the RNNs, the results from

the frame retention experiments can still be compared in relative terms. Continuing the

analysis, it is observed that bidirectional layers assisted the GRU, Jordan and LSTM
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RNNs to increase frame retention. However, the same is not true for the Elman RNN.

To further investigate the relationship between frame retention and model parameters

for each RNN, inspection of table 7.18 is required.
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Figure 7.121: Effect of the number of parameters on the ability to retain
patterns for the bidirectional Elman RNN
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Figure 7.122: Effect of the number of parameters on the ability to retain
patterns for the bidirectional GRU RNN
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Figure 7.123: Effect of the number of parameters on the ability to retain
patterns for the bidirectional Jordan RNN
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Figure 7.124: Effect of the number of parameters on the ability to retain
patterns for the bidirectional LSTM RNN
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Figure 7.125: Effect of the number of parameters on the ability to retain
patterns for the Elman RNN
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Figure 7.126: Effect of the number of parameters on the ability to retain
patterns for the GRU RNN
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Figure 7.127: Effect of the number of parameters on the ability to retain
patterns for the Jordan RNN
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Figure 7.128: Effect of the number of parameters on the ability to retain
patterns for the LSTM RNN

Table 7.18 presents the results of taking the Spearman Rank correlation between the

number of parameters in the RNNs and the number of frames retained. In table 7.18

the relationships are more clear. As previously stated, the networks which had the

worst correlation coefficients were the Elman and the bidirectional Elman RNNs with

−0.26456 and −0.31323 respectively. From table 7.18 it is observed for the LSTM and

Jordan RNNs that the correlation coefficients improved positively from 0.21015 and

0.09847 to 0.21015 and 0.11517 when using the bidirectional layers. Surprisingly, the

correlation coefficient for the bidirectional GRU is less, at 0.21634, than that of the GRU,

at 0.24909, indicating that the GRU benefits more from an increase in the number of

parameters. Now that the relationship between the increase in the number of parameters

and the frame retention capacity of RNNs have been explored, the per parameter frame

capacity of the various networks will be inspected.
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RNN Spearman correlation

Bidirectional Elman -0.31323

Bidirectional GRU 0.21634

Bidirectional Jordan 0.11517

Bidirectional LSTM 0.21015

Elman -0.26456

GRU 0.24909

Jordan 0.09847

LSTM 0.20880

Table 7.18: Spearman correlation between the number of frames retained and the
number of network parameters

Figures 7.129, 7.130, 7.131, 7.132, 7.133, 7.134, 7.135 and 7.136 convey the per param-

eter frame capacity as the number of parameters in the respective RNNs increase. As

expected, and observed in the previous experiments, the per parameter capacity de-

creases as the number of parameters increase. This illustrates that the rate of decay in

per parameter frame capacity is the highest with a few parameters, thereafter the per

parameter capacity follows a logarithmic decay as the number of parameters increase.
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Figure 7.129: Effect of increasing the number of parameters on the per
parameter capacity of the Bidirectional Elman RNN
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Figure 7.130: Effect of increasing the number of parameters on the per
parameter capacity of the Bidirectional GRU RNN
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Figure 7.131: Effect of increasing the number of parameters on the per
parameter capacity of the bidirectional Jordan RNN
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Figure 7.132: Effect of increasing the number of parameters on the per
parameter capacity of the Bidirectional LSTM RNN
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Figure 7.133: Effect of increasing the number of parameters on the per
parameter capacity of the Elman RNN
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Figure 7.134: Effect of increasing the number of parameters on the per
parameter capacity of the GRU RNN
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Figure 7.135: Effect of increasing the number of parameters on the per
parameter capacity of the Jordan RNN
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Figure 7.136: Effect of increasing the number of parameters on the per
parameter capacity of the LSTM RNN

In table 7.19 the per parameter frame capacity for each RNN is presented. Here, the

bidirectional GRU was able to achieve the highest per parameter frame capacity of

0.0001286 followed by the GRU with a ratio of 0.0001244. Upon further inspection it is

also noted that only in the Elman RNN’s case, did the bidirectional layers not result in

any performance gain. The bidirectional layers not attributing to performance gain is

surprising and may be attributed to the experimental structure as the underlying data

set does not have a specific pattern which can be learned indicating that bidirectional

layers are more applicable to problems in which additional abstraction is required.

RNN Capacity Ratio

Bidirectional Elman 0.0000270

Bidirectional GRU 0.0001286

Bidirectional Jordan 0.0000491

Bidirectional LSTM 0.0001200

Elman 0.0000338

GRU 0.0001244

Jordan 0.0000632

LSTM 0.0001213

Table 7.19: Average number of frames retained per single network parameter
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7.3.2 Average Per Parameter Capacity Retention for each Activation

Function

Furthering the investigation, this section serves to investigate how activation functions

affect the per parameter frame capacity of the different RNNs. The intention is to find

the optimal activation function RNN pair to maximise the per parameter performance.

To determine the relationship between activation functions and frame capacity as the

number of parameters grow, the results of the experiments conducted are presented

in figures 7.137, 7.138, 7.139, 7.140, 7.141, 7.142, 7.143, 7.144, 7.145 and 7.146. The

aforementioned figures report the average frame which was retained. From the listed

figures it is seen that some activation functions lead to a larger frame retention capacity

over all RNNs on average. The elu, linear, relu, selu and tanh functions handle increas-

ing the number of parameters in the model better than the other activation functions.

However, the variance in frame retention is much higher for the elu, linear, relu, selu

and tanh activation functions. To further investigate the impact that these activation

functions have on the frame retention rate as the number of model parameters increase,

the Spearman rank correlation is considered in table 7.20.
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Figure 7.137: Effect of using the Elu activation function on the frame reten-
tion over all RNNs for increasing parameters in the network architectures
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Figure 7.138: Effect of using the Hard Sigmoid activation function on the
frame retention over all RNNs for increasing parameters in the network

architectures
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Figure 7.139: Effect of using the Linear activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures
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Figure 7.140: Effect of using the Relu activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures
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Figure 7.141: Effect of using the Selu activation function on the frame reten-
tion over all RNNs for increasing parameters in the network architectures
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Figure 7.142: Effect of using the Sigmoid activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures
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Figure 7.143: Effect of using the Softmax activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures
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Figure 7.144: Effect of using the Softplus activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures
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Figure 7.145: Effect of using the Softsign activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures
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Figure 7.146: Effect of using the Tanh activation function on the frame
retention over all RNNs for increasing parameters in the network architec-

tures

Considering the Spearman rank correlation between frames retained and the number of

parameters in the model, as presented in table 7.20, there is a clear negative correlation
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for the Elman RNN variants almost across the board. The elu, linear, relu, selu and tanh

activation functions, which were found to be the most advantageous to use for frame

retention, also show clear positive correlations especially with RNNs which performed

well in section 7.3.1. The most positive relationship being obtained by using a GRU

using the elu activation function, with a correlation coefficient of 0.6788, followed by

the bidirectional GRU using relu, with a correlation coefficient of 0.6475. However, on

average, the linear activation function had the highest correlation coefficient if measured

across all RNNs with a ratio of 0.3476. To further the investigation, next an inspection

on the per parameter frame capacity is performed.

To expose the per parameter frame capacity relationship for each activation function

as the number of model parameters increase, figures 7.147, 7.148, 7.149, 7.150, 7.151,

7.152, 7.153, 7.154, 7.155 and 7.156 are presented. These figures illustrate the smaller

the per parameter capacity becomes the more complex the problem the network tries to

learn. On average the same behaviour is observed in the previously mentioned figures

as in section 7.3.1; as the decay is logarithmic for all activation functions. To gauge the

frame retention capacity per parameter, table 7.21 needs to be considered.
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Figure 7.147: Effect of increasing the number of parameters on the per
parameter capacity of the network using elu activation function
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Figure 7.148: Effect of increasing the number of parameters on the per
parameter capacity of the network using hard sigmoid activation function
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Figure 7.149: Effect of increasing the number of parameters on the per
parameter capacity of the network using linear activation function
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Figure 7.150: Effect of increasing the number of parameters on the per
parameter capacity of the network using relu activation function
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Figure 7.151: Effect of increasing the number of parameters on the per
parameter capacity of the network using selu activation function

0 5000 10000 15000 20000 25000
Number of Parameters in Model

0.001

0.000

0.001

0.002

0.003

0.004

0.005

Av
er

ag
e 

Fr
am

e 
Ca

pa
cit

y 
 R

at
io

 P
er

 P
ar

am
et

er

SIGMOID

Figure 7.152: Effect of increasing the number of parameters on the per
parameter capacity of the network using sigmoid activation function
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Figure 7.153: Effect of increasing the number of parameters on the per
parameter capacity of the network using softmax activation function
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Figure 7.154: Effect of increasing the number of parameters on the per
parameter capacity of the network using softplus activation function
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Figure 7.155: Effect of increasing the number of parameters on the per
parameter capacity of the network using softsign activation function
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Figure 7.156: Effect of increasing the number of parameters on the per
parameter capacity of the network using tanh activation function

Table 7.21 exposes the per parameter frame capacity for each activation function for each

RNN. Considering average performance over all RNNs, it is clear that the selu activation

function had the highest per parameter frame capacity of 0.0001132 overall. Upon

further inspection, the highest per parameter frame capacity achieved was by the LSTM
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using the selu activation function of 0.0001132, followed closely by the bidirectional

GRU also using relu with a per parameter frame retention ratio of 0.0001889. The selu

activation function performing better than other activation functions is not surprising

as this activation function has performed well in the previous experiments.

7.3.3 Relationship between the Number of Frames and the Number

Of Layers

Furthering the investigation of the different components affecting the frame capacity of

RNNs, this section investigates how increasing the number of hidden layers affects the

per parameter frame capacity.

Figures 7.157, 7.158, 7.159, 7.160, 7.161, 7.162, 7.163 and 7.164 present the average

frame retained per hidden layer added. Inspection of figures 7.157, 7.158, 7.159, 7.160,

7.161, 7.162, 7.163 and 7.164 reveals that increasing the number of layers benefited some

RNNs, but reduced retention in others. As can be observed, the bidirectional Elman,

bidirectional Jordan RNN and Elman RNNs retained less frames on average the more

hidden layers were added. Not only did the frame retention problem prove difficult

for these subsets of networks, but by increasing the number of layers, the networks

essentially reduced in cognitive ability. In the case of all other RNNs, increasing the

number of layers seemingly did increase the number of frames retained, however further

analysis is required.
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Figure 7.157: Effect of increasing number of layers the on the ability to
retain patterns for the Bidirectional Elman RNN
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Figure 7.158: Effect of increasing number of layers the on the ability to
retain patterns for the Bidirectional GRU RNN
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Figure 7.159: Effect of increasing number of layers the on the ability to
retain patterns for the Bidirectional Jordan RNN
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Figure 7.160: Effect of increasing number of layers the on the ability to
retain patterns for the Bidirectional LSTM RNN
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Figure 7.161: Effect of increasing number of layers the on the ability to
retain patterns for the Elman RNN
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Figure 7.162: Effect of increasing number of layers the on the ability to
retain patterns for the GRU RNN
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Figure 7.163: Effect of increasing number of layers the on the ability to
retain patterns for the Jordan RNN
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Figure 7.164: Effect of increasing number of layers the on the ability to
retain patterns for the LSTM RNN

Table 7.22 represents the Spearman Rank correlation between the number of layers and

the frame capacity per parameter for each RNN is investigated. From table 7.22 it can be

observed that as the number of layers increase so does the per parameter frame capacity

decrease on average. However, in some cases increasing the number of layers increases

the per parameter frame capacity for the RNN. When referring to the bidirectional GRU

at layer 3 the correlation coefficient increases to 0.1729 from −0.1031 as in layer 2. Other

RNNs exhibit the same behaviour such as the bidirectional Jordan as well as the GRU

to name a few. Since the RNNs perform better in some configurations than others, it

may indicate that there exists some optimal configuration for each RNN, which is left for

future work. The RNN which benefited most from increasing layer depth is the LSTM

as the correlation coefficient of the per parameter frame capacity remains positive on

average at 0.02294 indicating that the LSTM is more suited to be stacked in deeper

layer configurations for the frame retention problem statement.

The per parameter frame capacity as the number of hidden layers increase for each

RNN is shown in figures 7.165, 7.166, 7.167, 7.168, 7.169, 7.170, 7.171 and 7.172. From

these figures, it is clear that when increasing the number of hidden layers, the amount of

knowledge which can be retained per parameter is sacrificed. The drop in frame capacity

is most prevalent between increasing from one hidden layer to two. This indicates that

wider RNNs with fewer hidden layers would be able to retain a higher amount of frames

than their deeper counter parts on average.
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Figure 7.165: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the bidirectional Elman RNN
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Figure 7.166: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Bidirectional GRU RNN
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Figure 7.167: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Bidirectional Jordan RNN
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Figure 7.168: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Bidirectional LSTM RNN
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Figure 7.169: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Elman RNN
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Figure 7.170: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the GRU RNN
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Figure 7.171: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the Jordan RNN
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Figure 7.172: Effect of increasing the number of parameters on the per
parameter capacity of the network when increasing the number of layers for

the LSTM RNN

Table 7.23 presents the per frame capacity ratio for each RNN at increasing numbers of

hidden layers. Overall the bidirectional GRU achieved the highest per parameter frame

capacity of 0.0002058, followed by the LSTM of 0.0002036. If the number of hidden layers

are examined separately and the performance of each RNN using that number of hidden

layers, it can be observed that the LSTM had the highest capacity when one hidden

layer was used with a per parameter frame retention ratio of 0.0005365. Thereafter the

bidirectional GRU reached the best per parameter frame capacity of 0.0002267 when

using two hidden layers, using three hidden layers with a ratio of 0.0001211 and four

with a ratio of 0.0001121, among all RNNs using the same number of hidden layers.

The GRU achieved the highest per parameter frame capacity of 0.000867 using five

hidden layers when compared to the other RNNs. Considering these results, it is clear

that wider RNNs would have a higher frame capacity for this experiment and that the
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bidirectional GRU is able to utilise an increasing number of hidden layers more effectively

than other RNNs. Deeper RNNs lose more information as the layers increase in depth

as compression of information is applied due to the loss in gradient information during

back-propagation.

7.3.4 Relationship between the Number of Frames and Different Train-

ing Algorithms

This section explores the effects of using different training algorithms on the per param-

eter frame capacity.

Figures 7.173, 7.174, 7.175 and 7.176 present the average number of frames retained

over all RNNs trained using the presented training algorithms. The number of frames

retained has a higher variance for the Adam training algorithm as illustrated in figure

7.173, nevertheless the highest average number of frames was achieved using this method.

The other training algorithms seem to be more consistent in their results and an increase

in the average number of frames retained can be observed as the number of parameters

in the network increases.
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Figure 7.173: Effect of using Adam training algorithm on the ability to
retain patterns
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Figure 7.174: Effect of using Nesterov training algorithm on the ability to
retain patterns
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Figure 7.175: Effect of using RPROP training algorithm on the ability to
retain patterns
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Figure 7.176: Effect of using SGD training algorithm on the ability to retain
patterns

The Spearman Rank correlation between the number of frames retained and the number

of parameters in the RNNs using different training algorithms, is presented in table 7.24.

Upon inspection the most positive correlation coefficient of 0.4437 was achieved by the

GRU trained using the Nesterov gradient descent training algorithm. Indicating that for
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the Nesterov training algorithm the GRU is the most responsive. The least responsive

RNN for the Nesterov training algorithm is the Jordan RNN as it has the most negative

correlation coefficient at−0.2613. The most negative correlation of−0.4338 was achieved

when applying the Adam training algorithm to train the Elman bidirectional RNN. The

Adam training algorithm achieved the most responsiveness from the Jordan RNN, with

a correlation coefficient of 0.2597, followed by the LSTM, with a correlation coefficient

of 0.2377. The RPROP achieved the most positive influence on the Jordan RNN, with

a correlation coefficient of 0.1985, and the least on the bidirectional Elman, with a

correlation coefficient of −0.3748. Lastly, the SGD training algorithm applied to the

GRU had the highest correlation coefficient for the number of frames retained at 0.4369

and the most negative correlation coefficient of −0.2280, when applied to training the

bidirectional Elman RNN. At a first glance, it would seem as if the Nesterov and SGD

training algorithms would be able to achieve the highest frame capacity per parameter.

However these numbers are affected by the low variance in the number of frames retained

using these techniques. To determine which training algorithm lead to the highest per

parameter frame capacity, further analysis of figures 7.177, 7.178, 7.179, 7.180 and table

7.25 is essential.

Training Algorithms

RNNs Adam Nesterov RPROP SGD

Bidirectional Elman -0.4338 -0.1878 -0.3748 -0.2280

Bidirectional GRU 0.1194 0.4190 -0.0332 0.4453

Bidirectional Jordan 0.0692 0.1305 0.1085 0.1726

Bidirectional LSTM 0.1784 0.4380 -0.0767 0.4268

Elman -0.3952 -0.1794 -0.3170 -0.1411

GRU 0.2377 0.4437 -0.0381 0.4369

Jordan 0.2597 -0.2613 0.1985 -0.2198

LSTM 0.2590 0.3948 -0.0932 0.3816

Table 7.24: Spearman correlation between Number of patterns retained and the num-
ber of network parameters using different training algorithms for each RNN
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The results of measuring the per parameter frame capacity for increasing the number

of parameters over the separate RNNs investigated is presented in figures 7.177, 7.178,

7.179 and 7.180. The decay in per parameter frame capacity follows the overall behaviour

of the RNNs as described previously in section 7.3.1. Considering the slope of the

Adam training algorithm, the variance seems to work in its favour. The other training

algorithms have a smooth logarithmic decay, whereas the Adam training algorithm spikes

up and down, which seemingly gives the Adam training algorithm a better chance at

jumping out of local minima.
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Figure 7.177: Effect of increasing the number of parameters on the per
parameter capacity of the network using Adam training algorithm
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Figure 7.178: Effect of increasing the number of parameters on the per
parameter capacity of the network using Nesterov training algorithm
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Figure 7.179: Effect of increasing the number of parameters on the per
parameter capacity of the network using RPROP training algorithm
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Figure 7.180: Effect of increasing the number of parameters on the per
parameter capacity of the network using SGD training algorithm

Table 7.25 presents the per parameter frame capacity achieved by each RNN using

different training algorithms. The highest per parameter frame capacity of 0.0001403

achieved is by the GRU RNN trained using Adam. The bidirectional GRU achieved the

highest per parameter frame capacity of 0.0001286 when considering the average overall

of the tested training algorithms. The bidirectional Elman RNN performed the worst

in each case regardless of which training algorithm was used. Reviewing each RNN

reveals that the Adam training algorithm should be used when using the bidirectional

Elman, bidirectional Jordan and Elman RNNs as these networks achieved the highest

relative frame rate capacity when compared to using other training algorithms. For

the bidirectional LSTM and LSTM, RPROP was more effective in training to achieve

the highest per parameter frame capacity, achieving a rate of 0.0001425 and 0.0001409

respectively. Lastly, the Jordan RNN had the best performance per parameter when

trained using Nesterov for this experiment as opposed to any other training algorithm
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with a per parameter frame capacity of 0.0000698. On average the Adam training

algorithm achieved the highest frame retention ratio across all RNNs of 0.00009449,

which makes sense as the Adam training algorithm can make more granular weight

updates as a learning rate is maintained for each weight in the network.

Training Algorithms

RNNs Adam Nesterov RPROP SGD

Bidirectional Elman 0.0000390 0.0000226 0.0000251 0.0000206

Bidirectional GRU 0.0001468 0.0001113 0.0001458 0.0001105

Bidirectional Jordan 0.0000545 0.0000472 0.0000479 0.0000458

Bidirectional LSTM 0.0001349 0.0001011 0.0001409 0.0001042

Elman 0.0000478 0.0000270 0.0000308 0.0000289

GRU 0.0001403 0.0001087 0.0001412 0.0001063

Jordan 0.0000572 0.0000698 0.0000595 0.0000678

LSTM 0.0001354 0.0001043 0.0001425 0.0001023

Table 7.25: Per parameter capacity between Number of patterns retained and the
number of network parameters using different training algorithms for each RNN



Chapter 8

Conclusion

This chapter serves to summarise findings over all experiments conducted. A summary

of the experiments conducted is presented in section 8.1. This is followed by resulting

conclusions in section 8.2. After the summary of this work is presented, possible future

work identified will be presented in section 8.3.

8.1 Summary

The work set out in this dissertation attempted to understand the retention length and

memory capacity of recurrent neural networks. This was done by performing three

types of experiments as presented in chapter 6. The first measures the sequence length

retention as described in section 6.2.1. The second was constructed to measure the

number of patterns which can be retained, the details of which can be found in section

6.2.2. In the last experiment both of the previous experiments were combined, that is,

to determine the number of sequences which could be retained as the number of patterns

and length of sequences increased.

The first two experiments were formulated as both regression and classification variants.

This was done to investigate how formulating the problem statement may affect the

retention of sequences and patterns respectively. The last experiment which combined

the former, was only formulated as a regression experiment as the results of the first

177
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two experiments alluded to RNNs performing better in regression formulated domains.

Experiments were continued as long as the RNN’s showed increase in performance over

a set number of epochs as discussed in the performance chapter 5.

RNN nodes, such as the LSTM and GRU, have more parameters than that of the Elman

and Jordan. More so the bidirectional RNNs have double the parameters than the single

directional counter parts. In order to conduct a fair comparison, the performance of these

RNNs are compared on a per parameter capacity ratio. The details of which is presented

in section 6.1.1 of chapter 6. For sequence retention, this ratio is referred to as the per

parameter length retention. In the case of the number of patterns, it is referred to as

the per parameter pattern capacity. And in the last experiment, this is referred to as

the per parameter frame capacity.

In each experiment many different components which could affect the retention of RNNs

were explored. First a holistic view of the performance of each RNN was presented.

Thereafter the effects of using different activation functions were investigated. This was

followed by the effects of increasing the number of hidden layers. And lastly the effects

of using different training algorithms were investigated.

The activation functions explored is presented in section 6.1.3 of chapter 6. The func-

tioning of each training algorithm used is extensively discussed in chapter 4.

8.2 Conclusions from experiments

Considering experiment one in which the length of retention in RNNs are investigated,

the bidirectional GRU was able to achieve the highest per parameter length capacity

for sequence retention overall sub-experiments conducted. Bidirectional layers generally

increased the effectiveness of length retention capacity for each RNN. As the number

of model parameters increased, the number of sequences retained dropped off in the

regression experiments, but slightly increased in the classification experiments. As the

number of parameters in the networks increased so did the per parameter capacity de-

crease. Next the effects of using different activation functions on the length retention

capacity of RNNs were investigated. It is found that the RNN-activation function pair
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which achieved the highest length retention was the bidirectional GRU using the elu

activation function. However, the activation function which had the best average per-

formance across RNNs was the tanh activation function. Increasing from one to two

hidden layers drastically decreases the per parameter capacity ratio, thereafter the ratio

becomes more stable. This indicates that having fewer, but wider layers may lead to

more information retained in the networks. When using training algorithms, the Adam

training algorithm applied to the bidirectional GRU achieved the best per parameter

capacity retention of sequences, however the RPROP had the better overall increase in

sequence retention.

Moving on to experiment two which focused on investigating how many patterns RNNs

are able to retain, the regression variant was also better suited for RNNs to have a larger

retention of patterns than the classification experiment formulation. Here, the bidirec-

tional GRU had the best per parameter pattern retention. Generally, the bidirectional

layers enhanced per parameter utilisation, as was the case in the first experiment, with

the the only exception being the bidirectional Elman RNN. During experiment two,

increasing the number of parameters in the models increased the overall number of pat-

terns retained, however still lead to a decrease in per parameter capacity. The softmax

activation function had the highest correlation to performance increase as the number

of parameters in the network increased. However, when the per parameter capacity is

considered, the selu was the most effective activation function. Furthermore, increasing

the number of layers increased the capacity of the RNNs, however the average number of

patterns retained dips between using two to three hidden layers and thereafter picks up

again for multiple RNNs. Increasing the number of layers, decreases the overall per pa-

rameter pattern capacity. Moving on to analysing how the training algorithms affected

this experiment, it was found that the Adam training algorithm lead to the greatest per

parameter pattern capacity.

Experiment three, which combined the previous experiments, had similar behaviour to

the behaviour observed in experiment one and two. The bidirectional GRU achieved

the highest frame capacity per parameter overall. However, bidirectional layers did not

improve all RNNs as in previous experiments, as only the GRU’s per parameter frame

capacity increased. Increasing the number of parameters did improve the frame capacity



Chapter 8. Conclusion 180

of the RNNs on average. Inspecting the effects of activation functions it was clear that

the selu activation function lead to the highest average per parameter frame capacity

over all RNNs. However, the LSTM using the relu activation function lead to the highest

average per parameter capacity compared to all other tested activation functions. When

investigating the effects of increasing the number of hidden layers, the frame retention

capability of the GRU increased the most from increasing the network depth. Lastly,

the Adam training algorithm resulted in the highest number of frames retained, however

had a higher variance than the other algorithms.

8.3 Future work

Upon inspection of the experiments a few behaviours were discovered which could be

explored further. One of which is the dip in performance when transitioning from using

two hidden layers to using three hidden layers, only for performance to increase when

using four hidden layers. Nakkiran et al. suggest the phenomenon observed here might

be due to deep double descent in which neural networks first decrease in performance

[36]. This may be problem dependent, however further investigation is needed.

Another candidate for further research is to ascertain the reasons for the per parameter

frame capacity not increasing for most RNNs when using bidirectional layers. In both

experiments one (sequence length of retention) and two (number of patterns retained),

bidrectional layers were advantageous, thus the expectancy is for frame retention, bidi-

rectional layers should increase frame capacity.

Lastly, investigate how changing the internal activation functions inside the LSTM and

GRU nodes would affect the performance of these networks. Particularly, the sigmoid

functions used within.
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