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Abstract

Vector/Pest control is essential to reduce the risk of vector-borne diseases or losses in crops.
Among all biological control tools, the sterile insect technique (SIT), which consists of mas-
sive releases of sterile insects to reach elimination or to lower a vector/pest population under
a certain threshold, is the most promising one. The models presented here are minimalistic
with respect to the number of parameters and variables. The first model deals with the
dynamics of the vector population while the second model tackles the interaction between
treated males and wild female vectors. For the vector population model, equilibrium 0 is
globally asymptotically stable when the basic offspring number, R ≤ 1 whereas 0 becomes
unstable and one stable positive equilibrium exists, with well-determined basins of attrac-
tion, when R > 1. For the SIT model, we obtain a threshold number of treated males above
which the control of wild population is effective using massive releases. When the amount
of treated males is lower than the aforementioned threshold, the SIT model experiences a
weak Allee effect, i.e. 0 becomes locally asymptotically stable, while a positive equilibrium
still exists. Practically, massive releases of sterile males are only possible for a short period.
That is why using the Allee effect, we develop a new strategy to maintain the wild popu-
lation under a certain threshold, for a permanent and sustainable low level of SIT control.
We illustrate our theoretical results with numerical simulations. In particular, we study the
combination of SIT with other control tools, like mechanical control and adulticide.

Keywords: Sterile Insect Technique, Vector control, Pest control, Weak Allee effect,
Monotone system.

1. Introduction

In the last decades, the development of sustainable vector control methods has become
one of the most challenging issues to reduce the impact of human vector borne diseases, like
malaria, dengue, chikungunya or crop pests, like fruit flies.

Several control techniques have been developed or are under development. However, the
process to reach field applications is long and complex. Modeling, and in particular Math-
ematical Modeling has become a useful tool in Human Epidemiology since the pioneering
works of Sir R. Ross and his malaria model [16, 17]. Numerous models have been developed
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to understand the dynamics of diseases and pests to test ”in silico” the usefulness or not of
control strategies (and their combination).

In this paper, we focus on the Sterile Insect Technique (SIT). This is an old control
techniques that have been used more or less successfully on the field against various kind of
Pests or Vectors (see [11] for various examples). The classical SIT consists of mass releases
of males sterilized by ionizing radiation. The released sterile males transfer their sterile
sperms to wild females, which results in a progressive decay of the targeted population. For
mosquitoes, other sterilization techniques have been developed using either genetics (the
RIDL technique) or bacteria (wolbachia) [18]. For fruit flies, only ionizing radiation has
been used, so far [11].

This work builds on [20], where SIT against mosquitoes only has been considered. How-
ever, it is important to notice that the results obtained in [20] can be used against crop
pests too. An important assumption in [20] is that the insect population dynamics exhibit
a strong Allee effect. Then, the application of SIT for an estimated finite time is sufficient
to drive the population below the minimum survival density. However, for insect population
the minimum survival density tends to be very close to extinction, that is an area of the
domain, where deterministic modelling is not considered adequate. Hence, in this paper we
do not make such assumption, but rather propose a strategy, which relies on an Allee effect
generated by the SIT control. Indeed, in previous works, e.g. [2, 8, 20], it has been shown
that even low levels of SIT control produce a tangible minimum survival density, below which
the population is driven to elimination. To this end, we need to keep the insect population
at a very low level and/or to sustain the decay, such that SIT cannot be discontinued or
suppressed. Otherwise, the wild population will recover and reach its initial state. In this
sense we talk about ”permanent” SIT. The level of permanent SIT control is determined by
the available resources (to produce sterile males). Once this level is known, higher level of
releases can be used in short term in order to bring the insect population density below the
minimum survival level associated with the lower, but long-term, sustainable SIT level of
control. The aim of this paper is to show the feasibility of this type of SIT control strategy
as well as specific methods for calculating its essential parameters.

In practice, it is well known that SIT alone is not sufficient to control a wild population. In
general, it is recommended by IAEA (the International Atomic Energy Agency) to combine
several control tools. We will first consider Mechanical Control (MC), which consists of
removing the breeding sites, because it was showed in [6, 10] that MC can be efficient in
addition to be sustainable. A second control tool is the use of massive spraying of adulticide,
like Deltamethrin, the only authorized adulticide in La Réunion (France). Even if it is very
efficient to reduce adult populations, it can be very detrimental to the environment, and also
mosquitoes can develop resistance, if its use is too long, like in the French West Indies.

The outline of the paper is as follows. In the next section, we present a minimalistic
entomological model of wild insect population and the discussion of its global dynamical
properties. Section 3 deals with the study of the SIT mathematical model in the case of
constant and continuous SIT releases. The key finding is the identification of a threshold
number of sterile male vectors above which the control of the wild population is effective; that
is, the wild population declines to extinction. Section 4 is devoted to the characterization
of the minimal time necessary to reduce the size or spatial density of wild vector population
under a given threshold when using SIT releases, that is, by considering the SIT model
studied in section 3. Section 5 deals with the study of the SIT mathematical model in
the case of periodic and impulsive SIT releases. Notably, by using suitable comparison
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arguments, we provide condition of reaching elimination of wild vector population with
periodic and pulse SIT releases and, characterize the minimal time necessary to lower the
wild vector population under a given threshold in order to reduce the epidemiological risk.
The theoretical results are discussed and supported by numerical simulations in section 6. In
section 6, we simulate and discuss combinations of SIT with MC and/or adulticide. Finally,
in section 7, we summarize the main outputs of this work, and their novelties compared to
previous SIT works, and how it can be extended in the future.

2. A minimalistic entomological model

The model presented in this section is minimalistic in the sense that it uses smallest
possible number of compartments which allows for adequate modelling of the mechanism of
SIT control. We simplify the model developed in [2] by considering only three compartments:
A, the aquatic stage (gathering eggs, larvae and pupae stages), F , the mature female, and M
the male. Nevertheless, and we will see in the sequel, it has the same asymptotic properties
as the other mentioned models. The advantages of using this simpler model are: On the one
hand, while the model remains biologically meaningful, it allows a full theoretical analysis.
On the other hand, it is more generic and can be applied to a variety of insect populations.

Following the compartmental diagram given in Figure 1, we derive the following system
of ordinary differential equations:



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
= rγA− µFF,

(1)

where the parameters and state variables are described in Table 1.

Symbol Description
A Aquatic stage (gathering eggs, larvae, nymph stages)
F Fertilized and eggs-laying females
M Males

φ Number of viable eggs at each deposit per capita (per day)
γ Maturation rate from larvae to adult (per day)
µA,1 Density independent mortality rate of the aquatic stage (per day)
µA,2 Density dependent mortality rate of the aquatic stage (per day× number)
r Sex ratio
Λ Number of sterile insects released per unit of time
1/µF Average lifespan of female (in days)
1/µM Average lifespan of male (in days)
1/µT Average lifespan of sterile male (in days)

Table 1: Description of parameters and state variables of model (1).

Contrary to [20], we assume a density-dependent mortality rate in the aquatic stage.
This may correspond to an intra-specific competition between the larvae stages, for instance.
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Figure 1: Flow diagram of model (1).

However, the forthcoming methodology could be applied for a system where the non-linearity
stands for the birth-rate, like in [20, 8, 9].

The inequalities between vectors are considered here in their usual coordinate-wise sense,
i.e., for any x = (xi)i=1,...,n, y = (yi)i=1,...,n ∈ R

n, n ≥ 1,

• x ≤ y ⇔ xi ≤ yi, i = 1, ..., n,

• x < y ⇔ x ≤ y, x 6= y,

• x ≪ y ⇔ xi < yi, i = 1, ..., n.

Hence, we define the order intervals:

[x, y] = {z ∈ R
n : x ≤ z ≤ y},

[x, y) = {z ∈ R
n : x ≤ z < y},

(x, y) = {z ∈ R
n : x < z < y}.

We set x = (A,M,F )′ and D = R
3
+ = {x ∈ R

3 : x ≥ 0}. Then model (1) can be written
in the form

dx

dt
= f(x), (2)

where f : R3 → R
3 represents the right hand side of (1). Function f is continuous and

continuously differentiable on R
3. Thus, according to [23, Theorem III.10.VI], for any initial

condition a unique solution exists, at least locally. The vector field defined by f is either
tangential or directed inwards on ∂D. Therefore, for any initial condition in D the solution
of (2) remains in D for its maximal interval of existence [23, Theorem III.10.XVI]. In the
sequel we consider the vector population model in the form (1) or in the form (2) on the
domain D. In order to obtain existence of the solutions in D, it is sufficient to obtain a priori
upper bounds. This can be done as follows.

We observe that system (1) is monotone [19, Proposition 3.1.1]. Indeed, for any x ∈ D
the Jacobian

J(x) =





−(γ + µA,1)− 2µA,2A 0 φ
(1− r)γ −µM 0

rγ 0 −µF



 (3)
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is a Metzler matrix, i.e. all its off diagonal entries are non-negative. The inequality

rγ − µF

2φ
(γ + µA,1 + µA,2A) < 0 (4)

holds for all sufficiently large A. Let m > 0 and let Am be so large that in addition to (4)
the following inequalities also hold:

Am ≥ m,

Fm :=
(γ + µA,1 + µA,2Am)Am

2φ
≥ m,

Mm :=
2(1− r)γAm

µM

≥ m.

(5)

For every m > 0 let
bm = (Am,Mm, Fm)

′ (6)

be a vector with coordinates satisfying (4) and (5). Then

f(bm) =







−φFm

−(1− r)γAm

Am(rγ − µF

2φ
(γ + µA,1 + µA,2Am))






< 0. (7)

Using [19, Proposition 3.2.1], the solution initiated at bm is decreasing. Then, using again
the monotonicity of the system, see [19, Proposition 3.2.1], for any solution of (1) initiated
in D we have

x(t) ≤ b||x(0)||∞ . (8)

The a priori upper bound given in (8) provides for existence of the solution for all t ≥ 0.
Therefore, (1) defines a dynamical system on D.

The stability properties of the extinction equilibrium 0 = (0, 0, 0)′ are usually described
in terms of the basic offspring number R of the population, i.e. the average self-reproduction
of an individual (number of females produced by a single female) during its lifetime, assuming
that the population is so small that the density dependent mortality can be ignored. The
basic offspring number related to model (1) is obtained by the next generation method [22]:

R =
rγφ

µF (γ + µA,1)
. (9)

The Jacobian of system (1) computed at the extinction equilibrium is

J(0) =





−(γ + µA,1) 0 φ
(1− r)γ −µM 0

rγ 0 −µF



 . (10)

Its eigenvalues are −µM and the roots of the equation

λ2 + (γ + µA,1 + µF )λ+ (γ + µA,1)µF (1−R) = 0. (11)

It is easy to see that if R < 1, all eigenvalues of J(0) are either negative or have negative real
parts, that is 0 is asymptotically stable. If R > 1, the Jacobian has two negative eigenvalues
and a positive one. Hence, 0 is unstable.
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The existence of an endemic equilibrium also depends on the value of R. Setting the right
hand side of (1) to zero we obtain the equilibrium 0 and the equilibrium E∗ = (A∗,M∗, F ∗)′

given by






























A∗ =
(γ + µA,1)

µA,2

(R− 1),

M∗ =
(1− r)γA∗

µM

,

F ∗ =
rγA∗

µF

.

(12)

Clearly, E∗ ∈ D and E∗ 6= 0 if and only if R > 1. We summarize these results with some
more details related to basins of attraction of equilibria in the following theorem.

Theorem 1. Model (1) defines a forward dynamical system on D. Furthermore,

1) If R ≤ 1 then 0 is globally asymptotically stable on D.

2) If R > 1 then E∗ is stable with basin of attraction

D \ {x = (A,M,F )′ ∈ R
3
+ : A = F = 0},

and 0 is unstable with the non negative M−axis being a stable manifold.

Proof. As mentioned, it remains to prove the statements regarding the basins of attraction.
We use an approach similar to the approach in [1] for the analysis of bi-stable monotone
systems. 1) Let R ≤ 1. Let x = x(t) be any solution initiated in D. Denote by y = y(t)
the solution of (1) with initial condition y(0) = b||x(0)||∞ . It follows from the inequality (7)
that the function y is decreasing and, therefore, it converges. The limit is necessarily an
equilibrium (see also [19, page 35]). Considering that there is only one equilibrium in D,
we conclude that lim

t→+∞
y(t) = 0. Using that (1) is a monotone system, the inequalities

0 ≤ x(0) ≤ b||x(0)||∞ , we have
0 ≤ x(t) ≤ y(t), t ≥ 0.

Therefore, lim
t→+∞

x(t) = 0, which proves the global asymptotic stability of 0 on D.

2) To prove the stability and basin of attraction we use [19, Theorem 2.2.2]. This theorem
applies to strongly monotone systems. We recall that if the Jacobian of f is a Metzler
irreducible matrix for every x ∈ D, then (2) is strongly monotone [19, Theorem 4.1.1].
The Jacobian (3) associated with (1) is not irreducible, since the equation for M can be
decoupled. We consider the subsystem for A and F , that is,











dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dF

dt
= rγA− µFF,

(13)

which defines a dynamical system on R
2
+. The Jacobian

J̃(A,F ) =

(

−(γ + µA,1)− 2µA,2A φ
rγ −µF

)

(14)

is clearly irreducible. We apply [19, Theorem 2.2.2] to the two dimensional interval

{(A,F )′ ∈ R
2
+ : 0 ≤ A ≤ A∗, 0 ≤ F ≤ F ∗}.

6



It follows that, all solutions initiated in this interval, excluding the end points, converge either
all to (0, 0)′ or all to (A∗, F ∗)′. The characteristic equation of J̃(0, 0) is exactly (11), which
produces one positive and one negative root. Considering that J̃(0, 0) is a Metzler matrix, it
has a strictly positive eigenvector corresponding to the positive eigenvalue. Hence, it is not
possible that all solutions converge to (0, 0)′. Therefore, they all converge to (A∗, F ∗)′. The
implication for the three dimensional system (1) is that all solutions initiated in the interval
[0, E∗], excluding the M -axis, converge to E∗.

Using similar argument as in 1), any solution initiated at a point larger than E∗ converges
to E∗. Since any point in D \ {x = (A,M,F )′ ∈ R

3
+ : A = F = 0} can be placed

between a point below E∗, but not on M -axis and a point above E∗, all solutions initiated
in D \ {x = (A,M,F )′ ∈ R

3
+ : A = F = 0} converge to E∗. The monotone convergence of

the solutions initiated below and above E∗ implies the asymptotic stability of E∗ as well.
The basin of attraction cannot be extended further, since the non negative M -axis is the
attractive manifold corresponding to the eigenvalue −µM of J(0).

3. The SIT model in the case of constant and continuous releases

In the sequel, we assume that R > 1. We take into account the constant release of sterile
male vectors MT by adding to model (1) an equation for MT . Altogether, the SIT model
reads as











































dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT

rγA− µFF,

dMT

dt
= Λ− µTMT .

(15)

In model (15), the total number of males available for mating with females is M +
MT . Hence, we assume that emerging immature females (from the aquatic stage) have a

probability
M

M +MT

to mate with wild (fertile) males. Assuming t large enough, we may

assume that MT (t) has reached its equilibrium value M∗
T := Λ/µT . Thus, model (15) reduces

to


























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +M∗
T

rγA− µFF,

(16)

where parameters and state variables are described in Table 1.

Theorem 2. Model (16) defines a monotone dynamical system on D for any value of M∗
T ∈

(0,+∞).

Proof. Let us set x = (A,M,F )′ ∈ D and Φ a vector-valued function such that Φ(M∗
T , x) =

f(x) where f is the right hand side of system (16). In compact form, we can therefore write
system (16) as follows:

dx

dt
= Φ(M∗

T , x). (17)
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Denote by xM∗

T
(z, t) the solution of (17) satisfying xM∗

T
(z, 0) = z. Consider the point bm as

given by (5). Using (7) we have

Φ(M∗
T , bm) ≤ Φ(0, bm) = f(bm) < 0. (18)

Then the solution initiated at bm is decreasing and, again by the monotonicity of the
system, for any solution of (17) initiated in D we have

xM∗

T
(z, t) ≤ b||z||∞ . (19)

The a priori upper bound given in (19) provides for existence of the solution for all t ≥ 0.
Therefore, (17) defines a monotone dynamical system on D.

Equilibria of the SIT model (16) are obtained by solving the system














φF − (γ + µA,1 + µA,2A)A = 0,
(1− r)γA− µMM = 0,
M

M +M∗
T

rγA− µFF = 0.
(20)

From (20)1 and (20)2 we have

A =
µM

(1− r)γ
M (21)

and

F =
(γ + µA,1 + µA,2A)A

φ
=

(γ + µA,1)

φ

µM

(1− r)γ
M +

µA,2

φ

(

µM

(1− r)γ
M

)2

. (22)

Substituting in (20)3 leads to M = 0 or

rγM

M +M∗
T

− µF (γ + µA,1)

φ
− µFµA,2

φ

µM

(1− r)γ
M = 0. (23)

Setting α = M∗
T/M , equation (23) can be written as

α2 − a1α + a0 = 0, (24)

where

a1 =
rγφ

µF (γ + µA,1)
− 1− µA,2µM

(γ + µA,1)(1− r)γ
M∗

T ,

a0 =
µA,2µM

(γ + µA,1)(1− r)γ
M∗

T .

Setting Q =
µA,2µM

(γ + µA,1)(1− r)γ
, (24) assumes the form

α2 − (R− 1−QM∗
T )α +QM∗

T = 0. (25)

The discriminant of (25) is

∆(M∗
T ) = ((

√
R− 1)2 −M∗

TQ)((
√
R+ 1)2 −M∗

TQ).

The equation ∆(M∗
T ) = 0 has two positive solutions MT1

and MT2
:

MT1
=

(
√
R− 1)2

Q
, MT2

=
(
√
R+ 1)2

Q
. (26)

Then, we have four possible cases:
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• If 0 < M∗
T < MT1

, then ∆(M∗
T ) > 0 and (25) has roots α+ and α− given by

α± =
(R− 1−QM∗

T )±
√

∆(M∗
T )

2
. (27)

Using that α+ + α− = R− 1 − QM∗
T > R− 1 − QMT1

= 2(
√
R− 1) > 0, we deduce

that these roots are positive. Therefore, the system (16) has two positive equilibria
E1,2 = (A1,2,M1,2, F1,2)

′ with 0 ≪ E1 ≪ E2 given by

A1,2 =
µM

(1− r)γ
M1,2,

F1,2 =
(γ + µA,1 + µA,2A1,2)A1,2

φ
,

M1 =
M∗

T

α+

,

M2 =
M∗

T

α−

.

(28)

• If M∗
T = MT1

then ∆(M∗
T ) = 0 and (25) has only one real solution α†, namely

α† =
R− 1−QM∗

T

2
> 0. (29)

Then the system (16) has one positive equilibrium E† ≫ 0 given by

A† =
µM

(1− r)γ
M†,

F† =
(γ + µA,1 + µA,2A†)A†

φ
,

M† =
M∗

T

α†

.

(30)

• If MT1
< M∗

T < MT2
then ∆(M∗

T ) < 0. The equation (25) has no real roots, which
implies that the system (16) has no equilibria other than the origin.

• If M∗
T ≥ MT2

then ∆(M∗
T ) ≥ 0 and (25) has one or two real roots which are negative

because R−1−QM∗
T ≤ R−1−QMT2

= −2(1+
√
R) < 0. Hence, as in the preceding

case, the only equilibrium of (16) in its domain D is the origin.

Theorem 3. For any M∗
T > 0 the origin 0 is an asymptotically stable equilibrium of the

system (16) on D. Furthermore, we have the following:

(1) If M∗
T > MT1

then equilibrium 0 is globally asymptotically stable on D.

(2) If M∗
T = MT1

then system (16) has one additional equilibrium E† given by (30) such
that E† ≫ 0. The set {x ∈ R

3 : 0 ≤ x < E†} is in the basin of attraction of 0, while
the set {x ∈ R

3 : x ≥ E†} is in the basin of attraction of E†.

(3) If 0 < M∗
T < MT1

then system (16) has two additional equilibria E1 and E2 given by
(28) and such that 0 ≪ E1 ≪ E2. The set {x ∈ R

3 : 0 ≤ x < E1} is in the basin of
attraction of 0 while the set {x ∈ R

3 : x > E1} is in the basin of attraction of E2.
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Proof. Using that the eigenvalues, ξ1 = −(γ + µA,1), ξ2 = −µM , ξ3 = −µF , of the Jacobian
matrix of the SIT model (16) at 0 are all negative, then the elimination equilibrium 0 is
always asymptotically stable.

(1) Suppose that M∗
T > MT1

. Then system (16) has only one equilibrium, namely 0. The
global asymptotic stability of 0 is proved as in point 1) of Theorem 1, page 6.

(3) Assume that 0 < M∗
T < MT1

. In this case, the dynamical system (16) has three
equilibria 0, E1 and E2. Let us consider the order interval [0, E1]. According to [19,
Theorem 2.2.2], the solutions initiated in this interval, excluding the end points, either
all converge to 0 or all converge to E1. Since 0 is asymptotically stable, this implies
that all solutions converge to 0. Moreover, straightforward computations show that
the Jacobian matrix, JE1

, of the SIT model (16) at E1 is an irreducible Metzler matrix.
Hence, it follows from the theory of nonnegative matrices [13, Theorems 11 and 17], [12,
Proposition 3.4] that JE1

has an eigenvector v with positive coordinates and associated
eigenvalue ξ, which is real and has an algebraic multiplicity equal to one. Since E1 is
repelling in [0, E1], then ξ ≥ 0. Further, we have

det(JE1
) = φµM

(

rγM1M
∗
T

(M1 +M∗
T )

2
+

γrM1

M1 +M∗
T

)

− µMµF (γ + µA,1 + 2µA,2A1)

= φµM

(

rγM1

M1 +M∗
T

− µF (γ + µA,1)

φ
− µFµA,2µMM1

φ(1− r)γ

)

+φµMM1

(

rγM∗
T

(M1 +M∗
T )

2
− µFµA,2µM

φ(1− r)γ

)

Taking into account that M1 is a solution of (23), the expression in the first set of
brackets is zero. Further, the expression in the second set of brackets is the derivative
with respect to M of the right hand side of (23). Then, since M1 is a simple root,
this expression is not zero. Therefore, det(JE1

) 6= 0. Considering that det(JE1
) is the

product of eigenvalues of JE1
, we have that ξ > 0. Next, we consider the order interval

[E1, E2]. Again following [19, Theorem 2.2.2], we deduce that the solutions initiated in
this interval, excluding the end points, all converge to E2 since E1 is repelling in the
direction of the positive vector v. Now, let x = x(t) be any solution of the SIT model
(16) such that x(0) ≥ E2. Denote by y = y(t) the solution of (16) with initial data
y(0) = b‖x(0)‖∞ . It follows from inequality (18) that the function y is decreasing and,
therefore, it converges. The limit is necessarily an equilibrium greater or equal to E2.
However, there is no other equilibrium greater than E2. Thus, the limit of y(t), as t
goes to infinity, is E2. Using that model (16) is a monotone system, E2 ≤ x(0) ≤ y(0)
implies that E2 ≤ x(t) ≤ y(t). Hence lim

t→+∞
x(t) = E2.

The proof of point (2) is done in a similar way but by considering E1 := E† to construct
the basin of attraction of the elimination equilibrium and E2 := E† to construct the
basin of attraction of E†.

From Theorem 3, it is straightforward to deduce that SIT control may induce a weak
Allee effect in system (16). More precisely, for a given M∗

T such that 0 < M∗
T ≤ MT1

,
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solutions of system (16) are either driven to elimination or persist, depending on the initial
data.

Figure 2 depicts a rough illustration of the bi-stable case obtained in the last part of
Theorem 3, page 9. In Figure 2, the black bullet is the wild equilibrium E∗ = (A∗,M∗, F ∗)′,
the blue bullet is the positive unstable equilibrium (E1) while the red bullet is the positive
stable equilibrium (E2). The dashed black box is the set [0, E1) which is contained in the
basin of attraction of 0 while the solid black box is the set {x ∈ R : x > E1} which is
contained in the basin of attraction E2.
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Figure 2: Rough illustration of the bi-stable case obtained in the last part of Theorem 3. The black bullet
is the wild equilibrium E∗, the green bullet is the elimination equilibrium (0), the blue bullet is the positive
unstable equilibrium (E1) while the red bullet is the positive stable equilibrium (E2).

4. About the permanent SIT control strategy - Characterization of the [0, E1)
entry-time

SIT control generally requires of massive release rate in the targeted area in order to lower
the population under a certain epidemiological relevant threshold. While the possibility of
elimination cannot be ruled out, it has not been observed practically. Therefore, when the
SIT intervention is terminated the population recovers to its natural equalibrium. Accord-
ingly, for M∗ = 0 the model (2) changes to (1), for which the equilibrium E∗ is globally
asymptotically stable

Thus, SIT always needs to be maintained. Here we propose a practically feasible strategy
consisting of massive release rate resulting in sterile insect population M

∗

T > MT1
, followed

by lower release rate which can be maintained in a long term. In order to construct this
strategy we need to establish first the long-term feasible release rate. Naturally, this would
depend on the available in the long-term resources. We suppose that this long-term feasible
release results in equilibrium for the treated mosquitoes which we denote by M∗

T , where
0 < M∗

T < MT1
. Let E1 and E2 be the equilibria associated with treated mosquito population

of M∗
T in terms of point (3) of Theorem 3. Then it follows from Theorem 3 that [0, E1) is

in the basin of attraction of 0.
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In this setting, the main question would be to find an estimate of the time for the solution
of (2) initiated at E∗ to enter the interval [0, E1).

In the remainder of this section we address this question.
LetXt0(t, a, b) denote the solution of system (16) withM∗

T = b and satisfyingXt0(t0, a, b) =
a, where t0 ≥ 0, a, b ∈ R.

Theorem 4 (Existence of minimum entry time). For any M
∗

T > MT1
and M∗

T ∈ (0,MT1
)

there exists a unique δ = δ(M
∗

T ,M
∗
T ) > 0 such that

(i) for every t ≥ δ we have X0(t, E
∗,M

∗

T ) < E1 and

(ii) δ = max{t > 0 : X0(t, E
∗,M

∗

T ) < E1}

Proof. Since M
∗

T > MT1
, it follows from Theorem 3 that 0 is globally asymptotically stable

for system (16) in D. Hence, X0(t, E
∗,M

∗

T ) converges to 0. Using the notation (17) we have
that

Φ(M
∗

T , E
∗) = −











0
0

rγA∗M
∗

T

M∗ +M
∗

T











< 0

Since the system (17) is monotone, it follows from [19, Proposition 3.2.1] that the set

P = {x ∈ D : Φ(M
∗

T , x) > 0}

is positively invariant. As a consequence, the solution X0(t, E
∗,M

∗

T ) is in P for all t ≥ 0 and,
therefore, is monotone decreasing to 0. Hence, there is a unique time δ at which the solution
X0(t, E

∗,M
∗

T ) enters the compact neighborhood [0, E1] of 0 in D. Since [0, E1] is an order
interval, once the solution X0(t, E

∗,M
∗

T ) enters it, it remains in it, and further decreases to
0. Therefore, it remains to prove that X0(δ, E

∗,M
∗

T ) 6= E1.
Assume the opposite, namely that X0(δ, E

∗,M
∗

T ) = E1. The positively invariant set P
is bounded by the three surfaces given by the equations in (20) for M∗

T = M
∗

T . We note that
the coordinates of E1 satisfy the first equation. The fact that the solution X0(t, E

∗,M
∗

T )
does not cross the surface defined by this equation implies that the graph of the solution
X0(t, E

∗,M
∗

T ) is tangent to this surface. This implies that the gradient of the solution is
orthogonal to the normal n of the surface at the point E1. Simple computations show that
the dot product of these two vectors is not zero. More precisely, we have

Φ(M
∗

T , E1) · n =











0
0

rγA1M1(M
∗
T −M

∗

T )

(M1 +M
∗

T )(M1 +M∗
T )











·





−γ − µA,1 − 2µA,2A1

0
φ



 6= 0.

The obtained contradiction shows that, while δ is the smallest positive such thatX0(δ, E
∗,M

∗

T ) ≤
E1 we have, in fact, X0(δ, E

∗,M
∗

T ) < E1.

The value of δ established in Theorem 4 is the minimum time for the solutionX0(t, E
∗,M

∗
)

to enter the order interval [0, E1), which is in the basin of attraction of 0 when the treated
population is at the low and feasible in the long term level M∗

T . Hence, as a direct conse-
quence of Theorem 3(3) we obtain the following theorem.
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Theorem 5. LetMT , M
∗
T , δ = δ(M

∗

T ,M
∗
T ) be as given in Theorem 4 and Y = X0(δ, E

∗,M
∗

T ).
Then

(i) Xδ(t, Y,M
∗
T ) < E1 for all t ≥ δ and

(ii) lim
t→+∞

Xδ(t, Y,M
∗
T ) = 0.

Remark 1. In the framework of permanent SIT control, it is important to observe that if
the massive release is reduced to low release associated with treated male population of M∗

T ,
before the prescribed period of time, δ, obtained in Theorem 4, the solution of system (16)
may converge towards the positive stable equilibrium E2. Indeed, our results in Theorem 3
provide only sub-sets of the basins of attraction of 0 and E2 in the form of order intervals.
Hence, if one wants the permanent SIT control strategy to be successful, one should carry out
massive SIT releases during the prescribed entry-time, δ, before change to a more sustainable
low level of releases. By doing so, it is ensured that solutions are inside the basin of attraction
of 0, that is the population is below E1 and is driven to elimination. However, if SIT control
is discontinued, i.e. M∗

T = 0, then the solution will converge towards the initial positive wild
equilibrium, E∗.

Remark 2. Since systems (16) and (15) are equivalent for t sufficiently large, a difference
between entry times may occur, depending if we consider MT (0) = 0 or MT (0) = M∗

T . When
MT (0) = 0, we have MT (t) = M∗

T (1−exp(−µT t)), for t ≥ 0. Thus, a straightforward release
strategy to reach kMT1

fast, is to first make ”very massive” releases, k′MT1
with k′ > k for a

few days, and then to continue with massive releases until the system reaches [0,E1). This
strategy is equivalent to look for t∗k such that

k ×MT1
= k′ ×MT1

(1− exp(−µT t
∗
k)).

We find that

t∗k = − 1

µT

× ln

(

1− k

k′

)

. (31)

For instance, choosing k′ = 2× k leads to t∗k =
1

µT

× ln(2).

Under certain conditions we can derive an analytic approximation for the minimal time,
δ, defined in Theorem 4. We deal with that issue below where we assume that

µF < min{µM , γ + µA,1}. (32)

Assumption (32) is also consistent with parameter values considered, for the case of Aedes
spp., in [2, 5].

The following inequalities holds

0 ≤ A∗ ≤ (γ + µA,1)

µA,2

R := A0
e,

0 ≤ M∗ ≤ (1− r)γ

µM

(γ + µA,1)

µA,2

R := M0
e ,

0 ≤ F ∗ ≤ rγ

µF

(γ + µA,1)

µA,2

R := F 0
e .

(33)
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Let us consider the solution X(t) = (A(t),M(t), F (t))′ of system (16) with initial data E∗.
In order to estimate the (minimal) time needed to drive the vector population under a given
value Y = (A,M,F )′ < E∗, we will look for an analytical upper bound of X(t), Xupper(t).

According to system (16), we have



























dA

dt
≤ φF − (γ + µA,1)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +M∗
T

rγA− µFF,

(34)

that is
dX

dt
≤ ZX

where

Z =





−(γ + µA,1) 0 φ
(1− r)γ −µM 0
rγǫ(M∗

T ) 0 −µF





and ǫ(M∗
T ) = M∗/(M∗ +M∗

T ) < 1. Let Xe(t) = (Ae(t),Me(t), Fe(t))
′ be the solution of

dXe

dt
= ZXe. (35)

Before going further, let us give the following result that is deduced from Proposition
1.4 and Corollary 1.6 in [14] thanks to the fact that systems (16) and (35) are cooperative
systems.

Lemma 1. Solutions of systems (16) and (35) with initial data such that

(A0,M0, F 0)′ ≤ (A0
e,M

0
e , F

0
e )

′ := X0
e

satisfy
∀t ≥ 0, X(t) ≤ Xe(t).

We now follow the idea of [20] in our computations. The sub-matrix Z0 of Z that reads
as

Z0 =

(

−(γ + µA,1) φ
rγǫ(M∗

T ) −µF

)

has negative trace. Moreover, Z0 has a positive determinant if and only if 1/R > ǫ(M∗
T ).

Therefore, if ǫ(M∗
T )R < 1 then 0 is globally asymptotically stable for system (35). In this

case, its eigenvalues are real, negative and equal to κ± (κ− < κ+) associated respectively

with eigenvectors

(

1
x±

)

where, with assumption (32), x− < 0 < x+ and

κ± =
−(γ + µA,1 + µF )±

√

(γ + µA,1 − µF )2 + 4φrγǫ(M∗
T )

2
,

x± =
γ + µA,1 − µF ±

√

(γ + µA,1 − µF )2 + 4φrγǫ(M∗
T )

2φ
.
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Hence, for real numbers (a0±, b
0
±)

′ ∈ R
4, we have





Ae(t)
Me(t)
Fe(t)



 =









a0+e
κ+t + a0−e

κ−t

e−µM tM0
e + (1− r)γ

∫ t

0

e−µM (t−s)(a0+e
κ+s + a0−e

κ−s)ds

b0+e
κ+t + b0−e

κ−t









where a0±, b
0
± are computed by using the overestimation (A0

e, F
0
e )

′ in (33) as initial condition.
In details, we found















a0+ =
x−A

0
e − F 0

e

x− − x+

, a0− =
−x+A

0
e + F 0

e

x− − x+

,

b0+ =
x+x−A

0
e − x+F

0
e

x− − x+

, b0− =
−x+x−A

0
e + x−F

0
e

x− − x+

.

Note that

x− − x+ = −
√

(γ + µA,1 − µF )2 + 4φrγǫ(M∗
T )

φ
< 0,

a0+ > 0, b0+ > 0, a0− < 0 and b0− = x−a
0
− > 0. Indeed, for ∆ = (γ + µA,1 − µF )

2 + 4φrγǫ(M∗
T )

we have

a0− < 0 ⇔ x+A
0
e < F 0

e

⇔ ((γ + µA,1)− µF +
√
∆)

2φ

(γ + µA,1)R

µA,2

<
rγ(γ + µA,1)R

µFµA,2

⇔ (γ + µA,1)− µF +
√
∆ <

2φrγ

µF

⇔
√
∆ < (γ + µA,1)(2R− 1) + µF

⇔ rγφǫ(M∗
T ) < (γ + µA,1)

2R(R− 1) + rγφ
⇔ rγφ(ǫ(M∗

T )− 1) < 0 < (γ + µA,1)
2R(R− 1).

In addition, by using assumption (32) we also have

κ+ + µM =
2(µM − µF )− (γ + µA,1 − µF ) +

√
∆

2
> 0.

Moreover, assuming κ− 6= −µM (which most holds generally) leads that

Me(t) = e−µM tM0
e + (1− r)γ

(

a0+
eκ+t − e−µM t

µM + κ+

+ a0−
eκ−t − e−µM t

µM + κ−

)

=

(

M0
e − (1− r)γa0+

µM + κ+

− (1− r)γa0−
µM + κ−

)

e−µM t +
(1− r)γa0+
µM + κ+

eκ+t +
(1− r)γa0−
µM + κ−

eκ−t.

Recall that
0 < Y < E∗ < X0

e .

Since a0− < 0, Ae(t) ≤ A if a0+e
κ+t ≤ A. That is, if

t ≥ tAmin :=
1

κ+

log

(

A

a0+

)

. (36)
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By using the fact that b0++ b0− = F 0
e , we deduce that Fe(t) ≤ F if F 0

e e
κ+t ≤ F . That is, if

t ≥ tFmin :=
1

κ+

log

(

F

F 0
e

)

. (37)

We proved that κ+ + µM > 0 but we need to discuss the two cases κ− + µM > 0 and
κ− + µM < 0.

In the case that κ− + µM > 0, with a0− < 0 we have

Me(t) ≤
(

M0
e − (1− r)γa0−

µM + κ−

)

e−µM t +
(1− r)γa0+
µM + κ+

eκ+t.

Since κ+ > µM , we obtain

Me(t) ≤
(

M0
e − (1− r)γa0−

µM + κ−

+
(1− r)γa0+
µM + κ+

)

eκ+t := λ−e
κ+t

where λ− = M0
e − (1− r)γa0−

µM + κ−

+
(1− r)γa0+
µM + κ+

> 0. Therefore, Me(t) ≤ M if λ−e
κ+t ≤ M.

That is, if

t ≥ tMmin :=
1

κ+

log

(

M

λ−

)

. (38)

In the case that κ− + µM < 0, with a0− < 0 we have

Me(t) ≤ M0
e e

−µM t +
(1− r)γa0+
µM + κ+

eκ+t +
(1− r)γa0−
µM + κ−

eκ−t.

Since κ+ > µM and κ+ > κ−, we obtain

Me(t) ≤
(

M0
e +

(1− r)γa0−
µM + κ−

+
(1− r)γa0+
µM + κ+

)

eκ+t := λ+e
κ+t

where λ+ = M0
e +

(1− r)γa0−
µM + κ−

+
(1− r)γa0+
µM + κ+

> 0. Therefore, Me(t) ≤ M if λ+e
κ+t ≤ M

or equivalently, if

t ≥ tMmin :=
1

κ+

log

(

M

λ+

)

. (39)

Hence, we have proved the following result.

Proposition 1. Let (A(t),M(t), F (t))′ be a solution of system (16) initiated at the wild
equilibrium E∗ = (A∗,M∗, F ∗)′. Assume that ǫ(M∗

T )R < 1 where ǫ(M∗
T ) = M∗/(M∗ +M∗

T ).
The necessary time δ(M∗

T ) to lower the vector population from E∗ to Y = (A,M,F )′, with
A < A∗, M < M∗ and F < F ∗ is such that

δ(M∗
T ) ≥ max(tAmin, t

M
min, t

F
min)

where tAmin is given by (36), tFmin is given by (37) and tMmin is given by (38) or (39).
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5. SIT with periodic impulsive releases

Continuous releases, while mathematically very convenient, are not realistic. In general,
in the field, releases are periodic and instantaneous. That is why, we consider the following
SIT model (40) with periodic impulsive releases



















































dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT

rγA− µFF,

dMT

dt
= −µTMT ,

MT (nτ
+) = MT (nτ) + τΛ, n = 1, 2, ...

(40)

where τ (in unit of time) is the pulse release period. The right-hand side of system (40) is
locally Lipschitz continuous on R

4. Thus, using a classic existence theorem (Theorem 1.1, p.
3 in [4]), there exists T ∗ > 0 and a unique solution defined from (0, T ∗) → R

4. Then, using
standard arguments, we show that the positive orthant R4 is an invariant region for system
(40).

From the last two equations of system (40), we deduce that, as t → +∞, MT converges
toward the periodic solution

Mper
T (t) =

τΛ

1− e−µT τ
e−µT (t−⌊t/τ⌋τ). (41)

Thus, solutions of system (40) converges, in the sense of L∞(0,+∞) norm, to solutions
of the following system



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +Mper
T (t)

rγA− µFF.

(42)

System (42) is a periodic monotone dynamical system that admits one solution Xper. Sub-
stituting

MT := min
t∈[0,τ ]

Mper
T (t) =

τΛ

1− e−µT τ
e−µT τ , (43)

in system (42) leads to the following constant SIT model



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT

rγA− µFF

(44)
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whose solution XM is such that XM ≥ Xper for all time t > 0, using a comparison principle.
Hence, applying to system (44) the results obtained in Theorems 3 and 4, we obtain con-
ditions on the size and the periodicity of the releases to get GAS or LAS of 0. Using MT1

defined in (26), we set
Mper

T1
= MT1

(eµT τ − 1) . (45)

Mper
T1

is not the best release value for the periodic case. Most probably the best release value
should depend on 1

τ

∫ τ

0
1

Mper

T
(t)
dt, like in [5]. Then, following Theorem 3, page 9, we deduce

Corollary 1. For τ and Λ given, and

(i) Assuming
τΛ > Mper

T1
, (46)

then 0 is globally asymptotically stable in (42).

(ii) Assuming
τΛ = Mper

T1
, (47)

then 0 is locally asymptotically stable in (42), and [0, E†(MT )) lies in its basin of
attraction.

(iii) Assuming
0 < τΛ < Mper

T1
, (48)

then 0 is locally asymptotically stable in (42), and [0, E1(MT )) lies in its basin of
attraction.

Using Theorem 4, page 4, we deduce

Theorem 6. Let 0 < Y = (A,M,F )′ < E1(M
∗
T ) for a given targeted release amount,

M∗
T < Mper

T1
. The following results hold

• First, assuming massive releases, with τΛ∗ > Mper
T1

, then Xper converges from E∗ to Y
in a finite time t∗ > 0.

• Second, assuming small releases, with τΛ∗ = M∗
T , then, for t > t∗, Xper(t) < Y and

lim
t→+∞

Xper(t) = 0.

Theorems 6 and 4 give us a strategy to drive, in a finite time, and keep the wild vector
population under a given threshold value Y , for a targeted amount of sterile male releases,
namely M∗

T : first, massive releases for several weeks, and then small releases according
to M∗

T . They are illustrated in the forthcoming section, both for constant and periodic
impulsive releases. Note that it may exist a difference between entry times if we consider
either MT (0) = 0 or MT (0) = k ∗Mper

T1
, with k > 0. When MT (0) = 0, we found, at least

numerically, that if we first make ”very massive” periodic releases, k′Mper
T1

with k′ > k, with
k′ = 2k or k′ = 4k, followed by massive releases, kMper

T1
, then the entry time is extended by

one week (for k′ = 4k) or two weeks (for k′ = 2k).
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6. Numerical simulations

In this part, we consider a specific application of SIT against mosquito, like aedes spp.
Parameter values are given in Table 2: some of them are based on expert knowledge, others
are based on values considered in previous publications [6, 3]

Symbol φ µA,1 µA,2 r µF µM µT γ

Value 10 0.05 2×10−4 0.49 1/10 1/7 1/7 0.04-0.1

Table 2: Aedes spp entomological parameter values.

In Table 3 we provide several computations, related to the maturation rate, γ. We derive
the wild (positive) equilibrium E∗ = (A∗,M∗, F ∗)′ according to (12). These wild equilibria
will be used as the initial data for forthcoming simulations. In addition, we also display in
Table 3 the thresholds related to the global asymptotic stability of 0 with constant release
(MT1

) and periodic pulse release (Mper
T1

).

γ 0.04 0.06 0.08 0.1

R 21.78 26.73 30.15 32.67

A∗ 9350 14150 18950 23750
M∗ 1335 3031 5412 8479
F ∗ 1834 4160 7428 11637

MT1
863.9 2048 3745 5954

Mper
T1

1484.5 3519.8 6434.3 10230

Table 3: Wild equilibrium E∗ = (A∗,M∗, F ∗)′ and Threshold values for γ with periodic treatment τ = 7
days.

To illustrate Remark 2, page 13, according to (31), page 13, and using the sterile males
lifespan value given in Table 2, we find that we need t∗5 = 7 × ln (2) ≈ 5 days of ”very
massive” releases, 2k ×MT1

, to reach the size for massive releases, i.e. k ×MT1
. Thus, for

all the following entry time estimates given below, if we consider that MT (0) = 0, we have
to add 5 days in order to take into account that we first start with ”very” massive releases
during 5 days, and then we continue with massive releases until we enter [0,E1).

In Table 4, for a given amount of sterile males to release, M∗
T , we provide the values

of the positive unstable equilibrium E1 = (A1,M1, F1)
′. This is needed to define Y =

(A1 − ε, F1 − ε,M1 − ε)′, for a given ε > 0, and thus to estimate the minimal time. We set
ε = 0.1 and values of M∗

T are from expert-based knowledge.

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 800

0.04 (36.59,5.2,0.36)’ (283.11,40.43,4.15)’ (878.68,125.48,23.35)’
0.06 (18.79,4.03,0.21)’ (109.67,23.49,1.45)’ (201.11,43.1,3.02)’
0.08 (12.24,3.5,0.16)’ (66.42,18.97,0.95)’ (113.54,32.4,1.7)’
0.1 (8.95,3.2,0.14)’ (47.1,16.8,0.75)’ (78.4,27.9,1.3)’

Table 4: Values of the positive (unstable) equilibrium E1 = (A1,M1, F1)
′ that corresponds to the targeted

release M∗

T and γ.
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The next simulations are done using a nonstandard finite difference scheme, see e.g. [3].

6.1. Minimal time in the case of continuous and constant releases

We consider massive constant releases such that MT (0) = M∗
T = k × MT1

(see Table 3
for MT1

). Using Theorem 4-(i), page 12, the minimal entry time for different values of k, γ
and M∗

T are summarized in Table 5.

k = 1.001 k = 1.01 k = 1.1
❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 800 100 500 800 100 500 800

0.04 6959 6889 6719 2159 2090 1929 656 592 479
0.08 7151 7123 7112 2224 2196 2184 685 658 647

k = 1.2 k = 2 k = 5 k = 10
❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 800 100 500 800 100 500 800 100 500 800

0.04 460 399 311 217 169 126 141 103 76 123 88 65
0.06 476 442 426 232 201 188 155 128 117 137 111 101
0.08 485 458 447 239 214 205 162 139 131 144 122 114
0.1 489 465 457 244 221 213 167 146 139 149 129 122

Table 5: The case of continuous and constant release. Numerical estimates of the minimal times (in days)
to reach Y . We set ε = 0.1 using massive releases, M∗

T = k ×MT1
.

For different values of M∗
T , an increase in the size of the massive releases implies a decay

of the minimal time to enter [0, E1). Of course lower is the value of M∗
T , longer is the

duration of the massive releases. However, it is interesting to notice that between k = 5
(where M∗

T ∈ [4320, 29770]) and k = 10 (where M∗
T ∈ [8640, 59540]), the gain of time is very

weak if we take into account the cost and, eventually, a possible limitation in the production
capacity of the sterile males. However, a cost-effectiveness analysis could be suggested in
order to choose which value of k should be considered for field applications. In addition,
when M∗

T = 100 the impact of γ on the minimal time, is limited.
To illustrate the trajectory of the SIT system in the constant release case, we provide in

a 3D-view, the trajectory related to γ = 0.04 and k = 5 (see Figure 3).
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Figure 3: The case of continuous and constant release. (a): 3D plot of the trajectory of system (16) initiated
at the wild equilibrium E∗ = (9350, 1335, 1834)′ (black dot). (b): Zoom in around the box delimited by
the positive unstable equilibrium E

1
= (878.68, 125.48, 23.35)′ (red dot). The green dot with coordinates

(633.2,121.2,10.85)’ corresponds to the start of the targeted release M∗

T . γ = 0.04, k = 5, MT1
= 863.9 and

M∗

T = 800.

Note that the red trajectory continues to decay to 0 (because of the LAS of 0), but this is
very slow. However, the main objective is achieved: to maintain the wild population below
E1.

6.2. Minimal time in the case of periodic pulse releases

We consider that releases are done every week, i.e. τ = 7. Thus for a given τ , we choose
Λ such that τΛ > Mper

T1
. We also assume that, in system (40), massive periodic and pulse

releases are such that MT (0) = k ×Mper
T1

(see Table 3 for Mper
T1

). When MT (0) = 0, then we
add 7 (14) days, thanks to very massive releases k′ = 4k (k′ = 2k). In Table 6, we provide
the results for different values of k, γ, and M∗

T .

k = 1.2 k = 2 k = 5 k = 10
❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 800 100 500 800 100 500 800 100 500 800

0.04 213 166 123 166 120 88 127 91 67 117 83 61
0.06 228 195 184 175 147 135 140 114 104 130 105 95
0.08 235 210 201 183 159 150 148 125 118 138 116 108
0.1 240 218 210 187 166 159 152 132 125 142 122 115

Table 6: Periodic impulsive releases are done every 7 days. Numerical estimates of the minimal times (in
days) to reach Y , using massive periodic impulsive releases, M∗

T = Λτ ≥ k ×M
per
T1

In Figure 4, we illustrate the periodic impulsive SIT control for γ = 0.04 and k = 5.
First, with massive periodic releases, followed by small periodic releases. Again, the red
trajectory indicates that the system converges (but very slowly) to 0.
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Figure 4: The case of periodic pulse release. Releases are done every 7 days. (a): Time-serie of the
trajectory of system (16) initiated at the wild equilibrium E∗. The solid vertical black line denotes the shift
from massive release to targeted release (b): Zoom in around the box delimited by the positive unstable
equilibrium E

1
= (878.68, 125.48, 23.35)′ (red dot). The green dot with coordinates ( 604.57,122.4, 9.57)’

corresponds to the start of the targeted release M∗

T . γ = 0.04, k = 5, Mper
T1

= 1484.5 and M∗

T = 800.

Comparing the results between Table 6 and Table 5, clearly shows some similarities
for large releases, while the results are far better for small periodic ”massive releases”, i.e.
k = 1.2. In fact, the periodic impulsive case is strongly related to the constant release case,
thanks to the fact that < Mper

T >= 1
τ

∫ tn+τ

tn
Mper

T (t)dt = Λ
µT

= M∗
T . Therefore, releasing

τΛ sterile individuals every τ days is equivalent of releasing a constant amount, M∗
T , of

sterile males over the same period. Thus, since Mper
T1

= k × (eµT τ − 1)MT1
, as long as

k × (eµT τ − 1) > 1, choosing Λ such that τΛ > k(eµT τ − 1)MT1
, is equivalent of choosing

M∗
T = k ×MT1

. That is why values of k smaller than 1 can be considered too. In Table 7,
we provide estimates of the minimal time for k < 1. When k < 0.58, we did not observe
(numerically) convergence towards 0.

However, like for the constant releases case, the larger the value of k, the lowest the time
necessary to enter [0, E1). Values of k chosen between 2 and 5 seem the most interesting
ones.

k = 0.58 k = 0.6 k = 0.7
❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 800 100 500 800 100 500 800

0.04 3073 3003 2827 1065 997 852 449 388 300
0.06 3732 3696 3677 1111 1075 1057 467 433 416
0.08 4322 4294 4282 1137 1109 1098 477 450 439
0.1 ∞ ∞ ∞ 1215 1191 1182 486 462 454
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k = 0.8 k = 0.9 k = 1
❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 800 100 500 800 100 500 800

0.04 335 278 210 282 228 171 250 199 148
0.06 351 318 302 297 265 250 265 234 219
0.08 359 333 323 305 279 269 273 247 237
0.1 366 343 334 311 288 279 278 255 247

Table 7: Periodic impulsive releases are done every 7 days. Numerical estimates of the minimal times (in
days) to reach Y , using massive periodic impulsive releases, M∗

T = Λτ ≥ k ×M
per
T1

. The symbol ∞ denotes

that the result is greater than 106.

6.3. Mechanical control or not?

In general, using SIT alone is not efficient. It is preferable to consider other bio-control
tools. Against mosquito, it has been showed that mechanical control (MC), which consists
of removing the breeding sites, can be an additional efficient control tool [10, 7], and in
particular coupled with SIT [8]. This is a cheap control, but it requires the support of the
local population.

We now assume that the MC leads an increase of µA,2, that is a decrease of the wild
aquatic stage equilibrium A∗ (see Table 3 for values of A∗). According to relation (12), page
6, we deduce that reducing A∗ for MC% corresponds to an increase of µA,2 as follows

µA,2,MC =
(γ + µA,1)

(1− MC
100

)A∗
(R− 1). (49)

In Table 8, we provide µ2,A,MC and the wild equilibrium E∗
MC , for MC = 0, 20% and 40%

in (49).

MC = 0 MC = 20 MC = 40

µA,2,MC 2× 10−4 2.5× 10−4 3.3333× 10−4

γ 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1
A∗ 9350 14150 18950 23750 7480 11320 15160 19000 5610 8490 11370 14250
M∗ 1335 3031 5412 8479 1068 2425 4330 6783 801 1819 3247 5087
F ∗ 1834 4160 7428 11637 1466 3328 5943 9310 1010 2496 4457 6983

Table 8: Impact of MC on the wild equilibrium E∗

MC

Clearly, the impact of MC on the wild equilibrium is quite obvious. However, MC can
be limited in space and time.

Since the objective of massive SIT release is to enter (rapidly) in [0, E1), it is also inter-
esting to see the impact of MC treatment on the unstable equilibrium, E1,MC , for a given
targeted amount of sterile males, M∗

T . This is summarized in Tables 9 and 10. In fact, and
this is a good news, we have E1,MC > E1 = E1,0. Thus, with MC, the wild equilibrium,
E∗

MC , decreases and the size of [0, E1) increases, such that we can expect a good gain in
terms of minimal time to enter in [0, E1), using massive releases.
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❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500

0.04 (37.39,5.34,0.37)’ (347.57,49.56,6.14)’
0.06 (18.96,4.06,0.22)’ (115.79,24.8,1.6)’
0.08 (12.3,3.51,0.163)’ (68.24,19.49,1)’
0.1 (8.98,3.21,0.137)’ (47.88,17.09,0.78)’

Table 9: Values of E1,MC for different values of the targeted releases amount, M∗

T , and various values of γ,
when MC = 20%.

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500

0.04 (38.82,5.54,0.4)’ (646.33,92.3,19.7)’
0.06 (19.25,4.12,0.22)’ (127.8,24.37,1.9)’
0.08 (12.4,3.54,0.166)’ (71.5,20.4,1.1)’
0.1 (9.03,3.22,0.138)’ (49.2,17.58,0.82)’

Table 10: Values of E1,MC for different values of the targeted releases amount, M∗

T , and various values of
γ, when MC = 40%.

Minimal time results are given in Tables 11-12, when we consider that MC has started
before SIT and goes on once SIT starts. Clearly, the gain in time is ”small”, indicating that
MC does not drastically decay the minimal time to reach [0, E1).

The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 213(4) 155(14) 137(4) 93(10) 120(3) 80(8)
0.06 228(4) 195(6) 152(3) 123(5) 134(3) 107(4)
0.08 236(3) 210(4) 160(2) 136(3) 141(3) 118(4)
0.1 241(3) 218(3) 164(3) 143(3) 146(3) 125(4)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 157(9) 109(11) 123(4) 82(9) 113(4) 75(8)
0.06 172(3) 142(5) 137(3) 110(4) 127(3) 101(4)
0.08 180(3) 155(4) 145(3) 122(3) 135(3) 112(4)
0.1 185(2) 162(4) 150(2) 129(3) 140(2) 119(3)

Table 11: The case when 20% of MC takes place all over the time. Numerical estimates of the minimal times
(in days) to reach Y , using massive releases, M∗

T = k×MT1
. The values in the brackets indicate the gain in

days compared to SIT alone.
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The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 206(11) 116(53) 132(9) 70(33) 114(10) 60(28)
0.06 224(8) 186(15) 147(8) 116(12) 129(8) 100(11)
0.08 232(7) 204(10) 156(6) 130(9) 138(6) 114(8)
0.1 237(7) 213(8) 161(6) 138(8) 143(6) 121(8)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 151(15) 82(38) 118(9) 62(29) 108(9) 57(26)
0.06 167(8) 134(13) 133(7) 103(11) 123(7) 94(11)
0.08 176(7) 149(10) 141(7) 117(8) 131(7) 107(9)
0.1 181(6) 158(8) 146(6) 125(7) 136(6) 115(7)

Table 12: The case when 40% of MC takes place all over the time. Numerical estimates of the minimal times
(in days) to reach Y , using massive releases, M∗

T = k×MT1
. The values in the brackets indicate the gain in

days compared to SIT alone.

MC is a useful tool. However, to be really efficient, whatever the type of releases, MC
needs to reduce the potential breeding site by 40%.

In fact, the combination of control strategies needs to be considered according to the
location. In la Réunion, a french overseas department in the Indian Ocean where a SIT
project is ongoing, there is a seasonal effect on the wild mosquito population [6], such that
the best period to start SIT is between July and September, when the size of the wild
mosquito population is low or reducing. In general there is a factor 10 in the population
estimates between the wet season (February-March) and the dry season (July-September)
(see for instance [15]). In Cali (Colombia), there is no seasonal effect, such that the wild
population is more or less constant along the year. In order to use the SIT in an efficient
manner in Cali, a population reduction is necessary.

One possible way, and also recommended by IAEA (the International Atomic Energy
Agency) for SIT control, is to first use insecticide to reduce the population by a factor 5 or
10, and then to use SIT control. This is what we consider now: during one week, before SIT
starts, we combine MC and an adulticide treatment, assuming 100% efficiency.

In Tables 13 and 14, we provide the values obtained after one week of adulticide treatment
without and with MC.

Adulticide during one week
MC = 0

γ 0.04 0.06 0.08 0.1
A7 1897.9 2645.1 3387.1 4114
M7 46.2 98.3 169.5 258.6
F7 49.3 105.4 182.2 278.2

Table 13: Solution (A7, M7,F7)’ of the model after one week of adulticide treatment only.
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Adulticide during one week
MC = 20 MC = 40

γ 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1
A7 1518.4 2116 2709.7 3291.2 1138.9 1587.2 2032.5 2468.6
M7 37 78.6 135.6 206.9 27.7 59 101.7 155.2
F7 39.5 84.3 145.7 222.5 29.6 63.2 109.3 166.9

Table 14: Solution (A7, M7,F7)’ of the model after one week of adulticide treatment combined with MC.

Clearly, according to the tables above, after one weak of adulticide treatment, the size
of the mosquito population has been drastically reduced, such that the SIT treatment will
now start at the point X7 = (A7,M7, F7)

′. That is why an impact on the minimal time to
enter the basin [0, E1,MC) is expected.

Indeed, Table 15, page 26, clearly confirms that the gain in the entry time is rather
important for the adulticide treatment only: it ranges from 35 to 95 days.

The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 122(95) 74(95) 92(49) 54(49) 85(38) 50(38)
0.06 137(95) 107(94) 106(49) 79(49) 98(39) 72(39)
0.08 146(93) 121(93) 113(49) 90(49) 105(39) 83(39)
0.1 150(94) 128(93) 118(49) 97(49) 110(39) 90(39)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍

❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 101(65) 60(60) 87(40) 51(40) 82(35) 48(35)
0.06 115(60) 87(60) 100(40) 74(40) 95(35) 70(35)
0.08 123(60) 99(60) 107(41) 85(40) 103(35) 81(35)
0.1 127(60) 106(60) 112(40) 91(41) 107(35) 87(38)

Table 15: Numerical estimates of the minimal times (in days) to reach Y , using massive releases, M∗

T =
k ×MT1

. The values in the brackets indicate the gain in days compared to SIT alone.

In Tables 16 and 17, we present the results when MC is combined with the adulticide
treatment. As, expected, the results are improved. However, the gain, compared to the
adulticide treatment alone is small, such that the best combination would be ”adulticide
treatment for seven days, followed by permanent SIT treatment”.
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The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 116(101) 68(101) 89(52) 50(53) 82(41) 47(41)
0.06 131(101) 101(100) 102(53) 75(53) 95(42) 70(41)
0.08 139(100) 114(100) 110(52) 87(52) 103(41) 80(42)
0.1 144(100) 122(99) 115(52) 94(52) 107(42) 87(42)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 97(69) 56(64) 84(43) 48(43) 80(37) 46(37)
0.06 111(64) 83(64) 97(43) 71(43) 93(37) 68(37)
0.08 119(64) 95(64) 104(44) 82(43) 100(38) 78(38)
0.1 124(63) 102(64) 109(43) 89(43) 105(37) 85(37)

Table 16: Combination of adulticide and 20% of MC, followed by SIT. Numerical estimates of the minimal
times (in days) to reach Y , using massive releases, M∗

T = k ×MT1
. The values in the brackets indicate the

gain in days compared to SIT alone.

The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 107(110) 59(110) 85(56) 46(57) 79(44) 43(45)
0.06 123(109) 93(108) 98(57) 71(57) 92(45) 66(45)
0.08 132(107) 107(107) 106(56) 83(56) 99(45) 77(45)
0.1 137(107) 114(107) 110(57) 90(56) 104(45) 84(45)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500 100 500 100 500

0.04 92(74) 50(70) 80(47) 44(47) 77(40) 42(41)
0.06 106(69) 78(69) 93(47) 67(47) 90(40) 64(41)
0.08 114(69) 90(69) 101(47) 78(47) 97(41) 75(41)
0.1 118(69) 97(69) 105(47) 85(47) 102(40) 81(41)

Table 17: Combination of adulticide and 40% of MC, followed by SIT. Numerical estimates of the minimal
times (in days) to reach Y , using massive releases, M∗

T = k ×MT1
. The values in the brackets indicate the

gain in days compared to SIT alone.

7. Conclusion

Generally speaking, most of the papers related to SIT (see [5, 20] and references therein)
focus on ”finite time” applications of SIT. This is possible, when the wild population has
a so-called Allee effect. If not, then, if the SIT control stops, the system recovers (even if
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the population is low). Based on previous works done by some of the authors, we study SIT
control when a wild pest/vector population does not have any Allee effect. In fact, a low level
of SIT can induce a weak Allee effect (if the population is sufficiently small, it can be driven
to extinction), and we use this particular property to derive a realistic strategy. Indeed,
using a mathematical analysis, we show that a strategy mixing massive and small releases
can be used to drive and maintain a wild population at a (very) low level. In addition, the
combination of SIT with other control tools, including MC and adulticide, can help to reduce
the duration of the massive releases and eventually their size. To the best of our knowledge,
this is the first time that such a ”massive-small” releases strategy is derived for SIT. Since
this work is done within the framework of a mosquito and a fruit fly SIT programs, we do
hope that our strategy proposal will be considered in forthcoming field trials.

Several extensions of this work are possible. For instance, take into account the epidemio-
logical states in order to derive the threshold value that needs to be reached by the mosquito
population, using SIT, to lower the epidemiological risk, like in [8]; take into account the
spatial component [6], the human behavior [9, 21], and, also, to compare all possible control
treatments from an economical point of view.
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