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Abstract

This study presents a new model for the environment-host-environment transmission dynamics of V.
cholerae in a community with an interconnected aquatic pond-river water network. For the case when
the human host is the sole target of anti-cholera control and the volume of water in the pond is maximum,
the disease-free equilibrium of the model is shown to be globally-asymptotically stable whenever a cer-
tain epidemiological threshold, known as the basic reproduction number (R0), is less than unity. The
epidemiological implication of this result is that cholera can be eliminated from the community if the
control strategies implemented can bring (and maintain) R0 to a value less than unity. Four scenarios,
that represent different interpretations of the role of the V. cholerea pathogen within the environment,
were studied. The corresponding basic reproduction numbers were shown to exhibit the same threshold
property with respect to the value unity (i.e., if one is less (equal, greater) than unity, then the three others
are also less (equal, greater) than unity. Further, it was shown that for the case where anti-cholera control
is focused on the human host population, the associated type reproduction number of the model (corre-
sponding to each of the four transmission scenarios considered) is unique. The implication of this result
is that the estimate of the effort needed for disease elimination (i.e., the required herd immunity thresh-
old) is unique, regardless of which of the four transmission scenarios is considered. However, when
any of the other two bacterial population types in the aquatic environment (i.e., bacterial in the pond or
river) is the focus of the control efforts, this study shows that the associated type reproduction number
is not unique. Extensive numerical simulations of the model, using a realistic set of parameters from the
published literature, show that the community-wide implementation of a strategy that focus on improved
water quality, sanitation and hygiene (known as WASH-only strategy), using the current estimated cov-
erage of 50% and efficacy of 60%, is unable to lead to the elimination of the disease. Such elimination
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is attainable if the coverage and efficacy are increased ( (e.g., to 80% and 90%, respectively). Further,
elimination can be achieved using a strategy that focus on oral rehydration therapy and the use of an-
tibiotics to treat infected humans (i.e., treatment-only strategy) for moderate effectiveness and coverage
levels. The combined hybrid WASH-treatment strategy provides far better population-level impact vis a
vis disease elimination. This study ranks the three intervention in the following order of population-level
effectiveness: combined WASH-treatment, followed by treatment-only and then WASH-only strategy.

Keywords: V.cholerae; type reproduction number; asymptotic stability; transmission scenarios; pond-river
water network.

1 Introduction

Cholera, a bacterial disease that affects the intestinal track, is caused by the bacterium Vibrio cholerae.
Infection with the disease, which can be effectively treated using antibiotics if caught early (typically within
the first two days of onset of symptoms), can result in severe diarrhoea and (subsequently) dehydration,
which, if untreated, can be fatal. Cholera continues to be a major public health problem in many parts
of the world (most notably in the Indian sub-continent and some parts of Africa, Asia and Latin America)
[1, 44, 45, 47] (Figure 1). Figures from the World Health Organization (WHO) [45] show that, each year, the
disease accounts for between [1.3- 4] million cases and [21.000-143.000] fatalities globally. It is noteworthy
that many cholera-endemic countries are now pledging to end cholera outbreaks by 2030 [44].

Although a secondary human-to-human mode of cholera transmission exist [28, 56, 63], cholera is
primarily transmitted to humans from the environment by ingesting food or water contaminated with the
bacterium V. cholerae [17, 29]. The disease has a short incubation period (ranging from a few hours to five
days [55]) and its common symptoms are diarrhoea (leading to severe dehydration), vomiting, loss of skin
elasticity, thirst, and muscle cramps [55, 69]. Most cholera-infected people (at least 80%) do not become ill,
although they may carry the V. cholerae bacterium for weeks and slowly excreting it into the water supply
[6, 55, 45]. However, when illness does occur, about 80%-90% of episodes are of mild or moderate severity
and are difficult to distinguish clinically from other types of acute diarrhoea [45].

Basic preventive measures, such as improvements in sanitation systems, effective and adequate drinking
water and sewage treatment, and improved food and personal hygiene, are generally adopted in cholera-
endemic areas to minimize human contact with V. cholorae-contaminated sources. In particular, the water,
sanitation and hygiene (WASH) strategy is widely implemented in endemic areas [26]. The disease can
be successfully treated, in most cases, using oral rehydration therapy [68, 48] (which is highly effective,
safe, and simple to administer) and antibiotics [36, 53, 68, 48]. Owing to the common and widespread
administration of antibiotics to treat cholera-infected humans, the emergence of antibiotic resistant strains
of V. cholerae is very well documented in the literature [35, 36, 55]. Furthermore, a number of safe and
effective anti-cholera vaccines have been developed for use in humans (see, for instance, Safi et al. [27, 55]
and some of the references therein). People infected with V. cholerae are generally treated using fluid
replacement therapy and antibiotics [55, 56]. Cholera-endemic regions around the world that do not adhere
to the aforementioned preventive measures, and provide access to treatment to infected people, continue to
experience cholera outbreaks [1, 44, 45, 47].

Mathematical models, typically of the form of deterministic system of nonlinear differential equations,
have been used to gain insight into the transmission dynamics and control of cholera in endemic areas.
For instance, Capasso and Paveri-Fontana [13] developed the earliest model to describe the 1973 cholera
epidemic in Bari, Italy [4]. Codeço [16] extended the two-dimensional model developed by Capasso and
Paveri-Fortana to include the dynamics of the susceptible population. More recently, Pascual et al. [49]
reviewed some quantitative facts about cholera and climate. In a short section, they proposed a model with
four variables, i.e. the number of susceptible individuals, the number of infected individuals, the number
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Figure 1: Global cholera map: geographical patterns of annual number of cholera cases in endemic countries. [1].

of fomites (or bacterial abundance) and the water volume. Further, authors in [7, 8, 9, 10, 15, 41] explored
the problem of the spread of cholera, considering two or more populations of bacteria living in two different
but connected aquatic environments. Safi et al. [55] developed an 11-dimensional deterministic model for
assessing the combined impact of dose-structured cholera vaccination and treatment on the dynamics of two
cholera strains in a population.

The dynamics of the models developed for cholera transmission dynamics and control are generally
governed by an epidemiological threshold, known as the reproduction number (and generally denoted by
R0). Epidemiologically-speaking, the quantity R0 measures the average number of secondary infections
generated by a typical infectious individual introduced into a completely susceptible population [2, 31]. In
general, the disease dies out whenR0 < 1 and persists in the population whenR0 > 1. The next generation
operator method (NGM), developed by Diekmann et al. [23, 22] and elaborated by van den Driessche and
Watmough [66], is popularly-used in the mathematical biology community to compute this epidemiological
quantity.

As noted by van den Driessche and Watmough [66], owing to the fact that cholera is an environment-
host-environment epidemic, different expressions for R0 can be obtained, depending on the interpretation
of the role of the environment. For example, Bani-Yaghoub et al. [5] highlighted the issue of calculating a
valid expression for R0 for diseases transmitting through the contaminated environment. This problem, of
computing the correct R0 for environmentally-transmitted diseases, can be overcome by using the notion
of type reproduction numbers [30, 52], which provides a unique threshold value, regardless of the interpre-
tations of the role of the environment.The concept of type reproduction number was further generalized by
Shuai et al. [58, 59], useful when the control strategies act on a part of the population or on the interactions
between the different populations.

The dynamics of cholera is greatly associated with environmental contamination (it is well-known that
the bacterium is autochthonous to the aquatic environment [17]). In particular, V. cholerae inhabits seas,
estuaries, brackish waters, rivers, and ponds of coastal areas of the tropical world [18, 43] (and surface
water in proximity to cholera-infected individuals is frequently contaminated with the V. cholerae agent
[61]). Further, the bacterium can survive long-term, perhaps for years, in such aquatic environments [17].
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Hence, models for the transmission dynamics of the disease should incorporate the highly significant role
such environmental factors play in the disease dynamics (vis a vis the production and long-term survival of
V. chlorea in the aquatic habitat). Consequently, the aim of this study is to propose a new model for cholera
transmission dynamics that take into account the role of environmental factors on the disease dynamics in
addition to explicitly accounting for the impact of the hydrological fluctuations of the volume of available
drinking water in a cholera-endemic setting. In particular, a cholera-endemic community with a local pond-
river network as its source (reservoir) of available drinking water will be considered. The notion of the
type reproduction number will be used to assess the population-level impact of various anti-cholera control
strategies.

The paper is organized as follows. The model is formulated in Section 2. Its basic qualitative properties
are also explored. Detailed computation of the basic reproduction numbers of the model, for all possible
transmission scenarios, is reported in Section 3. The associated types reproduction numbers of the model
are computed in Section 4. The developed model is used to assess the population-level impact of various
anti-cholera control strategies are carried out in Section 5.

2 Formulation of Mathematical Model

The model to be designed in this study is built on two basic components, namely an epidemiology com-
ponent for the disease dynamics in a human population and a hydrology component for the water balance
(within the local pond-river system) . Cholera is endemic in many countries in Africa and Asia (mainly in
India and Bangladesh), although a number of outbreaks have also occurred in Eastern Europe and Haiti. In
most of the rural areas of these countries, drinking water supply source (and reserve) mostly comes from
ponds and small rivers that are often interconnected [50]. Thus, cholera dynamics in such settings is as-
sociated with the contamination of the two local water sources with V. cholerae (i.e., cholera ecology), the
inflow and outflow of water to and from the two interconnected water sources (i.e., water balance or hy-
drology), and V. cholerae transmission between humans due to human contact with the contaminated water
sources (i.e., cholera epidemiology). The model we propose for this setting, which focuses on the primary
mode of cholera transmission, captures the three main elements (of ecology, epidemiology and hydrology).
In particular, the ecology-epidemiology-hydrology model to be designed in this study is that of the trans-
mission dynamics of cholera in a cholera-endemic community whose main source of drinking water is a
local network of a pond (typically defined as a small basin consisting of stagnant water) and a river (con-
sisting of flowing water). Figure 2 depicts a schematic of a pond-river water network system for a typical
cholera-endemic community.

The total human population at time t, denoted byN(t), is split into mutually-exclusive compartments of
susceptible (S(t)) and infected (I(t)) individuals, so that N(t) = S(t) + I(t). Similarly, the total volume of
water available to the community is split into the volume of water in the local pond (denoted by Vp(t) > 0)
and the volume of water in the river (V ∗r > 0, assumed constant). Consequently, following [7, 8, 9, 10,
15, 41], the total V. cholerae bacteria population in the community at time t, is split into the total number
of bacteria in the pond (denoted by Bp(t)) and the total concentration of V. cholerae bacteria in the river
(Br(t)). While it is assumed that the water volume in the river is constant, the water volume in the pond is
assumed to vary with time (as this is affected by rainfall, evaporation and/or drainage [10, 15, 51]).
The population of susceptible humans is increased by recruitment (due to birth or immigration) at a per
capita rate Π and by the recover from cholera infection at a rate γ∗. This population is decreased following

the acquisition of cholera infection from the cholera-contaminated pond at a rate β∗p
Bp

k∗pVp +Bp
, where β∗p is

the rate of cholera infection from a pond and k∗p is the minimum concentration of V. cholerae in the pond that
guarantees 50% chance of V. cholerae transmission per contact [49]. Similarly, infection is acquired from
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Figure 2: A pond-river network in a typical cholera-endemic setting. Figure 2(a) was adapted from [62], while Figure
2(b) was adapted from [64].

the (contaminated) river reservoir at a rate β∗r
Br

kr +Br
, where β∗r is the infection rate and kr is the saturation

parameter that accounts for the minimum V. cholerae concentration in the river that guarantees 50% chance
of cholera transmission. It is assumed that humans in all epidemiological compartments die naturally at a
rate µ∗. Thus (where a dot represents differentiation with respect to time t):

Ṡ = Π + γ∗I −
(
β∗p

Bp
k∗pVp +Bp

+ β∗r
Br

kr +Br

)
S − µ∗S.

The population of infected individuals is generated by the acquisition of infection from the pond or the river.
It is decreased by recovery (at the rate γ∗), natural death (at the rate µ∗) and cholera-induced mortality at a
rate δ∗. Hence,

İ =

(
β∗p

Bp
k∗pVp +Bp

+ β∗r
Br

kr +Br

)
S − (γ∗ + µ∗ + δ∗)I.

It follows from the above two equations that the rate of change of the total human is given by:

Ṅ = Π− µ∗N − δI.

It is worth noting that, in the above formulation, the Michales-Menten (Holling type-II) incidence function
is used to model the cholera transmission rates above.

The bacterial population in the pond is increased by V. cholerae shedding by infected humans at a
rate θ∗p and by the natural reproduction of free-living V. cholerae bacteria in the pond at the logistic rate

r

(
1− Bp

kbp

)
(where r is the reproduction rate and kbp > Bp(t) for all t is the carrying-capacity of free-

living V. cholerae in the pond (i.e., kbp is the maximal capacity of free-living bacteria in the environment)).
This formulation is motivated by the fact that warmer temperatures (near the surface of the water body)
are known to favor the attachment, growth, and multiplication of V. cholerae [10] (this is accounted for
by assuming that, within the pond, the bacterial concentration Bp(t) at time t increases according to a
logistic per-biomass growth rate). The bacterial population in the pond is further increased by the influx of
contaminated water from the river, at a rate λ∗rV

∗
r Br (where V ∗r is the constant volume of water in the river).

This population is decreased by the outflow of water from the pond to the river, at a rate λ∗pBp, and by the
natural death of the bacterium at a rate µ∗B . Thus,

Ḃp = θ∗pI + rBp

(
1− Bp

kbp

)
+ λ∗rV

∗
r Br − λ∗pBp − µ∗BBp.
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Similarly, the bacterial population in the river is increased by shedding (at a rate θ∗r/V
∗
r ) and by the influx

of contaminated water from the pond, at the rate λ∗pBp/V
∗
r . This population is decreased by the outflow of

water from the river to the pond (at the rate λ∗r) and by natural death (at the rate µ∗B). Hence,

Ḃr =
θ∗r
V ∗r

I + λ∗p
Bp
V ∗r
− λ∗rBr − µ∗BBr.

Thus, denoting with B(t) = Bp(t) + V ∗r Br(t) the total number of bacteria in the pond and the river, we
obtain the following equation:

Ḃ = (θ∗p + θ∗r)I + rBp

(
1− Bp

kpb

)
− µ∗BB.

Since the water in the pond is generally stagnant, while the water in small rivers flow, we decided to differ-
entiate the two water flow rates (λ∗p for the inflow of water from the pond to the river, and λ∗r for the inflow
of water from the river to the pond and assumed that λ∗r > λ∗p). Finally, the total volume of water in the
pond is increased by precipitation at a rate p and by the inflow of water from the river (at the rate λ∗r). It is
decreased by the outflow to the river (at the rate λ∗p) and by drainage, at a rate d∗r . This gives:

V̇p = p+ λ∗rVr − λ∗pVp − d∗rVp.

It is assumed that there is always a minimum amount of water V (min)
p > 0 in the pond, such that 0 <

V
(min)
p ≤ Vp(t) for all t ≥ 0. This assumption guarantees water exchange between the pond and the river,

in addition to sustaining V. cholerae transmission to the human host via contact with the contaminated water
in the pond.

In summary, the ecology-epidemiology-hydrology model for the transmission dynamics of V. cholerae
in a population is given by the following deterministic system of nonlinear differential equations (Figure 3
depicts a general transmission schematic of the model. The state variables and parameters of the model are
described in Table 1):

Ṡ = Π + γ∗I −
(
β∗p

Bp
k∗pVp +Bp

+ β∗r
Br

kr +Br

)
S − µ∗S,

İ =

(
β∗p

Bp
k∗pVp +Bp

+ β∗r
Br

kr +Br

)
S − (γ∗ + µ∗ + δ∗)I,

Ḃp = θ∗pI +

[
r

(
1− Bp

kbp

)
− λ∗p − µ∗B

]
Bp + λ∗rV

∗
r Br,

Ḃr =
θ∗r
V ∗r

I + λ∗p
Bp
V ∗r
− (µ∗B + λ∗r)Br,

V̇p = p+ λ∗rVr −
(
λ∗p + d∗r

)
Vp.

(2.1)

The main assumptions in the formulation of the model (2.1) include:

1. Exponentially-distributed waiting times in each compartment of the model.

2. Recovery from cholera does not induce permanent (or partial) immunity against future V. cholerae
infection.
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3. The total volume of water in the pond (Vp(t)) equals or exceeds a certain minimum amount (denoted
by V (min)

p ) for all time t ≥ 0. This is the minimum amount needed to support water exchange between
the pond and the river, and sustain V. cholerae transmission to humans from the contaminated pond.
Further, the total volume of water in the river (V ∗r ) is strictly positive for all time t ≥ 0.

4. Nonlinear (Michales-Menten) incidence functions are used to account for saturation in the infection
rates [10, 49].

5. No growth rate is assumed for the concentration of V. cholerae in the river (Br(t)) [7, 8, 9, 10, 15, 41].

6. The two local water reservoirs (pond and river) are interconnected.

The model (2.1) is an extension of many of the models for cholera transmission dynamics, such as those in
[7, 8, 9, 10, 15, 41, 16, 49, 51, 56], by, inter alia:

1. incorporating the dynamics of V. cholerae in an interconnected pond-river water network (i.e., we
consider two different but interconnected aquatic environments for V. cholerae dynamics). A single
water source was considered in [16, 49, 56];

2. including the inflow and outflow of water between two different aquatic environments (pond and
river), not considered in ([16, 49, 56]);

3. using a nonlinear logistic function for the growth of bacteria in the pond (no bacterial growth rate is
considered in [10, 15, 51, 56]; further, a linear bacterial growth function was considered in [16, 49]);

4. including an equation describing the dynamics of water volume in the pond, taking into account
precipitation, drainage and water transfer to and from the river (this was not considered in [16, 49]);

5. including the possibility that humans can become infected and can spread bacteria both in the pond
and in the river. Thus, we consider a dual V. cholerae transmission (from river and from pond) and
shedding (into the river and the pond) rates. These dual transmission and shedding pathways were not
taken into account in [7, 8, 9, 10, 15, 41, 16, 49, 51, 56].

(a)

Figure 3: V. cholerae transmission scheme in an interconnected pond-river network

It is convenient to introduce the following change of variables and re-scaling on the model (2.1):
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State Variable Description

S(t) Number of susceptible individuals at time t
I(t) Number of infected individuals at time t
Bp(t) V. cholerae number in the pond at time t
Br(t) V. cholerae concentration in the river at time t
Vp(t) Volume of water in the pond at time t

Parameter Description Unit Baseline Value References

Π Recruitment rate of humans (by birth or immigration) day−1 12.05 [5]
µ∗ Natural death rate of humans day−1 9 ∗ 10−5 [5]
γ∗ Recovery rate for human day−1 0.2 [5, 15, 51]
δ∗ Disease-induced death rate for humans day−1 4 ∗ 10−4 [15]
β∗
p (β∗

r ) Transmission rate in the pond (river) day−1 5 (5) [15]
k∗p(kr) Concentration of V. cholerae in the pond (river) m−3 106(106) [56]

that yields 50% chance of being infected with cholera
µ∗
B Natural death rate for bacteria day−1 0.8 [5]
θ∗p(θ∗r ) Bacterial shedding rate in the pond (river) day−1 104 (104) [15]
r Reproductive rate of free-living bacteria day−1 0.3 [5, 33]
kbp Carrying-capacity of free-living bacteria in the pond - 106 [33]
p Precipitation (and river flow) rate into the pond m3day−1 0.02 [51]
d∗r Drainage rate of the water in the pond day−1 0.02 [51]
λ∗
p(λ∗

r) Rate of inflow of water from pond (river) to river (pond) day−1 0.5 (10) Assumed
V

(min)
p Minimum amount of water in the pond (constant) needed m3 - -

to support water exchange and transmission
V ∗
r Volume of water in the river (constant) m3 1.62 × 106 [15]

Table 1: Description of state variables and parameters of the model (2.1)

s = S
H , i = I

H , bp =
Bp

kbp
, br = Br

kr
, vp =

Vp
P , t = rt∗,

βp =
β∗
p

r , βr = β∗
r
r , γ = γ∗

r , δ = δ∗

r , θp =
θ∗pΠ

µ∗rkbp
, θr = θ∗rΠ

rµ∗V ∗
r kr

,

λr = λ∗r
r , λp =

λ∗p
r , µ = µ∗

r , µB =
µ∗B
r , dr = d∗r

r , kp =
k∗pP

kbp
, Vr = V ∗

r kr
kbp

,

(2.2)

where P = p+λ∗rV
∗
r

d∗r+λ∗p
and H = Π

µ∗ . It should be noted that the growth rate of the bacterial population in
the pond (r) is now re-scaled to 1 (i.e., r = 1 in the normalized model (2.3)). It follows from the above
re-scaling that the total human population, n, is now given by n = s+ i. Using the change of variables and
re-scaling (2.2) in the model (2.1) gives the following equivalent normalized system:

ṡ = µ(1− s)−
(
βp

bp
kpvp + bp

+ βr
br

1 + br

)
s+ γi,

i̇ =

(
βp

bp
kpvp + bp

+ βr
br

1 + br

)
s− (γ + δ + µ)i,

ḃp = θpi+ (1− bp − µB − λp) bp + λrVrbr,

ḃr = θri+ λp
bp
Vr
− (µB + λr) br,

v̇p = (dr + λp)(1− vp).

(2.3)

The analysis in this study will be carried out on the normalized model (2.3). Since, like the original model
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(2.1), the model (2.3) monitors the temporal dynamics of human and bacterial populations, all its state
variables and parameters are non-negative.

2.1 Basic Properties of the Model

In this section, the basic qualitative properties of the normalized system (2.3) are explored. In particular,
results for the existence, uniqueness, boundedness and non-negativity of its solutions are established. It is
convenient to define the following sets:

DH =
{

(s, i) ∈ R2
+ : 0 < s+ i ≤ 1

}
,

DB =
{

(bp, br) ∈ R2
+ : 0 < bp + Vrbr ≤ b∗

}
,

DP =
{
vp ∈ R+ : 0 < v

(min)
p ≤ vp ≤ 1

}
,

where b∗ =
θp + θrVr + 1

4

µB
> 0 and v

(min)
p =

V
(min)
p

P
> 0.

Let D = DH ×DB ×DP . We claim the following result:

Theorem 2.1 The normalized model (2.3) with initial conditions in D has a unique solution that exists
and remains in D for all time t. Furthermore, the positively-invariant region D attracts all solutions in
R2

+ × R2
+ × R+.

Proof. Since it is clear that, for all initial solutions of the normalized model (2.3) in the region D, the
functions in the right hand-sides of the system (2.3) are locally Lipschitz in (s, i, bp, br, vp)

T . Hence, it
follows, by the Cauchy-Lipschitz theorem, that the normalized model (2.3) admits a unique local solution.
Furthermore, adding the first two equations of the system (2.3) gives (noting that n(t) = s(t) + i(t))

dn(t)

dt
= µ[1− n(t)]− δi(t), (2.4)

so that,

µ− (µ+ δ)n(t) ≤ dn(t)

dt
≤ µ[1− n(t)].

Hence, it follows, by standard comparison theorem [32], that

0 <
µ

µ+ δ
≤ n(t) ≤ 1, for all t > 0 if n(0) < 1.

Furthermore, it follows from Equation (2.4) that dn(t)/dt ≤ 0 whenever n(t) ≥ 1. Hence, the subsystem
of the model (2.3) containing the equations for the dynamics of the human populations (s(t) and i(t)) is
non-negative, bounded and invariant in DH .

Let b(t) = bp(t)+Vrbr(t). It follows then that the total bacterial population in the aquatic environment (i.e.,
bacterial populations in the pond and the river) satisfy the following equation:

db(t)

dt
= (θp + θrVr)i(t) + bp(t)[1− bp(t)]− µBb(t). (2.5)

Since bp(t)[1− bp(t)] ≤ 1/4 for all t, and noting that i(t) ≤ 1 in DH , Equation (2.5) can be written as:

db(t)

dt
≤
(
θp + θrVr +

1

4

)
− µBb(t). (2.6)
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It follows, by solving the inequality (2.6), that (where b0 = b(0)):

b(t) ≤ 1

µB

[
θp + θrVr +

1

4
+

(
b0µB − θp − θrVr −

1

4

)
e−µBt

]
,

= b∗
[
1 +

1

b∗
e−µBt (b0 − b∗)

]
.

(2.7)

By applying a standard comparison theorem [32], the inequality (2.7) can be re-written as:

0 < b(t) < b∗ for all t > 0 if 0 < b0 ≤ b∗.

Further, it follows from (2.6) and (2.7) that db(t)/dt ≤ 0 whenever b(t) ≥ b∗. Hence, the total bacterial
population in the aquatic environment, b(t), is bounded, non-negative and positively-invariant in DB .

Finally, it is clear from the last equation of (2.3) that dvp/dt < 0 whenever vp(t) > 1. Further,
integrating this equation gives:

vp(t) = 1 + (vp0 − 1)e−(dr+λp)t, vp(0) = vp0 ,

from which it follows that

lim
t→+∞

vp(t) = 1, 0 < vp(t) ≤ 1 if 0 < vp0 ≤ 1, and lim sup
t→∞

vp(t) = 1.

Hence, the subsystem of the model (2.3) consisting of the equation for the dynamics of the water volume in
the pond (vp) is non-negative, bounded and invariant in DP .

In summary, it follows from the above analyses that the region D is positively-invariant for the nor-
malized model (2.3), and all solutions of the normalized model are non-negative and bounded (since these
results hold for the three constituent subregions, DH , DB and DP ). �

3 Reproduction Numbers for Various Transmission Pathways

The disease-free equilibrium of the normalized model (2.3) is given by E0 = (s∗, i∗, b∗p, b
∗
r , v
∗
p) = (1, 0, 0, 0, 1).

Its local stability can be analysed using the next generation operator method (NGM) [22, 23, 66]. This
method entails tracking the new infection terms as well as the linear transition terms in and out of infected
compartments. In particular, the method involves computing two associated matrices, F (of the new infec-
tion terms) and V (of the linear transition terms), and the associated basic reproduction number, denoted
by R0, is then given by R0 = ρ(FV −1) [22, 23, 66], where ρ is the spectral radius (the dominant eigen-
value of the next generation matrix, K = FV −1). The consequence of this approach is that the disease can
be effectively controlled (or eliminated) if R0 < 1, and will persist in the community if R0 > 1. In other
words, the dynamics of the disease transmission model is (often) completely determined by the reproduction
number R0. Epidemiologically-speaking, the threshold quantity R0 represents the average number of new
infections generated by a typical infected individual introduced into a completely susceptible population. In
the context of the normalized model (2.3), the reproduction number will represent the average number of
new cholera cases generated by a V. cholerae particle introduced the local pond-river network. It can also
be a measure of the average number of V. cholerae particles shedded into the environment (i.e., into the
pond-river network) by a typical cholera-infected human. In a recent paper, Lewis et al. [39] gave a new
definition for the basic reproduction number (R0), which covers the definition given in [22, 23, 66], based
on targeting the elements of the NGM subject to change. In particular, the Lewis et al. study establishes that
R0 is obtained when all the elements of the NGM are targeted, whereas the type reproduction number (T )
is obtained when an entire row (or column) of the NGM is targeted.

10



Thus, a control strategy (e.g., vaccinating a segment of the population) that can bring (and maintain)R0

to a value less than unity may lead to effective control or elimination of the disease. However, for a disease
with multiple population types (e.g., cholera with V. cholerae residing in the human host as well as in the
aquatic environment (i.e., in either the local pond or river)), anti-cholera control measures can be directed
to, or focussed on one, population type. This leads to a different expression for the associated reproduc-
tion number (R0) corresponding to each population type targeted for anti-cholera control. For instance,
in the models considered in [14, 42, 63], the expressions for the associated reproduction number (R0) is
represented as a sum of two separate terms corresponding to the host-to-host and to the environment-to-host
transmission paths. This could suggest the independence of these pathways in the disease transmission cy-
cle. Furthermore, the R0 for the model in [11] has a square root term that suggests a more complicated
interaction between host-to-host and environment-to-host transmission pathways. It is clear from the above
that, for a cholera model such as the one presented in the current study, the expression for the associated
reproduction number obtained will be dependent on how the role of the environment is interpreted vis a
vis cholera transmission dynamics (i.e., how the role of the environment is interpreted in transition be-
tween disease compartments and in transmission of secondary infectious hosts and free-living V. cholerae
[5]). As noted by Bani-Yaghoub et al. [5], the interpretation of this role has been controversial in the
literature. In particular, while numerous studies environment-host-pathogen interactions suggest that the
pathogen-contaminated environment serves as a reservoir of infectious free-living pathogens for infection
of various host populations (e.g., humans, other non-human animals and plants) [12, 19, 57], other studies
show that the environment plays only a somewhat marginal role on the complex dynamics of infectious
diseases [3, 20, 21, 40, 67] . Consequently ([5]), we hypothesize the following four scenarios where the
environment acts as a (1) Transition, (2) Transition-Reservoir case I, (3) Transition-Reservoir case II and (4)
Reservoir of V. cholerae in the environment-host-environment cholera transmission dynamics we consider
in this study . In other words, the following four possible interpretations (i.e., transmission pathways) of the
role the environment plays on cholera transmission dynamics will be considered for the normalized model
(see also Table 2):

Scenario 1 (the environment acts as Transition): in this scenario, both the shedding of V. cholerae into
the environment and the growth of V. cholerae within the environment are considered as transitions within
the initial infectious state of the host population. Therefore, the the parameters of the model related to the
shedding and growth rates of the bacteria are placed in the V matrix.

Scenario 2 (the environment acts as Transition-Reservoir case I): for this scenario, the growth of bac-
teria in the environment is regarded as vertical transmission of an infectious pathogen (V. cholerae) from
the environment to the environment. Therefore, the parameter related to the growth rate of the bacteria in
the environment (i.e., in the pond) is counted as new infection generated in the environment, and is, conse-
quently, placed in the F matrix.

Scenario 3 (the environment acts as Transition-Reservoir case II): the environment has a double role
under this scenario. In particular, while the shedding of bacteria by the host into the environment is counted
as new V. cholerae infection, the growth of bacteria within the environment is considered as transitions
within the initial infectious state of the host population (thus, the environment acts partially as reservoir
and partially as transition). Consequently, the parameters related to the shedding rates are placed in the F
matrix, while the parameter related to the bacteria growth in the environment (i.e., in the pond) is placed in
the V matrix.

Scenario 4 (the environment acts as Reservoir): in this scenario, the environment is assumed to act as a
reservoir. Hence, new infections are added into the environment both through bacteria growth (in the pond)
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and bacterial shedding by infectious humans. Hence, the parameters related to both bacterial shedding and
growth are placed in the F matrix.

Cholera Transmission Bacteria Shedding Growth of Bacteria
Rates βp and βr Rates θp and θr in the Pond (r = 1)

Scenario 1 X

Scenario 2 X X

Scenario 3 X X

Scenario 4 X X X

Table 2: Contributions of the various cholera transmission pathways (direct environment-host transmission and bacte-
rial shedding) into the next generation matrix of new infection terms (F ).

It is worth mentioning that Scenario 3 (where bacterial shedding rates are considered as new infections,
while bacterial growth is counted as transition term) is not included in the scenarios considered in the
cholera transmission model presented in [5].

It is convenient to define the following positive constants:

a1 = Vrθrλr + θp(λr + µB), a2 = (θp + Vrθr)λp + VrθrµB,

a3 = γ + δ + µ, a4 = λr + µB.
(3.1)

The computation of the reproduction number of the normalized model (2.3), associated with each of the
aforementioned scenarios, is given below.

3.1 Scenario 1 (the environment acts as Transition): pathogen shedding into, and growth
within, the environment considered as transitions within the infected host population

For this setting, terms related to bacterial shedding and growth are included in the matrix V of transition
terms. For this scenario, it can be shown that the associated matrices F and V are given, respectively, by

F1 =


0

βp
kp

βr

0 0 0

0 0 0

 and V1 =


a3 0 0

−θp µB − 1 + λp −λrVr

−θr −λp
Vr

a4

 , (3.2)

so that,
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K1 = F1V
−1

1

=


Vrβpa1 + kpβr(a2 − Vrθr)
a3Vrkp[a4(µB − 1) + µBλp]

kpβrλp + Vrβpa4

Vrkp[a4(µB − 1) + µBλp]

Vrβpλr + kpβr(λp + µB − 1)

kp[a4(µB − 1) + µBλp]
0 0 0
0 0 0

 .

(3.3)
It follows that the spectral radius of NGM (K1)is given by the quantity:

R(1)
0 = ρ(K1) =

Vrβpa1 + kpβr [(θp + Vrθr)λp + Vrθr(µB − 1)]

kpVra3[a4(µB − 1) + µBλp]
, (3.4)

that represents the average number of secondary infections through environment-to-host transmission caused
by one infectious individual in its infectious lifetime, regulated respect to the bacteria growth or decay rates
in the environment. It is worth noting from (3.4) that the condition µB > 1 must be imposed to ensure that
R(1)

0 > 0. Hence, it is assumed, from now on, that µB − 1 ≥ 0. It should be mentioned that Bani et al.
[5] assumed the strict inequality µB > 1 (however, for our normalized model (2.3), it is possible to extend
the strict inequality assumption in [5] to also include the case where µB = 1 (there is no singularity in the
normalized model when µB is set to 1; this is due to the interconnected nature of the pond-river network we
considered in this study)).

In the context of the normalized model (2.3), the assumption µB > 1 means that the natural death rate
of bacteria (µB) equals the growth rate of bacteria in the pond (1; recalling that, for the normalized model
(2.3), the growth rate r is re-scaled to 1). The ecological implication of this assumption is that the bacterial
population in the pond (bp(t)) is unable to maintain itself in the environment in the absence of human
shedding (represented by θp). We note that this also applies to the bacterial population in the river (in fact,
in the case of bacterial population in the river (br(t)), this assumption means that the µB > 0, since, for
the normalized model, the bacterial growth rate in the river is 0). Therefore, considering the entire bacterial
population in the pond and in the river, the above assumption implies that the bacteria is unable to survive
in the absence of infection from the host (i.e., the bacteria cannot maintain itself in the environment). It is
important to underline that, with this assumption, all the entries of the NGM K1 are non-negative and the
well-posedness ofR(1)

0 is ensured.
It should be mentioned that the eigenvalues of the matrix of linearization of the entire ODE system (2.3)

around the disease-free equilibrium E0 (denoted by λi; i = 1, · · · , 5) satisfy the quintic polynomial:

(λ+ µ)(λ+ dr + λp)(λ
3 + b2λ

2 + b1λ+ b0) = 0, (3.5)

where,

b2 = a3 + a4 + λp + µB − 1, b0 = a3[a4(µB − 1) + µBλp]
(

1−R(1)
0

)
,

b1 = (a3 + a4)(µB − 1) + a3(a4 + λp) + µBλp − βrθr −
βpθp
kp

.
(3.6)

It follows from the first two terms of (3.5) that the eigenvalues λ1 = −µ < 0 and λ2 = −(dr + λp) < 0.
Further, it follows from (3.6) that the coefficients b2 and b0 of the cubic in (3.5) are automatically positive
for µB − 1 ≥ 0 and R(1)

0 < 1. It can also be shown, with algebraic manipulations, that the coefficient
b1 > 0 whenever R(1)

0 < 1. It is convenient to assume that λp ≥ 1. It follows then that the associated
Routh-Hurwitz condition b2b1 − b0 > 0 holds if and only if R(1)

0 < 1 (see Appendix A1). Hence, the
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roots of the cubic in (3.5) have negative real part whenever R(1)
0 < 1. Thus, the disease-free equilibrium

(E0) of the normalized model (2.3) is locally-asymptotically stable wheneverR(1)
0 < 1. In other words, the

application of the method of standard linearization (around the disease-free equilibrium of the normalized
model) corresponds to Scenario 1 of this study. It is noteworthy that the matrix F1 (and also K1) is rank 1
(corresponding to the associated single transmission pathway).

3.2 Scenario 2 (the environment acts as Transition-Reservoir case I): growth of bacteria
regarded as vertical transmission of V. cholerae in the environment

Here, the bacterial growth term is considered as a new infection of the environment. That is, the bacteria
growth rate is placed in the F matrix. For this setting,

F2 =


0

βp
kp

βr

0 1 0

0 0 0

 and V2 =


a3 0 0

−θp µB + λp −λrVr

−θr −λp
Vr

a4

 . (3.7)

Thus,

K2 = F2V
−1

2 =


Vrβp(Vrθrλra4θp)+kpβr(θpλp+Vrθr(λp+µB))

kpVrµBa3(a4+λp)
Vrβpa4+kpβrλp
kpVrµB(a4+λp)

Vrβpλr+kpβr(λp+µB)
kpµB(a4+λp)

Vrθrλr+θpa4
a3µB(a4+λp)

a4
µB(a4+λp)

Vrλr
µB(a4+λp)

0 0 0

 .

(3.8)
Therefore,

R(2)
0 = ρ(K2) =

g1 +
√
g2

1 + 4g2

2
, (3.9)

where,

g1 =
Vrβpa1 + kpβra2 + Vrkpa3a4

kpVrµBa3(a4 + λp)
, g2 =

βrθr
µBa3(a4 + λp)

. (3.10)

The expression forR(2)
0 , given by (3.9), suggests a more complicated interaction of the environment-to-host

and host-to-host pathways (in comparison toR(1)
0 for Scenario 1). Further, it is worth noting that the matrix

F2 (and also K2) is rank 2 (corresponding to the two transmission pathways associated with Scenario 2).

3.3 Scenario 3 (the environment acts as Transition-Reservoir case II): shedding of bacteria
considered as new infections but bacterial growth is a transition term

In this scenario, bacterial shedding rates are placed in the F matrix, while the bacterial growth rate is placed
in the V matrix. Here,

F3 =


0

βp
kp

βr

θp 0 0

θr 0 0

 and V3 =


a3 0 0

0 µB − 1 + λp −λrVr

0 −λp
Vr

a4

 , (3.11)
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so that,

K3 = F3V
−1

3 =



0
Vrβpa4 + kpβrλp

kpVr[a4(µB − 1) + λpµB]
Vrβpλr+kpβr(λp+µB−1)
kp[a4(µB−1)+λpµB ]

θp
a3

0 0

θr
a3

0 0


, (3.12)

and,

R(3)
0 = ρ(K3) =

√
Vrβpa1 + kpβr [(θp + Vrθr)λp + Vrθr(µB − 1)]

kpVra3[a4(µB − 1) + µBλp]
. (3.13)

It should be noted that the quantity R(3)
0 > 0 (whenever µB − 1 ≥ 0). Furthermore, it is clear that

R(1)
0 =

(
R(3)

0

)2
. For this scenario, the associated matrix of new infections (F3) is rank 2 (corresponding to

the two associated transmission pathways; the matrix K3 is also rank 2).

3.4 Scenario 4 (the environment acts as Reservoir): the environment is assumed to act as a
reservoir

In this case, both bacterial growth and shedding are considered as new infections of the environment. Hence,
both the shedding and growth rates are placed in the F matrix. For this scenario,

F4 =


0

βp
kp

βr

θp 1 0

θr 0 0

 and V4 =


a3 0 0

0 µB + λp −λrVr

0 −λp
Vr

a4

 , (3.14)

so that,

K4 = F4V
−1

4 =



0
Vrβpa4 + kpβrλp
kpVrµB(a4 + λp)

Vrβpλr + kpβr(λp + µB)

kpµB(a4 + λp)

θp
a3

a4

µB(a4 + λp)

Vrλr
µB(a4 + λp)

θr
a3

0 0


. (3.15)

Hence, it follows thatR(4)
0 = ρ(K4) is the spectral radius of the following associated characteristic polyno-

mial (of K4):

p(λ) = λ3 + d2λ
2 + d1λ+ d0, (3.16)

where,
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d2 = − a4

µB(a4 + λp)
, d1 = −Vrβp(Vrθrλr + θpa4) + kpβr[θpλp + Vrθr(λp + µB)]

kpa3VrµB(a4 + λp)
,

d0 =
βrθr

a3µB(a4 + λp)
.

(3.17)

The discriminant of the cubic (3.16) is given by [65]:

∆p = d2
2d

2
1 + 18d1d2d0 − 4d3

1 − 4d0d
3
2 − 27d2

0,

and it can be shown, after some algebraic manipulations, that ∆p > 0 (see Appendix A). Thus, all three
roots of the cubic (3.16) are real. Moreover, since the coefficients d2 < 0, d1 < 0 and d0 > 0, it follows, by
the Descartes’s Rule of Signs ( [38]), that p(λ) has two positive and one negative real roots. Therefore, its
largest root (i.e.,R(4)

0 ) is real and positive, and is given by (obtained from solving the cubic (3.16) [65]):

R(4)
0 =

3

√
−q1

2
+

√
q2

1

4
+
q3

2

27
+

3

√
−q1

2
−
√
q2

1

4
+
q3

2

27
, (3.18)

where,
q1 = − m1 +m2

27kpVrµ3
Ba3(a4 + λp)3

,

q2 = −3VrβpµB(a4 + λp)a1 + kp(Vra3a
2
4 + 3βrµB(a4 + λp)a2)

3kpVrµ2
Ba3(a4 + λp)2

,

(3.19)

with,

m1 = 9VrβpµBa4(a4 + λp)a1,

m2 = kp(2Vra3a
3
4 + 9βrµB(a4 + λp)(θpλpa4 + Vrθr(λr(λp − 2µB)− 2µB(λp + µB)))).

The matrix F4 (and also K4) is rank 3 (corresponding to the associated three transmission pathways).
In summary, the analyses in this section reveal that, by considering multiple transmission pathways,

multiple reproduction numbers were obtained for the normalized model (2.3). The fact that these reproduc-
tion numbers are not unique may lead to the possible underestimation or overestimation of the control efforts
needed to effectively control or eliminate the disease. To address this problem (of lack of uniqueness of the
reproduction threshold associated with disease transmission dynamics), Roberts and Heesterbeek [52] and
Heesterbeek and Roberts [30] introduced the notion of type reproduction number, denoted by T . This al-
lows for the determination of a single threshold quantity that is valid for each of the four scenarios described
above (and listed in Table 2).

The four basic reproduction numbers (R(i)
0 ; i = 1, · · · , 4) computed above are compared as follows. In

particular, a plot of each of the reproduction as a function of bacterial shedding rate in the river (θr) and
as a function of cholera transmission rate in the river (βr) are depicted in Figure 4 (left and right panels,
respectively). This figure shows that, with the assumption µB − 1 ≥ 0, all four basic reproduction numbers
agree on the threshold value 1(i.e., unity). That is,

R(1)
0 = 1⇔ R(2)

0 = 1⇔ R(3)
0 = 1⇔ R(4)

0 = 1. (3.20)

Further, for a fixed set of parameter values, numerical simulations (Figure 4) suggest that the four repro-
duction numbers are all greater, equal or less than unity. It was further observed that when any of the basic
reproduction numbers exceeds unity, the following ordering always holds:
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R(1)
0 > R(2)

0 > R(3)
0 > R(4)

0 > 1.

The order is reversed if any of the basic reproduction numbers is less than unity (that is, R(1)
0 < R(2)

0 <

R(3)
0 < R(4)

0 < 1). It should be mentioned that a partial (inequality) ordering of the reproduction numbers
(R(i)

0 , i = 1, ..., 4) can be obtained analytically by applying Theorem 7 in [39] (see Appendix B for details).
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Figure 4: The plots represent the behaviours of the different expression of R0 derived: R(1)
0 is the blue line, R(2)

0

magenta line,R(3)
0 the red line andR(4)

0 the green line. The parameter values used are listed in Table 1 with θp = 103.
R0 is a function of the parameter θr in graph (a) and of βr in graph (b).
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4 Type Reproduction Number

First of all, it should be noted that the entry kij of the NGMK is defined as the expected number of new cases
that a infected individual of type j causes among the susceptible individuals of type i, in a fully susceptible
population. To prevent or mitigate an outbreak of a disease, preventive intervention measures (such as
vaccination, quarantine, isolation, public health education etc.) are generally implemented, depending on
the type of the disease and availability of control resources. If these interventions are implemented to all
the sub-populations involved in the disease transmission cycle, regardless of their infection status, then the
quantityR0 also provides a measure of the minimum coverage level of the adopted control measures needed
to eliminate the disease [2, 22]. Otherwise, if a control strategy is aimed only at particular population
type, such as the use of chemical insecticides to control bacterial population in the aquatic environment
or vaccinating the human hosts, the so-called type reproduction number (denoted by Ts, where s is the
population type) takes on the role ofR0 (hence, it also has a direct relationship with the minimum coverage
level of the control strategy or strategies implemented) [30, 52]. In other words, the threshold quantity R0

(or, in this case, equivalently, Ts) provides a measure of the effort (or coverage level) required to achieve
population-wide elimination of the disease when the adopted control interventions are aimed at a particular
type of population.

In the context of the normalized model (2.3), let humans represent population of type 1. Further, let the
bacterial population in the pond and in the river represent bacterial populations of type 2 and 3, respectively.
Let k be the number of disease transmission scenarios considered (i.e., k = 1, · · · , 4, as discussed in Section
3) . It then follows that, in most cases, a strategy that reduces the susceptibility to infection of humans (type
1), for example, influences all the entries of the NGM that represents potentially infectious contacts between
the bacterium and a susceptible of type 1 (i.e., a susceptible human). Mathematically-speaking, this strategy
affects the entries of the first row of the NGM (K). Similarly, a strategy aimed at reducing the infectiousness
of infected humans (type 1) affects the entries of the first column of the NGM K [5, 30, 39]. It is worth
recalling the following definition.

Definition 4.1 [30, 52] The type reproduction number (Ts) associated with the population type s is defined
by

T (j)
s = eTsKj [I − (I − Ps)Kj ]

−1es, j = 1, · · · , k (4.1)

where Kj is a given NGM of order n related to Scenario j, I is the n × n identity matrix, es is an n-
dimensional column vector with all entries zero except that the s entry is equal to 1, and Ps is a projection
matrix with the (s, s) entry equal to 1 and all other entries equal to zero.

Using the notation in [5], let Ki = FiV
−1
i (i = 1, ..., k) be the NGMs obtained from different epidemiolog-

ical scenarios. Further, assume (without loss of generality) that [5]

Vj = Vi + Um and Fj = Fi + Um, {i, j} ∈ {1, ..., k}, with i 6= j, (4.2)

where Um is a matrix with m non-zero rows (say, rows l1, ..., lm, which correspond to the m disease com-
partments above) and n − m zero rows. Furthermore, Vi and Fi are transition and transmission matrices
corresponding to Scenario i, respectively, while Vj and Fj are the transition and transmission matrices cor-
responding to Scenario j, respectively (with i 6= j). It is convenient to recall the following result (proved in
[5]):

Theorem 4.1 [5] Let T is and T js be the type reproduction numbers associated with population type s defined
by (4.1) and, respectively, derived from the NGMs Ki and Kj , with {i, j} ∈ {1, ..., k}, with i 6= j. If
s 6= lw, with w = 1, ...,m and both T is and T js are well defined, then T is = T js .
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Theorem 4.1 will be used to determine whether or not the type reproduction number computed for each of
the three populations types will be unique for all four scenarios discussed in Section 3 (by showing whether
or not the hypotheses of the above theorem are satisfied for each case).

The normalized model (2.3) has n = 3 disease compartments (i.e., i(t), bp(t) and br(t)) and, the value
of the parameter m (for the interactions within and between the disease compartments bp(t) and br(t))
depends on the scenarios being compared. For example, if we consider Scenarios 1 and 2, only the role of
the compartment bp(t) is interpreted differently (since, in Scenario 1, the bacteria growth parameter (r = 1)
is placed in the V1 matrix, while in Scenario 2 it is placed in the F2 matrix). Hence, in this case, m = 1. If
we, instead, compare Scenario 1 with Scenario 3 or Scenario 4, then m = 2 (since, in this case, both bp(t)
and br(t) are epidemiologically interpreted differently; for example, in Scenario 1 the parameters for the
shedding rate of bacteria, represented by θp and θr, are placed in the V1 matrix, while in Scenario 3 they are
placed in the F3 matrix).

4.1 Targeting population of type 1 (humans)

In Section 3, we showed four different scenarios, leading to different NGM (Ki, with i = 1, 2, 3, 4). For
the normalized model (2.3), the total number of V. cholerae transmission scenario considered is four (i.e.,
k = 4). Here, consider population of type s = 1 (that is, we consider the compartment i(t)). Therefore, in
order to apply Definition (4.1) for the computation of the associated type reproduction numbers (T (j)

1 ; j =
1, · · · , 4), the associated vector e1 and projection matrix P1 are introduced as follows:

e1 =

1
0
0

 , P1 =

1 0 0
0 0 0
0 0 0

 . (4.3)

Considering Scenario 1 (i.e., j = 1) and substituting j = 1 (and using K1, e1 and P1) into (4.1), one gives
the the following associated type reproduction number related to (targeting) the infected human population
i(t) (i.e., s = 1):

T (1)
1 = eT1 K1[I − (I − P1)K1]−1e1,

(4.4)

=
Vrβpa1 + kpβr [(θp + Vrθr)λp + Vrθr(µB − 1)]

kpVra3[a4(µB − 1) + µBλp]
,

where K1 is the NGM of Scenario 1 given in (3.3). Now it is proved that the same expression for T (1)
1 is

obtained in the other three transmission scenarios. First of all, it can be shown that Assumption (4.2) holds
for the normalized model (2.3). Indeed, if i = 1 and j = 2 (i.e., if we compare Scenario 1 and Scenario 2),
then it follows from (4.2) that ( note that m = 1 in this case):

V2 = V1 + U1, and F2 = F1 + U1,

where,

U1 =

0 0 0
0 1 0
0 0 0

 .

In this case, we have l1 = 2 (the second row of Um (or, equivalently, U1) corresponds to the compartment
bp, that is interpreted differently).
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Moreover, if i = 1 and j = 3 (i.e., if Scenario 1 and Scenario 3 are compared), Equation (4.2) gives
(note that m = 2 in this case):

V3 = V1 + U2, and F3 = F1 + U2,

where,

U2 =

 0 0 0
θp 0 0
θr 0 0

 .

In this case, we have l1 = 2 and l2 = 3 (the second and third rows of Um (i.e., U2 in this case) correspond to
the compartments bp and br, that are interpreted differently). Finally, if i = 1 and j = 4 (i.e., we comparing
Scenario 1 and Scenario 4), it then follows from (4.2) that ( noting that m = 2 in this case):

V4 = V1 + U2, and F4 = F1 + U2,

where,

U2 =

 0 0 0
θp 1 0
θr 0 0

 .

In this case, l1 = 2 and l2 = 3 (the second and third rows of Um correspond to the compartments bp and
br, that are interpreted differently). It should be mentioned that these can, of course, also be achieved by
comparing all other scenario permutations (i.e., comparing Scenario 2 with Scenario 3, or Scenario 2 with
Scenario 4 or Scenario 3 with Scenario 4).

Second, let T i1 (i = 1, 2, 3, 4) be the type reproduction numbers associated with population type s = 1
defined by (4.1) and, respectively, derived from the NGMs Ki (i = 1, 2, 3, 4). It has just been pointed out
that there can be at most two compartments that are interpreted differently in the scenarios considered, which
are bp(t) (which corresponds to s = 2) and br(t) (which corresponds to s = 3). So the compartment that
is targeted here, i(t) (which corresponds to s = 1), is interpreted the same way in all scenarios. It is easy
to see that the hypotheses of the Theorem 4.1 are verified. Since in this case with humans as the population
type considered (i.e., s = 1), and for all the aforementioned scenarios we compared s = 1 always differs
from l1 and l2 (with l1 = 2 and l2 = 3), it follows from Theorem 4.1 that the associated type reproduction
number (T1) is unique. Indeed, s = 1 is different from lw (w = 1, 2), when Scenario 1 is compared with the
other three scenarios. Hence, regardless of how the associated human-bacteria interactions are interpreted,
the type reproduction number related to the infected human host population (i(t)) is unique. That is, the
following result holds (by Theorem 4.1 [5]):

T1 = T (j)
1 = R(1)

0 =
(
R(3)

0

)2
, for j = 1, · · · , 4. (4.5)

Noting that µB−1 ≥ 0, it follows from the expression ofR(1)
0 given in Section 3 that T j1 is well defined for

j = 1, · · · , 4 (corresponding, respectively, to Scenarios 1, 2, 3 and 4 in Section 3). The result below follows
from Theorem 2 of [66].

Theorem 4.2 The disease-free equilibrium point, E0 of the normalized model (2.3), is locally-asymptotically
stable if T1 < 1 (or, equivalently, R(1)

0 < 1), and unstable if T1 > 1 (or, equivalently, R(1)
0 > 1), where T1

is the associated type reproduction number defined in (4.5).

The epidemiological implication of Theorem 4.2 is that a small influx of infected individuals (i.e., in the
basin of attraction of the disease-free equilibrium E0) will not cause a major outbreak in the community. In
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other words, cholera can be eliminated from the community if the initial number of individuals is not large
enough. To ensure that disease elimination is not dependent on the initial number of infected individuals,
a global asymptotic stability result must be established for the disease-free equilibrium E0. This is done
below for a special case where the volume of water in the pond is maximum (i.e., vp(t) = 1). Targeting
the human population could correspond to the implementation of a strategy, such as a routine vaccination
program or treatment of confirmed cases, that reduces βp and βr.

Theorem 4.3 Consider the special case of the normalized model (2.3) with vp(t) = 1 for all t. The disease-
free equilibrium, E0, of the model is globally-asymptotically stable in D if T1 < 1 (or, equivalently, if

R(1)
0 =

(
R(3)

0

)2
< 1), and unstable if T1 > 1 (or, equivalently, ifR(1)

0 =
(
R(3)

0

)2
> 1).

The proof of Theorem 4.3, based on using a Lyapunov function theory and LaSalle’s Invariance Principle
[37], is given in Appendix C. It is worth mentioning that the results of Theorems 4.2 and 4.3 also hold (but
only with respect to the reproduction number, R(j)

0 ; j = 1, · · · , 4) when the other population types (i.e.,
s = 2 or s = 3) are targeted (Bani et al. [5] also showed that the disease-free equilibrium of their cholera
model is globally-asymptotically stable whenever any of the constituent reproduction number of the model
is less than unity).

The epidemiological implication of Theorem 4.3 is that bringing (and maintaining) the Type reproduc-
tion number (T1 or, equivalently, R(1)

0 or R(3)
0 ) to a value less than unity is necessary and sufficient for the

elimination of cholera from the population. Further, following Bani et al. [5], this result can be expressed
in terms of the herd immunity threshold. In particular, a control strategy that targets the population type 1
(i.e., bacteria in the human host) can lead to the effective control or elimination of the disease if the control
is administered to at least the proportion

p
(j)
1 = 1− 1

R(1)
0

= 1− 1

T1
( with j = 1, 2, 3, 4),

of the human host population. Using a simple model for the 2006 cholera epidemic in Angola (which
accounts for direct and indirect cholera transmission with a single V. cholerae compartment), Eisenberg et
al. [24] estimateR0 in the rangeR0 ∈ [1.32, 5.9]. Thus, based on this data (and estimates), our study shows
that, for the best-case scenario (withR0 = 1.32), the control need to be implemented to at least 24.2% of the
human host population. For the worst-case scenario (withR0 = 5.9), the control need to be administered to
at least 83% of the human host population. It should be emphasized that, for the purpose of disease control,
the herd immunity threshold can also be computed in terms of the basic reproduction number, and without
targeting any specific disease or environmental compartments, using the relation [34] (where the subscript
representing the population type considered is now omitted):

p(i) = 1− 1

R(i)
0

, i = 1, · · · , 4.

The drawback associated with using R(i)
0 to compute the herd immunity threshold is the fact that there will

now be a different threshold for each individual scenario (due to this reason, we exclusively use the type
reproduction number to compute the herd immunity threshold for each targeted population type).

It is worth emphasizing that the above theoretical results hold only when µB ≥ 1. Otherwise ( i.e., if
µB < 1), the environment becomes a reservoir of the pathogen and control measures acting on the host
human population will not be sufficient to eradicate the infection. Moreover, if µB < 1, then additional
conditions need to be imposed on the model parameters to ensure the positivity of the associated threshold
quantities, R(i)

0 (with i = 1, 2, 3, 4). Similar conditions need to be imposed on T1 as well. The results of
Theorems 4.2 and 4.3 are numerically illustrated by simulating the normalized model (2.3) using parameter
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values such that R(i)
0 < 1 (i = 1, · · · , 4) (equivalently, T1 < 1). The results obtained, depicted in Figure 5,

show convergence of initial conditions to the DFE E0 in all the four transmission scenarios considered.

Figure 5: Numerical simulations of the normalized model (2.3) showing convergence to 0 of multiple initial conditions.
Parameter values used are as given in Table 1 with β∗

p = β∗
r = 2 and θ∗p = θ∗r = 103 (so that, R(1)

0 = T1 = 0.37,

R(2)
0 = 0.57,R(3)

0 = 0.61 andR(4)
0 = 0.68).

4.2 Targeting population of type 2 (bacteria in the pond)

Suppose, now, that an anti-cholera control measure (e.g., the use of chemical insecticides) is implemented
only on population of type 2 (i.e., bacteria in the pond). In this case, it follows from Definition (4.1) that the
vector e2 and projection matrix P2 are given, respectively, by:

e2 =

0
1
0

 and P2 =

0 0 0
0 1 0
0 0 0

 . (4.6)

Substituting j = 1 (and using the NGM K1, e2 and P2) into (4.1) gives the following type reproduction
number for Scenario 1 (for s = 2):

T (1)
2 = eT2 K1[I − (I − P2)K1]−1e2 = 0. (4.7)

Indeed, in Scenario 1, the growth rate of bacteria in the pond (r = 1) and the shedding rates (θp and θr) are
placed in the matrix V , as transitions within the populations. In fact, in Scenario 1, only the human host (and
not any of the other two population types) contribute to the matrix F of new infection terms. Thus, targeting
the type 2 population (i.e., the pond) has no effect in hindering the generation of new infected individuals
(i.e., targeting bp(t) does not contribute to the matrix F of new infections).

For Scenario 2, setting j = 2 (and using the NGM K2, e2 and P2) into (4.1) gives the following type
reproduction number for Scenario 2 (for s = 2):
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T (2)
2 = eT2 K2[I − (I − P2)K2]−1e2,

(4.8)

=
kpVr(βrθr − a3a4)

Vrβpa1 + kpβra2 − VrµBkpa3(a4 + λp)
,

provided T (2)
2 > 0. Similarly, setting j = 3 (and using the NGM K3, e2 and P2) into (4.1) gives the

following type reproduction number for Scenario 3 (for s = 2):

T (3)
2 = eT2 K3[I − (I − P2)K3]−1e2,

(4.9)

=
θp[Vrβpa4 + kpβrλp]

−Vr[βpVrλrθr + kpβrθr(λp + µB − 1)− kpa3(a4(µB − 1) + λpµB)]
,

provided T (3)
2 > 0. Finally, setting j = 4 (and using the NGMK4, e2 and P2)) into (4.1) gives the following

type reproduction number for Scenario 4 (for s = 2):

T (4)
2 = eT2 K4[I − (I − P2)K4]−1e2,

(4.10)

=
−Vrβpθpa4 − kpβrλpθp + kpVr(βrθr − a3a4)

Vr[βpVrλrθr + kpβrθr(λp + µB)− kpµBa3(a4 + λp)]
,

provided T (4)
2 > 0. Since the interactions between the compartment bp(t) and the other compartments

of the normalized model are interpreted in different ways in each of the four scenarios, none of the type
reproduction numbers (T (j)

2 ; j = 1, 2, 3, 4)) correspond to any of the reproduction numbers R(j)
0 (j =

1, 2, 3, 4). Hence, Theorems 4.2 and 4.3 do not automatically hold for Type Reproduction Number T (j)
2

(j = 1, 2, 3, 4) corresponding to type 2 population. So in this case, the problem of underestimation or
overestimation of the efforts necessary to eliminate the epidemic is not overcome, since in each Scenario,
one must act on a different number of cholera particles bp(t). It is worth noting that, for this population
type, the associated type reproduction numbers are not unique. That is, each scenario considered has a type
reproduction number that differs from that of the other three scenarios. It should further be stated that, for
this population type (i.e., s = 2), the minimum threshold coverage needed for V. cholerae elimination in

the pond is given by p(i)
2 = 1− 1

T (j)
2

(j = 1, · · · , 4) [5, 34]. Targeting the bacterial population in the pond

could correspond to the implementation of a strategy, such as chemical control or water purification, that
decreases the bacterial growth in the pond (i.e., reduces r) and increases the bacterial natural mortality rate
in the pond (µB).

4.3 Targeting population of type 3 (bacteria in the river)

Suppose, now, that a control measure is applied only to population of type 3 (i.e., bacteria in the river). For
this case, it follows from Definition (4.1) that the associated vector (e3) and projection matrix (P3) are given,
respectively, by:

e3 =

0
0
1

 and P3 =

0 0 0
0 0 0
0 0 1

 . (4.11)
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Setting j = 1, and using e3, P3 and the NGM K1 in Equation (4.1) gives:

T (1)
3 = eT3 K1[I − (I − P3)K1]−1e3 = 0. (4.12)

It has already been observed in Section 4.1 that comparing Scenario 1 to the Scenario 2, the assumption (4.2)
is satisfied. Moreover, it is easy to see that the hypotheses of the Theorem 4.1 are verified considering the
population of type 3 and Scenarios 1 and 2. Since in this case with bacteria in river as the type considered
(i.e., s = 3), and for all the aforementioned scenarios we compared s = 3 always differs from l1 (with
l1 = 2), it follows from Theorem 4.1 that the associated type reproduction number is unique. That is,

T (1)
3 = T (2)

3 = 0. (4.13)

Indeed, in Scenarios 1 and 2, no new infected bacterial particles are generated in the br population. Setting
j = 3 in Definition (4.1) (together with e3, P3 and the NGM K3) gives:

T (3)
3 = eT3 K3[I − (I − P3)K3]−1e3,

(4.14)

=
Vrθr[βpVrλr + kpβr(λp + µB − 1)]

−Vrβpθpa4 − kpβrθpλp + kpVra3[a4(µB − 1) + µBλp]
,

provided T (3)
3 > 0.

Comparing Scenarios 3 and 4, it is evident, first of all, that Assumption (4.2) holds. In particular (note
that m = 1 in this case):

V4 = V3 + U1, and F4 = F3 + U1,

where,

U1 =

0 0 0
0 1 0
0 0 0

 .

In this case, we have l1 = 2 (the second row of Um (or, equivalently, U1) corresponds to the compartment
bp, that is interpreted differently). Moreover, it is easy to see that the hypotheses of the Theorem 4.1 are
verified considering the population type 3 and Scenarios 3 and 4. Since in this case with bacteria in river as
the type considered (i.e., s = 3), and for all the aforementioned scenarios we compared s = 3 always differs
from l1 (with l1 = 2), it follows from Theorem 4.1 that the associated type reproduction number is unique.
That is,

T (3)
3 = T (4)

3 . (4.15)

Further, none of T (j)
3 (with j = 1, 2, 3, 4) coincide with R(j)

0 , (with j = 1, 2, 3, 4). In other words, the type
reproduction numbers T (j)

3 (j = 1, 2, 3, 4) cannot be used to establish the local or global asymptotic stability
of the disease-free equilibrium, E0. Furthermore, in this case, if the bacterial population in the river (br(t))
is reduced by a fraction that exceeds p(j)

3 = 1− 1

T (j)
3

, with j = 1, · · · , 4, [5] (this can be achieved by imple-

menting strategies that minimize bacterial shedding into the river, for instance, by vaccinating susceptible
humans and/or treating cholera-infected humans), the cholera epidemic will die out. Targeting the bacterial
population in the river could correspond to the implementation of a control strategy that decreases bacterial
abundance in the river (e.g., a chemical control strategy that increases the bacterial natural mortality rate
µB).
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5 Assessment of Control Strategies

In this section, the normalized model (2.3) will be simulated to assess the population-level impact of various
anti-cholera control measures. Unless otherwise stated, the numerical simulations will be carried out using
the baseline parameter values given in Table 1. Further, the simulations are for the case where the human
population is targeted for control (i.e., we are simulating the normalized model for s = 1). The values of
the various reproduction numbers of the model (R(1)

0 ; i = 1, · · · , 4) and herd immunity threshold (p(i)
s , with

i = 1, · · · , 4 and s = 1, 2, 3) are first computed. The results obtained, tabulated in Table 3, show that, for
each of the four scenarios, the reproduction number exceeds unity (lying in the range R(i)

0 ∈ [2.7, 9.2]).
Hence, in this case (with no anti-cholera intervention implemented in the community), the disease will
remain endemic.

Furthermore, this table shows that the amount of effort needed to reduce T1 to a value less than unity
increases with increasing values of R(i)

0 . It is also seen that T (i)
1 = T1, i = 1, · · · , 4 (in line with Equation

(4.5)). Moreover, T (1)
s = 0 for s = 2, 3, and T (2)

3 = 0. This can be explained as follows: In Scenario 1, the
bacterial populations in the aquatic environment (bp and br, corresponding to s = 2 and s = 3, respectively)
do not contribute to the generation of new cholera infections (i.e., they do not contribute to the F matrix).
Further, in Scenario 2, the population type 3 (i.e., bacteria in the river) does not contribute to the F matrix.
Consequently, p(1)

s = −∞ and p(2)
3 = −∞. The consequence of this result is that applying an anti-cholera

control measure on the population of types s = 2 and s = 3 in Scenario 1, or on population of type s = 3 in
Scenario 2, will not lead to the elimination of the disease (this result is consistent with that reported in [5]).

Note also that, if the population of type s = 2, 3 is targeted, then none of the associated type reproduction
numbers (T (i)

s , s = 2, 3, i = 1, · · · , 4) behaves like R(i)
0 , i = 1, · · · , 4. In particular, while T (i)

s < 1 for
s = 2 and s = 3, the reproduction numbers R(i)

0 > 1 (i = 1, · · · , 4). Hence, when targeting populations
of type 2 or 3, the use of type reproduction number (in all four scenarios) does not provide any useful
information on the state (endemic or not) of the disease. Further, it does not represent a good estimate of the
herd immunity effort needed to eliminate the disease.

Finally, note that, since R(1)
0 > R(2)

0 > R(3)
0 > R(4)

0 , it follows that, using R(1)
0 = T1 as a threshold

parameter to eliminate the infection, a greater effort is needed in Scenario 1, in comparison to the effort
needed in Scenarios 2, 3 and 4. It is worth mentioning that the above simulations results are sensitive to
the values of the bacterial shedding rates into the water environment (θp and θr). It should be recalled from
Table 3 that these parameters are fixed at a baseline value of θ∗p = θ∗r = 104 per day. This baseline value is
justified as follows. As noted by Feachem et al. [25], it is known that in asymptomatic cases of infection with
V. cholerae, an individual excrete from 102 to 105 bacteria per gram of feces, while in symptomatic cases
this value can rise to as high as 106−109 per milliliter of rice-water stool. Further, data from [15] show that
a patient with severe cholera infection can produce between 500 to 1000 mL of stool per day (corresponding
to 1012 V. cholerae particles a day, of which a very high fraction (given the reported challenging hygienic
conditions prevalent in the area) reaches the water reserve daily).

5.1 Assessment of Single Control Interventions

In this section, the population-level impact of the singular implementation of two anti-cholera interventions,
namely a basic control measure and treatment of humans infected with cholera, will be assessed. This is
described below.
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Basic Reproductive Target infective Target bacteria Target bacteria
NumberR0 host i(t) (s = 1) in the pond bp(t) (s = 2) in the river br(t) (s = 3)

Scenario 1 R(1)
0 = 9.17 (T (1)

1 = 9.17) (T (1)
2 = 0) (T (1)

3 = 0)

p(1) = 0.89 p
(1)
1 = 0.89 p

(1)
2 = −∞ p

(1)
3 = −∞

Scenario 2 R(2)
0 = 6.83 (T (2)

1 = 9.17) (T (2)
2 = 0.06) (T (2)

3 = 0)

p(2) = 0.853551 p
(2)
1 = 0.89 p

(2)
2 < 0 p

(2)
3 = −∞

Scenario 3 R(3)
0 = 3.03 (T (3)

1 = 9.17) (T (3)
2 = 0.86) (T (3)

3 < 0)

p(3) = 0.67 p
(3)
1 = 0.89 p

(3)
2 < 0 p

(3)
3 > 1

Scenario 4 R(4)
0 = 2.7 (T (4)

1 = 9.17) (T (4)
2 < 0) (T (4)

3 < 0)

p(4) = 0.63 p
(4)
1 = 0.89 p

(4)
2 > 1 p

(4)
3 > 1

Table 3: Basic reproduction numbers (R(i)
0 ; i = 1, · · · , 4), type reproduction numbers (T (i)

s ; i = 1, · · · , 4; s = 1, 2, 3)
and herd immunity thresholds (p(i)s ; i = 1, · · · , 4; s = 1, 2, 3) for the normalized model (2.3). Parameter values used
are as given by the baseline values in Table 1.

5.1.1 Basic anti-Cholera control measures (WASH-only strategy)

Basic anti-cholera control entail the use of measures aimed at preventing or mitigating cholera outbreak
in the community. These measures typically include the implementation of the water, sanitation and hy-
giene (WASH) strategy [26]. The essential elements of the WASH strategy include the chlorination of water
sources, household water treatment and the promotion of personal hygienic precautions, use of chemical
insecticides, etc. Hence, in the context of the normalized model, the implementation of basic control mea-
sures will be associated with strategies that decrease the transmission rates (βp and βr) and increase the
V. cholerae decay (natural death) rate (µB). This is obtained by making the following replacements in the
model:

βp → βp (1− εBcB) ,

βr → βr (1− εBcB) ,

µB → µB (1 + εBcB) ,

(5.1)

where 0 ≤ εB ≤ 1 and 0 ≤ cB ≤ 1 represent, respectively, the efficacy and coverage of the WASH-
only control strategy. Although a clear consensus on the realistic estimate of the efficacy and/or coverage
of the basic control measures in cholera-endemic areas seems to be lacking, a number of studies have
provided some clues as to what these estimates should be. For instance, in a modeling study on assessing
the impact of WASH and oral cholera vaccine on the 2008 cholera epidemic in Haiti, Fung et al. [26]
reported that (in 2008) only 63% of the Haitian population had access to improved water and only 17% had
access to improved sanitation. Furthermore, after the 2010 earthquake in Haiti, the Haitian Directorate for
Potable Water and Sanitation reported that 26% of the rural population received improved water, while only
10% had improved sanitation (in particular, the coverage for improved water and sanitation in the urban
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Port-au-Prince metropolitan area was 35% and 20%, respectively). Fung et al. [26] introduced non-linear
relationships between coverage and effectiveness of the aforementioned interventions. Based on all these, it
seems reasonable to assume that the WASH coverage lies in the range 30% and 50%, while its efficacy can
be anywhere between 10% and 60%.

Replacing βp, βr and µB in the normalized model (2.3) with the expressions in (5.1), it follows that the
associated basic type reproduction number (defined in (4.5)) now becomes (with i = 1, · · · , 4):

T1B = T (i)
1B = R0B

(1)

=
Vrβp(1− εBcB)a1B + kpβr(1− εBcB) [(θp + Vrθr)λp + Vrθr(µB(1 + εBcB)− 1)]

kpVra3[(λr + µB(1 + εBcB))(µB(1 + εBcB)− 1) + µB(1 + εBcB)λp]
,

where,
a1B = Vrθrλr + θp(λr + µB(1 + εBcB)).

Thus, the associated threshold herd immunity threshold becomes: p(i)
1B = 1− 1

T1B
(i = 1, · · · , 4), with T1B

defined in (5.2).
For simulation purposes, the following effectiveness levels of the basic control measures (based on

reducing βp and βr and increasing µB , in comparison to the baseline values of the respective non-normalazed
parameters tabulated in Table 1) are considered:

1. Low effectiveness level of WASH-only strategy: involves reducing the baseline values of bp and br
by 10% (i.e., βp = βr = 15, β∗p = β∗r = 4.5), and increasing the baseline value of µB by 10% (i.e.,
µB = 2, 93, µ∗B = 0.88).

2. Moderate effectiveness level of WASH-only strategy: involves reducing the baseline values of bp
and br by 25% (i.e., βp = βr = 12.5, β∗p = β∗r = 3.75) and increasing the baseline value of µB by
25% (i.e., µB = 3.33, µ∗B = 1).

3. High effectiveness level of WASH-only strategy: involves reducing the baseline values of bp and br
by 50% (i.e., βp = βr = 8.33, β∗p = β∗r = 2.5) and increasing the baseline value of µB by 50% (i.e.,
µB = 4, µ∗B = 1.2).

Figure 6 depicts the contour plots of R0B
(1) = T1B (defined in (5.2)), as a function of efficacy (εB) and

coverage (cB) of the basic anti-cholera control measures for the low, moderate and high effectiveness levels.
It follows from this figure ((a)) that even with the highest possible estimated efficacy and coverage of the
basic control measure (i.e., εB = 0.6 and cB = 0.5), none of the effectiveness levels of this basic control
strategy can lead to the elimination of the disease (albeit each will greatly decrease the disease burden).
The reason is that, with efficacy at 60% and coverage at 50%, none of the effectiveness levels can bring the
associated reproduction number to a value less than unity regardless of the level of coverage. If, however,
the efficacy of the basic control measure can be dramatically increased to 90%, then both the moderate and
high effectiveness levels of this strategy can lead to such elimination if the coverage level is high enough
(at least 80%) (Figures (b) and (c)). If the efficacy and coverage can further be increased to 100% each (the
study in Fung et al. [26] showed that 100% coverage is possible, over a 20-year period, in urban areas of
Haiti), then low effectiveness level can also achieve such elimination (Figure (a)).
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Figure 6: Simulations of the model (2.3) with low (a), moderate (b) and high (c) effectiveness level of the WASH-only
strategy. Contour plot of R0B

(1) as a function of efficacy εB and coverage cB . Parameter values used are as given in
Table 1, with a reduction (increase ) of the value of parameters β∗

p and β∗
r (µ∗

B) by: (a) 10%, (b) 25% (b) and (c) 50%,
in comparison to their baseline values given in Table 1.

5.1.2 Treatment-only strategy

In this section, a treatment-only strategy, targeting infected humans, is considered. Cholera can be suc-
cessfully treated, in most cases, using oral rehydration therapy [68, 48]. Although recovery from cholera
infection is feasible without taking antibiotics (if sufficient hydration is maintained) [68, 48], the WHO
recommends the use of antibiotic treatments (for one to three days), aimed at reducing the severity of the
disease symptoms [68, 48]. In particular, in patients with severe dehydration [68, 48], Doxycycline is typ-
ically used as a first line drug ( although some strains of V. cholerae have shown resistance to it [53]).
Other antibiotics that have been proven to be effective againts V. cholerae infection include cotrimoxazole,
erythromycin, tetracycline, chloramphenicol, and furazolidone [68, 48]. Furthermore, Fluoroquinolones,
such as ciprofloxacin, may be used (but the ability of V. cholerae to resist the effects of this substance has
also been reported in [36]). The use of antibiotics also reduces the need for fluid replacement therapy. It
is known that zinc supplementation reduces the duration and severity of diarrhea in Bangladeshi children
with cholera when given in combination with antibiotics and rehydration therapy as needed (in particular,
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it reduced the duration of the disease (i.e., duration of cholera-related diarrheal illness) by eight hours, in
addition to reducing the amount of diarrhea stool by 10% [68, 48]).

The use of treatment against V. cholerae infection in the community affects the parameters related to the
shedding of bacteria by humans and the recovery of those who contracted the disease. In particular, the use
of treatment decreases the shedding rate parameters (θp and θr), while increasing the recovery parameter
(γ). Consequently, the treatment-only strategy is incorporated into the normalized model by replacing the
three associated parameters as follows:

θp → θp(1− εT cT ),

θr → θr(1− εT cT ),

γ → γ(1 + εT cT ),

(5.2)

where εT and cT are, respectively, the efficacy and coverage of the treatment-only strategy. Using data
for cholera epidemics in Bangladesh from 1985-1991, Siddique et al. [60] estimated that only 20% of
cholera-infected people were treated in government health facilities (with 80% of the infected population
treated at home). Furthermore, only about 23% of the cholera-infected people were actually treated by
qualified physicians (with 68% of the infected individuals treated by unqualified rural practitioners and 9%
had no access to any health care providers). Sack et al. [54] reported that rehydration treatment (which is
inexpensive and simple to implement) is approximately 100% successful (or effective).

Replacing θp, θr and γ in the normalized model (2.3) with the expressions in (5.2), it follows that the
associated basic type reproduction number (defined in (4.5)) now becomes (with i = 1, · · · , 4):

T1T = T (i)
1T = R0T

(1)

=
Vrβpa1T + kpβr [(θp(1− εT cT ) + Vrθr(1− εT cT ))λp + Vrθr(1− εT cT )(µB − 1)]

kpVra3T [a4(µB − 1) + µBλp]
,

where,
a1T = Vrλrθr(1− εT cT ) + θp(1− εT cT )(λr + µB),

a3T = γ(1 + εT cT ) + δ + µ.

Thus, the associated herd immunity threshold becomes: p(i)
1T = 1− 1

T1T
(i = 1, · · · , 4), with T1T defined in

(5.3).
As before, we consider the following effectiveness levels of the treatment-only strategy (based on re-

ducing θp and θr and increasing γ, in comparison to the baseline values of the respective non-normalized
parameters tabulated in Table 1):

1. Low effectiveness level of treatment-only strategy: involves reducing the baseline values of θp and
θr by 10% (i.e., θp = θr = 3 × 104, θ∗p = θ∗r = 9 × 103), and increasing the baseline value of γ by
10% (i.e., γ = 0.73, γ∗ = 0.22).

2. Moderate effectiveness level of treatment-only strategy: involves reducing the baseline values of
θp and θr by 25% (i.e., θp = θr = 2.5× 104, θ∗p = θ∗r = 7.5× 103) and increasing the baseline value
of γ by 25% (i.e., γ = 0.83, γ∗ = 0.25).

3. High effectiveness level of treatment-only strategy: involves reducing the baseline values of θ and
θr by 50% (i.e., θp = θr = 1.6666× 104, θ∗p = θ∗r = 5× 103) and increasing the baseline value of γ
by 50% (i.e., γ = 1, γ∗ = 0.3).
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Figure 7 depicts the contour plots of R0T
(1) = T1T (defined in (5.3)), as a function of efficacy (εT ) and

coverage (cT ) of the treatment-only strategy for the low, moderate and high effectiveness levels of the
treatment-only strategy. It follows from Figure 7 that, with the 23% anti-cholera treatment coverage, cholera
elimination is not feasible no matter the efficacy level of the treatment used (this is because the associated
reproduction number remains above unity when cT = 0.23 and εT = 1). However, if the coverage can be
significantly increased to at least 80%, this figure shows that even the low effectiveness level of this strategy
can lead to the elimination of the disease (requiring a treatment efficacy of at least 100%). Furthermore,
such elimination can be achieved if the coverage is lowered to 70% using the moderate effectiveness level
of the treatment strategy (here, a minimum treatment efficacy of 100% would be needed). Finally, for 50%
treatment coverage, the high effectiveness level of the treatment-only strategy can lead to disease elimination
if its efficacy is at least 100%. In summary, these simulations suggest that a highly-effective treatment-only
strategy (with efficacy of at least 100%) can lead to the elimination of cholera if a modest coverage level (of
at least 50% can be attained and maintained).
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(c) High Effectiveness

Figure 7: Simulations of the model (2.3) with low (a), moderate (b) and high (c) effectiveness level of the treatment-
only strategy. Contour plot ofR0T

(1) as a function of efficacy εT and coverage cT . Parameter values used are as given
in Table 1, with a reduction (increase) of the value of parameters θ∗p and θ∗r (γ∗) by: (a) 10%, (b) 25% and (c) 50%, in
comparison to their baseline value given in Table 1.
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5.2 Assessment of Combined WASH-Treatment Strategy

In this section, the population-level impact of a hybrid strategy that combines both the WASH-only and
the treatment-only strategy will be assessed. The essential elements of the combined strategy include a
reduction in both the transmission and shedding rates, in addition to an increase in both the natural bacterial
death rate and the recovery rate for humans. For this strategy, the associated parameters βp, βr, θp, θr, µB
and γ are replaced by the following relations:

βp → βp(1− εBT cBT ), θp → θp(1− εBT cBT ),

βr → βr(1− εBT cBT ), θr → θr(1− εBT cBT ),

µB → µB(1 + εBT cBT ), γ → γ(1 + εBT cBT ),

(5.3)

where εBT and cBT are efficacy and coverage of combined WASH-treatment strategy.
Replacing βp, βr, θp, θr µB and γ in the normalized model (2.3) with the expressions in (5.3), it follows

that the associated basic type reproduction number (defined in (4.5)) now becomes (with i = 1, · · · , 4):

T1BT = T (i)
1BT = R0BT

(1)

=
Vrβp(1− εBT cBT )a1BT + kpβr(1− εBT cBT )a7

kpVra3BT [a4(µB(1 + εBT cBT )− 1) + µB(1 + εBT cBT )λp]
,

where,
a1BT = Vrλrθr(1− εBT cBT ) + θp(1− εBT cBT )(λr + µB(1 + εBT cBT )),

a3BT = γ(1 + εT cT ) + δ + µ, a4 = λr + µB(1 + εBT cBT ),

a7 = (θp(1− εBT cBT ) + Vrθr(1− εBT cBT ))λp + Vrθr(1− εBT cBT )(µB(1 + εBT cBT )− 1).

Thus, the corresponding threshold herd immunity becomes p(i)
1BT = 1 − 1

T1BT
, with T1BT defined in (5.4).

We estimate the coverage and efficacy of this strategy by taking, for example, the mean of the coverages and
efficacies of the WASH-only and treatment-only strategies. That is, εBT = (εB+εT )/2 = (0.6+1)/2 = 0.8
and cBT = (cB + cT )/2 = (0.5 + 0.23)/2 = 0.365.

We consider the following effectiveness levels of the combined strategy

1. Low effectiveness level of combined WASH-treatment strategy: involves reducing the baseline
values of βp, βr, θp and θrby 10% (i.e., βp = βr = 15, β∗p = β∗r = 4.5, θp = θr = 3 × 104,
θ∗p = θ∗r = 9 × 103), and increasing the baseline value of µB and γ by 10% (i.e., µB = 2.93,
µ∗B = 0.88, γ = 0.73, γ∗ = 0.22).

2. Moderate effectiveness level of combined WASH-treatment strategy: involves reducing the base-
line values of βp, βr, θp and θr by 25% (i.e. βp = βr = 12.5, β∗p = β∗r = 3.75, θp = θr = 2.5× 104,
θ∗p = θ∗r = 7.5×103) and increasing the baseline value of µB and γ by 25% (i.e., µB = 3.33, µ∗B = 1
and γ = 0.83, γ∗ = 0.25).

3. High effectiveness level of combined WASH-treatment strategy: involves reducing the baseline
values of βp, βr, θp and θr by 50% (i.e.,βp = βr = 8.33, β∗p = β∗r = 2.5, θp = θr = 1.6666 × 104,
θ∗p = θ∗r = 5 × 103) and increasing the baseline value of µB and γ by 50% (i.e.,µB = 4, µ∗B = 1.2
and γ = 1, γ∗ = 0.3).
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Figure 7 depicts the contour plots of R0BT
(1) = T1BT (defined in (5.3)), as a function of efficacy (εBT )

and coverage (cBT ) of the treatment strategy for the low, moderate and high effectiveness levels. This fig-
ure shows that the high effectiveness level of this (combined) strategy will lead to cholera elimination even
for sufficiently small coverage and efficacy (Figure 8(c)). For the aforementioned 80% efficacy and 36.5%
coverage assumed for this strategy, it is shown that neither the low or moderate effectiveness level of this
intervention can lead to disease elimination. However, if the coverage is increased to 50%, even the low
effectiveness level of this intervention can lead to cholera elimination (Figure 8(a)). The moderate effec-
tiveness level at 80% efficacy can lead to elimination with even a 40% coverage (Figure 8(b))). Thus, it
can be concluded that the combined strategy offers the best prospect for cholera elimination in the commu-
nity (since it requires the lowest minimum coverage needed to achieve such elimination). In summary, this
study ranks the three interventions (in order of their effectiveness, vis a vis their ability to lead to cholera
elimination) as follows:

Combined Strategy > Treatment-only Strategy > WASH-only Strategy .

6 Discussion and Conclusions

Cholera, a water-borne disease characterized by severe diarrhea, remains a major public health burden in
many parts of the world. In particular, the disease, caused by Vibrio cholerae, is endemic in parts of Asia,
Africa, and Latin America. Owing to the enormous public health burden associated with cholera disease,
there is now a concerted global effort to effectively control and/or eliminate the disease in endemic areas.
In particular, the Global Task Force on Cholera Control (GTFCC) has launched a laudable collaborative
initiative in 2017 with the dual aim of reducing cholera mortality by 90% in the existing 47 countries affected
by cholera and, subsequently, ending cholera as a threat to public health by 2030 [46]. The essential elements
of the laudable GTFCC initiative include intensifying anti-cholera control efforts (in particular improved
WASH strategy, safe drinking water, quick access to treatment, intravenous fluids and antibiotic for severe
cholera cases), enhancing preparedness of health case systems and building strong capacity to effectively and
rapidly contain cholera outbreaks [46]. The aforementioned global effort to eliminate cholera necessitate
the design and use of novel mathematical modeling framework for gaining insight into cholera transmission
dynamics and control, aimed at finding effective strategies for achieving cholera elimination (vis a vis the
2030 elimination goal).

In this paper, a novel ecology-epidemiology-hydrology model for the environment-host-environment
transmission dynamics and control of V. cholerae bacteria in a human host population having an intercon-
nected pond-river water network is proposed. The model, which takes the form of a deterministic system
of nonlinear differential equations, accounted for the back-and-forth flow of water within the pond-river
network. Further, the model stratified the total bacterial population in the aquatic environment based on
which of the two water bodies the bacteria reside in. That is, the total bacterial population is split into
sub-population for bacteria in the pond and bacteria in the river. Other notable features of the novel model
include the use of a nonlinear logistic growth rate for bacteria in the pond (and no such growth is considered
for V. cholerae dynamics in the river) and accounting for the temporal evolution of the volume of water in
the pond (to account for the impact of environmental factors, such as drainage, precipitation, evaporation
etc., on V. cholerae concentration in the pond). Humans acquire V. cholerae infection by coming in contact
with contaminated water in either the pond or river, and infected humans shed V. cholerae to the two water
sources (thereby completing the environment-host-environment cholera transmission cycle).

The developed model was rigorously analysed to gain insight into its dynamical features. In particular,
results for the non-negativity, invariance and boundedness of the model were derived (thereby establishing
the well-posedness of the developed model). The asymptotic stability of the disease-free equilibrium of the
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Figure 8: Simulations of the model (2.3) with low (a), moderate (b) and high (c) effectiveness level of the hybrid
strategy. Contour plot of R(1)

0 as a function of efficacy εBT and coverage cBT . Parameter values used are as given in
Table 1, with a reduction (increase ) of the value of parameters β∗

p , β∗
r , θ∗p and θ∗r (γ∗ and µ∗

B) by: (a) 10%, (b) 25%
and (c) 50%, in comparison to their baseline values given in Table 1.

model was shown to be governed by whether or not a certain epidemiological threshold, known as the basic
reproduction number (denoted byR0), is less than unity. Explicit expressions forR0 of the developed model
were derived under four different anti-cholera control scenarios. The four control scenarios were formulated
based on using four different interpretations of the role of the environment in the transmission cycle.

For the special case of the model where the bacterial growth is less than the bacterial death, it was shown
that all the four expressions ofR0 are well-posed. Further, the four constituent reproduction numbers exhibit
the same threshold property with respect to the value unity (i.e., if one is less(equal)(greater) than unity, then
the remaining three are all less(equal)(greater) than unity). In this context, each control scenario is associated
with its own (different) threshold quantity that governs its effectiveness vis a vis disease elimination or
persistence (i.e., each constituent reproduction number is associated with the amount of effort, in terms of
the associated herd immunity threshold, needed for the elimination of the disease). In order to overcome the
problem of having to deal with different estimates of the effort needed to eliminate the disease corresponding
to each of the aforementioned four scenarios considered, the associated type reproduction number [5, 30,
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52, 58, 59] of the model was computed for each of the three populations type considered in the study (i.e.,
humans, pond and river). For the case where control efforts exclusively target the human host population,
it was shown that the associated type reproduction number (denoted by T1) was precisely the same for
each of the four control scenarios. The uniqueness of the target reproduction when the human hosts are
targeted (which plays a critical role in disease control) was, however, not maintained when the other two
population types (bacteria in pond and river) are targeted. It should be recalled from the computations in
Section 3 that the entries of the first row of the matrix F , of new infection terms, remain the same regardless
of which of the four transmission scenarios is considered. Thus, mathematically-speaking (in line with
Theorem 4.1), targeting the population type corresponding to the first row of the matrix F (i.e., the human
host) guarantees the uniqueness of the associated type reproduction number (T1). Biologically-speaking,
the type reproduction number is unique if it corresponds to a population type that always assumes the same
epidemiological role in every scenario. In fact, targeting the bacterial population in the aquatic environment
(i.e., in the pond and/or in the river), the corresponding type reproduction number is not unique. This is
owing to the fact that the two population types (i.e., bacteria in the pond and in the river) assume different
epidemiological roles depending on the transmission scenario considered.

Using Lypapunov function theory and LaSalle’s Invariance Principle, it was shown that, for each of
the four control scenarios considered, the disease-free equilibrium of the model is globally-asymptotically
stable, for a special case where the volume of water in the pond is maximized, whenever the associated repro-
duction number of the model (R0; or, equivalently, T1) is less than unity. The epidemiological implication
of this result is that cholera elimination can be achieved if the anti-cholera control strategies adopted can
bring (and maintain) R0 (or T1) to a value less than unity. Mathematically-speaking, this result means that
bringing (and maintaining) R0 (or T1) to a value less than unity is necessary and sufficient for the elimina-
tion of the disease. This result enabled the determination of the herd immunity threshold (i.e., the minimum
proportion of the population that should be targeted for the control) needed for disease elimination.

The developed model was used to assess various effectiveness levels of singular and combined anti-
cholera control strategies. In particular, three strategies, namely WASH-only, treatment-only and combined
WASH-treatment strategies were considered. Further, for each of these strategies, three effectiveness levels
(low, moderate and high) were considered in the numerical simulations of the developed model. Extensive
numerical simulations of the model, using reasonably-realistic set of parameters obtained from the litera-
ture, showed that, with its current estimated efficacy (of 60%) and coverage (of 50%) [26], the WASH-only
strategy (i.e., a strategy that focus on improved water, sanitation and hygiene) is unable to lead to the elimi-
nation of cholera in the community, regardless of the effectiveness level (since none of its three effectiveness
levels can bring R0 to a value less than unity). However, our simulations show that such elimination can
be achieved, using either the moderate or high effectiveness level of this singular strategy, if the coverage
can be increased to 80% and efficacy of implementation greatly increased to 90%. This may not be realistic
targets in resource-challenged communities.

For the treatment-only strategy (i.e., a strategy based on using oral rehydration therapy and the admin-
istration of antibiotics), it was also shown that, with the current estimate of efficacy and coverage at 100%
and 23%, respectively [26, 53, 60], none of the effectiveness levels of this singular strategy can to cholera
elimination. Such elimination will, however, be achieved, using even the low effectiveness level, if the
coverage can be increased to 80%. In fact, while the implementation of the moderate effectiveness level
of this strategy can lead to such elimination with reduced coverage of 70%, the high effectiveness level of
this treatment-only strategy can lead to disease elimination even with 50% coverage. Thus, our simula-
tions suggest that treatment-based interventions may be more effective than WASH-based interventions. It
is probably plausible to surmise that treatment-based interventions may be more realistic (i.e., achieve the
required efficacy and coverage) than WASH-based interventions, particularly in resource-challenged rural
areas.

Simulations of the model for the combined (hybrid) WASH-treatment strategy showed that, with the
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estimated efficacy of 80% and coverage of 36.5% [53, 60], while the low and moderate effectiveness levels of
this hybrid strategy failed to eliminate the disease, the high effectiveness level of this strategy can eliminate
the disease. If the coverage is increased to 50%, even the low effectiveness level of this intervention can
lead to cholera elimination (in fact, the moderate effectiveness level can achieve such elimination even with
a 40% coverage). Hence, it can be concluded, based on our extensive numerical simulations, that the anti-
cholera control strategies considered in this study can be ranked in the following order of population-level
effectiveness:

Combined Strategy > Treatment-only Strategy > WASH-only Strategy .

In summary, this study shows that the prospect of effective control or elimination of cholera is promis-
ing using reasonably-attainable effectiveness levels and coverage of the currently-available singular control
(WASH-only and treatment-only) and their combination.
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Appendix A

A1: Proof of Routh-Hurwitz Condition for the Cubic in Equation (3.5)

It should be recalled from Equation (3.6) that the coefficient, b1, is given by:

b1 = (a3 + a4)(µB − 1) + a3(a4 + λp) + µBλp − βrθr −
βpθp
kp

,

which can be re-written as:

b1 = a4(µB − 1) + λpµB + a3(a4 + λp + µB − 1)− βpθpVrµB + βrθrkpVrµB
kpVrµB

. (A-1)

Further, it follows from Equation (3.4) that:

βpθpVrµB + βrθrkpVrµB = R(1)
0 a3kpVr[a4(µB − 1) + λpµB]− Vrβp[Vrθrλr + θpλr]

− kpβr[θpλp + Vrθr(λp − 1)].

(A-2)

Substituting (A-2) into (A-1) gives:

b1 =
1

kpVrµB
{a3kpVrµB(a4 + λp)

(
1−R(1)

0

)
+ (a4 + a3) kpVrµB(µB − 1)

+ kpVr

(
µ2
Bλp + a3a4R(1)

0

)
+ Vrβp(Vrθrλr + θpλr)

+ kpβr[θpλp + Vrθr(λp − 1)]}.

(A-3)

Recalling the assumption λp ≥ 1, it then follows from (A-3) that b1 > 0 whenever R(1)
0 < 1. Thus, the

associated Routh-Hurwitz condition, b1b2 − b0, can be re-written as:

b2b1 − b0 =
a3 + a4 + λp + µB − 1

kpVrµB
{a3kpVrµB(a4 + λp)

(
1−R(1)

0

)
+ (a4 + a3) kpVrµB(µB − 1) + kpVr

(
µ2
Bλp + a3a4R(1)

0

)
+ Vrβp(Vrθrλr + θpλr) + kpβr[θpλp + Vrθr(λp − 1)]}
− a3[a4(µB − 1) + λpµB]

(
1−R(1)

0

)
> 0.

(A-4)

Hence, it follows from (A-4) and the expressions for the coefficients b2 and b0 in (3.6), that the Routh-
Hurwitz condition b2b1 − b0 > 0 if and only if:

{(a3 + a4 + λp + µB − 1)a3(a4 + λp)− a3[a4(µB − 1) + λpµB]}
(

1−R(1)
0

)
> −a3 + a4 + λp + µB − 1

kpVrµB
{(a4 + a3) kpVrµB(µB − 1)

+ kpVr

(
µ2
Bλp + a3a4R(1)

0

)
+ Vrβp[Vrθrλr + θpλr] + kpβr[θpλp + Vrθr(λp − 1)]}.

(A-5)

It should be noted from (A-5) that the right-hand side of the inequality is automatically negative (since all
the parameters of the model are nonnegative). The left-hand side of the inequality (A-5) can be written as

a3 [a4(a3 + a4) + λp(a3 + a4 + λp) + λp(λr + µB − 1)]
(

1−R(1)
0

)
, (A-6)
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which is always positive wheneverR(1)
0 < 1 (noting that µB−1 ≥ 0). Hence, the Routh-Hurwitz condition

b1b2− b0 > 0 always holds whenR(1)
0 < 1 (since the left-hand side of the inequality is always positive, and

the right-hand side of the same inequality is always negative).

A2: Positivity of the Discriminant of Equation (3.16)

Recall that the discriminant of Equation (3.16) is given by:

∆p = d2
2d

2
1 + 18d1d2d0 − 4d3

1 − 4d0d
3
2 − 27d2

0, (A-7)

with d2, d1 and d0 as defined in Equation (3.17). The expression (A-7) (with (3.17)) can be simplified to:

∆p =
1

a3
3k

3
pV

3
r µ

4
B(λp + a4)4

{4 a2
3k

3
pV

3
r βrθra

3
4 + 4µB(λp + a4)[kpβr (θpλp + Vrθr(λp + µB))

+ Vrβp(Vrθrλr + θp(λr + µB))]3 + a3kpVr[V
2
r β

2
pa

2
4(Vrθr λr + θpa4)2

+ 2kpVrβpβra4(Vrθrλr + θpa4)(θpλpa4 + Vrθr(10µBa4 + λp( λr + 10µB)))

+ k2
pβ

2
r [θ2

pλ
2
pa

2
4 + 2Vrθpθrλpa4 (10µBa4 + λp(λr + 10µB)) + V 2

r θ
2
r(−8µ2

Ba
2
4

+ λ2
p(λ

2
r + 20λrµB − 8µ2

B) + 4λpµB(5λ2
r + λrµB − 4µ2

B)))]]} > 0.

Appendix B

Theorem 7 in [39] can be used to obtain an ordering of the relationship between the associated basic repro-
duction numbers of the rescaled model (2.3) (R(i)

0 ; i = 1, ..., 4). To do so, let J be the Jacobian matrix of the
rescaled model (2.3). The matrix J can then be expressed in terms of the associated transmission matrices
(Fi) and the transition matrices (Vi), with i = 1, ..., 4. That is, J = F1−V1 = F2−V2 = F3−V3 = F4−V4.
Let X = [xij ] and Y = [yij ] be any two matrices. The inequality X > Y means that xij > yij for any i, j
[39]. It can be seen from the matrices given by Equations (3.2), (3.7), (3.11), (3.14) that

F1 ≤ F2 ≤ F4 and F1 ≤ F3 ≤ F4. (A-8)

Further, the matrices Fi and Vi (i = 1, ..., 4) are nonnegative and V −1
i exist for any i = 1, ..., 4. Hence, it

follows from Theorem 7 in [39], that partial ordering betweenR(1)
0 ,R(2)

0 andR(4)
0 , and betweenR(1)

0 ,R(3)
0

andR(4)
0 , exist. More specifically, one of the following relations holds [39]:

1. 1 < R(4)
0 < R(2)

0 < R(1)
0 and 1 < R(4)

0 < R(3)
0 < R(1)

0 ;

2. R(1)
0 = R(2)

0 = R(4)
0 = 1 andR(1)

0 = R(3)
0 = R(4)

0 = 1;

3. R(1)
0 < R(2)

0 < R(4)
0 < 1 andR(1)

0 < R(3)
0 < R(4)

0 < 1.

The matrices F2 and F3 are not comparable. Hence, no partial (inequality) ordering betweenR(2)
0 andR(3)

0

can be established using the theorem in [39] (except when both reproduction numbers are equal to unity).
Combining the equations in Item 2 above reproduces the relation (3.20).
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Appendix C: Proof of Theorem 4.3

Proof. Consider the normalized model (2.3) with vp(t) at its maximum value (vp(t) = 1) for all t in D.

Further, letR(1)
0 =

(
R(3)

0

)2
≤ 1. Consider the following Lyapunov function (noting that, since µB−1 ≥ 0,

all coefficients of the Lyapunov function are positive):

L(i, bp, br) = R(3)
0 i+

βpa4Vr + βrkpλp
kVr[a4(µB − 1) + λpµB]

bp +
βpλrVr + βrkp(µB − 1 + λp)

kp[a4(µB − 1) + λpµB]
br, (B-1)

with Lyapunov derivative given by:

L̇ = R(3)
0 i̇+

βpa4Vr + βrkpλp
kpVr[a4(µB − 1) + λpµB]

ḃp +
βpλrVr + βrkp(µB − 1 + λp)

kp[a4(µB − 1) + λpµB]
ḃr

= R(3)
0

[(
βp

kp + bp
bp +

βr
1 + br

br

)
s− a3i

]

+ a3

(
R(3)

0

)2
(βpa4Vr + βrkpλp)

Vrβpa1 + kpβr [(θp + Vrθr)λp + Vrθr(µB − 1)]
[θpi+ bp(1− bp)− µBbp + λrVrbr − λpbp]

+ a3

Vr

(
R(3)

0

)2
(βpλrVr + βrkp(µB − 1 + λp))

Vrβpa1 + kpβr [(θp + Vrθr)λp + Vrθr(µB − 1)]

[
θri− µBbr − λrbr + λp

bp
Vr

]
(B-2)

= a3(R(3)
0 − 1)

(
R(3)

0 i+
βpbp
kpa3

+
βrbr
a3

)
− R(3)

0

[
βpbp
kp

(
1− kps

kp + bp

)
+ βrbr

(
1− s

1 + br

)]

−
a3

(
R(3)

0

)2
(βpa4Vr + βrkpλp)

Vrβpa1 + kpβr [(θp + Vrθr)λp + Vrθr(µB − 1)]
b2p.

Since s(t) ≤ 1 for all t > 0 in D, it follows from (B-2) that
kps

kp + bp
≤ 1 and

s

1 + br
≤ 1. Hence,

L̇ ≤ (R(3)
0 − 1)

(
R(3)

0 i+
βp
kpa3

bp +
βr
a3
br

)
. (B-3)

It follows from (B-3) that L̇ < 1 whenever R(3)
0 < 1. Furthermore, it follows from (B-2) and (B-3) that

L̇ = 0 if and only if:

(a) R(3)
0 = 1 and s(t) = 1, or

(b) i(t) = bp(t) = br(t) = 0.

In either of the above two cases, the largest compact invariant subset of the set

G = {(s, i, bp, br, vp) ∈ D : L̇ = 0}

is the singleton {E0}. In fact, supposeM is the largest compact invariant subset of G. To check for Case
(a), we need to require that s(t) = 1 is the solution of the human component of the normalized model given
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by: 
ṡ = µ(1− s)−

(
βpbp
kp+bp

+ βrbr
1+br

)
s+ γi,

i̇ =
(
βpbp
kp+bp

+ βrbr
1+br

)
s− a3i,

(B-4)

from which it follows (by adding the two equations, and recalling that n(t) = s(t) + i(t))) that:

ṅ = µ(1− s)− (δ + µ)i. (B-5)

Substituting s(t) = 1 in (B-5) (and noting that, for solution of the form s(t) = 1, ṡ = 0) gives:

i̇ = −(δ + µ)i, (B-6)

so that lim
t→∞

i(t) = 0. Substituting s(t) = 1 and i(t) = 0 into the normalized model (2.3) shows that

lim
t→∞

(bp(t), br(t)) = (0, 0). Hence, it follows from the above analyses that, for Case (a), lim
t→0

(s(t), i(t), bp(t), br(t)) =

(1, 0, 0, 0). Thus, for Case (a),M = {E0} and all solutions in D converge to the disease-free equilibrium
(E0) of the normalized model.

Similarly, for Case (b), requiring each solution inM to satisfy i(t) = bp(t) = br(t) = 0 leads to:

ṡ = µ(1− s), (B-7)

whose solution is (where s0 = s(0) > 0 and 0 < s0 ≤ 1)

s(t) = 1− (1− s0) e−µt. (B-8)

Since µ > 0 and 0 < s0 ≤ 1, it follows from (B-8) that lim
t→∞

s(t) = 1. That is, in Case (b) (where

i(t) = bp(t) = br(t) = 0), like in Case (a), the largest compact invariant subset where L̇ = 0 is the single-
ton {E0}. Thus, it follows from the LaSalle’s Invariance Principle [37] that the disease-free equilibrium of
the normalized model ({E0}) is globally-asymptotically stable in D wheneverR(3)

0 ≤ 1. �

It is worth mentioning that the above proof also works for the special case where vp(t) 6= 1, if the as-
sociated water balance condition, kp ≤ bp(t)

1−vp(t) , holds (for all time t ≥ 0).
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