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Abstract

We study noncommutative geometry from a metric point of view by
constructing examples of spectral triples and explicitly calculating Connes’s
spectral distance between certain associated pure states. After considering
instructive finite-dimensional spectral triples, the noncommutative geome-
try of the infinite-dimensional Moyal plane is studied. The corresponding
spectral triple is based on the Moyal deformation of the algebra of Schwartz
functions on the Euclidean plane.
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Introduction

Even though particle experiments are delving deeper into the structure of
matter, the geometric structure of spacetime is still unknown. Classical ge-
ometry cannot account for both general relativity and quantum mechanics,
since the former grounds its description of gravitation on purely geometric
concepts while the latter renounces intuitive geometric concepts. Noncom-
mutative geometry attempts to bridge this gap by providing a mathematical
framework for a geometric understanding of fundamental interactions and
thus opening a path toward quantising gravity. [21]

In classical Riemannian geometry, the pointwise multiplication of func-
tions on a manifold makes the space of functions an infinite-dimensional
commutative algebra such that f;fo = fof1. Such an algebra, together with
a Dirac operator, characterises the geometry completely. Noncommutative
geometry generalises this algebraic conception of geometry to a case where
the analogues of functions or "coordinates" on a space no longer commute.
Ergo, the enterprise of noncommutative geometry is to reformulate, as much
as possible, the geometry of a manifold in terms of an algebra of functions
defined on it and then to generalise the corresponding results of differential
geometry to the case of a noncommutative algebra [24|. Such noncommu-
tative spaces are present, for example, in quantum mechanics for the phase
space of a particle, where the functions on phase space are replaced by non-
commuting operators in Hilbert space. The advantage of passing from the
commutative to the noncommutative case is that we drop the notion of a
localised point, while still being able to measure distances [5].

An essential step in this generalisation to noncommutative geometry is
finding a noncommutative counterpart for the notion of a Riemannian met-
ric. Also, since matter is fermionic, one has to extend the notion of spin
structure on a Riemannian manifold to noncommutative geometry. This has
been achieved by Connes via spectral triples. A compact noncommutative
spin manifold is characterised by a spectral triple subject to a list of axioms
laid out in [8]. According to [5, Definition 1.120], a spectral triple is a triple
(A, H,D), where A is a unital involutive algebra, which stands for the al-
gebra of coordinates, represented by 7 on the fermionic Hilbert space H,



and D is a self-adjoint not necessarily bounded operator on H, which is the
generalisation of the Dirac operator, such that the commutator [D, 7 (a)] is
bounded for every a € A and the resolvent of D is compact. A key result
is the reconstruction theorem in [7], which recovers the classical geometry
of a compact spin manifold M from the noncommutative setup by assuming
that the algebra of coordinates is commutative, and by showing that it is
isomorphic to the algebra of smooth functions on M. See [19] for details of
this reconstruction.

The framework described above has recently been generalised to include
noncompact noncommutative spin manifolds [17]. Noncompactness of a
manifold corresponds to non-unitality of the algebra A in the definition of
a spectral triple. Moreover, in the noncompact case, i.e. for non-unital
A, the resolvent condition is replaced by asking instead that the operators
7 (a) (D — AI)~" are compact for any X in the resolvent set of D. This de-
fines a noncompact spectral triple.

Another generalisation has been undertaken in [9], where noncommuta-
tive geometry for symmetric non-self-adjoint operators is explored. Instead
of asking the Dirac operator D to be self-adjoint, a pre-spectral triple only
requires D to be closed and symmetric. Naturally, an accompanying relax-
ation of the condition on the commutator is necessary: The commutator
[D, 7 (a)] is only required to have bounded extension for every a € A.

A finite spectral triple (A, H, D) is defined as a spectral triple of dimen-
sion zero such that both A and H are finite-dimensional. As explained in [1],
if we replace the algebra of functions on a Riemannian manifold by a finite-
dimensional matrix algebra, we are left with a geometry called a matrix
geometry. Specifically, as per [1], the matrix geometries where the algebra is
simple are called fuzzy spaces. Matrix geometries can be seen as noncommu-
tative finite-dimensional approximations to Riemannian manifolds. A finite
spectral triple endowed with a real structure is called a finite real spectral
triple. The axioms for a finite real spectral triple can be found in [1]. The
real structure is necessary if one is interested in constructing a real geometry.

Some of the metric information encoded in a spectral triple can be ex-
tracted via Connes’s algebraic formulation of distance, which he introduced
in the framework of noncommutative geometry in [6]. It is defined on the
space S (A) of states of a non-necessarily commutative C*-algebra A. If
A = Cp () is the commutative algebra of continuous functions vanishing
at infinity on a locally compact topological space €2, then the pure states
correspond to characters. The Gelfand theorem allows us to interpret these
characters as points, with A the algebra of functions over these points. For-
mally, the pure states of A are in one-to-one correspondence with the points
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of 0, viewed as the evaluation

5. (f) = f () (1)

for all x € Q and f € A. Since the construction of a noncommutative ge-
ometry is initiated by choosing a noncommutative algebra of functions, the
pure states of such a noncommutative algebra appear as natural candidates
to play the role of points in a noncommutative framework [25].

Given a spectral triple (A, H, D), Connes’s spectral distance is defined
between any two states 7,7 € S (A) by

dp (n,m) = swp {[mi (0) =2 (@) |D,m (@], < 1) (2

where [-[|,,,, is the operator norm for the representation of A in B (H) [5,
Chapter 10 (1.468)]. As shown in [4, Proposition 1.119], if A = C§° (M) is
the commutative algebra of smooth functions vanishing at infinity on a lo-
cally compact and complete Riemannian manifold M, acting on the Hilbert
space H of square-integrable differential forms via the multiplicative repre-
sentation

(f) (@) = f (@) (x) VeeMypeH (-:3)

and D = d +d' is the signature operator (d is the exterior derivative and d'
its adjoint), then the spectral distance between the pure states d, of A, as
per (.1), returns the geodesic distance on M:

dp (0, 5y) = dgeo (z,y) (.4)

Therefore, the spectral distance is a generalisation of the Riemannian geodesic
distance that also makes sense in a noncommutative context. Note that the
spectral distance does not rely on any notion ill-defined in a quantum context,
such as points or paths between points. In this sense, this distance displays
potential compatibility with a description of spacetime at the Planck scale
[26].

The meaning of the spectral distance in a noncommutative context re-
mains obscure. In the spirit of exploration and generalisation, one may relax
some of the conditions on the constituents of a spectral triple in order to
study specific metric aspects of noncommutative geometry. In particular,
the conditions involving the resolvent and the self-adjointness of the Dirac
operator do not impose any constraints on the spectral distance. Therefore,
we will present a slightly relaxed definition of a spectral triple, which will
be sufficient for extracting metric information via the spectral distance for-
mula. Furthermore, pursuant to the above-mentioned suggestion concerning
the role of pure states in noncommutative geometry, we choose to restrict
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to such states. Even though purity of state is not necessarily an adequate
criteria for characterising points in a noncommutative context, a study of the
pure states, owing to their prominence within the space of states, not only
serves as an appropriate point of departure but also lays the groundwork for
studying states in general.

This exploratory dissertation pursues an inceptive understanding of the
metric aspects of noncommutative geometry. Specifically, it aims at illumi-
nating the notion of distance in a noncommutative context. To this end,
we will construct spectral triples for certain prototypical examples of non-
commutative spaces and explicitly calculate the spectral distance between
certain associated pure states. Our investigation will commence with in-
structive finite-dimensional spectral triples in Part I and culminate in an
archetypal infinite-dimensional example, namely the Moyal plane, in Part II.

Moyal spaces have their origin in the study of quantum mechanics in
phase space [30]. Since then, they have become paradigmatic examples of
noncommutative geometries by deformation. Most recently, Moyal spaces
can be seen in attemps at developing quantum field theory on noncommu-
tative spacetime. However, their metric aspects have received limited atten-
tion. We study the noncommutative geometry of the Moyal plane from a
metric point of view. Following the outline in [12]|, we construct a spectral
triple based on the Moyal deformation of the algebra of Schwartz functions
on the Euclidean plane R? and calculate the spectral distance between cer-
tain pure states.

viil



Part 1

Definitions and instructive
examples

After expounding the concepts relevant to a metric study of
noncommutative geometry, we study certain instructive finite-
dimensional examples. Chapter 1 introduces the notion of a
spectral triple and presents Connes’s spectral distance formula
as a mechanism for extracting metric information from a spectral
triple. In Chapter 2, as a first didactic example, we construct an
elementary commutative finite spectral triple and calculate the
spectral distance in the associated discrete space of pure states.
We advance into noncommutativity by examining a finite spec-
tral triple built around a matrix algebra in Chapter 3.



Chapter 1

Spectral triples and the
spectral distance

We present here the two fundamental definitions relevant to our study - that
of a spectral triple and that of the spectral distance. To elucidate these
definitions, we include in Sections 1.1 and 1.2 some auxiliary material on
C*-algebras, representations, and states. Section 1.3 is devoted to properties
of the spectral distance formula: First, we show that the spectral distance
conforms, up to an interesting anomaly, with the traditional notion of a
distance function. Then, we reproduce a result from [21, Lemma 1] that
simplifies the search for a supremum when calculating the spectral distance.
In Section 1.4, we specialise our definition of a spectral triple to the finite-
dimensional case and briefly discuss the resulting simplifications pertaining
to the spectral distance.

1.1 Basic definitions

As promised in the introduction, we present the following relaxed definition
of a spectral triple, which is sufficient for our metric study of noncommutative
geometry. The subsequent definitions describe the innards of a spectral triple
and guide us towards the definition of the spectral distance.

Definition 1.1.1. A spectral triple (A, H, D) is given by an involulive
algebra A, together with a faithful representation m on a Hilbert space H,
and a symmetric not necessarily bounded operator D : © (D) — H (called the
Dirac operator) defined on the domain ®© (D) of D, such that the commutator
[D,7(a)] : © (D) — H is bounded for every a € A.

Note that this definition deviates from the standard definition in [5, Def-
inition 1.120]: Instead of asking D to be self-adjoint, we only require it to
be symmetric, thus resembling the pre-spectral triples in [9]. Note that a
symmetric operator is necessarily densely defined; in other words, © (D)



has to be dense in H. Unlike the pre-spectral triples in [9], we consider
neither the closures of symmetric Dirac operators nor the extensions of the
commutators. Furthermore, we do not require unitality of A, similar to the
noncompact spectral triples in [17]. Lastly, we do not impose any conditions
on the resolvent of D. For the remainder of this chapter, we will assume
some background regarding unbounded operators but will review a few con-
cepts in Section 7.1.

Our focus will be on algebras that have C*-closures; therefore, we include
the following definitions from [31, Chapters 1-3] involving C*-algebras and
their representations.

Definition 1.1.2. A Banach x-algebra is an involutive algebra V, together
with a complete submultiplicative norm such that

[o*]| = [lvll forall veV
Moreover, a C*-algebra is a Banach x-algebra V' such that
[v || = HUH2 forall veV

Definition 1.1.3. Let V be a x-algebra (involutive algebra). A C*-norm
on V is a submultiplicative norm such that

lo*ll = lloll and o™ = Jlo]® forall veV

A pre-C*-algebra is a x-algebra V , together with a C*-norm ||-||. Complet-
ing V' with respect to ||| yields a C*-algebra.

Definition 1.1.4. A representation of a C*-algebra V is a pair (H, ),
where H is a Hilbert space and ¢ : V. — B (H) is a *-homomorphism. We
also say that ¢ (V') is a representation of V on H.

A representation (H,p) is called faithful if ¢ is injective.

In all of this dissertation, B (H) denotes the space of all bounded linear
operators on the Hilbert space H. It is a C*-algebra when equipped with
the operator norm.

Now we state our second central definition as found in [5, Chapter 10
(1.468)], namely that of the spectral distance. Since this distance is defined
on the space of states of an algebra, we include a definition and a discussion
of states in the context of C*-algebras |31, Chapter 3 and 5|.

Definition 1.1.5. Let (A, H, D) be a spectral triple as per Definition 1.1.1.

The spectral distance between any two states 1,70 of A is

dp (m,72) = sup {Im (@) = 72 )| )1, m (@)l < 1}

where H-Hop is the operator norm for the representation of A in B (H).



Definition 1.1.6. A state on a C*-algebra A is a positive linear functional
on A of norm one. A state T on a C*-algebra A is a pure state if it has
the property that whenever p is a positive linear functional on A such that
p < 7, necessarily there is a number t € [0,1] such that p = tr. In other
words, a state is pure if it cannot be written as a convex combination of two
other states.

If A is unital, the condition that 7 be of norm one in Definition 1.1.6 is
equivalent to 7 (1) = 1 (31, Corollary 3.3.4]. We let S (A) and PS (A) denote
the set of states and the set of pure states of A respectively.

Strictly speaking, the notion of a state is reserved for C*-algebras. How-
ever, it is legitimate to talk about states for pre-C*-algebras: Consider a
pre-C*-algebra, A with representation m on some Hilbert space H. Then
a state on the C*-closure of 7 (A), denoted 7 (A), defines by restriction a
unique positive linear map of norm 1 from A to C. The continuity in the
C*-norm ensures that any state on m (A) is uniquely determined by its re-
striction to A. Therefore, it is not necessary to distinguish between a state
on 7 (A) and its restriction. In fact, S (A) and PS (A) can be identified with

S <7T (A)) and PS (7T (A)) respectively if 7 is faithful.

Following the intuition, as mentioned in the introduction, that the pure
states are reasonable contenders to inherit the role of points in noncommuta-
tive geometry, we will, throughout this dissertation, restrict our calculations
of the spectral distance to such states.

1.2 Representations and states

The definitions and theorems below, as quoted from [31, Chapters 4 and 5],
exhibit the inherent relationship between representations and states, specifi-
cally in the context of C*-algebras. Moreover, these theorems will be used to
determine explicit expressions for the pure states between which we intend
to calculate spectral distances. We remark that these definitions differ from
those in [31] only inasmuch as we accommodate the convention of choosing
inner products to be linear in the second argument and conjugate linear in
the first.

Definition 1.2.1. If (H, ) is a representation of a C*-algebra A, then we
let ¢ (A) H denote the linear span of the set

{¢(a)h:a€ A he H}

and let [¢ (A) H] denote the closure of ¢ (A)H. We say ¢ (A) acts non-
degenerately on H if
[ (A) H| = H



In this case, we call the representation (H,¢) non-degenerate.

Definition 1.2.2. Let (H, ) be a representation of a C*-algebra A. We call
x € H a cyclic vector for (H,p) if

[p(A)z] = H
If (H, ) admits a cyclic vector, then we say it is a cyclic representation.

Theorem 1.2.3. If (H, ¢) is a non-degenerale representation of a C*-algebra
A, then it is a direct sum of cyclic representations of A.

Definition 1.2.4. Two representations (Hi, p1) and (Ha, p2) of a C*-algebra
A are unitarily equivalent if there is a unitary v : Hi — Hs such that

w2 (a) =upy (a)u™  forall a€ A

Theorem 1.2.5. Let (Hi,¢1) and (Ha,p2) be representations of a C*-
algebra A with cyclic vectors x1 and xo respectively. They are unitarily
equivalent, with xo = u (x1), if and only if

(x1,p1 (a) 1) = (22,02 (a) 22)  forall a€ A

Definition 1.2.6. Let B be a subset of an algebra A. The commutant of
B, denoted B’', is defined as the set of all elements in A that commute with
every element in B. That is,

B :={a€A:ab=ba forall be B}
Note that B’ is a subalgebra of A.

Definition 1.2.7. A representation (H, ) of a C*-algebra A is irreducible
if the algebra ¢ (A) acts irreducibly on H.

Theorem 1.2.8. Let (H, ) be a nonzero representation of a C*-algebra A.
(H,p) is irreducible if and only if ¢ (A) = CI, where I is the identity
operator on H.

If (H, ) is irreducible, then every nonzero vector of H is cyclic for (H,p).

Theorem 1.2.9. The Gelfand-Naimark-Segal (GNS) theorem asserts
that for each state 7 on a C*-algebra A, there exists a representation (Hr, o)
of A, called the GNS representation for T, and a cyclic vector Q. € H, such
that

7 (a) = (Qr, 7 (a) Q7)
for all a € A. The GNS representation for a state T is unique in the sense

that any other representation (H,p) of A containing a cyclic vector corre-
sponding to T is unitarily equivalent to (Hr, 7).



Theorem 1.2.10. Let 7 be a state on a C*-algebra A. It is a pure state if
and only if the GNS representation (Hr, ;) is irreducible.

Theorem 1.2.11. Let (H, ) be a representation of a C*-algebra A and let
x be a unit cyclic vector for (H,p). Then the functional

T:A—=C:aw— (z,¢(a)(z))

is a state of A and (H, ) is unitarily equivalent to (H,,p;). Moreover, if
(H, ) is irreducible, then T is pure.

Theorem 1.2.12. Let 7 be a state on a C*-algebra A. If A is abelian, then
7 18 pure if and only if it is o character on A.

1.3 Properties of the spectral distance

Here we examine the spectral distance formula in two distinct ways: The first
serves as justification for calling it a distance and the second makes it more
amenable to calculations under an assumption on the algebra that forms part
of the spectral triple. The following lemma shows that the spectral distance,
as per Definition 1.1.5, satisfies the conditions of a distance function in the
usual sense, except that it admits infinite distance between states.

Lemma 1.3.1. The spectral distance dp, as per Definition 1.1.5, defines a
distance (possibly infinite) on S (A), i.e. for all T1,720,73 € S(A), it holds
that

(1) ClD(Tl,TQ) 0

(2) dD (T1,7'2) 0 z'fcmd only ilezTQ

(8) dp (11, 72) = dp (12, 71)

(4) dp (11,73) < dp (11, 72) + dp (72, 73)
Moreover, if there exists an element a € A such that ||[D, 7 (a)]l|,, = 0 and
71 (a) # 12 (a), then dp (11, T2) = +00.

IV

Proof. The non-negativity in (1) and symmetry in (3) follow immediately
from the non-negativity and symmetry of the absolute value function as it
appears in dp.

To prove positive-definiteness, consider the following: If 7 = 75, then
clearly dp (m1,72) = 0. Conversely, let dp (71,72) = 0 and suppose that
71 # 7. Then there exists some as € A such that 71 (ae) # T2 (a0o). If
[D, 7 (as)] is bounded, then consider the element

Qoo
ap = eA
H[D77T (QOO)]Hop + 1

Clearly 71 (ag) # 72 (ao) with [|[D, 7 (ao)]||,, < 1. This implies dp (11, 72) #
0, which contradicts the assumption. If [D, 7 (ax)] is unbounded, it con-
tradicts the fact that (A, H, D) is a spectral triple, since Definition 1.1.1



requires [D, 7 (a)] to be bounded for all a € A. Hence, 11 = 75.
Next, we prove the triangle inequality in (4):

dp (r1,75) = sup {7 (@) — 7 0)| < [0, m (@)l < 1}

= sup { |71 (a) = 72 (@) + 72 (a) = 73 (a)] : D, 7 (@), < 1
acA

< sup {|7’1 (a) =72 (a)| + |2 (a) — 73 (a)| : I[D, 7 (a)]ll,, < 1}
a€A
<dp (11,72) + dp (12, 73)

for all 7,1, 13 € S (A).

Finally, let a € A such that ||[[D,7 (a)]l,, = 0 and 71 (a) # 72 (a). Then
the supremum in dp can also be searched over elements a, := na € A for
n € N, since ||[D,7 (ay)]|l,, = 0. For such elements, the subject in the
supremum is

lop

|71 (an) — 72 (an)| = n|m1 (a) — 72 (a)] # 0
Since n can be made arbitrarily large, it follows that dp (71, 72) = +o00. O

The following lemma, as per [21, Lemma 1|, will show that the supre-
mum in the spectral distance can be searched equivalently on the self-adjoint
elements of a C*-algebra A. Let A** denote the set of self-adjoint elements
of A. In the proof, we use standard results from the theory of unbounded
operators, which can be found, for example, in [23, Chapter 10].

Lemma 1.3.2. Let (A, H, D) be a spectral triple and 71,7 € S (A), where
A is a C*-algebra. The supremum in the spectral distance, as per Definition
1.1.5, can be searched equivalently on A®*, such that

dp (1,72) = sup. {In(@ =@l D@, <1} (1321

Proof. Let
Q={aca: D@, <1}

There exists a sequence (an),—, € @ such that
IT1(an) — m2(an)| — dp (11, 72)
Let 0,, := arg (11(a,) — m2(a,)) and consider the self-adjoint element

1 ) .
by, = 3 <ane_’9" + a’:Lew") e A%



Then it holds that

e (r1(an) = ma(an)) = e [1i(an) — 72(an)|
= |r1(an) — 72(an)|
—dp (7‘1,7‘2) (1.3.2.2)
Even though it seems obvious that |[[D, 7 (ay)]l,, = [[[D, 7 (an)]ll,,, the

unboundedness of D forces us to consider this claim carefully. Since A is
a C*-algebra, it has a representation in the bounded linear operators, i.e.
7 (an) € B (H). Therefore, its adjoint 7 (a,)" exists and is defined on H.
Also note that D is densely defined in H, which implies that the product
7 (an) D is densely defined. It then follows from the boundedness of 7 (a;,)
and the symmetry of D that

(m (an) D)* = D*r (a,)" D D7 (ay)” (1.3.2.3)
D (ay,) is also densely defined. In this case, we can say
7 (an)* D C m(ay)* D* C (D7 (ayn))” (1.3.2.4)

In other words, (D7 (a,))* is an extension of the operator 7 (a,)* D. From
(1.3.2.3) and (1.3.2.4), we can deduce that

[D, 7 (a})] := Dr (ay)* — 7 (an)* D C (7 (an) D)* — (D7 (ay))* (1.3.2.5)

where the extension on the right is densely defined. Since 7 (ay) D, D7 (ay),
and 7 (ayn) D — D7 (ay,) are all densely defined, it holds that

(7 (an) D)* — (D7 (ay))* C (7 (an) D — D7 (ay))* (1.3.2.6)
Together, (1.3.2.5) and (1.3.2.6) imply that
[D, 7 (a})] C (7 (an) D — D7 (ay))* = (= [D, 7 (ay)])* (1.3.2.7)

Since [D, 7 (ay,)] is bounded, it follows that [D, 7 (a})] is bounded. Therefore,
the latter has a unique extension to H with the same norm. Hence, we can
conclude from (1.3.2.7) that

11D, 7 (ap)]lop = 11D, (an)]llop (1.3.2.8)

n

Applying (1.3.2.8), we find that

1D, 7 ()]l = % | [ 7 @ne )] + [D,wazei®)] .
< 1/2[[[D,m(an)]ll,p + 1/2I[D; 7 (ap)]ll,p
= 1/2|I[D, 7(an)]ll,p + 1/21I[D, 7(an)]||
<1/2+1/2
_1 (1.3.2.9)

op



Note that ¢ (a*) = ¢ (a) for any positive linear functional ¢ [3, 11.6.2]. This
holds, in particular, for any state 7. Using this fact, and applying (1.3.2.2),
we observe the following convergence:

(= 72) ()] = 5 (1 = 72) (ane ™) + 517 = 72) (ame )
— dp (11, 72) (1.3.2.10)

Since every a,, determines a self-adjoint b,, the required result follows from
(1.3.2.9) and (1.3.2.10). O

1.4 Finite spectral triples

We restrict our attention now to finite dimensions. The purpose of limiting
to this more accommodating environment is to identify beacons that might
guide and instruct our later attempts at understanding the less tractable
infinite-dimensional case. The following definition will be used in the in-
structive examples that occupy Part I of this dissertation.

Definition 1.4.1. A finite spectral triple (A, H, D) is a spectral triple, as
per Definition 1.1.1, where H is finite-dimensional.

Note that, since H is finite-dimensional, 7 (A) is a C*-subalgebra of
B (H). Therefore, A is a C*-algebra that inherits the structure of 8 (H)
by means of w. Also, since every operator in finite dimensions is bounded
and the domain is the whole Hilbert space, symmetry of D is equivalent to
self-adjointness.

One expects some simplification in the spectral distance formula when
applied to finite spectral triples; indeed, the operator norm adopts an ex-
pression more amenable to calculations in finite dimensions. Even though
all norms on finite-dimensional algebras are not only equivalent, in the sense
that they generate the same topology, but also complete, we take this op-
portunity to briefly introduce the relevant spaces and notations on our way
towards this equivalent expression for the operator norm called the spectral
norm (the missing details appear in most introductory functional analysis
textbooks).

Let M, (C) denote the space of all n x n complex matrices. It becomes
a unital C*-algebra when equipped with matrix multiplication and an in-
volution defined by conjugate transposition (the unit is given by the n x n
identity matrix). Note that M, (C) = B (H,), where H, = C" with the
usual inner product. The spectral norm is defined, for example in [20, 5.6.6],
by

1Tl 00 = max{ﬁ : A is an eigenvalue of T*T} (1.1)

spec
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for all T € M, (C), where T* denotes the conjugate transpose of 7. The

following theorem can be seen as a special case of [31, Thm 2.1.1]; therefore,
we omit the proof.

Theorem 1.4.2. The operator norm on B (H,) coincides with the spectral
norm on M, (C):

H'Hop = ”'Hspec
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Chapter 2

Discrete space

In this chapter, we perform a humble, yet instructive, inaugural probe into
the modus operandi of the spectral distance formula. We consider an ele-
mentary commutative finite spectral triple that has a discrete space of pure
states. In Section 2.1, we assemble the spectral triple and determine the as-
sociated pure states. Sections 2.2 and 2.3 are dedicated to the calculation of
the spectral distance in two low-dimensional examples of the discrete space
constructed in Section 2.1. Specifically, we consider a two-point space and a
three-point space.

2.1 The spectral triple and pure states
Let A, = C", H,, = C", and define the mapping

aq 0 al
w: Ay, — M, (C):a— forall a= : c A,

0 an aTL
Let D be a self-adjoint n x n matrix with complex entries D;; such that
Dij = DijZ eC

for all 4,7 € {1,...,n}, where the overbar denotes the complex conjugate of
a complex number.

Proposition 2.1.1. (A, H,, D) is a finite spectral triple.

Proof. Note that A, = C", equipped with componentwise addition, scalar
multiplication, pointwise multiplication, and an involution defined by com-
ponentwise complex conjugation, is a finite-dimensional commutative unital
C*-algebra, where the unit is given by the n-dimensional vector with every
component 1, and |la|| = max {|ai|,...,|an|}.

11



Since 7 (a) acts on elements of H,, by matrix multiplication and returns
elements in H,, for all a € A,,, we consider 7 : A,, — B (H,,) as a map into
the space of linear operators on H,,, which is clearly a faithful representation
of A,. Tt follows from Definition 1.4.1 that (A,, H,, D) is a finite spectral
triple. O

Note that the positive elements of A, are exactly
{a*a:a€ Ay} ={a:a€ A, and ay,...,a, >0}
Proposition 2.1.2. The pure states of A, are given by
di (a) = a; for i=1,...,n
where a € Ay,. The space of pure states is the discrete n-point space
PS(Ap) ={01,...,0n}

Proof. For all i € {1,...,n}, d; is a state on the C*-algebra A,, because
9; (1) =1 and §; (a) = a; > 0if a > 0. Also, for a,b € A,, it holds that

Therefore, §; is a character on A,. Since A, is abelian, it follows from The-
orem 1.2.12 that ¢; is a pure state.

In order to show that the d; constitute all the pure states of A, let T be
an arbitrary pure state on A,. Since 7 is a linear functional on A,, we can
represent it as a row vector 7 = (711,...,7,), where 7 (a) = Ta is given by
usual matrix multiplication. Since 7 is pure, Theorem 1.2.12 confirms that
it is a character. Therefore, for all a,b € A,

T1a1by + ... + Thanb, = 7 (ab)
=7 (a)7(b)
= (Tla1+...+7nan) (lel—l—...—i-’rnbn) (2.1.2.1)

Ifa=b=| . |, then (2.1.2.1) implies that 7 = 72. So, either 71 = 0 or
0
71 = 1. Note that 7y > 0 because 7 is a state and thus 7 > 0. Similarly,
7; € {0,1} for all j € {1,...,n}. Since 7 is a state, it has to hold that
l=7T()=m+...4+m

Accordingly, exactly one 7; has to be 1 and the rest 0. In other words, 7 = §;
for some i € {1,...,n}. Hence, the §; constitute all the pure states and

PS(Ap) = {61,...,00}

12



We proceed now to calculate the spectral distance between the pure states
of discrete spaces as above for two low-dimensional examples - the two-point
space (n = 2) and the three-point space (n = 3).

2.2 Two-point space

We consider the finite spectral triple (A2, Ha, D), which is the spectral triple
in Proposition 2.1.1 with n = 2. Observe that in the spectral distance
formula, as per Definition 1.1.5, D only appears in the commutator with ele-
ments of the representation 7 (Ag). Since the diagonal of D clearly commutes
with 7 (Asz), we might as well choose D with null-diagonal when computing
the spectral distance. Therefore, we use

o (4 7)

where m € C is nonzero. The space of pure states of Ay is the two-point
space

PS (Ay) = {61,029}
as per Proposition 2.1.2.

Proposition 2.2.1. For the finite spectral triple (Aa, Ha, D), the spectral
distance between the two pure states 61 and 0o of Ao is

1
dD (517 52) = W

Proof. We begin by evaluating the norm constraint as featured in the spectral
distance formula. To this end, let a € Ay be arbitrary and consider that

D, 7(a)] = ( - 0 mla-a) >

ap — CLQ)
and
m(a)]* w(a)] = \m|2|a1—a2]2 0
D) Do) = (e L 0 )

The spectral norm, as defined in (1.1), is evaluated as
1D, m(@)]llspec = [ml a1 — as]

Now we find the spectral distance as

dp (61,82) = sup {[1 (@) = 32 ()] (D, 7(@)]l e < 1}

a€As
1
= sup la1 —az|:|ar —as| < —
acAsz ’m|
1
ml
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We offer a geometric interpretation of this result by comparing it to
the classical case: In the classical case, the discrete two-point space can be
viewed as a 0-dimensional topological manifold with the discrete topology.
Note that any function on a discrete space into a topological space is con-
tinuous. The length of the discrete curve between the two points is just the
distance between the appropriate functions evaluated at those points. Since
there is only this one curve, it follows that the geodesic distance is solely
determined by the positive constant that defines the Riemannian metric.
Therefore, since the proposition above shows the same result, yet still makes
sense in a noncommutative context, we conclude the following: The spectral
distance equips the discrete two-point space {d1, 02} with a generalisation of
the geodesic distance. We should add that the interpretation of a geodesic
as a minimal path length does not make sense here inasmuch as there are no
points (pure states) between §; and d2 to constitute a path.

2.3 Three-point space

We consider the finite spectral triple (As, Hs, D), which is the spectral triple
in Proposition 2.1.1 with n = 3. Once again, we may choose D with null-
diagonal for the purpose of computing the spectral distance. It is not surpris-
ing that, even for this simple finite spectral triple, calculation of the spectral
norm involves laborious calculations. We moderate the technical grind by
restricting to Dirac operators with real entries. Let

0 D2 D3
D := D12 0 D23 (231)
D3 Doz 0

with every D;; € R nonzero. The space of pure states of Az is the three-point
space
PS(A3) = {61,02,03}

as per Proposition 2.1.2.

Proposition 2.3.1. For the finite spectral triple (As, Hs, D), the spectral
distances among the elements of PS (As) are

D35 + D7
d §1.85) = 23 13
D (01,2) \/D%2D§3+D§3D%3+D%3D%2

D2, + D?

dD ((52,(53) — \/ 13 12
D33D35 + D33 D3y + D3y D3y

D3, + D3,
4o (03,01) = \/D2 D3, + D3,D3; + D3, D3
1312 1223 2313
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Proof. We begin by evaluating the norm constraint. Let a € A3 be arbitrary
and consider that

(D, 7(a)]" [D, m(a)]

D3P, la; — a3|® + Di3|ay — as|? 2D13D23(a12— a3)2(112 —ag) ) D12D23(a1 — az) (a3 — a2)
= D23 Di3(az — a3) (a1 — a3) Diy laz — a1]® + D35 laz — a3 Di12D13(az — a1) (a3 —a1)
D33Di2(az — az) (a1 — a2) Di3Diz2(ag —a1) (a2 — a1) D%; lag — a1|? + D35 |ag — az|?

The spectral norm, as defined in (1.1), becomes

2 2 2
1[D, ()]l spec = \/sz a1 — a2|” + D3 la1 — as|” + D35 |az — a3

We substitute this expression into Definition 1.1.5 for the spectral distance.
Also, we restrict our search for the supremum to the self-adjoint elements in
As thanks to Lemma 1.3.2. For j, k € {1,2,3},

p (85.8) = sup {19 (a) = 3 (@) 1D, ()] e < 1}

= sup {aj —ag| : \/D%2 la; — ag? + D%, |y — as|? + D34 |ag — as)? < 1}

acA3®
(2.3.1.1)
Let
dy := D%, dy := D3, d3 := D3, (2.3.1.2)
and
Ti=aj — ay Y= as — as zi=a3 — ay (2.3.1.3)

Clearly dy,d2,ds > 0. Also, since we consider a € A3* when searching for the
supremum, we have that ai,as,a3 € R and thus x,y,z € R. Furthermore,
define the functions

f(x,y,2) == dia® + doy® + ds2? (2.3.1.4)

and
g, y.2)=x+y+z=0 (2.3.1.5)

Consider the spectral distance dp (d1,02). In terms of the variables and
functions defined above, the supremum in (2.3.1.1) would be attained if one
were to find a maximal x subject to the constraint f (z,y,z) < 1. In fact, we
may assume, without loss of generality, that f (x,y, 2) = 1 when searching for
such a maximum, since whenever f (z,y,z) < 1, z can simply be increased
until f (z,y,2) = 1 is reached. Additionally, note that (2.3.1.5) contributes
x = — (y + z), which implies that maximising z is equivalent to minimising
y + z. Accordingly, we will minimise y + z subject to the constraint

dy (y+ 2)* + doy® + d3z? =1 (2.3.1.6)
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which describes an ellipse in the yz-plane, namely the intersection of the
ellipsoid f (z,y,z) = 1 and the plane g (z,y,z) = 0.

The extrema of y + z will occur at those points (y,z) in the yz-plane
where the contour lines of y + z, which are lines with slope zll—z = —1, are
tangent to the ellipse (2.3.1.6). The minimum will obviously be in the third
quadrant of the yz-plane where y and z are negative (maximum in the first
quadrant). Therefore, we set % = —1 in the derivative of (2.3.1.6) and solve

for the negative values of y and z:
0=2d1(y+2)(1+ dz + 2doy + 2d32% = 2doy — 2d3z
dy dy

This implies that
do

z=—y (2.3.1.7)
ds
Substituting (2.3.1.7) into (2.3.1.6) and solving for y gives
1
(2.3.1.8)

Yy=- Ry =
b (1+%2) +d+ 2

The minimum occurs at the point (y, z) given by (2.3.1.8) and (2.3.1.7); its
value is

da
y+z=y+ -y
ds

Yy

= (ds + d3) 2

(d2 + 3)d3

do + ds

Vi (da + ds)? + dod? + d3ds

. _\/ ds + ds
dida + dods + d3dy
Thus z has maximum
do + d3
— = 2.3.1.9
v=—(y+2) ¢m@+@@+@m (2:3.1.9)

Since we have found a maximal x that satisfies the constraint equation, the
supremum in (2.3.1.1) is attained. After returning to the original parameters
by substituting (2.3.1.2) into (2.3.1.9), we find that the spectral distance is

D2, + D?.
d §1.680) = 23 13
D (01,02) \/D%zD%:g + D33 D?5 + D3 D3,

The distances dp (62, 03) and dp (93, 61) are found similarly by maximising y
and z respectively; the maxima of y and z are obtained by rotating cyclically
through 1,2,3 in (2.3.1.9). O
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The following corollary shows that the spectral distances among the el-
ements of PS (As) satisfy the triangle inequality to the square. Interpreted
classically, this means that the three points (pure states) of P.S (As) lie on
the corners of a triangle with no obtuse angles, i.e. all the angles are less
than or equal to 7/2.

Corollary 2.3.2.
dp (81,03)* < dp (81,02)* + dp (Ja, 63)*
dp (81,02)* < dp (81,03)% + dp (62, 63)°
dp (82,03)* < dp (81,02)* +dp (61, 03)
Proof. Using the distances as per Proposition 2.3.1, we find that
D2, + D2, + D2, + D?
d(51,62)2+d(52,53)2: > 132 232 212 2132
D1y D33 + DiyD55 + D33 Dy
> D3, + D3y
—D2D2 +D2D2 +D2D2
1213 1223 2313
= d (61,03)

The remaining inequalities follow similarly. O

We have shown that for a given Dirac operator D as per (2.3.1), the
spectral distances in the three-point space are determined by the coefficients
of D and satisfy the triangle inequality to the square. Now we show that
this process is invertible: If three positive numbers a, b, ¢ satisfy the triangle
inequality to the square, they determine a Dirac operator D such that a, b, c
are the spectral distances in the three-point space. The proof reveals a
surprising analogy to electric circuits; we apply a well-known result that
equates a triangular circuit to a stellar circuit. The point of this exercise,
although a simple example, is to see whether one can in general build spectral
triples to fit desired metrics.

Proposition 2.3.3. Let a,b, c be three positive numbers such that
a® +b* > ¢ b +c?>a? a?+c* >
Then there exists an operator D such that
dp (61,02) = a dp (61,03) =b dp (62,03) = ¢

with coefficients given by

_ 2(b2+c2—a?)
Dz = \/(a+b+c)(—a+b+c)(a—b+c)(a+b_c)

— 2(a?+c2—b?)
Dz = \/(a+b+0)(*a+b+0)(afb+c)(a+bfc)

_ 2(a2 +b2 7c2)
Dag = \/(a+b+c)(—a+b+c)(a_b+c)(a+b_c)
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Proof. The first step is to generate a procedure that takes three spectral
distances and returns the coefficients of the Dirac operator. Let

1 1 1
R12 = R23 = R13 = (2331)
Di, Di; D3y
Using Proposition 2.3.1, we write
1 _ D},D?; + D}y D35 + D3;DY,
dp (81,02)* Dy + D3g
1 1
=+ = 2.3.3.2
Rio  Roz+ Ry ( )
Analogously, we have
1 1 1 1 1 1
— =t — =t
dp (01,03) Rz Roz+ Rio dp (02, 03) Roz  Riz + Ry

These equations bring a certain electric circuit to mind - a triangular circuit
with resistances Rjo, Ra3, Ri3:

1] S 3]

Ry

w

Figure 2.1: Triangular circuit

Figure 2.1, together with (2.3.3.2), implies that dp (61, 02)? is the resistance
measured between points 1 and 2 of the triangular circuit. In the same
way, dp (51,(53)2 is the resistance measured between points 1 and 3, and
dp (52,53)2 is the resistance measured between points 2 and 3. Accord-
ingly, if one can find three resistances Ri2, Ro3, R13 that induce resistances
dp (65, 6]-)2 between points i and j, then the coefficients D;; will follow from
(2.3.3.1).

A standard result in the analysis of electric circuits, see for example

[33, Chapter 5|, is that a triangular circuit is equivalent to a stellar circuit.
Consider a stellar circuit with resistances ri,ro, r3:
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Figure 2.2: Stellar circuit

The resistances in the equivalent triangular and stellar circuits (as set up in
Figures 2.1 and 2.2) are related via the formulas

1
Ry = (rirg + r1r3 + rors)

Ri3 = 1 (7“1’/“2 + rirs + 7“2’/“3) (2333)

23
1
Ro3 = o (T17‘2 +rirs + T27‘3)

Note that the resistances in the stellar circuit are all set in series. Therefore,
the resistances dp (9;, 5j)2 measured between points ¢ and j are given by

dp (61,02)* =11 + 12
dp (51, 53)2 =7r1+7r3 (2334)
dD (52, 53)2 =T92 + r3

Rewriting in terms of each r; separately gives

211 = dp (81,82)% + dp (61, 03)* — dp (82, 83)*
2ry = dp (01,02)* + dp (02,03)* — dp (01, 63)* (2.3.3.5)
23 = dp (61,03) + dp (32,83)* — dp (61, 62)*

If we substitute these expressions into (2.3.3.3), we can phrase the result in
terms of the coefficients of D via (2.3.3.1) as follows:

b 2(d(1.3)2+d(2,3)2—4(1,2)2)
2= 2(d(l,2)2d(1,3)2+d(1,2)2d(2,3)2+d(1,3)2d(2,3)2>—d(2,3)4—d(1,3)4—d(1,2)4
Dy — 2(d(1.2)2+d(2,3)2—d(1,3)2) (2.3.3.6)
2(d(l,2)2d(1,3)2+d(1,2)2d(2,3)2+d(1,3)2d(2,3)2)—d(2,3)4—d(1.3)4—d(1,2)4
b Q(d(l,2)2+d(1.3)2—d(2,3)2)
3= 2<d(l,2)2d(1,3)2+d(1,2)2d(2,3)2+d(1,S)Qd(2.3)2)—d(2,3)4—d(1.3)4—d(1,2)4

where d (4, j) is shorthand for dp (d;,6;). The formulas in (2.3.3.6) describe
the passage from spectral distances to the coefficients of the Dirac operator.
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Now we are ready to prove the required result: Let a,b, c be three positive
numbers such that

a2 +b* > 2 4+ >a? a+c>b?
Then define
N ST R N S T R R N
7“1.—2(@ +b° — ) 7’2-—2(a + ¢ —b°) 7’3._2(1) + ¢ —a”)

These are positive numbers on account of the assumed inequalities between
a,b,c. Therefore, we can consider them as resistances in a stellar circuit.
They define spectral distances via (2.3.3.4) as

dD (51,52) = a dD (51,(53) :b dD (52,63) = C

and an associated Dirac operator via (2.3.3.6), where the coefficients are
given, after factorisation, by

— 2(b2+4c2—a?)
Do = \/ (a+b+c)(—a+b+c)(a—b+c)(a+b—c)

_ 2(a?4c2—b?
Dis = \/(a+b+c)(—a+b+c)(a—b+c)(a+b—c)

— 2(a2+4b2—c2
D3 = \/(a+b+0)(—a+b+c)(a—b+c)(a+b—c)
O

Unfortunately, calculation of the spectral distance in higher dimensions
becomes very arduous. In fact, already for the four-point space, the spec-
tral distance is only explicitly computable when additional restrictions are
placed on the Dirac operator [25]. Moreover, the spectral distance cannot be
inverted as is the case for the three-point space. There are, however, ways
to overcome this issue. In [21], for example, by allowing the dimension of
the Hilbert space to increase, the passage from Dirac operator to spectral
distance can once again be inverted. Despite the restrictions on the Dirac op-
erator, there are interesting cases that are explicitly computable in arbitrary
dimensions. One such case, as found in [21], is where the Dirac operator D
is chosen as the incidence matrix of the n-point graph associated to the n
pure states. When the graph is maximally connected, i.e. all coefficients of
D are equal to a fixed constant, the spectral distance between any two pure
states can be explicitly calculated.
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Chapter 3

Matrix space

In this chapter, we expand our survey to noncommutative spaces. We restrict
once again to finite dimensions, in keeping with our strategy of systematically
broadening the scope of our inquiry. Specifically, we consider a finite spectral
triple built around the noncommutative algebra of n x n complex matrices.
After determining the associated space of pure states, we calculate the spec-
tral distance and venture a geometric interpretation for a low-dimensional
example.

3.1 The spectral triple and pure states
Let A, = M, (C), H, = C", and define the mapping
m: Ay — M, (C):a—a for all a € A,

as the usual representation of matrices. Let D be a self-adjoint element of
M, (C) with complex entries D;; such that

Dij:DijiE(C

for all 4,7 € {1,...,n}, where the overbar denotes the complex conjugate
of a complex number. It follows from Definition 1.4.1 that (A, H,, D) is a
finite spectral triple.

Proposition 3.1.1. The pure states of A, are given by

we (a) = (&, a8) = £ a

for every normalised vector £ € H,,, where a € A,,. Moreover, two normalised
vectors determine the same pure state if and only if they are equal up to a
phase. In other words, the space of pure states is tsomorphic to the complex
projective space:

PS(A,)~CP"!
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Proof. Since 7 (A,,) is isomorphic to B (H,,), we have 7 (A,)" = CI,. Thus
(H,, ) is an irreducible representation of A,,. Theorem 1.2.8 shows that
every nonzero vector in H,, is cyclic for (H,, 7). As per Theorem 1.2.11,
every normalised vector £ € H,, determines a pure state of A, by

we (a) = (€, (a) §) = (&, a) = £ a

In fact, all the pure states of A,, are determined by such normalised vectors
(see Example 5.1.1 in [31]).

Let &, € H, be two normalised vectors. Suppose that they determine
the same pure state; that is, for all « € A,

we (a) = (§,m(a)§) = (¢, 7 (a) ) = w¢ (a)

Then there exists a unitary matrix « such that a = uau™ for all a € A,, and
¢ = u¢. This implies that there exists a constant 6 € [0, 27| such that

which gives ‘ ‘
§=ul=e"I,( =e"

Hence, £ and ( are equal up to a phase.

Conversely, suppose that & and ( are equal up to a phase, i.e.
¢=c’
for some 6 € [0, 27]. For all a € A, it holds that

we (a) = £ ag
— e_iQC*aeiGC
= ("a(
= we (a)

Hence, £ and ¢ determine the same pure state.

Equality up to a nonzero complex number defines an equivalence relation
on H,: For all nonzero v, ¢ € H,, let

P~ when 1 = A¢ for some nonzero A € C

The equivalence classes in H,, are called the projective rays. The set of
all equivalence classes with respect to ~, i.e. the quotient space H’“L\{O}/N,
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is the space of complex lines through the origin of H, and is called the
complex projective space CP" 1. The set of projective rays is a homogeneous
space for the unitary group U (n) of n X n unitary matrices, with the group
operation of matrix multiplication. Note that a unit vector does not uniquely
determine a representative of a ray, because it retains its normalisation when
multiplied by any A with absolute value 1. The equivalence relation on the
normalised vectors in H,, is given by equality up to a phase. Explicitly, for
all normalised vectors &, € H,

E~C when £ =¢e"¢ for some 6 € [0,27]

Since we have shown a bijective correspondence between the pure states and
the normalised vectors equal up to a phase, we may identify each pure state
with a representative of a projective ray. Each representative may of course
be identified with the entire projective ray. Hence, the space of pure states
is isomorphic to the complex projective space CP™ 1

PS(A,) ~Cp!
O

For the finite spectral triple (A,,, H,, D), as above, with the most general
Dirac operator (an arbitrary self-adjoint n x n matrix), the spectral distance
cannot be calculated in arbitrary dimensions n. However, such computations
are possible for n = 2. Before we evaluate this case, consider the following
lemma that holds in arbitrary dimensions and shows the invariance of the
spectral distance under simultaneous unitary transformation of the Dirac
operator and the pure states.

Lemma 3.1.2. Let (A, Hy, D) be the finite spectral triple with associated
pure states we as above. For any unitary U € A, such that

D :=U*DU and W (a) == we (UaU™)
where a € Ay, the spectral distance satisfies

dp (e, 0¢) = dp (we, we)

<1}
spec

= sup {|(w§ —we) (UaU™)| : ||U [U*DU, q] U*Hspec < 1}
acA,

Proof.

dp (Ge.30) = sup { I3 = 30 @) | [B.d]

= sup  {I(we — we) (Ual™)|: |[D, Ul < 1
UaU*€Ayp

= sup {I(wg ) (@) 1Dl < 1}

= dp (wg,we)
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3.2 The two-sphere

We consider the finite spectral triple (Ag, Ho, D), which is the spectral triple
in Section 3.1 with n = 2. Since D is self-adjoint, it is diagonalisable by a
unitary transformation. Let U € A,, be the unitary that diagonalises D such

that
- . Dy 0
D =U"DU = < 0 Dy )

where D1, Do are the strictly positive eigenvalues of D. As per Proposition
3.1.1, the pure states of As are determined by normalised vectors £ € Ho as

we (a) = & ag
The associated space of pure states is the complex projective line CP!:
PS (As) ~ CP!

Proposition 3.2.1. For the finite spectral triple (Ag, Ha, D), the spectral
distance between any two pure states we and we of Az, where

(& A
§_<€2>’C_<C2>€H2
such that |||l = |IC]| = 1, 4s

2 _ 2 ; _
dp (we,w¢) = { D1=D] 1— [ Q)l if &l =G
400 otherwise
if D has distinct eigenvalues. If Dy = Do, then dp (we,we) = +00.

Proof. We sidestep some of the computational difficulties in calculating dp (wg, w¢)
by first considering the distance between the same two pure states but ac-
cording to the diagonalised operator D, i.e.
<1f
spec

< 1} (3.2.1.1)
spec

i (we.00) = sup {[(w ~ ) (@) : | [Do(o)]

= sup {ltwe ) (@) : | [Bu(a)]

acA3®

After expressing (3.2.1.1) in terms of an inner product, Lemma 3.1.2 will
allow us to easily convert to the desired spectral distance; the point is that
the inner product is preserved by unitary operators. Note that we search
the supremum in (3.2.1.1) on A3?, as allowed by Lemma 1.3.2. It is worth
mentioning that the map a — UaU™ is an automorphism on B (H,,). There-
fore, searching for a supremum over all a € Ay is equivalent to searching
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over all UaU* € As. In particular, since UaU* is self-adjoint whenever a
is self-adjoint, Lemma 1.3.2 is still applicable when considering the spectral
distance for unitarily transformed operators and pure states. Keeping this
in mind, we consider arbitrary a € A5 henceforth. The fact that a* = a
has components that satisfy a11, a2 € R, a12 = az1, and |a12| = |ag:1| will be
used without further mention.

Let us start by evaluating the norm constraint in (3.2.1.1): We find that

2] = ( (0, ~pyan 07"

and

~ * ~ - ? a ’
prt@] [prrta] = (P )

The norm, therefore, evaluates to

H [D’”(“)} = |ai2| [D1 — Do (3.2.1.2)

spec

At this point, we take the opportunity to consider the trivial case where
Dy = D». The intermediary distance in (3.2.1.1) is unnecessary in this case.
Directly from Lemma 3.1.2, with the norm in (3.2.1.2) zero, it follows that

dp (we,we¢) = dp (Wg, @¢)

— sup {lie (a) — G (a)] 10 < 1)
acA3®

:—|—OO

Henceforth, we let D1 # Dy and consider them distinct eigenvalues of D.
Substituting (3.2.1.2) into (3.2.1.1) gives

1
dp (we,we) = su we —we) (a)] @ |ae] £ —=——— 3.2.1.3
0 = s I~ ) @1 foal < b (3219

The difference between the two pure states can be written as

(we —we) (a)
= £ag - ¢"a
2
= Z aij (&€ — G¢)
ij=1
= ant (6P = 1617) + a2 (1l - 1G) + a2 (616 — G&) + ax (&6 - &G1)

(3.2.1.4)
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The expanded form is included seeing as it parades the appropriate choice of
components when searching for the supremum. We are now ready to evalu-
ate the different cases.

Case 1: |&1] # [G1]
Let ar, € A3 such that

GL:<€ 8) where L eR"

For ar, (3.2.1.4) becomes

(we —we) (ar) = L (J&1* = 11 ?)

Also, it satisfies the constraint so that (3.2.1.3) is solved as

1
dp (we,w :sup{ww a)l:la g}
b (we, we) Su, [(we = we) (@)l +faral < 75—

> sup {|2 (jaf - 1aP)[}
LeR+
= +OO
It follows that dp (we,w¢) = +00.

Case 2: |&1] = |¢1]
Since &, ¢ are normalised, we have

G + e =g =1=CC= G +16f
which implies that
€| = |C2]
Then (3.2.1.4) becomes

|(we —w) (a)] = ‘a12 (&162 — C162) + an1 (£261 — ECl)’
= [2R (a12 (€162 — C162)) |
< 2a1z (162 — (1¢2) |
= 2|a1a| €162 — C1¢o] (3.2.1.5)

If we can find an element a € A5* that reaches the upper bound in (3.2.1.5),
then the supremum in (3.2.1.3) will be attained by choosing |a12| = B L

Bam
Let ag € A5® such that 2
0 12| e & &
ap = a7 0 where 0 = arg (§1&2 — (1¢2)
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For ag, (3.2.1.5) becomes
(we = wc) (ag)| = |2 (Jasale™ (€162 — C16o) )|
= ’2% <|a12| e |68 — G eieﬂ
= [2R (Jasz] [€162 — G G2

= 2|a1a |62 — 16

Hence, the upper bound is reached for ayp € A5*. Substituting into (3.2.1.3)
gives

_ 1
dp (we,we) = sup_ {2 laa| |616 — C1Go| ¢ |a1a] < }

ar2€ |D1 — Do
2 |66 — 1o
= (3.2.1.6)

We proceed to find an intrinsic formulation of (3.2.1.6), in terms of the
normalised vectors that determine the pure states. Besides its aesthetic
value, the eventual expression will provide an easy way of converting from
our intermediary distance to the distance that is the actual intent of this
proposition. Recall that we are still dealing with the case where || = |(1]
and |&2| = |C2|. We can write

€16 = C6f* = laP el + ol el - Geas - G&at
= |&? (1 - \C1|2> + 162l (1 - |§2\2> — (061 — 1600
= (1P +1:P) &P 6P - 6P &l - 066 s - 860G
=1— (&G +&G) (GG + £6)
=1- (£ Q)"
=1-[(£ 0P
Substituting this expression into (3.2.1.6) gives
__ 2 _ 2

If £ is a normalised vector, i.e. {*§ = 1, that determines a pure state w,
then
U (U"g) =£TVUE=1
shows that U*¢ is normalised and determines the pure state
wye¢ (a) = (U*E) a (U*€)

=& UaU*¢

= We¢ (UCLU*)

= @ (a)
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Using this formulation in (3.2.1.7), together with Lemma 3.1.2, gives
dp (we, we) = dp (e, @¢)
=dp (Wy=¢, wy=¢)
2 2
= 1 - |(U*€,U*
BV I 0E U]

_ 2
|Dy — Ds|

1— (0

as required. O

It is possible to formulate the distances in Proposition 3.2.1 in terms of
Euclidean coordinates on the two-sphere S2. This follows from the fact that
the complex projective line CP', and thus the space of pure states PS (As),
is isomorphic to the two-sphere S2. We briefly exhibit this correspondence;
details can be found in [32, Chapters 1 and 4].

Let e = ( (1) > and eg = < (1) > be the canonical basis for C2. For a
normalised vector ¥ € Ho, it holds that

W, ) = |1 + |yo)* =1

This constraint on the components allows us to write

Y = threr + haeg
= e ( cos(0/2)e; + €' Sin(0/2)eg>
where ¢,y € [0,27] and € € [0, 7]. Since normalised vectors equal up to a

phase determine the same ray in CP!, the factor ¢ can be dropped. In
other words, we may write each ) € CP! as

1 = cos(0/2)e; + € sin(H/2)eq

where ¢ € [0,27] and € € [0,7w]. The parameters § and ¢ may be re-
interpreted as spherical coordinates in R®. We let 6 be the colatitude with
respect to the z-axis and ¢ the longitude with respect to the x-axis. They
specify a point p on the unit two-sphere by

P = (z,y,2) = (cos @sin b, sin psin h, cos 0)

such that
IpI* =2 + 4 + 2% =1

Proposition 3.2.2. Every ¢ € CP! is associated to a point pe = (¢, ye, 2¢)
on the unit two-sphere via

re=2M(68)  we=29G&)  w—laf - &P
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Proof. Every & € CP! can be written in terms of the canonical basis as
& = &1e1 + Eoeo, where the coefficients are given by

£ =cos(0/2) and & = e sin(6/2)
Simple substitutions give
2R (&1&2) = 2R (cos(6/2)e” " sin(0/2))
= 2cos(0/2) cos(p) sin(0/2)
= cos psinf

23 (£1&) = 25 (cos(6/2)e' sin(60/2))
= 2sin(yp) sin(6/2) cos(0/2)
= sin psin 6

[€11* = &2 = cos®(8/2) —sin®(6/2)

= cos

= Zﬁ
where pe = (¢, ye, 2¢) = (cos psin 6, sin psin §, cos §) specifies a point on the
unit two-sphere. ]

This sphere, considered isomorphic to the complex projective line CP?,
is sometimes called the Bloch sphere and denoted S2. Note that the basis
vectors correspond to the poles of the Bloch sphere. Since we have already
shown that the space of pure states P.S (As) is isomorphic to CP?, it follows
that the pure states correspond to points on the Bloch sphere and

PS (Ag) ~ S?
Consequently, we can write the spectral distance between pure states in
Proposition 3.2.1 in terms of Euclidean coordinates, i.e. as distances on S2.

Proposition 3.2.3. For the finite spectral triple (Ag, Ha, D), the spectral
distance between any two pure states we and we of Az, where

(& S
§_<€2>’C_<C2>€H2

such that [|€]| = [[¢]l =1, ds

1 B 2 N2 _
dp (we, we) = iy e — 20 + (e —ve)® il % %
+00 otherwise

if D has distinct eigenvalues. If Dy = Do, then dp (we,we) = +00.
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Proof. The pure states we and w correspond to points pe = (x¢, ye, 2¢) € 52
and pc = (z¢,yc, 2¢) € S? respectively, as treated in Proposition 3.2.2 and
the ensuing discussion. If we focus for a moment on the components

=G - &l and 2z =G -Gl
it follows easily from the fact that £ and ¢ are normalised that
ze = z¢ ifand only if |&1| = |(y|

Therefore, the conditions for finiteness of the spectral distance remain the
same as in Proposition 3.2.1. Specifically, the distance is infinite whenever
ze # z¢. All we are left to do is rewrite the expression for the case |£1] = |(1]
in terms of the new variables. We use the relations in Proposition 3.2.2,
together with the fact that

@B + Ba = 2(8%((1)%(6) +s<a)s(5)) forall a,8€C

to find

(2[&6: — CG))! =4 (€& — G&) (68 — (iG)

1|08l +aG]" - 06t - 68as)

1R (E8)+9(68) +R(00)"+9(00)?)

8 (R (C1G2) M (&162) + S (G12) S (6162))
= af +yg +al +yf — 2wcre — 2ycye
= (z¢ — 2¢)* + (ye — yc)

Substituting this expression into (3.2.1.6) gives

2|66 — ¢
|D1 — Dy

1
= M\/(% — ) + (ye — we)?

dp (we,we) =

Since dp (wg,w¢) = dp (we, we) as shown in Proposition 3.2.1, the required
result follows. O

Proposition 3.2.3 allows for geometric interpretation: The spectral dis-
tance between pure states associated to the spectral triple (A2, Ha, D) is, up
to a constant factor, the Euclidean distance on the two-sphere S? restricted
to planes of constant altitude (equal z-components), where the distance be-
tween two planes of different altitude is infinite. In other words, the spectral
distance equips the two-sphere with a metric that slices the sphere into cir-
cles at infinite distance from one another, where the distance on each circle
is proportional to the Euclidean distance. In particular, the poles of S? are
at infinite distance from any other pure state.
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Part 11

The Moyal plane

Here we study the nonommutative geometry of the Moyal plane
from a metric point of view. The Moyal plane is an isospectral
deformation of the Euclidean plane R?; that is, the Moyal plane
is an infinite-dimensional spectral triple in which the algebra is a
noncommutative deformation of a commutative algebra of func-
tions on the Euclidean plane, while the Dirac operator keeps the
same spectrum as in the commutative case [39]. Following the
outline in [12], we construct a spectral triple based on the Moyal
deformation of the algebra of Schwartz functions on R? and cal-
culate the spectral distance between some of the associated pure
states.

In Chapter 4, we define and characterise the algebra of the Moyal
plane A. Chapters 5 through 8 are concerned with finding equiv-
alent representations of A; this not only paves the way towards
assembling the spectral triple of the Moyal plane but also pro-
vides a context within which calculation of the spectral distance
becomes tractable. After extending the Moyal product to larger
spaces of tempered distributions in Chapter 5, we construct a
basis for L? (Rz) consisting of Schwartz functions in Chapter 6.
The ensuing basis expansions allow us to represent the Schwartz
space as a sequence space in Chapter 7. Moreover, we use this
sequence representation to find a matricial form of the Moyal
product, which we extend to L2 (Rg). The foundations laid in
Chapters 5 through 7 support the equivalent representation of A
that we define in Chapter 8. Finally, after determining the pure
states of A in Chapter 9 and assembling the spectral triple of the
Moyal plane in Chapter 10, we calculate the spectral distance
between certain pure states in Chapter 11.
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Chapter 4

The algebra A of the Moyal
plane

The first ingredient in the spectral triple of the Moyal plane is the non-
commutative algebra called the algebra of the Moyal plane. This algebra, is
formed by equipping the space of Schwartz functions on R? with a Moyal
product. In Section 4.1, we introduce the Schwartz space and its natural
topology. The Moyal product is defined in Section 4.2 and used to define
and characterise the algebra of the Moyal plane.

4.1 Schwartz space S

Here we define the Schwartz space and characterise it as a Fréchet space.
First, we introduce a few notational conventions. Then, we state the rele-
vant definitions and theorems without proof. The proofs and more detailed
accounts of the concepts can be found in [34, Chapter V]|.

The Euclidean plane R? is parametrised by Cartesian coordinates x; for
j=1,2. For any = = (z1,22),y = (y1,¥2) € R?, we let

x-y (4.1.1)

denote the usual dot product between vectors. Also, for j = 1,2, we let

0
= 4.1.2
8] 8.13]‘ ( )
denote the usual partial derivatives. If o; € Ny = N U {0}, then
a = (a1, a9) (4.1.3)

denotes a two-dimensional multi-index such that

lo| = a1 + ag
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Note that for two multi-indices «, 5 € N%,
a<p ifandonly if a; <pB; for i=1,2
Furthermore, we write
% =zt x? (4.1.4)
and al
80&1 aaz 8 o
0% = 071052 = = 4.15
L2 0" 0x5?  Ox{'0xy? ( )

where 0%f = f if |a| = 0 for any function f.

Definition 4.1.1. A seminorm on a vector space X is a map p : X —
[0,00) such that for all x,y € X and X\ € C:

(i) p(x+y) < p(x)+p(y)

(ii) p(Az) = ]\ p (2)
A family of seminorms {pa},cr, where I is some index set, is said to sep-
arate points if

(111) pa (x) =0 for all a € I implies x =0

Definition 4.1.2. A locally convex space is a vector space X with a family
{Pa}acr of seminorms separating points. The natural topology on a locally
convex space is the weakest topology in which all the p, are continuous and
in which the operations of addition and scalar multiplication are continuous.

Definition 4.1.3. A net {xg} in a locally convex space X is called Cauchy
if and only if, for all € > 0, and for each seminorm p, there is a By so that
pa (g —xy) < €if B,y > Bo. X is called complete if every Cauchy net
converges.

The important structure on a locally convex space is the natural topology
rather than the particular seminorms used to generate the topology. We
call two families of seminorms {pa},c4 and {ds}s p on a vector space X
equivalent if they generate the same natural topology.

Theorem 4.1.4. Let {pa},cq and {dg}scp be two families of seminorms.
They are equivalent families of seminorms if and only if for each a € A,
there are B1,...,0n € B and C > 0 so that for all x € X

po () < C(dg, (x) +...+dg, (z))

and for each B € B, there are ai,...,am € A and D > 0 so that for all
reX

dg () < D (pay (%) + ... + pay, (7))

Theorem 4.1.5. A locally convex space X is metrisable (has topology gen-
erated by a metric) if and only if the topology on X is generated by some
countable family of seminorms.
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Theorem 4.1.6. Let {p, },- | be a countable family of seminorms generating
the topology on X . The topology is given by the metric defined by

play) = g:l 2 (%)

and a net {xq} in X is Cauchy in this metric if and only if it is Cauchy in
each py. Thus a metrisable locally convexr space X is complete as a metric
space if and only if it is complete as a locally convez space.

Definition 4.1.7. A Fréchet space is a complete metrisable locally convex
space.

Definition 4.1.8. The Schwartz space of smooth rapidly decreasing complex-
valued functions on R?, denoted by S (]RQ), 1s defined as the set

S (R?) := {f € C™ (R?) : [ fllq,5 = sup x“@ﬁf(m)’ < oo forall a,p € Ng}
' z€R2

where C'*° (Rz) denotes the space of infinitely differentiable (smooth) complex-

valued functions on R2.

The functions in S (R2) are those functions which, together with their
derivatives, fall off more quickly than the inverse of any polynomial. In other
words, z20° f (x) goes to zero as |z| — oo for all a, B € N2. Therefore, the
functions in S (]RQ) are said to be rapidly decreasing.

Henceforth, we let
S =S (R?) (4.1.6)

Note that for each seminorm ||-||, 5, an open ball of radius r centered at
some f € S is given by

By, (frr) = {g €S5:lg—fllag < r} (4.1.7)

Thus, each HHaﬁ specifies a topology 7,3 on S. A set is open according to
Tap if it can be expressed as a union of open balls. The topologies 7,5 put
together generate the natural topology 7 on S, as per Definition 4.1.2, and
is called the Schwartz topology; in other words, the Schwartz topology is the

smallest topology containing all sets of |J 748, thus making each seminorm
0{7/3

H-Haﬁ continuous.

Theorem 4.1.9. The Schwartz space S with the natural topology given by
the seminorms ||-||, g is a Fréchet space.
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4.2 Moyal product %

We equip the Schwartz space S with a Moyal product *, also called the
twisted product, and show that this produces a noncommutative, non-unital,
involutive algebra. Further properties of the Moyal product are explicated
to serve as a toolkit for the subsequent sections. Most of the results in this
section follow from [18].

Let 8 > 0 be a fixed positive real parameter, and define
0 1
0:=00=2~0 ( 10 >

R? xR? - R: (z,y) — = - Oy

Then the map

defines a symplectic bilinear form on R?, i.e. a bilinear map that is alter-
nating (z - ©x = 0 for all x € R?) and nondegenerate (x - Oy = 0 for all
y € R? implies = = 0). Note, in particular, that for all z,y € R? it holds that
x - Oy = —y - Ox. This symplectic bilinear form will be used to define the
Moyal product on S and in so doing will serve to deform the commutative
algebra of Schwartz functions equipped with pointwise multiplication to a
noncommutative one. For the definition below to make sense, we mention
here that S C L? (RQ). This will be proven shortly in Proposition 4.2.1.

We define the Moyal x-product on S by
1 —i2y-© 1z
(f *9) (x) = (mg)g/f (r+y)g(x+2z) e 2O 2d2yd?, (4.2.1)

for all f,g € S. The commutator of the x-product was introduced in the
context of phase-space quantum mechanics by Moyal [30] using a series de-
velopment in powers of 0, where the first nontrivial term gives the Poisson
bracket. The form above followed later when Moyal’s series development was
considered an asymptotic expansion of oscillatory integrals. In [17] and ref-
erences therein, it is discussed how the usual pointwise product of Schwartz
functions is recovered in the classical limit & — 0 from left x-multiplication,
with convergence in the Schwartz topology.

Furthermore, we define on S an involution given by complex conjugation
of functions

f*(z):= f(2) (4.2.2)
and pointwise multiplication by a coordinate as
(i f) () = z; f (2) (4.2.3)
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for j = 1,2. Also, we define a flip operator by
f @) = f(~2) (1.2.4)

The following notation will be useful when performing calculations with the
partial derivatives:

Of:=0f and Oof :=—0f (4.2.5)
In a similar vein to (4.1.4) and (4.1.5), for a multi-index o € N3, we write
p® = ptpy?  and 9% = 9,79, (4.2.6)

For the remainder of this dissertation, we make the following normalisa-
tions, as per [18], in order to simplify the definition (4.2.1) and the subsequent
calculations:

e For integrals over R?, we use the Haar measure dz := %dzm, where d’x
is the usual Lebesgue measure. This will relieve us of powers of 27 in the
Fourier transforms we define below.

o We use the bilinear form
= /f (x) g (z)dx (4.2.7)

(fl9) = 1/2 (", g) = 1/2 / F @y () dx (1.258)

and the sesquilinear form

whenever the integrals converge.
e We set 6 = 2 so that © = 2Q).

By applying these normalisations, it is simple to show that (4.2.1) simpli-
fies to the following two equivalent definitions of the Moyal (twisted) product:
If f,g €S and s, t,u,v,w € R? then

f*g //f z (u-Qu+v-Qu+w- Q“)dvdw (429)

- / / f(uts)g (utt)e™dsdt (4.2.10)

As a tool for later calculations, we define another product on S, which we
will see is related to the Moyal product via certain Fourier transforms. For
f,g € S, we define the twisted convolution ¢ by

(fog)( /f uw—t)g(t)e "t (4.2.11)

The normalisations above also allow us to define the space of measurable
functions that are square-integrable with respect to the Haar measure as
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follows: Let L2 (Rz) denote the set of complex-valued measurable functions
on R? which satisfy

|f (2)]? dz < 0o

Note that L2 (RQ) becomes a Hilbert space when equipped with inner prod-
uct (-|-), as defined in (4.2.8). The induced norm is given by

1£l = (1)} = (1/2 / rf<x>rzdm)2 (1212)

for all f € L? (R?). Furthermore, we define ||-||, on S as the seminorm
|l 5 in Definition 4.1.8 with a, 8 =0, i.e.

1flloe := sup |f ()] = I flloo (4.2.13)
z€R2
for all f € S. Finally, we define the family of semi { }
or all f inally, we define the family of seminorms { |||/ v 5 NeNo SN2
on S, where
1l i= sup (1 [z [0 ()] < o0 (4.2.14)
z€R2

for all f € S. This family of seminorms is equivalent to the family {|| o 5} seng’

’ a,pENG
in the sense that they generate the same topology on S [37, Chapter 7].
Proposition 4.2.1. S is dense in L? (RZ).

Proof. First, we show that S C L? (]RQ). Let f € S be arbitrary. Using the
seminorms defined in (4.2.14), we find that

171, = (172 \f<ac>|2dac)é

= (12 [ alab s Ix!)6\f(w)!2dx)§

< (1/2 [a+ \x|)6dx>2§élﬂg(1+ 2l)? 1f (@)

<C|flls0

for some constant C' < oo. Also, | f|l3 < oo follows from the fact that
[ fllyp < oo for all N € Ng and 8 € N3 when f € S. Thus f € L? (R?).
Since f € S was chosen arbitrarily, it follows that S C L? (R2).

Now, let C§° (Rz) denote the set of smooth functions of compact support
on R2. In other words, it is the set of infinitely differentiable functions f
such that the closure of the set {z : f (x) # 0} is compact. Clearly

Cy(R*) S
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It is well known, see for example [16, Proposition 8.17|, that C§° (]RQ) is
dense in L? (R2). Therefore, S is also dense in L? (R2). ]

A similar proof gives S C L! (Rz). Moreover, if f € S, then the function
R? —» C:z > z°f (z) isin L' (R?), where we use the notation from (4.1.4).

Now we define an ordinary Fourier transform § and two symplectic
Fourier transforms F' and F on S by:

(Ff) (w) = / ft)ye tudt (4.2.15)
(Ff) (u) = / £ (£) et gy (4.2.16)
(Ff) (u) == / £ (1) ety (4.2.17)

Note that these integrals make sense because S C L! (RQ).

Lemma 4.2.2. The transforms §, F and F are commuting isomorphisms
(of Fréchet spaces) of S onto S, and satisfy the following properties for all

f,ges:
(1) Ff)=§f(m)
(2) Ff (u) = §f (~Qu) = F ()
(3) (Ff)" = F(f")
(4) F?=F*=1
(5) F (8;f) = =i Ff
(6) F (i f) = —id;F f
(1) (Ff.9) = (f.Fg)
(8) (Fflg) = (f|Fg)
(9) (8f.9) = ([, 39)
Proof. The fact that the transforms are commuting isomorphisms of S onto

S can be seen in [35, Chapter IX]|. Properties (1)-(3) follow directly from
the definitions (4.2.15), (4.2.16) and (4.2.17). Let f € S. Then, since S C
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L' (RQ), we may apply Fubini’s theorem to satisfy property (4) as follows:

() = F [ £t
= [ ([ o) e omar
[ [ ryemenar
= / / f () e =gy gy
s

where § () denotes the Dirac delta function, which was first treated with
mathematical rigour as a generalised function or distribution in [38]. Thus
F? = I and similarly F? = 1.

To prove property (5), first note that if f € S, then there exists a constant
C > 0 such that
If @) <C+]e)~

It follows, for j =1, 2, that

: —it-Qu
<
i [f@ert ] < tm If ()

< lim C(1+|e)!
tj—rdoo

=0

Now we use integration by parts, where the boundary terms go to zero due
to the expression above: For j =1,

F(or) )= [ (7)) ar
— [ @ @e
[ [ Lo e—”““)dwdtl— [ 105 ) drain
/ £ () emitsm|* _dt— i / () ey

w1Ff() !
:—WlFf()

For j = 2, we find F (égf) (u) = —ipoF f (u) by following the same steps
as above, while taking into account the difference in signs coming from
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éQf = —01f. Hence, F (@f) = —iu; F'f, as required.

Property (6) is found similarly to property (5). Properties (7) and (8)
are found by using properties (1)-(3) in the definitions of (-,-) and ( |-) in
(4.2.7) and (4.2.8) respectively. Property (9) follows from definitions (4.2.7)
and (4.2.15). O

We now proceed to prove certain properties of the Moyal product that
will allow us to characterise the Moyal algebra.

Proposition 4.2.3. The Moyal product satisfies the Leibniz rule: If f,g € S,
then

0j (f*g)=0;f*g+ fx0jg

Proof. Let f,g € S. Note that S is closed under pointwise multiplication
and S c L' (RQ). The partial derivative with respect to u; of the integrand
in (4.2.10) exists and is uniformly bounded by an L' function. Therefore,
the dominated convergence theorem implies the Leibniz integral rule, which
allows us to differentiate (4.2.10) under the integral:

9 (f *g) (u)

_//88% f(u—i—s)g(u—i—t))eis'mdsdt
// i f ( u+s g(u—+t) eis'mdsdt—i-//f(u—l—s) (6jg(u+t)>ei8'ﬂtdsdt
= (0jf x g) (w) + (f * 9;9) ()

Proposition 4.2.4. Pointwise multiplication by a coordinate obeys
1 (f xg) = f*ﬂj9+i(3jf> *g=(uif)xg—if x0;g

forall f,ge S.
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Proof. Using (4.2.16) and Lemma 4.2.2(5) in the definition (4.2.9), we find

1 (f x 9)
/ /Ugf z(u~QU+v-Qw+w-Qu)d,wa

_ //u]f (U)g (w) efiv-Q(ufw)eiw-Qudvdw

= [ D) = w) g ) e

= [ ) () (0 ) g )
:t/}W(PT)Ul_“Ug(w)eZﬂﬂwdw%—/kuj—1%)(Ff)ht—uﬁg(w)ei”dew
- / / f (W) wig (w) e =X dydu + / (i F'f) (u—w) g (w) ™ dw

~ [ [ 10 9 )2 v i [ ((,5)) (u = w)g (w) e o
— [ [ 10 gy @)oo i [ [ (351) @) (w) e 2w Sduan
= (f xp59) (u) + (Z (@f) *g> (u)

for all f,g € S. The second equality is found similarly using Lemma 4.2.2(6).
O

Proposition 4.2.5. If f,g € S, then (f xg) € S.

Proof. We offer a proof via induction on the formulas in Propositions 4.2.3
and 4.2.4. The number of combinations available for distributing higher
order derivatives and polynomials over the Moyal product will be expressed
by binomial coefficients, which are defined, for n, ¢ € Ny such that n > ¢ > 0,

by |
()= om= (")

It will be useful to remember Pascal’s rule: For 1 < ¢ <n + 1, it holds that

<®+Q20:02§

We extend this notation to include multi-indices: For «, 8 € N(QJ, we write

(5)= G () = memm= (a2 )

aiﬁ:(ali/@17a2j:,82) and a':allazl

where
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Let f,g € S be arbitrary. First, we use induction on the Leibniz rule.
From Proposition 4.2.3 we have that

1
1 _
aj(f*g)zajf*g+f*8jgzz<€>5§ f* g
=0

This serves as the basis for the induction. Now fix n € N and suppose that

AVEEDY (Z) 07" f*0lg

=0

as the induction hypothesis. The induction step follows:

(op =« 0lg+ ' f 0 g)

Y\ ant1—¢ 1 — (n n—~¢ 0+1
e)ai f*ajg+2(€)aj fxoitlg
/=0

n " /n _ n n = n Al
O>a?+1f*g+z<€>a]n+1 ef*afg+ <n>f*8j+1g+z<£_l>aj+1 ef*ajefg
(=1 (=1

n\ .n n n A1
Qs (s £
=1

Since this holds for arbitrary n € N, it follows by induction that

T (frg)=> (Z)a;ff*afg (4.2.5.1)

=0

Now consider multi-indices v, € € N% with components k, ¢, m,n € Ny such
that v = (m,n) and € = (k, £). Repeated application of (4.2.5.1), expressed
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in terms of the notation (4.1.5), gives

0" (fxg)=01"03 (f *g)

n

n _
_af“bZ(g)ag Cf %05
=0
n m n—
- <€>51 (82 gf*%Q)

< > < )am kon=tfx 0kalg
0

- < ><> m— k,nfﬂ)f*a(k,f)g
(=0

(€>m—€f*a€g (4.2.5.2)

I
NE

~
Il

I
M:

~
Il

I
Ms

i
o

€

IN
2

Note that f x g € C* because f,g € C°.

Next, we use induction on the pointwise multiplication rule. From Propo-
sition 4.2.4 we have that

1
e A N2t _ A
5 ) = ) wg = if <0y = 3 0 (3 )k s
(=0
which serves as the basis for the induction. Now fix n € N and suppose that

pi (fxg)=>_ (=) (Z) pt = f x Ofg

=0

as the induction hypothesis. Then we use similar manipulations as in the
case above to find

n+1 n+1
n—‘rl(f*g) Z(_Z)ﬁ( ) > n+l— Kf*af
Since this holds for arbitrary n € N, it follows by induction that

Wi (fxg) = (=) (7;) p = f x Ofg (4.2.5.3)

=0

Now consider multi-indices «, 8 € Ng with components k, ¢, m,n € Ny such
that « = (m,n) and 8 = (k,¢). Note that || = k + ¢. Repeated application
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of (4.2.5.3), expressed in terms of the notation (4.2.8), gives

=S 0 () o (b ot

(=0 k=0
m n m B .
:Z k+£<k)( ) m—kymn e)f*a(kx)g
k=0 ¢=0
=5 (=)l (5) P fx 0% (4.2.5.4)
BLa

Combining (4.2.5.2) and (4.2.5.4) gives
peo" (fxg) = Z( >(976f*8€g
(1) @)
£ (V5o (s
- Z > (=) < >< > PP fx0%9°g  (4.2.5.5)
Bl e<y

for all o,y € N2. From the definition of x in (4.2.9), we find the following
norm inequality:

1f % 9lloe = sup [(f *g) (z)]
= sup

zER?
//f (U) g (w) ei(w-Qerv-Qerw-Q:v)dvdw’
z€R?

sup // ‘f (U) g (w) ei(x-Qerv-Qerw_Qx)
z€R2

[1r@ldo [ 1g(w)du

= [I£1l gy (4.2.5.6)

IN

dvdw

IN

Note that u®897=¢f € S and éﬂaeg € S whenever f,g € S. Therefore,
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from (4.2.5.6) and (4.2.5.5), it holds for all o,y € N2 that

1 % gllay = 11207 (f % 9)lloo

— Iy Iﬁ< )<€> LB f 4 g

Bl e<y

<SS (5) (1) oo
Bl e<y
<Y ¥ (g) ( ) ‘ po—Ber—e ‘1 Héﬂaeg (1 (4.2.5.7)
B<a €<y
< o0
Hence, Definition 4.1.8 is satisfied so that (f xg) € S. O

On our way towards proving associativity of x, we consider the way the
Fourier transforms in (4.2.15), (4.2.16) and (4.2.17) intertwine the twisted
product * and the twisted convolution ¢. This will allow us to perform
relatively simple calculations in ¢ before transferring the results to x. The
next proposition regards these intertwining properties and the subsequent
one proves associativity.

Proposition 4.2.6. For all f,g € S, it holds that

fxg=(Ff)og=fo (Fg) (4.2.6.1)
fog=(Ff)xg=fx (Fg> (4.2.6.2)
S(f*g) = (5f) o (F9) (4.2.6.3)
S(fog) = (3f)*(Tg) (4.2.6.4)

Proof. Let f,g € S be arbitrary. We use definitions (4.2.9) and (4.2.11) for
* and ¢ respectively. The Fourier transforms §, F and F are defined in
(4.2.15), (4.2.16) and (4.2.17). We find

f*g //f z (u-Qutv-Qu+w- Qu)d’l}d’w

//f —w-Q(u—w)einudvdw

~ [FD - w)gw)e i
= (#pog) @
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which proves the first equality in (4.2.6.1). The remaining equality in (4.2.6.1)
and those in (4.2.6.2) follow similarly. We find (4.2.6.3) by applying Lemma
4.2.2 (1) and making appropriate substitutions as follows:

///f z(s Qu+v-Qu+tw- Qs)dvdw eI g
s ///f (U) g (w> e—iU‘Q(S—w)eiw'Qse—iS~udvdwds
= //(Ff) (S _ U)) g (w) e—iS'Qwe—iS-udwds

= //(gf) (QS _ Qw) g (w) e—is-(Qw+u)dwdS
= // (3]0) (U _ t) g (7“) e—i(—ﬂqL-&-Qt-&-r)-(Qr—&-u)drdt
= [ [ @5 =gty ety

- / ) (= 1) (3g) () e ™ dt
= (6hH°G9) ) @

A similar proof gives (4.2.6.4). Note that expressions exactly analogous to
(4.2.6.3) and (4.2.6.4) hold with § replaced by either F' or F. O

Proposition 4.2.7. The Moyal product x : S x S — S s an associative
product.
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Proof. Let f,g,h € S. We begin by showing that o is associative:
(feg)oh)(u) = / (fog)(u—t)h(t)e ™Pqt
= //f (u—t—s)g(s)e g p(t) e gy
= //f (u—t—5)g(s)h(t)e (W=t geq
= //f (u—v) g (v—1t)h(t)e @Rt gyqs

- [ru-v ( [ow-vnw e—wﬂtdt> ey

/f u—v) (goh)(v)e "y
= (folgoh)) (u)

Now, by applying (4.2.6.3) multiple times and using the associativity of ¢
above, we find

S((fxg)*h) =T (fxg)oTh
= (§f©Fg) oFh
=35/ o (JgoTh)
=35foS(gxh)
=T (f*(g*h))
Hence, (f xg) x h = f % (g = h); the Moyal product is associative on S. [

Proposition 4.2.8. Complex conjugation of functions f — f* is an involu-
tion for the Moyal product.

Proof. Using definition (4.2.10), we find that

(f*xg)" (u) <//f u+s)g(u+t) ZSQtdsalt)

— [ [ T sigtas ne s asai

// (u+1t) f* (u+ s) e dtds

= (g * f*) (u)

for all f,g € S. Furthermore, we have that (f*)* = f and that (af + 89)" =
af*+ Bg* for all a, 3 € C. Thus, complex conjugation defines an involution
for the Moyal product. O
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Proposition 4.2.9. The Moyal product x : SxS — S is a jointly continuous
bilinear map.

Proof. The natural topology of S (Schwartz topology) is equivalently gener-
ated by the two families of seminorms {pa~},, eN2 and {gay},, yenz» where

Pary () =07 [l = sup [2*07 f ()] (4.2.9.1)
zeR?2
and
dor (F) = 111l :/|m“6”’f (2)] da (4.2.9.2)

In other words, each pa (f) is continuous in the topology generated by
{qm}a,vel\% and each ga (f) is continuous in the topology generated by
{Pary}, ez See, for example, |34, Chapter V].

Let n = (n1,m2) € N3 such that n; = B2 and 12 = (1. Then, using the
inequality in (4.2.5.7), it follows that for all f,g € S and o,y € N3

Pary (fxg) = |n07 (f * 9)ll oo

<220l ol
B<a €<y
- X () ol teai=d
B<a €<y € 1
=S5 (5) (D) o] ol
B<a €<y
—ZZ< >< >qa Br—c (f) qo.nte (9)
Bl e<y

By [34, Theorem V.2|, x : § x S — S is a jointly continuous bilinear map.
Actually, this theorem demonstrates that the maps x: S — S : f— fx*xg
and x : S — S : g = f *g are continuous for all f € S and ¢ € S
separately. However, in the world of Fréchet spaces, separate continuity and
joint continuity are equivalent [29, Theorem 1.29]. O

Note that the previous two propositions also hold for ¢; that is,
(fog) =g of"
for all f,ge Sand ¢o: S5 x5 — §is a jointly continuous bilinear map.

Proposition 4.2.10. The integral of the Moyal product has the tracial prop-
erty: For all f,g€ S

[trgau= [ =) wau= [ f@gwdi=(s.9
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Proof. Recall that the ordinary convolution * between functions in S (with-
out the twist induced by the symplectic form) is defined, for example in [34,

Section IX.1], by
(Fe9) W)= [ =0

for all f,g € S, where convolution in the u-domain corresponds to multi-
plication in the t-domain. Moreover, the convolution satisfies the following
properties as per [34, Theorem IX.3]: For all f,g € S

fxg=gxf and F(fg)=3f*3g

where § is the Fourier transform defined in (4.2.15).

Let f,g € S. Using the properties above, together with definition (4.2.11)
and the relation (4.2.6.3), we find that

/(m) (w) du = (F (f *9)) (0)
= (§f o 3F9) (0)
~ [ G0 G0

= (§f *3Tg) (0)
= (Fg=3f)(0)

- / (39) (—) (&) (1) dt

= (Fgo3[)(0)
= (F(g* 1)) (0)

~ [+ D) ) du

/ (f *9) (u)du = (31 *9) (0)
=35 (fg)(

/f

The cyclicity in the tracial identity in Proposition 4.2.10 will allow us to
extend the Moyal product via duality to larger spaces than S in the next
section. Before we do so, there is an important consequence of this identity
that will become useful when performing the extensions.

and

O
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Proposition 4.2.11. If f,g,h € S, then

(f*g,h)y=(f,gxh)={g,hx[) (4.2.11.1)
(fog,h) = (f,§oh) = <g,h<>f> (4.2.11.2)
(hlf xg) = (f**xhlg) = (h*g"|f) (4.2.11.3)

Proof. Let f,g,h € S. Applying Proposition 4.2.7 and Proposition 4.2.10 to
() gives

<f*g,h>=/<f*g><u>h w) du

and

=/Q(U)(h*f)(U)du
= (g, hx f)

This proves (4.2.11.1), which can be used, together with Proposition 4.2.6
and properties (2) and (4) from Lemma 4.2.2, to find (4.2.11.2) as follows:

(fog.h)= <f*Fg,h>
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The second equality in (4.2.11.2) is found similarly. Finally, the first equality
in (4.2.11.3) follows from (4.2.11.1), Proposition 4.2.8, and definition (4.2.8):

(hlfxg) =1/2(h", f % g)
=1/2(h"x f,g)
=1/2((f**h)",g)
= (f*x hlg)

The second equality in (4.2.11.3) follows similarly. O

Armed with sufficient properties of the Moyal x-product between Schwartz
functions, we are ready to define and characterise the algebra of the Moyal
plane: Let

A= (5, %) (4.2.18)

be the algebra obtained by equipping the Schwartz space S with the Moyal
*-product and an involution defined by complex conjugation. We call A the
algebra of the Moyal plane. The following corollary assembles the results
from Theorem 4.1.9 and Propositions 4.2.5, 4.2.7 and 4.2.8.

Corollary 4.2.12. A is a noncommutative, non-unital, associative, involu-
tive Fréchet algebra.
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Chapter 5

Extension of x via duality

In the previous chapter, we established a calculus for functions in the Schwartz
space S with Moyal product x. Here, we extend the Moyal product to a larger
space of tempered distributions via duality. The dual space of tempered dis-
tributions is defined in Section 5.1 and shown to contain S. In Section 5.2,
we systematically extend the Moyal product to certain subspaces of the dual
space. In particular, the extension reaches a space that contains all poly-
nomials. This will enable us to define an orthonormal basis for L? (RQ) in
Chapter 6, where the basis elements will be composed of Moyal products
between functions in S and certain polynomials.

5.1 The Schwartz space S is contained in its dual

Here we define the dual space of S and show that it contains S. The following
definition draws from [34, Section V.1] and [34, Section V.3].

Definition 5.1.1. The topological dual space of the topological vector
space X 1is the family of continuous linear functionals on X, and is denoted
X'. The topological dual space of S (RZ), denoted by S’ (RQ), 1s called the
space of tempered distributions.

Henceforth, we let
S =95 (R? (5.1)

Note that S’ is topologised by the strong dual topology, that of uniform con-
vergence on bounded subsets of S. Formally, the topology of S’ is generated
by the family of seminorms {pp : B C S is bounded}, where

pp (T) = sup |T (f)] (5.2)
feB

forall T € S'.
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For a linear functional 7" on S to be in S’, it must be continuous. By [34,
Theorem V.2|, this is equivalent to the existence of a seminorm |-, 5 such
that

TN <CNifllag

for all f € § and some constant C.

The following notation emphasises the action of S’ on S, i.e. the action
of a continuous linear functional on a Schwartz function: For T' € S’ and
h € S, we write

(T,h) :=T (h) (5.3)

If f € S, then we define a linear functional f (-) on S by

f<h>=<f,h>=/f<x>h<x>dx

for all h € S. Note that for f,h € S, (5.3) gives (f (-),h) = (f,h). Hence,
(5.3) is indeed an extension of (-,-) from S x S to S’ x S. The following
proposition shows that S is a subspace of S’:

Proposition 5.1.2. If f € S, then f(-) € S’. Furthermore, if f1,fo € S
such that fi () = fa (+), then f1 = fo.

Proof. Let f € S. Using Holder’s inequality, we find that

£ (9)] = ‘/f(x)g(w)dw

S/If(w)g(w)\dx

= /9l

< fl llglloo
<C ”9”0,0

for all g € S and for some constant C. Thus f(-) is a continuous linear
functional on S, ie. f() € 5.

Let fi,fo € S such that f; # fo, then fi # fo in L? (RQ) since S
is dense in L? (R?) by Proposition 4.2.1. This implies that fi (-) # f2(-)

in (L2 (RQ))/, since the dual space (L2 (RQ))/ is exactly L? (RQ). Finally,
since (L? (RQ))/ is dense in S’, we conclude that fi (-) # fa(:) in S’. This
statement is equivalent to the proposed result by contraposition. ]

Owing to Proposition 5.1.2, it is no longer necessary to distinguish be-
tween f and f (-) when f € S. Henceforth, we write f (-) simply as f when
fes.
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5.2 Extending the Moyal product

Before we extend the Moyal product to spaces of tempered distributions, we
extend the notions of partial differentiation, pointwise multiplication by a
coordinate, and involution to S’: For T'€ S" and h € S, we define

(0T, h) == — (T, ;1) (5.4)
(T, h) == (T, p;h) (5.5)
(T|h) = % (T*, h) = % (T, 1" (5.6)

Furthermore, we extend the flip operator and the Fourier transforms to S':
For T € " and h € S, we define

<T, h> - <T, ﬁ> (5.7)

(3T, h) = (T, §h) (5.8)
(FT, h) := <T, Fh> (5.9)
<FT,h> .= (T, Fh) (5.10)

Proposition 5.2.1. The operations defined by (5.4) to (5.10) extend the
corresponding operations on S.

Proof. Let T € S’. First consider (5.4). Note that 9;T defines a linear
functional on S, since for all h € S

(05T) (h) = (9T’ h)
- <T7 8jh>
= —T(9;h)
where 9;h € S and T is a linear functional on S. Seeing as both J; and T

are continuous, the composition ;T = —T o d; is continuous. Hence, 0;T is
a continuous linear functional, i.e. 9;T € S’. Now observe that

(0, ,h) = / (0;1) (&) h () de

/f ) (0;h) (

— (£, 0;h)

for all f,h € S, which shows, on account of Proposition 5.1.2, that 9; : S" —
S’ is indeed an extension of 9; : S — S. Similar proofs show that (5.5),
(5.6) and (5.7) extend the corresponding operations on S. By following the
same pattern as the proof above, and applying properties (2), (7) and (9)
from Lemma 4.2.2, it follows that (5.8), (5.9) and (5.10) are extensions of
the Fourier transforms on S. O
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Now we start our extension of the Moyal product. First, we define the
Moyal product between one element in S’ and one element in S. For T' € S’
and f,h € S, let T f be defined by

(T'x f,h) := (T, f xh) (5.11)
and let f x T be defined by
(f*xT,h) :=(T,hxf) (5.12)

The twisted convolution is extended similarly: For T'€ 8" and f,h € S, let
T ¢ f be defined by

(To f,h) = <T,f<>h> (5.13)
and let f o T be defined by
(f T, h) := <T, ho f> (5.14)

Proposition 5.2.2. The products T x f and f xT map into S" and extend
the corresponding operations on S x S to S’ x S and S x S’ respectively.
Furthermore, the convolutions T ¢ f and f oT map into S’ and extend the
corresponding operations on S X S to S’ x S and S x S respectively.

Proof. Let T € S" and f,h € S be arbitrary. Note that

(T f) (h) = (T'* f, h)
:<T7f*h>
=T (fxh)

Since fxh € S and « is continuous in .S by Proposition 4.2.9, it follows that
T x f is a continuous linear functional on S and thus T x f € S’. Similarly,
f*T €S’ From (4.2.11.1) in Proposition 4.2.11 we have that

(g f,h) = (g, f )

for all f,g,h € S, which shows, on account of Proposition 5.1.2, that x :
S’ x S — S’ extends the corresponding operation on S, that is x : Sx .S — S.
Similarly,

(f g, h) = (g, hx )

shows that f*T :S x 8" — 5 is indeed an extension of the corresponding
operation on S. Analogous proofs, with reference to (4.2.11.2) from Propo-
sition 4.2.11, show that T ¢ f and f o T are extensions of the corresponding
operations on S. O

Many of the formulas in Chapter 4 involving f, g € S extend to analogous
ones for T € S" and f € S. The following proposition groups a few such
extended formulas for later use.
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Proposition 5.2.3. If T € S’ and f € S, then

0, (T % f) = (&;T) » f + T x (9, ) (5.2.3.1)
0, (fxT) = (0;f) x T + f » (9,T) (5.2.3.2)
i (T % f) = (T) * f —iT % (éjf) (5.2.3.3)
i (f%T) = f % (1T) +i (éjf) «T (5.2.3.4)
(T f) = f*%T* (5.2.3.5)

(f*xT) =T * f* (5.2.3.6)

(T7) =T (5.2.3.7)

Proof. Let T € §" and f € S be arbitrary. Throughout this proof, we use
the fact that T'x f, fxT € S’ from Proposition 5.2.2; this allows us to use the
extensions that we have defined thus far. In particular, we use the extensions
defined in (5.11) and (5.12) without further mention.

We derive (5.2.3.1) and (5.2.3.2) by means of definition (5.4) and Propo-
sition 4.2.3:
(0 (Tx f),h) = = (T'* [,9;h)
—(T, f* (9h))

—(T,0; (f xh) = (9;f)
;T f *h> (T, (9;1)
((05T) % f,h) + (T x (0 f
=0 T)x f+T*(0;f),h)

*
*

)
)
7h>

h
h
)

and

(0; (f xT), > —{(f*T,0;h)

— (T, (9jh) x f)
—< ,0j (hx f) = hx (95 f))
= (0T, hx f) + (T, h % (95 1))
h)

= (05 /)x T+ f»(0T),

for all h € S, which proves (5.2.3.1) and (5.2.3.2). We find (5.2.3.3) and
(5.2.3.4) via definition (5.5) and Proposition 4.2.4:

(i (T'x f),h) = (T * f,u5h)
<Tf*(ﬂj )

= {T, pi; (f x h) —z(@f)*h>
= (u;T, f x h) — <T,i<8~f>*h>

{017+ (1) )
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and

(i (f*T) by = (fxT, pjh)
s (jh) * f)

=(T
<Tﬁ@ hx f) +zh*(8f>>
= (J* (wT) +i (9;f) = Ton)

for all h € S, which proves (5.2.3.3) and (5.2.3.3). Finally, using definition
(5.6) and Proposition 4.2.8, we find that

(T f)" h) =T f,h")"

= (T, fxh")"

= (T, (hx f*)")"
=(T", h* f*)
=

[T, h)
and
(f*xT)" h) = (f*T,h")"
= (T, h* % f)*
= (T, (f*xh)")"
=
=

T, f* % h)
T* % f*, 1)

and
((T*) h) = (T", ")

= (T, (h")")
= <T7 h>

for all h € S, which proves (5.2.3.5), (5.2.3.6) and (5.2.3.7). O

In order to interpret the Moyal product between a polynomial and a
function in S, we require an element in S’ to act as identity for the Moyal
product. Let 1 denote the constant function on R? with value 1, i.e. for all
z € R?

1(z)=1 (5.15)

Proposition 5.2.4. 1 is the identity for the x-product i.e. for all f € S

1xf=fx1=f
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Proof. First, note that 1 defines a linear functional on S, since for all f € S
()= f) = [1@) f@do= [ 1 @)ds

and S C L* (RQ), as discussed in Section 4.2. Also,

(f)] s/|f<:c>|dx

= [Ifll4
ZQOO(f)

for all f € S, where {gay}, ez is the family of seminorms defined in
(4.2.9.2). Hence, 1 is a continuous linear functional on S, i.e. 1 € S’

By Proposition 5.2.2, 1% f, f*1 € S’. Using definitions (5.11) and (5.12),
together with the cyclicity in Proposition 4.2.10, we see that for all f,h € S

(x By = (1, f %)
— [(Fxh @ au

= (f,h)
— [ he ) )
= (1,h* f)
= (fx1,h)
Thus, by (5.3) and Proposition 5.1.2, it holds for all f € S that
1xf=f=f*x1 (5.2.4.1)
O

The key fact regarding this identity element is that

(1) (2) = z; (5.16)

for all z = (z1,22) € R%. When performing manipulations with z;, one
should be able to distinguish between x; performing as a function and z;
performing as a coordinate. However, for the sake of clarity, we define the
functions

X;:R? = R: (21, 22) = 25 (5.17)

for j = 1,2.
Proposition 5.2.5. X; € ' for j =1,2. Furthermore, for all f € S,
Xj*f=pif+i0f and fxX;=p;f —i0;f
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Proof. First, note that X; defines a linear functional on S, since for all f € S

X ()= (%0 = [ X @) f@)do= [a,f (@)do
and, as discussed in Section 4.2, (z1,22) — x;f (x) is in L' (R?). Consider
the multi-index 7 = (n1,72) = (2 —j,j — 1) € N3. Then
X (D) < [ foif (@) ds

= [|u"flly
= dn0 (f)

for all f € S. Hence, X is a continuous linear functional on S, i.e. X; € S'.

By Proposition 5.2.2, X;*f € S" and fxX; € S’. Using (5.16), definition

(5.11), and Propositions 4.2.4, 4.2.10 and 5.2.4, we see that for all f,h € S
<X]*fah> = <X]af*h>

S ELLCL:
— [ @) () (@) e

— [ ()= D @ h (@) do
= (1) = f, )
= <Mj (1% f) +i1*3jf,h>
- <ujf v z‘éjf,h>
Thus, by (5.3) and Proposition 5.1.2, it holds for all f € S that
Xjx f=pif +id;f
Similarly, using definition (5.12), we find
fxXj = pif —id;f
O

The following corollary states the same result as above, only in terms of
explicit coordinates rather than functions.

Corollary 5.2.6. For all f € S and x = (21, 12) € R%:
(1) x1 % f = (x1 +1i02) f
(2) ZCQ*f = (ZL'Q —’ial)f
(3) frx1 = (21 —1i0y) f
(4) f*x2 = (22 +1i01) f
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In order to further extend the Moyal product, we now define, as per [18],
the algebra 91 as the intersection of two subsets of S’, one comprising the
left multipliers in S and the other the right multipliers in S.

Mp:={LeS :LxfeS VfeS} (5.18)
Mr:={ReS :fxRcS VfeS} (5.19)
M .= Ny NIMp (5.20)

It is clear from Propositions 4.2.5, 5.1.2 and 5.2.4 that S C 9% and 1 € M.

Proposition 5.2.7. M s closed under partial differentiation and pointwise
multiplication by o coordinate. In particular, all polynomials lie in IN.

Proof. Let M € 9 and f € S be arbitrary. By definition (5.20), M € My
and M € Mp. Moreover, M € S’ because M C S’. Therefore, the formulas
in Proposition 5.2.3 hold for M. In particular, from (5.2.3.1), it holds that

(GjM)*fzﬁj(M*f)—M*(Ojf)

Since M € My, we know from definition (5.18) that M x f € S for all f € S.
Furthermore, we know that d; maps S into S. Accordingly, with reference
to the equation above, both terms on the right are in S; thus (0; M) f € S.
This holds for arbitrary f € S; therefore, we may deduce, from definition
(5.18), that

0;M € My, (5.2.7.1)

Once again appealing to Proposition 5.2.3, specifically to (5.2.3.2), we have
fx(0;M) = 0; (f x M) — (0;f) » M

Since M € IMpg, definition (5.19) states that fx M € S for all f € S. As
before, both terms on the right are in S. Therefore, f x (0;M) € S, which

in turn implies that
O;M € Mg (5.2.7.2)

as per definition (5.19). Together, (5.2.7.1) and (5.2.7.2) satisfy definition
(5.20); we conclude that
ajM em

This holds for arbitrary M € 9; hence, I is closed under partial differen-
tiation.

We proceed to the second part of the proof by invoking formulas (5.2.3.3)
and (5.2.3.4), which give

(M) * f = pj (M * f) +iM x (@f)

60



and
Jx (M) = (f*M)—i<5jf) * M

respectively. Employing the same reasoning as before, we infer that ;M €
My, and pjM € Mp. Definition (5.20) implies then that

MJ‘MEQ:R

Since this holds for arbitrary M € 91, we conclude that 9t is closed under
pointwise multiplication by a coordinate. We apply this result to the spe-
cific case 1 € M. It follows from (5.16) that (uj1) (z) = z; € M. When
considering x; as a function via (5.17), i.e. X, (z) = x;, it becomes clear
that repeated pointwise multiplication by a coordinate generates higher-
dimensional polynomials that remain in 9. Hence, we may induce that
all polynomials lie in 9. O

We now extend the Moyal product to the case where one element is in
M and one is in S’. Since M C 57, this extension includes products between
elements in 9. This will allow us, in particular, to handle the Moyal product
between polynomials. For R € Mg, L € My, and T € S’, define T x L by

(T % L, h) := (T, L *h) (5.21)

and define R T by
(R*T,h) = (T,h*R) (5.22)

forall h e S.

Proposition 5.2.8. The products T x L and RxT map into S’ and extend
the corresponding operations on S’ x S and S x S to S" x My, and My x S’
respectively. In particular, they define the Moyal product between elements in
M. Moreover, N becomes an associative x-algebra under the Moyal product.

Proof. Let R € Mp, L € My, and T € S’ be arbitrary. Then for all h € S

(TxL)(h)=(T*L,h)
= (T,Lxh)
=T (Lx*h)

Since L x h € S by definition (5.18), and T is a continuous linear functional
on S, it follows that T'x L is a continuous linear functional on S and thus
TxL € S'. Similarly, RxT € S’. By comparing definitions (5.21) and
(5.22) to definitions (5.11) and (5.12) respectively, we see that the former
are indeed extensions of the corresponding operations on S’ x S and S x S’
respectively.
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Considering that 9t C S, 9 C My and M C My, definitions (5.21)
and (5.22) define, in particular, the Moyal product between two elements in
M. Explicitly, if M, N € 91, then

(M % N, h) := (M, N * h) (5.2.8.1)

and

(N xM,h) :=(M,h*N) (5.2.8.2)
forall h e S.

Now we prove that 91 is an associative x-algebra when equipped with
the Moyal product. Let M, N, P € 9 and f,g,h € S be arbitrary. First,
using the associativity of x on S from Proposition 4.2.7, we note that

(M * f)xg,h) = (M~ f,g%h)
= (M, fx(gxh))
= (M, (fxg)*h)
=(Mx*(fxg),h) (5.2.8.3)

Then, from (5.2.8.1) and (5.2.8.3), we have

(M *xN)xg,hy=(MxN,g*h)
MN*(g*h)}
M, (N % g)  h)

M % (N % g),h) (5.2.8.4)

o~ o~~~

Since Nxg € S, it follows from definition (5.20) that M * (N % g) € S. Then
(5.2.8.4) implies that (M x N) x g € S, which gives

M« N em, (5.2.8.5)
by definition (5.18). Similarly, we find that

(gx (M *N),h)y =(M*N,h*g)

(

= (M,N % (hxg))

= (M, (N *h) * g)

— (g% M,N % h)

= (g M) %N, h) (5.2.8.6)

Since gx M € S, it follows from definition (5.20) that (g x M)« N € S. Then
(5.2.8.6) implies that g x (M x N) € S, which gives

M+ N € My (5.2.8.7)
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by definition (5.19). Together, (5.2.8.5) and (5.2.8.7) satisfy definition (5.20)
so that

Mx N eM
for all M, N € 9. Associativity follows from (5.2.8.1) and (5.2.8.4):
(M *N)*P,h) = (M*N, Pxh)
= (M,N % (Pxh))
= (M, (N % P)xh)
= (M x(NxP),h)

Regarding the involution, note that (5.2.3.7) from Proposition 5.2.3 holds
for M € M, because M C S’. Furthermore, using (5.2.3.6), together with
definitions (5.6), (5.2.8.1) and (5.2.8.2), we see that
(M %*N)* hy=(MxN,h*)"
= (M,N % h*)"
= (M, (hx N*)*)"*
= (M*, h* N*)
= (N* % M*, h)

Hence, 901 is an associative *x-algebra under the Moyal product. O

Having sufficiently extended the Moyal product, we conclude this chapter
by proving a result analogous to the tracial property in Proposition 4.2.10.

Proposition 5.2.9. For all M € M and f € S,

[t pdu= [ (70 @

Proof. Let M € 9 and f € S be arbitrary. By definition (5.20), M x f € S
and fx M € S; therefore, remembering that S C L' (RQ), the proposed
integrals make sense. Since 1 € 9 and M € 9, we may use definitions
(5.2.8.1) and (5.2.8.2), together with Proposition 5.2.4, to find

/(M*f)(u)du: 1, Mxf
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Chapter 6

A family of functions in S as a
basis for L? (]RQ)

In this chapter, we construct an orthonormal basis (total orthonormal set) for
L? (RQ) as a family of functions in S. This will enable us to expand functions
in S in terms of this basis; these expansions will allow us to represent S as
a sequence space in the next chapter, where a sequence will correspond to a
function in S via the coefficients in its basis expansion. We define the family
of functions and all its ingredients in Section 6.1. In Sections 6.2 and 6.3, we
examine in detail the constituents of the family, and their interactions, on our
way towards proving orthonormality. Section 6.4 introduces the orthogonal
polynomials that are used to prove completeness in Section 6.5.

6.1 Defining the family of functions {f,,,}

m,neNy
Let z,Z € 9 be defined by
1 1

z = ﬁ (r1 +ixe) and Z:= E (x1 — ix2) (6.1)

where (1, 22) € R2. Also, define corresponding derivatives

9= —= (01 —idy) and 8:= = (91 +id) (6.2)

1
V2 2

Furthermore, let G € 91 be given by

1
G:zizi(ﬁ—i—mg):f&: x (6.3)
and define a Gaussian function
foo :=2¢7¢ (6.4)



We introduce the following notation for integer *x-powers of z:

M=k ke k2 (n times) (6.5)

for n € Np, where 2*0 = 1. Finally, define the family of functions { f,n}
such that

m,nENg

_1
fran = (27 matnl) " T  fog 5 2 (6.6)
for all m,n € Ng.

Proposition 6.1.1. {f,} C S cL*(R?.

m,neNp

Proof. Since z,Z € M, 2*" € M and Z*" € M for all m,n € Ny by Proposi-
tion 5.2.8. Furthermore, since foo in (6.4) is defined in terms of an exponen-
tial function, it is infinitely differentiable and all of its derivates are rapidly
decreasing in the Schwartz space sense. Hence, foo € S. It follows from
definition (5.20) for 9 that z*™ x foo x 2" € S for all m,n € Ny. In (6.6),

we have then that f,,, € S for all m,n € Ny and thus {fmn}m,neNo C S.
The L? (RQ) inclusion was proved in Proposition 4.2.1. O
6.2 Properties of fy

In order to prove orthonormality of the family {fmn},, ,en,, We Tequire

enough control over the functions f,, to handle their interactions with one
another. It seems fitting to start our investigation with an analysis of their
constituents. First, we consider fgo and work towards proving its idem-
potence. The upcoming theorem will help us to evaluate some recurring
integrals along the way. Note that we continue to normalise as per Section
4.2.

Theorem 6.2.1. Let t denote a variable in R. Then for ¢ € C and p > 0,

/ et g — | L
2p

Proof. For an arbitrary complex number ¢ = a + ¢b, where a,b € R, let
T € R such that T' > |a|. Let I'. (T') denote the closed rectangular contour
in the complex plane that starts at the point (—7,0) on the Real axis and
has vertices (7,0), (T,ib), and (—T,ib). Note that we associate the point
(z,y) in the complex plane with the complex number z = x + iy.
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v

CT.0) T.0) x = Re(z)

Let
f(z) = e
where p > 0 is arbitrary. If we put z = = + iy and split f(z) into its
real and imaginary parts, then it is a simple calculation to show that these
two parts satisfy the Cauchy-Riemann equations. Moreover, both parts are
continuously differentiable in the sense of real-valued functions; therefore,
f (2) is an entire function (analytic in C). Specifically, f (z) is analytic inside
the region bounded by I'. (T'). By Cauchy’s integral theorem, the contour
integral of f (z) along I'; (T') is zero:

 rG)a:-
Le(T)

We can brake this contour integral into four line integrals - each along one
of the straight lines that form I'. (T):

b

0
7{ f(z dz—_lf dm+/f T +iy) (idy) + /f (x + ib) d:z:+b/f =T +iy) (idy)

0
=0

In the limit 7 — oo, since e Pt+9” 5 0 as |t| — oo, the second and fourth
terms above tend to zero. Furthermore, it is well known that the first term

tends to 4/ ﬁ as T — oo (it tends to \/% if one uses the ordinary Lebesgue

measure). Since the total contour integral is zero, we are left with the third
term as negative the first term. So, in the limit 7" — oo, after reversing the
integration limits, we have

/f(a:—i—ib)dx:\/g

Substituting x =t + a =t 4+ ¢ — ib, we arrive at the required result

_Zf(wrc)dt:\/;
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Corollary 6.2.2. Let u denote a variable in R%. Then

e "tdu = % e

This result is found by evaluating the dot product u-u, then rewriting the
integral as separate integrals over the components of u, and finally applying
Theorem 6.2.1 to each integral separately. Now we are armed to evaluate

foo.

Proposition 6.2.3. fog is a unit vector in L> (Rz),

WUy, = 1

Proof. Note that fj, = foo, since the exponent is real-valued, as per (6.4).
In the L?-norm, we have

Il fooll3 = (fool foo)
= ;/fé‘ofoodu

= Q/e_u'udu
-2(3)

2
=1

where we have employed Corollary 6.2.2 to solve the integral. Thus, fog is a
unit vector in L? (RQ). O

Proposition 6.2.4. fo is a fized point for the Fourier transform §; that is,
S foo = foo-

Proof. Invoking definition (4.2.15) for §, and evaluating the integral via The-
orem 6.2.1, we find that

S foo (u) = / foo (t) e~ uqt
_/Qe—ét‘te—it‘udt

2¢~ % (t-t+2it-u—u-u) e %uudt

= Qeéu'u/eé(tH“)th
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Proposition 6.2.5. foo is an idempotent in S for the x-product; that is,
Joo * foo = foo-

Proof. Tt will be convenient to prove that fog is an idempotent for the twisted
convolution ¢ before using Fourier transforms to carry the result over to the
*-product. So, definition (4.2.11) for ¢ gives

(foo © foo) (u) = /foo (u—1) foo (t) e ™ at
_ / 26—%(u—t)-(u—t)26—%t-t6—iu-§ltdt
_4/€(t-tu-t+iu-9t)e;u-udt

:4€_§u.u/€(t%+tgultlu2t2+iu1t2iu2tl)dt
2 . 2 .
:2f00 (u)/e t1+t1(u1+zu2)dt1/e t5+t2 (u2 wl)dtz

Now, let ¢; = —% (u1 + fu2) and cg = —% (ug — tuy) so that ¢1,co € C.
If we substitute these in the expression above and complete the squares, the
integrands have the form necessary to implement Theorem 6.2.1. We solve,
noting that ¢f 4+ 3 = 0, as follows:

(foo © foo) (u) = 2 foo (U)/e_t%_%mdh/e_t%_%”dtz
= 2f00 (u)/e_(t1+cl)260%dt1/e_(t2+02)2ecgdt2
= 2foo0 (u) 60%03/6_(&%1)2‘“1/e_(t2+02)2dt2

= 2f00 (u) vV 1/2\/ 1/2
= foo (u)
Hence, foo ¢ foo = foo, which means fyy is an idempotent for the twisted

convolution ¢. Applying (4.2.6.4) from Proposition 4.2.6 to foo and appealing
to Proposition 6.2.4, the idempotence of foo subject to ¢ leads to

Joo * foo = §.foo * §foo
= 5 (foo © foo)
= foo
= Jfoo

which proves that fyo is an idempotent in S for the *-product. O
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6.3 Orthonormality of {fu.},, e,
Now that we have a grip on the Gaussian function foo, we want to investigate
the x-product between fog and x-powers of z,Z as they appear in (6.6). This
will prepare us to handle the interactions between different members of the
family {fmn},, ey, On our way towards proving orthonormality. Having
said that, we start with the following:

Proposition 6.3.1. If f € S, then
(1) zx f = zf +0f
(2) 2« f =Zf - Of
(3) fxz=2f — Of
(4) fxz=Zf+0f
Proof. Using Corollary 5.2.6, we find (1) by

zx f = %xl*wa\%m*f
- 12(x1+i82)f+\%(372_i81)f
:1%m+mm+jﬁm+@ﬁ
=zf+0f
and similarly for (2)-(4). -

Proposition 6.3.2. The following equalities hold in IN:
(1)Zxz=G—1
(2) zxz2=G+1
(3) 2%xZ —Zxz=2
Proof. Since z,Z € M, it follows from Proposition 5.2.8 that Zx z € 9. We

use Propositions 5.2.9 and 6.3.1, and the associativity in (5.2.8.4), to find
that



for all f € S, where 9z = 1. Thus, we have proved (1). A similar proof gives
(2). Together, (1) and (2) imply (3). O

Note that (3) resembles the canonical commutation relation for the cre-
ation and annihilation operators, where we have identified Planck’s constant
with @ = 2 in Section 4.2.

Proposition 6.3.3. For all m,n € N, it holds that
foox 2% x Z"™ % foo = Gmn2"n! foo

Proof. We will frequently use 0foy = —Zfoo and 0fpo = —zfoo. The first
step is to prove that

Z % foo =22 foo VYm e N (6.3.3.1)

We do so via induction. Using Proposition 6.3.1, we obtain a basis for the
induction as

Zx foo = Zfoo — 9 foo
= Zfoo + Z foo
= 2Z foo
Suppose, as inductive hypothesis, that Z* x fog = 2"2™ fyo for some fixed
m € N. The inductive step follows:
2k foo = Zx 2 % foo
=Z%* (2m§mf00)
=7Z (22" foo) — 0 (2™Z"™ foo)
_ 2mzm+1 fOO + 2m§m+1 fOO

1= 1
=212 foo

Since this holds for arbitrary m € N, induction proves (6.3.3.1) for all m € N.

Now consider the expression fog * 2*™ * Z*™ x foo in the different cases.
Case 1: Let n > m. Using (6.3.3.1) and Proposition 6.3.1, we find

2T xZM % foo = 2 % (2™Z™ foo)
= 2" (22 fo0) + 0 (22" foo)
= 2" (22" foo) + 2™ (5n5m> foo +2mz™ (5”]000)
= 2" (275" foo) + 27 (8"2™) foo — 2" (2" foo)
—om (5"?”) foo
=0
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which implies
foox 2" *xZ" x foo =0 for m>m (6.3.3.2)

Case 2: Let n < m. Using (6.3.3.2) and Proposition 4.2.8, we find
fo() * 2" % 7 % foo = (f()() * 2 % T % foo)* =0 for n<m (6333)

Case 3: Let n = m. Using (6.3.3.1) and Proposition 6.3.1, together with the
idempotence of fyg in Proposition 6.2.5, we find

foo* 2" xZ" x foo = foo * 2" % (2"Z" foo)
= foo * (Zn (22" foo) + 0" (znfnfoo)>
= foo * (Zn?n?nfoo +2" (gnzn) foo +2"Z" (5nf00>)
= foo* (annfnfoo + 2" @n?n) foo — Qngnznfw)
= foo x 2" (5'15”) foo
= 2"n! foo * foo
= 2"n! foo for n=m (6.3.3.4)
Combining the three cases in (6.3.3.2), (6.3.3.3) and (6.3.3.4) gives the de-

sired result, namely
foo*x 2" *x 2 % foo = Omn2™"n!foo  for m,n €N
O

We now have sufficient ammunition to tackle the interactions between
different members of the family {fmn},, ,cn, We arrive at the orthonor-
mality of the family {fyn},, nen, D L? (RQ) via two properties, interesting
in and of themselves, that reveal an analogy between {fn,} and a
certain class of matrices.

Proposition 6.3.4. Let k. £, m,n € Ng. Then fon * fre = Onk frne-
Proof. We use Propositions 6.3.3 and 4.2.7 to find

m,nENy

1 _1
Fran * froe = ((Qer"m!n!)*5 2 % foo * z*") * ((2’“*%!6!) 22 % foo * z*e)

=

- (2m+n+k+4m!n!kw!) i ( foo % 2" % 7 % foo) ¥ 2

N

- (2m+”+k+€m!n!k!€!)i

1
7 <5nk (2"nl)2 (2’%!) 2 f00> X 2

1
T2
= 5nk <2m+fmw!) 7 % foo * Z*e

= 5nk fm@
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Proposition 6.3.5. Let m,n € Ng. Then f,, = fam-

Proof. 1t follows from definition (5.6) and Propositions 5.2.9 and 6.3.1 that

(2", f) = (. )

_ </(z*f*)(x) dx>*
_ </zfdaz>*

= [sra

~ [En@ @

= z,f)

for all f € S. Hence, z* = Z. Likewise, we find that z* = 2. Now, by
Proposition 5.2.8,

1
Fon = (27 mind) 72 (2 % foo % 2*)*

_1
(2”+mn!m!) 27 x foo x 2™

frnm

Proposition 6.3.6. Let k,¢,m,n € No. Then (fomn|fre) = OmkOne.

Proof. We use here the results from Propositions 4.2.10, 5.2.9, 6.2.5, 6.3.3,
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6.3.4, 6.3.5, and definition (6.6):
(fmn’fkf) <fmn7 fk€>

fnmv fk€>
/fnm ka )
— [ G ur) ()

= 6mk / fnﬁ (u) du

1
=9 k 2”+’Zn'£'
!

2

" % foo x z Z) (u) du

)/
) 2/ *foo*foo*zg) (u) du
)

-

_5k2“%w

[un

_5k2W%w

2/ foox 2 2 *foo) (u) du
= 5mk5ne/f00 (u) du

= 20mk0ne
where the last step follows from definition (6.4) and Corollary 6.2.2. O

Proposition 6.3.4 shows that when one takes the x-product between el-
ements of { fmn}m,neNoa the second index of the first element has to equal
the first index of the second element in order to return a nonzero function in
{fmn}mnen,- This immediately brings matrix multiplication to mind, where
the number of columns in the first matrix has to equal the number of rows
in the second matrix. Proposition 6.3.5 shows that complex conjugation of
elements in {fm"}m,nENo is similar to transposition of matrices. In fact, in
the following chapter we will see that this family allows us to fashion a cor-
respondence between S and a certain space of infinite-dimensional matrices.
Finally, Proposition 6.3.6 proves orthonormality of the family { fu.n}

m,nENp*

6.4 Orthogonal polynomials

Now we proceed to prove completeness of the family { fmn}m,neNo' Our
method is to show that all the Hermite functions on R? can be expressed as
linear combinations of elements of {fyn},, ,en,- Since the set of all Hermite
functions {he}y, gepy, is complete in L? (R?), it will follow that {fmn o neng
is complete in L? (RQ). To this end, we present here an interlude on or-
thogonal polynomials: We state the definitions of certain classes of such
polynomials and describe their relationships with one another.

73



The Jacobi, Laguerre and Hermite polynomials are examples of families
of classical orthogonal polynomials. These families arise from the investiga-
tion of certain linear differential equations of the Sturm-Liouville type. After
multiplication by a weight function, the orthogonal functions thus obtained
are the eigenfunctions of a Sturm-Liouville problem, which have discrete
spectra. Since the space of quadratically integrable functions is separable,
these orthogonal families consist of at most a denumerable infinity of ele-
ments. The elements of such an orthogonal family can be expressed by a
generalised Rodrigues’ formula. For each family of orthogonal polynomi-
als, we give the Rodrigues’ formula and the equivalent explicit expression as
found in |15, Chapter X].

The Jacobi polynomials are defined, for a > —1, 8 > —1, by

P (o) = GO0 (=) ()™ S [ )™ ()]
- (nte(nt8 n—m m
— g (21— )" (21 + 1) (6.7)

for all #; € R and n € Ny, where P\*? (—2;) = (=1)" P** (2,). The
Laguerre polynomials are defined, for a > —1, by
e d

ol zy @ E (eixlxaﬁa)

:mzn: <”+O‘) mll)m (6.8)

for all z; € R and n € Ny, where L§ (z1) = 1 and L2 (0) = ("'®). The
Hermite polynomials are defined by

Ly (z1) =

H, (1) = (—1)"ew?jﬂe—w?

["/2 m (21’ )n 2m
=n! Z m' 0o (6.9)

for all z1 € R and n € Ny, where

n/2 if n is even
[n/2] = I
(n—1)/2 ifnisodd

and Ho (z1) = 1, Ho,, (0) = <1)m7$2m'), and Hapm41(0) = 0. We also have
that
Hy, (=z1) = (=1)" Hp (21)

74



and
H;L (xl) = QTLHn_l (xl) = 2.%'1Hn (1'1) — Hn+1 (xl) (6.10)

The Hermite polynomials are connected to the Laguerre polynomials via

n

> <Z> Hoy, (1) Hapo (22) = (=1)"nlLY (27 + 23) (6.11)
k=0

The Hermite functions on R are defined in terms of the Hermite polyno-
mials, as per [41, Chapter 4], as the functions in L? (R) given by

2
1

hy (1) = (2’“—%!)é Hy(z1)e™ 2 (6.12)

for all z1 € R and k£ € Ny. Note that this definition differs only from that
in [41, Chapter 4| inasmuch as we accommodate the normalisation choices
made in Section 4.2. As shown in [41, Chapter 4], the family {hy : k € Ng} is
an orthonormal basis for L? (R). Because the Hermite functions are orthog-
onal polynomials, the k’th one being exactly of degree k, their span contains
all polynomials.

Now, note that L? (R) ® L? (R) is isomorphic to L? (R?) = L* (R x R)
via the identification of (f ® g)(z) € L?(R) ® L?(R) with the function
f(z1)g(z2) € L*(R?) for all f,g € L*(R), where z1,20 € R and z =
(z1,22) € R% This allows us to construct an orthonormal basis for L? (R?)
from the basis for L? (R). The Hermite functions on R? are defined as the
functions in L? (RQ) given by

(b @ he) (z) = h, (21) by (22)

—1/2
:(W—QW!) "y (00) Hy () e 20353) (6.13)

for all x = (x1,22) € R? and k,¢ € Ng. The family {hy ® hy : k, £ € No} is
an orthonormal basis for L2 (]RQ).

In [42]-[44], Wiinsche introduces the Laguerre two-dimensional polyno-
mials as

4 LA (6.14)

for two independent complex variables z; and 2y, where Ly, , (0,0) = (=1)" nldmy,
and Lo (21, 22) = 1. The Laguerre two-dimensional polynomials are related
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to the usual Laguerre polynomials in (6.8) by

Ly (21,22) = (=1)" nlz" "L " (2122)
= (=1)"mlzy LY (2122) (6.15)
If the second variable is complex conjugated to the first variable, that is
z9 = 2§, (6.15) can be simplified by transferring to polar coordinates. If we
write z = 1 4+ iz and 2* = 21 — iz in polar coordinates, we have z = re®¥
and z* = re”% such that r? = 22* = 2?2 + 2. Then
L (21 + iz, 21 — izg) = (—1)" plym LI (p2) lm—m)e

(=1)" ™ L (r2) e e (6.16)

As shown in [45], the Laguerre two-dimensional polynomials are related to
products of Hermite polynomials by

m+n i m+n—j (m—jn—i)
Lm’n (1'1 + ixo, 1 — ixg) = (_1)n Z <2> ij Jn=d (0) Hj (1'1) Hm+n—j ({EQ)
§=0
(6.17)
where the coefficients are given by Jacobi polynomials evaluated at z; = 0.
Furthermore, (6.17) can be inverted so that

m—+n

Hy (21) Hy (22) = " Y 2P (0) Ly (21 + 02, 21 — i2)
§=0

— " Z (_2)] F)J(m—]7N—J) (O)j!rm+n—23L7jﬂ+n—2j (7,2) ez(2j—m—n)go
=0
(6.18)

This concludes our orthogonal interlude.

6.5 Completeness of {f,.,}

m,neNy

We now proceed as follows: We define an operator B on S and show that to
each eigenvalue corresponds both functions in {hy ® e}, scn, and functions
in { fm”}m,nENo' In other words, the eigenspace of each eigenvalue con-
tains functions from both these families. Using the fact that {hx ® he}y sen,
is an orthonormal basis for L? (RQ), we will express each eigenfunction
fmn in terms of the basis elements, specifically those in the correspond-
ing eigenspace. Invertibility of the coefficients in these expansions will imply
that each hx ® hy can be expressed in terms of elements of {fin}
This will be sufficient to prove completeness of { finn}

m,n€Ng*

m,nENp*
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Define the Hermite operator B : S — L? (Rg) by
B:=|z|* — A= (2] +23) — (0 + 93) (6.19)

Using definition (6.13), it can readily be shown that the Hermite functions
are contained in S; hence, both {hy @ he}y peny, and {fmnty, nen, are in the
domain of B. First, we consider the action of B on the basis {h; ® hf}k,[eNo'
This will give us the eigenvalue corresponding to each eigenfunction in the
basis.

Proposition 6.5.1. B (h; ®@ hy) =2(k+ €+ 1) (hi ® hy) for all k,¢ € Ny.
Proof. For j = 1,2, we have
(zj — 05) (xj + 0;) hi (25) = (5 — 0;) (wjh (5) + Ojhi (2;))
= &3hy, (x5) + 20;hy, (x5) — 05k (x5) — OFhy (z;)
= (a3 — 92) hi (25) — hie ()
which gives
(25 = 07) hy, () = (x5 — 8y) (aj + 0y) i (a7) + hy, () (6.5.1.1)
Using (6.10), together with definition (6.12), we find that for all £ € Ny

(25 + 05) hi (x5) = (Qkflk!) i [ﬂfij (2j) e % + (9;Hy () e 7 + Hy (x;) 9je

- (2’f—11<:!) 29k Hy (xj)e 3

_1 22

— 2k (2<’H>*1 (k — 1)!) ® iy (z;) e 7

= V2k hy_1 (2;) (6.5.1.2)
Similarly, we find

_1 22 z2

(zj — 0;) hye (x5) = <2k_1k!) ’ [%‘Hk (zj)e™ % — (0;Hy (z;)) e % — Hy (z;) Oje”

N ‘gfﬁw

= (2k71k!> K Hjpq (z5) e

= V2(k+1) (2007 (k4 1>!)‘§ Hy ()
TR e () (6.5.1.3)
By applying (6.5.1.2) and (6.5.1.3) to (6.5.1.1), we obtain
(25 = 07) hye (w5) = (x5 — 8;) (w5 + 0y) i (w5) + hy, ()
= (j — 0;) V2k hi—1 () + hy, ()

= V2k\/2 (k — 1+1) hy () + by ()
= (2k + 1) hi () (6.5.1.4)

7
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for all k£ € Ny and j = 1,2. The required result follows by using (6.5.1.4),

together with definitions (6.19) and (6.13): For all k, ¢ € Ny

B (hy @ hy) = (|2]* — A) hg (21) he (72)
[(acl + xz) (81 + 32)] hi (z1) hy (z2)
( 81) hi (1) he (z2) + (CL’% — (9%) hi (1) hy (z2)
= (2k + 1) hy; (z1) he (22) + (2¢ + 1) hy (21) B (22)
=2(k+0+1)(hi® hy)

O
Next, we consider the action of B on elements of the family { fn '}, nen,
via a series of propositions.
Proposition 6.5.2. Bf =Gxf+ fxG forall f € S.
Proof. 1t follows from Propositions 6.3.1 and 6.3.2 that
= |z[*f - Af
= 22Zf — 200f
= (22+02—20—-00) f + (22— 0z + 20 — 00) f
=zx(Zf—-0f)+ (Zf +0f) x z
=2xZx [+ fxZxz
(G f+fr(G-1)
=Gxf+fxG
for all f € 5. O

Proposition 6.5.3. If m,n € Ny, then
(1) 2% frn = \/%fm—l,n
(2) Zx frn = V2m + 2fmi1n
(3) fran* 2= V214 2fmnt1
(4) fmn *Z = \/ﬁfm,n—l

with fon =0 if m orn is —1.

Proof. Using definition (6.6), we find (2) by

_1
Zx frn = (2m+”m!n!) 2Z2%x 2" % foo x 2"

=V2m+2 (2" (m 4+ 1)nt)
=V2m + 2fmi1n

N

E*erl * fOO * Z*n
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Using Propositions 4.2.8 and 6.3.5, then applying (2), we find (3):

fmn *Z = (E*fnm)*
= (\/ 2n + 2fn+1,m)*
=v2n+ 2fm,n+1

We find (1) by applying Proposition 6.3.1 and equation (6.3.3.1):

2 2Mmz™ ! foo x 2*"

m (2m+"m!n!) ~2 om—lzm=1 g0 % 2*"
= V2m (2771 (1 — 1)lnt) T2 7Lk fg % 2™
= V2mfm 1

Then (4) follows:

Jin *Z = (2% fom)”
- ()
= V20 fmn1
O

We include here a result showing the action of the derivatives on the

elements of { fmn}m,neNo5 however, it will only be used in later chapters.

Proposition 6.5.4. If m,n € Ny, then
(1) Qfmn =V n/2fm,n—1 Y 1/2 (m + 1)fm+1,n
(2) 8fmn Y m/2fm—1,n -V 1/2 (n + 1)fm,n+1
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Proof. We find (1) as follows:
1
8fmn = (2m+"m!n!)_§ 0 (E*m * foo * Z*n)

= (2m*n 2" % O foo x 2" + 2 % foo x 02*"

NI

m!n!)_

N =

= (2m+”m!n!)_7 [ e (=Z foo) * 2+ 2 % foo * nz*n_l]
= (2™"mInl) "2 [nZ"" x foo * 21 — 2712 i g % 2]
= /n/2 (2™ Il (n — 1)1) 3 m * foo * 2"

1/2(m +1) (2™ (m + 1)!n!)_% 7 foo % 24"

= \/m,fm,n—l - \/mfm“v"

(2) is found similarly.

-

Proposition 6.5.5. If m,n € Ny, then
(1) G * fonn = 2m + 1) frun
(2) frnx G = (2n + 1) Jmn

Proof. Using Propositions 6.3.2 and 6.5.3, we find
G* frn=Z*24+1)* frn

=Z* 2% fran + 1% fin
Z % (Mfm—l,n> + fmn
= V2 (m — 1)+ 2V2m fun + fonn
= (2m +1) fin
and

frn *G = fon * (Z* 2+ 1)
= frn*Z2*x 2+ finn x 1

= \/%fm,n—l *z+ fmn
= V2(n*1)+2mfmn+fmn

= (2n+1) fin

Proposition 6.5.6. Bf,, =2(m+n+ 1) fn for all m,n € Ny.
Proof. Using Propositions 6.5.5 and 6.5.2, we find
Bfmn = G*fmn + fmn*G

= (2m+1)fmn+(2n+1)fmn
=2(m+n+1) frun
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Corollary 6.5.7. There exists constants ck. such that for all m,n € Ny,

ke
k+l=m+n

Proof. Let m,n € Ny be arbitrary. From Proposition 6.5.6, we see that
fmn 18 in the eigenspace, say E,,,, of the eigenvalue 2 (m +n+1) of B.
Proposition 6.5.1 implies that hy®hy is in E,,, whenever k+£ = m+n. Since
{hi @ he}y pen, 18 an orthonormal basis for L? (R?), the set of eigenvectors
{hx @ hy : k + € =m +n} spans the eigenspace E,,,. Hence, f,, can be
written as a linear combination of these eigenvectors. Since this holds for
arbitrary m,n € Ny, we have the required result. ]

Now we want to show that each hy ® hy can be expressed as a linear
combination of elements in {fmn},, ,en,- We do so by finding an explicit
expression for the expansion in Corollary 6.5.7, and then showing that the
coefficients are invertible.

Proposition 6.5.8. For all m,n € Ny, we have

fmn = (2m+nm'n')7 Z (—1)k <77ka> <Z> k!2m+nszmszn7kf00

k=0

N

Proof. We will prove this by induction over n. From definition (6.6) for f,,
and equation (6.3.3.1), we have as inductive basis that for all m € Ny

fmo = (2mm!)7% Z" x foo

= (2mm')_% 2m§mf00

- () B

10 m\ (0
= (2™ 0ml0n) "2 Y (—1)* <k> (k> L

k=0

Suppose, as inductive hypothesis, that for some fixed n € N

fmn = (2m+nm'n')7 Z (—1)k <7I:L> <Z) k!2m+nszm7kzn7kf00

k=0

(NI

1
for all m € Ng. Let M = (2™l (n+ 1)!) 2. Then, using Propositions
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6.5.3 and 6.3.1, the inductive step follows: For all m € Ny

fm,n—i—l
=(2n+ 2)_% frn * 2

= (2™ il (n + 1)1~ (—1)* (7:) (Z) flomin=hkzm=k n=k f x 2
k=0

=

. m\ (n ek e
:MZ(_l)k <k> <k>k!2m+" k (22 Fen 1=k foo — (m — k) 2™+ 12 kfo())
k=0
E
k=0

+ MZ (_1)k+1 <k7—’: 1> <Z> (k‘ + 1)!2m+n—kzm—k—lzn—kf00
k=0

[ () (52 o (1) () e v
X Mﬁ: (_1)k [(7;?) (Z) i (Z) <k i 1)] k!2m+n+1—k§m—kzn+1—kf00
k=1
M |:(7Z)l> (n—(l)— 1) gmtntlom n+tl + (_1)n+1 <n:r_L 1) (Z i 1> (n + 1)!2mzm—n—1:| foo

- 1
+M Z (_1)k’ <7Z> (Tl ‘]: )k!2m+n+l—kzm—kzn+l—kf00
k=1

1 n+1 1
_ (2m+n+1m! (n+ 1)!) 2 Z (_1)k m\ (n+ flomtntl—kzm—k ntl-k ¢
— k k

Since this holds for arbitrary n € N and for n = 0, the required result follows
by induction. O

The following proposition expresses the f,,, after switching to polar
coordinates, in terms of the Laguerre polynomials LS, as defined in (6.8).
Note that we can write z,Z in polar coordinates by defining pe’® := x1 4+ ixo

such that p? = 27 + z3. Then we have

1 1 : 1 1
z 1= — (21 + ix9) = —=pe'® Z = —(x1 — ix9) = —=pe
ﬂ( 1 2) \/ip \@( 1 2) \/ip

Also, note that

—ia

foo :=2e"% = 2¢~1/2(xt 1) = ge=r*/2

Proposition 6.5.9. For all m,n € Ny, we can write

n n! —ta(m—n) m—ngrm—n —p?
fmn =2 (_1) H me ( )p Ln (p2) e’ /2
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Proof. We switch to polar coordinates in the expression derived in Proposi-
tion 6.5.8. After some rearrangement, we use definition (6.8) to obtain an
expression in terms of the Laguerre polynomials. For all m,n € Ny, we can

write
_1 n m n —k—m—k n—
fmn = (2m+nm'n') 2 Z (—1)k <k‘) (k‘) k?'2m+n kZ kZ kfoo
k=0
L n m—k n—k
— (om+n, 1.1\ "2 k(T n jomtn—k (o—1  —ia -1 ia —p?/2
(2™ mlin!) kz_o( 1) (kz) <k> k!2 (2 2 pe ) (2 2 pe ) 2e
—9 (m|n')7% (_1)k <”:) <Z> k!pmfnPQ(nfk)efia(mfn)efp2/2
k=0

n! 1 n min! 2
_ v —ia(m—n) ;m—n 1 k 2(n—k) —p?/2

m!© L <k§0( U oy Ay T )e
—9 1!6 ia(m—n) m—nl (_l)n - mln! (_ Q)k 6—/)2/2
~ Vo L 2 (m—n+ k) (n— K"

n k

Wy m (=)
— o/ ia(m—n) m—-n _— 1)l p*/2

ml© SO << ) nkzzo(n—k> k! c

n k
nl m— _ n+m—n\ (—p?) 2
_ _1\n v —ia(m—n) m—n /2
=2(=1) m!© P (Z n—~k > k! e’
k=0
n n! ia(m—n) m—ngrm-n [, 2\ —p>/2

=2(-1) e (m=n) pm=np, (p*) e/

O]

Proposition 6.5.10. The family of functions { fumn}
L? (R%).

mneNy complete in

Proof. The following equalities are obtained by applying (6.16) and (6.17)
to the expression found in Proposition 6.5.9. Furthermore, we use (6.13),
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(6.7), and Corollary 6.5.7. For all m,n € Ny, it holds that
frmn ()

[ n! .
) (_1)n %efla(mfn)pmfnlzzzfn (p2) 67p2/2

) (_1)n (n'm|)—% n!pmfnL;nfn (/)2) efioz(m—n)efp2/2

m+n , .\ mt+n—=k
=2 (_1)“ (n|m|)_% Z <;> P]Em—k7n—k) (0) H, ('Tl) Honini (x2) 6—1/2($f+z§)
k=0

_1\n m+n .\ m+n—k
_2D) <;) PR (0) (27 2k) (1 + 1 — k)!)

(nlml)® (=

[N

(hie ® homyn—i) ()

N4
= Y ()2 (2) PR (0) 2054072 (k141) 2 (hy @ hy) ()

n!m!

= Xt (T R ) (o ) )

N

- Z e Gasit) () A ooenw

k+l=m+n
_1

1
ovmomae (KON (K07 nkne
- E e () At o me e
k+l=m+4n

(6.5.10.1)

Recall from Corollary 6.5.7 that, for any m,n € Ny, fiu, can be written
as a linear combination of elements of the set {hy @ hy : k +{=m +n}. In
other words, there exist constants k. such that for all m,n € Ny,

fom= > Fhp®hy (6.5.10.2)
k+l=m+n

By comparing (6.5.10.1) and (6.5.10.2), both of which hold for all m,n € Ny,
an explicit expression for the cﬁfn is given by

_1

1
e e el (O N (M I e G ORI CER TR

Since each ¢ in (6.5.10.3) defines a constant polynomial, it follows that
(6.5.10.2) is invertible. Thus, there exist constants b)) such that for all
k,¢ € Ny

hi@he= > by fon (6.5.10.4)

m+n=k+{
This means that every function in {hy ® he}y sy, can be expressed as a

linear combination of elements of {fmn},, men,- We know that the family
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{hk ® he}y gen, is an orthonormal basis for L? (RQ); specifically, this family
is complete, i.e.

span{hy @ h}y, e, = L7 (R?)

where the overbar denotes the closure. So (6.5.10.4) implies that L? (R?)
is equal to the closure of a set consisting of certain linear combinations of
elements in { i} In particular, it follows that

m,neNp”
span {fmn}mnen, = L* (R?)
Hence, the family { finn},, nen, 18 complete in L? (]R2). O

Corollary 6.5.11. {fn}
L? (R?).

This result follows from Propositions 6.1.1, 6.3.6 and 6.5.10. The first
proves the inclusion of the family in S, while the other two prove orthonor-
mality and completeness of the family respectively. The power of this result
lies in the fact that we can expand any element of L? (RQ) in terms of this
basis. In particular, we can expand any element of S in terms of this basis.
More precisely, for every f € S, there exist constants ¢, such that

mmeNy C 9 C L? (RQ) is an orthonormal basis for

e}

m,n=0
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Chapter 7

Sequence representation of S

We represent S as a sequence space of coeflicients after expansion in the basis
{ fmn}m,neNo' Before we define the relevant sequence space, we define a fam-
ily of seminorms that generates a topology on S equivalent to the Schwartz
topology in Section 7.2. This family of seminorms will be instrumental in
proving the equivalence between S and its corresponding sequence space in
Section 7.3. The seminorms will be defined via a certain unbounded opera-
tor; therefore, we start by recalling some relevant definitions in Section 7.1.
We conclude this chapter by finding a matricial form of the Moyal product
and extending it to L? (Rz) in Section 7.4.

7.1 Unbounded operators

The following definitions can be found in [23, Chapter 10].

Definition 7.1.1. Let T : © (T) — H be a (possibly unbounded) densely
defined linear operator in a compler Hilbert space H. Then the adjoint
operator T* : © (T*) — H of T is defined as follows: The domain © (T™*)
consists of all y € H such that there is a y* € H satisfying

(Tz,y) = (z,y")

for all x € ©(T). For each such y € © (T*), the adjoint operator T* is
then defined in terms of that y* by

*

y =Ty

In other words, an elementy € H is in © (T™) if (and only if) for that y the
inner product (T'x,y), considered as a function of x, can be represented in
the form (Tx,y) = (z,y*) for all x € D (T). Also, each such y determines
the corresponding y* uniquely since © (T) is dense in H, by assumption.
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Definition 7.1.2. Let T : © (T') — H be a linear operator which is densely
defined in a complex Hilbert space H. Then T is called symmetric if
(Tz,y) = (x, Ty)

for all x,y € ® (T).

7.2 New seminorms

Here we define a new family of seminorms in terms of an unbounded operator
W and prove that it generates a topology on S equivalent to the Schwartz
topology. Let

Wf=GxfxG (7.1)

for all f € S, where G is defined in (6.3). Since G € M, it follows from
definition (5.20) that W f € S for all f € S. Owing to Proposition 4.2.1, we
may consider W as an operator in L? (]Rz) with domain S, i.e.

W:S—L*(R*): fsGxfxG

Proposition 7.2.1. W : § — L? (RQ) is o densely defined, unbounded,
symmetric operator.

Proof. Note that W is densely defined because S is dense in L? (R2) by
Proposition 4.2.1. Using Proposition 6.5.5, we see that, for all m,n € Ny,

W foin = G * foun *G = (2m+ 1) (2n+ 1) fon

Thus, W has arbitrarily large eigenvalues and is unbounded. Now we prove
that W is symmetric. Propositions 5.2.8, 6.3.2 and 6.3.5 give

G =(zZxz+1)"
=2"%xZ"+1
=Z*xz+1

=G

Using this result, together with definition (4.2.8) and Propositions 4.2.10,
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5.2.3, 5.2.8 and 5.2.9, we find that

2(Wflg) = (G fxG)",9)
=(G* f**G,g)

:/(G*f**G)(a;)g(w)da:
:/(G*f**G*g)(x)dx
:/(f**G*g*G)(x)dx

/f ) (G *gx Q) (x)dx
=(f"\GxgxG)
=2(f[Wy)

for all f,g € S. Hence, W is symmetric. O

Now we define a family of seminorms on S. For each k € Ny, let

71l = || wes] (7.2)

for all f € S. It is simple to show that [|-||, is a seminorm for each k € Ny.
Our aim is to show that the family of seminorms {|[-||},cy, generates the
Schwartz topology on S. We do so in the following propositions.

Proposition 7.2.2. For all f € S and any m > %,

1 < K27 (11£1; + 14711, )
1
where A = 0? + 03 and K = <f(1+‘iw>2

Proof. Let f € S and u € R? be arbitrary. We use the Fourier transform F
as defined in (4.2.16). From Lemma 4.2.2 (5), one has

[ul® Ff (u) = (uf +u3) Ff (u)
= w1 (iF (92f)) (u) + uz (iF (91 f)) (w)
= i°F (02 (02)) (u) +*F (91 (011)) (u)
= —F (03f) (u) — F (91 ) (u)
= —F(Af) (u)

Tterating gives, for all r € Ng,
W Ff (u) = (1) F (A" f) (u) (7:2.2.1)
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Also, F satisfies the Plancherel formula:

[1Fs @ au= [ Ff ) FF @i

= / / f () e tSuqy / F ()t S at du
_ / / / i =0Sugy ¢ (1) F@dtdt
/ / 5 (¢ — ) £ (t) F(@)dedt’
-/ / 5 (¢ —t) Tt s (1) dt

- / 1 ()2 dt (7.2.2.9)

We can combine (7.2.2.1) and (7.2.2.2) to find

/‘|u2TFf du—/|F (A7 F) ()2 du—/w DPdt (7.2.2.3)
Next, the Cauchy-Schwartz inequality implies that for any m > %
1flloo = = sup | (w)]

/!Ff )| du

= [ ) R ] (1 af?)
2\m 9\ —m
<|[ oy e or o )

: </‘ (L+ )™ [Ff (u)] ‘Zdu/‘(1+ UIQ)m‘ZdU)é

- K (/ (1+u?)?™ |Ff (u)|2du>é (7.2.2.4)

(eI

where K = ( S W) < 00. As a final ingredient in our proof, consider

the function
(14 s)"

(1+sm)

It attains a maximum value of 2"~ 1. Therefore, it holds that

where s>0

(1 +8)2m < 22m71 (1 +82m)
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Since |u|? > 0, the above inequality implies that
(1+ uf?)®™ < 221 (1 + [uf*™) (7.2.2.5)
Finally, in (7.2.2.4), we use (7.2.2.5), (7.2.2.2), and (7.2.2.3) to find
912 < & [ (0 1) B ()

< K2/22m1 (L + [u[*™) |Ff (w)]? du

=2t ([ @Rt [ 77 @R o)

— K292m—1 </|f(t)|2dt—|—/‘|u|2me (u)’2du>

= ([upas [l o @)

= 5222 (|13 + A7 13)

< &2 (|11l + a7 1], )

The required result follows:

11 < K27 (11£1l5+ 147 £l )
O

Proposition 7.2.3. For any multi-indices o, 3 € N3, there exists some k €
No such that ‘

Proof. Let f € S and «, 8 € N2 be arbitrary. We can expand f in terms of
the basis { fin} as

wos], <t
forall f €8S.

m,nENy

o0

f: Z Cmnfmn

m,n=0

Let g :== u®d%f. Then ¢g € S, which means we can also expand ¢ in terms
of the basis as

m,n=0

Now, define

A In|dmn| — In ||
T \In(2m + 1) + In(2n + 1)
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for all m,n € Ny. Choose
k= min{k‘i eNg:k; > kpn Ym,n e No}
Tt is easy to show that |dmn|® < |emn|? (2m 4+ 1)¥ (2n 4 1)* for all m,n € Ny.

We obtain the required result as follows:

2
[wee? s = g3
2

m,n=0

= Z |dmn|2

m,n=0

2

oo
> Jemnl* @m+1)" (20 + 1)

m,n=0

IN

o0
> lemnl® 2m+1)%F (20 + 1)

m,n=0

IN

2

= Wk i Cmn fmn

m,n=0 9

2
=[]
w1,
O

Proposition 7.2.4. For any k € Ny, there exist complex numbers C, g with
o = (a17a2) 75 — (51,52) S N% such that

ka: Z C’a’gxaaﬁf
a,,BEN%

for all f € S, where Cy g # 0 is possible only if a1, an,B1, 82 < 4k. Note
that the C, g depend on k but not on f.

Proof. We prove this by induction. Let f € S and consider the case k = 1.
First, Propositions 6.3.1 and 6.3.2 give
Grf=0Zxz+1)xf
=zZx(2f +0f)+ f
=Zzf — 20f +Z0f — 00f

(2% + 23 + 2i3102 — 2ix201 — 07 — 03) f

91



Similarly,
fxG=fx(Z*xz+1)

1
= - (x% + x% — 212109 + 212901 — 3% — 33) f

2
Then
Wf=GxfxG
:i(ﬂcil+:r§+8f+8§)f
v L2 4 202 - 207 1 2307 — 2303 1 0702

2
— 2(2101 + 12020109 + w2h) f — f

This proves the case k = 1. Now suppose the result holds for arbitrary
k € Ny. Then replacing f in the expression above by W*f shows that the
result holds for k£ + 1. O

Proposition 7.2.5. The topology on S generated by the family of seminorms
{I- M} pen, coincides with the Schwartz topology.

Proof. Let f € S be arbitrary. Recall that the Schwartz topology is gen-
erated by the family of seminorms {pm}a,weNg as per (4.2.9.1). To prove
the equivalence of the topologies, we have to show that each p,, is bounded
above by a linear combination of elements of the family {||-[[}cy,, and
that each |[||-]|, is bounded above by a linear combination of elements of the

family {pav}a,yeNg

We start by proving the first bound. Let a,vy € N(QJ be arbitrary multi-
indices. Note that, for m € N, we can write

amp= (ot + )" =Y (T)or e
n=0

Since f € S, we know that p*07f € S, so that Proposition 7.2.2 holds for
u*d" f € §. We apply Proposition 7.2.2, together with the expression above,
to the definition for po.:

peo (1) = "0 .
< K2 (| fll, + A" 00 1],

% m m—-n n, o
> (n>8f( 03" e f

= K2™ (Huamez +
n=0

)

< K" (I!u“mez +> (’Z) Haf<m‘”’a§”wa”ffu2) (7.25.1)
n=0
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Let 8 = (B1,B2) = (2(m —n),2n) € N2. Also, let C3 be constants such
that Cg = (7;) (g)ﬂ!. This makes Cjg greater or equal to all the constants
that come out of the second term in (7.2.5.1). Then (7.2.5.1) becomes, after
using the triangle inequality,

Pay (F) < K27 |l f]]
151/2
LY o]
B/2=0
181/2
+ K9lAl 5/22_0 Cy (Hua—(ﬁl,O)av-&-(O,ﬁz)fHQ + Huaav—irﬁfHQ)

petorf], |

110~ (0:82) gy+(51.0) fH )
2

(7.2.5.2)

We can apply Proposition 7.2.3 to each of these five terms. In fact, we can
apply it simultaneously to the linear combination of the last four terms. We
incorporate the constants Cg into a new constant by setting Cy = sup{Cs}
for any nonzero ¢ € Ny. There exists some k € Ny (first term) and constants
Cy that are nonzero for finitely many ¢ € Ny (last four terms) such that

poo (1) < K2 ]+ 21 5 [,
£eNg

= sl sl + 3o e,
£eNy

= k2P LIf I+ D Cll £l (7.25.3)
LNy

Since this holds for arbitrary «,v € N3, we have shown that each Dary 18
bounded above by a linear combination of elements of the family {||-[[; } e, -

Now we prove the reverse inequality. First note that since f € S, f (z) —

0 as |x| = oco. In fact, f(z) — 0 faster than the inverse of any polynomial.
Specifically,

/(1+ 2*) 1f @)[*do < sup |(1+1al*) 1F @] (7.2.5.4)
z€R2
Recall that (7.2.2.5), which holds for m = 2 in particular, gives

(1+[u?)" <23 (1+ [u®) (7.2.5.5)

Next, by applying the Cauchy-Swartz inequality, then (7.2.5.4) and (7.2.5.5),
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we find
2113 = [ 17 @) do
/(Hmz)-? (1+]e !2)2\f< )P de
'/ L4 12)?) 72 (1 + )2 |f ()] dee

< (/‘ 1+ [2]?) ‘ dm/‘ +|x!2)2|f(w)l2‘2dfv>§
- (/ (1+ =)~ d$>% </ (1+ Iw!2)4|f($)’4dm>;

=y (/ (1+ \a:|2)4f(az:>r"cloc)é
< \/§</23 (L4 [2[) |f (= )4dw>é

sup 1+’33| |f (z ’D

11 + (1212 £ (o )

3 (o
([
< +HM f (@ ’H )
(
(

7o+ I £ @) )’

Thus, we have

= (5) (1 1P 0] )

This already proves the needed inequality for £ = 0, since

£l = 1711,
< <8§> (1l + |l £ @)]| )

<(%) " (om ()40 (1) + 0 )
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where § = (61,82) = (2,0) and € = (e1,€2) = (0,2) in N3. This shows that

[[-[lly is bounded by a linear combination of elements in {pm}aﬁeNg.

For the remainder of the proof consider an arbitrary & € N. Choose
a = (a1,as2),B = (b1, B2) € N3 such that oy, as, 81, B2 < 4k. Then we know
from Proposition 7.2.4 that there exist constants C,, g such that

ka = Z C’a’gxaaﬁf
a,BENg
Also, let § = (01,02) = (2,0) and € = (e1,€2) = (0,2) be multi-indices in

NZ. Using the expression above, together with (7.2.5.6), and noting that
|z|> = 23 + 23, we find that

71l = |[w* ),

=|| Y. Copz®d’f

a,ﬁEN(Q)

> ICa,ﬂ\2’

aﬂENg

2
o],

IN

) (o] + ot anors])

IN
Qe
(]
o
>

=

(xaaﬁf + xfxaaﬁfmgxaaﬁfuoo)

=

o0

I

i\
£
S

5) (s _+ feriora] s Jemooe] )
) (5o (1) 4 s (1) + s ()

(7.2.5.8)

Together, (7.2.5.7) and (7.2.5.8) prove that each ||-||, is bounded above by
a linear combination of elements of the family {pw}aﬁeNg.

Having proven inequalities both ways, we see that the topology generated
by {lll-llx}xen, is contained in the topology generated by {pav}aﬁeN% and
vice versa. Hence, the topology on S generated by the family of seminorms
{Ul-llx }pen, coincides with the Schwartz topology. O
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7.3 The sequence space

Now we proceed to represent S as a sequence space. Define the Fréchet space
5 of rapidly decreasing double sequences ¢ by

5:= {c = (Crmn )y m=o : Tk (¢) < 00 for every k € No} (7.3)
where
. 3
re(c) == D @m+ 1% 2n+ )% el (7.4)
m,n=0

for each k € Ny. The topology for § is generated by the family of seminorms
{Tk}kGNo'

We want to show that the spaces S and s are topologically isomorphic.
In order to do so, we need to define a homeomorphism between the spaces,
that is, a bijective correspondence that preserves the topological structure
involved. We will make use of the fact, as proved in Chapter 6, that every
f € 5 can be expanded as a linear combination of the elements of the basis

o0
{fontom neNy» 1-€- there exist constants ¢y, such that f = > Cmnfmn-
’ m,n=0

For every f € S, we let ¢ € § be the sequence of coefficients (Cmn)frinzo

in the basis expansion. To make this explicit, we define the map

Ig:S—5s5:f—=c

such that
Is (f) =Is Z Cmnfmn | = (Cmn),ono,nzo =c (75)
m,n=0
for all f € S.

Proposition 7.3.1. Is: S — 5 : f — c is a homeomorphism from S onto
3; in other words, S and s are topologically isomorphic.

Proof. In Proposition 7.2.5, we proved that the seminorms {||-[, } ¢y, €quiv-
alently generate the Schwartz topology on S, which is generated by the semi-
norms {Pan},, yeng: This means that

fes iff  pay(f)<oo Va,ye N

or equivalently

fes it Ifll, = HwkaQ <oo VEeN (7.3.1.1)
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Using the symmetry of W from Proposition 7.2.1, we find that for all f € S
and every k € Ny

[e.o]

T T sy

m,n=0

2

= i ‘Cmn‘Q (kamn|kamn)

m,n=0
0

= Y Cm+ 1" @20+ 1 cmnl* (frnl frn)

m,n=0
0

= Y Cm+ 1" 20+ 1) e

m,n=0

=71 (0)2

Hence,
£l = || s, = ri o) (7:3.1.2)

Let f € S. Then Ig(f) = ¢ such that, from (7.3.1.1) and (7.3.1.2), 7 (¢) =
(I f]l, < oo for all k& € Ng. It follows from the definition (7.3) for 5 that
c € 5. Hence, Is maps S into 5. Since the seminorms [|-|||,, are in fact norms
(IIflly =0 = f =0), the equality in (7.3.1.2) shows that Ig is injective.

To show surjectivity, consider an arbitrary ¢ € 5. So c is the double
sequence ¢ = (Cmn )y nep Such that ry (¢) < oo for every k € Ny. Now, define
double sequences ¢ € 5 for all M, N € Ny by

MN ._ (,MN\>®
¢ T (Cmn )m,n:O

where the elements are given by

Con =

MN ._ ) Cmn Itm<Mandn <N
0 otherwise

Clearly, for each k € Ny,
rk(cMN—c) —0 as M,N— o0

In other words, the sequence (CM N )

M.NeNy of partial sequences in 5 con-
verges to ¢ € 5. Thus, (CMN) is Cauchy in s, i.e. for M1, N1, My, Ny €

M,NeNy
N07

Tk (cM1N1 - CMQNQ) —0 as My, Ny, My, Ny — 0 (7.3.1.3)
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Furthermore, consider the sequence ( FMN ) M.NENy in S, where the functions

fMN ¢ S are defined, for all M, N € Ny, by

M N
fMN = Z Zcmnfmn

m=0n=0

Then, for all M, N € Ny

IS (fMN) = (Cm”)mSM,nSN = (CT]\V/l[éV)frj,n:O = CMN

It follows from the fact that (CMN)MNGNO is Cauchy in 3, as per (7.3.1.3),
and from (7.3.1.2), that for My, Ny, My, N5 € Ny, and for each k € Ny,

H}f]MlNl _ fMQNQH‘k _ Hwk (fM1N1 _ fMQNQ) ‘2

ri(Is (F200) = Ig (£2272) )

CM1N1 _ CMQNQ)

—0 as Ml,Nl,MQ,NQ%OO

Thus, the sequence (fMN)MNeNO is Cauchy in S. Since S is complete by

Theorem 4.1.9, (fMN)M,NeNo converges to some f € S. Let us denote the
limit by f:= lim fMYN. Then

M,N—oc0

Is(f)_fs< lim fMN>

M,N —oco

=1 )

= lim MV
M,N—oco

=C

Since we considered an arbitrary ¢ € s, it follows that for every ¢ € 5, there
exists an f € S such that Ig (f) = c¢. Hence, Ig is surjective.

To conclude, Ig is a bijection between S and 5. Moreover, (7.3.1.2) shows
the equivalence of the topologies; Ig preserves the topological structure.

Hence, Ig is a homeomorphism or, equivalently, S and § are topologically
isomorphic. O

7.4 Matricial form of x and its extension to L2 (RQ)

The sequence representation of S in the previous section suggests that we can
define a matricial form of the Moyal product. Specifically, we will show that
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the Moyal product between functions in .S corresponds to the matrix prod-
uct between the corresponding sequences (which can be viewed as infinite-
dimensional matrices) in 5. This matricial form provides a simple way to
extend the Moyal product to spaces larger than S. In particular, we find its
extension to L? (RQ).

Proposition 7.4.1. If c¢,b € 5 correspond respectively to f,g € S as coeffi-

cient sequences in the basis { fmn},, nen,, €
o (0]
f = Z Cmnfmn g = Z bkffkf
m,n=0 k,4=0

then the sequence corresponding to the Moyal (twisted) product fxg € S is
the matriz product cb € 5, where

o0

(), = Z Crnbne

n=0

Proof. Using Proposition 6.3.4, together with the continuity of x in S, we
find

oo oo
f*g = Z Cmnfmn * Z bk@sz@
m,n=0 k=0
oo
= Z Cmnbkéfmn * fld
m,n,k =0
oo
= Z Cmnbké(snkfmﬂ
m,n,k, =0
oo
= Z Cmnbnffmé

m,n,f=0

Since f* g € S, it can be expressed in terms of the basis. So the expression
above implies that

Frg= Y () fme
m, =0
with the coefficients given by
(cb),e = Z Crnbne
n=0
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Using the Cauchy-Schwartz inequality, we see that for all £ € Ny

[e.e]

ri (ch)? = Y (2m+ 1) (204 1) |(cb), |7
m, =0
o0 o0 2

= > Cm+1" 20+ D) D cmnbe
m, =0 n=0

< Y @m+ DD eme? D [besl?
m, =0 r=0 s=0

< >0 EmADF 2+ 1) e Y (204 1) (25 + 1) by
m,r=0 £,s=0

= ri ()’ i (b)°
Since ¢, b € 5 with finite seminorms, the expression above implies that
T (eb) <1 (¢)rk (b) < 00
Hence, ¢b € 5. O

The proposition above suggests that we can extend the topological cor-
respondence between S and § to an algebraic correspondence. Recall that
A = (S5, %) (see (4.2.18) and Corollary 4.2.12). Define the map n on A such
that

n(f):=c (7.6)

forall f= > cmnfmn € A.

m,n=0
Proposition 7.4.2. A and n(A) are algebraically x-isomorphic:
A~ (A)

where 1 (A) is the algebra obtained by equipping s with matriz multiplication
and an involution given by complex transposition.

Proof. Let f, g € A with basis expansions

0 00
f: Z Cmnfmn and g = Z bmnfmn
m,n=0 m,n=0

Note that 7, considered as a map on the underlying topological vector space
of A, is exactly Ig : S — 5, which is a homeomorphism by Proposition 7.3.1.
It is also clear that n is linear. Furthermore, it follows from Proposition 7.4.1
that the x-product in A corresponds to the matrix product in 5 such that

n(fxg)=cb=n(f)n(g)
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Also, complex conjugation of a function in A corresponds to conjugate trans-
position in §:

o0

n(f*)=n Z Crmn from :C*:n(f)*

m,n=0

by Proposition 6.3.5. Thus, n is a bijective *x-homomorphism from A to
1 (A), where n (A) is the algebra s equipped with matrix multiplication and
an involution given by complex transposition. Hence, n is a *-isomorphism

and A ~n(A). O

The matricial form of x in Proposition 7.4.1 gives a way of defining the x-
product between elements of L? (]RQ). Remember that any g € L? (]Rz) can

be expanded in terms of the basis {fmn}m,neNo such that g = > bynfin-

m,n=0
The norm on L? (R?), as defined in (4.2.12), can be written in terms of the
coefficients of the basis expansion as

2

lglly = (9l9)2 = | > [bwnl? (7.7)

m,n=0

such that g, < oo for all g € L? (R?). Since S is a subspace of L? (R?),
the inclusion map ¢ : § — L? (RQ), defined by ¢ (f) = f for all f € S, is
injective and ¢ (S) = S is dense in L? (R?) by Proposition 4.2.1. L? (R?) is
the Hilbert completion of S with respect to the norm ||-||,.

If f,g € L? (Rz), such that f = > cunfmn and g = D by fon,

m,n=0 m,n=0
then we define
f*g = Z (Z kablm> fmn (78)
m,n=0 \k=0

Proposition 7.4.3. For all f,g € L? (RQ), the series (7.8) converges in
L? (RQ) so that fxg € L? (RQ) with

1F*glla < [1£12[lgll2

This defines a map
x: L* (R?) x L* (R?) — L* (R?)

that extends the x-product on S.
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Proof. Let f = i Comnfmn € L? (Rz) and g = io: bonfmn € L? (R2).

m,n=0 m,n=0

Using (7.8), together with the Cauchy-Schwartz inequality, we find that

2

m,n=0 \k=0 9

2

00 0o
= D D cmibin
m,n=0 | k=0
00 0o 2
-y (zrcmmn)
m,n=0 \k=0
00 00 00
<) <Z!ka2> <Z!bkn2>
m,n=0 \k=0 k=0
00 00
= | 22 lemel” | | 22 Joenl”
m,k=0 k,n=0
2 2
= 1712 llgllz

Since || f||5 and ||g||, are finite for f,g € L* (R?), it follows that || f * gl|, is
finite so that fxg € L? (RQ). Thus (7.8) defines a map

x: L? (R?) x L* (R?*) — L* (R?)

which, when restricted to S x 5, is exactly the x-product on .S as per Proposi-
tion 7.4.1. Hence, the x-product on L? (Rz) extends the x-product on S. O

In fact, L? (RQ) equipped with the x-product and complex conjugation
is a Banach x-algebra, since it is the completion (with respect to a submul-
tiplicative norm) of an associative #-algebra.
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Chapter 8

Equivalent representations of A

In this chapter, we define equivalent representations of the algebra of the
Moyal plane A. This will allow us to switch between the representation that
will form part of the spectral triple of the Moyal plane and a representation
that makes calculation of the spectral distance tractable. We start by as-
signing some notations: If H is a Hilbert space, let

e £ (H) denote the space of all linear operators on H

e B (H) denote the space of all bounded linear operators on H

e K (H) denote the space of all compact operators on H

e HS(H) denote the space of all Hilbert-Schmidt operators on H.

Note, from [31, Section 2.4], that B (H), K (H), and HS (H) are C*-algebras
when equipped with the operator norm. Moreover, we have the following in-
clusions

HS(H)C K(H)C*B(H)
where K (H) is dense in B (H).

8.1 Representation as Hilbert-Schmidt operators

First, we recall a basic definition from [31, Section 2.4].

Definition 8.1.1. If {ex} is an orthonormal basis for a Hilbert space H,
then an operator T € B (H) is called Hilbert-Schmaidt if

o0 3
2
1T s = (Z HTekHH> <00

k=0
where ||-|| y g s called the Hilbert-Schmidt norm and ||-||; is the norm on H.

Let ¢? (Ng) denote the Hilbert space of square-summable sequences of
complex numbers

P (No)={t= (W) : v €CV¥neNy and |9 <00}  (8.1)
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where the norm is defined by

1
2

lolle = ()% = | S foul? (8.2)

n€Ng

via the inner product (¥, ¢),2 := ¥*¢ = > ¥y, which is defined for all
n=0

¥, ¢ € 2 (Ng). Furthermore, let {e,},c, denote the canonical orthonormal

basis of £2 (Ng), where each e; is given by a sequence with a 1 in the i’th

position and zeros elsewhere, i.e.
eo = (1,0,0,---) e1 =(0,1,0,---) ete.

Throughout this chapter, we will represent the functions f,g € A as
sequences 1 (f) = c € n(A) and 1 (g) = b € 1 (A) respectively, via the basis
expansions

0o 0
f: Z Cmnfmn and g = Z bmnfmn
m,n=0 m,n=0

as done in Proposition 7.4.2. Let us now return to the map n: A — n(A4):
f — c defined in (7.6). This time we consider it as a map into the space of
linear operators on £2 (Np):

n:A— £ (0*(Np)) (8.3)

where the rapid decay sequences in 7 (A4) act on vectors in ¢2 (Ng) by row
o0
by column multiplication. Explicitly, for every f = > ¢pnfmn € A, and
m,n=0

each basis element e € {e,},,cy, of £% (No), we have

o0

n (f) €k = Cep = Z Cmk€Em (84)
m=0
The sum on the right is exactly the k’th column of the matrix ¢ = (Cmn);f,nzo
and is clearly in ¢? (Ng). This implies that 7 (f) determines a linear operator
on £2 (Np) for every f € A and justifies our consideration of 1 as a map into
£ (¢* (Ny)).

Proposition 8.1.2. n maps A into the C*-algebra of Hilbert-Schmidt oper-
ators on £? (Np):
n:A— HS (£*(No))
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o0
Proof. Let f = > cmnfmn € A be arbitrary. Then ¢ € 5 so that 7 (¢) <

m,n=0
oo for all £ € Ny (see Section 7.3). Using Definition 8.1.1 for the Hilbert-
Schmidt norm and (8.2) for the #2-norm, we find

In (F)lzrs =D lIn (f) ecll?
=0

o0

= lleeclz
=0
o0

-5

0o 2

Z Cme€m

m=0

o0 oo
=22 lewl’

£=0 n=0
=19 (c)’

< 00

52

By Definition 8.1.1 for a Hilbert-Schmidt operator, n (f) € HS (¢* (No)) for
all f € A, as required. O

Proposition 8.1.3. 1 is a faithful representation of A on £ (Np).

Proof. Proposition 8.1.2 proves that n(f) € HS (€?(Np)) for all f € A.
Since HS (£% (Ng)) C B (12 (Np)), it follows that  (f) € B (¢* (Ny)) for all
f € A. Therefore, n maps A into the C*-algebra B (62 (NO)):

n:A— B (6 (Ny))

Moreover, n : A — B (€2 (Np)) is a *-homomorphism, since for all f,g € A
and 9, ¢ € £2 (Ny) we have

and

Yt
= (c)" ¢
= (), D)2
= ()Y, )
=W, n(f)" d)p

105



Since 7 is injective, it follows that i : A — B (£% (Ng)) is a faithful represen-
tation of A on £2 (Np). O

Since £* (Ng) is a Hilbert space with orthonormal basis {emn},,en, it is
well known that ¢? (Ng) ® £2 (Ng) is a Hilbert space with orthonormal basis
{em ® en}m,neNo when equipped with the inner product

(V1 ® G1,92 ® P2) gz = (Y1, P2) 2 (D1, P2) g2 (8.5)

which is defined for all 11,2, ¢1, 2 € £2(Np). The induced norm is given
by
11 @ d1llpge = (1Yl |91l (8.6)

Let I denote the identity operator on ¢? (Ng). Then we define the map
n®l:A— B (62 (Ny)® e (Ny)) (8.7)

such that
m&I)(f)=n(flel
for all f € A and
(n(f) @) (em ®@en) =n(f)em® len (8.8)

for each basis element e, ® €, € {€m ® en},, ey, Of 7% (No) ® £2 (Np).

Proposition 8.1.4. n ® I is a faithful representation of A on ¢* (Ng) ®
7% (Np).

Proof. Consider the map
LB (2 (Np)) > B (P (No) @ (No)): T=>T®1I

¢ is clearly a #-homomorphism and is injective because if ¢ (T) =T ® [ =0,
then
0=(T&I) (1 ®¢1)=(T1)® ¢

for all 11, ¢ € €2 (Ng), which implies
0= ((T1) ® ¢1,%2 ® G1) 22 = (T1,Y2) g2 || D1l 2

for all 11,12, ¢1 € €2 (Np). Tt follows that 0 = (T¢1,9) . for all 1,19 €
¢% (Ng); therefore, T' = 0.

Sincen: A — B (62 (Ng)) is an injective *-homomorphism by Proposi-

tion 8.1.3, the composition n ® I = ¢ on is an injective x-homomorphism.
Hence, n ® I is a faithful representation of A on £2 (Ny) ® 2 (Np). O
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8.2 Representation via the Moyal product

Let L:A— £ (L2 (R2)) be the left multiplication operator defined by
L(f)g:=fxg forall fe A, geL*(R?) (8.9)

Since f*g € L? (]RQ) for all f € A and g € L? (R2), in view of Proposition
7.4.3, L does in fact map A into £ (L* (R?)).

Proposition 8.2.1. L is a faithful representation of A on L? (]RQ)
Proof. First, note that for all f € A, from Proposition 7.4.3,

If*glly
L, = {
| lop o£ger2®2) U llglly

- {Hsz HgHQ}
0#£g€L2(R2) H.9||2
=[Ifll,

Thus, L(f) € B (L*(R?)) for all f € A. Therefore, L maps A into the
C*-algebra ‘B (L2 (]RQ)):

L:A—3B(L*(R?)
Moreover, L : A — B (L2 (]RQ)) is a homomorphism because
L(fxfg=L()L(f)g

for all f,f' € Aand g € L? (RQ) by the associativity of the Moyal product.
The Moyal product defined in (7.8) is continuous on account of the inequality
proven in Proposition 7.4.3. So, for f € L? (RQ), let (f,) be a sequence in
A that converges in L? (RQ) to f. Then, using (4.2.11.3) from Proposition
4.2.11, we find that for all g,h € A

(hf % g) = lim (h[fn*g)
= lim (/7 *hlg)
= (f*xhlg)
since f¥ — f*in L? (RQ). Hence,
(hlf*g) = (f* * hlg) (8.2.1.1)

for all g,h € A and f € L? (RZ). Next, for h € L? (R2), let (h,) be a
sequence in A that converges in L? (Rz) to h. Then, using (8.2.1.1), we find
that for all g € A and f € L? (RQ)

(hlfxg) = lim (ho|fxg)
= lim (" hnlg)
= (f"xhlg)
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Hence,
(hlf *g) = (f" x hlg) (8.2.1.2)

for all ¢ € A and f,h € L? (]Rz). Next, for g € L? (RQ), let (gn) be a
sequence in A that converges in L? (RQ) to g. Then, using (8.2.1.2), we find
that for all f,g,h € L? (RQ)

(Pl % g) = T (h[f % gn)
= nh_{IOlo (f**Rlgn)
= (f*xh|g) (8.2.1.3)
Finally, (8.2.1.3) allows us to find
(L (f)"glh) = (g|L(f) h)
= (glf % h)
= (f"xglh)
= (L(f*) glh)

for all f € A and g,h € L? (RQ). Hence, L : A — B (L2 (RQ)) is a
homomorphism. Injectivity of L follows easily from (7.8). Thus L : A —
B (L2 (]RQ)) is a faithful representation of A on L2 (RQ). O

The next step is to show that the representations L (A) and (n® I) (A)
are equivalent. We do so by finding a certain intertwining map between them.
If H is a Hilbert space and I, is a set that indexes any orthonormal basis
of H, then H is isometrically isomorphic to £2 (I4.,). Applied to the Hilbert
space L2 (RQ), which has basis {fmn}m,neNO indexed by the set Ny x Ny, this

statement implies that L2 (]RQ) is isometrically isomorphic to ¢2 (Ng x Np),
which in turn is isomorphic to the Hilbert space ¢ (Ny) ® ¢2 (No) with or-
thonormal basis {€;, @ en},, ey, Hence, there exists a unitary operator U

from L? (R?) onto ¢* (Ng) ® ¢* (Np) that preserves the vector space and in-
ner product structures, therefore, also the topological structure. Explicitly,
define the map U : L? (R?) — (% (Ny) ® % (Ng) such that

for all m,n € Np.

Proposition 8.2.2. (L? (R?), L), (¢* (No) ® ¢*(No) ,n®1I), and (¢* (Ng) ,n)

are isometrically x-isomorphic representations of A:
L(A)~(n&lI)(A) ~n(A)
In particular, for all f € A,

UL(HU"=mel)(f)
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Proof. Since U : L* (R?) — (*(Ny) ® ¢* (Ny) maps orthonormal basis ele-
ments to orthonormal basis elements, it is straightforward to show that it is
a bijection that preserves the inner product; in other words, U is a unitary
operator. We prove that U : L? (R?) — ¢? (Ng) @ £ (Np) is an intertwining

o0
map for the representations L and n® I of A. Let f = > cpnfmn € 4

m,n=0
and e;,e; € (2(Np) be arbitrary. It follows from (8.4), (8.7), (8.8), and
Proposition 6.3.4 that

UL(f)U" (ei®e;) =UL(f) fij

o0

=U Z Cmnfmn*fij
m,n=0
00
=U Z cmnénifmj
m,n=0

U (Z Cmifmj)
m=0

[e.9]
= E Cmi€m @ €;
m=0

=ﬁ(f)6i®fej
n(f)@1I)(e;®ej)
n@I)(f) (e ®e;)

Thus UL (f)U* = (n®I) (f) for all f € A; in other words, U intertwines
the representations L and n ® I. Since U is also a unitary operator, it fol-
lows that (L? (R?), L) and (¢* (Ng) ® ¢* (Ny),n ® I) are unitarily equivalent
representations, i.e. isometrically *-isomorphic representations of A:

= (
= (

L(A)~(n®I)(A)

Note that the x-isomorphic correspondence between (n® I)(A) and 7 (A)
follows from Proposition 8.1.4 by restricting the map ¢ to n(A). Applying
[31, Lemma 6.3.2] shows that the norms are preserved:

1@ 1) (Nllop = I (F) © lop = 11 (Nllop 11l6p = 117 ()l

for all f € A. Therefore, (2 (Ng)®¢*(No),n®I) and (¢*(Np),n) are
isometrically x-isomorphic representations of A:

(n®1)(A) =n(A)

109



Let
n (A) denote the closure of 7 (A) in B (€2 (Ng))
L(

[
. A) denote the closure of L (A4) in B (L? (R?)).

Proposition 8.2.3. L (A) is isometrically x-isomorphic to n(A):

L(A) ~n(A)

Proof. We know, from Proposition 8.2.2, that there exists an isometric *-
isomorphism

¢:L(A) = n(A)

with inverse

e (A) = L(4)

Since both are isometric, they have isometrically *-homomorphic extensions

and

o=t :n(A) = L(A)

It is simple to show, using limit arguments, that the properties of ¢ and ¢~!

extend to p and ¢~ respectively, and that

(p_10¢:]-dm and @O(p_lzldm

i.e. P and ¢! are inverses. Hence, © is an isometric *-isomorphism:

L(A) ~n(A)
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Chapter 9

Pure states of A

In this chapter, we determine the pure states of A. We start by showing that
the C*-closure of A is isomorphic to the algebra of compact operators. The
latter has been comprehensively studied and the form of its pure states is
well-known. As discussed in Chapter 1, a pre-C*-algebra has the same pure
states as its closure; therefore, we arrive at the pure states of A via the pure
states of the algebra of compact operators.

9.1 The C*-algebra of compact operators

We set out to prove that 7 (A) is isomorphic to the algebra
K := K (¢* (Ny))

of compact operators on £2 (Ny). To this end, consider the following from |3,
11.8.2]:

Definition 9.1.1. An inductive system of C*-algebras is a collection

where Q is a directed set, the A; are C*-algebras, and ¢;; : A; — Aj is a
x-homomorphism such that ¢;, = ¢ji 0 ¢ij fori < j < k. Each ¢;j is norm-
decreasing, so there is a naturally induced C*-seminorm on the algebraic
direct limit defined, for a € A;, by

Jall = tim |65 (@) | = inf 165 ()]

The completion of the algebraic limit (with elements of seminorm zero divided
out) is a C*-algebra called the inductive limit of the system, denoted by

ligl (Ai, dij)
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There is a natural x-homomorphism ¢; from A; to the inductive limit. If all
the connecting maps are injective (and hence isometric), the algebraic direct
limit may be thought of as the union of the A;, and the inductive limit as the
completion of this union.

Let
Mj, (C) (9.1)

denote the C*-algebra of k x k matrices with complex entries, equipped with
matrix multiplication and complex transposition. Furthermore, let

Ok oo+ My (C) = My (C) (9.2)

be the *-homomorphism that acts on a k x k matrix by adding ¢ rows of zeros
and ¢ columns of zeros. Note that each ¢y e is injective. In accordance
with Definition 9.1.1 above,

M (C) = | My, (C) (9.3)

k>1

is, by definition, the algebraic direct limit of the inductive system {(My, ¢ k+¢) : k, £ € N}.
Then the inductive limit is the completion

lim (My, dp ) = Moo (C) (9.4)

As seen in [3, I1.8.2.2], this inductive limit is isomorphic to the C*-algebra
of compact operators on £ (Np), i.e.

My (C) ~K (9.5)

Proposition 9.1.2. 7 (A) is isomorphic to K:
n(4) ~K

Proof. In Proposition 7.4.2, we have shown that A ~ 7 (A), which allows us
to consider elements of A as infinite-dimensional matrices. This enables us
to identify M}, (C) with a certain subalgebra of A for each k > 1. Specifically,
for each k£ > 1,

My (C) ~{f € A: ¢jun =0 whenever m >k or n > k}

We have not only My, (C) C n(A) for each k > 1 but also

My (C) = | Mg (C) C n(A)
E>1

Then (9.5) implies that

K cn(A) (9.1.2.1)
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To prove the reverse inclusion, we use Proposition 8.1.2 and note that all
Hilbert-Schmidt operators are compact operators:

n(A) C HS (£ (Ny)) K
This implies

n(4) cK (9.1.2.2)
Combining (9.1.2.1) and (9.1.2.2) gives the required result. O

9.2 The pure states

Now we can use a result from [31, Section 5.1] that describes the pure states
of K to determine the pure states of A.

o
Proposition 9.2.1. Any unit vector 1 = Y. {pe, € €2 (Ng) determines a
n=0

pure state wy, of A as

W (f) = <77/}7 n (f) w>£2 = Z w:n¢nam7L

m,n=0

o0
where f = > amnfmn € A. Moreover, any pure state of A comes from
m,n=0

such a unit vector.

Proof. As shown in Theorem 5.1.7 and Example 5.1.1 in [31], if H is a Hilbert
space and K (H) is the C*-algebra of compact operators on H, then the pure
states of K (H) are the vector states of the irreducible representation given
by

wy: K(H) = C:uw (z,u(x))

where x is a unit vector in H and v € K (H).
As discussed in Chapter 1, the pure states of A are uniquely determined

by those of its C*-completion 7 (A). From Propositions 8.2.3 and 9.1.2, we
have

L(A)~n(4) ~K

so that the pure states of A are exactly those of K. Therefore, the pure
states of A are the positive linear functionals

wy (f) = W, (f)¥)e

where 1 is a unit vector in 2 (Ng) and f € A. Consider an arbitrary unit

vector ¢ = > e, € €2 (Np), i.e.

n=0

o

[l =D lwnl* =1

n=0
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[o¢]
Also, let f = > amifmk € A be arbitrary. Then, using (8.4), we find that
k=0

m,

wy (f) = (0 (f) V)
= <Z Ynen,n (f) Z¢nen>
n=0 n=0 02

= <Z wnenv Z wn Z amnem>
n=0 n=0 m=0

m,n=0

Z2

as required. ]
Proposition 9.2.2. The pure states of A are equivalently given by
wo (f) = (walL (F) vn)
where f € A and each
vy =U" (Y ®ey) (n € Np)

is defined in terms of a unit vector ¢ € €2 (Ng) and U from (8.10).

oo
Proof. Let ¥ = Y tmem € £2 (Ng) be an arbitrary unit vector, i.e.

m=0

o
2 2
6ll7: = lml* =1
m=0

Then
[vnlly = 10" (¥ @ en)lla = ¥ ® enllpzgee = ¥l =1

so that v, is a unit vector in L? (]RQ). It follows from Propositions 8.2.2 and
9.2.1 that

(vl L (f) vn) = (Uvn, UL (f) U Uvp) o2
= <¢ @ én, (77 (f) ® I) (7/’ ® en)>£2®£2
= (. () )
= wy (f)

for all f € A. O
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Chapter 10

The spectral triple of the
Moyal plane

At last we are in a position to assemble the spectral triple of the Moyal
plane. In this chapter, we define the constituents of our spectral triple and
use all the preparatory work in the prior chapters to prove that it satisfies
Definition 1.1.1.

10.1 Construction
We consider the noncommutative involutive algebra A defined in (4.2.18) as
A= (S, %)

Let
H:=L*(R*) ® C? (10.1)

be the complex vector space L? (RQ) ® C? equipped with the inner product
-,y Hx H — C defined by

(W, )y = / (W11 + ¥5en) do (10.2)

for all ¢ = < Z; >,¢: ( z; ) € H with 1,19, ¢1, ¢ € L? (R2).

Define a Dirac operator D : ® (D) — H, with domain ® (D) := S ® C2, by

D :=—igld; = —i\/§< g g ) (10.3)

where we use the Einstein convention of summing over repeated indices, and

0 1 0
1 _ . 2 _
A=(10) = (h)
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are the Pauli matrices. Furthermore, we define a mapping 7 : A — £ (H)
such that

T(f)=L(f)® (10.4)

for all f € A, where L is given by (8.9) and I denotes the 2 x 2 identity
matrix. The resulting operator acts on H such that

ﬂf)¢=(§§%l>:<§:$;)eﬂ (10.5)

for all ¢ € H, since f x 1, f * 2 € L? (R?) by Proposition 7.4.3.
We will show that
(A,H,D) (10.6)

is a spectral triple as per Definition 1.1.1.

10.2 Verification

Proposition 10.2.1. H s a Hilbert space.

Proof. H is clearly an inner product space. The inner product (-, -) ;; induces

a norm on H:
6l = /113 + w5 (10.2.1.1)

To show that H is complete, let (w(m)) be an arbitrary Cauchy sequence
(m)

in H with (™) = ( d}%m) ) It is clear, from (10.2.1.1), that (wi””) and
2

<¢£m)> are Cauchy in L? (]RQ). Since L? (RQ) is complete, both (¢£m)> and
<¢§m)> converge in L? (R?). Let ¢1,¢2 € L? (R?) denote these limits, i.e.

@ng) — as m — 00

and
wém) — o as m — 00

U1

Using these limits, we define ¢ = ( y
2

(10.2.1.1), it follows that

), which is clearly in H. From

M S eH  as m— oo

Since (w(m)) was an arbitrarily chosen Cauchy sequence in H, it follows that
every Cauchy sequence in H converges. Hence, H is complete and thus a
Hilbert space. O
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Proposition 10.2.2. (7, H) is a faithful representation of A.

Proof. 1t follows directly from definition (10.4) and Proposition 8.2.1 that
w(f) € B(H) for all f € A and that 7 : A — B (H) is an injective *-
homomorphism. Hence, 7 is a faithful representation of A on H. O

Proposition 10.2.3. D : ® (D) — H is symmetric.

Proof. Consider the derivatives @ and 0 as operators in L? (RQ) with domain
S. That is

8:S—>L2(R2):fi—>\}§(31—i32)f

and

8:S%L2(R2):f+%\2(81+i82)f

Since S is dense in L? (Rz) by Proposition 4.2.1, d and 0 are densely defined
and admit adjoint operators. For all f, g € S, we have that

(f10°g) = (9fl9)
:1/2/(8f*)gd:n
—1/2 / f* (~3g) dx
= (f1(-9) 9) (10.2.3.1)

Since S is dense in L? (R?), it follows that ® (D) := S ® C? is dense in H.
Therefore,
D:D(D) - H

is densely defined. For all ¢, ¢ € © (D), we have from (10.2.3.1) that

(DY, >H=<—i 2<8 g)(ii)(:i;»b{
2 (52)(2)),

= (=iv2 (@02) |61) + (~iv2 (91)162)
(1l = V2 (962) ) + (wal — V2 (001))

()= (52)),
= (Y, Do)y

Thus D is symmetric on © (D). O
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Proposition 10.2.4. Let A, B be bounded linear operators on L? (Rz). Then
A 0
0 B

Proof. Let 1)1, be arbitrary unit vectors in L? (Rz) and a, b > 0 such that

= max{||All,, . | Bll,,}
op

a? 4+ b*> =1. Then ¢ = < Z:ﬁl > is a unit vector in H, since
2

2 ayy ?
Hd}HH* H( wa ) i

2 2
= a” [l + b [l
=a® + b

=1

Since any unit vector in H can be written in this form, we have

A 0 aAy
0 B ¥ bBY2 )|,
= a? | Ay |3 + b* || B3

< (a® + b%) max{|| Al , [ B2}
= max{||Av1l, , [ Bvl,}?

2 ‘ 2

H

The supremum in the operator norm is reached by choosing either a = 1,b =
0 ora =0,b=1 to find equality in the above equation, since both cases

return [[¢]|3 = 1:
A 0
A CRDE TR

o 5]
= max{[|All,,, [ Bll,,}

Proposition 10.2.5. [D, 7 (f)] : © (D) — H is bounded for all f € A.

Proof. Let f € A be arbitrary. First, note that for all ¢p; € A and j = 1,2,
we have from Proposition 4.2.3 that

[0, L ()1 = O;L (f) 1 — L(f) 9541
= 0; (f*v1) — f* 059
= (0jf) *1r
:L(ajf)%
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This gives

1 )
[0, L(f)] = 7 [01, L (f)] — 7 (02, L ()]
1 1
= EL (Of) — EL (O2f)
= L(8f) (10.2.5.1)
and similarly
[0,L(f)] =L (af) (10.2.5.2)

on S. Using (10.2.5.1) and (10.2.5.2), we find that for all 1) € S ® C?

o) (Lt ) +oemo (50

[D, 7 (f)] = —i 2< L(O L(01) ) (10.2.5.3)

on S ® C2.

Now we can calculate the norm. Note that B (H) is a C*-algebra with
the operator norm a C*-norm. Since S is dense in L? (]RQ), we can use
Proposition 10.2.4, together with (10.2.5.3), to find

1D, 7 (M5, = D, 7 (AT (D, 7 (5]l

("7 e )

- QmaX{HL 0f) L) | |z @n L@
= 2max {|L(01)I2,. ]| @)}

op

)

Thus,

11D, (]l = VEmax { || L ()]

L@} (10.2.5.4)

op’|
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We know, from Proposition 8.2.1, that L(f) € B (L? (R?)) for all f € A.
This implies that both norms in the maximum are finite, so that ||[D, = (f)]ll,,
is finite. Hence, [D, 7 (f)] is a bounded operator for all f € A. O

Corollary 10.2.6. (A, H, D) is a spectral triple.

Proof. Corollary 4.2.12 shows that A is an involutive algebra. Propositions
10.2.1 and 10.2.2 show that 7 is a faithful representation of A on the Hilbert
space H. Proposition 10.2.3 proves that D : © (D) — H is a symmetric op-
erator and Proposition 10.2.5 proves that [D, 7 (f)] : © (D) — H is bounded
for every f € A. Hence, (A, H, D) satisfies Definition 1.1.1 for a spectral
triple. O
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Chapter 11

The spectral distance on the
Moyal plane

In this chapter, we explicitly calculate the spectral distance between certain
pure states of A. The first step toward calculating the spectral distance is
to conveniently characterise the unit ball, which is defined as

Bp = {a e A: D, (@), < 1} (11.1)

We do so by investigating the relation between the coefficients of an arbitrary
a € A and those of [D, 7 (a)] when expanding in the matrix basis. We start
by finding a more convenient expression for the norm. Define ||-||, : A — R
such that
lall = 1L (@)l

for all a € A. Note that |||, is clearly a C*-norm on A, because ||-|,, is a
C*-norm and L is a faithful representation of A by Proposition 8.2.1. Then
we can write (10.2.5.4) as

I[D, 7 (@)l = V2max {||9all,

dal|, } (11.2)

for all a € A.

Next, we find the relation between coefficients of an arbitrary a € A and
those of da and da. Note that da,da € A whenever a € A; therefore, we
can expand them in terms of our basis. If

[o.¢]
a= Z Amnfmn € A
m,n=0
then we let
o o
da := Z O fmn 3 Oa = Z Bmnfmn (11.3)
m,n=0 m,n=0
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Proposition 11.0.1. The coefficients of Oa and Oa, as per (11.3), can be
expressed as functions of the coefficients of a € A by

(1) @mirn = V/1/2 0+ Va1 i1 = V172 (m+ Dy
(2) avn = /1/2 (n+ a1

(3) Brgs1 = V12 + Damiini — V172 (04 Damn
(4) Bmo = /1/2(m+ Dam41,0

for all m,n € Ny.

[e.e]
Proof. Let a = Y. amnfmn € A. Using Proposition 6.5.4, we find the

m,n=0
derivative
0o
Ja =0 Z Amn fmn
m,n=0
0o
= Z Amn (\/ n/2fm,n—1 -V 1/2 (m + l)fm—i-l,n)
m,n=0
0o 00
= Z Umn+1V 1/2 (n + 1)fmn - Z Um—1,nV m/2fmn
m,n=0 m,n=0
0o
= Z <am,n+1s/1/2 (n+1)— am,lyn\/m/2) Fmn
m,n=0
00
Comparing this expression to da := Y. amp fimn from (11.3), we see that

m,n=0

Amn = 1/2 (n + 1)am7n+1 Y m/2am—1,n

for all m,n € Ng, where a negative index means the coefficient is zero. This
proves both (1) and (2). Similarly,

5@25 i amnfmn
m,n=0
= > amn (V210 = V20 D) fann )
m,n=0
= Y (ametn V20 D)~ s V2) fn
m,n=0
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. oo
Comparing this expression to da := > Bumnfmn from (11.3), we see that

m,n=0
Brmn = V 1/2 (m + 1)am+1,n -V n/zam,nfl
for all m,n € Ny, which proves (3) and (4). O

The following proposition exhibits some necessary constraints for an ele-
ment in A to belong to the unit ball Bp. We present the constraints on the
coefficients of the derivatives da and da but they can easily be transferred
to equivalent constraints on the coefficients of a via Proposition 11.0.1.

Proposition 11.0.2. If a € Bp, then
= 1 - 1
Z |atmp| lopn| < —=  and Z |Bimpl lpn| < —=
p=0 \/i p=0 \/5

o0
for all m,n € Ny and any unit vector ¢ = > @mnfmn € L? (RQ).

m,n=0

— oo
Proof. Let a € Bp and da, Oa as in (11.3). Also, let ¢ = > @mnfmn be

m,n=0

an arbitrary unit vector in L? (]R2), ie.

(o) 2 oo
HQDHS = Z Omnfmn| = Z ‘@mn‘z =1 (11.0.2.1)

m,n=0 m,n=0

2

Using (7.8), where we defined the Moyal product between elements in L? (RQ),
we find

00 00
Haa*WHS = Z amnfmn* Z (Pmnfmn
m,n=0 m,n=0

2

2
o)

00
= Z Z OmpPpn Jmn

m,n=0 \ p=0

2
2

— Z Z CmpPpn (11.0.2.2)

m,n=0 |p=0

Now note that by definition (11.1), a € Bp implies ||[D, 7 (a)]||,, < 1, which
1

in turn implies ||dal|, < 7 by (11.2). From the definition of |||, we then

|0a « b||y 1
Joall, = sup { <L
L 0£be L2 (R2) 1015 V2

have
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In particular,
2
|0a * |3 < 1

2 <o
el 2
After substituting (11.0.2.1) and (11.0.2.2), the inequality reads
2
o o0 1
D [ 2 cmem| <5
m,n=0 | p=0

Since the summations with respect to m and n contain only nonnegative
terms, the inequality holds, in particular, for each summand separately. Con-
sequently, for all m,n € Ny,

S 1
I;ampsopn <% (11.0.2.3)
Now, fix m € Ny and define ¢ = p§:0 PpnJon € L? (Rz) such that
Ppn = e targ(amp) lopn| forall p,ne Ny

@™ is a unit vector in L? (RQ):
2
oo
—mn2 -
6™z = Z CPZ}lf/pn
p,n=0
- 2
=2 |4l
p,n=0

o0
- 55 femen

p,n=0

[ee]
= Z |90pn’2

p,n=0
=1

2

2

Since (11.0.2.3) holds for any unit vector in L* (R?), it holds specifically for
P™, ie.
- 1
> ampfm| < —= (11.0.2.4)
p=0 V2

for all n € Ny. Note that

o0 o0 o0
> @) = [ cmpe 25O || = 3 | [ (11.0.2.5)
p=0 p=0 p=0
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Substituting (11.0.2.5) in (11.0.2.4) gives

> 1
pz:(:) |amp| |30pn| < ﬁ for all n e Ny

We can repeat this same procedure for any m € Ny because m was chosen
arbitrarily. Thus, we conclude that

o
1
pz:(:) |amp| |30pn| < \ﬁ for all m,n € Ny

as required. An analogous argument for da proves the inequality for the
coefficients [,,. O

Proposition 11.0.3. If a € Bp, then

1 1

V2 V2
for all m,n € Ny.
Proof. Let a € Bp. Fix k,¢ € Ny and define ¢ = > ¢dpn fmn such that

m,n=0

b 1= 1 if m=k and n=1"¢
" )0 otherwise

Then ¢ is a unit vector in L? (RQ), since

2

oo o
18015 = [ D Gmntmn| = D |dmnl* = |re* =1
m,n=0 m,n=0

2

Since a € Bp, Proposition 11.0.2 holds for any unit vector and for all m,n €
Np. In particular, it holds for our unit vector ¢ and our fixed ¢ € Np.

Therefore,
[o.¢]

1
> lampl Ipel < 7

p=0
for all m € Np. The definition of ¢ gives

oo
Z |mpl |pel = || [@rel = |oume]

p=0

which simplifies the previous inequality to

1
lamk] < —=  forall m e Ny

V2
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Since k was chosen arbitrarily, it holds that

1
|| < —  forall m,k € Ny

V2

as required. A similar argument shows that

|Brk| < \2 for all m,k € Ny

O

Unfortunately, the spectral distance is not calculable between all the pure
states of A. However, it can be calculated between those pure states that
are determined by unit vectors with only one nonzero component. These
pure states correspond to the diagonal elements of A. Remember that we
only have to search the supremum in the spectral distance over self-adjoint
elements of A as per Lemma 1.3.2. We assume a¢* = a and only consider
elements in A%%. This implies that (Ja)* = (5(1), i.e. Qnm = Bmn for all
m,n € Ng. The pure states of A are the vector states of 1 (A4) on 2 (Ny), as
per Proposition 9.2.1. For unit vectors ¥ = e,,, the pure states are given by

win (@) = (em, am) 2
= Gmm

for all m € Ny. Finally, we can calculate the spectral distance between these
pure states.

Proposition 11.0.4. The spectral distance between pure states w,, and wy,
such that n < m is

G|
d (wm,wn) = Z —
k=n+1 \/E

o0 o0
Proof. For any a = >, amnfmn € A% with da = > umnfmn, Proposi-

m,n=0 m,n=0

tion 11.0.1 implies that

2
wWn+1 (@) —wp (@) = Gpg1nt1 — Gpp = \/manﬂm (11.0.4.1)

for all n € Ny. Also, Proposition 11.0.3 shows that for any a € Bp
1
for all m,n € Nyg. Combining (11.0.4.1) and (11.0.4.2), we find that for any

a € BD
Wnp+1 \@ wnp la n 1 Ant1n o I U.4.
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for all n € Ny. In the spectral distance formula, (11.0.4.3) implies that

1
n+1

d (Wpt1,wn) < (11.0.4.4)

for all n € Ny. For the spectral distance d (wp,,wy,), repeated application of
the triangle inequality, together with the inequality (11.0.4.4), gives

d (Wma Wn) <d (Wma Wn+1) +d (Wn+1a Wn)

IN

NOERINE

-

d (wka wk)
1
< (11.0.4.5)

k 1

+

n

for all m,n € Ny such that n < m.

If we can find an a € Bp such that the upper bound in (11.0.4.5) is

attained, then this upper bound is exactly the supremum in the spectral
oo

distance formula. To this end, consider the function a(™ = a;(,zz) frq

p.g=o0
with coefficients defined by

m 1

) = 5, 3 11.0.4.6

apq . pq ( M * . )
= VEF1

oo
for all p, ¢ € Np, where an empty sum is equal to zero. Note that (al():?)) .
P.g=

is a rapid decay sequence, since only finitely many terms are nonzero. Thus

al™ e A. Also, (ag;))oo . is diagonal in the matrix basis.

)

o0
First, we show that a(™ € Bp. Let da(™ = Y al(,zn)qu. The co-
p,q=0
efficients of da(™ are related to those of a(™ as per Proposition 11.0.1.
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Applying (11.0.4.6) gives: For all p,q € Ny,

o) = VI2(a+ a1 — V12 + Da

0 if ¢q#p
)0 if g=p>m
20 (- > A+ if g=p<m
gy VR = VR
if g#p
=<0 if g=p>m
1/2(p+1)(¢,%) if g=p<m
L fg=pn<
_)lva Bampb=m (11.0.4.7)
0 otherwise

Now, for any ¢ = Y Wpqfpq € L* (R?), we use (11.0.4.7) to find

p,q=0
2
2
H@a(m)*wHQ = Z apq ) foq % Z ¢qupq
p,q=0 p,q=0
2
oo o
= Z (Z%@%) fra
p,g=0 \r=0 9
o0 o0 2
-3 Dol
p,q=0 |7=0
s 2
- Z ,p 1% Lq‘
p,q=0
o0
- Z p+1,p¢’pq‘
p,q=0
m x
=0gq 0
1
<1 z Y
p,g=0
L2
=3 R
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In the definition of [|-||;, this inequality implies that

. 9a™) )
[a >HL:0#S£(R2){H aw; \\2}

||¢||2}

|

V2 ozper2®2y LYl

-1 (11.0.4.8)

V2

Since (a(m)yk = a(™) we have that (8(1(’”))* = 9a™). Then it follows from
the fact that ||-||; is a C*-norm that

o], = (oo )

Finally, using (11.0.4.8) and (11.0.4.9), we find that
[ (s, = B ]
= v2max{ o]}

= H§a<m>HL (11.0.4.9)

2],

op

IN

v

(11.0.4.10)

Hence, o™ € Bp.

Next, we show that the upper bound in (11.0.4.5) is reached by a(™.
Consider that

Wp+1 (a(m)> — wp (a(m)> = af,T%mH - agz)

" 1 UL |
== 2. 1<;+1+Z Etl
k=p+1 k=p
1
N p+1

o (o) = n () | =




Thus, the upper bound in (11.0.4.5) is attained by a("™. Together with the
fact that a(™ € Bp by (11.0.4.10), this implies that

1
d wmywn = Z \/E
k=n+1
whenever n < m, as required. O

Notice that the distance between nearest points wy and wg_q is

1
d (Wk,wk—l) = ﬁ

Furthermore, if p < ¢, then the distance between w, and w,, is the sum over
the path joining the two points, i.e.

wq,wp Z d (wk—1,w)
k=p+1

In other words, for any n such that p < n < ¢, w, is a middle point between
wp and wy. In this case, the triangle inequality becomes an equality:

d (wg, wp) = d (wg, wn) + d (wn, wp)

We may interpret this geometrically: The points corresponding to the specific
pure states that we considered lie in a straight line in our noncommutative
geometry - the Moyal plane.
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Outlook

We conclude this dissertation by discussing possibilities for future study and
mentioning a few applications of noncommutative geometry in physics.

After describing the Moyal plane by a spectral triple, we computed the
spectral distance only between certain pure states. Our restriction to the
pure states was based on the fact that pure states correspond to points in
the commutative case. However, there are instances where purity of state
does not seem to be an adequate criteria for characterising a point in a non-
commutative geometry. For example, in the cut-off geometries developed in
[13], one is forced to approximate the pure states by non-pure states. The
spectral distance between pure states is infinite and is made finite by trun-
cating the pure states, thus yielding non-pure states. Also, as explained in
[25], the product of a manifold by C? allows the Pythagoras equality to hold
between pure states. In the Moyal plane, the same equality holds between all
translated states independent of the purity of state. It is thus worthwhile to
investigate the spectral distance in the Moyal plane between arbitrary states
and to consider other classes of states, such as coherent states and normal
states.

As explained in [40], the principle of gravitational stability against lo-
calisation leads us to expect a quantised spacetime at the Planck scale. In
many models of quantum gravity, a noncommutative spacetime is defined by
replacing the spacetime coordinates by the generators of a noncommutative
C*-algebra of operators that obey certain commutation relations. The in-
duced uncertainty relation implies the existence of a minimal length scale.
In order to accommodate a quantised length, these models define a quantum
length operator. In [27] it is shown that between certain classes of states,
the spectral distance and the quantum length capture the same metric in-
formation.

One of the first concrete examples of physics in noncommutative space-
time was Yang-Mills theory on a noncommutative torus [10]. Since then,
many attempts have been made to interpret the Standard Model in terms
of noncommutative geometry. [40| provides an account of the most recent

131



developments in noncommutative quantum field theory and its ties to string
theory and gravity.

In the theory of optimal transport, Connes’s spectral distance appears as
a noncommutative version of the Wasserstein distance of order 1 [36]. In [25],
it is suggested that this view affords the possibility of the spectral distance
providing an interpretation of the Higgs field as a cost function on spacetime.

One of the most successful applications of noncommutative geometry ap-
pears in the study of the integer quantum Hall effect. Within Connes’s for-
malism, |2| shows that the Hall conductivity is quantised and that plateaux
occur when the Fermi energy varies in a region of localised states.

Spectral triples have been applied to physical models in string theory.
A noncommutative o-model is explored in [28], where the parameter space
and the target space are noncommutative tori. It should be interesting to
attempt similar constructions for other noncommutative spaces.

In [14], we studied noncommutative Ricci flow in a simple matrix geom-
etry, namely a finite-dimensional representation of a noncommutative torus.
Future work could include the study of Ricci flow in other noncommutative
geometries.
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