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Abstract

We study noncommutative geometry from a metric point of view by
constructing examples of spectral triples and explicitly calculating Connes's
spectral distance between certain associated pure states. After considering
instructive �nite-dimensional spectral triples, the noncommutative geome-
try of the in�nite-dimensional Moyal plane is studied. The corresponding
spectral triple is based on the Moyal deformation of the algebra of Schwartz
functions on the Euclidean plane.
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Introduction

Even though particle experiments are delving deeper into the structure of
matter, the geometric structure of spacetime is still unknown. Classical ge-
ometry cannot account for both general relativity and quantum mechanics,
since the former grounds its description of gravitation on purely geometric
concepts while the latter renounces intuitive geometric concepts. Noncom-
mutative geometry attempts to bridge this gap by providing a mathematical
framework for a geometric understanding of fundamental interactions and
thus opening a path toward quantising gravity. [21]

In classical Riemannian geometry, the pointwise multiplication of func-
tions on a manifold makes the space of functions an in�nite-dimensional
commutative algebra such that f1f2 = f2f1. Such an algebra, together with
a Dirac operator, characterises the geometry completely. Noncommutative
geometry generalises this algebraic conception of geometry to a case where
the analogues of functions or "coordinates" on a space no longer commute.
Ergo, the enterprise of noncommutative geometry is to reformulate, as much
as possible, the geometry of a manifold in terms of an algebra of functions
de�ned on it and then to generalise the corresponding results of di�erential
geometry to the case of a noncommutative algebra [24]. Such noncommu-
tative spaces are present, for example, in quantum mechanics for the phase
space of a particle, where the functions on phase space are replaced by non-
commuting operators in Hilbert space. The advantage of passing from the
commutative to the noncommutative case is that we drop the notion of a
localised point, while still being able to measure distances [5].

An essential step in this generalisation to noncommutative geometry is
�nding a noncommutative counterpart for the notion of a Riemannian met-
ric. Also, since matter is fermionic, one has to extend the notion of spin
structure on a Riemannian manifold to noncommutative geometry. This has
been achieved by Connes via spectral triples. A compact noncommutative
spin manifold is characterised by a spectral triple subject to a list of axioms
laid out in [8]. According to [5, De�nition 1.120], a spectral triple is a triple
(A,H,D), where A is a unital involutive algebra, which stands for the al-
gebra of coordinates, represented by π on the fermionic Hilbert space H,
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and D is a self-adjoint not necessarily bounded operator on H, which is the
generalisation of the Dirac operator, such that the commutator [D,π (a)] is
bounded for every a ∈ A and the resolvent of D is compact. A key result
is the reconstruction theorem in [7], which recovers the classical geometry
of a compact spin manifold M from the noncommutative setup by assuming
that the algebra of coordinates is commutative, and by showing that it is
isomorphic to the algebra of smooth functions on M . See [19] for details of
this reconstruction.

The framework described above has recently been generalised to include
noncompact noncommutative spin manifolds [17]. Noncompactness of a
manifold corresponds to non-unitality of the algebra A in the de�nition of
a spectral triple. Moreover, in the noncompact case, i.e. for non-unital
A, the resolvent condition is replaced by asking instead that the operators
π (a) (D − λI)−1 are compact for any λ in the resolvent set of D. This de-
�nes a noncompact spectral triple.

Another generalisation has been undertaken in [9], where noncommuta-
tive geometry for symmetric non-self-adjoint operators is explored. Instead
of asking the Dirac operator D to be self-adjoint, a pre-spectral triple only
requires D to be closed and symmetric. Naturally, an accompanying relax-
ation of the condition on the commutator is necessary: The commutator
[D,π (a)] is only required to have bounded extension for every a ∈ A.

A �nite spectral triple (A,H,D) is de�ned as a spectral triple of dimen-
sion zero such that both A and H are �nite-dimensional. As explained in [1],
if we replace the algebra of functions on a Riemannian manifold by a �nite-
dimensional matrix algebra, we are left with a geometry called a matrix
geometry. Speci�cally, as per [1], the matrix geometries where the algebra is
simple are called fuzzy spaces. Matrix geometries can be seen as noncommu-
tative �nite-dimensional approximations to Riemannian manifolds. A �nite

spectral triple endowed with a real structure is called a �nite real spectral

triple. The axioms for a �nite real spectral triple can be found in [1]. The
real structure is necessary if one is interested in constructing a real geometry.

Some of the metric information encoded in a spectral triple can be ex-
tracted via Connes's algebraic formulation of distance, which he introduced
in the framework of noncommutative geometry in [6]. It is de�ned on the
space S (A) of states of a non-necessarily commutative C∗-algebra A. If
A = C0 (Ω) is the commutative algebra of continuous functions vanishing
at in�nity on a locally compact topological space Ω, then the pure states
correspond to characters. The Gelfand theorem allows us to interpret these
characters as points, with A the algebra of functions over these points. For-
mally, the pure states of A are in one-to-one correspondence with the points
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of Ω, viewed as the evaluation

δx (f) := f (x) (.1)

for all x ∈ Ω and f ∈ A. Since the construction of a noncommutative ge-
ometry is initiated by choosing a noncommutative algebra of functions, the
pure states of such a noncommutative algebra appear as natural candidates
to play the role of points in a noncommutative framework [25].

Given a spectral triple (A,H,D), Connes's spectral distance is de�ned
between any two states τ1, τ2 ∈ S (A) by

dD (τ1, τ2) := sup
a∈A

{
|τ1 (a)− τ2 (a)| : ‖[D,π (a)]‖op ≤ 1

}
(.2)

where ‖·‖op is the operator norm for the representation of A in B (H) [5,
Chapter 10 (1.468)]. As shown in [4, Proposition 1.119], if A = C∞0 (M) is
the commutative algebra of smooth functions vanishing at in�nity on a lo-
cally compact and complete Riemannian manifold M , acting on the Hilbert
space H of square-integrable di�erential forms via the multiplicative repre-
sentation

(fψ) (x) = f (x)ψ (x) ∀x ∈M,ψ ∈ H (.3)

and D = d+ d† is the signature operator (d is the exterior derivative and d†

its adjoint), then the spectral distance between the pure states δx of A, as
per (.1), returns the geodesic distance on M :

dD (δx, δy) = dgeo (x, y) (.4)

Therefore, the spectral distance is a generalisation of the Riemannian geodesic
distance that also makes sense in a noncommutative context. Note that the
spectral distance does not rely on any notion ill-de�ned in a quantum context,
such as points or paths between points. In this sense, this distance displays
potential compatibility with a description of spacetime at the Planck scale
[26].

The meaning of the spectral distance in a noncommutative context re-
mains obscure. In the spirit of exploration and generalisation, one may relax
some of the conditions on the constituents of a spectral triple in order to
study speci�c metric aspects of noncommutative geometry. In particular,
the conditions involving the resolvent and the self-adjointness of the Dirac
operator do not impose any constraints on the spectral distance. Therefore,
we will present a slightly relaxed de�nition of a spectral triple, which will
be su�cient for extracting metric information via the spectral distance for-
mula. Furthermore, pursuant to the above-mentioned suggestion concerning
the role of pure states in noncommutative geometry, we choose to restrict
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to such states. Even though purity of state is not necessarily an adequate
criteria for characterising points in a noncommutative context, a study of the
pure states, owing to their prominence within the space of states, not only
serves as an appropriate point of departure but also lays the groundwork for
studying states in general.

This exploratory dissertation pursues an inceptive understanding of the
metric aspects of noncommutative geometry. Speci�cally, it aims at illumi-
nating the notion of distance in a noncommutative context. To this end,
we will construct spectral triples for certain prototypical examples of non-
commutative spaces and explicitly calculate the spectral distance between
certain associated pure states. Our investigation will commence with in-
structive �nite-dimensional spectral triples in Part I and culminate in an
archetypal in�nite-dimensional example, namely the Moyal plane, in Part II.

Moyal spaces have their origin in the study of quantum mechanics in
phase space [30]. Since then, they have become paradigmatic examples of
noncommutative geometries by deformation. Most recently, Moyal spaces
can be seen in attemps at developing quantum �eld theory on noncommu-
tative spacetime. However, their metric aspects have received limited atten-
tion. We study the noncommutative geometry of the Moyal plane from a
metric point of view. Following the outline in [12], we construct a spectral
triple based on the Moyal deformation of the algebra of Schwartz functions
on the Euclidean plane R2 and calculate the spectral distance between cer-
tain pure states.
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Part I

De�nitions and instructive

examples

After expounding the concepts relevant to a metric study of
noncommutative geometry, we study certain instructive �nite-
dimensional examples. Chapter 1 introduces the notion of a
spectral triple and presents Connes's spectral distance formula
as a mechanism for extracting metric information from a spectral
triple. In Chapter 2, as a �rst didactic example, we construct an
elementary commutative �nite spectral triple and calculate the
spectral distance in the associated discrete space of pure states.
We advance into noncommutativity by examining a �nite spec-
tral triple built around a matrix algebra in Chapter 3.
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Chapter 1

Spectral triples and the

spectral distance

We present here the two fundamental de�nitions relevant to our study - that
of a spectral triple and that of the spectral distance. To elucidate these
de�nitions, we include in Sections 1.1 and 1.2 some auxiliary material on
C∗-algebras, representations, and states. Section 1.3 is devoted to properties
of the spectral distance formula: First, we show that the spectral distance
conforms, up to an interesting anomaly, with the traditional notion of a
distance function. Then, we reproduce a result from [21, Lemma 1] that
simpli�es the search for a supremum when calculating the spectral distance.
In Section 1.4, we specialise our de�nition of a spectral triple to the �nite-
dimensional case and brie�y discuss the resulting simpli�cations pertaining
to the spectral distance.

1.1 Basic de�nitions

As promised in the introduction, we present the following relaxed de�nition
of a spectral triple, which is su�cient for our metric study of noncommutative
geometry. The subsequent de�nitions describe the innards of a spectral triple
and guide us towards the de�nition of the spectral distance.

De�nition 1.1.1. A spectral triple (A,H,D) is given by an involutive

algebra A, together with a faithful representation π on a Hilbert space H,

and a symmetric not necessarily bounded operator D : D (D)→ H (called the

Dirac operator) de�ned on the domain D (D) of D, such that the commutator

[D,π (a)] : D (D)→ H is bounded for every a ∈ A.

Note that this de�nition deviates from the standard de�nition in [5, Def-
inition 1.120]: Instead of asking D to be self-adjoint, we only require it to
be symmetric, thus resembling the pre-spectral triples in [9]. Note that a
symmetric operator is necessarily densely de�ned; in other words, D (D)
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has to be dense in H. Unlike the pre-spectral triples in [9], we consider
neither the closures of symmetric Dirac operators nor the extensions of the
commutators. Furthermore, we do not require unitality of A, similar to the
noncompact spectral triples in [17]. Lastly, we do not impose any conditions
on the resolvent of D. For the remainder of this chapter, we will assume
some background regarding unbounded operators but will review a few con-
cepts in Section 7.1.

Our focus will be on algebras that have C∗-closures; therefore, we include
the following de�nitions from [31, Chapters 1-3] involving C∗-algebras and
their representations.

De�nition 1.1.2. A Banach ∗-algebra is an involutive algebra V , together
with a complete submultiplicative norm such that

‖v∗‖ = ‖v‖ for all v ∈ V

Moreover, a C∗-algebra is a Banach ∗-algebra V such that

‖v∗v‖ = ‖v‖2 for all v ∈ V

De�nition 1.1.3. Let V be a ∗-algebra (involutive algebra). A C∗-norm
on V is a submultiplicative norm such that

‖v∗‖ = ‖v‖ and ‖v∗v‖ = ‖v‖2 for all v ∈ V

A pre-C∗-algebra is a ∗-algebra V , together with a C∗-norm ‖·‖. Complet-

ing V with respect to ‖·‖ yields a C∗-algebra.

De�nition 1.1.4. A representation of a C∗-algebra V is a pair (H,ϕ),
where H is a Hilbert space and ϕ : V → B (H) is a ∗-homomorphism. We

also say that ϕ (V ) is a representation of V on H.

A representation (H,ϕ) is called faithful if ϕ is injective.

In all of this dissertation, B (H) denotes the space of all bounded linear
operators on the Hilbert space H. It is a C∗-algebra when equipped with
the operator norm.

Now we state our second central de�nition as found in [5, Chapter 10
(1.468)], namely that of the spectral distance. Since this distance is de�ned
on the space of states of an algebra, we include a de�nition and a discussion
of states in the context of C∗-algebras [31, Chapter 3 and 5].

De�nition 1.1.5. Let (A,H,D) be a spectral triple as per De�nition 1.1.1.

The spectral distance between any two states τ1, τ2 of A is

dD (τ1, τ2) = sup
a∈A

{
|τ1 (a)− τ2 (a)| : ‖[D,π (a)]‖op ≤ 1

}
where ‖·‖op is the operator norm for the representation of A in B (H).
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De�nition 1.1.6. A state on a C∗-algebra A is a positive linear functional

on A of norm one. A state τ on a C∗-algebra A is a pure state if it has

the property that whenever ρ is a positive linear functional on A such that

ρ ≤ τ , necessarily there is a number t ∈ [0, 1] such that ρ = tτ . In other

words, a state is pure if it cannot be written as a convex combination of two

other states.

If A is unital, the condition that τ be of norm one in De�nition 1.1.6 is
equivalent to τ (1) = 1 [31, Corollary 3.3.4]. We let S (A) and PS (A) denote
the set of states and the set of pure states of A respectively.

Strictly speaking, the notion of a state is reserved for C∗-algebras. How-
ever, it is legitimate to talk about states for pre-C∗-algebras: Consider a
pre-C∗-algebra A with representation π on some Hilbert space H. Then
a state on the C∗-closure of π (A), denoted π (A), de�nes by restriction a
unique positive linear map of norm 1 from A to C. The continuity in the
C∗-norm ensures that any state on π (A) is uniquely determined by its re-
striction to A. Therefore, it is not necessary to distinguish between a state
on π (A) and its restriction. In fact, S (A) and PS (A) can be identi�ed with

S
(
π (A)

)
and PS

(
π (A)

)
respectively if π is faithful.

Following the intuition, as mentioned in the introduction, that the pure
states are reasonable contenders to inherit the role of points in noncommuta-
tive geometry, we will, throughout this dissertation, restrict our calculations
of the spectral distance to such states.

1.2 Representations and states

The de�nitions and theorems below, as quoted from [31, Chapters 4 and 5],
exhibit the inherent relationship between representations and states, speci�-
cally in the context of C∗-algebras. Moreover, these theorems will be used to
determine explicit expressions for the pure states between which we intend
to calculate spectral distances. We remark that these de�nitions di�er from
those in [31] only inasmuch as we accommodate the convention of choosing
inner products to be linear in the second argument and conjugate linear in
the �rst.

De�nition 1.2.1. If (H,ϕ) is a representation of a C∗-algebra A, then we

let ϕ (A)H denote the linear span of the set

{ϕ (a)h : a ∈ A, h ∈ H}

and let [ϕ (A)H] denote the closure of ϕ (A)H. We say ϕ (A) acts non-

degenerately on H if

[ϕ (A)H] = H

4



In this case, we call the representation (H,ϕ) non-degenerate.

De�nition 1.2.2. Let (H,ϕ) be a representation of a C∗-algebra A. We call

x ∈ H a cyclic vector for (H,ϕ) if

[ϕ (A)x] = H

If (H,ϕ) admits a cyclic vector, then we say it is a cyclic representation.

Theorem 1.2.3. If (H,ϕ) is a non-degenerate representation of a C∗-algebra
A, then it is a direct sum of cyclic representations of A.

De�nition 1.2.4. Two representations (H1, ϕ1) and (H2, ϕ2) of a C∗-algebra
A are unitarily equivalent if there is a unitary u : H1 → H2 such that

ϕ2 (a) = uϕ1 (a)u∗ for all a ∈ A

Theorem 1.2.5. Let (H1, ϕ1) and (H2, ϕ2) be representations of a C∗-
algebra A with cyclic vectors x1 and x2 respectively. They are unitarily

equivalent, with x2 = u (x1), if and only if

〈x1, ϕ1 (a)x1〉 = 〈x2, ϕ2 (a)x2〉 for all a ∈ A

De�nition 1.2.6. Let B be a subset of an algebra A. The commutant of

B, denoted B′, is de�ned as the set of all elements in A that commute with

every element in B. That is,

B′ := {a ∈ A : ab = ba for all b ∈ B}

Note that B′ is a subalgebra of A.

De�nition 1.2.7. A representation (H,ϕ) of a C∗-algebra A is irreducible

if the algebra ϕ (A) acts irreducibly on H.

Theorem 1.2.8. Let (H,ϕ) be a nonzero representation of a C∗-algebra A.
(H,ϕ) is irreducible if and only if ϕ (A)′ = CI, where I is the identity

operator on H.

If (H,ϕ) is irreducible, then every nonzero vector of H is cyclic for (H,ϕ).

Theorem 1.2.9. The Gelfand-Naimark-Segal (GNS) theorem asserts

that for each state τ on a C∗-algebra A, there exists a representation (Hτ , ϕτ )
of A, called the GNS representation for τ , and a cyclic vector Ωτ ∈ Hτ such

that

τ (a) = 〈Ωτ , ϕτ (a) Ωτ 〉

for all a ∈ A. The GNS representation for a state τ is unique in the sense

that any other representation (H,ϕ) of A containing a cyclic vector corre-

sponding to τ is unitarily equivalent to (Hτ , ϕτ ).
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Theorem 1.2.10. Let τ be a state on a C∗-algebra A. It is a pure state if

and only if the GNS representation (Hτ , ϕτ ) is irreducible.

Theorem 1.2.11. Let (H,ϕ) be a representation of a C∗-algebra A and let

x be a unit cyclic vector for (H,ϕ). Then the functional

τ : A→ C : a 7→ 〈x, ϕ (a) (x)〉

is a state of A and (H,ϕ) is unitarily equivalent to (Hτ , ϕτ ). Moreover, if

(H,ϕ) is irreducible, then τ is pure.

Theorem 1.2.12. Let τ be a state on a C∗-algebra A. If A is abelian, then

τ is pure if and only if it is a character on A.

1.3 Properties of the spectral distance

Here we examine the spectral distance formula in two distinct ways: The �rst
serves as justi�cation for calling it a distance and the second makes it more
amenable to calculations under an assumption on the algebra that forms part
of the spectral triple. The following lemma shows that the spectral distance,
as per De�nition 1.1.5, satis�es the conditions of a distance function in the
usual sense, except that it admits in�nite distance between states.

Lemma 1.3.1. The spectral distance dD, as per De�nition 1.1.5, de�nes a

distance (possibly in�nite) on S (A), i.e. for all τ1, τ2, τ3 ∈ S (A), it holds
that

(1) dD (τ1, τ2) ≥ 0
(2) dD (τ1, τ2) = 0 if and only if τ1 = τ2

(3) dD (τ1, τ2) = dD (τ2, τ1)
(4) dD (τ1, τ3) ≤ dD (τ1, τ2) + dD (τ2, τ3)

Moreover, if there exists an element a ∈ A such that ‖[D,π (a)]‖op = 0 and

τ1 (a) 6= τ2 (a), then dD (τ1, τ2) = +∞.

Proof. The non-negativity in (1) and symmetry in (3) follow immediately
from the non-negativity and symmetry of the absolute value function as it
appears in dD.

To prove positive-de�niteness, consider the following: If τ1 = τ2, then
clearly dD (τ1, τ2) = 0. Conversely, let dD (τ1, τ2) = 0 and suppose that
τ1 6= τ2. Then there exists some a∞ ∈ A such that τ1 (a∞) 6= τ2 (a∞). If
[D,π (a∞)] is bounded, then consider the element

a0 :=
a∞

‖[D,π (a∞)]‖op + 1
∈ A

Clearly τ1 (a0) 6= τ2 (a0) with ‖[D,π (a0)]‖op < 1. This implies dD (τ1, τ2) 6=
0, which contradicts the assumption. If [D,π (a∞)] is unbounded, it con-
tradicts the fact that (A,H,D) is a spectral triple, since De�nition 1.1.1
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requires [D,π (a)] to be bounded for all a ∈ A. Hence, τ1 = τ2.

Next, we prove the triangle inequality in (4):

dD (τ1, τ3) = sup
a∈A

{
|τ1 (a)− τ3 (a)| : ‖[D,π (a)]‖op ≤ 1

}
= sup

a∈A

{
|τ1 (a)− τ2 (a) + τ2 (a)− τ3 (a)| : ‖[D,π (a)]‖op ≤ 1

}
≤ sup

a∈A

{
|τ1 (a)− τ2 (a)|+ |τ2 (a)− τ3 (a)| : ‖[D,π (a)]‖op ≤ 1

}
≤ dD (τ1, τ2) + dD (τ2, τ3)

for all τ1, τ2, τ3 ∈ S (A).

Finally, let a ∈ A such that ‖[D,π (a)]‖op = 0 and τ1 (a) 6= τ2 (a). Then
the supremum in dD can also be searched over elements an := na ∈ A for
n ∈ N, since ‖[D,π (an)]‖op = 0. For such elements, the subject in the
supremum is

|τ1 (an)− τ2 (an)| = n |τ1 (a)− τ2 (a)| 6= 0

Since n can be made arbitrarily large, it follows that dD (τ1, τ2) = +∞.

The following lemma, as per [21, Lemma 1], will show that the supre-
mum in the spectral distance can be searched equivalently on the self-adjoint
elements of a C∗-algebra A. Let Asa denote the set of self-adjoint elements
of A. In the proof, we use standard results from the theory of unbounded
operators, which can be found, for example, in [23, Chapter 10].

Lemma 1.3.2. Let (A,H,D) be a spectral triple and τ1, τ2 ∈ S (A), where
A is a C∗-algebra. The supremum in the spectral distance, as per De�nition

1.1.5, can be searched equivalently on Asa, such that

dD (τ1, τ2) = sup
a∈Asa

{
|τ1(a)− τ2(a)| : ‖[D,π(a)]‖op ≤ 1

}
(1.3.2.1)

Proof. Let

Q :=
{
a ∈ A : ‖[D,π(a)]‖op ≤ 1

}
There exists a sequence (an)∞n=0 ∈ Q such that

|τ1(an)− τ2(an)| → dD (τ1, τ2)

Let θn := arg (τ1(an)− τ2(an)) and consider the self-adjoint element

bn :=
1

2

(
ane
−iθn + a∗ne

iθn
)
∈ Asa
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Then it holds that

e−iθn (τ1(an)− τ2(an)) = e−iθn |τ1(an)− τ2(an)| eiθn

= |τ1(an)− τ2(an)|
→ dD (τ1, τ2) (1.3.2.2)

Even though it seems obvious that ‖[D,π (a∗n)]‖op = ‖[D,π (an)]‖op, the
unboundedness of D forces us to consider this claim carefully. Since A is
a C∗-algebra, it has a representation in the bounded linear operators, i.e.
π (an) ∈ B (H). Therefore, its adjoint π (an)∗ exists and is de�ned on H.
Also note that D is densely de�ned in H, which implies that the product
π (an)D is densely de�ned. It then follows from the boundedness of π (an)
and the symmetry of D that

(π (an)D)∗ = D∗π (an)∗ ⊃ Dπ (an)∗ (1.3.2.3)

Dπ (an) is also densely de�ned. In this case, we can say

π (an)∗D ⊂ π (an)∗D∗ ⊂ (Dπ (an))∗ (1.3.2.4)

In other words, (Dπ (an))∗ is an extension of the operator π (an)∗D. From
(1.3.2.3) and (1.3.2.4), we can deduce that

[D,π (a∗n)] := Dπ (an)∗ − π (an)∗D ⊂ (π (an)D)∗ − (Dπ (an))∗ (1.3.2.5)

where the extension on the right is densely de�ned. Since π (an)D, Dπ (an),
and π (an)D −Dπ (an) are all densely de�ned, it holds that

(π (an)D)∗ − (Dπ (an))∗ ⊂ (π (an)D −Dπ (an))∗ (1.3.2.6)

Together, (1.3.2.5) and (1.3.2.6) imply that

[D,π (a∗n)] ⊂ (π (an)D −Dπ (an))∗ = (− [D,π (an)])∗ (1.3.2.7)

Since [D,π (an)] is bounded, it follows that [D,π (a∗n)] is bounded. Therefore,
the latter has a unique extension to H with the same norm. Hence, we can
conclude from (1.3.2.7) that

‖[D,π (a∗n)]‖op = ‖[D,π (an)]‖op (1.3.2.8)

Applying (1.3.2.8), we �nd that

‖[D,π(bn)]‖op =
1

2

∥∥∥[D,π(ane
−iθn)

]
+
[
D,π(a∗ne

iθn)
]∥∥∥

op

≤ 1/2 ‖[D,π(an)]‖op + 1/2 ‖[D,π(a∗n)]‖op
= 1/2 ‖[D,π(an)]‖op + 1/2 ‖[D,π(an)]‖op
≤ 1/2 + 1/2

= 1 (1.3.2.9)
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Note that φ (a∗) = φ (a) for any positive linear functional φ [3, II.6.2]. This
holds, in particular, for any state τ . Using this fact, and applying (1.3.2.2),
we observe the following convergence:

|(τ1 − τ2) (bn)| = 1

2
(τ1 − τ2)

(
ane
−iθn

)
+

1

2
(τ1 − τ2) (ane−iθn)

→ dD (τ1, τ2) (1.3.2.10)

Since every an determines a self-adjoint bn, the required result follows from
(1.3.2.9) and (1.3.2.10).

1.4 Finite spectral triples

We restrict our attention now to �nite dimensions. The purpose of limiting
to this more accommodating environment is to identify beacons that might
guide and instruct our later attempts at understanding the less tractable
in�nite-dimensional case. The following de�nition will be used in the in-
structive examples that occupy Part I of this dissertation.

De�nition 1.4.1. A �nite spectral triple (A,H,D) is a spectral triple, as

per De�nition 1.1.1, where H is �nite-dimensional.

Note that, since H is �nite-dimensional, π (A) is a C∗-subalgebra of
B (H). Therefore, A is a C∗-algebra that inherits the structure of B (H)
by means of π. Also, since every operator in �nite dimensions is bounded
and the domain is the whole Hilbert space, symmetry of D is equivalent to
self-adjointness.

One expects some simpli�cation in the spectral distance formula when
applied to �nite spectral triples; indeed, the operator norm adopts an ex-
pression more amenable to calculations in �nite dimensions. Even though
all norms on �nite-dimensional algebras are not only equivalent, in the sense
that they generate the same topology, but also complete, we take this op-
portunity to brie�y introduce the relevant spaces and notations on our way
towards this equivalent expression for the operator norm called the spectral
norm (the missing details appear in most introductory functional analysis
textbooks).

Let Mn (C) denote the space of all n × n complex matrices. It becomes
a unital C∗-algebra when equipped with matrix multiplication and an in-
volution de�ned by conjugate transposition (the unit is given by the n × n
identity matrix). Note that Mn (C) = B (Hn), where Hn = Cn with the
usual inner product. The spectral norm is de�ned, for example in [20, 5.6.6],
by

‖T‖spec := max
{√

λ : λ is an eigenvalue of T ∗T
}

(1.1)
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for all T ∈ Mn (C), where T ∗ denotes the conjugate transpose of T . The
following theorem can be seen as a special case of [31, Thm 2.1.1]; therefore,
we omit the proof.

Theorem 1.4.2. The operator norm on B (Hn) coincides with the spectral

norm on Mn (C):
‖·‖op = ‖·‖spec
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Chapter 2

Discrete space

In this chapter, we perform a humble, yet instructive, inaugural probe into
the modus operandi of the spectral distance formula. We consider an ele-
mentary commutative �nite spectral triple that has a discrete space of pure
states. In Section 2.1, we assemble the spectral triple and determine the as-
sociated pure states. Sections 2.2 and 2.3 are dedicated to the calculation of
the spectral distance in two low-dimensional examples of the discrete space
constructed in Section 2.1. Speci�cally, we consider a two-point space and a
three-point space.

2.1 The spectral triple and pure states

Let An = Cn, Hn = Cn, and de�ne the mapping

π : An →Mn (C) : a 7→

 a1 0
. . .

0 an

 for all a =

 a1
...
an

 ∈ An
Let D be a self-adjoint n× n matrix with complex entries Dij such that

Dij = Dji ∈ C

for all i, j ∈ {1, . . . , n}, where the overbar denotes the complex conjugate of
a complex number.

Proposition 2.1.1. (An, Hn, D) is a �nite spectral triple.

Proof. Note that An = Cn, equipped with componentwise addition, scalar
multiplication, pointwise multiplication, and an involution de�ned by com-
ponentwise complex conjugation, is a �nite-dimensional commutative unital
C∗-algebra, where the unit is given by the n-dimensional vector with every
component 1, and ‖a‖ = max {|a1| , . . . , |an|}.

11



Since π (a) acts on elements of Hn by matrix multiplication and returns
elements in Hn for all a ∈ An, we consider π : An → B (Hn) as a map into
the space of linear operators on Hn, which is clearly a faithful representation
of An. It follows from De�nition 1.4.1 that (An, Hn, D) is a �nite spectral
triple.

Note that the positive elements of An are exactly

{a∗a : a ∈ An} = {a : a ∈ An and a1, . . . , an ≥ 0}

Proposition 2.1.2. The pure states of An are given by

δi (a) = ai for i = 1, . . . , n

where a ∈ An. The space of pure states is the discrete n-point space

PS (An) = {δ1, . . . , δn}

Proof. For all i ∈ {1, . . . , n}, δi is a state on the C∗-algebra An because
δi (1) = 1 and δi (a) = ai ≥ 0 if a ≥ 0. Also, for a, b ∈ An, it holds that

δi (ab) = aibi = δi (a) δi (b)

Therefore, δi is a character on An. Since An is abelian, it follows from The-
orem 1.2.12 that δi is a pure state.

In order to show that the δi constitute all the pure states of An, let τ be
an arbitrary pure state on An. Since τ is a linear functional on An, we can
represent it as a row vector τ = (τ1, . . . , τn), where τ (a) = τa is given by
usual matrix multiplication. Since τ is pure, Theorem 1.2.12 con�rms that
it is a character. Therefore, for all a, b ∈ An
τ1a1b1 + . . .+ τnanbn = τ (ab)

= τ (a) τ (b)

= (τ1a1 + . . .+ τnan) (τ1b1 + . . .+ τnbn) (2.1.2.1)

If a = b =


1
0
...
0

, then (2.1.2.1) implies that τ1 = τ2
1 . So, either τ1 = 0 or

τ1 = 1. Note that τ1 ≥ 0 because τ is a state and thus τ ≥ 0. Similarly,
τj ∈ {0, 1} for all j ∈ {1, . . . , n}. Since τ is a state, it has to hold that

1 = τ (1) = τ1 + . . .+ τn

Accordingly, exactly one τj has to be 1 and the rest 0. In other words, τ = δi
for some i ∈ {1, . . . , n}. Hence, the δi constitute all the pure states and

PS (An) = {δ1, . . . , δn}
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We proceed now to calculate the spectral distance between the pure states
of discrete spaces as above for two low-dimensional examples - the two-point
space (n = 2) and the three-point space (n = 3).

2.2 Two-point space

We consider the �nite spectral triple (A2, H2, D), which is the spectral triple
in Proposition 2.1.1 with n = 2. Observe that in the spectral distance
formula, as per De�nition 1.1.5, D only appears in the commutator with ele-
ments of the representation π (A2). Since the diagonal ofD clearly commutes
with π (A2), we might as well choose D with null-diagonal when computing
the spectral distance. Therefore, we use

D :=

(
0 m
m 0

)
where m ∈ C is nonzero. The space of pure states of A2 is the two-point
space

PS (A2) = {δ1, δ2}
as per Proposition 2.1.2.

Proposition 2.2.1. For the �nite spectral triple (A2, H2, D), the spectral

distance between the two pure states δ1 and δ2 of A2 is

dD (δ1, δ2) =
1

|m|
Proof. We begin by evaluating the norm constraint as featured in the spectral
distance formula. To this end, let a ∈ A2 be arbitrary and consider that

[D,π(a)] =

(
0 m (a2 − a1)

m (a1 − a2) 0

)
and

[D,π(a)]∗ [D,π(a)] =

(
|m|2 |a1 − a2|2 0

0 |m|2 |a2 − a1|2
)

The spectral norm, as de�ned in (1.1), is evaluated as

‖[D,π(a)]‖spec = |m| |a1 − a2|

Now we �nd the spectral distance as

dD (δ1, δ2) = sup
a∈A2

{
|δ1 (a)− δ2 (a)| : ‖[D,π(a)]‖spec ≤ 1

}
= sup

a∈A2

{
|a1 − a2| : |a1 − a2| ≤

1

|m|

}
=

1

|m|
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We o�er a geometric interpretation of this result by comparing it to
the classical case: In the classical case, the discrete two-point space can be
viewed as a 0-dimensional topological manifold with the discrete topology.
Note that any function on a discrete space into a topological space is con-
tinuous. The length of the discrete curve between the two points is just the
distance between the appropriate functions evaluated at those points. Since
there is only this one curve, it follows that the geodesic distance is solely
determined by the positive constant that de�nes the Riemannian metric.
Therefore, since the proposition above shows the same result, yet still makes
sense in a noncommutative context, we conclude the following: The spectral
distance equips the discrete two-point space {δ1, δ2} with a generalisation of
the geodesic distance. We should add that the interpretation of a geodesic
as a minimal path length does not make sense here inasmuch as there are no
points (pure states) between δ1 and δ2 to constitute a path.

2.3 Three-point space

We consider the �nite spectral triple (A3, H3, D), which is the spectral triple
in Proposition 2.1.1 with n = 3. Once again, we may choose D with null-
diagonal for the purpose of computing the spectral distance. It is not surpris-
ing that, even for this simple �nite spectral triple, calculation of the spectral
norm involves laborious calculations. We moderate the technical grind by
restricting to Dirac operators with real entries. Let

D :=

 0 D12 D13

D12 0 D23

D13 D23 0

 (2.3.1)

with every Dij ∈ R nonzero. The space of pure states of A3 is the three-point
space

PS (A3) = {δ1, δ2, δ3}

as per Proposition 2.1.2.

Proposition 2.3.1. For the �nite spectral triple (A3, H3, D), the spectral

distances among the elements of PS (A3) are

dD (δ1, δ2) =

√
D2

23 +D2
13

D2
12D

2
23 +D2

23D
2
13 +D2

13D
2
12

dD (δ2, δ3) =

√
D2

13 +D2
12

D2
23D

2
13 +D2

13D
2
12 +D2

12D
2
23

dD (δ3, δ1) =

√
D2

12 +D2
23

D2
13D

2
12 +D2

12D
2
23 +D2

23D
2
13
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Proof. We begin by evaluating the norm constraint. Let a ∈ A3 be arbitrary
and consider that

[D, π(a)]
∗
[D, π(a)]

=

 D2
12 |a1 − a2|

2 +D2
13 |a1 − a3|

2 D13D23(a1 − a3) (a2 − a3) D12D23(a1 − a2) (a3 − a2)
D23D13(a2 − a3) (a1 − a3) D2

12 |a2 − a1|
2 +D2

23 |a2 − a3|
2 D12D13(a2 − a1) (a3 − a1)

D23D12(a3 − a2) (a1 − a2) D13D12(a3 − a1) (a2 − a1) D2
13 |a3 − a1|

2 +D2
23 |a3 − a2|
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The spectral norm, as de�ned in (1.1), becomes

‖[D,π(a)]‖spec =

√
D2

12 |a1 − a2|2 +D2
13 |a1 − a3|2 +D2

23 |a2 − a3|2

We substitute this expression into De�nition 1.1.5 for the spectral distance.
Also, we restrict our search for the supremum to the self-adjoint elements in
A3 thanks to Lemma 1.3.2. For j, k ∈ {1, 2, 3},

dD (δj , δk) = sup
a∈A3

{
|δj (a)− δk (a)| : ‖[D,π(a)]‖spec ≤ 1

}
= sup

a∈Asa3

{
|aj − ak| :

√
D2

12 |a1 − a2|2 +D2
13 |a1 − a3|2 +D2

23 |a2 − a3|2 ≤ 1

}
(2.3.1.1)

Let
d1 := D2

12 d2 := D2
23 d3 := D2

13 (2.3.1.2)

and
x := a1 − a2 y := a2 − a3 z := a3 − a1 (2.3.1.3)

Clearly d1, d2, d3 > 0. Also, since we consider a ∈ Asa3 when searching for the
supremum, we have that a1, a2, a3 ∈ R and thus x, y, z ∈ R. Furthermore,
de�ne the functions

f (x, y, z) := d1x
2 + d2y

2 + d3z
2 (2.3.1.4)

and
g (x, y, z) := x+ y + z = 0 (2.3.1.5)

Consider the spectral distance dD (δ1, δ2). In terms of the variables and
functions de�ned above, the supremum in (2.3.1.1) would be attained if one
were to �nd a maximal x subject to the constraint f (x, y, z) ≤ 1. In fact, we
may assume, without loss of generality, that f (x, y, z) = 1 when searching for
such a maximum, since whenever f (x, y, z) < 1, x can simply be increased
until f (x, y, z) = 1 is reached. Additionally, note that (2.3.1.5) contributes
x = − (y + z), which implies that maximising x is equivalent to minimising
y + z. Accordingly, we will minimise y + z subject to the constraint

d1 (y + z)2 + d2y
2 + d3z

2 = 1 (2.3.1.6)
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which describes an ellipse in the yz-plane, namely the intersection of the
ellipsoid f (x, y, z) = 1 and the plane g (x, y, z) = 0.

The extrema of y + z will occur at those points (y, z) in the yz-plane
where the contour lines of y + z, which are lines with slope dz

dy = −1, are
tangent to the ellipse (2.3.1.6). The minimum will obviously be in the third
quadrant of the yz-plane where y and z are negative (maximum in the �rst
quadrant). Therefore, we set dz

dy = −1 in the derivative of (2.3.1.6) and solve
for the negative values of y and z:

0 = 2d1 (y + z)

(
1 +

dz

dy

)
+ 2d2y + 2d3z

dz

dy
= 2d2y − 2d3z

This implies that

z =
d2

d3
y (2.3.1.7)

Substituting (2.3.1.7) into (2.3.1.6) and solving for y gives

y = − 1√
d1

(
1 + d2

d3

)2
+ d2 +

d22
d3

(2.3.1.8)

The minimum occurs at the point (y, z) given by (2.3.1.8) and (2.3.1.7); its
value is

y + z = y +
d2

d3
y

= (d2 + d3)
y

d3

= − d2 + d3√
d1 (d2 + d3)2 + d2d2

3 + d2
2d3

= −
√

d2 + d3

d1d2 + d2d3 + d3d1

Thus x has maximum

x = − (y + z) =

√
d2 + d3

d1d2 + d2d3 + d3d1
(2.3.1.9)

Since we have found a maximal x that satis�es the constraint equation, the
supremum in (2.3.1.1) is attained. After returning to the original parameters
by substituting (2.3.1.2) into (2.3.1.9), we �nd that the spectral distance is

dD (δ1, δ2) =

√
D2

23 +D2
13

D2
12D

2
23 +D2

23D
2
13 +D2

13D
2
12

The distances dD (δ2, δ3) and dD (δ3, δ1) are found similarly by maximising y
and z respectively; the maxima of y and z are obtained by rotating cyclically
through 1, 2, 3 in (2.3.1.9).
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The following corollary shows that the spectral distances among the el-
ements of PS (A3) satisfy the triangle inequality to the square. Interpreted
classically, this means that the three points (pure states) of PS (A3) lie on
the corners of a triangle with no obtuse angles, i.e. all the angles are less
than or equal to π/2.

Corollary 2.3.2.

dD (δ1, δ3)2 ≤ dD (δ1, δ2)2 + dD (δ2, δ3)2

dD (δ1, δ2)2 ≤ dD (δ1, δ3)2 + dD (δ2, δ3)2

dD (δ2, δ3)2 ≤ dD (δ1, δ2)2 + dD (δ1, δ3)2

Proof. Using the distances as per Proposition 2.3.1, we �nd that

d (δ1, δ2)2 + d (δ2, δ3)2 =
D2

13 +D2
23 +D2

12 +D2
13

D2
12D

2
13 +D2

12D
2
23 +D2

23D
2
13

≥ D2
12 +D2

23

D2
12D

2
13 +D2

12D
2
23 +D2

23D
2
13

= d (δ1, δ3)2

The remaining inequalities follow similarly.

We have shown that for a given Dirac operator D as per (2.3.1), the
spectral distances in the three-point space are determined by the coe�cients
of D and satisfy the triangle inequality to the square. Now we show that
this process is invertible: If three positive numbers a, b, c satisfy the triangle
inequality to the square, they determine a Dirac operator D such that a, b, c
are the spectral distances in the three-point space. The proof reveals a
surprising analogy to electric circuits; we apply a well-known result that
equates a triangular circuit to a stellar circuit. The point of this exercise,
although a simple example, is to see whether one can in general build spectral
triples to �t desired metrics.

Proposition 2.3.3. Let a, b, c be three positive numbers such that

a2 + b2 ≥ c2 b2 + c2 ≥ a2 a2 + c2 ≥ b2

Then there exists an operator D such that

dD (δ1, δ2) = a dD (δ1, δ3) = b dD (δ2, δ3) = c

with coe�cients given by
D12 =

√
2(b2+c2−a2)

(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

D13 =
√

2(a2+c2−b2)
(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

D23 =
√

2(a2+b2−c2)
(a+b+c)(−a+b+c)(a−b+c)(a+b−c)
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Proof. The �rst step is to generate a procedure that takes three spectral
distances and returns the coe�cients of the Dirac operator. Let

R12 :=
1

D2
12

R23 :=
1

D2
23

R13 :=
1

D2
13

(2.3.3.1)

Using Proposition 2.3.1, we write

1

dD (δ1, δ2)2 =
D2

12D
2
13 +D2

12D
2
23 +D2

23D
2
13

D2
13 +D2

23

=
1

R12
+

1

R23 +R13
(2.3.3.2)

Analogously, we have

1

dD (δ1, δ3)2 =
1

R13
+

1

R23 +R12

1

dD (δ2, δ3)2 =
1

R23
+

1

R12 +R13

These equations bring a certain electric circuit to mind - a triangular circuit
with resistances R12, R23, R13:

2

31

R23R12

R13

Figure 2.1: Triangular circuit

Figure 2.1, together with (2.3.3.2), implies that dD (δ1, δ2)2 is the resistance
measured between points 1 and 2 of the triangular circuit. In the same
way, dD (δ1, δ3)2 is the resistance measured between points 1 and 3, and
dD (δ2, δ3)2 is the resistance measured between points 2 and 3. Accord-
ingly, if one can �nd three resistances R12, R23, R13 that induce resistances
dD (δi, δj)

2 between points i and j, then the coe�cients Dij will follow from
(2.3.3.1).

A standard result in the analysis of electric circuits, see for example
[33, Chapter 5], is that a triangular circuit is equivalent to a stellar circuit.
Consider a stellar circuit with resistances r1, r2, r3:
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2

31

r1

r2

r3

Figure 2.2: Stellar circuit

The resistances in the equivalent triangular and stellar circuits (as set up in
Figures 2.1 and 2.2) are related via the formulas

R12 = 1
r3

(r1r2 + r1r3 + r2r3)

R13 = 1
r2

(r1r2 + r1r3 + r2r3)

R23 = 1
r1

(r1r2 + r1r3 + r2r3)

(2.3.3.3)

Note that the resistances in the stellar circuit are all set in series. Therefore,
the resistances dD (δi, δj)

2 measured between points i and j are given by
dD (δ1, δ2)2 = r1 + r2

dD (δ1, δ3)2 = r1 + r3

dD (δ2, δ3)2 = r2 + r3

(2.3.3.4)

Rewriting in terms of each ri separately gives
2r1 = dD (δ1, δ2)2 + dD (δ1, δ3)2 − dD (δ2, δ3)2

2r2 = dD (δ1, δ2)2 + dD (δ2, δ3)2 − dD (δ1, δ3)2

2r3 = dD (δ1, δ3)2 + dD (δ2, δ3)2 − dD (δ1, δ2)2

(2.3.3.5)

If we substitute these expressions into (2.3.3.3), we can phrase the result in
terms of the coe�cients of D via (2.3.3.1) as follows:



D12 =

√√√√ 2
(
d(1,3)2+d(2,3)2−d(1,2)2

)
2
(
d(1,2)2d(1,3)2+d(1,2)2d(2,3)2+d(1,3)2d(2,3)2

)
−d(2,3)4−d(1,3)4−d(1,2)4

D13 =

√√√√ 2
(
d(1,2)2+d(2,3)2−d(1,3)2

)
2
(
d(1,2)2d(1,3)2+d(1,2)2d(2,3)2+d(1,3)2d(2,3)2

)
−d(2,3)4−d(1,3)4−d(1,2)4

D23 =

√√√√ 2
(
d(1,2)2+d(1,3)2−d(2,3)2

)
2
(
d(1,2)2d(1,3)2+d(1,2)2d(2,3)2+d(1,3)2d(2,3)2

)
−d(2,3)4−d(1,3)4−d(1,2)4

(2.3.3.6)

where d (i, j) is shorthand for dD (δi, δj). The formulas in (2.3.3.6) describe
the passage from spectral distances to the coe�cients of the Dirac operator.
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Now we are ready to prove the required result: Let a, b, c be three positive
numbers such that

a2 + b2 ≥ c2 b2 + c2 ≥ a2 a2 + c2 ≥ b2

Then de�ne

r1 :=
1

2

(
a2 + b2 − c2

)
r2 :=

1

2

(
a2 + c2 − b2

)
r3 :=

1

2

(
b2 + c2 − a2

)
These are positive numbers on account of the assumed inequalities between
a, b, c. Therefore, we can consider them as resistances in a stellar circuit.
They de�ne spectral distances via (2.3.3.4) as

dD (δ1, δ2) = a dD (δ1, δ3) = b dD (δ2, δ3) = c

and an associated Dirac operator via (2.3.3.6), where the coe�cients are
given, after factorisation, by

D12 =
√

2(b2+c2−a2)
(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

D13 =
√

2(a2+c2−b2)
(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

D23 =
√

2(a2+b2−c2)
(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

Unfortunately, calculation of the spectral distance in higher dimensions
becomes very arduous. In fact, already for the four-point space, the spec-
tral distance is only explicitly computable when additional restrictions are
placed on the Dirac operator [25]. Moreover, the spectral distance cannot be
inverted as is the case for the three-point space. There are, however, ways
to overcome this issue. In [21], for example, by allowing the dimension of
the Hilbert space to increase, the passage from Dirac operator to spectral
distance can once again be inverted. Despite the restrictions on the Dirac op-
erator, there are interesting cases that are explicitly computable in arbitrary
dimensions. One such case, as found in [21], is where the Dirac operator D
is chosen as the incidence matrix of the n-point graph associated to the n
pure states. When the graph is maximally connected, i.e. all coe�cients of
D are equal to a �xed constant, the spectral distance between any two pure
states can be explicitly calculated.
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Chapter 3

Matrix space

In this chapter, we expand our survey to noncommutative spaces. We restrict
once again to �nite dimensions, in keeping with our strategy of systematically
broadening the scope of our inquiry. Speci�cally, we consider a �nite spectral
triple built around the noncommutative algebra of n× n complex matrices.
After determining the associated space of pure states, we calculate the spec-
tral distance and venture a geometric interpretation for a low-dimensional
example.

3.1 The spectral triple and pure states

Let An = Mn (C), Hn = Cn, and de�ne the mapping

π : An →Mn (C) : a 7→ a for all a ∈ An

as the usual representation of matrices. Let D be a self-adjoint element of
Mn (C) with complex entries Dij such that

Dij = Dji ∈ C

for all i, j ∈ {1, . . . , n}, where the overbar denotes the complex conjugate
of a complex number. It follows from De�nition 1.4.1 that (An, Hn, D) is a
�nite spectral triple.

Proposition 3.1.1. The pure states of An are given by

ωξ (a) = 〈ξ, aξ〉 = ξ∗aξ

for every normalised vector ξ ∈ Hn, where a ∈ An. Moreover, two normalised

vectors determine the same pure state if and only if they are equal up to a

phase. In other words, the space of pure states is isomorphic to the complex

projective space:

PS (An) ' CPn−1
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Proof. Since π (An) is isomorphic to B (Hn), we have π (An)′ = CIn. Thus
(Hn, π) is an irreducible representation of An. Theorem 1.2.8 shows that
every nonzero vector in Hn is cyclic for (Hn, π). As per Theorem 1.2.11,
every normalised vector ξ ∈ Hn determines a pure state of An by

ωξ (a) = 〈ξ, π (a) ξ〉 = 〈ξ, aξ〉 = ξ∗aξ

In fact, all the pure states of An are determined by such normalised vectors
(see Example 5.1.1 in [31]).

Let ξ, ζ ∈ Hn be two normalised vectors. Suppose that they determine
the same pure state; that is, for all a ∈ An

ωξ (a) = 〈ξ, π (a) ξ〉 = 〈ζ, π (a) ζ〉 = ωζ (a)

Then there exists a unitary matrix u such that a = uau∗ for all a ∈ An and
ξ = uζ. This implies that there exists a constant θ ∈ [0, 2π] such that

u =

 eiθ 0
. . .

0 eiθ

 = eiθIn

which gives
ξ = uζ = eiθInζ = eiθζ

Hence, ξ and ζ are equal up to a phase.

Conversely, suppose that ξ and ζ are equal up to a phase, i.e.

ξ = eiθζ

for some θ ∈ [0, 2π]. For all a ∈ An, it holds that

ωξ (a) = ξ∗aξ

= e−iθζ∗aeiθζ

= ζ∗aζ

= ωζ (a)

Hence, ξ and ζ determine the same pure state.

Equality up to a nonzero complex number de�nes an equivalence relation
on Hn: For all nonzero ψ, φ ∈ Hn, let

ψ ∼ φ when ψ = λφ for some nonzero λ ∈ C

The equivalence classes in Hn are called the projective rays. The set of
all equivalence classes with respect to ∼, i.e. the quotient space Hn\{0}/∼,
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is the space of complex lines through the origin of Hn and is called the
complex projective space CPn−1. The set of projective rays is a homogeneous
space for the unitary group U (n) of n× n unitary matrices, with the group
operation of matrix multiplication. Note that a unit vector does not uniquely
determine a representative of a ray, because it retains its normalisation when
multiplied by any λ with absolute value 1. The equivalence relation on the
normalised vectors in Hn is given by equality up to a phase. Explicitly, for
all normalised vectors ξ, ζ ∈ Hn

ξ ∼ ζ when ξ = eiθζ for some θ ∈ [0, 2π]

Since we have shown a bijective correspondence between the pure states and
the normalised vectors equal up to a phase, we may identify each pure state
with a representative of a projective ray. Each representative may of course
be identi�ed with the entire projective ray. Hence, the space of pure states
is isomorphic to the complex projective space CPn−1:

PS (An) ' CPn−1

For the �nite spectral triple (An, Hn, D), as above, with the most general
Dirac operator (an arbitrary self-adjoint n×n matrix), the spectral distance
cannot be calculated in arbitrary dimensions n. However, such computations
are possible for n = 2. Before we evaluate this case, consider the following
lemma that holds in arbitrary dimensions and shows the invariance of the
spectral distance under simultaneous unitary transformation of the Dirac
operator and the pure states.

Lemma 3.1.2. Let (An, Hn, D) be the �nite spectral triple with associated

pure states ωξ as above. For any unitary U ∈ An such that

D̃ := U∗DU and ω̃ξ (a) := ωξ (UaU∗)

where a ∈ An, the spectral distance satis�es

dD̃ (ω̃ξ, ω̃ζ) = dD (ωξ, ωζ)

Proof.

dD̃ (ω̃ξ, ω̃ζ) = sup
a∈An

{
|(ω̃ξ − ω̃ζ) (a)| :

∥∥∥[D̃, a]∥∥∥
spec
≤ 1

}
= sup

a∈An

{
|(ωξ − ωζ) (UaU∗)| : ‖U [U∗DU, a]U∗‖spec ≤ 1

}
= sup

UaU∗∈An

{
|(ωξ − ωζ) (UaU∗)| : ‖[D,UaU∗]‖spec ≤ 1

}
= sup

a∈An

{
|(ωξ − ωζ) (a)| : ‖[D, a]‖spec ≤ 1

}
= dD (ωξ, ωζ)
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3.2 The two-sphere

We consider the �nite spectral triple (A2, H2, D), which is the spectral triple
in Section 3.1 with n = 2. Since D is self-adjoint, it is diagonalisable by a
unitary transformation. Let U ∈ An be the unitary that diagonalises D such
that

D̃ := U∗DU =

(
D1 0
0 D2

)
where D1, D2 are the strictly positive eigenvalues of D. As per Proposition
3.1.1, the pure states of A2 are determined by normalised vectors ξ ∈ H2 as

ωξ (a) = ξ∗aξ

The associated space of pure states is the complex projective line CP 1:

PS (A2) ' CP 1

Proposition 3.2.1. For the �nite spectral triple (A2, H2, D), the spectral

distance between any two pure states ωξ and ωζ of A2, where

ξ =

(
ξ1

ξ2

)
, ζ =

(
ζ1

ζ2

)
∈ H2

such that ‖ξ‖ = ‖ζ‖ = 1, is

dD (ωξ, ωζ) =

 2
|D1−D2|

√
1− |〈ξ, ζ〉|2 if |ξ1| = |ζ1|

+∞ otherwise

if D has distinct eigenvalues. If D1 = D2, then dD (ωξ, ωζ) = +∞.

Proof. We sidestep some of the computational di�culties in calculating dD (ωξ, ωζ)
by �rst considering the distance between the same two pure states but ac-
cording to the diagonalised operator D̃, i.e.

dD̃ (ωξ, ωζ) = sup
a∈A2

{
|(ωξ − ωζ) (a)| :

∥∥∥[D̃, π(a)
]∥∥∥

spec
≤ 1

}
= sup

a∈Asa2

{
|(ωξ − ωζ) (a)| :

∥∥∥[D̃, π(a)
]∥∥∥

spec
≤ 1

}
(3.2.1.1)

After expressing (3.2.1.1) in terms of an inner product, Lemma 3.1.2 will
allow us to easily convert to the desired spectral distance; the point is that
the inner product is preserved by unitary operators. Note that we search
the supremum in (3.2.1.1) on Asa2 , as allowed by Lemma 1.3.2. It is worth
mentioning that the map a 7→ UaU∗ is an automorphism on B (Hn). There-
fore, searching for a supremum over all a ∈ A2 is equivalent to searching
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over all UaU∗ ∈ A2. In particular, since UaU∗ is self-adjoint whenever a
is self-adjoint, Lemma 1.3.2 is still applicable when considering the spectral
distance for unitarily transformed operators and pure states. Keeping this
in mind, we consider arbitrary a ∈ Asa2 henceforth. The fact that a∗ = a
has components that satisfy a11, a22 ∈ R, a12 = a21, and |a12| = |a21| will be
used without further mention.

Let us start by evaluating the norm constraint in (3.2.1.1): We �nd that[
D̃, π(a)

]
=

(
0 (D1 −D2) a12

(D2 −D1) a21 0

)
and [

D̃, π(a)
]∗ [

D̃, π(a)
]

=

(
|D2 −D1|2 |a21|2 0

0 |D1 −D2|2 |a12|2
)

The norm, therefore, evaluates to∥∥∥[D̃, π(a)
]∥∥∥

spec
= |a12| |D1 −D2| (3.2.1.2)

At this point, we take the opportunity to consider the trivial case where
D1 = D2. The intermediary distance in (3.2.1.1) is unnecessary in this case.
Directly from Lemma 3.1.2, with the norm in (3.2.1.2) zero, it follows that

dD (ωξ, ωζ) = dD̃ (ω̃ξ, ω̃ζ)

= sup
a∈Asa2

{|ω̃ξ (a)− ω̃ζ (a)| : 0 ≤ 1}

= +∞

Henceforth, we let D1 6= D2 and consider them distinct eigenvalues of D.
Substituting (3.2.1.2) into (3.2.1.1) gives

dD̃ (ωξ, ωζ) = sup
a∈Asa2

{
|(ωξ − ωζ) (a)| : |a12| ≤

1

|D1 −D2|

}
(3.2.1.3)

The di�erence between the two pure states can be written as

(ωξ − ωζ) (a)

= ξ∗aξ − ζ∗aζ

=
2∑

i,j=1

aij
(
ξiξj − ζiζj

)
= a11

(
|ξ1|2 − |ζ1|2

)
+ a22

(
|ξ2|2 − |ζ2|2

)
+ a12

(
ξ1ξ2 − ζ1ζ2

)
+ a21

(
ξ2ξ1 − ζ2ζ1

)
(3.2.1.4)
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The expanded form is included seeing as it parades the appropriate choice of
components when searching for the supremum. We are now ready to evalu-
ate the di�erent cases.

Case 1: |ξ1| 6= |ζ1|
Let aL ∈ Asa2 such that

aL =

(
L 0
0 0

)
where L ∈ R+

For aL, (3.2.1.4) becomes

(ωξ − ωζ) (aL) = L
(
|ξ1|2 − |ζ1|2

)
Also, it satis�es the constraint so that (3.2.1.3) is solved as

dD̃ (ωξ, ωζ) = sup
a∈Asa2

{
|(ωξ − ωζ) (a)| : |a12| ≤

1

|D1 −D2|

}
≥ sup

L∈R+

{∣∣∣L(|ξ1|2 − |ζ1|2
)∣∣∣}

= +∞

It follows that dD (ωξ, ωζ) = +∞.

Case 2: |ξ1| = |ζ1|
Since ξ, ζ are normalised, we have

|ξ1|2 + |ξ2|2 = ξ∗ξ = 1 = ζ∗ζ = |ζ1|2 + |ζ2|2

which implies that
|ξ2| = |ζ2|

Then (3.2.1.4) becomes

|(ωξ − ωζ) (a)| =
∣∣a12

(
ξ1ξ2 − ζ1ζ2

)
+ a21

(
ξ2ξ1 − ζ2ζ1

)∣∣
=
∣∣2< (a12

(
ξ1ξ2 − ζ1ζ2

))∣∣
≤ 2

∣∣a12

(
ξ1ξ2 − ζ1ζ2

)∣∣
= 2 |a12|

∣∣ξ1ξ2 − ζ1ζ2

∣∣ (3.2.1.5)

If we can �nd an element a ∈ Asa2 that reaches the upper bound in (3.2.1.5),
then the supremum in (3.2.1.3) will be attained by choosing |a12| = 1

|D1−D2| .
Let aθ ∈ Asa2 such that

aθ =

(
0 |a12| e−iθ

|a12| eiθ 0

)
where θ = arg

(
ξ1ξ2 − ζ1ζ2

)
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For aθ, (3.2.1.5) becomes

|(ωξ − ωζ) (aθ)| =
∣∣∣2<(|a12| e−iθ

(
ξ1ξ2 − ζ1ζ2

))∣∣∣
=
∣∣∣2<(|a12| e−iθ

∣∣ξ1ξ2 − ζ1ζ2

∣∣ eiθ)∣∣∣
=
∣∣2< (|a12|

∣∣ξ1ξ2 − ζ1ζ2

∣∣)∣∣
= 2 |a12|

∣∣ξ1ξ2 − ζ1ζ2

∣∣
Hence, the upper bound is reached for aθ ∈ Asa2 . Substituting into (3.2.1.3)
gives

dD̃ (ωξ, ωζ) = sup
a12∈C

{
2 |a12|

∣∣ξ1ξ2 − ζ1ζ2

∣∣ : |a12| ≤
1

|D1 −D2|

}
=

2
∣∣ξ1ξ2 − ζ1ζ2

∣∣
|D1 −D2|

(3.2.1.6)

We proceed to �nd an intrinsic formulation of (3.2.1.6), in terms of the
normalised vectors that determine the pure states. Besides its aesthetic
value, the eventual expression will provide an easy way of converting from
our intermediary distance to the distance that is the actual intent of this
proposition. Recall that we are still dealing with the case where |ξ1| = |ζ1|
and |ξ2| = |ζ2|. We can write∣∣ξ1ξ2 − ζ1ζ2

∣∣2 = |ξ1|2 |ξ2|2 + |ζ1|2 |ζ2|2 − ζ1ζ2ξ1ξ2 − ξ1ξ2ζ1ζ2

= |ξ1|2
(

1− |ζ1|2
)

+ |ζ2|2
(

1− |ξ2|2
)
− ζ1ζ2ξ1ξ2 − ξ1ξ2ζ1ζ2

=
(
|ξ1|2 + |ζ2|2

)
− |ξ1|2 |ζ1|2 − |ζ2|2 |ξ2|2 − ζ1ζ2ξ1ξ2 − ξ1ξ2ζ1ζ2

= 1−
(
ξ1ζ1 + ξ2ζ2

) (
ξ1ζ1 + ξ2ζ2

)
= 1− (ξ∗ζ) (ξ∗ζ)∗

= 1− |〈ξ, ζ〉|2

Substituting this expression into (3.2.1.6) gives

dD̃ (ωξ, ωζ) =
2

|D1 −D2|

√
1− |〈ξ, ζ〉|2 (3.2.1.7)

If ξ is a normalised vector, i.e. ξ∗ξ = 1, that determines a pure state ωξ,
then

(U∗ξ)∗ (U∗ξ) = ξ∗UU∗ξ = 1

shows that U∗ξ is normalised and determines the pure state

ωU∗ξ (a) = (U∗ξ)∗ a (U∗ξ)

= ξ∗UaU∗ξ

= ωξ (UaU∗)

= ω̃ξ (a)
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Using this formulation in (3.2.1.7), together with Lemma 3.1.2, gives

dD (ωξ, ωζ) = dD̃ (ω̃ξ, ω̃ζ)

= dD̃ (ωU∗ξ, ωU∗ζ)

=
2

|D1 −D2|

√
1− |〈U∗ξ, U∗ζ〉|2

=
2

|D1 −D2|

√
1− |〈ξ, ζ〉|2

as required.

It is possible to formulate the distances in Proposition 3.2.1 in terms of
Euclidean coordinates on the two-sphere S2. This follows from the fact that
the complex projective line CP 1, and thus the space of pure states PS (A2),
is isomorphic to the two-sphere S2. We brie�y exhibit this correspondence;
details can be found in [32, Chapters 1 and 4].

Let e1 =

(
1
0

)
and e2 =

(
0
1

)
be the canonical basis for C2. For a

normalised vector ψ ∈ H2, it holds that

〈ψ,ψ〉 = |ψ1|2 + |ψ2|2 = 1

This constraint on the components allows us to write

ψ = ψ1e1 + ψ2e2

= eiγ
(

cos(θ/2)e1 + eiϕ sin(θ/2)e2

)
where ϕ, γ ∈ [0, 2π] and θ ∈ [0, π]. Since normalised vectors equal up to a
phase determine the same ray in CP 1, the factor eiγ can be dropped. In
other words, we may write each ψ ∈ CP 1 as

ψ = cos(θ/2)e1 + eiϕ sin(θ/2)e2

where ϕ ∈ [0, 2π] and θ ∈ [0, π]. The parameters θ and ϕ may be re-
interpreted as spherical coordinates in R3. We let θ be the colatitude with
respect to the z-axis and ϕ the longitude with respect to the x-axis. They
specify a point p on the unit two-sphere by

p = (x, y, z) = (cosϕ sin θ, sinϕ sin θ, cos θ)

such that
‖p‖2 = x2 + y2 + z2 = 1

Proposition 3.2.2. Every ξ ∈ CP 1 is associated to a point pξ = (xξ, yξ, zξ)
on the unit two-sphere via

xξ = 2<
(
ξ1ξ2

)
yξ = 2=

(
ξ1ξ2

)
zξ = |ξ1|2 − |ξ2|2

28



Proof. Every ξ ∈ CP 1 can be written in terms of the canonical basis as
ξ = ξ1e1 + ξ2e2, where the coe�cients are given by

ξ1 = cos(θ/2) and ξ2 = eiϕ sin(θ/2)

Simple substitutions give

2<
(
ξ1ξ2

)
= 2<

(
cos(θ/2)e−iϕ sin(θ/2)

)
= 2 cos(θ/2) cos(ϕ) sin(θ/2)

= cosϕ sin θ

= xξ

2=
(
ξ1ξ2

)
= 2=

(
cos(θ/2)eiϕ sin(θ/2)

)
= 2 sin(ϕ) sin(θ/2) cos(θ/2)

= sinϕ sin θ

= yξ

|ξ1|2 − |ξ2|2 = cos2(θ/2)− sin2(θ/2)

= cos θ

= zξ

where pξ = (xξ, yξ, zξ) = (cosϕ sin θ, sinϕ sin θ, cos θ) speci�es a point on the
unit two-sphere.

This sphere, considered isomorphic to the complex projective line CP 1,
is sometimes called the Bloch sphere and denoted S2. Note that the basis
vectors correspond to the poles of the Bloch sphere. Since we have already
shown that the space of pure states PS (A2) is isomorphic to CP 1, it follows
that the pure states correspond to points on the Bloch sphere and

PS (A2) ' S2

Consequently, we can write the spectral distance between pure states in
Proposition 3.2.1 in terms of Euclidean coordinates, i.e. as distances on S2.

Proposition 3.2.3. For the �nite spectral triple (A2, H2, D), the spectral

distance between any two pure states ωξ and ωζ of A2, where

ξ =

(
ξ1

ξ2

)
, ζ =

(
ζ1

ζ2

)
∈ H2

such that ‖ξ‖ = ‖ζ‖ = 1, is

dD (ωξ, ωζ) =

{
1

|D1−D2|

√
(xξ − xζ)2 + (yξ − yζ)2 if zξ = zζ

+∞ otherwise

if D has distinct eigenvalues. If D1 = D2, then dD (ωξ, ωζ) = +∞.
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Proof. The pure states ωξ and ωζ correspond to points pξ = (xξ, yξ, zξ) ∈ S2

and pζ = (xζ , yζ , zζ) ∈ S2 respectively, as treated in Proposition 3.2.2 and
the ensuing discussion. If we focus for a moment on the components

zξ = |ξ1|2 − |ξ2|2 and zζ = |ζ1|2 − |ζ2|2

it follows easily from the fact that ξ and ζ are normalised that

zξ = zζ if and only if |ξ1| = |ζ1|

Therefore, the conditions for �niteness of the spectral distance remain the
same as in Proposition 3.2.1. Speci�cally, the distance is in�nite whenever
zξ 6= zζ . All we are left to do is rewrite the expression for the case |ξ1| = |ζ1|
in terms of the new variables. We use the relations in Proposition 3.2.2,
together with the fact that

αβ + βα = 2
(
< (α)< (β) + = (α)= (β)

)
for all α, β ∈ C

to �nd(
2
∣∣ξ1ξ2 − ζ1ζ2

∣∣)2 = 4
(
ξ1ξ2 − ζ1ζ2

) (
ξ1ξ2 − ζ1ζ2

)
= 4

(∣∣ξ1ξ2

∣∣2 +
∣∣ζ1ζ2

∣∣2 − ζ1ζ2ξ1ξ2 − ξ1ξ2ζ1ζ2

)
= 4

(
<
(
ξ1ξ2

)2
+ =

(
ξ1ξ2

)2
+ <

(
ζ1ζ2

)2
+ =

(
ζ1ζ2

)2)
− 8

(
<
(
ζ1ζ2

)
<
(
ξ1ξ2

)
+ =

(
ζ1ζ2

)
=
(
ξ1ξ2

))
= x2

ξ + y2
ξ + x2

ζ + y2
ζ − 2xζxξ − 2yζyξ

= (xξ − xζ)2 + (yξ − yζ)2

Substituting this expression into (3.2.1.6) gives

dD̃ (ωξ, ωζ) =
2
∣∣ξ1ξ2 − ζ1ζ2

∣∣
|D1 −D2|

=
1

|D1 −D2|

√
(xξ − xζ)2 + (yξ − yζ)2

Since dD (ωξ, ωζ) = dD̃ (ωξ, ωζ) as shown in Proposition 3.2.1, the required
result follows.

Proposition 3.2.3 allows for geometric interpretation: The spectral dis-
tance between pure states associated to the spectral triple (A2, H2, D) is, up
to a constant factor, the Euclidean distance on the two-sphere S2 restricted
to planes of constant altitude (equal z-components), where the distance be-
tween two planes of di�erent altitude is in�nite. In other words, the spectral
distance equips the two-sphere with a metric that slices the sphere into cir-
cles at in�nite distance from one another, where the distance on each circle
is proportional to the Euclidean distance. In particular, the poles of S2 are
at in�nite distance from any other pure state.
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Part II

The Moyal plane

Here we study the nonommutative geometry of the Moyal plane
from a metric point of view. The Moyal plane is an isospectral
deformation of the Euclidean plane R2; that is, the Moyal plane
is an in�nite-dimensional spectral triple in which the algebra is a
noncommutative deformation of a commutative algebra of func-
tions on the Euclidean plane, while the Dirac operator keeps the
same spectrum as in the commutative case [39]. Following the
outline in [12], we construct a spectral triple based on the Moyal
deformation of the algebra of Schwartz functions on R2 and cal-
culate the spectral distance between some of the associated pure
states.

In Chapter 4, we de�ne and characterise the algebra of the Moyal
plane A. Chapters 5 through 8 are concerned with �nding equiv-
alent representations of A; this not only paves the way towards
assembling the spectral triple of the Moyal plane but also pro-
vides a context within which calculation of the spectral distance
becomes tractable. After extending the Moyal product to larger
spaces of tempered distributions in Chapter 5, we construct a
basis for L2

(
R2
)
consisting of Schwartz functions in Chapter 6.

The ensuing basis expansions allow us to represent the Schwartz
space as a sequence space in Chapter 7. Moreover, we use this
sequence representation to �nd a matricial form of the Moyal
product, which we extend to L2

(
R2
)
. The foundations laid in

Chapters 5 through 7 support the equivalent representation of A
that we de�ne in Chapter 8. Finally, after determining the pure
states of A in Chapter 9 and assembling the spectral triple of the
Moyal plane in Chapter 10, we calculate the spectral distance
between certain pure states in Chapter 11.
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Chapter 4

The algebra A of the Moyal

plane

The �rst ingredient in the spectral triple of the Moyal plane is the non-
commutative algebra called the algebra of the Moyal plane. This algebra is
formed by equipping the space of Schwartz functions on R2 with a Moyal
product. In Section 4.1, we introduce the Schwartz space and its natural
topology. The Moyal product is de�ned in Section 4.2 and used to de�ne
and characterise the algebra of the Moyal plane.

4.1 Schwartz space S

Here we de�ne the Schwartz space and characterise it as a Fréchet space.
First, we introduce a few notational conventions. Then, we state the rele-
vant de�nitions and theorems without proof. The proofs and more detailed
accounts of the concepts can be found in [34, Chapter V].

The Euclidean plane R2 is parametrised by Cartesian coordinates xj for
j = 1, 2. For any x = (x1, x2) , y = (y1, y2) ∈ R2, we let

x · y (4.1.1)

denote the usual dot product between vectors. Also, for j = 1, 2, we let

∂j =
∂

∂xj
(4.1.2)

denote the usual partial derivatives. If αi ∈ N0 ≡ N ∪ {0}, then

α = (α1, α2) (4.1.3)

denotes a two-dimensional multi-index such that

|α| = α1 + α2
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Note that for two multi-indices α, β ∈ N2
0,

α ≤ β if and only if αi ≤ βi for i = 1, 2

Furthermore, we write
xα = xα1

1 xα2
2 (4.1.4)

and

∂α = ∂α1
1 ∂α2

2 =
∂α1

∂xα1
1

∂α2

∂xα2
2

=
∂|α|

∂xα1
1 ∂xα2

2

(4.1.5)

where ∂αf = f if |α| = 0 for any function f .

De�nition 4.1.1. A seminorm on a vector space X is a map ρ : X →
[0,∞) such that for all x, y ∈ X and λ ∈ C:

(i) ρ (x+ y) ≤ ρ (x) + ρ (y)
(ii) ρ (λx) = |λ| ρ (x)

A family of seminorms {ρα}α∈I , where I is some index set, is said to sep-

arate points if

(iii) ρα (x) = 0 for all α ∈ I implies x = 0

De�nition 4.1.2. A locally convex space is a vector space X with a family

{ρα}α∈I of seminorms separating points. The natural topology on a locally

convex space is the weakest topology in which all the ρα are continuous and

in which the operations of addition and scalar multiplication are continuous.

De�nition 4.1.3. A net {xβ} in a locally convex space X is called Cauchy

if and only if, for all ε > 0, and for each seminorm ρα there is a β0 so that

ρα (xβ − xγ) < ε if β, γ > β0. X is called complete if every Cauchy net

converges.

The important structure on a locally convex space is the natural topology
rather than the particular seminorms used to generate the topology. We
call two families of seminorms {ρα}α∈A and {dβ}β∈B on a vector space X
equivalent if they generate the same natural topology.

Theorem 4.1.4. Let {ρα}α∈A and {dβ}β∈B be two families of seminorms.

They are equivalent families of seminorms if and only if for each α ∈ A,
there are β1, . . . , βn ∈ B and C > 0 so that for all x ∈ X

ρα (x) ≤ C (dβ1 (x) + . . .+ dβn (x))

and for each β ∈ B, there are α1, . . . , αm ∈ A and D > 0 so that for all

x ∈ X
dβ (x) ≤ D (ρα1 (x) + . . .+ ραm (x))

Theorem 4.1.5. A locally convex space X is metrisable (has topology gen-

erated by a metric) if and only if the topology on X is generated by some

countable family of seminorms.
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Theorem 4.1.6. Let {ρn}∞n=1 be a countable family of seminorms generating

the topology on X. The topology is given by the metric de�ned by

ρ (x, y) =

∞∑
n=1

2−n
(

ρn (x− y)

1 + ρn (x− y)

)
and a net {xα} in X is Cauchy in this metric if and only if it is Cauchy in

each ρn. Thus a metrisable locally convex space X is complete as a metric

space if and only if it is complete as a locally convex space.

De�nition 4.1.7. A Fréchet space is a complete metrisable locally convex

space.

De�nition 4.1.8. The Schwartz space of smooth rapidly decreasing complex-

valued functions on R2, denoted by S
(
R2
)
, is de�ned as the set

S
(
R2
)

:=

{
f ∈ C∞

(
R2
)

: ‖f‖α,β := sup
x∈R2

∣∣∣xα∂βf (x)
∣∣∣ <∞ for all α, β ∈ N2

0

}
where C∞

(
R2
)
denotes the space of in�nitely di�erentiable (smooth) complex-

valued functions on R2.

The functions in S
(
R2
)
are those functions which, together with their

derivatives, fall o� more quickly than the inverse of any polynomial. In other
words, xα∂βf (x) goes to zero as |x| → ∞ for all α, β ∈ N2

0. Therefore, the
functions in S

(
R2
)
are said to be rapidly decreasing.

Henceforth, we let
S := S

(
R2
)

(4.1.6)

Note that for each seminorm ‖·‖α,β , an open ball of radius r centered at
some f ∈ S is given by

B‖·‖α,β (f, r) =
{
g ∈ S : ‖g − f‖α,β < r

}
(4.1.7)

Thus, each ‖·‖α,β speci�es a topology ταβ on S. A set is open according to
ταβ if it can be expressed as a union of open balls. The topologies ταβ put
together generate the natural topology τ on S, as per De�nition 4.1.2, and
is called the Schwartz topology; in other words, the Schwartz topology is the
smallest topology containing all sets of

⋃
α,β

ταβ , thus making each seminorm

‖·‖α,β continuous.

Theorem 4.1.9. The Schwartz space S with the natural topology given by

the seminorms ‖·‖α,β is a Fréchet space.
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4.2 Moyal product ?

We equip the Schwartz space S with a Moyal product ?, also called the
twisted product, and show that this produces a noncommutative, non-unital,
involutive algebra. Further properties of the Moyal product are explicated
to serve as a toolkit for the subsequent sections. Most of the results in this
section follow from [18].

Let θ > 0 be a �xed positive real parameter, and de�ne

Θ := θΩ = θ

(
0 1
−1 0

)
Then the map

R2 × R2 → R : (x, y) 7→ x ·Θy

de�nes a symplectic bilinear form on R2, i.e. a bilinear map that is alter-
nating (x · Θx = 0 for all x ∈ R2) and nondegenerate (x · Θy = 0 for all
y ∈ R2 implies x = 0). Note, in particular, that for all x, y ∈ R2 it holds that
x · Θy = −y · Θx. This symplectic bilinear form will be used to de�ne the
Moyal product on S and in so doing will serve to deform the commutative
algebra of Schwartz functions equipped with pointwise multiplication to a
noncommutative one. For the de�nition below to make sense, we mention
here that S ⊂ L2

(
R2
)
. This will be proven shortly in Proposition 4.2.1.

We de�ne the Moyal ?-product on S by

(f ? g) (x) =
1

(πθ)2

∫
f (x+ y) g (x+ z) e−i2y·Θ

−1zd2yd2z (4.2.1)

for all f, g ∈ S. The commutator of the ?-product was introduced in the
context of phase-space quantum mechanics by Moyal [30] using a series de-
velopment in powers of θ, where the �rst nontrivial term gives the Poisson
bracket. The form above followed later when Moyal's series development was
considered an asymptotic expansion of oscillatory integrals. In [17] and ref-
erences therein, it is discussed how the usual pointwise product of Schwartz
functions is recovered in the classical limit θ → 0 from left ?-multiplication,
with convergence in the Schwartz topology.

Furthermore, we de�ne on S an involution given by complex conjugation
of functions

f∗ (x) := f (x) (4.2.2)

and pointwise multiplication by a coordinate as

(µjf) (x) := xjf (x) (4.2.3)
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for j = 1, 2. Also, we de�ne a �ip operator by

f̆ (x) := f (−x) (4.2.4)

The following notation will be useful when performing calculations with the
partial derivatives:

∂̂1f := ∂2f and ∂̂2f := −∂1f (4.2.5)

In a similar vein to (4.1.4) and (4.1.5), for a multi-index α ∈ N2
0, we write

µα = µα1
1 µα2

2 and ∂̂α = ∂̂1
α1
∂̂2
α2

(4.2.6)

For the remainder of this dissertation, we make the following normalisa-
tions, as per [18], in order to simplify the de�nition (4.2.1) and the subsequent
calculations:
• For integrals over R2, we use the Haar measure dx := 1

2πd
2x, where d2x

is the usual Lebesgue measure. This will relieve us of powers of 2π in the
Fourier transforms we de�ne below.
• We use the bilinear form

〈f, g〉 :=

∫
f (x) g (x) dx (4.2.7)

and the sesquilinear form

(f |g) := 1/2 〈f∗, g〉 = 1/2

∫
f (x)g (x) dx (4.2.8)

whenever the integrals converge.
• We set θ = 2 so that Θ = 2Ω.

By applying these normalisations, it is simple to show that (4.2.1) simpli-
�es to the following two equivalent de�nitions of the Moyal (twisted) product:
If f, g ∈ S and s, t, u, v, w ∈ R2, then

(f ? g) (u) :=

∫ ∫
f (v) g (w) ei(u·Ωv+v·Ωw+w·Ωu)dvdw (4.2.9)

=

∫ ∫
f (u+ s) g (u+ t) eis·Ωtdsdt (4.2.10)

As a tool for later calculations, we de�ne another product on S, which we
will see is related to the Moyal product via certain Fourier transforms. For
f, g ∈ S, we de�ne the twisted convolution � by

(f � g) (u) :=

∫
f (u− t) g (t) e−iu·Ωtdt (4.2.11)

The normalisations above also allow us to de�ne the space of measurable
functions that are square-integrable with respect to the Haar measure as
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follows: Let L2
(
R2
)
denote the set of complex-valued measurable functions

on R2 which satisfy ∫
|f (x)|2 dx <∞

Note that L2
(
R2
)
becomes a Hilbert space when equipped with inner prod-

uct (·|·), as de�ned in (4.2.8). The induced norm is given by

‖f‖2 := (f |f)
1
2 =

(
1/2

∫
|f (x)|2 dx

) 1
2

(4.2.12)

for all f ∈ L2
(
R2
)
. Furthermore, we de�ne ‖·‖∞ on S as the seminorm

‖·‖α,β in De�nition 4.1.8 with α, β = 0, i.e.

‖f‖∞ := sup
x∈R2

|f (x)| = ‖f‖0,0 (4.2.13)

for all f ∈ S. Finally, we de�ne the family of seminorms
{
‖·‖N,β

}
N∈N0,β∈N2

0

on S, where

‖f‖N,β := sup
x∈R2

(1 + |x|)N
∣∣∣∂βf (x)

∣∣∣ <∞ (4.2.14)

for all f ∈ S. This family of seminorms is equivalent to the family
{
‖·‖α,β

}
α,β∈N2

0

,

in the sense that they generate the same topology on S [37, Chapter 7].

Proposition 4.2.1. S is dense in L2
(
R2
)
.

Proof. First, we show that S ⊂ L2
(
R2
)
. Let f ∈ S be arbitrary. Using the

seminorms de�ned in (4.2.14), we �nd that

‖f‖2 =

(
1/2

∫
|f (x)|2 dx

) 1
2

=

(
1/2

∫
(1 + |x|)−6 (1 + |x|)6 |f (x)|2 dx

) 1
2

≤
(

1/2

∫
(1 + |x|)−6 dx

) 1
2

sup
x∈R2

(1 + |x|)3 |f (x)|

≤ C ‖f‖3,0
for some constant C < ∞. Also, ‖f‖3,0 < ∞ follows from the fact that

‖f‖N,β < ∞ for all N ∈ N0 and β ∈ N2
0 when f ∈ S. Thus f ∈ L2

(
R2
)
.

Since f ∈ S was chosen arbitrarily, it follows that S ⊂ L2
(
R2
)
.

Now, let C∞0
(
R2
)
denote the set of smooth functions of compact support

on R2. In other words, it is the set of in�nitely di�erentiable functions f
such that the closure of the set {x : f (x) 6= 0} is compact. Clearly

C∞0
(
R2
)
⊂ S
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It is well known, see for example [16, Proposition 8.17], that C∞0
(
R2
)
is

dense in L2
(
R2
)
. Therefore, S is also dense in L2

(
R2
)
.

A similar proof gives S ⊂ L1
(
R2
)
. Moreover, if f ∈ S, then the function

R2 → C : x 7→ xαf (x) is in L1
(
R2
)
, where we use the notation from (4.1.4).

Now we de�ne an ordinary Fourier transform F and two symplectic
Fourier transforms F and F̆ on S by:

(Ff) (u) :=

∫
f (t) e−it·udt (4.2.15)

(Ff) (u) :=

∫
f (t) e−it·Ωudt (4.2.16)(

F̆ f
)

(u) :=

∫
f (t) eit·Ωudt (4.2.17)

Note that these integrals make sense because S ⊂ L1
(
R2
)
.

Lemma 4.2.2. The transforms F, F and F̆ are commuting isomorphisms

(of Fréchet spaces) of S onto S, and satisfy the following properties for all

f, g ∈ S:
(1) Ff (u) = Ff (Ωu)

(2) F̆ f (u) = Ff (−Ωu) = F
(
f̆
)

(3) (Ff)∗ = F̆ (f∗)
(4) F 2 = F̆ 2 = I

(5) F
(
∂̂jf
)

= −iµjFf
(6) F (µjf) = −i∂̂jFf
(7) 〈Ff, g〉 =

〈
f, F̆ g

〉
(8) (Ff |g) = (f |Fg)
(9) 〈Ff, g〉 = 〈f,Fg〉

Proof. The fact that the transforms are commuting isomorphisms of S onto
S can be seen in [35, Chapter IX]. Properties (1)-(3) follow directly from
the de�nitions (4.2.15), (4.2.16) and (4.2.17). Let f ∈ S. Then, since S ⊂
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L1
(
R2
)
, we may apply Fubini's theorem to satisfy property (4) as follows:(

F 2f
)

(u) = F

∫
f (t) e−it·Ωudt

=

∫ (∫
f (t) eit·Ωt

′
dt

)
e−it

′·Ωudt′

=

∫ ∫
f (t) eit

′·Ωte−it
′·Ωudtdt′

=

∫ ∫
f (t) eit

′·Ω(t−u)dt′dt

=

∫
f (t) δ (t− u) dt

= f (u)

where δ (·) denotes the Dirac delta function, which was �rst treated with
mathematical rigour as a generalised function or distribution in [38]. Thus
F 2 = I and similarly F̆ 2 = I.

To prove property (5), �rst note that if f ∈ S, then there exists a constant
C > 0 such that

|f (t)| ≤ C (1 + |t|)−1

It follows, for j = 1, 2, that

lim
tj→±∞

∣∣f (t) e−it·Ωu
∣∣ ≤ lim

tj→±∞
|f (t)|

≤ lim
tj→±∞

C (1 + |t|)−1

= 0

Now we use integration by parts, where the boundary terms go to zero due
to the expression above: For j = 1,

F
(
∂̂1f
)

(u) =

∫ (
∂̂1f
)

(t) e−it·Ωudt

=

∫ ∫
(∂2f) (t) e−it·Ωudt2dt1

=

∫ ∫
∂

∂t2

(
f (t) e−it·Ωu

)
dt2dt1 −

∫ ∫
f (t)

∂

∂t2

(
e−it·Ωu

)
dt2dt1

=

∫
f (t) e−it·Ωu

∣∣∣t2=∞

t2=−∞
dt1 − iu1

∫
f (t) e−it·Ωudt

= 0− iu1Ff (u)

= −iµ1Ff (u)

For j = 2, we �nd F
(
∂̂2f
)

(u) = −iµ2Ff (u) by following the same steps

as above, while taking into account the di�erence in signs coming from
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∂̂2f = −∂1f . Hence, F
(
∂̂jf
)

= −iµjFf , as required.

Property (6) is found similarly to property (5). Properties (7) and (8)
are found by using properties (1)-(3) in the de�nitions of 〈·, ·〉 and (·|·) in
(4.2.7) and (4.2.8) respectively. Property (9) follows from de�nitions (4.2.7)
and (4.2.15).

We now proceed to prove certain properties of the Moyal product that
will allow us to characterise the Moyal algebra.

Proposition 4.2.3. The Moyal product satis�es the Leibniz rule: If f, g ∈ S,
then

∂j (f ? g) = ∂jf ? g + f ? ∂jg

Proof. Let f, g ∈ S. Note that S is closed under pointwise multiplication
and S ⊂ L1

(
R2
)
. The partial derivative with respect to uj of the integrand

in (4.2.10) exists and is uniformly bounded by an L1 function. Therefore,
the dominated convergence theorem implies the Leibniz integral rule, which
allows us to di�erentiate (4.2.10) under the integral:

∂j (f ? g) (u)

=

∫ ∫
∂

∂uj

(
f (u+ s) g (u+ t)

)
eis·Ωtdsdt

=

∫ ∫ (
∂jf (u+ s)

)
g (u+ t) eis·Ωtdsdt+

∫ ∫
f (u+ s)

(
∂jg (u+ t)

)
eis·Ωtdsdt

= (∂jf ? g) (u) + (f ? ∂jg) (u)

Proposition 4.2.4. Pointwise multiplication by a coordinate obeys

µj (f ? g) = f ? µjg + i
(
∂̂jf
)
? g = (µjf) ? g − if ? ∂̂jg

for all f, g ∈ S.
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Proof. Using (4.2.16) and Lemma 4.2.2(5) in the de�nition (4.2.9), we �nd

µj (f ? g) (u)

=

∫ ∫
ujf (v) g (w) ei(u·Ωv+v·Ωw+w·Ωu)dvdw

=

∫ ∫
ujf (v) g (w) e−iv·Ω(u−w)eiw·Ωudvdw

=

∫
uj (Ff) (u− w) g (w) e−iu·Ωwdw

=

∫
(uj − wj + wj) (Ff) (u− w) g (w) e−iu·Ωwdw

=

∫
wj (Ff) (u− w) g (w) e−iu·Ωwdw +

∫
(uj − wj) (Ff) (u− w) g (w) e−iu·Ωwdw

=

∫ ∫
f (v)wjg (w) e−iv·Ω(u−w)eiw·Ωudvdw +

∫
(µjFf) (u− w) g (w) eiw·Ωudw

=

∫ ∫
f (v) (µjg) (w) e−iv·Ω(u−w)eiw·Ωudvdw + i

∫ (
F
(
∂̂jf
))

(u− w) g (w) eiw·Ωudw

=

∫ ∫
f (v) (µjg) (w) e−iv·Ω(u−w)eiw·Ωudvdw + i

∫ ∫ (
∂̂jf
)

(v) g (w) e−iv·Ω(u−w)eiw·Ωudvdw

= (f ? µjg) (u) +
(
i
(
∂̂jf
)
? g
)

(u)

for all f, g ∈ S. The second equality is found similarly using Lemma 4.2.2(6).

Proposition 4.2.5. If f, g ∈ S, then (f ? g) ∈ S.

Proof. We o�er a proof via induction on the formulas in Propositions 4.2.3
and 4.2.4. The number of combinations available for distributing higher
order derivatives and polynomials over the Moyal product will be expressed
by binomial coe�cients, which are de�ned, for n, ` ∈ N0 such that n ≥ ` ≥ 0,
by (

n

`

)
=

n!

(n− `)!`!
=

(
n

n− `

)
It will be useful to remember Pascal's rule: For 1 ≤ ` ≤ n+ 1, it holds that(

n

`

)
+

(
n

`− 1

)
=

(
n+ 1

`

)
We extend this notation to include multi-indices: For α, β ∈ N2

0, we write(
α

β

)
:=

(
α1

β1

)(
α2

β2

)
=

α!

β! (α− β)!
=

(
α

α− β

)
where

α± β = (α1 ± β1, α2 ± β2) and α! = α1!α2!
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Let f, g ∈ S be arbitrary. First, we use induction on the Leibniz rule.
From Proposition 4.2.3 we have that

∂j (f ? g) = ∂jf ? g + f ? ∂jg =
1∑
`=0

(
1

`

)
∂1−`
j f ? ∂`jg

This serves as the basis for the induction. Now �x n ∈ N and suppose that

∂nj (f ? g) =
n∑
`=0

(
n

`

)
∂n−`j f ? ∂`jg

as the induction hypothesis. The induction step follows:

∂n+1
j (f ? g)

= ∂j

(
n∑
`=0

(
n

`

)
∂n−`j f ? ∂`jg

)

=
n∑
`=0

(
n

`

)
∂j

(
∂n−`j f ? ∂`jg

)
=

n∑
`=0

(
n

`

)(
∂n+1−`
j f ? ∂`jg + ∂n−`j f ? ∂`+1

j g
)

=
n∑
`=0

(
n

`

)
∂n+1−`
j f ? ∂`jg +

n∑
`=0

(
n

`

)
∂n−`j f ? ∂`+1

j g

=

(
n

0

)
∂n+1
j f ? g +

n∑
`=1

(
n

`

)
∂n+1−`
j f ? ∂`jg +

(
n

n

)
f ? ∂n+1

j g +
n∑
`=1

(
n

`− 1

)
∂n+1−`
j f ? ∂`jg

=

(
n

0

)
∂n+1
j f ? g +

(
n

n

)
f ? ∂n+1

j g +
n∑
`=1

(
n+ 1

`

)
∂n+1−`
j f ? ∂`jg

=

(
n+ 1

0

)
∂n+1
j f ? g +

(
n+ 1

n+ 1

)
f ? ∂n+1

j g +
n∑
`=1

(
n+ 1

`

)
∂n+1−`
j f ? ∂`jg

=

n+1∑
`=0

(
n+ 1

`

)
∂n+1−`
j f ? ∂`jg

Since this holds for arbitrary n ∈ N, it follows by induction that

∂nj (f ? g) =

n∑
`=0

(
n

`

)
∂n−`j f ? ∂`jg (4.2.5.1)

Now consider multi-indices γ, ε ∈ N2
0 with components k, `,m, n ∈ N0 such

that γ = (m,n) and ε = (k, `). Repeated application of (4.2.5.1), expressed
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in terms of the notation (4.1.5), gives

∂γ (f ? g) = ∂m1 ∂
n
2 (f ? g)

= ∂m1

n∑
`=0

(
n

`

)
∂n−`2 f ? ∂`2g

=
n∑
`=0

(
n

`

)
∂m1

(
∂n−`2 f ? ∂`2g

)
=

n∑
`=0

(
n

`

) m∑
k=0

(
m

k

)
∂m−k1 ∂n−`2 f ? ∂k1∂

`
2g

=
m∑
k=0

n∑
`=0

(
m

k

)(
n

`

)
∂(m−k,n−`)f ? ∂(k,`)g

=
∑
ε≤γ

(
γ

ε

)
∂γ−εf ? ∂εg (4.2.5.2)

Note that f ? g ∈ C∞ because f, g ∈ C∞.

Next, we use induction on the pointwise multiplication rule. From Propo-
sition 4.2.4 we have that

µj (f ? g) = (µjf) ? g − if ? ∂̂jg =
1∑
`=0

(−i)`
(

1

`

)
µ1−`
j f ? ∂̂`jg

which serves as the basis for the induction. Now �x n ∈ N and suppose that

µnj (f ? g) =
n∑
`=0

(−i)`
(
n

`

)
µn−`j f ? ∂̂`jg

as the induction hypothesis. Then we use similar manipulations as in the
case above to �nd

µn+1
j (f ? g) =

n+1∑
`=0

(−i)`
(
n+ 1

`

)
µn+1−`
j f ? ∂̂`jg

Since this holds for arbitrary n ∈ N, it follows by induction that

µnj (f ? g) =

n∑
`=0

(−i)`
(
n

`

)
µn−`j f ? ∂̂`jg (4.2.5.3)

Now consider multi-indices α, β ∈ N2
0 with components k, `,m, n ∈ N0 such

that α = (m,n) and β = (k, `). Note that |β| = k+ `. Repeated application
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of (4.2.5.3), expressed in terms of the notation (4.2.8), gives

µα (f ? g) = µm1 µ
n
2 (f ? g)

= µm1

n∑
`=0

(−i)`
(
n

`

)
µn−`2 f ? ∂̂`2g

=

n∑
`=0

(−i)`
(
n

`

)
µm1

(
µn−`2 f ? ∂̂`2g

)
=

n∑
`=0

(−i)`
(
n

`

) m∑
k=0

(−i)k
(
m

k

)
µm−k1 µn−`2 f ? ∂̂k1 ∂̂

`
2g

=

m∑
k=0

n∑
`=0

(−i)k+`

(
m

k

)(
n

`

)
µ(m−k,n−`)f ? ∂̂(k,`)g

=
∑
β≤α

(−i)|β|
(
α

β

)
µα−βf ? ∂̂βg (4.2.5.4)

Combining (4.2.5.2) and (4.2.5.4) gives

µα∂γ (f ? g) = µα
∑
ε≤γ

(
γ

ε

)
∂γ−εf ? ∂εg

=
∑
ε≤γ

(
γ

ε

)
µα
(
∂γ−εf ? ∂εg

)
=
∑
ε≤γ

(
γ

ε

)∑
β≤α

(−i)|β|
(
α

β

)
µα−β∂γ−εf ? ∂̂β∂εg

=
∑
β≤α

∑
ε≤γ

(−i)|β|
(
α

β

)(
γ

ε

)
µα−β∂γ−εf ? ∂̂β∂εg (4.2.5.5)

for all α, γ ∈ N2
0. From the de�nition of ? in (4.2.9), we �nd the following

norm inequality:

‖f ? g‖∞ = sup
x∈R2

|(f ? g) (x)|

= sup
x∈R2

∣∣∣∣∫ ∫ f (v) g (w) ei(x·Ωv+v·Ωw+w·Ωx)dvdw

∣∣∣∣
≤ sup

x∈R2

∫ ∫ ∣∣∣f (v) g (w) ei(x·Ωv+v·Ωw+w·Ωx)
∣∣∣ dvdw

≤
∫
|f (v)| dv

∫
|g (w)| dw

= ‖f‖1 ‖g‖1 (4.2.5.6)

Note that µα−β∂γ−εf ∈ S and ∂̂β∂εg ∈ S whenever f, g ∈ S. Therefore,
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from (4.2.5.6) and (4.2.5.5), it holds for all α, γ ∈ N2
0 that

‖f ? g‖α,γ = ‖µα∂γ (f ? g)‖∞

=

∥∥∥∥∥∥
∑
β≤α

∑
ε≤γ

(−i)|β|
(
α

β

)(
γ

ε

)
µα−β∂γ−εf ? ∂̂β∂εg

∥∥∥∥∥∥
∞

≤
∑
β≤α

∑
ε≤γ

(
α

β

)(
γ

ε

)∥∥∥µα−β∂γ−εf ? ∂̂β∂εg∥∥∥
∞

≤
∑
β≤α

∑
ε≤γ

(
α

β

)(
γ

ε

)∥∥∥µα−β∂γ−εf∥∥∥
1

∥∥∥∂̂β∂εg∥∥∥
1

(4.2.5.7)

<∞

Hence, De�nition 4.1.8 is satis�ed so that (f ? g) ∈ S.

On our way towards proving associativity of ?, we consider the way the
Fourier transforms in (4.2.15), (4.2.16) and (4.2.17) intertwine the twisted
product ? and the twisted convolution �. This will allow us to perform
relatively simple calculations in � before transferring the results to ?. The
next proposition regards these intertwining properties and the subsequent
one proves associativity.

Proposition 4.2.6. For all f, g ∈ S, it holds that

f ? g = (Ff) � g = f �
(
F̆ g
)

(4.2.6.1)

f � g = (Ff) ? g = f ?
(
F̆ g
)

(4.2.6.2)

F (f ? g) = (Ff) � (Fg) (4.2.6.3)

F (f � g) = (Ff) ? (Fg) (4.2.6.4)

Proof. Let f, g ∈ S be arbitrary. We use de�nitions (4.2.9) and (4.2.11) for
? and � respectively. The Fourier transforms F, F and F̆ are de�ned in
(4.2.15), (4.2.16) and (4.2.17). We �nd

(f ? g) (u) =

∫ ∫
f (v) g (w) ei(u·Ωv+v·Ωw+w·Ωu)dvdw

=

∫ ∫
f (v) g (w) e−iv·Ω(u−w)eiw·Ωudvdw

=

∫
(Ff) (u− w) g (w) e−iu·Ωwdw

=
(

(Ff) � g
)

(u)
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which proves the �rst equality in (4.2.6.1). The remaining equality in (4.2.6.1)
and those in (4.2.6.2) follow similarly. We �nd (4.2.6.3) by applying Lemma
4.2.2 (1) and making appropriate substitutions as follows:

F (f ? g) (u) =

∫
(f ? g) (s) e−is·uds

=

∫ ∫ ∫
f (v) g (w) ei(s·Ωv+v·Ωw+w·Ωs)dvdw e−is·uds

=

∫ ∫ ∫
f (v) g (w) e−iv·Ω(s−w)eiw·Ωse−is·udvdwds

=

∫ ∫
(Ff) (s− w) g (w) e−is·Ωwe−is·udwds

=

∫ ∫
(Ff) (Ωs− Ωw) g (w) e−is·(Ωw+u)dwds

=

∫ ∫
(Ff) (u− t) g (r) e−i(−Ωu+Ωt+r)·(Ωr+u)drdt

=

∫ ∫
(Ff) (u− t) g (r) e−i(t·r+Ωt·u)drdt

=

∫
(Ff) (u− t)

(∫
g (r) e−ir·tdr

)
e−iu·Ωtdt

=

∫
(Ff) (u− t) (Fg) (t) e−iu·Ωtdt

=
(

(Ff) � (Fg)
)

(u)

A similar proof gives (4.2.6.4). Note that expressions exactly analogous to
(4.2.6.3) and (4.2.6.4) hold with F replaced by either F or F̆ .

Proposition 4.2.7. The Moyal product ? : S × S → S is an associative

product.
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Proof. Let f, g, h ∈ S. We begin by showing that � is associative:

((f � g) � h) (u) =

∫
(f � g) (u− t)h (t) e−iu·Ωtdt

=

∫ ∫
f (u− t− s) g (s) e−i(u−t)·Ωsds h (t) e−iu·Ωtdt

=

∫ ∫
f (u− t− s) g (s)h (t) e−i(u·Ωt+(u−t)·Ωs)dsdt

=

∫ ∫
f (u− v) g (v − t)h (t) e−i(u·Ωv−t·Ωv)dvdt

=

∫
f (u− v)

(∫
g (v − t)h (t) e−iv·Ωtdt

)
e−iu·Ωvdv

=

∫
f (u− v) (g � h) (v) e−iu·Ωvdv

= (f � (g � h)) (u)

Now, by applying (4.2.6.3) multiple times and using the associativity of �
above, we �nd

F ((f ? g) ? h) = F (f ? g) � Fh
= (Ff � Fg) � Fh
= Ff � (Fg � Fh)

= Ff � F (g ? h)

= F (f ? (g ? h))

Hence, (f ? g) ? h = f ? (g ? h); the Moyal product is associative on S.

Proposition 4.2.8. Complex conjugation of functions f 7→ f∗ is an involu-

tion for the Moyal product.

Proof. Using de�nition (4.2.10), we �nd that

(f ? g)∗ (u) =

(∫ ∫
f (u+ s) g (u+ t) eis·Ωtdsdt

)∗
=

∫ ∫
f (u+ s)g (u+ t)e−is·Ωtdsdt

=

∫ ∫
g∗ (u+ t) f∗ (u+ s) eit·Ωsdtds

= (g∗ ? f∗) (u)

for all f, g ∈ S. Furthermore, we have that (f∗)∗ = f and that (αf + βg)∗ =
αf∗+ βg∗ for all α, β ∈ C. Thus, complex conjugation de�nes an involution
for the Moyal product.
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Proposition 4.2.9. The Moyal product ? : S×S → S is a jointly continuous

bilinear map.

Proof. The natural topology of S (Schwartz topology) is equivalently gener-
ated by the two families of seminorms {pαγ}α,γ∈N2

0
and {qαγ}α,γ∈N2

0
, where

pαγ (f) := ‖µα∂γf‖∞ = sup
x∈R2

|xα∂γf (x)| (4.2.9.1)

and

qαγ (f) := ‖µα∂γf‖1 =

∫
|xα∂γf (x)| dx (4.2.9.2)

In other words, each pαγ (f) is continuous in the topology generated by
{qαγ}α,γ∈N2

0
and each qαγ (f) is continuous in the topology generated by

{pαγ}α,γ∈N2
0
. See, for example, [34, Chapter V].

Let η = (η1, η2) ∈ N2
0 such that η1 = β2 and η2 = β1. Then, using the

inequality in (4.2.5.7), it follows that for all f, g ∈ S and α, γ ∈ N2
0

pαγ (f ? g) = ‖µα∂γ (f ? g)‖∞

≤
∑
β≤α

∑
ε≤γ

(
α

β

)(
γ

ε

)∥∥∥µα−β∂γ−εf∥∥∥
1

∥∥∥∂̂β∂εg∥∥∥
1

=
∑
β≤α

∑
ε≤γ

(
α

β

)(
γ

ε

)∥∥∥µα−β∂γ−εf∥∥∥
1

∥∥∥∂β2+ε1
1 ∂β1+ε2

2 g
∥∥∥

1

=
∑
β≤α

∑
ε≤γ

(
α

β

)(
γ

ε

)∥∥∥µα−β∂γ−εf∥∥∥
1

∥∥∂η+εg
∥∥

1

=
∑
β≤α

∑
ε≤γ

(
α

β

)(
γ

ε

)
qα−β,γ−ε (f) q0,η+ε (g)

By [34, Theorem V.2], ? : S × S → S is a jointly continuous bilinear map.
Actually, this theorem demonstrates that the maps ? : S → S : f 7→ f ? g
and ? : S → S : g 7→ f ? g are continuous for all f ∈ S and g ∈ S
separately. However, in the world of Fréchet spaces, separate continuity and
joint continuity are equivalent [29, Theorem 1.29].

Note that the previous two propositions also hold for �; that is,

(f � g)∗ = g∗ � f∗

for all f, g ∈ S and � : S × S → S is a jointly continuous bilinear map.

Proposition 4.2.10. The integral of the Moyal product has the tracial prop-

erty: For all f, g ∈ S∫
(f ? g) (u) du =

∫
(g ? f) (u) du =

∫
f (u) g (u) du = 〈f, g〉
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Proof. Recall that the ordinary convolution ∗ between functions in S (with-
out the twist induced by the symplectic form) is de�ned, for example in [34,
Section IX.1], by

(f ∗ g) (u) :=

∫
f (u− t) g (t) dt

for all f, g ∈ S, where convolution in the u-domain corresponds to multi-
plication in the t-domain. Moreover, the convolution satis�es the following
properties as per [34, Theorem IX.3]: For all f, g ∈ S

f ∗ g = g ∗ f and F (fg) = Ff ∗ Fg

where F is the Fourier transform de�ned in (4.2.15).

Let f, g ∈ S. Using the properties above, together with de�nition (4.2.11)
and the relation (4.2.6.3), we �nd that∫

(f ? g) (u) du = (F (f ? g)) (0)

= (Ff � Fg) (0)

=

∫
(Ff) (−t) (Fg) (t) dt

= (Ff ∗ Fg) (0)

= (Fg ∗ Ff) (0)

=

∫
(Fg) (−t) (Ff) (t) dt

= (Fg � Ff) (0)

= (F (g ? f)) (0)

=

∫
(g ? f) (u) du

and ∫
(f ? g) (u) du = (Ff ∗ Fg) (0)

= F (fg) (0)

=

∫
f (u) g (u) du

The cyclicity in the tracial identity in Proposition 4.2.10 will allow us to
extend the Moyal product via duality to larger spaces than S in the next
section. Before we do so, there is an important consequence of this identity
that will become useful when performing the extensions.
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Proposition 4.2.11. If f, g, h ∈ S, then

〈f ? g, h〉 = 〈f, g ? h〉 = 〈g, h ? f〉 (4.2.11.1)

〈f � g, h〉 = 〈f, ğ � h〉 =
〈
g, h � f̆

〉
(4.2.11.2)

(h|f ? g) = (f∗ ? h|g) = (h ? g∗|f) (4.2.11.3)

Proof. Let f, g, h ∈ S. Applying Proposition 4.2.7 and Proposition 4.2.10 to
〈·, ·〉 gives

〈f ? g, h〉 =

∫
(f ? g) (u)h (u) du

=

∫ (
(f ? g) ? h

)
(u) du

=

∫ (
f ? (g ? h)

)
(u) du

=

∫
f (u) (g ? h) (u) du

= 〈f, g ? h〉

and

〈f, g ? h〉 =

∫ (
f ? (g ? h)

)
(u) du

=

∫ (
(g ? h) ? f

)
(u) du

=

∫ (
g ? (h ? f)

)
(u) du

=

∫
g (u) (h ? f) (u) du

= 〈g, h ? f〉

This proves (4.2.11.1), which can be used, together with Proposition 4.2.6
and properties (2) and (4) from Lemma 4.2.2, to �nd (4.2.11.2) as follows:

〈f � g, h〉 =
〈
f ? F̆ g, h

〉
=
〈
f,
(
F̆ g
)
? h
〉

=
〈
f,
(
F
(
F̆ g
))
� h
〉

=
〈
f,
(
F 2ğ

)
� h
〉

= 〈f, ğ � h〉
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The second equality in (4.2.11.2) is found similarly. Finally, the �rst equality
in (4.2.11.3) follows from (4.2.11.1), Proposition 4.2.8, and de�nition (4.2.8):

(h|f ? g) = 1/2 〈h∗, f ? g〉
= 1/2 〈h∗ ? f, g〉
= 1/2 〈(f∗ ? h)∗ , g〉
= (f∗ ? h|g)

The second equality in (4.2.11.3) follows similarly.

Armed with su�cient properties of the Moyal ?-product between Schwartz
functions, we are ready to de�ne and characterise the algebra of the Moyal
plane: Let

A := (S, ?) (4.2.18)

be the algebra obtained by equipping the Schwartz space S with the Moyal
?-product and an involution de�ned by complex conjugation. We call A the
algebra of the Moyal plane. The following corollary assembles the results
from Theorem 4.1.9 and Propositions 4.2.5, 4.2.7 and 4.2.8.

Corollary 4.2.12. A is a noncommutative, non-unital, associative, involu-

tive Fréchet algebra.
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Chapter 5

Extension of ? via duality

In the previous chapter, we established a calculus for functions in the Schwartz
space S with Moyal product ?. Here, we extend the Moyal product to a larger
space of tempered distributions via duality. The dual space of tempered dis-
tributions is de�ned in Section 5.1 and shown to contain S. In Section 5.2,
we systematically extend the Moyal product to certain subspaces of the dual
space. In particular, the extension reaches a space that contains all poly-
nomials. This will enable us to de�ne an orthonormal basis for L2

(
R2
)
in

Chapter 6, where the basis elements will be composed of Moyal products
between functions in S and certain polynomials.

5.1 The Schwartz space S is contained in its dual

Here we de�ne the dual space of S and show that it contains S. The following
de�nition draws from [34, Section V.1] and [34, Section V.3].

De�nition 5.1.1. The topological dual space of the topological vector

space X is the family of continuous linear functionals on X, and is denoted

X ′. The topological dual space of S
(
R2
)
, denoted by S′

(
R2
)
, is called the

space of tempered distributions.

Henceforth, we let
S′ := S′

(
R2
)

(5.1)

Note that S′ is topologised by the strong dual topology, that of uniform con-
vergence on bounded subsets of S. Formally, the topology of S′ is generated
by the family of seminorms {ρB : B ⊂ S is bounded}, where

ρB (T ) := sup
f∈B
|T (f)| (5.2)

for all T ∈ S′.
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For a linear functional T on S to be in S′, it must be continuous. By [34,
Theorem V.2], this is equivalent to the existence of a seminorm ‖·‖α,β such
that

|T (f)| ≤ C ‖f‖α,β
for all f ∈ S and some constant C.

The following notation emphasises the action of S′ on S, i.e. the action
of a continuous linear functional on a Schwartz function: For T ∈ S′ and
h ∈ S, we write

〈T, h〉 := T (h) (5.3)

If f ∈ S, then we de�ne a linear functional f (·) on S by

f (h) = 〈f, h〉 =

∫
f (x)h (x) dx

for all h ∈ S. Note that for f, h ∈ S, (5.3) gives 〈f (·) , h〉 = 〈f, h〉. Hence,
(5.3) is indeed an extension of 〈·, ·〉 from S × S to S′ × S. The following
proposition shows that S is a subspace of S′:

Proposition 5.1.2. If f ∈ S, then f (·) ∈ S′. Furthermore, if f1, f2 ∈ S
such that f1 (·) = f2 (·), then f1 = f2.

Proof. Let f ∈ S. Using Hölder's inequality, we �nd that

|f (g)| =
∣∣∣∣∫ f (x) g (x) dx

∣∣∣∣
≤
∫
|f (x) g (x)| dx

= ‖fg‖1
≤ ‖f‖1 ‖g‖∞
≤ C ‖g‖0,0

for all g ∈ S and for some constant C. Thus f (·) is a continuous linear
functional on S, i.e. f (·) ∈ S′.

Let f1, f2 ∈ S such that f1 6= f2, then f1 6= f2 in L2
(
R2
)
since S

is dense in L2
(
R2
)
by Proposition 4.2.1. This implies that f1 (·) 6= f2 (·)

in
(
L2
(
R2
))′

, since the dual space
(
L2
(
R2
))′

is exactly L2
(
R2
)
. Finally,

since
(
L2
(
R2
))′

is dense in S′, we conclude that f1 (·) 6= f2 (·) in S′. This
statement is equivalent to the proposed result by contraposition.

Owing to Proposition 5.1.2, it is no longer necessary to distinguish be-
tween f and f (·) when f ∈ S. Henceforth, we write f (·) simply as f when
f ∈ S.
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5.2 Extending the Moyal product

Before we extend the Moyal product to spaces of tempered distributions, we
extend the notions of partial di�erentiation, pointwise multiplication by a
coordinate, and involution to S′: For T ∈ S′ and h ∈ S, we de�ne

〈∂jT, h〉 := −〈T, ∂jh〉 (5.4)

〈µjT, h〉 := 〈T, µjh〉 (5.5)

(T |h) :=
1

2
〈T ∗, h〉 :=

1

2
〈T, h∗〉∗ (5.6)

Furthermore, we extend the �ip operator and the Fourier transforms to S′:
For T ∈ S′ and h ∈ S, we de�ne〈

T̆ , h
〉

:=
〈
T, h̆

〉
(5.7)

〈FT, h〉 := 〈T,Fh〉 (5.8)

〈FT, h〉 :=
〈
T, F̆h

〉
(5.9)〈

F̆ T, h
〉

:= 〈T, Fh〉 (5.10)

Proposition 5.2.1. The operations de�ned by (5.4) to (5.10) extend the

corresponding operations on S.

Proof. Let T ∈ S′. First consider (5.4). Note that ∂jT de�nes a linear
functional on S, since for all h ∈ S

(∂jT ) (h) = 〈∂jT, h〉
= −〈T, ∂jh〉
= −T (∂jh)

where ∂jh ∈ S and T is a linear functional on S. Seeing as both ∂j and T
are continuous, the composition ∂jT = −T ◦ ∂j is continuous. Hence, ∂jT is
a continuous linear functional, i.e. ∂jT ∈ S′. Now observe that

〈∂jf, h〉 =

∫
(∂jf) (x)h (x) dx

= −
∫
f (x) (∂jh) (x) dx

= −〈f, ∂jh〉

for all f, h ∈ S, which shows, on account of Proposition 5.1.2, that ∂j : S′ →
S′ is indeed an extension of ∂j : S → S. Similar proofs show that (5.5),
(5.6) and (5.7) extend the corresponding operations on S. By following the
same pattern as the proof above, and applying properties (2), (7) and (9)
from Lemma 4.2.2, it follows that (5.8), (5.9) and (5.10) are extensions of
the Fourier transforms on S.
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Now we start our extension of the Moyal product. First, we de�ne the
Moyal product between one element in S′ and one element in S. For T ∈ S′
and f, h ∈ S, let T ? f be de�ned by

〈T ? f, h〉 := 〈T, f ? h〉 (5.11)

and let f ? T be de�ned by

〈f ? T, h〉 := 〈T, h ? f〉 (5.12)

The twisted convolution is extended similarly: For T ∈ S′ and f, h ∈ S, let
T � f be de�ned by

〈T � f, h〉 :=
〈
T, f̆ � h

〉
(5.13)

and let f � T be de�ned by

〈f � T, h〉 :=
〈
T, h � f̆

〉
(5.14)

Proposition 5.2.2. The products T ? f and f ? T map into S′ and extend

the corresponding operations on S × S to S′ × S and S × S′ respectively.
Furthermore, the convolutions T � f and f � T map into S′ and extend the

corresponding operations on S × S to S′ × S and S × S′ respectively.

Proof. Let T ∈ S′ and f, h ∈ S be arbitrary. Note that

(T ? f) (h) = 〈T ? f, h〉
= 〈T, f ? h〉
= T (f ? h)

Since f ? h ∈ S and ? is continuous in S by Proposition 4.2.9, it follows that
T ? f is a continuous linear functional on S and thus T ? f ∈ S′. Similarly,
f ? T ∈ S′. From (4.2.11.1) in Proposition 4.2.11 we have that

〈g ? f, h〉 = 〈g, f ? h〉

for all f, g, h ∈ S, which shows, on account of Proposition 5.1.2, that ? :
S′×S → S′ extends the corresponding operation on S, that is ? : S×S → S.
Similarly,

〈f ? g, h〉 = 〈g, h ? f〉

shows that f ? T : S × S′ → S′ is indeed an extension of the corresponding
operation on S. Analogous proofs, with reference to (4.2.11.2) from Propo-
sition 4.2.11, show that T � f and f � T are extensions of the corresponding
operations on S.

Many of the formulas in Chapter 4 involving f, g ∈ S extend to analogous
ones for T ∈ S′ and f ∈ S. The following proposition groups a few such
extended formulas for later use.
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Proposition 5.2.3. If T ∈ S′ and f ∈ S, then

∂j (T ? f) = (∂jT ) ? f + T ? (∂jf) (5.2.3.1)

∂j (f ? T ) = (∂jf) ? T + f ? (∂jT ) (5.2.3.2)

µj (T ? f) = (µjT ) ? f − iT ?
(
∂̂jf
)

(5.2.3.3)

µj (f ? T ) = f ? (µjT ) + i
(
∂̂jf
)
? T (5.2.3.4)

(T ? f)∗ = f∗ ? T ∗ (5.2.3.5)

(f ? T )∗ = T ∗ ? f∗ (5.2.3.6)

(T ∗)∗ = T (5.2.3.7)

Proof. Let T ∈ S′ and f ∈ S be arbitrary. Throughout this proof, we use
the fact that T ?f, f ?T ∈ S′ from Proposition 5.2.2; this allows us to use the
extensions that we have de�ned thus far. In particular, we use the extensions
de�ned in (5.11) and (5.12) without further mention.

We derive (5.2.3.1) and (5.2.3.2) by means of de�nition (5.4) and Propo-
sition 4.2.3:

〈∂j (T ? f) , h〉 = −〈T ? f, ∂jh〉
= −〈T, f ? (∂jh)〉
= −〈T, ∂j (f ? h)− (∂jf) ? h〉
= 〈∂jT, f ? h〉+ 〈T, (∂jf) ? h〉
= 〈(∂jT ) ? f, h〉+ 〈T ? (∂jf) , h〉
= 〈(∂jT ) ? f + T ? (∂jf) , h〉

and

〈∂j (f ? T ) , h〉 = −〈f ? T, ∂jh〉
= −〈T, (∂jh) ? f〉
= −〈T, ∂j (h ? f)− h ? (∂jf)〉
= 〈∂jT, h ? f〉+ 〈T, h ? (∂jf)〉
= 〈(∂jf) ? T + f ? (∂jT ) , h〉

for all h ∈ S, which proves (5.2.3.1) and (5.2.3.2). We �nd (5.2.3.3) and
(5.2.3.4) via de�nition (5.5) and Proposition 4.2.4:

〈µj (T ? f) , h〉 = 〈T ? f, µjh〉
= 〈T, f ? (µjh)〉

=
〈
T, µj (f ? h)− i

(
∂̂jf
)
? h
〉

= 〈µjT, f ? h〉 −
〈
T, i

(
∂̂jf
)
? h
〉

=
〈

(µjT ) ? f − iT ?
(
∂̂jf
)
, h
〉
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and

〈µj (f ? T ) , h〉 = 〈f ? T, µjh〉
= 〈T, (µjh) ? f〉

=
〈
T, µj (h ? f) + ih ?

(
∂̂jf
)〉

=
〈
f ? (µjT ) + i

(
∂̂jf
)
? T, h

〉
for all h ∈ S, which proves (5.2.3.3) and (5.2.3.3). Finally, using de�nition
(5.6) and Proposition 4.2.8, we �nd that

〈(T ? f)∗ , h〉 = 〈T ? f, h∗〉∗

= 〈T, f ? h∗〉∗

= 〈T, (h ? f∗)∗〉∗

= 〈T ∗, h ? f∗〉
= 〈f∗ ? T ∗, h〉

and

〈(f ? T )∗ , h〉 = 〈f ? T, h∗〉∗

= 〈T, h∗ ? f〉∗

= 〈T, (f∗ ? h)∗〉∗

= 〈T ∗, f∗ ? h〉
= 〈T ∗ ? f∗, h〉

and

〈(T ∗)∗ , h〉 = 〈T ∗, h∗〉∗

= 〈T, (h∗)∗〉
= 〈T, h〉

for all h ∈ S, which proves (5.2.3.5), (5.2.3.6) and (5.2.3.7).

In order to interpret the Moyal product between a polynomial and a
function in S, we require an element in S′ to act as identity for the Moyal
product. Let 1 denote the constant function on R2 with value 1, i.e. for all
x ∈ R2

1 (x) = 1 (5.15)

Proposition 5.2.4. 1 is the identity for the ?-product i.e. for all f ∈ S

1 ? f = f ? 1 = f
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Proof. First, note that 1 de�nes a linear functional on S, since for all f ∈ S

1 (f) = 〈1, f〉 =

∫
1 (x) f (x) dx =

∫
f (x) dx

and S ⊂ L1
(
R2
)
, as discussed in Section 4.2. Also,

|1 (f)| ≤
∫
|f (x)| dx

= ‖f‖1
= q00 (f)

for all f ∈ S, where {qαγ}α,γ∈N2
0
is the family of seminorms de�ned in

(4.2.9.2). Hence, 1 is a continuous linear functional on S, i.e. 1 ∈ S′.

By Proposition 5.2.2, 1?f, f ?1 ∈ S′. Using de�nitions (5.11) and (5.12),
together with the cyclicity in Proposition 4.2.10, we see that for all f, h ∈ S

〈1 ? f, h〉 = 〈1, f ? h〉

=

∫
(f ? h) (u) du

= 〈f, h〉

=

∫
(h ? f) (u) du

= 〈1, h ? f〉
= 〈f ? 1, h〉

Thus, by (5.3) and Proposition 5.1.2, it holds for all f ∈ S that

1 ? f = f = f ? 1 (5.2.4.1)

The key fact regarding this identity element is that

(µj1) (x) = xj (5.16)

for all x = (x1, x2) ∈ R2. When performing manipulations with xj , one
should be able to distinguish between xj performing as a function and xj
performing as a coordinate. However, for the sake of clarity, we de�ne the
functions

Xj : R2 → R : (x1, x2) 7→ xj (5.17)

for j = 1, 2.

Proposition 5.2.5. Xj ∈ S′ for j = 1, 2. Furthermore, for all f ∈ S,

Xj ? f = µjf + i∂̂jf and f ? Xj = µjf − i∂̂jf
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Proof. First, note that Xj de�nes a linear functional on S, since for all f ∈ S

Xj (f) = 〈Xj , f〉 =

∫
Xj (x) f (x) dx =

∫
xjf (x) dx

and, as discussed in Section 4.2, (x1, x2) 7→ xjf (x) is in L1
(
R2
)
. Consider

the multi-index η = (η1, η2) = (2− j, j − 1) ∈ N2
0. Then

|Xj (f)| ≤
∫
|xjf (x)| dx

= ‖µηf‖1
= qη,0 (f)

for all f ∈ S. Hence, Xj is a continuous linear functional on S, i.e. Xj ∈ S′.

By Proposition 5.2.2, Xj ?f ∈ S′ and f ?Xj ∈ S′. Using (5.16), de�nition
(5.11), and Propositions 4.2.4, 4.2.10 and 5.2.4, we see that for all f, h ∈ S

〈Xj ? f, h〉 = 〈Xj , f ? h〉

=

∫
xj (f ? h) (x) dx

=

∫
(µj1) (x) (f ? h) (x) dx

=

∫
((µj1) ? f) (x)h (x) dx

= 〈(µj1) ? f, h〉

=
〈
µj (1 ? f) + i1 ? ∂̂jf, h

〉
=
〈
µjf + i∂̂jf, h

〉
Thus, by (5.3) and Proposition 5.1.2, it holds for all f ∈ S that

Xj ? f = µjf + i∂̂jf

Similarly, using de�nition (5.12), we �nd

f ? Xj = µjf − i∂̂jf

The following corollary states the same result as above, only in terms of
explicit coordinates rather than functions.

Corollary 5.2.6. For all f ∈ S and x = (x1, x2) ∈ R2:

(1) x1 ? f = (x1 + i∂2) f
(2) x2 ? f = (x2 − i∂1) f
(3) f ? x1 = (x1 − i∂2) f
(4) f ? x2 = (x2 + i∂1) f
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In order to further extend the Moyal product, we now de�ne, as per [18],
the algebra M as the intersection of two subsets of S′, one comprising the
left multipliers in S and the other the right multipliers in S.

ML :=
{
L ∈ S′ : L ? f ∈ S ∀f ∈ S

}
(5.18)

MR :=
{
R ∈ S′ : f ? R ∈ S ∀f ∈ S

}
(5.19)

M := ML ∩MR (5.20)

It is clear from Propositions 4.2.5, 5.1.2 and 5.2.4 that S ⊂M and 1 ∈M.

Proposition 5.2.7. M is closed under partial di�erentiation and pointwise

multiplication by a coordinate. In particular, all polynomials lie in M.

Proof. Let M ∈ M and f ∈ S be arbitrary. By de�nition (5.20), M ∈ ML

and M ∈MR. Moreover, M ∈ S′ because M ⊂ S′. Therefore, the formulas
in Proposition 5.2.3 hold for M . In particular, from (5.2.3.1), it holds that

(∂jM) ? f = ∂j (M ? f)−M ? (∂jf)

SinceM ∈ML, we know from de�nition (5.18) thatM ?f ∈ S for all f ∈ S.
Furthermore, we know that ∂j maps S into S. Accordingly, with reference
to the equation above, both terms on the right are in S; thus (∂jM)? f ∈ S.
This holds for arbitrary f ∈ S; therefore, we may deduce, from de�nition
(5.18), that

∂jM ∈ML (5.2.7.1)

Once again appealing to Proposition 5.2.3, speci�cally to (5.2.3.2), we have

f ? (∂jM) = ∂j (f ? M)− (∂jf) ? M

Since M ∈ MR, de�nition (5.19) states that f ? M ∈ S for all f ∈ S. As
before, both terms on the right are in S. Therefore, f ? (∂jM) ∈ S, which
in turn implies that

∂jM ∈MR (5.2.7.2)

as per de�nition (5.19). Together, (5.2.7.1) and (5.2.7.2) satisfy de�nition
(5.20); we conclude that

∂jM ∈M

This holds for arbitrary M ∈ M; hence, M is closed under partial di�eren-
tiation.

We proceed to the second part of the proof by invoking formulas (5.2.3.3)
and (5.2.3.4), which give

(µjM) ? f = µj (M ? f) + iM ?
(
∂̂jf
)
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and
f ? (µjM) = µj (f ? M)− i

(
∂̂jf
)
? M

respectively. Employing the same reasoning as before, we infer that µjM ∈
ML and µjM ∈MR. De�nition (5.20) implies then that

µjM ∈M

Since this holds for arbitrary M ∈ M, we conclude that M is closed under
pointwise multiplication by a coordinate. We apply this result to the spe-
ci�c case 1 ∈ M. It follows from (5.16) that (µj1) (x) = xj ∈ M. When
considering xj as a function via (5.17), i.e. Xj (x) = xj , it becomes clear
that repeated pointwise multiplication by a coordinate generates higher-
dimensional polynomials that remain in M. Hence, we may induce that
all polynomials lie in M.

We now extend the Moyal product to the case where one element is in
M and one is in S′. Since M ⊂ S′, this extension includes products between
elements inM. This will allow us, in particular, to handle the Moyal product
between polynomials. For R ∈MR, L ∈ML, and T ∈ S′, de�ne T ? L by

〈T ? L, h〉 := 〈T, L ? h〉 (5.21)

and de�ne R ? T by
〈R ? T, h〉 := 〈T, h ? R〉 (5.22)

for all h ∈ S.

Proposition 5.2.8. The products T ? L and R ? T map into S′ and extend

the corresponding operations on S′×S and S ×S′ to S′×ML and MR×S′
respectively. In particular, they de�ne the Moyal product between elements in

M. Moreover, M becomes an associative ∗-algebra under the Moyal product.

Proof. Let R ∈MR, L ∈ML, and T ∈ S′ be arbitrary. Then for all h ∈ S

(T ? L) (h) = 〈T ? L, h〉
= 〈T, L ? h〉
= T (L ? h)

Since L ? h ∈ S by de�nition (5.18), and T is a continuous linear functional
on S, it follows that T ? L is a continuous linear functional on S and thus
T ? L ∈ S′. Similarly, R ? T ∈ S′. By comparing de�nitions (5.21) and
(5.22) to de�nitions (5.11) and (5.12) respectively, we see that the former
are indeed extensions of the corresponding operations on S′ × S and S × S′
respectively.
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Considering that M ⊂ S′, M ⊂ ML and M ⊂ MR, de�nitions (5.21)
and (5.22) de�ne, in particular, the Moyal product between two elements in
M. Explicitly, if M,N ∈M, then

〈M ?N, h〉 := 〈M,N ? h〉 (5.2.8.1)

and
〈N ?M,h〉 := 〈M,h ? N〉 (5.2.8.2)

for all h ∈ S.

Now we prove that M is an associative ∗-algebra when equipped with
the Moyal product. Let M,N,P ∈ M and f, g, h ∈ S be arbitrary. First,
using the associativity of ? on S from Proposition 4.2.7, we note that

〈(M ? f) ? g, h〉 = 〈M ? f, g ? h〉
= 〈M,f ? (g ? h)〉
= 〈M, (f ? g) ? h〉
= 〈M ? (f ? g) , h〉 (5.2.8.3)

Then, from (5.2.8.1) and (5.2.8.3), we have

〈(M ?N) ? g, h〉 = 〈M ?N, g ? h〉
= 〈M,N ? (g ? h)〉
= 〈M, (N ? g) ? h〉
= 〈M ? (N ? g) , h〉 (5.2.8.4)

Since N ?g ∈ S, it follows from de�nition (5.20) thatM ? (N ? g) ∈ S. Then
(5.2.8.4) implies that (M ?N) ? g ∈ S, which gives

M ?N ∈ML (5.2.8.5)

by de�nition (5.18). Similarly, we �nd that

〈g ? (M ?N) , h〉 = 〈M ?N, h ? g〉
= 〈M,N ? (h ? g)〉
= 〈M, (N ? h) ? g〉
= 〈g ? M,N ? h〉
= 〈(g ? M) ? N, h〉 (5.2.8.6)

Since g ?M ∈ S, it follows from de�nition (5.20) that (g ? M)?N ∈ S. Then
(5.2.8.6) implies that g ? (M ?N) ∈ S, which gives

M ?N ∈MR (5.2.8.7)
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by de�nition (5.19). Together, (5.2.8.5) and (5.2.8.7) satisfy de�nition (5.20)
so that

M ?N ∈M

for all M,N ∈M. Associativity follows from (5.2.8.1) and (5.2.8.4):

〈(M ?N) ? P, h〉 = 〈M ?N,P ? h〉
= 〈M,N ? (P ? h)〉
= 〈M, (N ? P ) ? h〉
= 〈M ? (N ? P ) , h〉

Regarding the involution, note that (5.2.3.7) from Proposition 5.2.3 holds
for M ∈ M, because M ⊂ S′. Furthermore, using (5.2.3.6), together with
de�nitions (5.6), (5.2.8.1) and (5.2.8.2), we see that

〈(M ?N)∗ , h〉 = 〈M ?N, h∗〉∗

= 〈M,N ? h∗〉∗

= 〈M, (h ? N∗)∗〉∗

= 〈M∗, h ? N∗〉
= 〈N∗ ? M∗, h〉

Hence, M is an associative ∗-algebra under the Moyal product.

Having su�ciently extended the Moyal product, we conclude this chapter
by proving a result analogous to the tracial property in Proposition 4.2.10.

Proposition 5.2.9. For all M ∈M and f ∈ S,∫
(M ? f) (u) du =

∫
(f ? M) (u) du

Proof. Let M ∈M and f ∈ S be arbitrary. By de�nition (5.20), M ? f ∈ S
and f ? M ∈ S; therefore, remembering that S ⊂ L1

(
R2
)
, the proposed

integrals make sense. Since 1 ∈ M and M ∈ M, we may use de�nitions
(5.2.8.1) and (5.2.8.2), together with Proposition 5.2.4, to �nd∫

(M ? f) (u) du = 〈1,M ? f〉

= 〈1 ? M, f〉
= 〈M,f ? 1〉
= 〈M, 1 ? f〉
= 〈M ? 1, f〉
= 〈1, f ? M〉

=

∫
(f ? M) (u) du
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Chapter 6

A family of functions in S as a

basis for L2
(
R2
)

In this chapter, we construct an orthonormal basis (total orthonormal set) for
L2
(
R2
)
as a family of functions in S. This will enable us to expand functions

in S in terms of this basis; these expansions will allow us to represent S as
a sequence space in the next chapter, where a sequence will correspond to a
function in S via the coe�cients in its basis expansion. We de�ne the family
of functions and all its ingredients in Section 6.1. In Sections 6.2 and 6.3, we
examine in detail the constituents of the family, and their interactions, on our
way towards proving orthonormality. Section 6.4 introduces the orthogonal
polynomials that are used to prove completeness in Section 6.5.

6.1 De�ning the family of functions {fmn}m,n∈N0

Let z, z ∈M be de�ned by

z :=
1√
2

(x1 + ix2) and z :=
1√
2

(x1 − ix2) (6.1)

where (x1, x2) ∈ R2. Also, de�ne corresponding derivatives

∂ :=
1√
2

(∂1 − i∂2) and ∂ :=
1√
2

(∂1 + i∂2) (6.2)

Furthermore, let G ∈M be given by

G := zz =
1

2

(
x2

1 + x2
2

)
=

1

2
x · x (6.3)

and de�ne a Gaussian function

f00 := 2e−G (6.4)
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We introduce the following notation for integer ?-powers of z:

z?n := z ? z ? · · · ? z (n times) (6.5)

for n ∈ N0, where z
?0 = 1. Finally, de�ne the family of functions {fmn}m,n∈N0

such that
fmn :=

(
2m+nm!n!

)− 1
2 z?m ? f00 ? z

?n (6.6)

for all m,n ∈ N0.

Proposition 6.1.1. {fmn}m,n∈N0
⊂ S ⊂ L2

(
R2
)
.

Proof. Since z, z ∈M, z?n ∈M and z?m ∈M for all m,n ∈ N0 by Proposi-
tion 5.2.8. Furthermore, since f00 in (6.4) is de�ned in terms of an exponen-
tial function, it is in�nitely di�erentiable and all of its derivates are rapidly
decreasing in the Schwartz space sense. Hence, f00 ∈ S. It follows from
de�nition (5.20) for M that z?m ? f00 ? z

?n ∈ S for all m,n ∈ N0. In (6.6),
we have then that fmn ∈ S for all m,n ∈ N0 and thus {fmn}m,n∈N0

⊂ S.

The L2
(
R2
)
inclusion was proved in Proposition 4.2.1.

6.2 Properties of f00

In order to prove orthonormality of the family {fmn}m,n∈N0
, we require

enough control over the functions fmn to handle their interactions with one
another. It seems �tting to start our investigation with an analysis of their
constituents. First, we consider f00 and work towards proving its idem-
potence. The upcoming theorem will help us to evaluate some recurring
integrals along the way. Note that we continue to normalise as per Section
4.2.

Theorem 6.2.1. Let t denote a variable in R. Then for c ∈ C and p > 0,

∞∫
−∞

e−p(t+c)
2

dt =

√
1

2p

Proof. For an arbitrary complex number c = a + ib, where a, b ∈ R, let
T ∈ R such that T > |a|. Let Γc (T ) denote the closed rectangular contour
in the complex plane that starts at the point (−T, 0) on the Real axis and
has vertices (T, 0), (T, ib), and (−T, ib). Note that we associate the point
(x, y) in the complex plane with the complex number z = x+ iy.
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(−T, 0)

y = Im(z)

x = Re(z)
(T, 0)

(T, ib)(−T, ib)

Let
f (z) := e−pz

2

where p > 0 is arbitrary. If we put z = x + iy and split f (z) into its
real and imaginary parts, then it is a simple calculation to show that these
two parts satisfy the Cauchy-Riemann equations. Moreover, both parts are
continuously di�erentiable in the sense of real-valued functions; therefore,
f (z) is an entire function (analytic in C). Speci�cally, f (z) is analytic inside
the region bounded by Γc (T ). By Cauchy's integral theorem, the contour
integral of f (z) along Γc (T ) is zero:∮

Γc(T )

f (z) dz = 0

We can brake this contour integral into four line integrals - each along one
of the straight lines that form Γc (T ):∮

Γc(T )

f (z) dz =

T∫
−T

f (x) dx+

b∫
0

f (T + iy) (idy) +

−T∫
T

f (x+ ib) dx+

0∫
b

f (−T + iy) (idy)

= 0

In the limit T →∞, since e−p(t+c)
2

→ 0 as |t| → ∞, the second and fourth
terms above tend to zero. Furthermore, it is well known that the �rst term

tends to
√

1
2p as T →∞ (it tends to

√
π
p if one uses the ordinary Lebesgue

measure). Since the total contour integral is zero, we are left with the third
term as negative the �rst term. So, in the limit T →∞, after reversing the
integration limits, we have

∞∫
−∞

f (x+ ib) dx =

√
1

2p

Substituting x = t+ a = t+ c− ib, we arrive at the required result
∞∫
−∞

f (t+ c) dt =

√
1

2p
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Corollary 6.2.2. Let u denote a variable in R2. Then∫
e−u·udu = 1

2

∫
e−

1
2
u·udu = 1

This result is found by evaluating the dot product u·u, then rewriting the
integral as separate integrals over the components of u, and �nally applying
Theorem 6.2.1 to each integral separately. Now we are armed to evaluate
f00.

Proposition 6.2.3. f00 is a unit vector in L2
(
R2
)
.

Proof. Note that f∗00 = f00, since the exponent is real-valued, as per (6.4).
In the L2-norm, we have

‖f00‖22 = (f00|f00)

=
1

2

∫
f∗00f00du

= 2

∫
e−u·udu

= 2

(
1

2

)
= 1

where we have employed Corollary 6.2.2 to solve the integral. Thus, f00 is a
unit vector in L2

(
R2
)
.

Proposition 6.2.4. f00 is a �xed point for the Fourier transform F; that is,
Ff00 = f00.

Proof. Invoking de�nition (4.2.15) for F, and evaluating the integral via The-
orem 6.2.1, we �nd that

Ff00 (u) =

∫
f00 (t) e−it·udt

=

∫
2e−

1
2
t·te−it·udt

=

∫
2e−

1
2

(t·t+2it·u−u·u)e−
1
2
u·udt

= 2e−
1
2
u·u
∫
e−

1
2

(t+iu)2dt

= f00 (u)
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Proposition 6.2.5. f00 is an idempotent in S for the ?-product; that is,

f00 ? f00 = f00.

Proof. It will be convenient to prove that f00 is an idempotent for the twisted
convolution � before using Fourier transforms to carry the result over to the
?-product. So, de�nition (4.2.11) for � gives

(f00 � f00) (u) =

∫
f00 (u− t) f00 (t) e−iu·Ωtdt

=

∫
2e−

1
2

(u−t)·(u−t)2e−
1
2
t·te−iu·Ωtdt

= 4

∫
e−(t·t−u·t+iu·Ωt)e−

1
2
u·udt

= 4e−
1
2
u·u
∫
e−(t21+t22−u1t1−u2t2+iu1t2−iu2t1)dt

= 2f00 (u)

∫
e−t

2
1+t1(u1+iu2)dt1

∫
e−t

2
2+t2(u2−iu1)dt2

Now, let c1 = −1
2 (u1 + iu2) and c2 = −1

2 (u2 − iu1) so that c1, c2 ∈ C.
If we substitute these in the expression above and complete the squares, the
integrands have the form necessary to implement Theorem 6.2.1. We solve,
noting that c2

1 + c2
2 = 0, as follows:

(f00 � f00) (u) = 2f00 (u)

∫
e−t

2
1−2t1c1dt1

∫
e−t

2
2−2t2c2dt2

= 2f00 (u)

∫
e−(t1+c1)2ec

2
1dt1

∫
e−(t2+c2)2ec

2
2dt2

= 2f00 (u) ec
2
1+c22

∫
e−(t1+c1)2dt1

∫
e−(t2+c2)2dt2

= 2f00 (u)
√

1/2
√

1/2

= f00 (u)

Hence, f00 � f00 = f00, which means f00 is an idempotent for the twisted
convolution �. Applying (4.2.6.4) from Proposition 4.2.6 to f00 and appealing
to Proposition 6.2.4, the idempotence of f00 subject to � leads to

f00 ? f00 = Ff00 ? Ff00

= F (f00 � f00)

= Ff00

= f00

which proves that f00 is an idempotent in S for the ?-product.
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6.3 Orthonormality of {fmn}m,n∈N0

Now that we have a grip on the Gaussian function f00, we want to investigate
the ?-product between f00 and ?-powers of z, z as they appear in (6.6). This
will prepare us to handle the interactions between di�erent members of the
family {fmn}m,n∈N0

on our way towards proving orthonormality. Having
said that, we start with the following:

Proposition 6.3.1. If f ∈ S, then
(1) z ? f = zf + ∂f
(2) z ? f = zf − ∂f
(3) f ? z = zf − ∂f
(4) f ? z = zf + ∂f

Proof. Using Corollary 5.2.6, we �nd (1) by

z ? f =
1√
2
x1 ? f +

i√
2
x2 ? f

=
1√
2

(x1 + i∂2) f +
i√
2

(x2 − i∂1) f

=
1√
2

(x1 + ix2) f +
1√
2

(∂1 + i∂2) f

= zf + ∂f

and similarly for (2)-(4).

Proposition 6.3.2. The following equalities hold in M:

(1) z ? z = G− 1
(2) z ? z = G+ 1
(3) z ? z − z ? z = 2

Proof. Since z, z ∈M, it follows from Proposition 5.2.8 that z ? z ∈M. We
use Propositions 5.2.9 and 6.3.1, and the associativity in (5.2.8.4), to �nd
that

〈z ? z, f〉 =

∫ (
(z ? z) ? f

)
(x) dx

=

∫ (
z ? (z ? f)

)
(x) dx

=

∫ (
z ?
(
zf + ∂f

) )
(x) dx

=

∫ (
zzf + z∂f

)
(x) dx

= 〈zz, f〉 −
∫ ( (

∂z
)
f
)

(x) dx

= 〈zz − 1, f〉
= 〈G− 1, f〉

69



for all f ∈ S, where ∂z = 1. Thus, we have proved (1). A similar proof gives
(2). Together, (1) and (2) imply (3).

Note that (3) resembles the canonical commutation relation for the cre-
ation and annihilation operators, where we have identi�ed Planck's constant
with θ = 2 in Section 4.2.

Proposition 6.3.3. For all m,n ∈ N, it holds that

f00 ? z
?n ? z?m ? f00 = δmn2nn!f00

Proof. We will frequently use ∂f00 = −zf00 and ∂f00 = −zf00. The �rst
step is to prove that

z?m ? f00 = 2mzmf00 ∀m ∈ N (6.3.3.1)

We do so via induction. Using Proposition 6.3.1, we obtain a basis for the
induction as

z ? f00 = zf00 − ∂f00

= zf00 + zf00

= 2zf00

Suppose, as inductive hypothesis, that z?m ? f00 = 2mzmf00 for some �xed
m ∈ N. The inductive step follows:

z?m+1 ? f00 = z ? z?m ? f00

= z ? (2mzmf00)

= z (2mzmf00)− ∂ (2mzmf00)

= 2mzm+1f00 + 2mzm+1f00

= 2m+1zm+1f00

Since this holds for arbitrarym ∈ N, induction proves (6.3.3.1) for allm ∈ N.

Now consider the expression f00 ? z
?n ? z?m ? f00 in the di�erent cases.

Case 1: Let n > m. Using (6.3.3.1) and Proposition 6.3.1, we �nd

z?n ? z?m ? f00 = z?n ? (2mzmf00)

= zn (2mzmf00) + ∂
n

(2mzmf00)

= zn (2mzmf00) + 2m
(
∂
n
zm
)
f00 + 2mzm

(
∂
n
f00

)
= zn (2mzmf00) + 2m

(
∂
n
zm
)
f00 − 2mzm (znf00)

= 2m
(
∂
n
zm
)
f00

= 0
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which implies
f00 ? z

?n ? z?m ? f00 = 0 for n > m (6.3.3.2)

Case 2: Let n < m. Using (6.3.3.2) and Proposition 4.2.8, we �nd

f00 ? z
?n ? z?m ? f00 = (f00 ? z

?m ? z?n ? f00)∗ = 0 for n < m (6.3.3.3)

Case 3: Let n = m. Using (6.3.3.1) and Proposition 6.3.1, together with the
idempotence of f00 in Proposition 6.2.5, we �nd

f00 ? z
?n ? z?n ? f00 = f00 ? z

?n ? (2nznf00)

= f00 ?
(
zn (2nznf00) + ∂

n
(2nznf00)

)
= f00 ?

(
zn2nznf00 + 2n

(
∂
n
zn
)
f00 + 2nzn

(
∂
n
f00

))
= f00 ?

(
2nznznf00 + 2n

(
∂
n
zn
)
f00 − 2nznznf00

)
= f00 ? 2n

(
∂
n
zn
)
f00

= 2nn!f00 ? f00

= 2nn!f00 for n = m (6.3.3.4)

Combining the three cases in (6.3.3.2), (6.3.3.3) and (6.3.3.4) gives the de-
sired result, namely

f00 ? z
?n ? z?m ? f00 = δmn2nn!f00 for m,n ∈ N

We now have su�cient ammunition to tackle the interactions between
di�erent members of the family {fmn}m,n∈N0

. We arrive at the orthonor-

mality of the family {fmn}m,n∈N0
in L2

(
R2
)
via two properties, interesting

in and of themselves, that reveal an analogy between {fmn}m,n∈N0
and a

certain class of matrices.

Proposition 6.3.4. Let k, `,m, n ∈ N0. Then fmn ? fk` = δnkfm`.

Proof. We use Propositions 6.3.3 and 4.2.7 to �nd

fmn ? fk` =
((

2m+nm!n!
)− 1

2 z?m ? f00 ? z
?n
)
?

((
2k+`k!`!

)− 1
2
z?k ? f00 ? z

?`

)
=
(

2m+n+k+`m!n!k!`!
)− 1

2
z?m ?

(
f00 ? z

?n ? z?k ? f00

)
? z?`

=
(

2m+n+k+`m!n!k!`!
)− 1

2
z?m ?

(
δnk (2nn!)

1
2

(
2kk!

) 1
2
f00

)
? z?`

= δnk

(
2m+`m!`!

)− 1
2
z?m ? f00 ? z

?`

= δnkfm`
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Proposition 6.3.5. Let m,n ∈ N0. Then f
∗
mn = fnm.

Proof. It follows from de�nition (5.6) and Propositions 5.2.9 and 6.3.1 that

〈z∗, f〉 = 〈z, f∗〉∗

=

(∫
(z ? f∗) (x) dx

)∗
=

(∫
zf dx

)∗
=

∫
zf dx

=

∫
(z ? f) (x) dx

= 〈z, f〉

for all f ∈ S. Hence, z∗ = z. Likewise, we �nd that z∗ = z. Now, by
Proposition 5.2.8,

f∗mn =
(
2m+nm!n!

)− 1
2 (z?m ? f00 ? z

?n)∗

=
(
2n+mn!m!

)− 1
2 z?n ? f00 ? z

?m

= fnm

Proposition 6.3.6. Let k, `,m, n ∈ N0. Then (fmn|fk`) = δmkδn`.

Proof. We use here the results from Propositions 4.2.10, 5.2.9, 6.2.5, 6.3.3,
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6.3.4, 6.3.5, and de�nition (6.6):

2 (fmn|fk`) = 〈f∗mn, fk`〉
= 〈fnm, fk`〉

=

∫
fnm (u) fk` (u) du

=

∫
(fnm ? fk`) (u) du

= δmk

∫
fn` (u) du

= δmk

(
2n+`n!`!

)− 1
2

∫ (
z?n ? f00 ? z

?`
)

(u) du

= δmk

(
2n+`n!`!

)− 1
2

∫ (
z?n ? f00 ? f00 ? z

?`
)

(u) du

= δmk

(
2n+`n!`!

)− 1
2

∫ (
f00 ? z

?` ? z?n ? f00

)
(u) du

= δmkδn`

∫
f00 (u) du

= 2δmkδn`

where the last step follows from de�nition (6.4) and Corollary 6.2.2.

Proposition 6.3.4 shows that when one takes the ?-product between el-
ements of {fmn}m,n∈N0

, the second index of the �rst element has to equal
the �rst index of the second element in order to return a nonzero function in
{fmn}m,n∈N0

. This immediately brings matrix multiplication to mind, where
the number of columns in the �rst matrix has to equal the number of rows
in the second matrix. Proposition 6.3.5 shows that complex conjugation of
elements in {fmn}m,n∈N0

is similar to transposition of matrices. In fact, in
the following chapter we will see that this family allows us to fashion a cor-
respondence between S and a certain space of in�nite-dimensional matrices.
Finally, Proposition 6.3.6 proves orthonormality of the family {fmn}m,n∈N0

.

6.4 Orthogonal polynomials

Now we proceed to prove completeness of the family {fmn}m,n∈N0
. Our

method is to show that all the Hermite functions on R2 can be expressed as
linear combinations of elements of {fmn}m,n∈N0

. Since the set of all Hermite

functions {hk`}k,`∈N0
is complete in L2

(
R2
)
, it will follow that {fmn}m,n∈N0

is complete in L2
(
R2
)
. To this end, we present here an interlude on or-

thogonal polynomials: We state the de�nitions of certain classes of such
polynomials and describe their relationships with one another.
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The Jacobi, Laguerre and Hermite polynomials are examples of families
of classical orthogonal polynomials. These families arise from the investiga-
tion of certain linear di�erential equations of the Sturm-Liouville type. After
multiplication by a weight function, the orthogonal functions thus obtained
are the eigenfunctions of a Sturm-Liouville problem, which have discrete
spectra. Since the space of quadratically integrable functions is separable,
these orthogonal families consist of at most a denumerable in�nity of ele-
ments. The elements of such an orthogonal family can be expressed by a
generalised Rodrigues' formula. For each family of orthogonal polynomi-
als, we give the Rodrigues' formula and the equivalent explicit expression as
found in [15, Chapter X].

The Jacobi polynomials are de�ned, for α > −1, β > −1, by

P (α,β)
n (x1) =

(−1)n

2nn!
(1− x1)−α (1 + x1)−β

dn

dxn1

[
(1− x1)α+n (1 + x1)β+n

]
= 2−n

n∑
m=0

(
n+ α

m

)(
n+ β

n−m

)
(x1 − 1)n−m (x1 + 1)m (6.7)

for all x1 ∈ R and n ∈ N0, where P
(α,β)
n (−x1) = (−1)n P

(β,α)
n (x1). The

Laguerre polynomials are de�ned, for α > −1, by

Lαn (x1) =
ex1

n!
x−α1

dn

dxn1

(
e−x1xn+α

1

)
=

n∑
m=0

(
n+ α

n−m

)
(−x1)m

m!
(6.8)

for all x1 ∈ R and n ∈ N0, where L
α
0 (x1) = 1 and Lαn (0) =

(
n+α
n

)
. The

Hermite polynomials are de�ned by

Hn (x1) = (−1)n ex
2
1
dn

dxn1
e−x

2
1

= n!

[n/2]∑
m=0

(−1)m (2x1)n−2m

m! (n− 2m)!
(6.9)

for all x1 ∈ R and n ∈ N0, where

[n/2] =

{
n/2 if n is even

(n− 1) /2 if n is odd

and H0 (x1) = 1, H2m (0) = (−1)m(2m!)
m! , and H2m+1 (0) = 0. We also have

that
Hn (−x1) = (−1)nHn (x1)
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and
H ′n (x1) = 2nHn−1 (x1) = 2x1Hn (x1)−Hn+1 (x1) (6.10)

The Hermite polynomials are connected to the Laguerre polynomials via

n∑
k=0

(
n

k

)
H2k (x1)H2n−2k (x2) = (−1)n n!L0

n

(
x2

1 + x2
2

)
(6.11)

The Hermite functions on R are de�ned in terms of the Hermite polyno-
mials, as per [41, Chapter 4], as the functions in L2 (R) given by

hk (x1) :=
(

2k−1k!
)− 1

2
Hk (x1) e−

x21
2 (6.12)

for all x1 ∈ R and k ∈ N0. Note that this de�nition di�ers only from that
in [41, Chapter 4] inasmuch as we accommodate the normalisation choices
made in Section 4.2. As shown in [41, Chapter 4], the family {hk : k ∈ N0} is
an orthonormal basis for L2 (R). Because the Hermite functions are orthog-
onal polynomials, the k'th one being exactly of degree k, their span contains
all polynomials.

Now, note that L2 (R) ⊗ L2 (R) is isomorphic to L2
(
R2
)

= L2 (R× R)
via the identi�cation of (f ⊗ g) (x) ∈ L2 (R) ⊗ L2 (R) with the function
f (x1) g (x2) ∈ L2

(
R2
)
for all f, g ∈ L2 (R), where x1, x2 ∈ R and x =

(x1, x2) ∈ R2. This allows us to construct an orthonormal basis for L2
(
R2
)

from the basis for L2 (R). The Hermite functions on R2 are de�ned as the
functions in L2

(
R2
)
given by

(hk ⊗ h`) (x) = hk (x1)h` (x2)

=
(

2k+`−2k!`!
)−1/2

Hk (x1)H` (x2) e−1/2(x21+x22) (6.13)

for all x = (x1, x2) ∈ R2 and k, ` ∈ N0. The family {hk ⊗ h` : k, ` ∈ N0} is
an orthonormal basis for L2

(
R2
)
.

In [42]-[44], Wünsche introduces the Laguerre two-dimensional polyno-
mials as

Lm,n (z1, z2) = exp

(
− ∂2

∂z1∂z2

)
zm1 z

n
2

=

{m,n}∑
j=0

(−1)jm!n!

j! (m− j)! (n− j)!
zm−j1 zn−j2 (6.14)

for two independent complex variables z1 and z2, where Lm,n (0, 0) = (−1)n n!δmn
and L0,0 (z1, z2) = 1. The Laguerre two-dimensional polynomials are related
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to the usual Laguerre polynomials in (6.8) by

Lm,n (z1, z2) = (−1)n n!zm−n1 Lm−nn (z1z2)

= (−1)mm!zn−m2 Ln−mm (z1z2) (6.15)

If the second variable is complex conjugated to the �rst variable, that is
z2 = z∗1 , (6.15) can be simpli�ed by transferring to polar coordinates. If we
write z = x1 + ix2 and z∗ = x1 − ix2 in polar coordinates, we have z = reiϕ

and z∗ = re−iϕ such that r2 = zz∗ = x2
1 + x2

2. Then

Lm,n (x1 + ix2, x1 − ix2) = (−1)n n!rm−nLm−nn

(
r2
)
ei(m−n)ϕ

= (−1)n n!rm−nLm−nn

(
r2
)
e−i(m−n)ϕ (6.16)

As shown in [45], the Laguerre two-dimensional polynomials are related to
products of Hermite polynomials by

Lm,n (x1 + ix2, x1 − ix2) = (−1)n
m+n∑
j=0

(
i

2

)m+n−j
P

(m−j,n−j)
j (0)Hj (x1)Hm+n−j (x2)

(6.17)
where the coe�cients are given by Jacobi polynomials evaluated at x1 = 0.
Furthermore, (6.17) can be inverted so that

Hm (x1)Hn (x2) = in
m+n∑
j=0

2jP
(m−j,n−j)
j (0)Lj,m+n−j (x1 + ix2, x1 − ix2)

= in
m+n∑
j=0

(−2)j P
(m−j,n−j)
j (0) j!rm+n−2jLm+n−2j

j

(
r2
)
ei(2j−m−n)ϕ

(6.18)

This concludes our orthogonal interlude.

6.5 Completeness of {fmn}m,n∈N0

We now proceed as follows: We de�ne an operator B on S and show that to
each eigenvalue corresponds both functions in {hk ⊗ h`}k,`∈N0

and functions
in {fmn}m,n∈N0

. In other words, the eigenspace of each eigenvalue con-
tains functions from both these families. Using the fact that {hk ⊗ h`}k,`∈N0

is an orthonormal basis for L2
(
R2
)
, we will express each eigenfunction

fmn in terms of the basis elements, speci�cally those in the correspond-
ing eigenspace. Invertibility of the coe�cients in these expansions will imply
that each hk ⊗ h` can be expressed in terms of elements of {fmn}m,n∈N0

.
This will be su�cient to prove completeness of {fmn}m,n∈N0

.
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De�ne the Hermite operator B : S → L2
(
R2
)
by

B := |x|2 −∆ =
(
x2

1 + x2
2

)
−
(
∂2

1 + ∂2
2

)
(6.19)

Using de�nition (6.13), it can readily be shown that the Hermite functions
are contained in S; hence, both {hk ⊗ h`}k,`∈N0

and {fmn}m,n∈N0
are in the

domain of B. First, we consider the action of B on the basis {hk ⊗ h`}k,`∈N0
.

This will give us the eigenvalue corresponding to each eigenfunction in the
basis.

Proposition 6.5.1. B (hk ⊗ h`) = 2 (k + `+ 1) (hk ⊗ h`) for all k, ` ∈ N0.

Proof. For j = 1, 2, we have

(xj − ∂j) (xj + ∂j)hk (xj) = (xj − ∂j) (xjhk (xj) + ∂jhk (xj))

= x2
jhk (xj) + xj∂jhk (xj)− ∂jxjhk (xj)− ∂2

j hk (xj)

=
(
x2
j − ∂2

j

)
hk (xj)− hk (xj)

which gives(
x2
j − ∂2

j

)
hk (xj) = (xj − ∂j) (xj + ∂j)hk (xj) + hk (xj) (6.5.1.1)

Using (6.10), together with de�nition (6.12), we �nd that for all k ∈ N0

(xj + ∂j)hk (xj) =
(

2k−1k!
)− 1

2

[
xjHk (xj) e

−
x2j
2 + (∂jHk (xj)) e

−
x2j
2 +Hk (xj) ∂je

−
x2j
2

]
=
(

2k−1k!
)− 1

2
2kHk−1 (xj) e

−
x2j
2

=
√

2k
(

2(k−1)−1 (k − 1)!
)− 1

2
Hk−1 (xj) e

−
x2j
2

=
√

2k hk−1 (xj) (6.5.1.2)

Similarly, we �nd

(xj − ∂j)hk (xj) =
(

2k−1k!
)− 1

2

[
xjHk (xj) e

−
x2j
2 − (∂jHk (xj)) e

−
x2j
2 −Hk (xj) ∂je

−
x2j
2

]
=
(

2k−1k!
)− 1

2
Hk+1 (xj) e

−
x2j
2

=
√

2 (k + 1)
(

2(k+1)−1 (k + 1)!
)− 1

2
Hk+1 (xj) e

−
x2j
2

=
√

2 (k + 1) hk+1 (xj) (6.5.1.3)

By applying (6.5.1.2) and (6.5.1.3) to (6.5.1.1), we obtain(
x2
j − ∂2

j

)
hk (xj) = (xj − ∂j) (xj + ∂j)hk (xj) + hk (xj)

= (xj − ∂j)
√

2k hk−1 (xj) + hk (xj)

=
√

2k
√

2 (k − 1 + 1) hk (xj) + hk (xj)

= (2k + 1)hk (xj) (6.5.1.4)
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for all k ∈ N0 and j = 1, 2. The required result follows by using (6.5.1.4),
together with de�nitions (6.19) and (6.13): For all k, ` ∈ N0

B (hk ⊗ h`) =
(
|x|2 −∆

)
hk (x1)h` (x2)

=
[(
x2

1 + x2
2

)
−
(
∂2

1 + ∂2
2

)]
hk (x1)h` (x2)

=
(
x2

1 − ∂2
1

)
hk (x1)h` (x2) +

(
x2

2 − ∂2
2

)
hk (x1)h` (x2)

= (2k + 1)hk (x1)h` (x2) + (2`+ 1)hk (x1)h` (x2)

= 2 (k + `+ 1) (hk ⊗ h`)

Next, we consider the action of B on elements of the family {fmn}m,n∈N0

via a series of propositions.

Proposition 6.5.2. Bf = G ? f + f ? G for all f ∈ S.

Proof. It follows from Propositions 6.3.1 and 6.3.2 that

Bf = |x|2f −∆f

= 2zzf − 2∂∂f

=
(
zz + ∂z − z∂ − ∂∂

)
f +

(
zz − ∂z + z∂ − ∂∂

)
f

= z ? (zf − ∂f) + (zf + ∂f) ? z

= z ? z ? f + f ? z ? z

= (G+ 1) ? f + f ? (G− 1)

= G ? f + f ? G

for all f ∈ S.

Proposition 6.5.3. If m,n ∈ N0, then

(1) z ? fmn =
√

2mfm−1,n

(2) z ? fmn =
√

2m+ 2fm+1,n

(3) fmn ? z =
√

2n+ 2fm,n+1

(4) fmn ? z =
√

2nfm,n−1

with fmn = 0 if m or n is −1.

Proof. Using de�nition (6.6), we �nd (2) by

z ? fmn =
(
2m+nm!n!

)− 1
2 z ? z?m ? f00 ? z

?n

=
√

2m+ 2
(
2m+1+n (m+ 1)!n!

)− 1
2 z?m+1 ? f00 ? z

?n

=
√

2m+ 2fm+1,n
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Using Propositions 4.2.8 and 6.3.5, then applying (2), we �nd (3):

fmn ? z = (z ? fnm)∗

=
(√

2n+ 2fn+1,m

)∗
=
√

2n+ 2fm,n+1

We �nd (1) by applying Proposition 6.3.1 and equation (6.3.3.1):

z ? fmn =
(
2m+nm!n!

)− 1
2 z ? z?m ? f00 ? z

?n

=
(
2m+nm!n!

)− 1
2 z ? (2mzmf00) ? z?n

=
(
2m+nm!n!

)− 1
2
[
z (2mzmf00) + ∂ (2mzmf00)

]
? z?n

=
(
2m+nm!n!

)− 1
2
[
2mzzmf00 + 2m

(
∂zm

)
f00 + 2mzm

(
∂f00

)]
? z?n

=
(
2m+nm!n!

)− 1
2 2mmzm−1f00 ? z

?n

= 2m
(
2m+nm!n!

)− 1
2 2m−1zm−1f00 ? z

?n

=
√

2m
(
2m−1+n (m− 1)!n!

)− 1
2 z?m−1 ? f00 ? z

?n

=
√

2mfm−1,n

Then (4) follows:

fmn ? z = (z ? fnm)∗

=
(√

2nfn−1,m

)∗
=
√

2nfm,n−1

We include here a result showing the action of the derivatives on the
elements of {fmn}m,n∈N0

; however, it will only be used in later chapters.

Proposition 6.5.4. If m,n ∈ N0, then

(1) ∂fmn =
√
n/2fm,n−1 −

√
1/2 (m+ 1)fm+1,n

(2) ∂fmn =
√
m/2fm−1,n −

√
1/2 (n+ 1)fm,n+1
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Proof. We �nd (1) as follows:

∂fmn =
(
2m+nm!n!

)− 1
2 ∂ (z?m ? f00 ? z

?n)

=
(
2m+nm!n!

)− 1
2 [z?m ? ∂f00 ? z

?n + z?m ? f00 ? ∂z
?n]

=
(
2m+nm!n!

)− 1
2
[
z?m ? (−zf00) ? z?n + z?m ? f00 ? nz

?n−1
]

=
(
2m+nm!n!

)− 1
2
[
nz?m ? f00 ? z

?n−1 − 2−1z?m+1 ? f00 ? z
?n
]

=
√
n/2

(
2m+n−1m! (n− 1)!

)− 1
2 z?m ? f00 ? z

?n−1

−
√

1/2 (m+ 1)
(
2m+1+n (m+ 1)!n!

)− 1
2 z?m+1 ? f00 ? z

?n

=
√
n/2fm,n−1 −

√
1/2 (m+ 1)fm+1,n

(2) is found similarly.

Proposition 6.5.5. If m,n ∈ N0, then

(1) G ? fmn = (2m+ 1) fmn
(2) fmn ? G = (2n+ 1) fmn

Proof. Using Propositions 6.3.2 and 6.5.3, we �nd

G ? fmn = (z ? z + 1) ? fmn

= z ? z ? fmn + 1 ? fmn

= z ?
(√

2mfm−1,n

)
+ fmn

=
√

2 (m− 1) + 2
√

2mfmn + fmn

= (2m+ 1) fmn

and

fmn ? G = fmn ? (z ? z + 1)

= fmn ? z ? z + fmn ? 1

=
√

2nfm,n−1 ? z + fmn

=
√

2 (n− 1) + 2
√

2nfmn + fmn

= (2n+ 1) fmn

Proposition 6.5.6. Bfmn = 2 (m+ n+ 1) fmn for all m,n ∈ N0.

Proof. Using Propositions 6.5.5 and 6.5.2, we �nd

Bfmn = G ? fmn + fmn ? G

= (2m+ 1) fmn + (2n+ 1) fmn

= 2 (m+ n+ 1) fmn
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Corollary 6.5.7. There exists constants ck`mn such that for all m,n ∈ N0,

fmn =
∑

k+`=m+n

ck`mnhk ⊗ h`

Proof. Let m,n ∈ N0 be arbitrary. From Proposition 6.5.6, we see that
fmn is in the eigenspace, say Emn, of the eigenvalue 2 (m+ n+ 1) of B.
Proposition 6.5.1 implies that hk⊗h` is in Emn whenever k+` = m+n. Since
{hk ⊗ h`}k,`∈N0

is an orthonormal basis for L2
(
R2
)
, the set of eigenvectors

{hk ⊗ h` : k + ` = m+ n} spans the eigenspace Emn. Hence, fmn can be
written as a linear combination of these eigenvectors. Since this holds for
arbitrary m,n ∈ N0, we have the required result.

Now we want to show that each hk ⊗ h` can be expressed as a linear
combination of elements in {fmn}m,n∈N0

. We do so by �nding an explicit
expression for the expansion in Corollary 6.5.7, and then showing that the
coe�cients are invertible.

Proposition 6.5.8. For all m,n ∈ N0, we have

fmn =
(
2m+nm!n!

)− 1
2

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n−kzm−kzn−kf00

Proof. We will prove this by induction over n. From de�nition (6.6) for fmn
and equation (6.3.3.1), we have as inductive basis that for all m ∈ N0

fm0 = (2mm!)−
1
2 z?m ? f00

= (2mm!)−
1
2 2mzmf00

= (2mm!)−
1
2

(
m

0

)(
0

0

)
2mzmf00

=
(
2m+0m!0!

)− 1
2

0∑
k=0

(−1)k
(
m

k

)(
0

k

)
k!2m+0−kzm−kz0−kf00

Suppose, as inductive hypothesis, that for some �xed n ∈ N

fmn =
(
2m+nm!n!

)− 1
2

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n−kzm−kzn−kf00

for all m ∈ N0. Let M =
(
2m+n+1m! (n+ 1)!

)− 1
2 . Then, using Propositions
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6.5.3 and 6.3.1, the inductive step follows: For all m ∈ N0

fm,n+1

= (2n+ 2)−
1
2 fmn ? z

=
(
2m+n+1m! (n+ 1)!

)− 1
2

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n−kzm−kzn−kf00 ? z

=M
n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n−k

(
2zm−kzn+1−kf00 − (m− k) zm−k−1zn−kf00

)
=M

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n+1−kzm−kzn+1−kf00

+M
n∑
k=0

(−1)k+1

(
m

k + 1

)(
n

k

)
(k + 1)!2m+n−kzm−k−1zn−kf00

=M

[(
m

0

)(
n

0

)
2m+n+1zmzn+1 + (−1)n+1

(
m

n+ 1

)(
n

n

)
(n+ 1)!2mzm−n−1

]
f00

+M
n∑
k=1

(−1)k
[(
m

k

)(
n

k

)
+

(
m

k

)(
n

k − 1

)]
k!2m+n+1−kzm−kzn+1−kf00

=M

[(
m

0

)(
n+ 1

0

)
2m+n+1zmzn+1 + (−1)n+1

(
m

n+ 1

)(
n+ 1

n+ 1

)
(n+ 1)!2mzm−n−1

]
f00

+M
n∑
k=1

(−1)k
(
m

k

)(
n+ 1

k

)
k!2m+n+1−kzm−kzn+1−kf00

=
(
2m+n+1m! (n+ 1)!

)− 1
2

n+1∑
k=0

(−1)k
(
m

k

)(
n+ 1

k

)
k!2m+n+1−kzm−kzn+1−kf00

Since this holds for arbitrary n ∈ N and for n = 0, the required result follows
by induction.

The following proposition expresses the fmn, after switching to polar
coordinates, in terms of the Laguerre polynomials Lαn, as de�ned in (6.8).
Note that we can write z, z in polar coordinates by de�ning ρeiα := x1 + ix2

such that ρ2 = x2
1 + x2

2. Then we have

z :=
1√
2

(x1 + ix2) =
1√
2
ρeiα z :=

1√
2

(x1 − ix2) =
1√
2
ρe−iα

Also, note that

f00 := 2e−zz = 2e−1/2(x21+x22) = 2e−ρ
2/2

Proposition 6.5.9. For all m,n ∈ N0, we can write

fmn = 2 (−1)n
√
n!

m!
e−iα(m−n)ρm−nLm−nn

(
ρ2
)
e−ρ

2/2
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Proof. We switch to polar coordinates in the expression derived in Proposi-
tion 6.5.8. After some rearrangement, we use de�nition (6.8) to obtain an
expression in terms of the Laguerre polynomials. For all m,n ∈ N0, we can
write

fmn =
(
2m+nm!n!

)− 1
2

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n−kzm−kzn−kf00

=
(
2m+nm!n!

)− 1
2

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!2m+n−k

(
2−

1
2 ρe−iα

)m−k (
2−

1
2 ρeiα

)n−k
2e−ρ

2/2

= 2 (m!n!)−
1
2

n∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!ρm−nρ2(n−k)e−iα(m−n)e−ρ

2/2

= 2

√
n!

m!
e−iα(m−n)ρm−n

1

n!

(
n∑
k=0

(−1)k
m!n!

(m− k)!k! (n− k)!
ρ2(n−k)

)
e−ρ

2/2

= 2

√
n!

m!
e−iα(m−n)ρm−n

1

n!

(
(−1)n

n∑
k=0

m!n!

(m− n+ k)! (n− k)!k!

(
−ρ2

)k)
e−ρ

2/2

= 2

√
n!

m!
e−iα(m−n)ρm−n

1

n!

(
(−1)n n!

n∑
k=0

(
m

n− k

)(−ρ2
)k

k!

)
e−ρ

2/2

= 2 (−1)n
√
n!

m!
e−iα(m−n)ρm−n

(
n∑
k=0

(
n+m− n
n− k

)(−ρ2
)k

k!

)
e−ρ

2/2

= 2 (−1)n
√
n!

m!
e−iα(m−n)ρm−nLm−nn

(
ρ2
)
e−ρ

2/2

Proposition 6.5.10. The family of functions {fmn}m,n∈N0
is complete in

L2
(
R2
)
.

Proof. The following equalities are obtained by applying (6.16) and (6.17)
to the expression found in Proposition 6.5.9. Furthermore, we use (6.13),
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(6.7), and Corollary 6.5.7. For all m,n ∈ N0, it holds that

fmn (x)

=2 (−1)n
√
n!

m!
e−iα(m−n)ρm−nLm−nn

(
ρ2
)
e−ρ

2/2

=2 (−1)n (n!m!)−
1
2 n!ρm−nLm−nn

(
ρ2
)
e−iα(m−n)e−ρ

2/2

=2 (−1)n (n!m!)−
1
2

m+n∑
k=0

(
i

2

)m+n−k
P

(m−k,n−k)
k (0)Hk (x1)Hm+n−k (x2) e−1/2(x21+x22)

=
2 (−1)n

(n!m!)
1
2

m+n∑
k=0

(
i

2

)m+n−k
P

(m−k,n−k)
k (0)

(
2m+n−2k! (m+ n− k)!

) 1
2 (hk ⊗ hm+n−k) (x)

=
∑

k+`=m+n

(−1)n (n!m!)−
1
2

(
i

2

)`
P

(m−k,n−k)
k (0) 2(k+`)/2 (k!`!)

1
2 (hk ⊗ h`) (x)

=
∑

k+`=m+n

(−1)n i`2(k−`)/2
(
k!`!

n!m!

) 1
2

P
(m−k,n−k)
k (0) (hk ⊗ h`) (x)

=
∑

k+`=m+n

2(k−`)/2i2n+`

(
(k + `)!

n! (k + `− n)!

) 1
2
(

(k + `)!

k!`!

)− 1
2

P
(m−k,n−k)
k (0) (hk ⊗ h`) (x)

=
∑

k+`=m+n

2(k−`)/2i2n+`

(
k + `

n

) 1
2
(
k + `

k

)− 1
2

P
(m−k,n−k)
k (0) (hk ⊗ h`) (x)

(6.5.10.1)

Recall from Corollary 6.5.7 that, for any m,n ∈ N0, fmn can be written
as a linear combination of elements of the set {hk ⊗ h` : k + ` = m+ n}. In
other words, there exist constants ck`mn such that for all m,n ∈ N0,

fmn =
∑

k+`=m+n

ck`mnhk ⊗ h` (6.5.10.2)

By comparing (6.5.10.1) and (6.5.10.2), both of which hold for all m,n ∈ N0,
an explicit expression for the ck`mn is given by

ck`mn = 2(k−`)/2i2n+`

(
k + `

n

) 1
2
(
k + `

k

)− 1
2

P
(m−k,n−k)
k (0) (6.5.10.3)

Since each ck`mn in (6.5.10.3) de�nes a constant polynomial, it follows that
(6.5.10.2) is invertible. Thus, there exist constants bmnk` such that for all
k, ` ∈ N0

hk ⊗ h` =
∑

m+n=k+`

bmnk` fmn (6.5.10.4)

This means that every function in {hk ⊗ h`}k,`∈N0
can be expressed as a

linear combination of elements of {fmn}m,n∈N0
. We know that the family

84



{hk ⊗ h`}k,`∈N0
is an orthonormal basis for L2

(
R2
)
; speci�cally, this family

is complete, i.e.
span {hk ⊗ h`}k,`∈N0

= L2
(
R2
)

where the overbar denotes the closure. So (6.5.10.4) implies that L2
(
R2
)

is equal to the closure of a set consisting of certain linear combinations of
elements in {fmn}m,n∈N0

. In particular, it follows that

span {fmn}m,n∈N0
= L2

(
R2
)

Hence, the family {fmn}m,n∈N0
is complete in L2

(
R2
)
.

Corollary 6.5.11. {fmn}m,n∈N0
⊂ S ⊂ L2

(
R2
)
is an orthonormal basis for

L2
(
R2
)
.

This result follows from Propositions 6.1.1, 6.3.6 and 6.5.10. The �rst
proves the inclusion of the family in S, while the other two prove orthonor-
mality and completeness of the family respectively. The power of this result
lies in the fact that we can expand any element of L2

(
R2
)
in terms of this

basis. In particular, we can expand any element of S in terms of this basis.
More precisely, for every f ∈ S, there exist constants cmn such that

f =

∞∑
m,n=0

cmnfmn (6.20)
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Chapter 7

Sequence representation of S

We represent S as a sequence space of coe�cients after expansion in the basis
{fmn}m,n∈N0

. Before we de�ne the relevant sequence space, we de�ne a fam-
ily of seminorms that generates a topology on S equivalent to the Schwartz
topology in Section 7.2. This family of seminorms will be instrumental in
proving the equivalence between S and its corresponding sequence space in
Section 7.3. The seminorms will be de�ned via a certain unbounded opera-
tor; therefore, we start by recalling some relevant de�nitions in Section 7.1.
We conclude this chapter by �nding a matricial form of the Moyal product
and extending it to L2

(
R2
)
in Section 7.4.

7.1 Unbounded operators

The following de�nitions can be found in [23, Chapter 10].

De�nition 7.1.1. Let T : D (T ) → H be a (possibly unbounded) densely

de�ned linear operator in a complex Hilbert space H. Then the adjoint

operator T ∗ : D (T ∗) → H of T is de�ned as follows: The domain D (T ∗)
consists of all y ∈ H such that there is a y∗ ∈ H satisfying

〈Tx, y〉 = 〈x, y∗〉

for all x ∈ D (T ). For each such y ∈ D (T ∗), the adjoint operator T ∗ is

then de�ned in terms of that y∗ by

y∗ = T ∗y

In other words, an element y ∈ H is in D (T ∗) if (and only if) for that y the

inner product 〈Tx, y〉, considered as a function of x, can be represented in

the form 〈Tx, y〉 = 〈x, y∗〉 for all x ∈ D (T ). Also, each such y determines

the corresponding y∗ uniquely since D (T ) is dense in H, by assumption.
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De�nition 7.1.2. Let T : D (T )→ H be a linear operator which is densely

de�ned in a complex Hilbert space H. Then T is called symmetric if

〈Tx, y〉 = 〈x, Ty〉

for all x, y ∈ D (T ).

7.2 New seminorms

Here we de�ne a new family of seminorms in terms of an unbounded operator
W and prove that it generates a topology on S equivalent to the Schwartz
topology. Let

Wf := G ? f ? G (7.1)

for all f ∈ S, where G is de�ned in (6.3). Since G ∈ M, it follows from
de�nition (5.20) that Wf ∈ S for all f ∈ S. Owing to Proposition 4.2.1, we
may consider W as an operator in L2

(
R2
)
with domain S, i.e.

W : S → L2
(
R2
)

: f 7→ G ? f ? G

Proposition 7.2.1. W : S → L2
(
R2
)
is a densely de�ned, unbounded,

symmetric operator.

Proof. Note that W is densely de�ned because S is dense in L2
(
R2
)
by

Proposition 4.2.1. Using Proposition 6.5.5, we see that, for all m,n ∈ N0,

Wfmn = G ? fmn ? G = (2m+ 1) (2n+ 1) fmn

Thus, W has arbitrarily large eigenvalues and is unbounded. Now we prove
that W is symmetric. Propositions 5.2.8, 6.3.2 and 6.3.5 give

G∗ = (z ? z + 1)∗

= z∗ ? z∗ + 1

= z ? z + 1

= G

Using this result, together with de�nition (4.2.8) and Propositions 4.2.10,
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5.2.3, 5.2.8 and 5.2.9, we �nd that

2 (Wf |g) = 〈(G ? f ? G)∗ , g〉
= 〈G ? f∗ ? G, g〉

=

∫
(G ? f∗ ? G) (x) g (x) dx

=

∫
(G ? f∗ ? G ? g) (x) dx

=

∫
(f∗ ? G ? g ? G) (x) dx

=

∫
f∗ (x) (G ? g ? G) (x) dx

= 〈f∗, G ? g ? G〉
= 2 (f |Wg)

for all f, g ∈ S. Hence, W is symmetric.

Now we de�ne a family of seminorms on S. For each k ∈ N0, let

|||f |||k :=
∥∥∥W kf

∥∥∥
2

(7.2)

for all f ∈ S. It is simple to show that |||·|||k is a seminorm for each k ∈ N0.
Our aim is to show that the family of seminorms {|||·|||k}k∈N0

generates the
Schwartz topology on S. We do so in the following propositions.

Proposition 7.2.2. For all f ∈ S and any m > 1
2 ,

‖f‖∞ ≤ K2m
(
‖f‖2 + ‖∆mf‖2

)
where ∆ := ∂2

1 + ∂2
2 and K =

(∫
du

(1+|u|2)2m

) 1
2
.

Proof. Let f ∈ S and u ∈ R2 be arbitrary. We use the Fourier transform F
as de�ned in (4.2.16). From Lemma 4.2.2 (5), one has

|u|2 Ff (u) =
(
u2

1 + u2
2

)
Ff (u)

= u1 (iF (∂2f)) (u) + u2 (iF (∂1f)) (u)

= i2F (∂2 (∂2f)) (u) + i2F (∂1 (∂1f)) (u)

= −F
(
∂2

2f
)

(u)− F
(
∂2

1f
)

(u)

= −F (∆f) (u)

Iterating gives, for all r ∈ N0,

|u|2r Ff (u) = (−1)r F (∆rf) (u) (7.2.2.1)
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Also, F satis�es the Plancherel formula:∫
|Ff (u)|2 du =

∫
Ff (u)Ff (u)du

=

∫ ∫
f (t) e−it·Sudt

∫
f (t′)eit

′·Sudt′du

=

∫ ∫ ∫
ei(t
′−t)·Sudu f (t) f (t′)dtdt′

=

∫ ∫
δ
(
t′ − t

)
f (t) f (t′)dtdt′

=

∫ ∫
δ
(
t′ − t

)
f (t′)dt′f (t) dt

=

∫
f (t)f (t) dt

=

∫
|f (t)|2 dt (7.2.2.2)

We can combine (7.2.2.1) and (7.2.2.2) to �nd∫ ∣∣∣|u|2r Ff (u)
∣∣∣2 du =

∫
|F (∆rf) (u)|2 du =

∫
|∆rf (t)|2 dt (7.2.2.3)

Next, the Cauchy-Schwartz inequality implies that for any m > 1
2

‖f‖∞ = sup
u∈R2

|f (u)|

≤
∫
|Ff (u)| du

=

∫ (
1 + |u|2

)m |Ff (u)|
(
1 + |u|2

)−m
du

≤
∣∣∣∣∫ (1 + |u|2

)m |Ff (u)|
(
1 + |u|2

)−m
du

∣∣∣∣
≤
(∫ ∣∣∣ (1 + |u|2

)m |Ff (u)|
∣∣∣2du∫ ∣∣∣(1 + |u|2

)−m∣∣∣2 du) 1
2

= K

(∫ (
1 + |u|2

)2m |Ff (u)|2 du
) 1

2

(7.2.2.4)

where K =
(∫

du
(1+|u|2)2m

) 1
2
<∞. As a �nal ingredient in our proof, consider

the function
(1 + s)n

(1 + sn)
where s ≥ 0

It attains a maximum value of 2n−1. Therefore, it holds that

(1 + s)2m ≤ 22m−1
(
1 + s2m

)
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Since |u|2 ≥ 0, the above inequality implies that(
1 + |u|2

)2m ≤ 22m−1
(
1 + |u|4m

)
(7.2.2.5)

Finally, in (7.2.2.4), we use (7.2.2.5), (7.2.2.2), and (7.2.2.3) to �nd

‖f‖2∞ ≤ K
2

∫ (
1 + |u|2

)2m |Ff (u)|2 du

≤ K2

∫
22m−1

(
1 + |u|4m

)
|Ff (u)|2 du

= K222m−1

(∫
|Ff (u)|2 du+

∫
|u|4m |Ff (u)|2 du

)
= K222m−1

(∫
|f (t)|2 dt+

∫ ∣∣∣|u|2m Ff (u)
∣∣∣2 du)

= K222m−1

(∫
|f (t)|2 dt+

∫
|∆mf (t)|2 dt

)
= K222m

(
‖f‖22 + ‖∆mf‖22

)
≤ K222m

(
‖f‖2 + ‖∆mf‖2

)2

The required result follows:

‖f‖∞ ≤ K2m
(
‖f‖2 + ‖∆mf‖2

)

Proposition 7.2.3. For any multi-indices α, β ∈ N2
0, there exists some k ∈

N0 such that ∥∥∥µα∂βf∥∥∥
2
≤
∥∥∥W kf

∥∥∥
2

for all f ∈ S.

Proof. Let f ∈ S and α, β ∈ N2
0 be arbitrary. We can expand f in terms of

the basis {fmn}m,n∈N0
as

f =
∞∑

m,n=0

cmnfmn

Let g := µα∂βf . Then g ∈ S, which means we can also expand g in terms
of the basis as

g =

∞∑
m,n=0

dmnfmn

Now, de�ne

kmn := 2

(
ln |dmn| − ln |cmn|

ln(2m+ 1) + ln(2n+ 1)

)
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for all m,n ∈ N0. Choose

k = min {ki ∈ N0 : ki ≥ kmn ∀m,n ∈ N0}

It is easy to show that |dmn|2 ≤ |cmn|2 (2m+ 1)k (2n+ 1)k for all m,n ∈ N0.
We obtain the required result as follows:∥∥∥µα∂βf∥∥∥2

2
= ‖g‖22

=

∥∥∥∥∥∥
∞∑

m,n=0

dmnfmn

∥∥∥∥∥∥
2

2

=
∞∑

m,n=0

|dmn|2

≤
∞∑

m,n=0

|cmn|2 (2m+ 1)k (2n+ 1)k

≤
∞∑

m,n=0

|cmn|2 (2m+ 1)2k (2n+ 1)2k

=

∥∥∥∥∥∥W k
∞∑

m,n=0

cmnfmn

∥∥∥∥∥∥
2

2

=
∥∥∥W kf

∥∥∥2

2

Proposition 7.2.4. For any k ∈ N0, there exist complex numbers Cα,β with

α = (α1, α2) , β = (β1, β2) ∈ N2
0 such that

W kf =
∑

α,β∈N2
0

Cα,βx
α∂βf

for all f ∈ S, where Cα,β 6= 0 is possible only if α1, α2, β1, β2 ≤ 4k. Note

that the Cα,β depend on k but not on f .

Proof. We prove this by induction. Let f ∈ S and consider the case k = 1.
First, Propositions 6.3.1 and 6.3.2 give

G ? f = (z ? z + 1) ? f

= z ?
(
zf + ∂f

)
+ f

= zzf − z∂f + z∂f − ∂∂f

=
1

2

(
x2

1 + x2
2 + 2ix1∂2 − 2ix2∂1 − ∂2

1 − ∂2
2

)
f
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Similarly,

f ? G = f ? (z ? z + 1)

=
1

2

(
x2

1 + x2
2 − 2ix1∂2 + 2ix2∂1 − ∂2

1 − ∂2
2

)
f

Then

Wf = G ? f ? G

=
1

4

(
x4

1 + x4
2 + ∂4

1 + ∂4
2

)
f

+
1

2

(
x2

1x
2
2 + x2

1∂
2
2 − x2

1∂
2
1 + x2

2∂
2
1 − x2

2∂
2
2 + ∂2

1∂
2
2

)
f

− 2 (x1∂1 + x1x2∂1∂2 + x2∂2) f − f

This proves the case k = 1. Now suppose the result holds for arbitrary
k ∈ N0. Then replacing f in the expression above by W kf shows that the
result holds for k + 1.

Proposition 7.2.5. The topology on S generated by the family of seminorms

{|||·|||k}k∈N0
coincides with the Schwartz topology.

Proof. Let f ∈ S be arbitrary. Recall that the Schwartz topology is gen-
erated by the family of seminorms {pαγ}α,γ∈N2

0
as per (4.2.9.1). To prove

the equivalence of the topologies, we have to show that each pαγ is bounded
above by a linear combination of elements of the family {|||·|||k}k∈N0

, and
that each |||·|||k is bounded above by a linear combination of elements of the
family {pαγ}α,γ∈N2

0
.

We start by proving the �rst bound. Let α, γ ∈ N2
0 be arbitrary multi-

indices. Note that, for m ∈ N, we can write

∆mf =
(
∂2

1 + ∂2
2

)m
f =

m∑
n=0

(
m

n

)
∂

2(m−n)
1 ∂2n

2 f

Since f ∈ S, we know that µα∂γf ∈ S, so that Proposition 7.2.2 holds for
µα∂γf ∈ S. We apply Proposition 7.2.2, together with the expression above,
to the de�nition for pαγ :

pαγ (f) = ‖µα∂γf‖∞
≤ K2m

(
‖µα∂γf‖2 + ‖∆mµα∂γf‖2

)
= K2m

(
‖µα∂γf‖2 +

∥∥∥∥∥
m∑
n=0

(
m

n

)
∂

2(m−n)
1 ∂2n

2 µα∂γf

∥∥∥∥∥
2

)

≤ K2m

(
‖µα∂γf‖2 +

m∑
n=0

(
m

n

)∥∥∥∂2(m−n)
1 ∂2n

2 µα∂γf
∥∥∥

2

)
(7.2.5.1)
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Let β = (β1, β2) = (2 (m− n) , 2n) ∈ N2
0. Also, let Cβ be constants such

that Cβ =
(
m
n

)(
α
β

)
β!. This makes Cβ greater or equal to all the constants

that come out of the second term in (7.2.5.1). Then (7.2.5.1) becomes, after
using the triangle inequality,

pαγ (f) ≤ K2|β| ‖µα∂γf‖2

+K2|β|
|β|/2∑
β/2=0

Cβ

(∥∥∥µα−β∂γf∥∥∥
2

+
∥∥∥µα−(0,β2)∂γ+(β1,0)f

∥∥∥
2

)

+K2|β|
|β|/2∑
β/2=0

Cβ

(∥∥∥µα−(β1,0)∂γ+(0,β2)f
∥∥∥

2
+
∥∥∥µα∂γ+βf

∥∥∥
2

)
(7.2.5.2)

We can apply Proposition 7.2.3 to each of these �ve terms. In fact, we can
apply it simultaneously to the linear combination of the last four terms. We
incorporate the constants Cβ into a new constant by setting C` = sup{Cβ}
for any nonzero ` ∈ N0. There exists some k ∈ N0 (�rst term) and constants
C` that are nonzero for �nitely many ` ∈ N0 (last four terms) such that

pαγ (f) ≤ K2|β|
∥∥∥W kf

∥∥∥
2

+K2|β|
∑
`∈N0

C`

∥∥∥W `f
∥∥∥

2

= K2|β|

∥∥∥W kf
∥∥∥

2
+
∑
`∈N0

C`

∥∥∥W `f
∥∥∥

2


= K2|β|

|||f |||k +
∑
`∈N0

C`|||f |||`

 (7.2.5.3)

Since this holds for arbitrary α, γ ∈ N2
0, we have shown that each pαγ is

bounded above by a linear combination of elements of the family {|||·|||k}k∈N0
.

Now we prove the reverse inequality. First note that since f ∈ S, f (x)→
0 as |x| → ∞. In fact, f (x) → 0 faster than the inverse of any polynomial.
Speci�cally,∫ (

1 + |x|8
)
|f (x)|4 dx ≤ sup

x∈R2

∣∣∣(1 + |x|8
)
|f (x)|4

∣∣∣ (7.2.5.4)

Recall that (7.2.2.5), which holds for m = 2 in particular, gives(
1 + |u|2

)4 ≤ 23
(
1 + |u|8

)
(7.2.5.5)

Next, by applying the Cauchy-Swartz inequality, then (7.2.5.4) and (7.2.5.5),
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we �nd

2 ‖f‖22 =

∫
|f (x)|2 dx

=

∫ (
1 + |x|2

)−2 (
1 + |x|2

)2 |f (x)|2 dx

≤
∣∣∣∣∫ (1 + |x|2

)−2 (
1 + |x|2

)2 |f (x)|2 dx
∣∣∣∣

≤
(∫ ∣∣∣(1 + |x|2

)−2
∣∣∣2 dx∫ ∣∣∣(1 + |x|2

)2 |f (x)|2
∣∣∣2 dx) 1

2

=

(∫ (
1 + |x|2

)−4
dx

) 1
2
(∫ (

1 + |x|2
)4 |f (x)|4 dx

) 1
2

=

√
π

3

(∫ (
1 + |x|2

)4 |f (x)|4 dx
) 1

2

≤
√
π

3

(∫
23
(
1 + |x|8

)
|f (x)|4 dx

) 1
2

≤
√

8π

3

(
sup
x∈R2

∣∣∣(1 + |x|8
)
|f (x)|4

∣∣∣) 1
2

=

√
8π

3

(∥∥∥(1 + |x|8
)
|f (x)|4

∥∥∥
∞

) 1
2

≤
√

8π

3

(
‖f‖4∞ +

∥∥∥|x|8 |f (x)|4
∥∥∥
∞

) 1
2

=

√
8π

3

(
‖f‖4∞ +

∥∥∥|x|2 f (x)
∥∥∥4

∞

) 1
2

≤
√

8π

3

(
‖f‖∞ +

∥∥∥|x|2 f (x)
∥∥∥
∞

)2

Thus, we have

‖f‖2 ≤
(

8π

3

) 1
4 (
‖f‖∞ +

∥∥∥|x|2 f (x)
∥∥∥
∞

)
(7.2.5.6)

This already proves the needed inequality for k = 0, since

|||f |||0 = ‖f‖2

≤
(

8π

3

) 1
4 (
‖f‖∞ +

∥∥∥|x|2 f (x)
∥∥∥
∞

)
≤
(

8π

3

) 1
4 (
p00 (f) + pδ0 (f) + pε0 (f)

)
(7.2.5.7)
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where δ = (δ1, δ2) = (2, 0) and ε = (ε1, ε2) = (0, 2) in N2
0. This shows that

|||·|||0 is bounded by a linear combination of elements in {pαγ}α,γ∈N2
0
.

For the remainder of the proof consider an arbitrary k ∈ N. Choose
α = (α1, α2) , β = (β1, β2) ∈ N2

0 such that α1, α2, β1, β2 ≤ 4k. Then we know
from Proposition 7.2.4 that there exist constants Cα,β such that

W kf =
∑

α,β∈N2
0

Cα,βx
α∂βf

Also, let δ = (δ1, δ2) = (2, 0) and ε = (ε1, ε2) = (0, 2) be multi-indices in
N2

0. Using the expression above, together with (7.2.5.6), and noting that
|x|2 = x2

1 + x2
2, we �nd that

|||f |||k =
∥∥∥W kf

∥∥∥
2

=

∥∥∥∥∥∥
∑

α,β∈N2
0

Cα,βx
α∂βf

∥∥∥∥∥∥
2

≤
∑

α,β∈N2
0

|Cα,β|2
∥∥∥xα∂βf∥∥∥

2

≤
∑

α,β∈N2
0

|Cα,β|2
(

8π

3

) 1
4 (∥∥∥xα∂βf∥∥∥

∞
+
∥∥∥|x|2 xα∂βf∥∥∥

∞

)

=
∑

α,β∈N2
0

|Cα,β|2
(

8π

3

) 1
4 (∥∥∥xα∂βf∥∥∥

∞
+
∥∥∥x2

1x
α∂βf + x2

2x
α∂βf

∥∥∥
∞

)

≤
∑

α,β∈N2
0

|Cα,β|2
(

8π

3

) 1
4 (∥∥∥xα∂βf∥∥∥

∞
+
∥∥∥xα+δ∂βf

∥∥∥
∞

+
∥∥∥xα+ε∂βf

∥∥∥
∞

)

=
∑

α,β∈N2
0

|Cα,β|2
(

8π

3

) 1
4 (
pαβ (f) + pα+δ,β (f) + pα+ε,β (f)

)
(7.2.5.8)

Together, (7.2.5.7) and (7.2.5.8) prove that each |||·|||k is bounded above by
a linear combination of elements of the family {pαγ}α,γ∈N2

0
.

Having proven inequalities both ways, we see that the topology generated
by {|||·|||k}k∈N0

is contained in the topology generated by {pαγ}α,γ∈N2
0
and

vice versa. Hence, the topology on S generated by the family of seminorms
{|||·|||k}k∈N0

coincides with the Schwartz topology.
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7.3 The sequence space

Now we proceed to represent S as a sequence space. De�ne the Fréchet space
s of rapidly decreasing double sequences c by

s :=
{
c = (cmn)∞m,n=0 : rk (c) <∞ for every k ∈ N0

}
(7.3)

where

rk (c) :=

 ∞∑
m,n=0

(2m+ 1)2k (2n+ 1)2k |cmn|2
 1

2

(7.4)

for each k ∈ N0. The topology for s is generated by the family of seminorms
{rk}k∈N0

.

We want to show that the spaces S and s are topologically isomorphic.
In order to do so, we need to de�ne a homeomorphism between the spaces,
that is, a bijective correspondence that preserves the topological structure
involved. We will make use of the fact, as proved in Chapter 6, that every
f ∈ S can be expanded as a linear combination of the elements of the basis

{fmn}m,n∈N0
, i.e. there exist constants cmn such that f =

∞∑
m,n=0

cmnfmn.

For every f ∈ S, we let c ∈ s be the sequence of coe�cients (cmn)∞m,n=0

in the basis expansion. To make this explicit, we de�ne the map

IS : S → s : f 7→ c

such that

IS (f) = IS

 ∞∑
m,n=0

cmnfmn

 := (cmn)∞m,n=0 = c (7.5)

for all f ∈ S.

Proposition 7.3.1. IS : S → s : f 7→ c is a homeomorphism from S onto

s; in other words, S and s are topologically isomorphic.

Proof. In Proposition 7.2.5, we proved that the seminorms {|||·|||k}k∈N0
equiv-

alently generate the Schwartz topology on S, which is generated by the semi-
norms {pαγ}α,γ∈N2

0
. This means that

f ∈ S i� pαγ (f) <∞ ∀α, γ ∈ N2
0

or equivalently

f ∈ S i� |||f |||k =
∥∥∥W kf

∥∥∥
2
<∞ ∀k ∈ N0 (7.3.1.1)
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Using the symmetry of W from Proposition 7.2.1, we �nd that for all f ∈ S
and every k ∈ N0

∥∥∥W kf
∥∥∥2

2
=

∥∥∥∥∥∥W k
∞∑

m,n=0

cmnfmn

∥∥∥∥∥∥
2

2

=
∞∑

m,n=0

|cmn|2
(
W kfmn|W kfmn

)
=

∞∑
m,n=0

(2m+ 1)2k (2n+ 1)2k |cmn|2 (fmn|fmn)

=

∞∑
m,n=0

(2m+ 1)2k (2n+ 1)2k |cmn|2

= rk (c)2

Hence,

|||f |||k =
∥∥∥W kf

∥∥∥
2

= rk (c) (7.3.1.2)

Let f ∈ S. Then IS (f) = c such that, from (7.3.1.1) and (7.3.1.2), rk (c) =
|||f |||k < ∞ for all k ∈ N0. It follows from the de�nition (7.3) for s that
c ∈ s. Hence, IS maps S into s. Since the seminorms |||·|||k are in fact norms
(|||f |||k = 0 =⇒ f = 0), the equality in (7.3.1.2) shows that IS is injective.

To show surjectivity, consider an arbitrary c ∈ s. So c is the double
sequence c = (cmn)∞m,n=0 such that rk (c) <∞ for every k ∈ N0. Now, de�ne

double sequences cMN ∈ s for all M,N ∈ N0 by

cMN :=
(
cMN
mn

)∞
m,n=0

where the elements are given by

cMN
mn :=

{
cmn if m ≤M and n ≤ N
0 otherwise

Clearly, for each k ∈ N0,

rk
(
cMN − c

)
→ 0 as M,N →∞

In other words, the sequence
(
cMN

)
M,N∈N0

of partial sequences in s con-

verges to c ∈ s. Thus,
(
cMN

)
M,N∈N0

is Cauchy in s, i.e. forM1, N1,M2, N2 ∈
N0,

rk
(
cM1N1 − cM2N2

)
→ 0 as M1, N1,M2, N2 →∞ (7.3.1.3)
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Furthermore, consider the sequence
(
fMN

)
M,N∈N0

in S, where the functions

fMN ∈ S are de�ned, for all M,N ∈ N0, by

fMN :=

M∑
m=0

N∑
n=0

cmnfmn

Then, for all M,N ∈ N0

IS
(
fMN

)
= (cmn)m≤M,n≤N =

(
cMN
mn

)∞
m,n=0

= cMN

It follows from the fact that
(
cMN

)
M,N∈N0

is Cauchy in s, as per (7.3.1.3),

and from (7.3.1.2), that for M1, N1,M2, N2 ∈ N0, and for each k ∈ N0,∣∣∣∣∣∣fM1N1 − fM2N2
∣∣∣∣∣∣
k

=
∥∥∥W k

(
fM1N1 − fM2N2

)∥∥∥
2

= rk

(
IS
(
fM1N1

)
− IS

(
fM2N2

) )
= rk

(
cM1N1 − cM2N2

)
→ 0 as M1, N1,M2, N2 →∞

Thus, the sequence
(
fMN

)
M,N∈N0

is Cauchy in S. Since S is complete by

Theorem 4.1.9,
(
fMN

)
M,N∈N0

converges to some f ∈ S. Let us denote the
limit by f := lim

M,N→∞
fMN . Then

IS (f) = IS

(
lim

M,N→∞
fMN

)
= lim

M,N→∞
IS
(
fMN

)
= lim

M,N→∞
cMN

= c

Since we considered an arbitrary c ∈ s, it follows that for every c ∈ s, there
exists an f ∈ S such that IS (f) = c. Hence, IS is surjective.

To conclude, IS is a bijection between S and s. Moreover, (7.3.1.2) shows
the equivalence of the topologies; IS preserves the topological structure.
Hence, IS is a homeomorphism or, equivalently, S and s are topologically
isomorphic.

7.4 Matricial form of ? and its extension to L2
(
R2
)

The sequence representation of S in the previous section suggests that we can
de�ne a matricial form of the Moyal product. Speci�cally, we will show that
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the Moyal product between functions in S corresponds to the matrix prod-
uct between the corresponding sequences (which can be viewed as in�nite-
dimensional matrices) in s. This matricial form provides a simple way to
extend the Moyal product to spaces larger than S. In particular, we �nd its
extension to L2

(
R2
)
.

Proposition 7.4.1. If c, b ∈ s correspond respectively to f, g ∈ S as coe�-

cient sequences in the basis {fmn}m,n∈N0
, i.e.

f =
∞∑

m,n=0

cmnfmn g =
∞∑

k,`=0

bk`fk`

then the sequence corresponding to the Moyal (twisted) product f ? g ∈ S is

the matrix product cb ∈ s, where

(cb)m` =
∞∑
n=0

cmnbn`

Proof. Using Proposition 6.3.4, together with the continuity of ? in S, we
�nd

f ? g =

 ∞∑
m,n=0

cmnfmn

 ?

 ∞∑
k,`=0

bk`fk`


=

∞∑
m,n,k,`=0

cmnbk`fmn ? fk`

=

∞∑
m,n,k,`=0

cmnbk`δnkfm`

=

∞∑
m,n,`=0

cmnbn`fm`

Since f ? g ∈ S, it can be expressed in terms of the basis. So the expression
above implies that

f ? g =

∞∑
m,`=0

(cb)m` fm`

with the coe�cients given by

(cb)m` =

∞∑
n=0

cmnbn`
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Using the Cauchy-Schwartz inequality, we see that for all k ∈ N0

rk (cb)2 =
∞∑

m,`=0

(2m+ 1)2k (2`+ 1)2k |(cb)m`|
2

=
∞∑

m,`=0

(2m+ 1)2k (2`+ 1)2k

∣∣∣∣∣
∞∑
n=0

cmnbn`

∣∣∣∣∣
2

≤
∞∑

m,`=0

(2m+ 1)2k (2`+ 1)2k
∞∑
r=0

|cmr|2
∞∑
s=0

|b`s|2

≤
∞∑

m,r=0

(2m+ 1)2k (2r + 1)2k |cmr|2
∞∑

`,s=0

(2`+ 1)2k (2s+ 1)2k |b`s|2

= rk (c)2 rk (b)2

Since c, b ∈ s with �nite seminorms, the expression above implies that

rk (cb) ≤ rk (c) rk (b) <∞

Hence, cb ∈ s.

The proposition above suggests that we can extend the topological cor-
respondence between S and s to an algebraic correspondence. Recall that
A = (S, ?) (see (4.2.18) and Corollary 4.2.12). De�ne the map η on A such
that

η (f) := c (7.6)

for all f =
∞∑

m,n=0
cmnfmn ∈ A.

Proposition 7.4.2. A and η (A) are algebraically ∗-isomorphic:

A ' η (A)

where η (A) is the algebra obtained by equipping s with matrix multiplication

and an involution given by complex transposition.

Proof. Let f, g ∈ A with basis expansions

f =

∞∑
m,n=0

cmnfmn and g =

∞∑
m,n=0

bmnfmn

Note that η, considered as a map on the underlying topological vector space
of A, is exactly IS : S → s, which is a homeomorphism by Proposition 7.3.1.
It is also clear that η is linear. Furthermore, it follows from Proposition 7.4.1
that the ?-product in A corresponds to the matrix product in s such that

η (f ? g) = cb = η (f) η (g)
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Also, complex conjugation of a function in A corresponds to conjugate trans-
position in s:

η (f∗) = η

 ∞∑
m,n=0

cmnfnm

 = c∗ = η (f)∗

by Proposition 6.3.5. Thus, η is a bijective ∗-homomorphism from A to
η (A), where η (A) is the algebra s equipped with matrix multiplication and
an involution given by complex transposition. Hence, η is a ∗-isomorphism
and A ' η (A).

The matricial form of ? in Proposition 7.4.1 gives a way of de�ning the ?-
product between elements of L2

(
R2
)
. Remember that any g ∈ L2

(
R2
)
can

be expanded in terms of the basis {fmn}m,n∈N0
such that g =

∞∑
m,n=0

bmnfmn.

The norm on L2
(
R2
)
, as de�ned in (4.2.12), can be written in terms of the

coe�cients of the basis expansion as

‖g‖2 = (g|g)
1
2 =

 ∞∑
m,n=0

|bmn|2
 1

2

(7.7)

such that ‖g‖2 < ∞ for all g ∈ L2
(
R2
)
. Since S is a subspace of L2

(
R2
)
,

the inclusion map ι : S → L2
(
R2
)
, de�ned by ι (f) = f for all f ∈ S, is

injective and ι (S) = S is dense in L2
(
R2
)
by Proposition 4.2.1. L2

(
R2
)
is

the Hilbert completion of S with respect to the norm ‖·‖2.

If f, g ∈ L2
(
R2
)
, such that f =

∞∑
m,n=0

cmnfmn and g =
∞∑

m,n=0
bmnfmn,

then we de�ne

f ? g :=
∞∑

m,n=0

( ∞∑
k=0

cmkbkn

)
fmn (7.8)

Proposition 7.4.3. For all f, g ∈ L2
(
R2
)
, the series (7.8) converges in

L2
(
R2
)
so that f ? g ∈ L2

(
R2
)
with

‖f ? g‖2 ≤ ‖f‖2 ‖g‖2

This de�nes a map

? : L2
(
R2
)
× L2

(
R2
)
→ L2

(
R2
)

that extends the ?-product on S.

101



Proof. Let f =
∞∑

m,n=0
cmnfmn ∈ L2

(
R2
)
and g =

∞∑
m,n=0

bmnfmn ∈ L2
(
R2
)
.

Using (7.8), together with the Cauchy-Schwartz inequality, we �nd that

‖f ? g‖22 =

∥∥∥∥∥∥
∞∑

m,n=0

( ∞∑
k=0

cmkbkn

)
fmn

∥∥∥∥∥∥
2

2

=

∞∑
m,n=0

∣∣∣∣∣
∞∑
k=0

cmkbkn

∣∣∣∣∣
2

≤
∞∑

m,n=0

( ∞∑
k=0

|cmk| |bkn|

)2

≤
∞∑

m,n=0

( ∞∑
k=0

|cmk|2
)( ∞∑

k=0

|bkn|2
)

=

 ∞∑
m,k=0

|cmk|2
 ∞∑

k,n=0

|bkn|2


= ‖f‖22 ‖g‖
2
2

Since ‖f‖2 and ‖g‖2 are �nite for f, g ∈ L2
(
R2
)
, it follows that ‖f ? g‖2 is

�nite so that f ? g ∈ L2
(
R2
)
. Thus (7.8) de�nes a map

? : L2
(
R2
)
× L2

(
R2
)
→ L2

(
R2
)

which, when restricted to S×S, is exactly the ?-product on S as per Proposi-
tion 7.4.1. Hence, the ?-product on L2

(
R2
)
extends the ?-product on S.

In fact, L2
(
R2
)
equipped with the ?-product and complex conjugation

is a Banach ∗-algebra, since it is the completion (with respect to a submul-
tiplicative norm) of an associative ∗-algebra.
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Chapter 8

Equivalent representations of A

In this chapter, we de�ne equivalent representations of the algebra of the
Moyal plane A. This will allow us to switch between the representation that
will form part of the spectral triple of the Moyal plane and a representation
that makes calculation of the spectral distance tractable. We start by as-
signing some notations: If H is a Hilbert space, let
• L (H) denote the space of all linear operators on H
• B (H) denote the space of all bounded linear operators on H
• K (H) denote the space of all compact operators on H
• HS (H) denote the space of all Hilbert-Schmidt operators on H.
Note, from [31, Section 2.4], thatB (H),K (H), andHS (H) are C∗-algebras
when equipped with the operator norm. Moreover, we have the following in-
clusions

HS (H) ⊂ K (H) ⊂ B (H)

where K (H) is dense in B (H).

8.1 Representation as Hilbert-Schmidt operators

First, we recall a basic de�nition from [31, Section 2.4].

De�nition 8.1.1. If {ek} is an orthonormal basis for a Hilbert space H,

then an operator T ∈ B (H) is called Hilbert-Schmidt if

‖T‖HS =

( ∞∑
k=0

‖Tek‖2H

) 1
2

<∞

where ‖·‖HS is called the Hilbert-Schmidt norm and ‖·‖H is the norm on H.

Let `2 (N0) denote the Hilbert space of square-summable sequences of
complex numbers

`2 (N0) := {ψ = (ψn)∞n=0 : ψn ∈ C ∀n ∈ N0 and ‖ψ‖`2 <∞} (8.1)
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where the norm is de�ned by

‖ψ‖`2 := 〈ψ,ψ〉
1
2

`2
=

∑
n∈N0

|ψn|2
 1

2

(8.2)

via the inner product 〈ψ, φ〉`2 := ψ∗φ =
∞∑
n=0

ψnφn, which is de�ned for all

ψ, φ ∈ `2 (N0). Furthermore, let {en}n∈N0
denote the canonical orthonormal

basis of `2 (N0), where each ei is given by a sequence with a 1 in the i'th
position and zeros elsewhere, i.e.

e0 = (1, 0, 0, · · · ) e1 = (0, 1, 0, · · · ) etc.

Throughout this chapter, we will represent the functions f, g ∈ A as
sequences η (f) = c ∈ η (A) and η (g) = b ∈ η (A) respectively, via the basis
expansions

f =
∞∑

m,n=0

cmnfmn and g =
∞∑

m,n=0

bmnfmn

as done in Proposition 7.4.2. Let us now return to the map η : A→ η (A) :
f 7→ c de�ned in (7.6). This time we consider it as a map into the space of
linear operators on `2 (N0):

η : A→ L
(
`2 (N0)

)
(8.3)

where the rapid decay sequences in η (A) act on vectors in `2 (N0) by row

by column multiplication. Explicitly, for every f =
∞∑

m,n=0
cmnfmn ∈ A, and

each basis element ek ∈ {en}n∈N0
of `2 (N0), we have

η (f) ek = cek =
∞∑
m=0

cmkem (8.4)

The sum on the right is exactly the k'th column of the matrix c = (cmn)∞m,n=0

and is clearly in `2 (N0). This implies that η (f) determines a linear operator
on `2 (N0) for every f ∈ A and justi�es our consideration of η as a map into
L
(
`2 (N0)

)
.

Proposition 8.1.2. η maps A into the C∗-algebra of Hilbert-Schmidt oper-

ators on `2 (N0):
η : A→ HS

(
`2 (N0)

)
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Proof. Let f =
∞∑

m,n=0
cmnfmn ∈ A be arbitrary. Then c ∈ s so that rk (c) <

∞ for all k ∈ N0 (see Section 7.3). Using De�nition 8.1.1 for the Hilbert-
Schmidt norm and (8.2) for the `2-norm, we �nd

‖η (f)‖2HS =
∞∑
`=0

‖η (f) e`‖2`2

=
∞∑
`=0

‖ce`‖2`2

=

∞∑
`=0

∥∥∥∥∥
∞∑
m=0

cm`em

∥∥∥∥∥
2

`2

=
∞∑
`=0

∞∑
n=0

|cn`|2

= r0 (c)2

<∞

By De�nition 8.1.1 for a Hilbert-Schmidt operator, η (f) ∈ HS
(
`2 (N0)

)
for

all f ∈ A, as required.

Proposition 8.1.3. η is a faithful representation of A on `2 (N0).

Proof. Proposition 8.1.2 proves that η (f) ∈ HS
(
`2 (N0)

)
for all f ∈ A.

Since HS
(
`2 (N0)

)
⊂ B

(
`2 (N0)

)
, it follows that η (f) ∈ B

(
`2 (N0)

)
for all

f ∈ A. Therefore, η maps A into the C∗-algebra B
(
`2 (N0)

)
:

η : A→ B
(
`2 (N0)

)
Moreover, η : A → B

(
`2 (N0)

)
is a ∗-homomorphism, since for all f, g ∈ A

and ψ, φ ∈ `2 (N0) we have

η (f ? g)ψ = (cb)ψ

= c (bψ)

= cη (g)ψ

= η (f) η (g)ψ

and

〈ψ, η (f∗)φ〉`2 = 〈ψ, c∗φ〉`2
= ψ∗c∗φ

= (cψ)∗ φ

= 〈cψ, φ〉`2
= 〈η (f)ψ, φ〉`2
= 〈ψ, η (f)∗ φ〉`2

105



Since η is injective, it follows that η : A→ B
(
`2 (N0)

)
is a faithful represen-

tation of A on `2 (N0).

Since `2 (N0) is a Hilbert space with orthonormal basis {em}m∈N0
, it is

well known that `2 (N0)⊗ `2 (N0) is a Hilbert space with orthonormal basis
{em ⊗ en}m,n∈N0

when equipped with the inner product

〈ψ1 ⊗ φ1, ψ2 ⊗ φ2〉`2⊗`2 := 〈ψ1, ψ2〉`2 〈φ1, φ2〉`2 (8.5)

which is de�ned for all ψ1, ψ2, φ1, φ2 ∈ `2 (N0). The induced norm is given
by

‖ψ1 ⊗ φ1‖`2⊗`2 := ‖ψ1‖`2 ‖φ1‖`2 (8.6)

Let I denote the identity operator on `2 (N0). Then we de�ne the map

η ⊗ I : A→ B
(
`2 (N0)⊗ `2 (N0)

)
(8.7)

such that
(η ⊗ I) (f) := η (f)⊗ I

for all f ∈ A and

(η (f)⊗ I) (em ⊗ en) := η (f) em ⊗ Ien (8.8)

for each basis element em ⊗ en ∈ {em ⊗ en}m,n∈N0
of `2 (N0)⊗ `2 (N0).

Proposition 8.1.4. η ⊗ I is a faithful representation of A on `2 (N0) ⊗
`2 (N0).

Proof. Consider the map

ι : B
(
`2 (N0)

)
→ B

(
`2 (N0)⊗ `2 (N0)

)
: T 7→ T ⊗ I

ι is clearly a ∗-homomorphism and is injective because if ι (T ) = T ⊗ I = 0,
then

0 = (T ⊗ I) (ψ1 ⊗ φ1) = (Tψ1)⊗ φ1

for all ψ1, φ1 ∈ `2 (N0), which implies

0 = 〈(Tψ1)⊗ φ1, ψ2 ⊗ φ1〉`2⊗`2 = 〈Tψ1, ψ2〉`2 ‖φ1‖`2

for all ψ1, ψ2, φ1 ∈ `2 (N0). It follows that 0 = 〈Tψ1, ψ2〉`2 for all ψ1, ψ2 ∈
`2 (N0); therefore, T = 0.

Since η : A → B
(
`2 (N0)

)
is an injective ∗-homomorphism by Proposi-

tion 8.1.3, the composition η ⊗ I = ι ◦ η is an injective ∗-homomorphism.
Hence, η ⊗ I is a faithful representation of A on `2 (N0)⊗ `2 (N0).
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8.2 Representation via the Moyal product

Let L : A→ L
(
L2
(
R2
))

be the left multiplication operator de�ned by

L (f) g := f ? g for all f ∈ A, g ∈ L2
(
R2
)

(8.9)

Since f ? g ∈ L2
(
R2
)
for all f ∈ A and g ∈ L2

(
R2
)
, in view of Proposition

7.4.3, L does in fact map A into L
(
L2
(
R2
))
.

Proposition 8.2.1. L is a faithful representation of A on L2
(
R2
)

Proof. First, note that for all f ∈ A, from Proposition 7.4.3,

‖L (f)‖op = sup
06=g∈L2(R2)

{
‖f ? g‖2
‖g‖2

}
≤ sup

06=g∈L2(R2)

{
‖f‖2 ‖g‖2
‖g‖2

}
= ‖f‖2

Thus, L (f) ∈ B
(
L2
(
R2
))

for all f ∈ A. Therefore, L maps A into the
C∗-algebra B

(
L2
(
R2
))
:

L : A→ B
(
L2
(
R2
))

Moreover, L : A→ B
(
L2
(
R2
))

is a homomorphism because

L
(
f ? f ′

)
g = L (f)L

(
f ′
)
g

for all f, f ′ ∈ A and g ∈ L2
(
R2
)
by the associativity of the Moyal product.

The Moyal product de�ned in (7.8) is continuous on account of the inequality
proven in Proposition 7.4.3. So, for f ∈ L2

(
R2
)
, let (fn) be a sequence in

A that converges in L2
(
R2
)
to f . Then, using (4.2.11.3) from Proposition

4.2.11, we �nd that for all g, h ∈ A

(h|f ? g) = lim
n→∞

(h|fn ? g)

= lim
n→∞

(f∗n ? h|g)

= (f∗ ? h|g)

since f∗n → f∗ in L2
(
R2
)
. Hence,

(h|f ? g) = (f∗ ? h|g) (8.2.1.1)

for all g, h ∈ A and f ∈ L2
(
R2
)
. Next, for h ∈ L2

(
R2
)
, let (hn) be a

sequence in A that converges in L2
(
R2
)
to h. Then, using (8.2.1.1), we �nd

that for all g ∈ A and f ∈ L2
(
R2
)

(h|f ? g) = lim
n→∞

(hn|f ? g)

= lim
n→∞

(f∗ ? hn|g)

= (f∗ ? h|g)
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Hence,
(h|f ? g) = (f∗ ? h|g) (8.2.1.2)

for all g ∈ A and f, h ∈ L2
(
R2
)
. Next, for g ∈ L2

(
R2
)
, let (gn) be a

sequence in A that converges in L2
(
R2
)
to g. Then, using (8.2.1.2), we �nd

that for all f, g, h ∈ L2
(
R2
)

(h|f ? g) = lim
n→∞

(h|f ? gn)

= lim
n→∞

(f∗ ? h|gn)

= (f∗ ? h|g) (8.2.1.3)

Finally, (8.2.1.3) allows us to �nd

(L (f)∗ g|h) = (g|L (f)h)

= (g|f ? h)

= (f∗ ? g|h)

= (L (f∗) g|h)

for all f ∈ A and g, h ∈ L2
(
R2
)
. Hence, L : A → B

(
L2
(
R2
))

is a ∗-
homomorphism. Injectivity of L follows easily from (7.8). Thus L : A →
B
(
L2
(
R2
))

is a faithful representation of A on L2
(
R2
)
.

The next step is to show that the representations L (A) and (η ⊗ I) (A)
are equivalent. We do so by �nding a certain intertwining map between them.
If H is a Hilbert space and Idex is a set that indexes any orthonormal basis
of H, then H is isometrically isomorphic to `2 (Idex). Applied to the Hilbert
space L2

(
R2
)
, which has basis {fmn}m,n∈N0

indexed by the set N0×N0, this

statement implies that L2
(
R2
)
is isometrically isomorphic to `2 (N0 × N0),

which in turn is isomorphic to the Hilbert space `2 (N0) ⊗ `2 (N0) with or-
thonormal basis {em ⊗ en}m,n∈N0

. Hence, there exists a unitary operator U

from L2
(
R2
)
onto `2 (N0) ⊗ `2 (N0) that preserves the vector space and in-

ner product structures, therefore, also the topological structure. Explicitly,
de�ne the map U : L2

(
R2
)
→ `2 (N0)⊗ `2 (N0) such that

U (fmn) := em ⊗ en (8.10)

for all m,n ∈ N0.

Proposition 8.2.2.
(
L2
(
R2
)
, L
)
,
(
`2 (N0)⊗ `2 (N0) , η ⊗ I

)
, and

(
`2 (N0) , η

)
are isometrically ∗-isomorphic representations of A:

L (A) ' (η ⊗ I) (A) ' η (A)

In particular, for all f ∈ A,

UL (f)U∗ = (η ⊗ I) (f)
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Proof. Since U : L2
(
R2
)
→ `2 (N0) ⊗ `2 (N0) maps orthonormal basis ele-

ments to orthonormal basis elements, it is straightforward to show that it is
a bijection that preserves the inner product; in other words, U is a unitary
operator. We prove that U : L2

(
R2
)
→ `2 (N0) ⊗ `2 (N0) is an intertwining

map for the representations L and η ⊗ I of A. Let f =
∞∑

m,n=0
cmnfmn ∈ A

and ei, ej ∈ `2 (N0) be arbitrary. It follows from (8.4), (8.7), (8.8), and
Proposition 6.3.4 that

UL (f)U∗ (ei ⊗ ej) = UL (f) fij

= U

 ∞∑
m,n=0

cmnfmn ? fij


= U

 ∞∑
m,n=0

cmnδnifmj


= U

( ∞∑
m=0

cmifmj

)

=
∞∑
m=0

cmiem ⊗ ej

= η (f) ei ⊗ Iej
= (η (f)⊗ I) (ei ⊗ ej)
= (η ⊗ I) (f) (ei ⊗ ej)

Thus UL (f)U∗ = (η ⊗ I) (f) for all f ∈ A; in other words, U intertwines
the representations L and η ⊗ I. Since U is also a unitary operator, it fol-
lows that

(
L2
(
R2
)
, L
)
and

(
`2 (N0)⊗ `2 (N0) , η ⊗ I

)
are unitarily equivalent

representations, i.e. isometrically ∗-isomorphic representations of A:

L (A) ' (η ⊗ I) (A)

Note that the ∗-isomorphic correspondence between (η ⊗ I) (A) and η (A)
follows from Proposition 8.1.4 by restricting the map ι to η (A). Applying
[31, Lemma 6.3.2] shows that the norms are preserved:

‖(η ⊗ I) (f)‖op = ‖η (f)⊗ I‖op = ‖η (f)‖op ‖I‖op = ‖η (f)‖op

for all f ∈ A. Therefore,
(
`2 (N0)⊗ `2 (N0) , η ⊗ I

)
and

(
`2 (N0) , η

)
are

isometrically ∗-isomorphic representations of A:

(η ⊗ I) (A) ' η (A)
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Let
• η (A) denote the closure of η (A) in B

(
`2 (N0)

)
• L (A) denote the closure of L (A) in B

(
L2
(
R2
))
.

Proposition 8.2.3. L (A) is isometrically ∗-isomorphic to η (A):

L (A) ' η (A)

Proof. We know, from Proposition 8.2.2, that there exists an isometric ∗-
isomorphism

ϕ : L (A)→ η (A)

with inverse
ϕ−1 : η (A)→ L (A)

Since both are isometric, they have isometrically ∗-homomorphic extensions

ϕ : L (A)→ η (A)

and
ϕ−1 : η (A)→ L (A)

It is simple to show, using limit arguments, that the properties of ϕ and ϕ−1

extend to ϕ and ϕ−1 respectively, and that

ϕ−1 ◦ ϕ = Id
L(A)

and ϕ ◦ ϕ−1 = Id
η(A)

i.e. ϕ and ϕ−1 are inverses. Hence, ϕ is an isometric ∗-isomorphism:

L (A) ' η (A)
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Chapter 9

Pure states of A

In this chapter, we determine the pure states of A. We start by showing that
the C∗-closure of A is isomorphic to the algebra of compact operators. The
latter has been comprehensively studied and the form of its pure states is
well-known. As discussed in Chapter 1, a pre-C∗-algebra has the same pure
states as its closure; therefore, we arrive at the pure states of A via the pure
states of the algebra of compact operators.

9.1 The C∗-algebra of compact operators

We set out to prove that η (A) is isomorphic to the algebra

K := K
(
`2 (N0)

)
of compact operators on `2 (N0). To this end, consider the following from [3,
II.8.2]:

De�nition 9.1.1. An inductive system of C∗-algebras is a collection

{(Ai, φij) : i, j ∈ Ω, i ≤ j}

where Ω is a directed set, the Ai are C
∗-algebras, and φij : Ai → Aj is a

∗-homomorphism such that φik = φjk ◦ φij for i ≤ j ≤ k. Each φij is norm-

decreasing, so there is a naturally induced C∗-seminorm on the algebraic

direct limit de�ned, for a ∈ Ai, by

‖a‖ = lim
j>i
‖φij (a)‖ = inf

j>i
‖φij (a)‖

The completion of the algebraic limit (with elements of seminorm zero divided

out) is a C∗-algebra called the inductive limit of the system, denoted by

lim
→

(Ai, φij)
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There is a natural ∗-homomorphism φi from Ai to the inductive limit. If all

the connecting maps are injective (and hence isometric), the algebraic direct

limit may be thought of as the union of the Ai, and the inductive limit as the

completion of this union.

Let
Mk (C) (9.1)

denote the C∗-algebra of k×k matrices with complex entries, equipped with
matrix multiplication and complex transposition. Furthermore, let

φk,k+` : Mk (C)→Mk+` (C) (9.2)

be the ∗-homomorphism that acts on a k×k matrix by adding ` rows of zeros
and ` columns of zeros. Note that each φk,k+` is injective. In accordance
with De�nition 9.1.1 above,

M∞ (C) =
⋃
k≥1

Mk (C) (9.3)

is, by de�nition, the algebraic direct limit of the inductive system {(Mk, φk,k+`) : k, ` ∈ N}.
Then the inductive limit is the completion

lim
→

(Mk, φk,k+`) = M∞ (C) (9.4)

As seen in [3, II.8.2.2], this inductive limit is isomorphic to the C∗-algebra
of compact operators on `2 (N0), i.e.

M∞ (C) ' K (9.5)

Proposition 9.1.2. η (A) is isomorphic to K:

η (A) ' K

Proof. In Proposition 7.4.2, we have shown that A ' η (A), which allows us
to consider elements of A as in�nite-dimensional matrices. This enables us
to identifyMk (C) with a certain subalgebra of A for each k ≥ 1. Speci�cally,
for each k ≥ 1,

Mk (C) ' {f ∈ A : cmn = 0 whenever m ≥ k or n ≥ k}

We have not only Mk (C) ⊂ η (A) for each k ≥ 1 but also

M∞ (C) =
⋃
k≥1

Mk (C) ⊂ η (A)

Then (9.5) implies that
K ⊂ η (A) (9.1.2.1)
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To prove the reverse inclusion, we use Proposition 8.1.2 and note that all
Hilbert-Schmidt operators are compact operators:

η (A) ⊂ HS
(
`2 (N0)

)
⊂ K

This implies
η (A) ⊂ K (9.1.2.2)

Combining (9.1.2.1) and (9.1.2.2) gives the required result.

9.2 The pure states

Now we can use a result from [31, Section 5.1] that describes the pure states
of K to determine the pure states of A.

Proposition 9.2.1. Any unit vector ψ =
∞∑
n=0

ψnen ∈ `2 (N0) determines a

pure state ωψ of A as

ωψ (f) = 〈ψ, η (f)ψ〉`2 =
∞∑

m,n=0

ψ∗mψnamn

where f =
∞∑

m,n=0
amnfmn ∈ A. Moreover, any pure state of A comes from

such a unit vector.

Proof. As shown in Theorem 5.1.7 and Example 5.1.1 in [31], ifH is a Hilbert
space and K (H) is the C∗-algebra of compact operators on H, then the pure
states of K (H) are the vector states of the irreducible representation given
by

ωx : K (H)→ C : u 7→ 〈x, u (x)〉
where x is a unit vector in H and u ∈ K (H).

As discussed in Chapter 1, the pure states of A are uniquely determined
by those of its C∗-completion η (A). From Propositions 8.2.3 and 9.1.2, we
have

L (A) ' η (A) ' K
so that the pure states of A are exactly those of K. Therefore, the pure
states of A are the positive linear functionals

ωψ (f) = 〈ψ, η (f)ψ〉`2

where ψ is a unit vector in `2 (N0) and f ∈ A. Consider an arbitrary unit

vector ψ =
∞∑
n=0

ψnen ∈ `2 (N0), i.e.

‖ψ‖2`2 =
∞∑
n=0

|ψn|2 = 1
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Also, let f =
∞∑

m,k=0

amkfmk ∈ A be arbitrary. Then, using (8.4), we �nd that

ωψ (f) = 〈ψ, η (f)ψ〉`2

=

〈 ∞∑
n=0

ψnen, η (f)
∞∑
n=0

ψnen

〉
`2

=

〈 ∞∑
n=0

ψnen,
∞∑
n=0

ψn

∞∑
m=0

amnem

〉
`2

=

∞∑
m,n=0

ψ∗mψnamn

as required.

Proposition 9.2.2. The pure states of A are equivalently given by

ωψ (f) = (vn|L (f) vn)

where f ∈ A and each

vn := U∗ (ψ ⊗ en) (n ∈ N0)

is de�ned in terms of a unit vector ψ ∈ `2 (N0) and U from (8.10).

Proof. Let ψ =
∞∑
m=0

ψmem ∈ `2 (N0) be an arbitrary unit vector, i.e.

‖ψ‖2`2 =
∞∑
m=0

|ψm|2 = 1

Then
‖vn‖2 = ‖U∗ (ψ ⊗ en)‖2 = ‖ψ ⊗ en‖`2⊗`2 = ‖ψ‖`2 = 1

so that vn is a unit vector in L2
(
R2
)
. It follows from Propositions 8.2.2 and

9.2.1 that

(vn|L (f) vn) = 〈Uvn, UL (f)U∗Uvn〉`2⊗`2
= 〈ψ ⊗ en, (η (f)⊗ I) (ψ ⊗ en)〉`2⊗`2
= 〈ψ, η (f)ψ〉`2
= ωψ (f)

for all f ∈ A.
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Chapter 10

The spectral triple of the

Moyal plane

At last we are in a position to assemble the spectral triple of the Moyal
plane. In this chapter, we de�ne the constituents of our spectral triple and
use all the preparatory work in the prior chapters to prove that it satis�es
De�nition 1.1.1.

10.1 Construction

We consider the noncommutative involutive algebra A de�ned in (4.2.18) as

A := (S, ?)

Let
H := L2

(
R2
)
⊗ C2 (10.1)

be the complex vector space L2
(
R2
)
⊗ C2 equipped with the inner product

〈·, ·〉H : H ×H → C de�ned by

〈ψ, φ〉H :=

∫
(ψ∗1φ1 + ψ∗2φ2) dx (10.2)

for all ψ =

(
ψ1

ψ2

)
, φ =

(
φ1

φ2

)
∈ H with ψ1, ψ2, φ1, φ2 ∈ L2

(
R2
)
.

De�ne a Dirac operator D : D (D)→ H, with domain D (D) := S ⊗ C2, by

D := −iσj∂j = −i
√

2

(
0 ∂
∂ 0

)
(10.3)

where we use the Einstein convention of summing over repeated indices, and
where

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 i
−i 0

)
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are the Pauli matrices. Furthermore, we de�ne a mapping π : A → L (H)
such that

π (f) := L (f)⊗ I2 (10.4)

for all f ∈ A, where L is given by (8.9) and I2 denotes the 2 × 2 identity
matrix. The resulting operator acts on H such that

π (f)ψ =

(
L (f)ψ1

L (f)ψ2

)
=

(
f ? ψ1

f ? ψ2

)
∈ H (10.5)

for all ψ ∈ H, since f ? ψ1, f ? ψ2 ∈ L2
(
R2
)
by Proposition 7.4.3.

We will show that
(A,H,D) (10.6)

is a spectral triple as per De�nition 1.1.1.

10.2 Veri�cation

Proposition 10.2.1. H is a Hilbert space.

Proof. H is clearly an inner product space. The inner product 〈·, ·〉H induces
a norm on H:

‖ψ‖H =

√
‖ψ1‖22 + ‖ψ2‖22 (10.2.1.1)

To show that H is complete, let
(
ψ(m)

)
be an arbitrary Cauchy sequence

in H with ψ(m) =

(
ψ

(m)
1

ψ
(m)
2

)
. It is clear, from (10.2.1.1), that

(
ψ

(m)
1

)
and(

ψ
(m)
2

)
are Cauchy in L2

(
R2
)
. Since L2

(
R2
)
is complete, both

(
ψ

(m)
1

)
and(

ψ
(m)
2

)
converge in L2

(
R2
)
. Let ψ1, ψ2 ∈ L2

(
R2
)
denote these limits, i.e.

ψ
(m)
1 → ψ1 as m→∞

and
ψ

(m)
2 → ψ2 as m→∞

Using these limits, we de�ne ψ =

(
ψ1

ψ2

)
, which is clearly in H. From

(10.2.1.1), it follows that

ψ(m) → ψ ∈ H as m→∞

Since
(
ψ(m)

)
was an arbitrarily chosen Cauchy sequence in H, it follows that

every Cauchy sequence in H converges. Hence, H is complete and thus a
Hilbert space.
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Proposition 10.2.2. (π,H) is a faithful representation of A.

Proof. It follows directly from de�nition (10.4) and Proposition 8.2.1 that
π (f) ∈ B (H) for all f ∈ A and that π : A → B (H) is an injective ∗-
homomorphism. Hence, π is a faithful representation of A on H.

Proposition 10.2.3. D : D (D)→ H is symmetric.

Proof. Consider the derivatives ∂ and ∂ as operators in L2
(
R2
)
with domain

S. That is

∂ : S → L2
(
R2
)

: f 7→ 1√
2

(∂1 − i∂2) f

and

∂ : S → L2
(
R2
)

: f 7→ 1√
2

(∂1 + i∂2) f

Since S is dense in L2
(
R2
)
by Proposition 4.2.1, ∂ and ∂ are densely de�ned

and admit adjoint operators. For all f, g ∈ S, we have that

(f |∂∗g) = (∂f |g)

= 1/2

∫ (
∂f∗

)
g dx

= 1/2

∫
f∗
(
−∂g

)
dx

=
(
f |
(
−∂
)
g
)

(10.2.3.1)

Since S is dense in L2
(
R2
)
, it follows that D (D) := S ⊗ C2 is dense in H.

Therefore,
D : D (D)→ H

is densely de�ned. For all ψ, φ ∈ D (D), we have from (10.2.3.1) that

〈Dψ, φ〉H =

〈
−i
√

2

(
0 ∂
∂ 0

)(
ψ1

ψ2

)
,

(
φ1

φ2

)〉
H

=

〈
−i
√

2

(
∂ψ2

∂ψ1

)
,

(
φ1

φ2

)〉
H

=
(
−i
√

2
(
∂ψ2

)
|φ1

)
+
(
−i
√

2 (∂ψ1) |φ2

)
=
(
ψ1| − i

√
2
(
∂φ2

))
+
(
ψ2| − i

√
2 (∂φ1)

)
=

〈(
ψ1

ψ2

)
,−i
√

2

(
∂φ2

∂φ1

)〉
H

= 〈ψ,Dφ〉H

Thus D is symmetric on D (D).

117



Proposition 10.2.4. Let A,B be bounded linear operators on L2
(
R2
)
. Then∥∥∥∥[ A 0

0 B

]∥∥∥∥
op

= max{‖A‖op , ‖B‖op}

Proof. Let ψ1, ψ2 be arbitrary unit vectors in L
2
(
R2
)
and a, b ≥ 0 such that

a2 + b2 = 1. Then ψ =

(
aψ1

bψ2

)
is a unit vector in H, since

‖ψ‖2H =

∥∥∥∥( aψ1

bψ2

)∥∥∥∥2

H

= a2 ‖ψ1‖22 + b2 ‖ψ2‖22
= a2 + b2

= 1

Since any unit vector in H can be written in this form, we have∥∥∥∥( A 0
0 B

)
ψ

∥∥∥∥2

H

=

∥∥∥∥( aAψ1

bBψ2

)∥∥∥∥2

H

= a2 ‖Aψ1‖22 + b2 ‖Bψ2‖22
≤
(
a2 + b2

)
max{‖Aψ1‖2 , ‖Bψ2‖2}

2

= max{‖Aψ1‖2 , ‖Bψ2‖2}
2

The supremum in the operator norm is reached by choosing either a = 1, b =
0 or a = 0, b = 1 to �nd equality in the above equation, since both cases
return ‖ψ‖2H = 1:∥∥∥∥[ A 0

0 B

]∥∥∥∥
op

= sup
ψ∈H

{∥∥∥∥( A 0
0 B

)
ψ

∥∥∥∥
H

: ‖ψ‖H = 1

}
= max{‖A‖op , ‖B‖op}

Proposition 10.2.5. [D,π (f)] : D (D)→ H is bounded for all f ∈ A.

Proof. Let f ∈ A be arbitrary. First, note that for all ψ1 ∈ A and j = 1, 2,
we have from Proposition 4.2.3 that

[∂j , L (f)]ψ1 = ∂jL (f)ψ1 − L (f) ∂jψ1

= ∂j (f ? ψ1)− f ? ∂jψ1

= (∂jf) ? ψ1

= L (∂jf)ψ1
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This gives

[∂, L (f)] =
1√
2

[∂1, L (f)]− i√
2

[∂2, L (f)]

=
1√
2
L (∂1f)− i√

2
L (∂2f)

= L (∂f) (10.2.5.1)

and similarly [
∂, L (f)

]
= L

(
∂f
)

(10.2.5.2)

on S. Using (10.2.5.1) and (10.2.5.2), we �nd that for all ψ ∈ S ⊗ C2

[D,π (f)]ψ = Dπ (f)ψ − π (f)Dψ

= −i
√

2

(
0 ∂
∂ 0

)(
L (f)ψ1

L (f)ψ2

)
+ i
√

2 π (f)

(
∂ψ2

∂ψ1

)
= −i

√
2

(
∂L (f)ψ2 − L (f) ∂ψ2

∂L (f)ψ1 − L (f) ∂ψ1

)
= −i

√
2

(
0

[
∂, L (f)

]
[∂, L (f)] 0

)(
ψ1

ψ2

)
= −i

√
2

(
0 L

(
∂f
)

L (∂f) 0

)
ψ

Thus for all f ∈ A

[D,π (f)] = −i
√

2

(
0 L

(
∂f
)

L (∂f) 0

)
(10.2.5.3)

on S ⊗ C2.

Now we can calculate the norm. Note that B (H) is a C∗-algebra with
the operator norm a C∗-norm. Since S is dense in L2

(
R2
)
, we can use

Proposition 10.2.4, together with (10.2.5.3), to �nd

‖[D,π (f)]‖2op = ‖[D,π (f)]∗ [D,π (f)]‖op

= 2

∥∥∥∥( L (∂f)∗ L (∂f) 0

0 L
(
∂f
)∗
L
(
∂f
) )∥∥∥∥

op

= 2 max

{∥∥∥L (∂f)∗ L (∂f)
∥∥∥
op
,
∥∥∥L (∂f)∗ L (∂f)∥∥∥

op

}
= 2 max

{
‖L (∂f)‖2op ,

∥∥L (∂f)∥∥2

op

}
Thus,

‖[D,π (f)]‖op =
√

2 max
{
‖L (∂f)‖op ,

∥∥L (∂f)∥∥
op

}
(10.2.5.4)
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We know, from Proposition 8.2.1, that L (f) ∈ B
(
L2
(
R2
))

for all f ∈ A.
This implies that both norms in the maximum are �nite, so that ‖[D,π (f)]‖op
is �nite. Hence, [D,π (f)] is a bounded operator for all f ∈ A.

Corollary 10.2.6. (A,H,D) is a spectral triple.

Proof. Corollary 4.2.12 shows that A is an involutive algebra. Propositions
10.2.1 and 10.2.2 show that π is a faithful representation of A on the Hilbert
space H. Proposition 10.2.3 proves that D : D (D)→ H is a symmetric op-
erator and Proposition 10.2.5 proves that [D,π (f)] : D (D)→ H is bounded
for every f ∈ A. Hence, (A,H,D) satis�es De�nition 1.1.1 for a spectral
triple.
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Chapter 11

The spectral distance on the

Moyal plane

In this chapter, we explicitly calculate the spectral distance between certain
pure states of A. The �rst step toward calculating the spectral distance is
to conveniently characterise the unit ball, which is de�ned as

BD :=
{
a ∈ A : ‖[D,π (a)]‖op ≤ 1

}
(11.1)

We do so by investigating the relation between the coe�cients of an arbitrary
a ∈ A and those of [D,π (a)] when expanding in the matrix basis. We start
by �nding a more convenient expression for the norm. De�ne ‖·‖L : A→ R+

such that
‖a‖L := ‖L (a)‖op

for all a ∈ A. Note that ‖·‖L is clearly a C∗-norm on A, because ‖·‖op is a
C∗-norm and L is a faithful representation of A by Proposition 8.2.1. Then
we can write (10.2.5.4) as

‖[D,π (a)]‖op =
√

2 max
{
‖∂a‖L ,

∥∥∂a∥∥
L

}
(11.2)

for all a ∈ A.

Next, we �nd the relation between coe�cients of an arbitrary a ∈ A and
those of ∂a and ∂a. Note that ∂a, ∂a ∈ A whenever a ∈ A; therefore, we
can expand them in terms of our basis. If

a =
∞∑

m,n=0

amnfmn ∈ A

then we let

∂a :=
∞∑

m,n=0

αmnfmn ; ∂a :=

∞∑
m,n=0

βmnfmn (11.3)
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Proposition 11.0.1. The coe�cients of ∂a and ∂a, as per (11.3), can be

expressed as functions of the coe�cients of a ∈ A by

(1) αm+1,n =
√

1/2 (n+ 1)am+1,n+1 −
√

1/2 (m+ 1)am,n

(2) α0,n =
√

1/2 (n+ 1)a0,n+1

(3) βm,n+1 =
√

1/2 (m+ 1)am+1,n+1 −
√

1/2 (n+ 1)am,n

(4) βm,0 =
√

1/2 (m+ 1)am+1,0

for all m,n ∈ N0.

Proof. Let a =
∞∑

m,n=0
amnfmn ∈ A. Using Proposition 6.5.4, we �nd the

derivative

∂a = ∂

 ∞∑
m,n=0

amnfmn


=

∞∑
m,n=0

amn

(√
n/2fm,n−1 −

√
1/2 (m+ 1)fm+1,n

)
=

∞∑
m,n=0

am,n+1

√
1/2 (n+ 1)fmn −

∞∑
m,n=0

am−1,n

√
m/2fmn

=
∞∑

m,n=0

(
am,n+1

√
1/2 (n+ 1)− am−1,n

√
m/2

)
fmn

Comparing this expression to ∂a :=
∞∑

m,n=0
αmnfmn from (11.3), we see that

αmn =
√

1/2 (n+ 1)am,n+1 −
√
m/2am−1,n

for all m,n ∈ N0, where a negative index means the coe�cient is zero. This
proves both (1) and (2). Similarly,

∂a = ∂

 ∞∑
m,n=0

amnfmn


=

∞∑
m,n=0

amn

(√
m/2fm−1,n −

√
1/2 (n+ 1)fm,n+1

)
=

∞∑
m,n=0

(
am+1,n

√
1/2 (m+ 1)− am,n−1

√
n/2

)
fmn
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Comparing this expression to ∂a :=
∞∑

m,n=0
βmnfmn from (11.3), we see that

βmn =
√

1/2 (m+ 1)am+1,n −
√
n/2am,n−1

for all m,n ∈ N0, which proves (3) and (4).

The following proposition exhibits some necessary constraints for an ele-
ment in A to belong to the unit ball BD. We present the constraints on the
coe�cients of the derivatives ∂a and ∂a but they can easily be transferred
to equivalent constraints on the coe�cients of a via Proposition 11.0.1.

Proposition 11.0.2. If a ∈ BD, then
∞∑
p=0

|αmp| |ϕpn| ≤
1√
2

and

∞∑
p=0

|βmp| |ϕpn| ≤
1√
2

for all m,n ∈ N0 and any unit vector ϕ =
∞∑

m,n=0
ϕmnfmn ∈ L2

(
R2
)
.

Proof. Let a ∈ BD and ∂a, ∂a as in (11.3). Also, let ϕ =
∞∑

m,n=0
ϕmnfmn be

an arbitrary unit vector in L2
(
R2
)
, i.e.

‖ϕ‖22 =

∥∥∥∥∥∥
∞∑

m,n=0

ϕmnfmn

∥∥∥∥∥∥
2

2

=
∞∑

m,n=0

|ϕmn|2 = 1 (11.0.2.1)

Using (7.8), where we de�ned the Moyal product between elements in L2
(
R2
)
,

we �nd

‖∂a ? ϕ‖22 =

∥∥∥∥∥∥
∞∑

m,n=0

αmnfmn ?
∞∑

m,n=0

ϕmnfmn

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∞∑

m,n=0

 ∞∑
p=0

αmpϕpn

 fmn

∥∥∥∥∥∥
2

2

=

∞∑
m,n=0

∣∣∣∣∣∣
∞∑
p=0

αmpϕpn

∣∣∣∣∣∣
2

(11.0.2.2)

Now note that by de�nition (11.1), a ∈ BD implies ‖[D,π (a)]‖op ≤ 1, which

in turn implies ‖∂a‖L ≤
1√
2
by (11.2). From the de�nition of ‖·‖L, we then

have

‖∂a‖L = sup
06=b∈L2(R2)

{
‖∂a ? b‖2
‖b‖2

}
≤ 1√

2
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In particular,
‖∂a ? ϕ‖22
‖ϕ‖22

≤ 1

2

After substituting (11.0.2.1) and (11.0.2.2), the inequality reads

∞∑
m,n=0

∣∣∣∣∣∣
∞∑
p=0

αmpϕpn

∣∣∣∣∣∣
2

≤ 1

2

Since the summations with respect to m and n contain only nonnegative
terms, the inequality holds, in particular, for each summand separately. Con-
sequently, for all m,n ∈ N0, ∣∣∣∣∣∣

∞∑
p=0

αmpϕpn

∣∣∣∣∣∣ ≤ 1√
2

(11.0.2.3)

Now, �x m ∈ N0 and de�ne ϕ̃m =
∞∑

p,n=0
ϕ̃mpnfpn ∈ L2

(
R2
)
such that

ϕ̃mpn := e−i arg(αmp) |ϕpn| for all p, n ∈ N0

ϕ̃m is a unit vector in L2
(
R2
)
:

‖ϕ̃m‖22 =

∥∥∥∥∥∥
∞∑

p,n=0

ϕ̃mpnfpn

∥∥∥∥∥∥
2

2

=
∞∑

p,n=0

∣∣ϕ̃mpn∣∣2
=

∞∑
p,n=0

∣∣∣e−i arg(αmp) |ϕpn|
∣∣∣2

=
∞∑

p,n=0

|ϕpn|2

= 1

Since (11.0.2.3) holds for any unit vector in L2
(
R2
)
, it holds speci�cally for

ϕ̃m, i.e. ∣∣∣∣∣∣
∞∑
p=0

αmpϕ̃
m
pn

∣∣∣∣∣∣ ≤ 1√
2

(11.0.2.4)

for all n ∈ N0. Note that∣∣∣∣∣∣
∞∑
p=0

αmpϕ̃
m
pn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
p=0

αmpe
−i arg(αmp) |ϕpn|

∣∣∣∣∣∣ =
∞∑
p=0

|αmp| |ϕpn| (11.0.2.5)
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Substituting (11.0.2.5) in (11.0.2.4) gives

∞∑
p=0

|αmp| |ϕpn| ≤
1√
2

for all n ∈ N0

We can repeat this same procedure for any m ∈ N0 because m was chosen
arbitrarily. Thus, we conclude that

∞∑
p=0

|αmp| |ϕpn| ≤
1√
2

for all m,n ∈ N0

as required. An analogous argument for ∂a proves the inequality for the
coe�cients βmp.

Proposition 11.0.3. If a ∈ BD, then

|αmn| ≤
1√
2

and |βmn| ≤
1√
2

for all m,n ∈ N0.

Proof. Let a ∈ BD. Fix k, ` ∈ N0 and de�ne φ =
∞∑

m,n=0
φmnfmn such that

φmn :=

{
1 if m = k and n = `

0 otherwise

Then φ is a unit vector in L2
(
R2
)
, since

‖φ‖22 =

∥∥∥∥∥∥
∞∑

m,n=0

φmnfmn

∥∥∥∥∥∥
2

2

=
∞∑

m,n=0

|φmn|2 = |φk`|2 = 1

Since a ∈ BD, Proposition 11.0.2 holds for any unit vector and for all m,n ∈
N0. In particular, it holds for our unit vector φ and our �xed ` ∈ N0.
Therefore,

∞∑
p=0

|αmp| |φp`| ≤
1√
2

for all m ∈ N0. The de�nition of φ gives

∞∑
p=0

|αmp| |φp`| = |αmk| |φk`| = |αmk|

which simpli�es the previous inequality to

|αmk| ≤
1√
2

for all m ∈ N0
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Since k was chosen arbitrarily, it holds that

|αmk| ≤
1√
2

for all m, k ∈ N0

as required. A similar argument shows that

|βmk| ≤
1√
2

for all m, k ∈ N0

Unfortunately, the spectral distance is not calculable between all the pure
states of A. However, it can be calculated between those pure states that
are determined by unit vectors with only one nonzero component. These
pure states correspond to the diagonal elements of A. Remember that we
only have to search the supremum in the spectral distance over self-adjoint
elements of A as per Lemma 1.3.2. We assume a∗ = a and only consider
elements in Asa. This implies that (∂a)∗ =

(
∂a
)
, i.e. αnm = βmn for all

m,n ∈ N0. The pure states of A are the vector states of η (A) on `2 (N0), as
per Proposition 9.2.1. For unit vectors ψ = em, the pure states are given by

ωm (a) = 〈em, aem〉`2
= amm

for all m ∈ N0. Finally, we can calculate the spectral distance between these
pure states.

Proposition 11.0.4. The spectral distance between pure states ωm and ωn
such that n < m is

d (ωm, ωn) =

m∑
k=n+1

1√
k

Proof. For any a =
∞∑

m,n=0
amnfmn ∈ Asa with ∂a =

∞∑
m,n=0

αmnfmn, Proposi-

tion 11.0.1 implies that

ωn+1 (a)− ωn (a) = an+1,n+1 − an,n =

√
2

n+ 1
αn+1,n (11.0.4.1)

for all n ∈ N0. Also, Proposition 11.0.3 shows that for any a ∈ BD

|αmn| ≤
1√
2

(11.0.4.2)

for all m,n ∈ N0. Combining (11.0.4.1) and (11.0.4.2), we �nd that for any
a ∈ BD

|ωn+1 (a)− ωn (a)| =
√

2

n+ 1
|αn+1,n| ≤

1√
n+ 1

(11.0.4.3)
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for all n ∈ N0. In the spectral distance formula, (11.0.4.3) implies that

d (ωn+1, ωn) ≤ 1√
n+ 1

(11.0.4.4)

for all n ∈ N0. For the spectral distance d (ωm, ωn), repeated application of
the triangle inequality, together with the inequality (11.0.4.4), gives

d (ωm, ωn) ≤ d (ωm, ωn+1) + d (ωn+1, ωn)

≤
m∑

k=n+1

d (ωk, ωk)

≤
m∑

k=n+1

1√
k

(11.0.4.5)

for all m,n ∈ N0 such that n < m.

If we can �nd an a ∈ BD such that the upper bound in (11.0.4.5) is
attained, then this upper bound is exactly the supremum in the spectral

distance formula. To this end, consider the function a(m) =
∞∑

p,q=o
a

(m)
pq fpq

with coe�cients de�ned by

a(m)
pq := −δpq

m∑
k=p

1√
k + 1

(11.0.4.6)

for all p, q ∈ N0, where an empty sum is equal to zero. Note that
(
a

(m)
pq

)∞
p,q=0

is a rapid decay sequence, since only �nitely many terms are nonzero. Thus

a(m) ∈ A. Also,
(
a

(m)
pq

)∞
p,q=0

is diagonal in the matrix basis.

First, we show that a(m) ∈ BD. Let ∂a(m) =
∞∑

p,q=0
α

(m)
pq fpq. The co-

e�cients of ∂a(m) are related to those of a(m) as per Proposition 11.0.1.
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Applying (11.0.4.6) gives: For all p, q ∈ N0,

α
(m)
p+1,q =

√
1/2 (q + 1)a

(m)
p+1,q+1 −

√
1/2 (p+ 1)a(m)

p,q

=


0 if q 6= p

0 if q = p > m√
1/2 (p+ 1)

(
−

m∑
k=p+1

1√
k+1

+
m∑
k=p

1√
k+1

)
if q = p ≤ m

=


0 if q 6= p

0 if q = p > m√
1/2 (p+ 1)

(
1√
p+1

)
if q = p ≤ m

=

{
1√
2

if q = p ≤ m
0 otherwise

(11.0.4.7)

Now, for any ψ =
∞∑

p,q=0
ψpqfpq ∈ L2

(
R2
)
, we use (11.0.4.7) to �nd

∥∥∥∂a(m) ? ψ
∥∥∥2

2
=

∥∥∥∥∥∥
∞∑

p,q=0

α(m)
pq fpq ?

∞∑
p,q=0

ψpqfpq

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∞∑

p,q=0

( ∞∑
r=0

α(m)
pr ψrq

)
fpq

∥∥∥∥∥∥
2

2

=

∞∑
p,q=0

∣∣∣∣∣
∞∑
r=0

α(m)
pr ψrq

∣∣∣∣∣
2

=

∞∑
p,q=0

∣∣∣α(m)
p,p−1ψp−1,q

∣∣∣2
=

∞∑
p,q=0

∣∣∣α(m)
p+1,pψpq

∣∣∣2
=

∣∣∣∣ 1√
2

∣∣∣∣2 m∑
p=0

∞∑
q=0

|ψpq|2

≤ 1

2

∞∑
p,q=0

|ψpq|2

=
1

2
‖ψ‖22
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In the de�nition of ‖·‖L, this inequality implies that∥∥∥∂a(m)
∥∥∥
L

= sup
06=ψ∈L2(R2)

{∥∥∂a(m) ? ψ
∥∥

2

‖ψ‖2

}

≤ 1√
2

sup
06=ψ∈L2(R2)

{
‖ψ‖2
‖ψ‖2

}
=

1√
2

(11.0.4.8)

Since
(
a(m)

)∗
= a(m), we have that

(
∂a(m)

)∗
= ∂a(m). Then it follows from

the fact that ‖·‖L is a C∗-norm that∥∥∥∂a(m)
∥∥∥
L

=
∥∥∥(∂a(m)

)∗∥∥∥
L

=
∥∥∥∂a(m)

∥∥∥
L

(11.0.4.9)

Finally, using (11.0.4.8) and (11.0.4.9), we �nd that∥∥∥[D,π (a(m)
)]∥∥∥

op
=
√

2 max
{∥∥∥∂a(m)

∥∥∥
L
,
∥∥∥∂a(m)

∥∥∥
L

}
=
√

2 max
{∥∥∥∂a(m)

∥∥∥
L

}
≤
√

2√
2

= 1 (11.0.4.10)

Hence, a(m) ∈ BD.

Next, we show that the upper bound in (11.0.4.5) is reached by a(m).
Consider that

ωp+1

(
a(m)

)
− ωp

(
a(m)

)
= a

(m)
p+1,p+1 − a

(m)
p,p

= −
m∑

k=p+1

1√
k + 1

+
m∑
k=p

1√
k + 1

=
1√
p+ 1

for all p ≤ m− 1. Then, for any m > n,∣∣∣ωm (a(m)
)
− ωn

(
a(m)

)∣∣∣ =

∣∣∣∣∣
m∑

k=n+1

(
ωk

(
a(m)

)
− ωk−1

(
a(m)

))∣∣∣∣∣
=

∣∣∣∣∣
m∑

k=n+1

1√
k

∣∣∣∣∣
=

m∑
k=n+1

1√
k
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Thus, the upper bound in (11.0.4.5) is attained by a(m). Together with the
fact that a(m) ∈ BD by (11.0.4.10), this implies that

d (ωm, ωn) =

m∑
k=n+1

1√
k

whenever n < m, as required.

Notice that the distance between nearest points ωk and ωk−1 is

d (ωk, ωk−1) =
1√
k

Furthermore, if p < q, then the distance between ωq and ωp is the sum over
the path joining the two points, i.e.

d (ωq, ωp) =

q∑
k=p+1

d (ωk−1, ωk)

In other words, for any n such that p < n < q, ωn is a middle point between
ωp and ωq. In this case, the triangle inequality becomes an equality:

d (ωq, ωp) = d (ωq, ωn) + d (ωn, ωp)

Wemay interpret this geometrically: The points corresponding to the speci�c
pure states that we considered lie in a straight line in our noncommutative
geometry - the Moyal plane.
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Outlook

We conclude this dissertation by discussing possibilities for future study and
mentioning a few applications of noncommutative geometry in physics.

After describing the Moyal plane by a spectral triple, we computed the
spectral distance only between certain pure states. Our restriction to the
pure states was based on the fact that pure states correspond to points in
the commutative case. However, there are instances where purity of state
does not seem to be an adequate criteria for characterising a point in a non-
commutative geometry. For example, in the cut-o� geometries developed in
[13], one is forced to approximate the pure states by non-pure states. The
spectral distance between pure states is in�nite and is made �nite by trun-
cating the pure states, thus yielding non-pure states. Also, as explained in
[25], the product of a manifold by C2 allows the Pythagoras equality to hold
between pure states. In the Moyal plane, the same equality holds between all
translated states independent of the purity of state. It is thus worthwhile to
investigate the spectral distance in the Moyal plane between arbitrary states
and to consider other classes of states, such as coherent states and normal
states.

As explained in [40], the principle of gravitational stability against lo-
calisation leads us to expect a quantised spacetime at the Planck scale. In
many models of quantum gravity, a noncommutative spacetime is de�ned by
replacing the spacetime coordinates by the generators of a noncommutative
C∗-algebra of operators that obey certain commutation relations. The in-
duced uncertainty relation implies the existence of a minimal length scale.
In order to accommodate a quantised length, these models de�ne a quantum
length operator. In [27] it is shown that between certain classes of states,
the spectral distance and the quantum length capture the same metric in-
formation.

One of the �rst concrete examples of physics in noncommutative space-
time was Yang-Mills theory on a noncommutative torus [10]. Since then,
many attempts have been made to interpret the Standard Model in terms
of noncommutative geometry. [40] provides an account of the most recent
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developments in noncommutative quantum �eld theory and its ties to string
theory and gravity.

In the theory of optimal transport, Connes's spectral distance appears as
a noncommutative version of the Wasserstein distance of order 1 [36]. In [25],
it is suggested that this view a�ords the possibility of the spectral distance
providing an interpretation of the Higgs �eld as a cost function on spacetime.

One of the most successful applications of noncommutative geometry ap-
pears in the study of the integer quantum Hall e�ect. Within Connes's for-
malism, [2] shows that the Hall conductivity is quantised and that plateaux
occur when the Fermi energy varies in a region of localised states.

Spectral triples have been applied to physical models in string theory.
A noncommutative σ-model is explored in [28], where the parameter space
and the target space are noncommutative tori. It should be interesting to
attempt similar constructions for other noncommutative spaces.

In [14], we studied noncommutative Ricci �ow in a simple matrix geom-
etry, namely a �nite-dimensional representation of a noncommutative torus.
Future work could include the study of Ricci �ow in other noncommutative
geometries.
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