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Summary

In this thesis, we study the homogenization of a stochastic model of groundwater
pollution in periodic porous media and the homogenization of a stochastic model

of a single-phase fluid flow in partially fissured media.

In the first study, we investigated the flow of a fluid carrying reacting substances
through a porous medium. We modeled this flow using a coupled system of equa-
tions; the velocity of the fluid is modeled using steady Stokes equations, the con-
centration of the solute while being moved by the fluid under the action of ran-
dom forces is modeled by a stochastic convection-diffusion equation driven by a
Wiener type random force and the concentration of the solute on the surface of
the pore skeleton is modeled using reaction-diffusion equations. The homogeniza-
tion process was carried out using the multiple scale expansion, Tartar’s method
of oscillating test functions and stochastic calculus together with deep probability
compactness results due to Prokhorov and Skorokhod. This part of the thesis is
the first in the scientific literature dealing with the important problem of ground-
water pollution using stochastic partial differential equations. Our results in this
regard are original. Also as a by-product of our work, we establish the first ho-

mogenization result for stochastic convection-diffusion equation

The second study is devoted to a single-phase flow under the influence of external

random forces through partially fissured media arising in reservoir engineering (oil



and gas industries). We undertake to model this flow using a system of nonlinear
stochastic diffusion equations with monotone operators in the pore system and the
fissure system; on the interface of the pores and fissures, we prescribe transmis-
sion boundary conditions. We carried out the homogenization process using the
two-scale convergence method, Prokhorov- Skorokhod compactness process and
Minty’s monotonicity method. While some works have been undertaken in the
deterministic case and in the case of nonlinear diffusion equations with randomly
oscillating coefficients, our work is novel in the sense that it uses the more ad-
vanced tool of stochastic partial differential equations driven by random forces to
investigate the influence of random fluctuations on the flow. To the best of our
knowledge, our work also initiates the study of stochastic evolution transmission

problems by means of homogenization.



Abstract

This thesis is split into three mains parts focused on the homogenization of stochas-
tic partial differential equations.

The first part (chapter 1) contains the introduction of the research work and im-
portant preliminary results used in the research. The main body of the work is

contained in chapters two and three.

In the second part (chapter 2), we study the homogenization of a stochastic model
of a flow carrying reacting particles through a periodic porous medium. The
model is a coupled system of stochastic diffusion-convection, steady Stokes and
reaction-diffusion equations in a perforated domain. We use different homogeniza-
tion techniques namely: Tartar’s method of oscillating test functions together with
some results in probability theory including Prokhorov and Skorokhod compact-
ness results and the method of asymptotic expansion to derive the homogenized

system of equations.

In the third part (chapter 3), we study the homogenization of a stochastic model
for flow of a single-phase fluid through a partially fissured porous medium. The
model is a double-porosity model with two flow fields, one associated with the
system of fissures and the other associated with the porous system. We use Nguet-
seng’s two-scale convergence, Prokhorov and Skorokhod compactness process and

Minty’s monotonicity method to derive the homogenized stochastic model.
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Notations

For the reader’s convenience, listed here are some symbols, sets and function spaces

used throughout this dissertation. Let U be an open bounded set in R with n € N;

U : An open bounded subset of R".

|U| : The Lebesgue measure of U.
e OU : The boundary of U.
e C'(U): The space of continuous functions u : U — R.

e Cy(U) : The space of continuous functions v : U — R with compact support

contained in U.
e C(U): The space of all infinitely differentiable functions v : U — R.

e C°(U) or D(U) : The space of all infinitely differentiable functions with

compact support contained in U.
e Cy(R™) : The space of continuous functions converging to zero at infinity.
o YV V), Y5 ..., Y, : Unit cells in R".
e (> (Y): The restriction to Y of functions in C*°(R™) that are Y-periodic.

per

e LP(U)— the space of measurable functions {v|v : U — R} such that [;; |[v|Pdz <

0.

1
] Forp = 2 U v L2(U fU d!L‘ ||u||L2 = (U,U)EQ(U).



L>*(U)— the space of essentially bounded functions in U.

LP(0,T; X)— the space of measurable function ¢ : t € [0,T] — ¢(t) € X
such that ||¢||x € LP(0,T), where X is any Banach space.

(") x' x— the duality pairing between a Banach space X and its dual X "
WP (U) — {66 € L(U), 2 € LP(U),i = 1, .., n}.

HYU) = W(U) —{¢l¢ € L*(U), §2 € L*(U),i = 1,...,n}.

(u, )y = (U, ) 2y + (Vu, Vo) p2 .

Let V={u e C*(U);u=0o0n Ipaeon (0,7)}and V = closure of ¥V in H'(U).

where C§°(U) denotes the space of infinitely differential functions in U.

a.s.— almost surely.

i
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Chapter 1

Introduction

1.1 Introduction

Homogenization in general, is a mathematical theory in the field of partial differ-
ential equations used to study differential operators with rapidly oscillating coef-
ficients, which can be deterministic as well as random, boundary value problems
with rapidly varying boundary conditions, equations in perforated domains and
many other types of equations with theoretical and practical importance which
arise in connection with processes taking place in heterogeneous materials/media.
Heterogeneous materials can be described as having two length scales, the macro-
scopic scale and the microscopic scale. The theory of homogenization enables one
to determine the macroscopic behaviour of processes occurring in a heterogeneous
material while taking into account the behaviour of the material at the microscopic

level.

The study of heterogeneous media is of great importance since they are often
encountered in fields such as physics, chemistry, material science and engineering
disciplines. Some examples of heterogeneous materials include composite materi-
als and porous materials. Composite materials are materials made by combining

two or more different materials with individual physical or chemical properties,



resulting in a material with unique desired properties, like concrete, plastic and
Carbon-Fiber-Reinforced Polymer (CFRP), while porous materials are materials
consisting structurally of pores, voids or holes such as rocks, aquifers and reser-
voirs. The focus of this research is on the latter so we elaborate a little more on

it.

The pores in porous materials are filled with fluid (gas or liquid) or they allow
external substances such as particles or fluid to pass through them. The skele-
tal part of a porous material is called a frame or matrix, this part is usually
solid. However, materials like foam can be analyzed using the idea of porous
media. Different physical or chemical phenomena occur in porous media and un-
derstanding these processes require an appreciation of the interaction among them.
Examples of these processes include chemical reaction, mass transport and adsorp-
tion/desorption processes. Fluid flow through porous media is a subject of great
interest in theoretical and applied science and it has become a separate field of
study. We refer to the monograph [14], by Bear for an authoritative source on
the foundations of flow through porous media and to [54] by Ganji and Kachapi
for nanofluid flow in porous media. An example of flow through porous media is
groundwater flow, a fundamental problem which goes far beyond academic interest
and is related to the very existence of humanity. Research in this direction has
therefore attracted the attention of leading scholars in applied sciences; this will

be the focus of the next chapter.

Among the porous systems encountered in nature, many are found to be frac-
tured/fissured. These fissured porous media are made up of permeable and porous
blocks interlaced by a system of fissures, the porous blocks make up the matrix
of the media. Their major characteristic is that bulk of the transport happens in
the system of fissures while the pores are responsible for significant fluid storage.
They were first studied by reservoir engineers in petroleum engineering since most
petroleum reservoirs are found in rock formations with fractures and pores. In

addition to petroleum reservoirs, some groundwater resources are also fractured.



Hence, flow of fluid in fractured rock has attracted the attention of scientists and
engineers due to the growing concerns of water quality and groundwater pollution.
Fissured porous media are differentiated by the extent to which the system of
fissures are developed within the medium. In a case where the system of fissures
are well developed to the extent that they separate the matrix into individual
porous rocks, the medium is called a totally fissured medium. In a totally fissured
medium, it is assumed that fluid cannot flow from a porous block into another
without passing through the fissures, hence there is no flow within the porous ma-
trix, only through the fissures. A fissured medium where the system of fissures are
less developed and the porous rocks may be connected, leading to some amount
of flow within the matrix and through the fissures, is called a partially fissured
medium, see Figure 1.1 for an illustration. We refer to [16], [2], [47], [58] (Chapter
9) and [113] for more on flow through fissured media. This type of heterogeneous

medium will be the focus of chapter 3.

porous

fissures

Figure 1.1: An illustration of a partially fissured material

To mathematically describe a periodic porous medium, we can say that at the
microscopic scale, the porous medium consists of periodically repeating solid par-
ticles surrounded by the pores. The pore space forms a domain where a fluid
(liquid or gas) flows through, while the obstacles are the perforations or holes in
the domain. We assume that its properties on the microscopic scale depend on a

small parameter e which is the length scale of the micro structure. For simplicity,



the micro structure of a porous medium can be described by a unit cell which is
repeated periodically in one or more directions. However, there are periodic micro
structures whose periodicity cells are not represented by unit quadrilaterals.

In the case of fissured porous media, even though they may behave like porous
media with regard to fluid flow and transport, they are treated and modeled dif-
ferently since the contribution from the fissures and the fluid storage in the pores

have to be taken into consideration, (see Chapter 9 by Showalter in [58] for more).

Processes and phenomena such as temperature, elasticity, molecular transport or
chemical reaction taking place in heterogeneous media can be modeled using par-
tial differential equations with the heterogeneities captured by rapid oscillations
in the coefficients of the equations or by boundary values problems in perforated
domains as in the case of porous media; these equations are modeled on the micro
structure of the media. Solutions to these micro models are almost impossible to
compute, hence the need to derive macroscopic models without oscillations that
will capture the properties in the micro structure. The process by which these

macro models are derived is known as homogenization.

Various differential equations arise in the theory of homogenization depending on
the phenomena and type of material being modeled with periodic and non-periodic
structures. To some extent, the theory can be considered a matured field as a far
as deterministic problems are concerned, thanks to the development of different
methods of homogenization, e.g. the method of asymptotic expansion [73], [114],
[71], G-convergence by Spagnolo [123], H-convergence by L. Tartar and F. Murat
[128], [87], [89], I-convergence by De Giorgi [45], [124], [43], Tartar’s method of os-
cillating test functions introduced by L. Tartar and F. Murat [128], div-curl lemma
by L. Tartar and F. Murat [131], [132], [62], Compensated compactness [131], [88],
[90], H-measures [133], [130] and two-scale convergence by Nguetseng [91] which
was further developed by Allaire [3], to mention a few. The monographs [11], [19],
[32], [62], [78], [99] are great sources of wealth for the methods elaborated and

results obtained over several decades.



The first rigorous investigations of homogenization of partial differential equations
were undertaken by Soviet mathematicians Marchenko and Khruslov [79] in the
early 1960s. They considered heterogeneous media with fined grained boundaries
without any assumption of periodicity. Their tools of investigation were potential
analysis and later variational methods. Afterwards, the theory of homogenization
gained prominence in the 1970s and is still today, a fundamental component of

applied mathematics.

There are a variety of works on deterministic models for different phenomena
in porous media. However, some of the assumptions made in these type of models
are different from what is encountered in practice. In man-made systems, phys-
ical /chemical processes and phenomena may be controlled, but in nature there
are many unknown factors that may affect phenomena and processes. J. Bear
in [13] observes that many of the uncertainties linked to modelling may be as
a consequence of numerous heterogeneity of subsurface domains. In geological
formations for instance, the heterogeneities can be captured in permeability and
porosity values. These values are usually observed at a few locations even though
they show a high degree of spatial variability at all length scales. A combination of
the large spatial heterogeneity with a relatively small amount of observation lead
to uncertainties about the values of the formation properties which then results
in uncertainties in predicting or estimating the flow in these type of formations.
The theory of stochastic processes provides a natural method for evaluating uncer-
tainties. A random process or stochastic process is used to quantify uncertainty
associated with a phenomenon or physical/chemical process. For more on ex-
tensive discussions on modelling uncertainties in porous medium, we refer to the

monographs of Bear and Cheng [13] and Zhang [142].

As mentioned above, numerous uncertainties are encountered when modelling
physical /chemical processes or phenomena in natural systems. Some of the data

obtained for modelling these systems are contaminated with systemic noise, the



type of models that capture these noise are called stochastic models, see for in-
stance [134]. Motivated by these considerations the homogenization of partial
differential equations with random coefficients was pioneered in the works of Ko-
zlov [67] and Papanicolaou and Varadhan [100] and the methods elaborated formed
the basis for subsequent research in random homogenization by many authors, for
instance [17], [18], [27], [28], [42], [48], [53], [102], [66], [68]; just to cite a few.
However for an even more accurate modelling of phenomena subjected to random
fluctuations, the framework of stochastic partial differential equations (SPDEs)
driven by noises generated by stochastic processes such as Wiener processes had
to be considered. This led to the emergence of a new direction in homogenization;
namely the homogenization of SPDEs which was pioneered in the work of Ben-
soussan in [20] and followed among others by [115], [60], [61], [117], [107], [108],
[137] and some recent works on homogenization of stochastic Stokes equation in
[23] and [24]; these works deal with parabolic-like SPDEs. The homogenization of
hyperbolic SPDEs is far more recent and the premises can be found in [85], [86],
for instance. Motivated by these considerations, modelling processes taking place
in porous media using stochastic partial differential equations is of both practical
and theoretic importance. This will be the central topic of the research undertaken
in this thesis, through a blending of advanced tools from probability (stochastic

calculus, probabilistic compactness results) and the theory of homogenization.

1.2 Preliminaries

1.2.1 Function Spaces

This section contains some definitions of function spaces needed throughout the
thesis. These spaces are classical and have been treated in several books. We refer

for instance to the book of Evans [50] (Chapter 5). In this section, we take @ to



be an open bounded set in R".

Definition 1.1. Let p € R with 1 < p < +oo. LP(Q) is defined as the class of

measurable functions f on () such that for 1 < p < 400,

/ |f(z)[Pdz < +o0,
Q

with the norm,
1

1 fller@) = [/Qlf(l‘)lpdw]p-

L=(Q) = {fIf : @ — R, f is measurable and 3 C € (0, 00) with |f(z)| < C, for a.e. z € Q}

For p = oo,

with the norm
| fllLeo(q) = inf{C >0, |f(z)] < C for a.e. z € Q}.

Definition 1.2. Let 1 < p < 4o00. The Sobolev space W'P(Q) is defined as the

set

fulu € 17(Q), "

€ IP(Q), i=1,...n,

%

with derivatives taken in the sense of distributions, i.e.,

ou ov
Vv € D(Q), <—,v> :—<u,—> )
i/ pio)p@) 9% / p(@)p@)

If p=2, Wh2(Q) is written as H'(Q) i.e.,

ou

2 .
oz, € L*(Q), i=1,..,n}.

HY(Q) = {ulu € L*(Q),

Proposition 1.3. 1. We have the Sobolev space WP (Q) endowed with

ou
s

Ox;

lullwin) = llllzogy + Y ,
i=1 Lr(Q)

1s a Banach space.



2. The space H'(Q) is equipped with the following scalar product,

" [ Ou v
(u,0) (@) = (us0)r2@) + ) (%a 5) , Vu,ve HY(Q), (L1
i=1 v v/ LA(Q)

and its norm is given by
|l = (U’U)Hl(Q)'
The space H'(Q) is a Hilbert space.

Theorem 1.4 (Extension Theorem). Suppose Q is bounded and 0Q is C*. Let

V' be an open bounded set such that () CC V. Then there exists a bounded linear

operator

T:Wh(Q) — W' (R")

such that Yu € WHF(Q),

e Tu=wu a.e inQ,

e T'u has support within V,

o ||Tullwrrmny < Cllullwreq), where Cis a constant that depends on p,Q,

and V.

The proof can be found in [50] (Chapter 5).
Theorem 1.5 (Sobolev Embedding Theorem). Assume that 0Q is Lipschitz con-
tinuous. Then

1 if 1 <p<n, W(Q)cC LYQ) with

(a) compact injection for q € [1,s) where + =

(b) continuous injection for q = s,
2. if p=n,W(Q) C LYUQ) with compact injection if q € [1,+00),

3. ifp>n, WH(Q) C C%Q) with compact injection.



Theorem 1.6. Suppose Q) is Lipschitz continuous. Then the linear map
v WH(Q) > LP(9Q)

such that
Vu e WH(Q) N C(Q), v(u) = ulag,

and

Yu e WH(Q).  lvullzeeq < Cllullwir@),

where C' is a constant that depends only on p, and @), is called the trace of u on

0Q.

The proof is contained in [50] (Chapter 5, Section 5.5).
Let us Y be defined by
Y =(0,11) x ... x (0,1,), (1.2)

where [, ..., [,, are given positive numbers.

Definition 1.7. Let Y be defined by the relation (1.2) and f, a function defined

a.e. on R"™. The function f is called Y -periodic if
f(z+ klie;) = f(x) aeon R",  VkeZ, Vie{l,..n}

where {eq,...,e,} is the canonical basis of R™. If n = 1, then f is said to be [;-

periodic.

We have the following fundamental result on the convergence of rapidly oscillating

periodic functions.

Theorem 1.8. Let 1 < p < 400, and f be a Y -periodic function in LP(Y'). Set

ra)=1(%) ae o R

If p < 400, then as € — 0,
1 ‘
o= My (1) = 5 / £(4) dy weakly in LP(w),
Y

9



for any bounded open subset w of R™.

If p = +00, then as e — 0,

fo = My (f) weakly* in L>=(R™).

The proof of theorem 1.8 is contained in [32].
The space L*(Q; Cpe(Y)) is a separable space dense in L*(Q;Y") with norm given
by

ulE @iy = | Gupfulz )] do.

Q yeY
Theorem 1.9. Let ug € L*(Q; Cper(Y)), and define u(x) by u(x, %) with € > 0.
Then

1wt € L*(Q) and [[u||r2(q) < luollr2@icye (v)-
2. u(x) — [, uo(x,y) dy weakly in L*(Q) as e = 0.

3. ||U€||L2(Q) — ||U0||L2(Q><y) as € — 0.

The proof of this theorem can be found in [103] (Chapter 2, pg 24).

1.2.2 Some probabilistic preliminaries

This section contains some definition and classical results from stochastic analysis,
analysis of partial differential equations and probability theory. For details and

proofs of the results, we refer to [40], [52], [119], [122], [64].

Let (2, F,P,{Fi}icpor) be a filtered probability space, where 2 is the sample
space, F is the o-algebra of the set €2, P’ is the probability measure and {F}icpo,n
is the filtration of the o-algebra F with F; C F Vt € [0,7] and F;, C F;, for
t1 < to.

Th pair (D, G) consisting of a space D and the o-algebra G is called a measurable

space.

10



Definition 1.10. For a measurable space (D,G), a map M : (2, F) — (D,QG)
such that
{weQ: Mw)e A} € F, for any A € G,

is a random wvariable with values in D.

Definition 1.11. Let 7" > 0 and I = [0,7]. A stochastic process is a collection
(M; = M(w,t),t € I) of random variables on (€, F) which takes values in a

measurable space (D, G), called a state space.

Definition 1.12. A stochastic process is said to be adapted to a filtration F; if

for each t > 0, M; is an F;-measurable random variable.

Definition 1.13. A stochastic process { M };cjo,r] adapted to the filtration {F; }icpom

is called a martingale if
/ M) dP < oo,
Q

and

E(M,;/Fs) = Mg, P-as., for any ¢t > s.

Definition 1.14. Let {M,}4co,r] be a stochastic process. A finite valued random
variable 7 is known as a stopping time with respect to the filtration {F;};cpo7 if
0 <7 < oo and if for any ¢t € [0,7], the event {7 <t} = {w : 7(w) < t} belongs
to the F.

Let X be a Banach space, and 1 < p < oco. We denote by LP(0,T; X) the space of
measurable functions ¢ : ¢t € [0,T] — ¢(t) € X, with the norm defined by

: ,
|r¢|\m<om—( / \|¢H§<dt), for 1< p < 0.
0

For p = oo, L*(0,T;X) is the space of all essentially bounded functions on the
interval [0, 7] with values in X equipped with the norm defined by

@[] Lo 0,1:x) = esssup [[@]|x < oo.
(0,7

Let (€2, F,P) be a probability space. Let 1 < p,q < oo, the space L4(Q, F,P, LP(0,T; X))

is a probability space with filtration {F;}:cpo,r) consisting of all stochastic processes

11



¢ (w,t) € Q2 x[0,T] — ¢(w,t,-) € X such that ¢(w,t,-) is progressively measur-
able with respect to (w,t). Let E be the corresponding mathematical expectation.
For 1 < p < oo, we endow this space with the norm
1
16l|ze(, 72,000,750 = (BN o0x)) -
For p = oo, the norm in the space L1(Q2, F,P, L>=(0,T; X)) is given by
1
10l]zs@.7p.2r07:) = (Bl 0,0,x)) -
Endowed with the above norm, L%(Q, F, P, L>°(0,T; X)) is a Banach space.

Definition 1.15. A stochastic process { By }sc[o,17 is called a one dimensional stan-

dard Brownian process if it satisfies the following properties;

By =0, P-as.,

{B:}icp,m) has stationary, independent increments,

the map ¢ — B, is continuous in ¢ with probability 1,

the increment By, s — B, has a normal distribution with variance ¢ and mean

0.

The following result deals with stochastic integrals.

Theorem 1.16. Let M; = M(w,t) € L*(Q, F,P, L*(0,T; X)) be a random process

with values in X, then the stochastic integral

T
_ / M(t,)dB,,
0

exists P-a.s., where By is a 1-dimenstonal Brownian motion.

The proof follows from the well known construction of stochastic integrals in both

finite and infinite dimension, we refer to [52] and [40].

Theorem 1.17. Let {M,}ejor) € L*(Q,F,P,L*(0,T; X)), then the stochastic

process fg My dBy is a continuous martingale with values in X . Furthermore,
t
E/ M(-,8)dB, = 0, Vit € [0,T].
0

12



The following result is of crucial important

Theorem 1.18 (Burkhdélder-Davis-Gundy inequality). For any p > 0, there

exists a positive constant c,, C, such that for all local martingales {M;}ici0.1],

T 3 t P T z
cp]E(/ HMtHZdt) <E sup / M dBs|| < CPE(/ HMtHth) . (1.3)
0 o<t<T || Jo x 0

We recall the following inequality, known as Markov’s inequality;

Plw:&(w) > a) < ]E|§;i—f;€))|k’ (1.4)

where £ is a nonnegative random variable and k is a positive real number. We now

formulate the key result in stochastic analysis, namely ito’s formula.

Definition 1.19. Let {M;}icjo,r) be a process such that for any 0 < ¢ <ty < T,

to

M(ty) — M(t) = / " Attt + / G(H)dB(?),

t1 t1
where A(s),G(s) € L*(Q, F,P,L*(0,T; X)), X a Hilbert space. Then M, is said
to have a stochastic differential dM; given by

dM, = A(t)dt + G(t)dB(t).

Theorem 1.20. Let dM; = A(t)dt+G(t)dB(t), with A(s), G(s) € L*(Q, F, P, L*(0,T; X)),
X a Hilbert space and let ¥(t, ) be a continuous function in [0,T] x X with con-
tinuous Frechet derivatives Uy, ¥y, Ve, which are bounded in bounded subsets of

[0,7] x X. Then
w(taM(t))ZdJ(t,M(O))Jr/o ¢s(t7M(t))d8+/0 (Ya(s, M(s)), A(s)) xds

+/0 <¢x(37M(3))aG(5)dB(3)>X+%/0 (theu(s, M(5))G(s), G(s)) xds, P-a.s.,

vt e [0,T].
For the proof, we refer to [52], [40].

Next we introduce the fundamental probabilistic compactness results due to Prokhorov
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and Skorokhod. They play a key role as a bridge between homogenization of evolu-
tion deterministic problems and homogenization of SPDEs; we refer to Billingsley
[25], Da Prato [40] and the original papers of Prokhorov [105] and Skorokhod [122]
for details. We start with the definition of tightness of probability measures.

Definition 1.21. Let S be a Banach space with B(S) its Borel o-algebra. A
family of probability measures (i, )men on (S, B(S)) is said to be tight if Ve > 0,

there exists a compact set K C S such that
pm(K)>1—¢, VmeN.

Definition 1.22. A family of probability measures (ftm,)men on (S, B(S)) is rela-
tively compact if there exists a weakly convergent subsequence (fim, )ken, i.6. 3 a
probability measure p (not necessarily in (4, )men ) such that

i [ @), (@) = [ la)duta).

k—oo S

for any bounded and continuous function ¢ on S. .

Lemma 1.23 (Prokhorov). A sequence of probability measures (m,)men on (S, B(S))
is tight if and only if it is relatively compact.

Lemma 1.24 (Skorokhod). Suppose S is a separable Banach space with B(S) as its
o-algebra. Assume that the probability measures (fy)men on (S, B(S)) weakly con-
verges to a probability measure . Then there exists random variables €, &1, ..., Em, ...
defined on a common probability space (2, F,P) such that L{,} = pm and
L(§) = p and

lim &, =&, P-a.s.,

m—00

where L(-) stands for the law of -.

1.2.3 Monotone Operators

In this subsection we recall the definitions of monotone operators and the classical

result of Minty (Minty’s trick) [84]. This result will be used in Chapter 3 in
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the construction of the homogenized problem for a sequence of SPDEs involving
monotone operators. For proofs of the results, we refer to [51], [111], [143]. For
more on monotonicity and numerous applications to nonlinear PDEs, we refer to
[75], [109].

Let X be a real, reflexive Banach space and X™ its dual. Let us denote the inner

product (g,p) by g(p) for g € X* p € X.

Definition 1.25. A mapping E : X — X* is said to be bounded if it maps
bounded subsets of X to bounded subsets of X*.
E: X — X* is continuous if Vp € X,

||E(p) — E(q)||x+ — 0 whenever ||p—q||x — 0.
E is hemicontinuous if Vp, ¢, 7 € X the map
t— (E(p+tq),r)
is continuous.

Definition 1.26. A mapping E : X — X* is called coercive if
(E(p). p)

[Ipll

Definition 1.27. A mapping E : X — X* is said to be monotone if

—0 as ||p|| = oo.

(E(p) —E(q)) - (p—q) >0 V¥p,q € X,

E strictly monotone if the inequality is strict whenever p # ¢, i.e.

(E(p) —E(q)) - (p—q) >0 VYp,q e X,

Lemma 1.28. [Minty’s trick] Let E: X — X* be monotone and hemicontinuous

on a real Banach space X and let
(9—E(q),p—q) >0, Yge X.

Then
g = E(p).
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1.3 Homogenization techniques

Some techniques of homogenization were briefly mentioned in the introduction;
here we shall give a description of some of them, how they evolved over time and

expand more on those that are directly relevant to the thesis.

The origin of homogenization theory can be traced back to the nineteenth century.
They can be found in the work done by Maxwell [80], where he investigated the
effective conductivity of heterogeneous media. In 1892, Rayleigh [106] studied the
same problem but with periodic inclusions. From then up till the fifties, homoge-
nization techniques and methods developed and were widely studied by physicists
like Voight [136], Reuss [110] and Lifshits and Rozentsveig [74]. Mathematicians’
interest in homogenization resulted in the introduction of more advanced methods

and ideas.

The method of asymptotic expansions was extensively developed by Bogolyubov
and Mitropolskii in the area of ordinary differential equations (ODEs) [26]. It was
later formalized to be used for problems with periodic rapidly oscillating coeffi-
cients in [11], [19]; see also [72], [71] and [114]. The main goal in applications
include deriving the effective properties of composite materials and the macro-

scopic modelling of microscopic systems, see [82] and [104].

Marchenko and Khruslov’s study in [79] of partial differential equations in do-
mains with fine grained boundaries can be considered as the first mathematically
rigorous work in homogenization theory, making them pioneers in the field. They
studied boundary value problems in non-periodically structured domains using
potential analysis. In 1967, the G-convergence -an operator-like convergence that
deals with the convergence of solutions to symmetric problems with periodic or
non-periodic coefficients was introduced by Spagnolo in [123]. In the 70s, more
methods emerged including I'-convergence by De Giorgi [44], for the study of ho-

mogenization of functionals. H-convergence by L. Tartar and F. Murat [128], [87]
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was introduced as an extension of the G-convergence to non-symmetric problems.
For problems containing the product of two weakly converging sequences, Tartar
in [128] introduced Tartar’s method of oscillating test functions. Tartar and Mu-
rat introduced the div-curl lemma for problems involving the product of weakly
converging vector fields in systems of nonlinear PDEs, [131], [132]. The lemma is
applicable to problems in physics; see e.g. [31]. The lemma was further extended
to compensated compactness method also by Tartar and Murat in [90], [131]; how-

ever it is only applicable to problems with constant coefficients.

In the 1980s, a new approach was introduced independently under different names,
L.Tartar named it H- measures while P. Gérard introduced it under the name mi-
crolocal defect measures [55]. In 1989, the two-scale convergence was introduced
by G. Nguetseng [91] for the study of boundary value problems with periodic
rapidly oscillating coefficients. This method was further developed by Allaire in
[3] and in Mikeli¢, Bourgeat and Wright [27] introduced the stochastic two-scale
convergence. Recently, the periodic unfolding method for the homogenization of
periodic composites was introduced by Cioranescu, Grisco and Damlamian [35], see
also [34]. In 2003, Nguetseng extended his two-scale convergence to include prob-
lems beyond the periodic setting in [94] and [95] under the name Y-convergence.
Wellander [139] in 2009 introduced the two-scale Fourier transform which is like
a combination of the periodic unfolding method, two-scale convergence, and the

Floquet-Bloch expansion approach to homogenization.

Next we give a brief illustration of two of the homogenization methods mentioned
earlier: namely the method of asymptotic expansion and Tartar’s method. For
simplicity, we limit ourselves to elliptic problems. Some definitions and results on
two-scale convergence is included as well.

Let @ be an open subset of R" with Lipschitz boundary 0@). We consider the

following linear second order partial differential equation with Dirichlet boundary
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conditions;
Aus = f in Q,
(1.5)
u¢ =0 on 0Q,
where f = f(z) is a smooth function in @ independent of €, A = —div(A°V),
A(z) = A(%) = (a;;(%))1<ij<n is such that a;; are Y-periodic Vi, j = 1,...,n and

A = (a;;)1<ij<n is such that there exists a.f € R, 0 < oo < 3,

(1) (A@)A ) = alA]%,

(i) [A(2)A < BIAl,

for any A € R". If conditions (i) and (ii) are satisfied by a matrix A, we say that
Ae M(a, 5,Q).

1.3.1 Method of Asymptotic Expansion

The main idea of the method is to assume that the solution u¢ to (1.5) is of the
form

uc :uo(x, %) —i—eul(x,%) +62u2(x,%) + ..., (1.6)

with the terms in the expansion depending on the macroscopic variable x and the

microscopic variable £ and Y-periodic in the second variable. Using this method,

the homogenized problem and its solution are both obtained.

Suppose u¢ = u(x, f),

ou¢ Ou, =« 10u, =x
=—(2,-)+———(x,—-) i=1,...,n,

ox; E)xi( e) eayi( 6)

then A° assumes the expansion
| T 1 x x
Aut = E—QAou(x, E) + ZAlu(x, E) + Agu(a:, E)’

where Ay = —div(A(y)V,), A1 = —div,(A(y)V,)—div,(A(y) V), A2 = —div,(A(y) Va).
Substituting (1.6) into problem (1.5), we have

1 1
(6—2440 + E.Al + Az) (uo + eus + € us) (2, %) =f inQ,
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u® =0 on 0Q.

Sorting and equating equal power terms of € give a sequence of problems, the first

three are
Aouo =0 in Y,
(1.7)
U Y -periodic.
A0u1 = _A]_U/O n Yv,
(1.8)
Uy Y -periodic.
AoUg = f - A1u1A2u0 in Y,
(1.9)

Uo Y -periodic.
The next step would be to solve the system of equations successively so as to de-
termine the functions u;(z, £). Starting with (1.7), the unknown ug is determined,
then used to obtain wu; in (1.8) and then uy and u; are to used determine us in
(1.9). The existence and uniqueness of problems (1.7)-(1.9) is obtained using Lax-
Milgarm theorem. The calculations involved in deriving the homogenized problem
are long and cumbersome making it prone to error, hence an error estimate is often
required to justify the results. This method can also be applied to equations with
periodic oscillations on more than one microscopic scale. We refer to [19], [32],

[98] for more on the multiple-scale expansions method.

1.3.2 Tartar’s method of oscillating test functions

A more rigorous method for deriving the homogenization problem is due to Tartar
and involve an ingenious construction of suitable test functions.

From equation (1.5), we have the weak form

/ AVu'Vodr = / fVudxe, ve H&(Q))
Q Q

where v € Hj(Q). Passing to the limit in the above equation will be a problem
since we have the product of two weakly converging sequences A¢ and Vu¢, Tar-

tar’s method of oscillating test functions provides a solution to that. By using
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test functions obtained by periodizing the solutions to a cell problem, one is able
to pass to the limit in the equation above. The homogenized problem is obtained
independently unlike the method of asymptotic expansions where both the homog-
enized problem and the homogenized solution are derived.

The main homogenization result stemming from Tartar’s method goes as follows

Theorem 1.29. Let u® be the weak solution of problem (1.5), with f € L*(Q) and
Af € M(a, B,Q) is Y -periodic.
Then

o ut — u® weakly in H}(Q),

o AVu — A'Vu® weakly in (L*(Q))",

where u® € HY(Q) is the weak solution to the homogenized problem:

—div(A°Vu®) = f  in Q,

(1.10)
W =0 on 0Q,
and
AY = (@ )1<ijen = L/ a5 (y) dy — — zn:/ () 25 dy (1.11)
whsss =g f, 0 V] 2 )y gy,
where x; is the weak solution to the cell problem:
—div (A(y)Vx;) = —div (A(y)e;) inY,

(AW)Vx; (A(y)e; (1.12)

X; s Y -periodic.

Proof. From Lax -Milgram theorem, (1.5) has a unique solution u¢ € H}(Q) for a
fixed €, with f € H~'(Q) such that

/ AVuNvdr = (f,v)g-1 @ .uiq: VE HY(Q), (1.13)
Q

and we have the following estimates
|l @) < Cllfll-1@)-
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Hence, there exists a weakly converging subsequence of {u¢} which we still denote

by {u} and an element u® € H}(Q) such that

u¢ — u’ weakly in Hy(Q). (1.14)
By Sobolev embedding theorem,

u¢ — u® strongly in L*(Q). (1.15)
Let us introduce the vector function

£ = (&) = AV

Then (1.13) implies that

/Qng dx = (f, U)H—l(Q)7Hé(Q). (1.16)
Since A € M(a, 3,Q), we have

/Q§6Vv dr = /QA€Vu6Vv dr < 5HUE||H(}(Q)||U||H3(Q)-

But
. 1
[u| o) < a||fHH71(Q),

SO
; B
1€ L2y < EHJCHH—l(Q)'

Thus (£9) is a uniformly bounded sequence in (L?(Q))".
Consequently, there exists a subsequence of {£} which we still denote by {£} and
€% € L?(Q) such that

¢ — €% weakly in (L*(Q))™. (1.17)

Hence passing to the limit in (1.16) gives

/Cvzgovv dr = <f, U>H71(Q),H6(Q)’ NS H&(Q) (]_]_8)

And this is a weak formulation of the equation
—divé’=f in Q. (1.19)
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Tartar’s method of oscillating test functions shall be used to identify £°.

Let x; be the solution to the following cell problem

—div (A(y)Vx;) = —div (A(y)e, inY,
(AW)Vx;) (A(y)e;) (1.20)
X; is Y-Periodic.

The extension by periodicity of the solution y; of (1.20) still denoted by x; is the

unique solution to the following problem:

—div (AVy;) = —=div (A(y) ¢;)  in D'(R"),
X; Y-periodic,
MY(Xj) =0.

Let
T
wi(z) =x; —x;| = ) (1.21)
and define

wi(7) = ew, (f) =T; —€X; (E), for j=1,...,n. (1.22)
€ €

Since H}(Q) = D(Q), with respect to the H'-norm, we have
/ r)Vou(z)dr =0, Vv e HYQ), (1.23)
and we arrive at the following convergence

wi — x; weakly in (H'(Q))", (1.24)
and by Sobolev embedding theorem,

w§ — x; strongly in (L*(Q))". (1.25)

For ¢ € D(R"), let us choose v = pw§ in equation (1.13) and v = pu in equation
(1.23) to get
/ AVuV (puwj) de = / AVuNVow dr + / AVuNVw; ¢ dx
Q Q Q (1.26)
= (f,Pwj) n-1Q .1 @)
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and

/ ANV (puf) dx = / ANVwsVo us dx + / ANVwsVup dr
Q Q Q

(1.27)
=0,
respectively.
Using the symmetry of A, we get
/ ANVuVw; pdr = / ANVwsVup dr.
Q Q
Subtracting equation (1.27) from equation (1.26) gives
/ ANVu Vo w; dr — / AV Vo u' dr = (f, ow§) g-1(q),H1(0)- (1.28)
Q Q

Now we pass to the limit on each term as ¢ — 0.
For the first term on the left hand side of equation (1.28), equations (1.17) and
(1.25) give

lim [ AVu'Vpw;dr = /QQ“OVQO z; dx. (1.29)

e—0 Q

For the second term on the left hand side of (1.28),

;1; 0w
A€ =
( ( k: Z azk 8@

D INCFCRERID)

T 0 x
- Zaik(g) (i — a—ij(y))= y=-
i=1 v

oX;
— ajk — Zaik ay]

=1

Thus we have the following convergence in (L*(Q))";

n

(A“(2) Vs (@), — My (az) — My ( Z i ng>

%

i=1 7Y
The strong convergence (1.15) yields,
lir% ANVwV o ut dr = / AV u dr. (1.30)
€E—r Q
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Lastly, for the term on the right hand side of (1.28), equation (1.24) gives,
11_{% <f, 90w§>H—1(Q),Hg(Q) = (f, 90(333‘)>H—1(Q),H5(Q), Vo € D(Q)-
Combining all the limits of (1.28), we get
/ Vo z; dx — / AV u dx = (f, Sp(xj)>H—l(Q)7Hé(Q), Vo € D(Q),
Q Q

which can be rewritten as

/§OV(¢:L']-) dr — / Eejpdr — / AV u® dx
Q Q Q

(1.31)
= <f790(xj>>H—1(Q),H(}(Q)7 Vi € D(Q).
But
/QSOVU dz = (f, U>H*1(Q),H3(Q)a
implies that
/QSOV(%O%') dv = (f,0x))n1Q.u@, ¢ €DQ).
Hence, it follows from (1.31) that
/ ejpdr = —/ AV u® dz.
Q Q
But
—/ AV dr = / A"Vl da.
Q Q
So
/ (foe]- — AOVuO)go dz = 0.
Q
Hence we conclude that
€0 = AVP.
O

The symmetry of the operator A was essential in ensuring the cancellation of
troubling terms, this method is also applicable in the homogenization of parabolic

problems. In the case of non-symmetric operators, the adjoint operator is used.
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1.3.3 Two-scale convergence

Definition 1.30. let {¢°} be a sequence of functions in LP(0,7; LP(Q)) (1 <
p < o0). {p} is said to be two-scale convergent to py = @o(t, z,y) with ¢ €
LP(0,T; LP(Q x Y)) if for any function v = v(t,z,y) € LP((0,T) x Q; Cpe.(Y)),

one has

T T
iy [ [ttt Ddude = [ [ [ altag)ott. o g)dydua,
e—>00 Q € 0 QJy

we denote this by ¢° 275, o in LP(0,T; LP(Q)).

Theorem 1.31. Let {¢} be a bounded sequence of functions in LP(0,T; L*(Q))
with 1 < p < oo. Then there exists subsequence {p} and a function ¢ €
LP(0,T; LP(Q x Y)) such that {¢} is two-scale convergent to ¢.

Theorem 1.32. Let {p°} be a sequence satisfying the assumptions of Theorem
32.9. Furthermore, let {p} be bounded in LP(0,T; Wy™(Q)). Then

1. there exists a subsequence {¢} and a couple of functions (p,p1) with p €
LP(0,T; Wy P(Q)) and @1 € LP((0,T) x Q; WLP(Y)) such that up to a subse-

per

quence, V¢* - Vup(z) + Vypr (2, ).

2. there exists a function py € L*((0,T) x Q; WLE(Y)) such that up to a sub-

per

sequence, p° 275 wo(z,y) and eVp© 275, Vypo(z,y).

Proposition 1.33. Let ¢ be a sequence of functions in LP(Q) such that ¢ two-
scale converges to @o(x,y) in LP(Q X Y'). Then ¢ converges weakly to p(x) in
LP(Q), where

¢@=L%@ww in I'(Q).

Furthermore, we have

lim [[¢][ o) 2 [lvollzr@xr) 2 [l#l]r(@)-
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1.4 Overview of the thesis

In this thesis, we study the homogenization of heterogeneous media under the in-
fluence of random forcing modeled using stochastic partial differential equations.
We consider two problems; the first is the homogenization of a stochastic model
of groundwater pollution in a periodic porous medium, studied in chapter 2 and
the second is the homogenization of stochastic model of a single phase flow in a

partially fissured medium, this is studied in chapter 3.

Groundwater pollution occurs when contaminants and pollutants seep through the
ground surface and find their way to an underlying aquifer, these contaminants
are then transported with moving groundwater to streams, rivers, e.t.c.. Our work
in chapter 2, models the flow of fluid carrying reacting substances through porous
medium using a coupled system of equations; the velocity of the fluid through the
porous medium is modeled using steady Stokes equations, the concentration of the
substance on the boundary of the pores using reaction-diffusion equation and the
concentration of the substance which is being transported under the influence of
an external random force by the fluid is modeled using a stochastic convection-
diffusion equation. This study is the stochastic counterpart of the work investi-
gated by Hornung and Jager [57] in the deterministic case.

Motivated by the importance of stochastic models of groundwater pollution from
various sources of contaminants extensively discussed by Bear and Verruijt in [15],

this work initiates the study of groundwater pollution using SPDEs.

The porous medium is modeled as a perforated domain U with the pores (fluid
phase) denoted by U€, the pore skeleton (perforations) denoted by U and the
surface of the pore skeleton (boundary of U¢) denoted by I™.

We denote the velocity of the flow of the fluid by «° and model it on U€ using the

following steady Stokes problem with no-slip boundary condition at the boundary
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of the perforations;

(EZAEG =Vp* el
Vi =0 xe U,
(S5) < e =0 € Iy,
U =1p x € Ip,
u =0 rxel*

\

where p¢ is the pressure within the fluid, @p is the prescribed boundary value on

FDand
/ vV-up=0.
I'p

where the boundary OU of U consists of two parts I'p and ['y.

In the fluid, the solute is being transported under the influence of external random
force and is diffusing in the absence of any reaction. The corresponding model for
the concentration of the solute v¢ is a stochastic convection-diffusion equation in
the fluid part U¢, given by;

(

dve(t, x) = DAv(t,x)dt — u(z)Vo(t,z)dt + G(t,x)dB(t), t > 0,2 € U*
ve(t, ) =vp(t,x), t>0,z€lp
(C) UVue(t, ) =0, t>0,zely
ve(0, x) = vy (), t=0,xreU*
\—DﬁEVUE(t, xr) =ef(t,x), t>0,zel*
with
fe(t,x) = c(x)v(t, x) — b (x)w(t, x), (1.32)

where t € [0,T], T € (0,00), u is the velocity field, D > 0 - the diffusion
coefficient, v° represents the concentration of a solute in the fluid, w* repre-
sents the concentration of the solute on the surface of the skeleton, (B(t))o<t<r
is a 1-dimensional Wiener process defined on a given filtered probability space
(Q, F,P, (Fi)o<t<r), G(t,7) is the intensity of the noise, vp is the prescribed
values on the boundary I'p and v(z) is the initial condition. I'* is defined as

' = U{Ir'* k € 7%}, and ¢ : I'* — R represents the adsorption factor and
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b: I'" — R represent the desorption factor.

On the surface of the skeleton (boundary of perforations) where the solute is
diffusing and reacting with substances bound to the surface, the concentration of
the solute on the surface of the skeleton w* is modeled using a diffusion-reaction
equation on the surface of the skeleton I°.
O — EEA“w + af(z)w® = f€ te (0,T),x eI,

()
¢ =w(x) t=0,x eI,
where w® represents the concentration of the solute on the surface of the skeleton,
E > 0 is the diffusion coefficient on the surface of the skeleton, A€ is the Laplace-
Beltrami operator on I'“; a : I'* — R represents the reaction factor and f€ is
defined by (1.32).
The assumptions made on the prescribed values are described in the body of the
work in Chapter two.
Our aim is to show that the sequence of solutions (u€, v, w®) to the problems
(S5¢), (C¢) and (R°) converge in a suitable sense to the solution (u,v,w) to the

following corresponding homogenized problems;

(

tu(x) = KVP(z), ze€U
vU =0, rel

vi(r) =up(z,) xz€lp

ﬁﬁ(ﬁ)zo, rely

where K is a tensor to be defined and v is the solution to stochastic convection-

diffusion equation:

(

dv(t,x) + F(t,x)dt = DV(SVu(t,x))dt — ﬁﬁ(m)V@(t, x)dt
+ﬁG(t,x)dB(t), t>0,xelU
(C) S v(t, ) = vp(t,z), t>0,zelp
Vou(t,z),=0 t>0,xe€ly
v(0,z) = vy (x), t=0,2e€U
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where
F(t,z) = |I'|(yo(t,z) = B)wi(z) — p(-) * v(-, 2)(1)),

S is a tensor to be defined and w satisfies the homogenized reaction-diffusion

equation.
(
duw(t, z,y) — EV w(t,z,y) + a(y)w(t, z,y)
(R) Q= f(t,z,y), t>0,xelUyel
w(0,z,y) = wi(z), t=0xecUyel
\
with

f(t,z,y) = c(y)o(t, ) — bly)w(t, z,y);

The proof of the convergence of (C¢) to the homogenized problem (C') is done using
Tartar’s method of oscillating test functions combined with compactness results
of analytic and probabilistic nature (Prokhorov-Skorokhod procedure). We derive
(R) thanks to the formal asymptotic expansion method, (S.S) was essentially de-
rived by Tartar in [114].

Our work is the first dealing with the modelling of the important question of pol-
lution by using homogenization of SPDEs. Our results are novel in this regard.
Furthermore, as a by-product of our work, we establish the first homogenization
results for stochastic-convection diffusion equations driven by a random force. This
extends the deterministic results of Amaziane, Goncharenko and Pankratov [7] and

that of Berlyand and Goncharenko [22].

Our second main investigation relates to flow through fissured porous media in
Chapter 3 of this thesis. They are encountered in the study of fluid flows through
natural systems, some examples include oil and water reservoirs. We consider a
fissured porous medium with less developed system of fissures; this means that
within the porous matrix which is responsible for fluid storage, fluid flows from
one porous block to another without necessary passing through the fissures first.

There are some uncertainties due to random fluctuations associated to flows within
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these natural systems. Influenced by these considerations, our work models flow
of a single-phase fluid affected by an external random force, through a partially
fissured medium using stochastic partial differential equations.

The problem considered is a stochastic nonlinear diffusion equation driven by a
Wiener type random force.

The micro-model is given by

cldui =V - pi(z, Vui(t, z))dt + fi(t,x)dBy(t) in Qf,

codu =V - ps(z, Vus(t, x))dt + f5(t, 2)dBy(t) in Q5,

el = € - 15w, €VuS(t, 7))t + f5(t, 2)dBy(t) im Q5.
uj = auy + Bug on I7,,

api(z, Vuy(t, v)) - 7 = ps(, Vus(t, ) - 1 on I,

5Ui(x7 Vui(t’x)) U= €M§($>€Vu§(t> .CE)) + U on Fle,27

where ¢t € [0,T], T € (0,00), Qf represents the fissures, Q5 represents the porous
matrix and )5, ¢ = 1,2 are periodically structured. The first equation is the
conservation of mass defined in the fissures, with u{(¢,z) representing the flow
potential in the fissures. We have two components of flow potential in the matrix;
u$(t, x) represents the usual flow through the matrix and u§(¢, z) scaled by € rep-
resents the very high frequency variation in the flow resulting from the relatively
low permeability of the matrix (p is a positive number measuring the growth of
the gradient in pf, i = 1,2, 3), uf i = 1,2, 3 satisfy homogeneous Dirichlet bound-
ary conditions on 0Q N Q). These flows are assumed to satisfy corresponding
conservation equations. (B;(t))o<t<r(i = 1,2,3) are mutually independent stan-
dard 1-dimensional Wiener processes defined on a given filtered probability space
(Q, F, P, (Fo<i<r)-

Assumptions made on the prescribed values are stated in Chapter 3.

The aim is to show that the sequence of solutions @¢ = [u, u§, u§] of (P€) converges

in suitable topologies to the stochastic process @ = [uy, ug, us] which is a solution
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to the following system of SPDEs:

a /Y )t )y + %d /Y csly)Uslt, . )y

=V - | w(y, Vui(t,z) + V,Ui(t, z,y))dydt
Vi (1.33)

n f1<t,x,y>dydél<t>+% falt, 2, y)dydBy(t),

Y1 Y2

te(0,7),z€Q,yeY;,i=1,2.

d/Q /YQCQ(y)UZ(t,ZE)dyd:E — %d/@ /Y2 cs(y)Us(t, z,y)dyda
=V- (/Q/Y2 2 (y, VU2(t, JZ) + VyUQ(t, :E,y))dydx) dt

(1.34)
+/Q . fg(t,x,y)dydxdég(t) - %/Q N fg(t,x,y)dydxdég(t),

te(0,7),z€Q, yeYs.
d// 63(y)U3(t7x,y)dydx=Vy-// us(y, VyUs(t, x,y))dydadt
Q Yo Q Yo
+/ f3<t,l’7y)dyd$dég(t), ) S Yé
QJY:

Us(t,z,y) and V, - i3 (y, V,Usl(t, x,y)) - v are Y-periodic on 'y,
BUs = uy — aug on I'y 5.
(1.35)

and initial conditions

ui(0,7) = uf(x) fori = 1,2,
U3(07$,y) = Ug(l’),

where

U; € D((0,T) x Q; Wy P (Y)), i =1,2,3,

uq, Uz, uz satisfy homogeneous Dirichlet boundary conditions and B = (Bl, B, Bg)
is an appropriate Wiener process to be determined later.

Our investigation makes systematic use of the two-scale convergence combined with
probability methods. In the deterministic setting, this model was formulated and
studied by Clark and Showalter [38]. The problem (P€) is the first being studied

as a model to stochastic fluctuations of flow of fluids in fissured regions. Wright
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considered in [140] the case of randomly oscillating coefficients using stochastic
two-scale convergence introduced by himself, Bourgeat and Mikeli¢ in [27]. This

case deals with stochastic differential equations and use different methods.

Plan of the Thesis

The rest of the thesis is organized as follows;

Chapter 2 is dedicated to the homogenization of a stochastic model of groundwater
pollution in periodic porous media. A brief description of the flow being modeled
is given, we derive necessary a priori estimates for the solution of the stochastic
convection-diffusion equation. Since we are working on a probabilistic setting, we
use the tightness of probability measures generated by the sequence of solutions
of our micro model, and consequently the Prokhorov and Skorokhod compactness
results as additional tools. Tartar’s method of oscillating test functions and mul-

tiple scale expansion are used for the homogenization process.

In chapter 3, we investigate the homogenization of a stochastic diffusion model
of flow of a single-phase fluid in a periodic partially fissured medium. We also use
the Prokhorov and Skorokhod compactness results since we are working on SPDEs

and then the two-scale convergence for the homogenization process.

In the last chapter, we give a brief conclusion and a brief highlight of our future

work.

32



Chapter 2

Homogenization of a Stochastic
Model of Groundwater Pollution

in a periodic Porous Medium

2.1 Introduction

In this chapter, we investigate the homogenization of a stochastic model of ground-
water pollution governed by a coupled system of stochastic convection-diffusion,
reaction-diffusion and steady Stokes equations in porous medium using different

homogenization techniques.

In recent times, growing interest is being devoted to the ecological challenge of
groundwater contamination by hazardous industrial wastes, spills of oil and toxic
liquid or agricultural activities by the use of pesticides, fertilizers etc. Even though
these contaminants originate at ground surface, they soon penetrate the ground
surface and seep through the unsaturated zone to the groundwater in an underly-
ing aquifer. When it reaches the aquifers, the contaminants are transported with

the moving groundwater making its way to lakes, streams and pumping wells. At
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times, toxic chemicals e.g. oil may make up a separate liquid phase that fill the
pore space. Components of such toxic liquids may melt in percolating water be-
coming a source of contamination for groundwater. Chemical species transported
by the water may react with each other and/or with the soil, resulting in phe-
nomena such as adsorption, dissolution, chemical reaction and ion exchange which
continually affect the concentration of the chemical constituents present in the

percolating water. See Figure 2.1.

river

s |rr|gated %

ulture

[y fertilizer——

Figure 2.1: Sources of groundwater contamination

The issues have been expounded authoritatively in the monographs [13], [15], [16]
and [142].

In view of the effect of groundwater pollution to the society, groundwater and
contaminant flow transport modelling are being used to help with planning to
remedy groundwater pollution at various hazardous waste sites, since it provides
useful predictions of the rate and directions of groundwater flow and contaminant
transport.

The concept of porous media is used to describe the aquifer which is a system of
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voids and solids filled with fluid. To model and solve problems related to ground-
water pollution, detailed data on the void space is needed but this is impossible to
get as measurements cannot be taken at the microscopic level. Physical or chem-
ical processes present on the microscopic scale of porous media can be modeled
using differential equations with initial and boundary conditions. The microscopic
system of these materials are complex, which can make numerical simulation very
cumbersome, giving rise to the need to derive a homogenized macroscopic model
through the process of homogenization. The homogenized (macroscopic) model
of the phenomenon under investigation is obtained by an asymptotic analysis as
e — 0 of the problem modeled on the microscopic scale. As it is, the limit of
the solution to the microscopic problem satisfies a new differential equation with
better regularity in a simpler domain, this new differential equation is the macro-

scopic model which is then used for applications.

Here, we undertake the investigation of the flow of a fluid transporting react-
ing solutes under the influence of a random external force, in a porous medium.
We assume that the porous medium is made up of periodically distributed cells
scaled by a small factor e. Each cell consists of the fluid part and a solid part.
We further assume that the liquid is incompressible and the flow of the liquid is
controlled by the steady Stokes equation. This fluid contains a solute which reacts
with substances bound to the surface of the solid part. The concentration of the
solute in the fluid phase is described by a stochastic convection-diffusion system
of equations and the concentration of the solute on the boundary of the solid
phase by a diffusion-reaction equation. The homogenization of these systems of
equations are investigated in the sections that follow. The homogenized stochastic
convection-diffusion equations contains an extra term coming from the boundary
terms of the microscopic problem. Our work is the stochastic counterpart of the
work by Hornung and Jéger [57] in the deterministic case. Several auxiliary results
from their work will be used here. For related works done in the deterministic case
on the homogenization of Stokes and convection-diffusion equations, in addition

to [57], we note the fundamental work [129] of Tartar and [4], [6], [7], [8], [22], [33],
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156], [59], [66], [70], [77], [81].

Few words are in order regarding the methodology used in the following sections.
We implement Tartar’s method of oscillating test functions in the construction
of the homogenized problem for the stochastic convection-diffusion equation (see
equation (C€).s¢ in Section 2.2.2). This requires, among others, some appropriate
probabilistic tools such as the crucial Ito’s stochastic calculus for the derivation
of uniform a priori estimates and more importantly the fundamental compactness
results due to Prokhorov [105] and Skorokhod [122] which are needed for the path-
wise strong convergence of the sequence of solutions (v¢).~o of problem (C¢); as
a stepping stone towards that strong convergence, we establish the tightness of a
family of probability measures generated by v¢ and the driving Wiener process.
We use the well known method of asymptotic expansions ([19], [11] ) to derive
the homogenized problem for the reaction-diffusion equations prescribed on the
boundary of the holes (see problem (R) in Section 2.2.2). For the steady Stokes
equations (55¢), we include Tartar’s proof using his method of oscillating test

functions.

The plan of the chapter is as follows, In section 2.2, we state the main assump-
tions on the geometry of the porous medium under consideration, we introduce
the microscopic models of the processes taking place in the perforated porous
medium and their corresponding macroscopic homogenized problems, the exis-
tence and uniqueness of the governing stochastic convection-diffusion equation,
the reaction-diffusion equation modelling the concentration of the solute and the
Stokes equation for the velocity of the fluid is also included in the section. In
section 2.3, we derive relevant uniform a priori estimates for the solutions of these
equations. In Section 2.4 we implement Prokhorov and Skorokhod compactness
procedure thanks to a relevant tightness result for a family of probability measures
linked to the sequence (v¢) and the Wiener process driving problem (C¢), we also

derive the homogenization results.
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2.2 Existence and Uniqueness of Probabilistic So-

lution

Although we are mainly interested in the homogenization of a stochastic convection-
diffusion equation, we shall include all the equations governing the fluid phase and
the solid phase i.e the steady Stokes equation for the fluid’s velocity and a reaction-

diffusion equation for the surface of the porous medium.

2.2.1 Setting of the problem and assumptions

Let € be a positive parameter taking its values in a sequence which tends to zero
and let [0, 7] denote a time interval with 7" € (0, co).
Let U be a bounded domain in R? consisting of two sub domains: the fluid phase
(the pore space) filled with fluid where the transport, flow and diffusion take place
and the solid phase (the perforations) where diffusion and reaction take place, see
Figure 2.2.

At the microscopic level, the domain of interest is denoted by U¢ (the fluid phase)

/=YUY, U dY,

Figure 2.2: An illustration of a porous medium U consisting of e-scaled periodically

distributed perforations and a representative cell Z.

and the boundary of the perforations by I'*. The piecewise boundary of U denoted
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by OU is made up of two parts
8U=FDUFN and FDﬂFDZQ).

Let Z be a unit cell in R® and denote by Y; C Z - the representative obstacle (per-
foration), Y = Z\Y - the representative pore (fluid part), I' = 9Y; - the piecewise
smooth boundary of Yy and 7 - the outer unit normal on QU with respect to U.
The microscopic structure of U¢ and ' is assumed to be periodic and is obtained

by the repetition of the cell Z scaled by a small parameter e.

For a given scale factor € > 0, let us define the pore skeleton (total perforations)
as follows

Us = |J{evd: v c Ul
keZ3

Then the fluid part (pore volume) of the medium is defined by
Ue =U\Us,
the surface of the skeleton (total boundary of the perforations) I'® is defined as
I =0US5 = {el™*;el™ Cc Uk € 73},
I =u{I'* k ez,

we denote by ¢ the inner normal on I'* with respect to Uy, and the perforations
I’ do not intersect with QU . By this construction, U€ is a perforated domain.
Let us define the following characteristic function

1, xeU*

0 zelUs.

2.2.2 The micro model

Now we formulate the equations that model the processes at the microscopic level.
The micro model consists of three components: the system of equations describing

the flow of the liquid, the system of equations modelling the concentration of the
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solute in the fluid and the system of equations describing the concentration of the

solute on the surface of the skeleton.

In the fluid part U* of the porous medium, we model the velocity of the flow @ us-
ing the steady Stokes problem with a no-slip boundary condition at the boundary

of the perforations;

AU =Vp¢  xe U

Vi =0 x e U,

(55§ vue =0 z € Iy,
u¢ = Up x € Ip,

\ﬁf = x el

where u¢ is the velocity of the fluid, p° is the pressure inside the fluid, #p is the

prescribed boundary value on I'p and
/ v-up = 0.
I'p

The main focus of the first part of this thesis is the system of equations modelling
the concentration of the solute in the porous medium. This takes into account the
solute being transported by the fluid under the influence of external random force.
This external random factor affecting the concentration of the solute is captured
using a stochastic process and it is represented in the model by a stochastic term
G(t,x)dB(t) where G is the intensity of the noise. In the fluid, the solute is
diffusing in the absence of any reaction. The corresponding model for the concen-
tration of the solute v° is the following stochastic convection-diffusion equation in

the fluid part U*;

(dve(t,x) = DAV (t, x)dt — @ (z)Vo(t,x)dt + G(t,z)dB(t), t > 0,2 € U*
ve(t, x) =vp(t, ), t>0,xrelp
(C9) { 7Vve(t, z) =0, t>0,z€ly
ve(0, ) = vy (z), t=0,ze€U*
—DrVoe(t,x) = ef(t,z), t>0,xel*
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with
fe(t,x) = c(x)v(t, ) — b (x)w(t, x), (2.2)

where t € [0,T], T € (0,00), @ is the velocity field, D > 0 - the diffusion coeffi-
cient, v¢ represents the concentration of a solute in the fluid, G¢ is the intensity of
the noise, (B(t))o<t<r is a 1-dimensional Wiener process defined on a given filtered
probability space (§2, F, P, (Fi)o<t<r). vp is the prescribed values on the boundary
I'p and vy () is the initial condition. ¢ : I — R represents the adsorption factor,
b: I — R represent the desorption factor and w® represents the concentration of
the solute on the surface of the skeleton,.

The definition of f€ in (2.2) describes the adsorption and desorption processes on
the surface of the skeleton and its contribution to the concentration of the solute
in the fluid. In particular, ¢“(x)ve(t, z) captures adsorption from the fluid to the
surface and b°(x)w*(t, z) captures desorption from the surface into the fluid.

We note that all the arguments used in the work readily extend to the case when

B(t) is infinite-dimensional.

On the surface of the skeleton (boundary of perforations) where the solute is
diffusing and reacting with substances bound to the surface, the concentration of
the solute on the surface of the skeleton w* is modeled using a diffusion-reaction
equation on the surface of the skeleton I°.

dwt — EEA“W + af(x)w® = f€ t>0,x €l

(R)

w6

= wi(z) t=0,z €T

where w€ represents the concentration of the solute on the surface of the skele-
ton, £ > 0 is the diffusion coefficient on the surface of the skeleton, A€ is the

Laplace-Beltrami operator on I, a : I — R represents the reaction factor and

f€ is defined by (2.2).

We make the following assumptions;
(A1) G<(t,x) € L*((0,T) x U*), with G¢(t,z) — G(t,x) weakly in L2((0,T) x U),

where G¢ denotes the extension by zero outside of U*.
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(A2) a, b, c are Z-periodic, a,b,c > 0 : a, b, c are bounded and a‘(z) = a(f),be(aj) =
b(E).e(a) = of2).

(A3) vy € L*(U®), wy € L*(U°).

For the construction of the homogenized problems satisfied by the limits v and
w of v and w¢, respectively, we need appropriate cell problems which we now

introduce following [57].

Let ji; : Y — R" and 7 : ¥ — R be a pair of Z-periodic functions satisfying
the following cell problem;

(

Ayﬁj(y) = VyTrj - €j7 yeyY

Vyiij(y) =0 yey (2:3)

\/jy(y) = 0 y 6 F7
where € is the j-th canonical vector of the basis of R®. Letting the mean value fi;

of ji; be defined by
_ 1 / ﬁ
iy = [ Hi(y) dy, (2.4
J ‘Y‘ v J )
we define the tensor K with elements k;; by
kij = ,az'j (lth component of ﬂj) (25)
Let 0, : Y - R, (j =1,2,3) be a Z -periodic solution of the cell problem

A,oi(y) =0, ueyY
o (2.6)
vVyo,(y) =—ve;, yel.
We extend o; to Yy such that
V,oi(y) =0, VyeY.

Let S be the tensor whose components s;; are given by

Sij = 0ij +/ 9,05(y) : dy, (2.7)
Y
we note that K and S are positive definite and symmetric tensors.

In addition, let I : [0,00) x I — R be the Z-periodic solution of the cell problem
0d(t,y) — EATI(L y) + (ay) + b(w))l(t,y) =0 t>0,y € I*

(2.8)
10,y) =1 t=0,yc
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We introduce the following functions related to (2.8) following verbatim the work
of Hornung and Jager [57] (pg 204).
The functions p, § : [0.00) x I' — R are defined as

olt) = / Ut 9)b(y)dT ().

Bt) = / e(t, y)b(y)dT,
where e : [0,00) x I' — R is
() =1- | Ut = 5,y)(aly) + b(y))ds

and the constant v is defined as

1
vzﬁﬂldwﬂhﬂ

Now we are in the position to state the homogenized problems corresponding to
(C) and (R°).
The stochastic process v is the solution of the following SPDE

;

dv(t,x) + F(t,x)dt = DV(SVu(t, z))dt — gqi(x)Vo(t, v)dt

+57G(t, 2)dB(t), t>0,xelU
() S v(t,z) = vp(t,z), t>0,zelp

vNVou(t,x),=0 t>0x¢ely

\U(O,x):vl(m), t=0,zeU
where

F(t,x) = |I(y(t, x) = Bt)wi(x) = p(-) * v, 2)(1)),

S is defined in (2.7), @ satisfies the homogenized steady Stokes equation

(

ti(r) = KVP(zx), z€U

vU =0, zel
(55)

ﬁﬁ(x) = ﬁD(.T,) rxelp

ﬁﬁ(:}:)zO, ZL’EFN
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where K is defined in (2.5) and w is the solution to the reaction-diffusion equation

;

dw(t, x,y) — EVIw(t,z,y) + a(y)w(t, z,y)

(R)S = f(t,z,y), t>0,xcUyel (29

w(0,z,y) = wi(z), t=0zelUyel
\

with

f(t,zy) = c(y)o(t,z) — b(y)w(t, . y);

the problem (R) is the homogenized problem for (R°).

For the proof of these homogenized problems, we use Tartar’s method of oscillat-
ing test functions combined with compactness results of analytic and probabilistic
nature (Prokhorov-Skorokhod procedure). We derived (R) thanks to the formal
asymptotic expansion method which is popular in the engineering community,
thereby making our work accessible to a wider range of researchers with different
backgrounds (applied mathematicians and engineers). We hereby note that a more
involved mathematical derivation of (R) is possible thanks to Nguetseng-Allaire’s

two scale convergence (see [3], [91]).

2.2.3 Existence, uniqueness and a priori estimates for (5SS5¢),

(C°) and (R)

Our first step is to discuss the issue of existence and uniqueness of probabilistic

solution for problem (C¢). Let us introduce the Hilbert space
V.={¢lp € H'(U): ¢ =0o0n I'p a. eon (0,7)}

Definition 2.1. We define the strong probabilistic solution of problem (C¢) as a

stochastic process v¢ such that
1. v¢ € vp + LA(Q, F,P, L>(0,T; L*(U))) N L*(Q, F,P, L*(0, T; V,),
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2. Vt € [0, T],v(t,.) satisfies
(ve(t,~),¢)—|-/o (DVU6(3,~),V¢)d8+/O (ef(s,-), @) r2(reyds
+ [ @9 s = (70.0.0) [ (@) 00aB(), 210

ve(0,) =wv(-), VopeV.

Theorem 2.2. For each € > 0, under the assumptions (A1) — (A3), problem (C°)

has a unique strong probabilistic solution
of € LA(Q, F, B, L(0,T; L*(U"))) N LA(Q, F. B, L(0,T; H'(U))),

in the sense of Definition (2.1).

This result is closely related to the works of Pardoux [101] and Rozovskii [112]
(Theorem 4, page 90), but due to the presence of the transport term in (C*), their
arguments need careful adaptation.

First, we discuss briefly the existence and uniqueness of problems (55¢) and (R°).

Let us introduce the following spaces
W< = {4l e (W2’2(U6))3 cy=0onIp,V-¢=0in U,

Ve ={g|¢ € L*(0,T; H'(I)),0:¢ € L*(0, T (H(I"))")}.

The variational formulation of problem (SS5¢) is then the following

Find @€ € (dp + WF),p* € L*(U*) such that

& [, ViV de =— [, Vpdde Vi €W

The problem of existence and uniqueness of the solution (@, p¢) can be found in
[129], [135], [33]. The membership of @° to W enables us to get L™ regularity of
u¢ thanks to Sobolev embedding theorem. This will be crucial in controlling the
transport term in problem (C¢). It should be noted that thanks to differentiation
with respect to time in the deterministic version of (C¢) considered by Hornung and
Jéger [57], they obtained similar results under the regularity W2 for . However

such a differentiation with respect to time is prohibited in the stochastic case due
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to the presence of the noise. Our approach therefore overcomes this difficulty by
requiring more regularity from @¢ while demanding a priori less regularity in time

from v¢ unlike [57].

The variational formulation of problem (Rf) is

;

Find w* € V¢ such that
(0w, @) grreyy mipey + EF [pe VNV dl + [ a‘w'édl

= [, fepdl’ inD(0,T), V¢e€ Ve

we(0,x) = wq(z)

2.3 A priori Estimates

In this section, we derive and state some needed a priori estimates for solutions of
problems (S5¢), (C¢) and (R¢) uniform with respect to €. Here and throughout
the thesis, we shall denote by C' a constant independent of e.

The following technical result (see for instance [57]) will be needed.

Lemma 2.3. For a function ¢ € H'(Y'), one has the estimate
111 < CIIE +1IVYIIT).

For a function ¢¢ € H*(U®), one has the estimate

el[v| ve + €[V

e < O (Il be)-

The following result is due to Tartar [129].

Lemma 2.4. Let ﬁ'f(x) be the extension of u¢ by zero to all of U. Then there exists
an extension of p° from U€ to all of U which we still denote by p such that for a

constant C' independent of e,

C

(|22 m < €5 VP < C, (2.12)
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and

i€ — u* weakly in L*(U) (2.13)

p° — p* strongly in L*(U)/R. (2.14)

The proof of this result can be found in [76], [129]
Lemma 2.5. For alla > 0 and t > 0, we have the following estimate

sup ||w ‘LQ (I°) + 62E(VEU}E V w )LQ(OTL2(F6))
0<t<T

« € 1 € ! €
< el Oy + 2l ey [ 1) P

The proof of this result is contained in [57](pg 210-211).

Lemma 2.6. Under the assumptions (Al) — (A3), the solution v¢ of (C€) satisfies

the following estimate

T
E sup H’U ||L2 Ue) —l—E/ HV'UEH%?(Uf) <C.
0

0<t<

Proof. Tto’s Lemma gives

t t
||v6(t)||%2(U€) = ||vl(x)||%2(Ue) + 2/0 (DAv, v%)ds — 2/0 (U (z) Vo, v%)ds

t t
+2/Xczwu3@y5/uew;w¢m
0 0

Integrating by parts on the second and third term on the right hand side gives

t
10" )|y +2D HW 122 eyds = o1 (@)[[Z20re) +26/ (b“w®, v) reds

: ¢
—26/ (CG’UE,U€)FedS+2/( / ||G€||L2 ved
0 0

Taking the supremum over ¢ € [0, 7] followed by the expectation on both sides,

we have

T
E sup [l + CE [ 1901 Bagdt < CE o @)l
0

0<t<T

T T
+ E/ (b°wS, v°) pedt + e/ (v, v°) pedt (2.15)
0 0

<t<T

T ¢
/ HG6HL2 peydt + sup / (Ge,ve)dB(s)].
0 0
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Using Cauchy-Schwarz’s and Young’s inequalities together with the assumptions

on ¢ and b° yields

T T
CE {6/ (0w, v°) pedt 4+ e/ (c“vS, Ue)[‘edt:|
0 0
T T
< C(E)E/ el 0] 22 eyt + ClE/ el [0°] 2 eyt
0 0
where Cy = C(e) + C.

Using Lemma 2.5 and Lemma 2.3, we get

T T
CE/ EHWGH%2(Fe)dt+CﬂE/ GHUGH%Q(Fe)dt
0 0

T

T

. (2.16)
< CIE/ eHwC(O)H%g(FE)dt—FCIE/ 0% Bt
0 0

T
+ CEe? /0 190 2 e

Next, thanks to Burkholder-Gundy-Davis inequality followed by Cauchy-Schwarz’s

and Young’s inequality, we infer that
T =
< C’IE(/ (Ge,vg)th>
0
T 3
< CE( A Ueuigwe)dg

T 3
< CE sup ’|U€HL2(UE)(/ HGGH%%UE))
0<t<T 0

< C(@)E sup |[v°[72(e)
0<t<T

N

E sup
0<t<T

/0 t(GE, v)dB(s)

(2.17)

T
+mm£u&ﬁw¢t

for any w > 0. Substituting (2.16) and (2.17) into (2.15), we obtain for sufficiently

small o that

T
E sup ||v€(t)\|%2(Ug)+E/ 1902 e
0

0<t<T
T

T T
< CE|:||U1(5E)||2L2(U€)+/ 6|Iw6(0)lliz<U5)dt+/ |Iv€||2Lz<Ue)dt+/ ||G6||%Q(U€)dt]'
0 0 0

Owing to assumptions (A1), (A3) and Gronwall’s lemma, the required estimate

follows. O]
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Next we establish crucial results on the estimate of the finite difference of v¢.

Lemma 2.7. Under the assumptions (Al) — (A3) with the replacement of the
assumptions on G¢ by G¢ € L*(0,T; L>(U°), v° satisfies the following

T—h
IE/ (¢ + B) = 0 (8)| s eyt < Ch,
0
for any € > 0 and small enough h > 0.

Proof.

V(4 ) — of / DAV (s)ds — / )V (s)ds + /t " e (s)aB(s).
Then

v(t+ h) —ve(t)

(H(U))'

t+h
/ DAve(s)ds
¢ (HY(U<))
t+h t+h
+ ’ / u(z)Vo(s)ds + ‘ / G(s)dB(s)
t (HY(Ue)) ¢ (HY(U<))
Using Fubini’s theorem and integrating by parts, we have
t+h
H / DAve(s)ds
t (HY(U))'
t+h
= sup < DAve(s)ds, ¢>
$eH (U),[Igll=1 1 \ Jt (He(Ue)', H' (U°)
t+h
< sup / DAv(s)p(x)dsdx
PEHI(UC),[I¢l|=1 JU< J¢
t+h
< sup / ( DV v (s)Vo(x)dx + DﬁEVveqb(x)dF) ds
peHI(U)||¢l|=1 /¢ Ue Ie

t+h
: U ill- C/ IV llze@woll Vel awe + e(fS, 8)re) ds
1 t

PeH (U*®)
t+h
<c (kumq T el + vanme)))ds
t

Again with Fubini’s theorem, Sobolev embedding theorem on #¢ and Cauchy-
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Schwarz’s inequality, we get

t+h
‘/ u(z)Vo(s)ds
t (HY(Ue))
t+h
= sup </ ﬁe(x)va(s)ds,¢>
peHI(U),||¢lI=1 (He(Ue))' \HL(U*)

< sup / / “(s)o(x)dsdx
peHI(U),||¢l|=1 JU*

- / 17 () V0] g ey 1L ey s
t

e (Ue),||¢l=1
t+h
< C/ HVUGHLQ(Ue)dS
t

Lastly, using the continuous embedding of L?(U¢) into (H'(U¢))" together with

Fubini’s theorem and Ito’s isometry, we get
2
dt

T—h
]E/ / G (s)dB(s)
(Her)
T—h
<E/ / 1G22 e dsilt.

Collecting the above estimates and integrating the resulting inequality over [0, T —

h], we infer that

T—h
€ € 2
E/O 1t 4+ h) = 05 ()]s ey
T—h t+h t+h 2
< CIE/ </ ||W€||L2(U5)ds+/ E(HweHLz(m + y|v€||L2(ps))ds) dt

0 t t

T—h t+h

0 t

Using Cauchy-Schwarz’s inequality yields

T—h t+h 2
E/ (/ HVUEHLQ(Ue)dS) dt
0 t
T—h t+h t+h
0 t t

T
< C’Eh/ V0| [2dt.
0

Using Cauchy-Schwarz’s inequality, Lemma 2.5 and Lemma 2.3 we get

T—h t+h 2
E/ (/ EH?UEHLQ(Fe) -+ EHUEHLQ(Fe)dS> dt
0 t

’ , (2.19)
< CIEh/ ||1JEH%2(Ue)dt—0—C'€2h/ Ve[ 22 ey dt
0 0
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Again by Cauchy-Schwarz’s inequality, we have

T—h  pt+h T—h t+h 3 t+h 1
E/ (/ H?ﬁmm@ﬁgE/1 (/ d% (/ \wmgwggtﬁ
0 t 0 t t
VG %
<BrH ([ 16w )

(2.20)
From (2.18), (2.19), (2.20) and the assumption on G¢, we have
T—h
€ € 2
EA (4 h) = V()21 eyt < C
[

We have obtained the following a priori estimates for v on the porous medium U*.
T
E sup ||U€||%2(U€) + E/ ||V’UE||%2(U6) < C,
0<t<T 0

under the assumptions (A1) — (A3), and

(Hl(Uc

T—h
p/ 1ot 4+ 1) = 0 ()] 21 eyt < Ch
0

with G¢ € LY(0,T; L*(U?)).

2.4 Homogenization results for problems (55°¢),

(C9), ()

In this section we establish the homogenization results for problems (SS¢), (C°)
and (R). This chapter is organised in the following way; In section 4.1, we present
the tightness property of the probability measure generated by the sequence (B, v°)
which enables us to use Prokhorov’s and Skorokhod’s processes in constructing
the sequence of random variables (B,,,v) defined on a new probability space. In
section 4.2, we construct our main result which is the homogenized problem for
problem (C¢) using Tartar’s method of oscillating test functions. Lastly in section

4.3, we include the homogenized results of problems (5S5¢) and (R°).
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2.4.1 Tightness property of probability measures

Before we pass to the limit in the sequence of solutions to the micro model, we

extend the solution v¢ of the micro model to the entire domain U.

Lemma 2.8. o Let g € HY(Y) be a given function on'Y , there is an extension

<;~5 into Yo and onto all of Z, such that
161 t1(z) < |16l v)-

e There exists an extension ¢¢ of ¢¢ € L*(Q, F, P, L*(0,T; H'(U))) into all
U, such that

ooy < N16° M ey

uniformly for e > 0.

Now we state some results from [121], [25] that plays a crucial role in the proof of

the tightness property.

Lemma 2.9. Let By, B, By be Banach spaces such that By C B C B and the
imjection By C B is compact. For any 1 < p,q < o0 and 0 < s < 1. Let E be a
set bounded in L*(0,T; By) N N*P(0,T; By), where
N*P(0,T;By) = {v € LF(0,T; By) : sup h*||v(t + 0) — v(t)||12(0,7—0,8,) < 0},
h>0

for small enough h > 0 and || < 1. Then E is relatively compact in LP(0,T; B).

Let us introduce the space Z = Z; where

T
Zi=1{9: sup 6l <C: [ [IVelBagdt <€ and
0<t<T 0

1 T :
sup - sup ([ 1ot + 1) = o0l yt) <o),

m Vm |h|<pm
where v,,, i, are sequences of positive real numbers such that v,,, u,, — 0 as

m — 0o. We endow Z with the norm

T 5 1 T
ollz = sup [|9]|r2w)+ IV 6|72 dt | +sup— sup ||o(t+R) =G () [E1pn 07yl
(HY(U))
0<t<T 0 m 0

Vm |h‘§l¢m
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Lemma 2.10. The space Z constructed above is a compact subset of L*(0,T; L*(U)).

Next we consider the space X = C(0,T;R) x L?(0,T; L*(U)) equipped with the
Borel g-algebra B(X). Let @, be the X', B(X)-valued measurable map defined on
(Q, F,P) by

O, :w i (B(w),ve).
We introduce the probability measures I1¢ on (X', B(X)) defined by

I1¢(S) = P(®.1(S)), forall S € B(X).

Lemma 2.11. The family of probability measures {11 : € > 0} is tight in (X, B(X)).

The proof is carried out following [116] and [117].

Using Prokhorov’s result lemma (1.23), there exists a subsequence {II,} of {IL.}

and a probability measure II such that
I, — I weakly in X'
Using Skorokhod’s result lemma (1.24), we get the existence of a probability space
(Q, F,P) and X -valued random variables (Be,,v%) and (B, v) defined on (2, F,P)
such that the probability law of (B, v%) is Il., and that of (B, v) is II. Further-
more,
(B.;,v9) — (B,v) in X P-as. (2.21)

Since we is a random variable through its dependence on v, then the Prokhorov-
Skorokhod process induces the existence of a corresponding sequence of random
variable w% which has the same distribution as w*.

Let F, be the o-algebra generated by {B(s),v(s), 0< s <t}. We show that B is

an ]:}—adapted standard Wiener process.

Theorem 2.12. For any ¢ € C*(U°), and t € [0,T]. The sequence (Be;,v)

satisfies P—a.s.

(059 (t,).6) + / (DY (s,-), Vé)ds + / (@ ()Y (s, ), )ds + / (efi(s,), &) reds

t
0

= (v61(0,~),¢)+/ (Gef(s,~),¢)dB€j(s)+/0 (f(s,-); @) reds,
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with (v9(0,-), ¢) = (v1(x), d).
we satisfies the corresponding equation (R%) with w® and v¢ replaced by w% and

v respectively and U satisfies the corresponding equation (SS%).

2.4.2 Construction of the homogenized problems

In the previous subsection, we obtained the limit (B ,v) for the sequence (B,;, v%).
Now we give the homogenization results for the problem (C¢) which is done using
the standard homogenization process but we have used Tartar’s energy method to
identify the limit of x“ V% which is a product of two weakly converging sequences.
Tartar’s energy method was also used in the homogenization of the steady Stokes
problem (S5¢). We use the method of asymptotic expansion to obtain the homog-
enized for (R°).

Since the stochastic convection-diffusion equation is the main focus of this part of
the thesis, we shall study its asymptotic behaviour as e — 0 first and then move
on to the other equations. The homogenized model (C') of (C€) is a stochastic
convection-diffusion equation with an extra term coming from the adsorption and

desorption boundary conditions.

Our main result is

Theorem 2.13. Suppose the assumptions (Al) — (A3) are satisfied, with the re-
placement of assumption of G¢ in (A1) by G° € L*(0,T; L*(U)). Then there ex-
ist a probability space (Q, F,P, (ﬁ)0§t§T> and random variables (B, v, w) and
(B,v,w) such that

(B9,09) = (B,v) in X P-a.s

and

X9V — |Y|SVo weakly in (L*(0,T; L*(U)))" P-a.s,
where (B, v) satisfies the homogenized problem (C') with the process B replaced by
B.
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Furthermore w% converges to the function w which is a solution to the problem

(R) obtained by formal asymptotic expansions.

For the proof of Theorem 2.13, we need the following auxiliary results which are

borrowed from [57].

Lemma 2.14. e Let f € L*(Z) be periodically extended to all R™ and f¢(z) =
f(z/e). Then f€— f weakly in L2(U), where

f= [ sw
z
o Ifve — v strongly in L*(0,T; L*(U)), then x“v¢ — |Y'|v weakly in L*(0,T; L*(U)).
Lemma 2.15. Let a,b, ¢ be Z-periodic and a‘(x),b*(z), ¢ (x) € L>(I¢), where
a‘(z) = a(%),be(x) = b(%),ce(x) = c(%), xel"

then

1
a¢ — — [ a(y)dy, weakly in L>=(I),
FAWIY

1
b — — [ bly)dy, weakly in L>=(I),
FAWAY

1
¢ = — c(y)dy, weakly in L*(I").
1l Jir

Lemma 2.16. o Let v¢ be uniformly bounded in L*(Q, P, F, L*(0,T; H*(U))).
Let
1
v°(t,x) = =5 | v(t,2)d(z), if xelf,
[Iel Jre

where IS is of the form

If=Un(el"), kezm
Then

v = 0| 20,722 (1)) — 0.

o Let wS € LA(I°) be defined as follows

1

L1
TR e

wi(z)dl(z), if xe€ I},
then

le - U_)i||L2(Fe) — 0.
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Proposition 2.17. For oy, defined in (2.6), let o)’ = ejak(fj). Then

e the functions o’ satisfy the equations

Ao/ (z) =0 z,€U"
g (2.22)
iVl (x) = —if ey, el

1.€ (Xej (VO’Zj + gk), v¢)L2(U) =0 Vo € HI(U)
e o) — 0 strongly in L*(U),

o X9 (0 + 0i0))) — |Y|sir weakly in L*(U).

The proof of this proposition can be found in [57] (pg 217).

Proposition 2.18. For of defined in (2.22)

1. E(fe, O-IZQS)L?((O,T);L?(R)) — 0 fOT’ all qb S D(O, T x U),

2. €(f, d)r2qo.r)e2rey = |Y|(F, @) r2(0.1):22wyy  for all ¢ € D0, T x U)

The proof is contained in [57] (pg 219 - 222).

The proof of our main result which is Theorem 2.13 will follow from the results of

the next two subsections.

The convergence of the stochastic convection-diffusion problem (C°)

We now study the asymptotic behaviour of the problem (C%) when €; — 0.

Let us introduce the vector function gej defined by
€9 (t,2) = x7T V9.

From Lemma 2.6 and the definition of x¢ in ( 2.1), we see that €% is uniformly
bounded in (L2(0,T; L*(U)))" and we can extract a subsequence from &9 still

denoted by gﬁf such that
€5 — & weakly in (L*(0,T; L*(U)))" P-a.s. (2.23)
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For any ¢ € D(0,T) and ¢ € D(U), the weak formulation of problem (C%) is

given by

/OT/G Qv §(t)(x)dz = /T/ DAV ¢(t)y)(x)dxdt — /OT/ UV G(t) (x)dadt
/ / GYH(t)(a)dadB,

Integrating by parts w.r.t. t on the left hand side and w.r.t x on the first term on

the right hand side, we get

_ /0 ' / 9 (£ () dudt + /0 ' / DV (1) V(o) dadt
i / ' / &9 6()()dTdt + /0 ' / V() (o) da
/ / GO(t)U(e)drdB,,

where €;f9 = —Dv*Vov%. Using the definition of x¢ in (2.1), the extension i of

@ by zero from U* to U and the extension G¢ of G¢ from U* to U we have

T T
—/ /Xejvej(b/(t)z/}(x)dxdt—l—/ /Dxevaefgzﬁ(t)Vlﬁ(I)dxdt
o Ju o Ju

+ / ' / & fI(t)(a)dldt + /0 ' /U W Gt (z)dadt  (2.24)
/ / G(t)(z)dzdB,,

Now we take one term at a time and pass to the limits as €; — 0. The first term

on the left hand side of (2.24) gives

T
—lim/ /wa’(t) r)dxdt = —|Y|/ / z)dzdt P-as.  (2.25)
Ej—>0 0 U

The second term gives

lim / / DE% ¢(t)Vip(z)dadt = /O ' /U DEG(H)V(x)dudt P-as.  (2.26)

Since Vu% = 0 in U¢, we have that V(d“v%) = ©“Vv%. Hence

T
lim/ /ﬁevaEjgb(t)@/)(x)dxdt: lim/ /V (@909 ) () () dadt
Ej—)O 0 U Ej—>0

— — lim / / W90 G(t)Vap () daedt
U

Ej—)O 0

—_ / ' / () Vip(x)dedt P-as
_ / / Voo (1) (2 dadt

(2.27)



Lastly we show that

lim [ G9¢(t)y(v)dvdB,, = / Go(t)y(x)dzdB.
Ej—>0 U U
Recall that the extension G¢(t,z) of G¢(, ) is such that
Ge(t,z) — G(t,z) weakly in L2((0,T) x U). (2.28)

Due to the bounded variations of B, we have the following split

/ /Gﬁf (t,2) (1) (x)dwdB,, / /Gﬁf (t,2) ()¢ (x)dxd(B,, — B)
/ / G (t, ) p(t)b(x)dzd B

For the first term on the right hand side, we adopt the concept of regularization

(2.29)

for G¢(t, z) with respect to ¢ in the form of the following sequence

e LT =5\~
G)‘(t):X i p — G<(t,x)ds for A >0,

where p is a standard mollifier.

We have that G (t) is differentiable with respect to t and satisfies
T T ,
/0 G (1) 20t < /0 1G(t,2)] |2 s for amy A >0,
and for any € > 0,
G5 (t) — G€(t, z) strongly in L2((0,T) x U) as A\ — 0.

We rewrite the first term on the right hand side of (2.29) as

/ / G (t, x)p(t)i(x)dxd(B / / G ¥(x)dzd(B,, — B)

N /0 /U G (t, 2) — G)0(t)(a)ded(B., — B).
(2.30)

since éf\] is differentiable, we integrate by part on the first term on the right hand

side of (2.30) to get

/ / el (2)dzd(B,, — B) = /U (B., — B)GY 6(t)¢(x)dx
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The conditions on G, ¢ and 1 together with the convergence of B, to B in
C([0,T]) P -a.s., give that the right hand side of (2.31) are bounded by 1 ()¢ (€;)
where (1 (€;) tends to zero as €; goes to zero.

The second term on the right hand side of (2.30) gives

B| [ 16°(0.0) - G Olow0)daa(B,, - B) < ra).

where r2(A) converge to zero as A tends to zero. Then from (2.30), we have

/ / G (t, 2)(t)b(a) ded(B., B)‘ < NG (&) + Fa(N).

Hence from (2.29), we conclude that

/ /Gfa (t, 2)p(t)(x)dzdB., —]E/ /G€ﬂ (t, 2)p(t))(x )dde'

S /€1()\)C1(€j) + /iz()\).

Taking the limits as ¢; — 0, we get

/ /Gea (t,z) z)dzdB,, ]E/ /GEJ (t, 2)p(t))(x )dde‘ < 13(\).

Since ko(A) — 0 as A — 0, we pass to the limit as A — 0, to get

lim E/ /Gef (t,2)o(t)p(x)drdB,, = lim/ /GEJ (t,2)p(t)h(x)dzdB
€;—0 e;—0
(2.32)

Now taking the limit as €; — 0 on the right hand side of (2.32), using (2.28) and

lim
€5 —0

the convergence theorem on stochastic integral due to Rozovskii [112] (Theorem

4, pg 63), we get

hrr})/ /Geﬂ (t,x) z)dzdB = / / (t, 2)p(t)(x)dzdB. P-as
€5

Hence we conclude from (2.32) that

lirrb/ /Geﬂ (t,x)p r)dzdB,, / / (t, 2)p(t)h(x)dxdB P-a.s. (2.33)
€5 —>

Combining all the convergences i.e (2.25), (2.26), (2.27), Proposition 2.18 and
(2.33), we get

m/ /ms dxdt+/ /ngs )V (x )da:dt+|Y|/ /F¢ (z)dzdt
+ /0 /U GVt (z)dudt = / / Go(t)(z)dzdB.
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An additional integration by parts gives that 5 satisfies
Y|dv(t, x) — DVE(t, z)+|Y|F(t, 2) +i(z)Vo(t, z) = G(t, z)dB in U x (0,T) P-a.s.

Next we show that
= |Y|SVu.

We do this using Tartar’s energy method. Taking o)’ (x) from Proposition 2.17
and using ¢(t)y(x)o,’ (z) in place of ¢(¢)y(z) in equation (2.24), we obtain

- / [ s i@ (@)daar + / | DxvnT @ w)ettdea

v [ ] arowpwepiras [ [ wwee s @
= [ [ aoto @i,

On the other hand, using ¢(t)1(x)v% as a test function in (2.22) for a subsequence

(2.35)

€, the definition of x¢ in (2.1), multiplying by D and integrate over U and (0,7,

one obtains
r T
. / /UDXGJ'W?Vw(t)w(x)vej>dwdt i / /UDxff &LV (Gt (2)v ) dad,
i.e
T T
0= /0 \/UDX JVU,5¢(LL)V¢($)U idxdt + /0 /UDX ]fokjcb(t)l/)(I)Vv i dedt

T T
+/0 /UDxejékgb(t)Vw(x)vejdxdt—l—/0 /UDxejgkaS(t)@b(x)Vvejdxdt.
(2.36)

Adding (2.35) to (2.36) gives
T
/ / X9 (t )U,?(x)dxdt—f—/o /UDXEvaefgb(t)Vw(x)U;jdxdt
T
+/0 /UDXGJVUEJ'ng(t)zﬁ(I)VJZj(x)dxdt+/O /Eejfejgb(t)w(x)a,?(m)dfdt
T T
+/0 /UﬁjVUejgb(t)w(x)U;j(x)dxdt:/0 /UDXEJ'VU,?(x)gb(t)vw(x)vefdxdt
T T
+/0 /UDxejVGI?QS(t)w(x)Vvejdxdt+/0 /L[Dxejé'kgb(t)vw(x)vejdxdt
T T
+/0 /UDxeekgzﬁ(t)w(a:)Vveﬂdxdt—l—/o /UG€J¢(t)w(x)akj(x)ddeEj.
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Now we take the limits as ¢; — 0.

Using proposition 2.17, we see that the first, second, fourth and fifth terms onthe
left hand side converges to zero P-a.s.. The third term on the left hand side is
equal to the second term on the right hand side. The first and third terms on the
right hand side give

hm/ /DXQVUEJV@& x)p(t)vidzdt + hm/ /Dxefekvw Jo(t)v dadt
(9 (9

7

=|Y|D /0 /U S&.V(x)p(t)vdadt,

where S is defined in (2.7).

Taking the limit as €; — 0 on the fourth term on the right hand side gives

lim / ' /U DX, Vv ¢(t)h(z)dzdt = lim / / DEY &, (t)(x)dzdt

e;—0 0 €;—0

/ / D& ()Y (x)dadt

Lastly, using Bukholder-Gundy-Davis inequality, we have
lim E sup

//Geﬂgb )oy! (x)dzdB,
€0 tefo,17]

> \3
< C’limE(/ (/ G5 ()b (a )o—;ﬂ(x)dx) dt)
ej—>0 0 U
A T ' 3
< 0 i B[ 11691171t

=0, P-a.s.

Since 0’ — 0 strongly in L?(U). Putting together all the convergences, one obtains

T
—|Y|D/ /Sé’vagb(t d:pdt+D/ /fekgb x)dxdt = 0,
o Ju

this implies that
Y|SVu =¢, P-as. (2.37)

It remains to show that v(0,z) = vi(z). If we take ¢ € C*([0,7]) such that
¢(0) = 1 and ¢(T) = 0, equation (2.24) still remains valid. Recall that £ =
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X Vo, taking ¢ in place of ¢ in equation (2.24) gives

T
— / / X0 ()(z)dadt + / / DES C(H) V() dadt + / / e f9¢(t)(x)dIdt
o JuU €
T
—i—/ /ﬁevaejC x)dxdt = / /Gﬁf dacheij/Xejvej(O,x)w(x)dx.
0 U U

Since x“v9(0,2) = x9v;i(z). Then passing to the limit as ¢, — 0 yields

—yYy/OT/UUg’(t) dxdt+/ /D§§ )Vip(z dxdt+\Y\/ /Fg ) dxdt
—I—/OT/UﬁVUC(t) x)dzdt = / /GC d:ch+|Y|/v1 U(z)de.

Integrating by parts with respect to time on the first term on the left hand side of

the above equation gives

v /0 ' /U doc () dz + / ' / DEC(HV(x)dadt + || / ' / FC(#)0b(x)dadt
/ /UVUQ dxdt+|Y|/ (0, )b (2)dx
/ / GC(t)(2)dedB + Y| / () da.

Since equation (2.34) is valid for ((t) € C*°(]0,T]), we conclude that

/U(O,x)w(:p)d:p:/vl(x)¢(x)dx, Vip(z) € D(U).
U

U

Hence
v(0,2) = vy (x).

With this result, (2.37) and B replaced with B, (2.34) becomes

|Y|/ /dvtx da:+|Y|/ / (t, 2) (1) (2)daclt
_ |Y|/ /DV(SVv(t,x) dxdt—/ /qu (1, 2)6 (1) () dardl
/ / (, 2)o(1) () dzd B(L).

with v(0,x) = v;.

We have that (B, v) is a unique probabilistic weak solution of problem (C') . Hence
by the infinite dimensional version of Yamada-Watanabe’s theorem [97], we con-
clude that (B, v) is a unique strong solution of (C'). Consequently, up to distribu-
tion (probability law) the whole sequence of solutions of problem (C*¢) converges

to the solution of problem (C).
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The convergence of the reaction diffusion equation (&)

We study the asymptotic behaviour of the reaction-diffusion equation (R¢) using
the method of asymptotic expansion. The functions w€, v¢ are expressed in terms
of a time variable ¢ and two spatial variables x the ’slow’ variable and y = ¥ , the
variable on the micro scale €.
Let us first recall the reaction-diffusion problem (R°);

Ow® — EEA“W + af(x)w® = f€ t>0,zel"

(R)

we = wq(z) t=0,z€l",
where f(t,z) = ¢“(x)v(t, ) — b*(x)w(t, z). and a, b, c are Z-periodic, a,b,c >0 :
a,b, ¢ are bounded and a*(z) = a(%),b(z) = b(2), “(x) = c(%).

We assume the following expansions

we(t,z) = wy(t, z, E) + ew (t, x, E) + Ews(t, , E) + .. (2.38)
€ € €
ve(t, x) = vo(t, z, E) + evy (¢, x, E) + Evy(t, z) + ... (2.39)
€ € €
€ 1 r 1 * €
A = e_QAy + EAW + Af (2.40)

where A = Al 4+ A9l and A° and A" are Laplace-Beltarmi operators on I
and I respectively.
Substituting 2.38, 2.39 and 2.40 into (R¢) yields

(

Oe[wo + ewy + ews + .. — EE(ZA] + 1A%+ AS)[wy + ewy + ews + ...]

+a(Z)[wo + ewr + ews + ...] — b(Z) [wo + ewy + ews + ..]

= c(%)[vo + evy + €va + ...] t>0,zcUyerl,
| w(0,2) =0, t=0,zeU

Equating terms with like powers of € we get the following system of equations

(

atwO(tv z, y) - Evng(tv z, y) + a(y)w()(ta z, y)

N = c(y)vo(t, z,y) — b(y)wo(t, z,y), t>0,zeUyel (241)

wy is Z-periodic
\
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P

8tw1 (t7 T, y) - EV5W1 - EAwaU + a(y)wl

= c(y)ur — by)w, t>0,xelyel’  (242)

wy is Z-periodic,
\
(

Oywy — EV5w2 — FA} wy — EALwy + a(y)ws

= c(y)v2 — b(y)wa, t>0,zelUyecl (243

wy is Z-periodic,
\

and

i

Wit — BV Wyyo — EAY wip1 — EASwy + a(y)wiao

= c(y)vrr2 — b(Y) Wk 2, t>0xelyel

W49 18 Z-periodic,

) (2.44)
for k > 1.

These system of equations can be solved in succession to determine the value of
each wy. The analysis of (C¢) using the asymptotic expansion for v¢ gives the

independence of vy on Y, hence we have that
vo(t, x,y) = vo(t, x). (2.45)

We then see that (2.41) with wy = w;(x) as initial condition is the homogenized

problem (R).

Summarizing the results of the previous sections, we obtain the complete proof

of Theorem 2.13.

The method of asymptotic expansion used here is a heuristic method, a rigorous
convergence with appropriate topology can be given using the two scale conver-

gence, see for instance [59].
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The convergence of the steady Stokes problem (55°¢)

For the convenience of the reader, we recall Tartar’s proof of the convergence
of the solution @* to the steady Stokes problem (SS5€) to the solution @ of the
homogenized problem (SS5).

Let us write the cell problem (2.3) in terms of x = ey:

(
GQAxﬁ§ =€+ evxﬂj, e U

V.ils =0, z e Ue (2.46)

5 =0, rel*
\

Since fi;(y) and 7;(y) are independent of €, we have

¢

)
€

7Sy < C5 il 2wy < C5 || Vaiil 2y < (2.47)
and a classical lemma on periodic functions yields

fi5 = fi; weakly in L*(U),

where fi; is defined in (2.4). Now we take ¢ € D(U) and we multiply (2.46) by

¢1~7€ and integrate over U:
¢ / AJi5 gutdz = / & putdr + € / Vrioudz.
U U U
Passing to the limit on the right hand side gives

/ &;pucdr — / il dz,
U U

E/Uw;w(ix = —6/U7T§ng§1:fdx <Ce—0 ase—0,

where we have used (2.47) and (2.11). Hence

¢’ / Afi5pide — / il da. (2.48)
U U

On the other hand, we multiply (S5¢) with ¢/ to get
= / At gjisdr = | Vp‘ojisda
€ Ue
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/ AQTQS ‘dr = / Vp oisdzx.
(Recall that @* is zero outside U€). Passing to the limit on the right hand side

gives

/Vpgb ‘dr = — (933@ fsdr — — / oz, ——[lijdx

where we have used (2.14) and (2. 13) Hence
/ Aﬁ“(ﬁu]dx — — / oz, uzjda: (2.49)
Next, we compare the left hand sides of (2.48) and (2.49 ).Their difference yields
(—:2/ Ajispudr — 62/ Auppizdr < 62/ ViV (piis)dr — 62/ Vii5V (¢uf)dx
U U U U
/ V5V i dz
U

e / Vi Voidz| + |¢
U
<(Ce —0ase—0,

where we have used (2.47) and (2.11).
This means that the right hand sides of (2.48) and(2.49) are equal. Then writing

them in terms of distributions, we have

. N . 09 .
(@5, B (1), Dy = Hij(—D 7%>D/(U),D(U) = K{Vp", ) ). o)

which is the same as (S5°¢) for u* and p*.
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Chapter 3

Homogenization of a stochastic
model of a single phase flow in

partially fissured media

3.1 Introduction

A fissured or fractured medium is a material made up of permeable and porous
blocks interwoven by a system of fissures, the porous blocks make up the matrix of
the media. Fissured media are differentiated by the extent to which the system of
fissures are developed within the medium. Bulk of the fluid transport takes place
through the system of fissures while significant fluid storage occurs in the porous

blocks.

Flow in fissured porous domains was first investigated by reservoir engineers in
the petroleum industry because many petroleum reservoirs are in fractured rock
formations made up of porous blocks of rocks surrounded by fractures. The blocks
have low permeability but the porosity and consequently the storage capacity of

fluids is high, which led to an overestimation in well production and capacity.
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Scientists and engineers have been studying this subject. Hence there are many
articles and professional literature in multiple fields including hydrology, geology

and environmental engineering.

There are certain characteristics of fissured media, namely, that transport occurs
through the fissures while fluid storage takes place in the pore system. There are
two cases of fissured media, the totally fissured media and the partially fissured
media. In the case of a totally fissured medium, the porous blocks are separated
by well developed system of fissures, as a result, no flow takes place within the
porous matrix; the fluid only flows through the system of fissures. In the case of a
partially fissured medium, the system of fissures are less developed and the porous
blocks may be connected, hence there’s some amount of flow within the porous

matrix.

A mathematical model that describes the flow of a fluid through a fissured porous
medium domain can be stated for every point in the phase considered and on the
matrix-fissure interface. This description is said to be at the microscopic scale.
Due to the difficulty in measuring values of variables within a phase and deter-
mining the parameters of the model, a complete description of a model at the
microscopic level is difficult and a solution to a said model is almost impossible.
To bypass these difficulties, a macroscopic model is derived as the limit of the
microscopic model, this process can be done using various homogenization meth-
ods, for example, multiple-scale expansions, two-scale convergence e.t.c.; see for

instance [37], [114] and [58].

Fluid flows through fissured media as if it has two pore systems, one for the
porous matrix and the other for the system of fissures, giving rise to the concept
of double porosity. The flow of a fluid through totally fissured medium can be
modeled using two flow fields, one representing the porous matrix and the other
representing the system of fissures. These systems are coupled to form a system of

equations over the flow domain, this type of model was introduced by Barenblatt,
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Zheltov and Kochina in [12]; see also [9], [120].

Coeffield and Spagnuolo in [39] considered a model for single-phase flow through
a totally fractured layered medium, where the fractures are horizontal and the
matrix blocks are stacked vertically. The structure considered in [39] is assumed
to be periodic only in one direction (vertically). In [49], Douglas, Peszynska and
Showalter extended the model for single phase flow in totally fissured media to
that of a single phase fluid through periodic partially fissured media in the deter-
ministic case; the model was constructed following [12], [138] and the macroscopic
model was derived using the method of asymptotic expansion. In the microscopic
model for partially fissured medium in [49], there are two flows in the matrix; a
global flow within the matrix and a flow that leads to local storage. The model
for partially fissured media in [49] was extended by Clark and Showalter [38] to
a quasi-linear version still in the deterministic case and the corresponding macro-
scopic model was derived using Nguetseng’s two-scale convergence. Nguetseng,
Showalter and Woukeng in [93] considered a general deterministic version of the

problem in [49] beyond the periodic setting using Sigma convergence.

In geological formations, such as oil reservoirs, there are many factors that affect
the flows within the domain, leading to uncertainties in estimating or predicting
the flow in this type of formations which could lead to overestimates in well ca-
pacity. A stochastic process or random process is used to quantify uncertainties
associated with physical or chemical processes since it provides a natural method
for evaluating uncertainties. In [140], Wright reformulated the model in [49] for a
randomly fissured media and used stochastic two-scale convergence in the mean for
the homogenization process. The homogenized problem obtained is a stochastic
analog of the homogenized problem obtained in [49]. Here, we model the influence
of random fluctuations on a single-phase flow through a random force driven by the
Wiener process. This leads to the flow in the partially fissured media being gov-
erned by a system of stochastic partial differential equations of nonlinear diffusion

type involving oscillating coefficients. Since SPDEs are more advanced and more
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efficient tools in modelling random fluctuations on evolution systems arising in
applied sciences, our model is naturally more elaborate that Wright’s [140] which
captures random influence through the random pertubation of the coefficient of a
partial differential equation which does not involve random forces; the PDE has

essentially a deterministic form.

This chapter is devoted to the study of this nonlinear stochastic evolution problem.
Our main approach is homogenization and methodologically, we make use of the
two scale convergence in combination with Ito’s stochastic calculus and the prob-
abilistic compactness results of Prokhorov and Skorokhod. The crucial difference
with chapter two is that we are now dealing with SPDEs with nonlinear mono-
tone operators. the plan of the chapter is as follows; in section 3.2, we state the
assumptions on the geometry of the fissured porous medium under consideration,
and the function spaces relevant to our study. In section 3.3, we introduce the
microscopic model, assumptions on the model and the main result. Section 3.4
contains the existence result of the governing stochastic diffusion equation and the
a priori estimates for the solution of the equation. Section 3.5 is devoted to the
tightness property for a family of probability measures generated by the sequence
of the solution to the stochastic diffusion equation and the driving Wiener process,
it also contains the Prokhorov and Skorokhod compactness procedure, see [25]. In
section 3.6, we prove the convergence of the microscopic problem to the macro-
scopic problem using Nguetseng’s two-scale convergence [91], [3] and use Minty’s
trick (monotonicity method) [84], [111] to identify the weak limit. For more on
Minty’s monotonicity method, we refer to [75], [51].
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3.2 Setting of the problem and preliminaries

3.2.1 The geometry of the partially fissured domain

Let us consider € to be a positive parameter taking its values in a sequence which
tends to zero and [0, 7], a time interval with 7" € (0, c0).

Let @ be a bounded domain in R™ consisting of two sub-domains; one representing
the fissures and the other representing the matrix.

Let Y = [0,1]" denote the unit cell of measure |Y'| = 1 consisting of two disjoint
parts, Y7 and Y5 representing the local structure of the fissure and the matrix re-
spectively. We let y;(y) denote the characteristic function of Y; for ¢ = 1,2 such
that x1(y) + x2(y) = 1. We assume that the sets {y € R"; x;(y) = 1} for i = 1,2

are smooth, Y;-periodic and extended to all of R™ periodically.

For a given scale factor e > 0, the sub-domains ()] and Q5 of @) represent the

fissures and the matrix respectively with

€T .
Let us denote the interface of Qf and Q% lying within @ as I'f , = 0Q1 N IQ5 N Q
and let I'1 o = 0Y1; N OY, NY be the interface in the representative cell Y, and

[y = YoNOY (see Figure) we denote by 7; the outer normal on Q¢ for i = 1,2.

L,
y

Y,
\_ﬂ

2

\
-

Figure 3.1: A representative cell Y of a partially fissured medium showing the

local structure of the fissure Y7, the matrix Y5 and the interface I'; 5.
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3.2.2 Function spaces

We recall some function spaces defined earlier and introduce some new ones needed
throughout the chapter. Let @ be an open bounded set in R". C'(Q) denotes the
space of continuous functions u : @ — R, C*°(Q) denotes the space of all infinitely
differentiable functions u : @ — R and C¢ (Y) denotes the restriction to Y of

functions in C*°(R™) that are Y-periodic.

For 2 < p < oo, we define the Sobolev space,

WH(Q) = {0: 6 € I7(Q), 22 € Q)5 = 1,.n},
J

where the derivatives exists in the weak sense and LP(Q)) is the usual Lebesgue
space.

W,y (Q) is the space of functions ¢ € W(Q) with ¢ = 0 on 9Q, equipped with
the W'P-norm, and W2 is the closure of C**(Y") for the W'-norm.

Let us introduce the weight vector ¢(x) = [¢1, €2, ¢3] consisting of bounded positive

functions. For € > 0, we define the following weights space
H® = L*(Q5) x L*(Q3) x L*(Q5),
equipped with the inner product

([or, w2, vs], [, W, U] e = /Q

" /Q 65 () s ()3 (2) e

€
2

6 (@)or (2 (2)d + / 65 (2)un(x)n(z)de

€
2

where ¢§(z) = ¢;(%£), for i = 1,2,3.

€

We write

€
2

(Ui,l/)i)H; Z/Q§ ¢;(@)vi(x)¢i(x)dr, i=1,2, (U3,¢3)H§ Z/ c5(@)vs ()3 (z)de,

and

[I¢s]

b= [ @l =12 Wl = [ sk

@ QZ
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Let ~¢ : WHP(QS5) — LP(0Q5) for i = 1,2 be the usual trace map. We define the

space
G = {[v1, vz, v3] € WHP(QY)x WP (Q5) xWP(Q3) : viv1 = angva+By5vs on T},

and

H = H NG

H€ is a Banach space equipped with the norm

|[[v1, v2, V3|2 = |[v1ll2(@e) + [|v2llr2(@g) + |vallLzqs) + [[VillLr(qe)

+ Vo] e s) + 1 VUs e @g)-

3.3 The Micro-model

Now we develop a microscopic model for a single phase flow in a partially fissured
medium.

In the fissures ()¢, we shall denote the flow potential of the fluid by w{(¢,z) and
— (f, Vui) its corresponding flux. On the matrix 5, we account for the global
diffusion through the pore system in the matrix denoted by u§(¢,z) with flux
—ul(%, Vug) and the very high frequency spatial variation which leads to local
storage in the matrix which we shall denote by u§(t,z) with flux —ug(f, eVug).
We specify two coefficients 5 and o which correspond to the proportion of the
local and global phases of the total flow potential in the matrix ()5 as measured

on the interface I'{ . Here, we take  +a =1 with > 0 and a > 0.

Let p; : R" x R® — R™ (i = 1,2,3) be some given vector fields. We make
the following assumptions;

A(l) (s, {) is measurable and Y-periodic for every £ € R™,

A(2) iy, -) is continuous for a.e. y € Y,

A(3) there are positive constants k, C, C’, Cy and 2 < p < oo such that for every
5,56 R™ and a.e. y € Y,

ABL) iy, §) < ClEl + £,
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— — —

AB2) (ily,©) — ml(y, Q) - (€= = €=,
AB3) iy §) - €= Colélr — k.
the prototype of the operators V - u;(y, Vu) is the p-Laplacian V - (|Vu[P~2Vu).

Let ¢; € Cper(Y) for i = 1,2, 3 be given such that

0<co<c(y) <C, ¢,cteLl™0Q). (3.1)

i

For ¢ = 1,2, 3, we can define the corresponding scaled coefficient at = € ()%, 5 e R"”
by

x ~ x
The micro-model for diffusion in a partially fissured medium driven by random

forces is given by the system of stochastic nonlinear diffusion equations

Sdus =V -y (z, Vus(t, ))dt + fi(t, 2)dBy(t) in Q5,

codus =V - ps(z, Vus(t, x))dt + f5(t, 2)dBs(t) in Q5,

cyduy = €V - pg(x, €Vug(t, x))dt + f5(L, 2)dBs(t) in Q5,
uj = augy + Pug on I7,,

aps(z, Vui(t, x)) - 7 = ps(, Vus(t, x)) - 1 on I,

Bui(z, Vui(t, x)) - h = eps(x, eVuy(t,x)) - 71 on I7,,

where t € [0,7], T' € (0,00). The first equation is the conservation of mass de-
fined in the fissures, with u§(¢,x) representing the flow potential in the fissures.
We have two components of flow potential in the matrix; u$(¢,z) represents the
usual flow through the matrix and u§(t,z) scaled by €’ represents the very high
frequency variation in the flow resulting from the relatively low permeability of
the matrix, ff (i = 1,2,3) is the intensity of the noise. These flows are assumed
to satisfy corresponding conservation equations. (B;(t))o<i<7(i = 1,2,3) are mu-
tually independent standard 1-dimensional Wiener processes defined on a given
filtered probability space (2, F, P, (F)o<t<r)-

We assume that

A(4)  fi(t,x) = fi(t,2) € LY((0,T) x Q5) for (i = 1,2) and f5(t,x) = f3(t, %) €
LA((0,T) x Q5) are such that ff is uniformly bounded.
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(P€) is a transmission problem of stochastic partial differential equations due to
the prescribed transmission boundary conditions on the interface I'f ,.

Recall that on the matrix )5, o and 8 denote the corresponding partitions for
the flow potentials u$ and u§ respectively. The coupling on the interface is a vital
element in the system. The continuity of the flow potential is represented in the
first interface condition (the fourth relation in (P€)), with prescribed partitions
corresponding to the global and local phases in the matrix. The fifth and sixth
relations describe the flux across the interface T' , between the flow potential in
the fissures and the total flow potential in the matrix. The external boundary
conditions (on 0Q) will play no role, so we assume the following homogeneous

Dirichlet boundary conditions;
ui(t,x) =0, =€ 0Q]Noq,
us(t,x) =0, =€ 0Q5N0Q and (3.2)
us(t,z) =0, x€0Q5NaQ,

and initial conditions
us(0,) = ui(+), us(0,-) = us(-), ug(0,-) =wug(-) in H. (3.3)

The aim of the chapter is to show that the sequence @ = [u{, u$, u§] converges in
suitable topologies to the stochastic process i = [uy, uz, Us] which is a solution to

the following SPDEs:

1
d /Y )t )y + 5 /Y o)ty

=V [ iy, Vui(t,z) + VUi (t, z,y)) dydt
" (3.4)

[ ftzpdydBit) + [ L fa(tz,y)dydBa(2),

Y1 Yo 5

te(0,7),r€Q,yeY,i=1,2.
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d/Q /YQCQ(y)Uz(t,$)dydx — %d/@ /Y2 cs(y)Us(t, z, y)dydx
=V- (/Q/Y2 2 (y, VUQ(t, ZE) + VyUQ(t, x, y))dydm) dt

(3.5)
[ | slteyanaBa) - 5 [ | pceegddsabi),
QJY: B QJY:
te(0,7),r€Q, yevY,.
d//03(y)U3(t,a§,y)dyd:B:Vy-// ug(y,VyUg(t,:v,y))dyd:vdt
QJY, QJY:
[ | sl dydsdBae), e va
QJYs (36)

Us(t,xz,y) and V, - us (y, V,Us(t, x, y)) -v are Y-periodic on I'y 5,
BU3 = u; — aug on I'y 5.
with initial conditions

u;(0,7) = ud(z) fori = 1,2,
US(Oa-Z'ay) = ug(x),

where

U; € D((0,T) x Q; Wy (Y)), i =1,2,3

Furthermore,

ui(t,x) — 0 on 0Q, Vt € [0,T],

and B = (By, B, Bs) is an appropriate Wiener process which is the result of the

Prokhorov-Skorokhod compactness process.

3.4 Existence and Uniqueness

We introduce the notion of solution of problem (P¢) which is of interest to us.

Definition 3.1. For a fixed ¢ > 0, we define a strong probabilistic solution of

problem (P€) as a stochastic process 4 = [u§, u$, u§] such that
1. @ € LX(Q, F, P, L=(0,T; H)) N L3(Q, F, P, L2(0, T; G<)).
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2. For all t € [0, 7], u satisfies

D (Ot ), i) + (c5()us(t, ), ds) = Z(CE(')UE(O,-),@) + (c5()uz(0,-), @s)
+ /0(ME('aVUE(S>')),V¢i)dS+/O(Ms(wEVUE(S,')%EV%)dS

(f5(s,-),¢3)dBs(s) P-a.s

t
0

I
]
S~
=
2
>
=
=
>
+
—

€0,) =ud() (i=1,2) and u5(0,-) = u3(-), Vo, o, p3 € HE.

Theorem 3.2. For each ¢ > 0, under assumptions A(1) — A(4) there exists a

unique solution of problem (P€) in the sense of definition 3.1.

Theorem 3.2 has essentially been proven by Pardoux in [101] and Krylov and
Rozovskii in [69] using monotonicity method.

If we weaken the condition A(3.2) to the usual monotonicity condition i.e

— —

(&) = 1i(O)) - (€= ¢) = 0,

for all E, 5 € R", we lose uniqueness of the solution but the existence still hold
in a weaker sense. Indeed Bensoussan established in [21] the existence of a weak

probabilistic solution in the case of one equation involving monotone operators.

3.4.1 A priori estimates

We now establish crucial a priori estimates for problem (P€).

Lemma 3.3. We assume that € is a fized positive number, under the assumptions

A(1) — A(4), the solution [u$, us, us] of (P€) satisfies the following estimate;

E sup [|ufl|f +E sup [|usl|f +E sup [Jug||Z
0<t<T ! 0<t<T 2 0<t<T 2
2 T T
+E /0 INAT e /0 eV us| [0 s dt (3.7)
i=1

<C.
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Proof. Using Ito’s formula on the first equation of (P€) gives

t
s ()11 b+ 2 (9 V60 5) s g

wg = ||u1(0)]

2 [ DapdBis) + [ 15l

Integrating by parts on the second term on the right hand side of (3.8) yields

(3.8)

t t
2 [ (7o V(50,0 9) gy s = =2 | (05 V(). Vi (9) s s

t
+ 2/0 (ui(x, Vui(s)) - v, ui(s))LQ(Fi 2)ds,
using the identity uj = aus + Sug on I'f 5, we get

2
Hj

[|ui (1)l

t
2+ 2/0 (1 (2, V05 (5)), V5 (5)) e 5 = |15 (0)]

t
+ 2/ (o (z, Vui(s)) - 171,u§(3))L2(Fi 2)cls
0 :

. (3.9)
2 [ (Bl D (5) 7 (5) gy
t
2 [ 1) 1D rzapdBi)+ [ 1 s
[to’s formula on the second equation in (P¢) gives
t
I +2 [ (1500 Va5, T5(6) g s = 01
t
=2 [ o Vu5() - 1t (5)
t (3.10)
2 [ (f5(6),u5() o dBa(o
0
t
+ [ 131y
where we have used the relation 7y = —7/ on I',.
Lastly, Ito’s formula on the third equation on (P€) gives
t
I +2 | (1 V50, €5 5) 1 g = O]
t
— 2/ (e,ug(:n, eVus(s)) - 171,u§(3))L2(Fi 2)d3
0 ’ (3.11)

2 / (F5(5). 5 (5)) 1205y dBals)

t
n / 15112205 s
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Summing (3.9), (3.10) and (3.11), we get

ZHU

Hf_'_Huf}

1% +Z / s (x, Vus(s)), Vus(s ))LQ(QE)ds

2 [ 050V (9). P (5) s = Z 1 (0) % + 1 (0) s
+2 /Ot (o (, Vui(s)) - 4, ug(s))y(riz)ds
2 [ (90 0 D) 7 5)
=2 [ (e ) 1) s
-2 /Ot (eug(:c, eVus(s)) - 14, ug(s))Lz(Fb)ds

t

t t
0 0 0

2 t t
3 [t + [ 1551
i=1

The boundary terms mutually cancel out thanks to the fifth and sixth relations in

(P€). Using A(3.3) in the resulting relation, we have

2 2 t
SO + a5 (D] 2 +2C0 S / (N2
i=1 i=1
2
120, / eV 0 < S 11u5(0)
=1

t
+2Z / ) (g dBi(3) + /0 (5. 45) 1205 dBs )

| ?{; + [|u5(0)] ?{5

t
+Z / 1By s + / 1512205, + K.
=1
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Taking the supremum over [0, 7] followed by the expectation in both sides, we get

2 T
E su us Ze + 2CoE / Vus| B, ey ds
s 3o 0w [ I
H; + s ()]

T 2
+2C,E / eVus|[2, Z
+E sup |2 Z / ) e dBi(s) + / (g B)|

0<t<T

H.E +E sup Hug(t)’
* 0<t<T

2
TEY / 161y + / 1512 s + TIH].
=1

Thanks to Burkholder-Davis-Gundy’s inequality, Cauchy-Schwarz’s and Young’s

T 7
< EC(/O (ffaui)%%cg;)dt)

T
SIEC’(/O HffH%?(Q;) “ﬂlzﬁ(Qi)dt)
T 3
<E su U/E € € 2 € dt
<E sup || 1||L2(Q1)</0 1fillz2 ) )

T
< ok sup |[u||? s+cwE/ |2 dt
B ogth” illz2(q5) + c(w) ; 111220

inequalities, we get

E sup
0<t<T

t
2 /0 (ff,ui)r2(@5)dBi(s)

where w is an arbitrary positive number. Similarly, for any @ > 0,

E sup
0<t<T

t T
2 / (5, u5) 12005 dBa(s)| < @B sup |[ug|[Baqon +C(@)E / 1512 0
0 0<t<T 0

and

E sup
0<t<T

t T
2 / (5, 5) (@) ABs(5)] < wE sup. [[u5][Baqgg +C()E / 1511205
0 0<t<T 0

For w sufficiently small, we have

E sup [[uf|[7 +E sup |[us|[7 +E sup |Jug|[7
0<t<T 1 0<t<T 2 0<t<T 2

T
+BC| [ 190y + 17051 g+ €965y

2
H;

T
+CE [ 1My + 15 Bacap + 151yt + T

e + 1wz (@) + [us ()]

<E|Jll(o)
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Based on the assumptions on u{,u3, u3 and on ff, fS, f<, we get

E sup Zuu HE+ZE/ IV e

0<t<T
T
+IE/ 1eTu5] [y 0 < C

He +E sup ||u3

Next we establish a key estimate of the finite difference of #¢ in the dual of H¢.
It plays an important role in the implementation of the compactness results. It
should be noted that such an estimate was not required in the deterministic case

considered in [38].

Lemma 3.4. Under the assumptions of Lemma 3.3, the solution 4 = [uf, u$, u§]

of problem (P¢) satisfies the estimate

T—h ,
E sup / Gt + h) — T (1) [Pyt < C maz{dsT,8% ),
[h|<8 Jo

for any h such thatt +h € [0,T] and V§ < 1.

Proof. Let 1 = [V, 19, 13] € HE, such that H@ﬂ

ye < 1, we have

-

@+ ) = T Ollgey = suwp @+ B) = @), By

GEHE,|[h]3e <1

<[ui<t+h> S (0), ) — (), (e ) — u;(t)],[¢1,w2,¢g]>

= sup
PEHE ]| <1

(He)/ﬂ_[c

< sup
PEHE,||P]|3e <1

2 t+h t+h
{Z/ V s (x, Vug )wldmdst/ / eV - us(x eVu3)¢3d:vds]
17t Q5

t+h t+h
+ |: fdel(S),/ f;dBQ(S),/ f§dB3(S)i|
t t t (He)!
2 t+h t+h
< sup {—Z/ / s (x, Vug)Vwidazds—/ / ps(z, eVus)eVipsdads
PEHE,|[9]lpe <1 =1 Jt H ¢ 5

t+h t+h
+ / / pi(z, Vui) - hdeds + / / ws(z, Vug) - Uarhedrds
t 12 t 12

h
+/ / ws(x, Vug) - ﬁgwgdxds]
¢ rs,
t+h t+h t+h
" H[ [ ). [ gan). [ deBg(s)]
t t t
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Since 1, Y9, ¥3 € He, we have ¢y = atpa+ 13 on I'] 5 and the terms on I'f 5 cancel
out due to the fifth and sixth relations in (P€), so we get

(¢ + h) — a ()| ey <

N

t+h h
sup {_ Z/ / i (x, Vus)Vipdads —/ / ug(:c,eVug)eVzﬂgd:cds]
GEME||P]lpe <1 i—1 Jt e . .
t+h

+

t+h t+h
FidBy(s), / JsdBas), / fdBs(s)

t

(He)
(3.12)

Using assumption A(3.1) on the first two terms on the right hand side of (3.12)

gives

2, [ith t+h
sup [Z/ / |M:($,VUE)HV¢¢|dxds+/ 15 (z, €Vug) || eVabs|dads
t Qs . a5

YEHE||[P|lye<1 L=y

2 t+h t+h
< sup {Z/ / |Vu§|p_1|v¢i|dxds+/ / |eVu§ P~ eVps|dads
t Qs t Q35

PEH ||| <1 L=y

2 t+h t+h
+Z/t /Ek:|V@/)i|da:ds+/t /€k|ev¢3|dxds]
=1 i 2

2 [tt+h » h N "
: z;/t ||v“5“fp<cas>d5+/t ||6Vu;||£p(%)ds+3/t kds

L3 t+h A t+h o t+h
<y (/t |yvug||gp@§)ds> +hi </t ||evu;ugp(%)ds) +3/1t kds,
where we have used Holder’s inequality.

e

=1

Now we estimate the terms involving the stochastic term using the following em-
bedding

HE — HE,

and since both H¢ and H¢ are reflexive spaces, we have

(HY) = (%)

81



Consequently,

H { / " feany (), / ™ fedBa(s), / f;dffg(s)] »

t+h t+h i+h
sm | sasi. [ s, | f;ng<s>} "

t+h t+h t+h
< { / FedBu(s), / b, | f§ng(s)] [0, s Y leaey
< sup

([ s, ([ i)
PEHS ||| e <1 (He)',He (H<) He

t+h
+ < f§dB3<3)a?/)3>

< sup
PEHE ||| ge <1

(He)/ He

<c|

s L ] s

where we have used the conditions (3.1) on the functions ¢;.

Estimating each term at a time, we have

[ o[ <] [ e

For h > 0, using Holder’s inequality and Fubini’s theorem we get

T—h t+h v T—h t+h 2 B
Esup/ / fidBy(s) dt < Esup/ </ (/ fdel(s)) dx) dt
hs8 JO t L2(Q5) h<é Jo Qf \Jt
T—h t+h 2 [
< C(Esup/ / (/ fdel(3)> dxdt)
h<d ¢

(o [ [, ([ ramco) )
([ Lz ([ o) )’

Using Burkholder-Davis-Gundy’s inequality, we deduce that

T—h t+h P’ T t+6§
[E sup / / fidBi(s) dt < ( / / E / y fﬂzdsdxdt)
h<s Jo t £2(Q%) o Jei Ji
T (46 5
(B[ [l st
t

L2(Qf)

/
p_
2

~
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By Holder’s inequality and the assumption on ff i.e. ff € L*(0,T; L*(Q5)), we get

T—h
Esup/ / fidB (s dt <C(T (5E/ / | f (s ||L2(Q dsdt)
h<o £2(Qf)

/
bp_
4

< ot
Similarly,
T—h P’ o
E sup / / fsdBs(s) dt <C(T)d7,
|h|<s Jo t (He)
and

T—h P N
E sup / / f5dBs(s) dt < C(T)d7.
t

[h|<6 J0O

Lemma 3.3 on (3.4.1) gives

y [T—h t+h 17
E sup hp/ {(/ [Vuill}, ) } dt
|hl<é

T—h
<Esuph?r / / [[Vuill?, (@5 dsdt

|h|<é
e
Similarly,
o T—h t+h ﬁ P’ o
E sup hP/ {(/ [[Vuslt, @s) > } dt < Cov,
|h|<d 0 t
o [T—h t+h atd .
E sup hp/ [(/ lleVus]l}, @s) ) } dt <Cov,
|h|<d 0 t
and

T—h t+h P )
E sup / (3/ k‘ds) dt < CoP.
|h|<éJ0o t

Hence collecting all the above inequalities, we assert that

T—h .
E sup / @t + h) — @ (0)[Fgeydt < € maa{ds7, 5%},

|h|<é J0

One of the difficulties encountered in the homogenization of problems in perforated
domain is to establish that the sequence of solutions admits a limit in the whole

domain, in our case (). From the estimates in lemmas 3.3 and 3.4, we cannot
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extract a convergent subsequence by weak compactness, since each uf (i = 1,2, 3)
is defined on a space which varies in e.
A similar case was studied by Cioranescu and Saint Jean Paulin in [36] and Acerbi
et al in [1] where an extension of the solution to the whole domain was constructed,
this extension was also proven to converge weakly to the homogenized limit. How-
ever, in [5], Allaire and Murat didn’t construct an extension, a version of Rellich
theorem was used. Tartar’s method of oscillating test function was used in the
homogenization process in [36] and [5], while I'-convergence was used in [1]. In
[3], Allaire also didn’t construct an extension, the solution was extended by zero
in the holes and two-scale convergence was used in the homogenization process.
As in [3], we will extend the functions u¢ = [u{, u§, u§] by zero to the whole domain
. The domain ) has two sub-domains ()§ representing the fissures and )5 repre-
senting the matrix with Q = Q] U @5, hence we can assert that the flow potential
u{ defined on Q)f equals zero on Q5 and the flow potentials u§, u§ defined on Q)5
are zero on (5.
We recall the characteristic function

X; = Xi(%); 1=1,2.
We use this function to denote the extension by zero of various functions from Q)
to @ and y; to denote the extension of functions from Y; to Y.
Now we state the estimates for the extension of u° = [u§, u§, u§] to all of @ from

€ i=1,2.

T
E su |72 + E su susl)72o) + E su sus||7 +E/ V][], o) dt
ogthHXI Ulz2 0 OStETHXQ allz2(0) ogthsz sllz2(0) ) X VUil o)

T T
IE / X5VuS] 2 oyt + / lexs Vs |12t < C.

(3.13)

Let us still denote the zero extension of 4¢ = [u§, u$, u§] by @° = [x{uf, x5us, x5us],

we state the estimate of the finite difference in the space V

T—h ’
Esup/ ||ﬁ6(t—|—h)—ﬁe(t)HgdtSC'max{éﬁ,é%}.
Ih|<é Jo
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where V is defined as

V ={ = [{1, ¢, 6] € L(Q) x LA(Q) x L*(Q) N (Wy"(Q) x Wy*(Q) x Wy (Q))
Bz =1 — aaha, Vy € Ty 5}

3.5 Compactness result and tightness property

This section contains some results that are essential in the proof of the tightness
property of the probability measures generated by the sequence (B,u), where

B = [By, By, B3] and u° = [u§, u$, u§].

Let the space H be defined as

H = I3(Q) x L}(Q) x L*(Q).

Let us consider the set Z depending on the sequences p,,, 7, > 0 of numbers such
that p,, 7, — 0 as n — oo and on the constants J, K, L, M, N, R. We define the
set Z by

Z = {4 = [, P2, 3] : OiltlfT bl 2@ < Ji el 2@ < K ||Us]| 2 ) < L

2 T T
Z%HWW&@MSMllwwm@ﬁSN
i=1

T
awa/\wu+m—¢@w@ﬁgnﬁNm.
0

‘h‘SPn
Lemma 3.5. The set Z is a compact subset of L*(0,T; L*(Q)) x L*(0,T; L*(Q)) x
L*(0,T; L*(Q)).

The proof of this lemma is similar to the proof found in [21] (Proposition 3.1).

Let @ = [xius, xjus, X5us] and S = C(0, TsRY)x L2(0, T: L(Q)) < L*(0, T3 L*(@Q)
L*(0,T; L*(Q)) be equipped with the Borel g-algebra B(S). Let ¢, be the (S, B(S))-
valued measurable map defined on (2, F,P) by

¢ :w— (B(w), ), with B = (By, By, Bs).
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We introduce the probability measures 7€ on (S, B(S)) defined by
7(S) = P(¢.1(9)), forall S € B(S).

Lemma 3.6. The family of probability measures {m¢ : € > 0} is tight in (S, B(S)).
The proof is carried out following [21], see also [85], [116] and [117].

By Prokhorov’s result (Lemma 1.23), there exists a subsequence {m} of {m}

and a probability measure 7w such that
T, — 7 weakly in S.

Using Lemma (1.24) due to Skorokhod, there exists a probability space (Q, F, P)
and S-valued random variables (B%, %) and (B, @) defined on (Q, F,P) such that
the probability law of (B%,4%) is 7., and that of (B, ) is m. Furthermore,

(BY,i%) — (B,%) inS P-as., (3.14)

where B = (By, By, BY ), @9 = (u{ ,uy ,ug ), @ = [uy, us, us], and B = (By, By, Bs).
B¢ and B are Wiener processes on (€2, F,P) and the pair (B%, @) satisfies prob-
lem (P<) as stipulated in the following;

Theorem 3.7. For any ¢ = [1h1, s, 3] € C(Q)xC=(Q)xC>(Q) andt € [0,T).

The sequence (B, @) satisfies P-a.s., the relations

—,

2 t
(ﬁq (ta ')7 )H = (ﬁﬁj (07 )7¢)H + Z/ (X?M:] (xvvu?)vvwi)LQ(Q)dS
i=1 70
+ [0 @ 90), Vi) aards
0
) . (3.15)
#3° [ 02 B
i=1 Y0
+/0 (X2]f3jaw3)L2(Q)ngj<5)a

-, —,

with (4% (0,-),v) = (4°(+), ), in the sense of distributions.
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Since (%) satisfies the same type of problem as (P€), we have the following cor-

responding estimates for (4% );

E SUP ||X1 U1]||L2 +E SUP ||X2 U2]||L2 +E SUP ||X2 ||%2(Q)

T T
LE / leijvu?ll’zp@)dHE / eV e, (3.16)
0

T
B [l Vel g it < €,
0
and on the dual V' we have,

T—h ’
ES“p/ @ (¢ + h) — @ () |[Ldt < C maz{677,65}, §<1,
[n|<é J0

—¢ €4 €5 €4
where 49 = (u),uy ,u3’).

3.6 Homogenization process

In this section, we derive the homogenized problem using two-scale convergence.
We start by introducing the definition of two-scale convergence and some theorems
that will be useful in the convergence process. For their proofs, we refer to [3],

32).

3.6.1 Definition and some results on two-scale convergence

Definition 3.8. let {¢°} be a sequence of functions in LP(0,7; LP(Q)) (1 <
p < 00). {¢} is said to be two-scale convergent to pyg = @o(t, z,y) with ¢ €
LP(0,T; LP(Q x Y')) if for any function v = v(t,x,y) € LP((0,T) x Q; Cy5,.(Y)),

one has

lin%// (t,x)v tx—dxdt ///gootmy (t,z,y)dydzdt,
€E—

we denote this by ¢° LN o in LP(0,T; LP(Q

Theorem 3.9. Let {¢} be a bounded sequence of functions in LP(0,T; L*(Q))
with 1 < p < o0o. Then there exists subsequence {905'} and a function ¢ €
LP(0,T; LP(Q x Y)) such that {¢°} is two-scale convergent to ¢.
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Theorem 3.10. Let {p} be a sequence satisfying the assumptions of Theorem
3.9. Furthermore, let {¢} be bounded in LP(0,T; Wy*(Q)). Then

1. there exists a subsequence {¢} and a couple of functions (p, 1) with ¢ €
LP(0, T; WyP(Q)) and 1 € LP((0,T) x Q; WLP(Y)) such that up to a subse-

per

quence, V£ == V,o(x) + Vyer(z,y).

2. there exists a function @y € L*((0,T) x Q; WLP(Y')) such that up to a sub-

per

sequence, p° 2, wo(z,y) and eV© 2, Vypo(z,y).

Proposition 3.11. Let ¢ be a sequence of functions in LP(Q) such that ¢° two-
scale converges to po(x,y) in LP(Q X Y). Then ¢ converges weakly to p(x) in
LP(Q), where

o(z) = /Y eole,y)dy,  in L(Q).

Furthermore, we have

lim [ 2r@) < llvollzr@xry < [lellee(@)-

3.6.2 Passage to the limit

Now we study the asymptotic behaviour of (P%) as €¢; — 0 using the two-scale

convergence method.

Lemma 3.12. For the sequences (uS), there exists subsequences (u;’) such that,

we have the following two-scale convergences, P-almost surely:

€; € 2—s . €; €; 2—s8
Xi]uij — Xz(y)ul<t7$>7 (Z = 17 2)7 X2ju3] — X2(Q)U3(t>$73/)>
X:Jvu? ki) X1<y)[vul(t7x) + Vin(t,ZE, y)]? ('L = 1a 2)7 X;jevugj ii) Xg(y)vag(t, :L‘7y)a

where U; € LP((0,T) x Q; WLE(Y)), i =1,2,3.

per

Furthermore, there exists some functions §; € LP ((0,T)x Q xY™),u* € L*(QxY),
fori=1,2,3 such that the following convergences hold P almost surely;

€ €5 €\ 2—s N . € €5 € 2—s -
Xi 1y (2, Vu?) == xi()gi(t, z,y), (1=1,2), x5 us' (2, 6;Vuy') =— xa2(y)3s(t, 2, ),

€5,

Xi U

*

(T,) =5 xa(y)ui(z), (i=1,2), xgug(T,-) =5 valy)us(@),
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and

X7 I () 2 fi(tz,y) € L2((0,T) x @ X Y), i=1,2,3.

(2

Proof. According to lemma 3.3, the sequences ¢ = [u§, u$, u§] and
Ve = [Vu, Vus, Vug) are bounded in L?(Q¢) and LP(Qf) respectively. Since by
definition, x{u§ is zero in Q\QY, and x5u$, xou§ are both zero in Q\Q$5, we have
the estimates (3.13) and (3.16) for the subsequences { uy’, x5 us , x5 U3 .
By Theorem 3.10(1) and Theorem 2.9 in [3], we have the following two-scale con-
vergences, P-a.s.,
Xi'uy? = Xi(y)ui(t, x), 1=1,2,
XV 25 i) [Vug(t, @) + VUit y)], = 1,2,

where u; € LP(0,T; W, *(Q)) and U; € LP((0, T)xQ; WLP(Y)\R), fori = 1,2, P-a.s..

per

Using the same argument and Theorem 3.9, x;” f;” (i = 1,2) and x5’ f5’ are bounded
in L?((0,T)x Q). Hence, the subsequences two-scale converge to x;(y) fi(t, z,y) (i =
1,2) and xa(y) fs(t, z, ) respectively in L*((0,T) x Q@ x Y), P-a.s..

Theorem 3.10(2) gives

X5 ug == xa(u)Us(t, 2, y) Pas. and exy Vg == V,Us(t, 7, y) P-as..

Lastly, from A(3.1), we have

// dxdt</
<C// | Vug | d:cdt+/
0
of [
0 Ja

Hence, by Theorem 3.9, xi’ 1’ (z, V') (i = 1,2) is bounded in L¥'((0,T); LF(Q)),
and similarly, x5 u5 (z, Vug') is bounded in L”((0,7); L” (Q)). Consequently,

p/
X i (— Vu Vu | dadt

ﬁme
Q

€j

INdxdt (i = 1,2)

the sequences two-scale converge to g;(t,x,y) (i = 1,2) and gs(t,x,y), P-a.s.,

respectively with g;(t,z,y) € LP((0,T) x Q x Y™). ]

Before we proceed with the homogenization process, we establish the conditions

on the interface I'; 5.
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Let us = xYuy + x5 (aus’ + Bug’) € LP(0,T; WHP(Q)). Owing to the transmission

conditions on I'{ , in (P¢), we have

Goej NG € €€ G e &
Y ul = uy = ap’uy + Byp’ug’ = p'uY, on I,

Thus
e;Vui = e;xY Vuy + x5 (ae;Vus + Be;Vug') € LP((0,T) x Q), P-as..

Hence, according to Lemma 3.12,

us 25 (g (b @) + xa(y) (aus(t @) + BUs(E 7, 9)),

and

& VU 25 xa(y) BV, Us(t, 2, y).

Let ¢ € D(Q,C.(Y3)), we have

per

PR S——
Q € Q '

€j
B _/ ui (t,2) [ Ve(x, =) + Vb, )] dx.
Q ' :

€j €j

Taking the two-scale limits on both sides give
//5X2(y)va3(ta$7y) b, y)dyda
QJy

= — /Q/Y [ (y)ui(t, 2) + x2(y) (aus(t, z) + BUs(t, , y))]vyg(x,y)dydx.
(3.17)

The left hand side of (3.17) can be written as
| [ pvsnteeiteasis =~ [ [ 50,6ty
—1—/ BUs(t, x,y)p(z,y) - hadS,dx
Q J oYz

while the right hand side of (3.17) can be written as

_/Q/Y1 U1(t,l’)vy$(x,y)dydx—/Q/Y2 (au2(t,x)+ﬂUg(t,x,y))qu;dydx. (3.19)
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From (3.17), (3.18), (3.19) and wuy (¢, z), ua(t, x) being independent of y we see that

/ BUS(t, 2, y)(x, y) - oS, da
Y2

// uuﬁa:quzydydw—// aus(t, x) y¢dydx

Y1 Y2

/ / uy(t,x)o a: s) - 1 dSydx —/ / aus(t, z)p(x, s) - vodS,dx.
8Y1 aYQ

Since Us and 7,/7 are periodic on I'y 9 and v = —1» this implies that
BUs + aug = uq on 9Y1 NIYy =T 5.
Now we state our main result.

Theorem 3.13. Suppose the assumptions A(1) — A(4) are satisfied. Then there
exist a probability space (Q, F, P, (F)o<i<r) and random variables (B%,d) and
(B, @) such that
(B%,i%) — (B,@) in S P-a.s.,

where @5 = [uf,uy,ug] and @ = [u1,us, Us|, and (B, @) satisfy the homogenized
problems (3.4), (3.5) and (5.6); recall that S = C(0,T;R"™) x L*(0,T; L*(Q)) x
L*(0,T; L*(Q)) x L*(0,T; L*(Q)). Furthermore, Uy = Us(t,z,y) € LP((0,T) X
Q; Wk (Y)).

Remark. The convergence of [uy, uy’, ug'] to [ul, uy, Us] was proved in Lemma 3.12.

Proof. (of Theorem 3.13) Let ¢; € D(0,T;C5°(Q)), ¢ =1,2, and ¢; € D((0,T) x
Q; Cr.(Y)), i=1,2,3, with Bog (t,x,y) = V1t x) + ay(t, x) for y € Ty ».
We take the triple

x T e x
[q/Jl(ta l’) + €j¢1(t7 x, _)7 Q/)Q(ta 'I) + 6j¢2(ta x, _)7 3] <t7 Z, _)]
€; €j €5

in L?(0,T;H¢) as a test function, where we define

¢§j<t7$ay) - ¢3(t,x,y) + %¢1(t,$,y) - %¢2(t>$ay)'
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Substituting these test functions in the weak formulation (3.15) we get of problem

(P9).
_Z/ / t)[Wult, ©) + €du(t, 61)}dmdt

j
/ / c5 ug (1) s (t, )dxdt
Q3 €

+/ ciui (T, x) [%’(T@) +€;0:(T, , g)}das

J

+/ cgug (T, )5 (T, x, g)dx

J

_Z/ ui’ (0,2) [£;(0, 2) + €;0:(0, 6j)]alal:—/ csug (0, 2)ps (O,x,g)dx

— Z/ / 1 (@, Vu? )V [0i(t, ) + €;04(t, x, g)}dxdt

J

//u3x6]Vu3)6][V¢( )+ v S(t,x ,;)]dxdt

J

+Z/ fEJ (it 2) + it 2, - ) ded B (1)

/ / £ )dsds 1),

Let us determine the limit of each term in this relation using the two-scale result

(3.20)

in Lemma 3.12.

For the first term on the left hand side, we have

eljlgloz/ /( w,t (t,z) + €;0u(t, G )}dmdt
- 61]131302/ / e X ug (b, 1) (t, @) dadt
6111_13 € Z/ /c X;ug (8, x) i (t, x ‘)d:cdt

€

2/ /Q/YiCi(y)ui(taﬂf)wit(t,a:)dxdt, P-as..
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The second term yields

l_imo/ / cgug (t, ) (t, x dacdt— hm/ /c X5 ug (t, ) g (t, x )dxdt
/ / / es(Us(t, 2, y) s (t, 2, y)dadt, P-as..
Y

Similarly, using the definitions of x;’ and taking the limit at ¢; — 0 on the re-

maining terms on the left hand side of (3.20) give, P-a.s.,

Z// ¢2Txdydx+//y2 x)o3(T, x,y)dydz
_Z// ¢Zoxdyd:c—///2 z)$3(0, 2, y)dyd.

Taking the limit as €; — 0 in the first and second terms on the right hand side of

(3.20), we obtain
2 T
i=1 /0 JQJY:

T
—/ //§3(t,x,y)vygb3(t,x,y)dydxdt, P-a.s..
o JoJv

Lastly, we deal with the limits of the last two terms on the right hand side of
(3.20); which are stochastic integrals.

For the integral involving f;, we have

/ / I(t,x) [t z) + € (t, @ E})}dmdBij(t)

J

// S £ (¢, 7)o (£, 2)dwd BY (£) (3.21)
/ / F ) eont v, D)dedBY (1),

€
We start with the first term on the right hand side of (3.21). Since By’(t) has

unbounded variations, some care is needed. We first split the integral as

/ / S £ (¢, @) (1, 2)dwd BY (¢)
- / / X7 (2 (t, @)dod (BY (t) — Bi(t)) (3.22)
/ / £ (¢, 2)n (1, 7)dad B (1),
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For the first term on the right hand side of (3.22), we adopt the process of regu-

larization for xy’ f<(t,x) with respect to ¢ in the following form

€ p€ 1 r t_S € p€
X1 J<t>:X/O p(— 3 )X1 (s, x)ds, for A >0,

where p is a standard mollifier.
Now we have that ffJA is differentiable with respect to ¢t and satisfies the fol-

lowing relation

T T

/ X? £ oyt < /0 X7 £ |Zagydt, YA > 0 and Ve; > 0,
and

X1 At @) = X7 £ (¢, @) strongly in L*((0,T) x Q) as A — 0.

We write the first term on the right hand side of (3.22) as
/ /Xeﬂ (t, )1 (t, 2)dzd (BY (t) — Bi(t))
/ /Xlejf“zswl(t 2)dad(BY (1) — Bu(t)) (3.23)
/ / 9 F9 (8 2) — X7 FO(t2)ded(BY (1) — Bu(t).

Since XY’ ff@\ is differentiable, we integrate by parts on the first term in the right
hand side of (3.23) to get

// 0 (1, 2 (1) ded (B (1) — Ba (1)

/(Bej()— B1(0) XY s (t, x)ds (3.24)

0

/ / BY (t) — Bi(1)) 0 (XY frh(t, ) (¢, 7)) dadt.

The condition on x{ f;” and 1y together with the convergence of B}’ to Bj(t) in
C([0,T]) P-a.s., give that the right hand side of (3.24) is bounded by a positive
number £1(A)n;(€;), where 7;(¢;) vanishes as € tends to zero, while () is finite.
Thanks to Burhélder-Davis Gundy inequality and the convergence of x} ff’/\ to
X7 f1’, the second term on the right hand side of (3.23) is estimated as

Q[Xijffj (t, ) — X7 [0 (¢, x)ded (BY (t) — Bl(t)) < Ka(A),
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where k2(A) converge to zero as A — 0.

Hence from (3.23), we have

[0 7 .y ) (1 EJ()—&(t))\s/ﬁ(A)nl(ej)mz(A).

From (3. 22 , we conclude that

// £ (t, ) (¢, ) ded BY ( // (¢, ) (¢, x)d:z:dBl()‘

S /‘il<)\)7]1(6]’) + /ﬁ?g()\).

Passing to the limit as ¢; — 0, we get

/ / Ut 2)i(t, x)ded BY (t) / / TFO(t, )y (t, 2)ded By (t )‘

lim
€5 —0

< HQ(
But since the left hand side of this relation is independent of A, and k() — 0 as

A — 0, we can pass to the limit on both sides as A — 0 to get

lim/ / N(t, ) (¢, x)ded By (t) = hm/ / U F(t, 2)y (t, x)dxd By (t).

€;—0 €50
By Lemma 3.12, we have the two-scale convergence of Xy f;” to x1(y)fi(t,z,y)
P-a.s., which implies weak convergence

Hence by using the convergence result for stochastic integrals in [112] (Theorem

4, pg 63), we get
lim/ / Pt o) (t, 2)ded BY / /Xl )V fr(t, 2, ) (¢, 2)ded By (t),

6j~)0
P-a.s..

Now we show that

lim 63/ / I ) e (¢, )ddeeJ( ) =0, P-as..

€;—0

With the assumptions of f;’ and Burkhélder—Dams—Gundy’s inequality, we have
lim ¢; E sup

0 //xlfl (h2)on (1, =)o B (1
& te[0,7]

<061]1210€]E</0 (/Q XP It x)on (¢, o Ej)dx) dt)2

T 1
. ~ €; pEj x 2
< C lim EjE</ XY 7 |2l on (2, 2, —)||L2(Q)dt)
6]—>0 0 6]

LN : .
§C€1]i£n>()ej(/0 fofleLz(Q)dt) — 0 P-as..
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Combining the above convergences, we assert that

lim/ / [t @) + € (t 2 )}ddefj(t)

Ej—)o ]

_ / / Fult, 7, y) b (t, @) ded By (b). P-as.
0 QJIY1

Similarly,
i [ [ 15 nt0.0) + . )N dadsg 0
- / [ R T
0 QJYs
and

Jimy / / 76 (10, T )drdB (1)
_ / / Folt, 2, 9) st 2, y)dedBs(t), Poas..
0 QJYs

Combining all the above convergences yield

- z / / / yus(t, 2 (1, 2)dyddt

- / / [ sttt pyon ey
// z/)lTxdydx—k//n 2)6(T, 2, y)dyde
// %()xdydx—//yg 2)65(0, . y)dyda

! Zzl /0 /Q /ngi(t’ 2,y) [Vilt, @) + Vyoi(t, 2, y)] dydwdt

T
_'_/() /Q/Y§3(t,x,y)Vy¢3(t,$,y)dydl'dt
2 T
— (t, z,y)i(t, z)dydzdB;
Z/ /Q/Yif(txy)wtx)yxB(t)

T
—/ / fs(t,z,y)ps(t, z,y)dydezdBs(t) = 0, P-as..
0o JoJv

(3.25)

Let us decouple equation (3.25) by making specific choices of the test functions

¢17 w27 ¢17 ¢27 (b?)‘
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Let ; be such that ¢4 (t) = 0 at ¢ = 0 and t = T and choose ¢3 such that
Bos(t,z,y) = Uy (t,z) for y € Yo and 9, ¢1, 02 = 0. Then we get the following

equation;

/ / /Yl y)uy (t, x)(t, v)dydodt — —/ / /Y2 Y)Us(t, 2, )1 (t, x)dydedt
" /Q / sy (T, )y + /Q / ala)uie)in (1.2
_ /Q /Y101(y)u(1)(x)¢1(0,x)dyd:c—% /Q /)@Cs®>u§<x>%<0,x> Ly
+/OT/Q/YI§1(t,w,y)Vw1(t,x)dydxdt
* % /0 ' /Q /Y : Gs(t, ©,y) Vo (t, x)dydadt

T
_ / / £t 2, ) (¢, ) dydad By (1)
0 QJIY
T
_%/O /Q . fs(t, z,y)¢ (t, z)dydzdBs(t) = 0.

Integrating by parts with respect to t in the first and second terms on the left

hand side and with respect to x in the seventh term gives

/OT /Q | extnt zyine, <)y
‘3 / | ]| exavste s e, vy

T
— / / V- gi(t, z,y)1(t, z)dydzdt
0o JoJIn

T
s [ Gt v a)dgas.ar (3.26)
0 oQ J Y1

1 T
41 / / / Gt 2, y) Vo (¢, ) dydadt
/8 0 QJYs

T
- / / fi(t, z, y)(t, :r)dydxdél (1)
o JoJwni

T
-3 /0 /Q [ faltom ) (1, 2)dydzaBy(1) = 0.
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This is the weak formulation of the following macro-fissure equation

(/Yla(y)dy) duy (t, ) + % ( /YQ cs(y)dUs(t, y)dy)

=V- (/Y §1(t,x,y)dy)dt—|— ( ; fl(t,a:,y)dy> dB, (t) (3.27)

1

v ( [ e, y)dy) dBs(1).

Similarly, let ¥, ¢1, 92 = 0 and 1, be such that ¥s(t,x) =0at t =0and t =T
and ¢3 be such that S¢3 = —aa)s, for y € Y;. Then we obtain the following

T
_/ // ca(y)ua(t, ©)ho(t, ) dydrdt
0 QJY:
T
(8%
+5/ //Y2 c3(y)Us(t, v, y) o (t, v)dydxdt
//YQCz u2 sza:dydx——//Ych u3 szx)dyd:C
= [ e aue + 5 [ [ iy o, s
T
+/0 /Q/Yg g2(t>x7y)v¢2<t,$)dyd$dt
T
- % /0 /Q /Y Gs(t, z,y)Vyihs(t, x)dydzdt

T
- / / falt, 2, )b (t, 2)dyded By (1)
0o JoJv

T
+% /0 /Q [ sttt )y Byfe) = 0.

Integrating by parts with respect to t in the first and second terms on the left
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hand side and with respect to x in the seventh term gives

/OT /Q /y ca(y)dua(t, ) (t, z)dydz
R % /OT /Q /Y c3(y)dUs(t, o, y)a(t, w)dydz

T
— / / V- Ga(t, z,y)e(t, z)dydxdt
0o JoJv,

T
i / / / Gt 2, y) - Totin(t, 2)dydS,dt (3.28)
0 o0Q JYo

T
+g/ //gg(t’x’y)vy¢2(tax)dydxdt
B Jo Q JYs

T
- / / Jolt, 2, y)a(t, 2)dyded Ba(t)
0 QJY>

T
a ~
+ E/o /Q . f3(t, x,y)a(t, x)dydedBs(t) = 0.

Since 19 € D((0,T); C°(Q)) is arbitrary, we have that (3.28) is the weak formu-

lation of the following macro-matrix equation
!
([ catmay)auate.) = 5 ( [ atmpavte. iy
Y2 B Yo
=V- (/ §2(t,x,y)dy) dt + ( fz(t,x,y)dy) dB;(t) (3.29)
Y2 Y2

« ~

- —( f3(t>$,y)dy)d33(t)-
B\ Jy,

Next, let 11,19, ¢1, 2 = 0 and ¢3 be such that ¢3(t) =0 at ¢t =0 and ¢t =7 on
I'y 9, together with BUs + aug = uq, on 9Y; N OY, = I'; 2, we get the cell equation

Y)Us(t, x,y)pse(t, x, y)dydadt + (2)és(T, z, y)dyda
e et
_/Q/Y2 63(y)ug($)¢3(0,:v,y)dydx+/0 /Q/Y2 Gs(t, 2, y)Vyos(t, z, y)dydzdt

T
- / / falt 2, y)bs(t, 2, y)dydedBa(t) = 0.
0 QJYs

Integrating by parts with respect to t in the first and third terms in the left hand
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side gives

_ /OT/ /Y2 Y)dUs(t, z, y)¢3(t, z, y)dydz

T
+/ // y - g3(t, v, y)es(t, x, y)dydwdt
0 QJY,

O

(3.30)
- / / / §3(t7xay) : Ij_é¢3(t7x7y)dsydxdt
0 JQJove
T ~
[ [ e enteapdydzabate) -
0 JQJvs
This is a weak formulation of the following the cell equation;
C3(y)dU3(t7 xay) = Vy ' 53@7 x, y) + f3(t7 Z, y)dé?)(t)v Yy € }/2
Us and g3 - v are Y-periodic on I'y, (3.31)

BUs = u; — aug on I'y 5.

Lastly, letting 11, ¢y, ¢3 = 0 and ¢y, ¢ € D((0,T) x Q; Cpe.(Y)), we obtain

T T
/ / / g’l(t,x,y)Vy¢1(t,x,y)dydxdt—i— / / / 52(t7x7y)vy¢2(t7xvy)dydxdt = 07
0 QJIW 0 QJY2

which is weak formulation of the following system of equations;

Vy-Gilt,z,y) =0, y ey, (32)
Gi-V=0o0nT45 and g- v is Y-periodic on 9Y; N 9Y, for i =1,2.
We will have our homogenized problem when we have identified the terms g, go
and g3.
Next we split (3.25) using special choices of test functions 1y, 19, V3, @1, Pa, 3 in

order to be able to use Ito’s formula.

In the first stage, choosing s, ¢1, ¢a, 3 = 0 and ¥, € D(0, T; W, 7(Q)), we have

(/Yl cl(y)dy)dul(t,w) =V (/Yl ﬁl(t,x,y)dy)

(3.33)
+ < fl(t,a:,y)dy> dB (t).
Y1
Next choosing 11, ¢1, ¢2, p3 = 0 and 1y € D(0,T; Wol’p(Q)), we have
(/ 02(y)dy>dU2(t,x) =V (/ §2(t,x,y)dy)
s 2 (3.34)

N ( i f2(t,:v,y)dy) dB(t).
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Now we choose 1,1y, ¢1, 9 = 0 and ¢3 € D([0,T] x Q; WLE(Y)), to get

per

c3(y)dUs(t, z,y) =V, - g3(t, z,y) + ( y fg(t,x,y)dy) dég(t). (3.35)

Next we choose 1,19, o, ¢p3 = 0 and ¢ € D([0,T] x Q; WLP(Y)), to get

per

T
/ / / Gi(t, z,y)Vyo1(t, z,y)dydzdt = 0. (3.36)
o JoIn
Lastly, choosing 1,19, ¢1, p3 = 0 and ¢y € D([0,T] x Q; WLE(Y)), we have

per

T
/ // Go(t, z,y)Vyda(t, x,y)dydzdt = 0. (3.37)
0 QJYs

Ito’s formula on (3.33) - (3.35) at t = T and adding (3.36) and (3.37) we get

—Z//Cl )i (T)|Pdydx + = // ) |Us(T)|?dydz
Ya
——// y)|Us(0 |dyd:v——2// ) |u; (0)|*dydz
Y
—f—Z/ //gi(t,x,y)Vui(t,x)dydxdt
i=1 Y0 JQJY;
T
+/ // G3(t, x,y)V,Us(t, v, y)dydrdt
0o JoJv
2 T
S [ et adudsas
i=1 70 JQJY;

T
_ / / y f3(t7 x, y)U3(t, x, y)dydIng(t)

——Z///|fztxy|dydxdt——// | f3(t, x, y)|*dydzdt

—l—Z/ //gj;(t,x,y)Vin(t,x,y)dyda:dt:O, P-a.s.
i=1 70 JQJY;

Now we identify §i, ga, g3. For this, we use Minty’s trick (Lemma 1.28) [84]; see
also [21] and [30]. Let @, & € C22([0,T] x Q; Co2.(Y))? and ny, 172,13 € Cg°([0, T %

Q; Cpe.(Y)) and for € > 0, we define the functions

(3.38)

N(t,z) = Xi(%)Vu,-(t,x) + exi(z)Vm(t,x, %) +og(t,z, %) i=1,2,
X(t ) = X (2) (Vi (t 2, 2)) + o€t 2, ).
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Since i; (£, A{(t, z)) and A{(¢, ) (i = 1,2, 3) arise from an admissible test function,

e’

we have the following two-scale convergence
€j 2—s .

NS (1, 2) 25 Ns(t, 2,y) = xa(y) Vyns(t, 2, y) + o€ (t, 2,y).

By A(3.2), we get
z [ vy = e ) 9 = 3o
o /Q (71 (0.6, V07) = X0 (2. X0) €V = Aot > 0,
0
Expanding the above inequality yields

2 T
Z/ /Xz i (x Vuzj)Vu?da:dt—Z/ /X?u?(x,Vu?)/\Zjdxdt
=170 JQ
[ [ e
=170 J@Q

T
+ / / Xi g (2, €Vug e, Vug dadt (3.39)
0 Jo
T
_/ /X?M?(% eVug )\ dxdt
0o JQ
T
_/ /ngﬂgj(xa M) (€, Vug — A )dxdt > 0.
0o JQ

Recall that Ito’s formula on (P%) yields
2 t
> @)u (OF + ¢ (@)]ug () +2 Z/O (7’ (z, Vi), Vi (s))ds
i=1 =1

t 2
+ 2/0 (15 (, & Vuy), & Vug (s))ds = Y ¢ (x)|ug? (0)]° + ¢ (x) uy (0)
=1

t (3.40)
+QZ / FOAL B () + 2 [ (7 (59,05 ()3

t
+Z/o ||fi6]’|%2(Q§)d5+/O ||f§J||iz(Q§)ds, P-a.s..
i=1
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Adding a suitable zero to (3.39) and using (3.40) gives

2

=1

1 € €, € 1 € €1, €
+3 / 5 @)l (0) P — 5 / @0 | ()P
Q Q

)]2(13:

2 T 2 T
€5 p€j €5 1 €5 £€i
+Z/0 /QXiJ i Ui ddei(t)+Z§/ /|X1 [i |2d$dt
i=1

T
+/ /X; f5'ug drdBs(t) + / /|X6Jf6J| dxdt

—Z/ /Xz wi (z, Vu? )\ dzdt
-~ Z / / X7 1 (2, M) (Vg — N7 ) daedt

—/ /ngugj(x,EVu?)/\?dxdt
0 J@

T
_/ / Xo g (2, A5 ) (eVug — \J)dxdt > 0.
0 JQ

Recall that Vu;’ 205 Vu(t,z) + V,Ui(t,x,y), i = 1,2,
va?)(tuxay)'
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and eVus —



We now take the limit as ¢; — 0 to get

—Z// ) s (0) 2dydz + - //Y )| U3(0) Pdydz
/ / / Fudydad By(t Z / / / | fil2dyddt
/ / ; fsUsdydzdBs(t) / / YQ\fs *dydxdi

/ / / G1(Vuy + Vym + op)dydzdt
Y1

T
/ p(y, M) (VU = Vym — op)dydxdt

Ya

~

Go(Vug + Vyno + op)dydzdt (3.42)

S

p2(y, A2)(VyUz = Vo — op)dydzdt

S

N

—

Gs(Vyns + o&)dydxdt

ps(y, A3)(VyUs — Vynsz — 0&)dydadt

3
S
=

€ €5 ]- . €5 €5
e @ (1o 5 iy | @l (7
! 5

v

|
MHN"‘NN:\N:\
S~ — 35— 3—3J

LE
m\

li
E]’ $
+ - lim c§ (x)|ug' (T)|*de,

6]'—)0 Q;

where we omit the variable (¢, z,y) in order to avoid cumbersome writing.

We use (3.38) in (3.42) and replace n;(t, z,y) by U;(t,z,y) (1 = 1,2,3) to get

T T
—/ // §1ag5dydxdt+/ // w1y, Vuy + V,Uy + 0@)oddydxdt
0 JQJIYN 0 JQJI1n
T T
- / / / Goopdydrdt + / / / p2(y, Vug + V,Uy + 0@)ogdydrdt
YQ Y2
/ // g;;a{dydxdt%—/ // ws(y, Vy, U3+G§)a§dyd$dt
Y2 YQ

—hm cy (z)|uy (T)|2d:L‘—|——11m ey () |ug (T)[Pdx

26]*)0 QS 26]

1

+ - i dr — - dyd
byl | G@ROPE //Y o)l (1) Py

——// y)|ua(T)| dydx——// y)|Us(T) |*dyd.
YQ Y2
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Now let us set ¢ = Xlgl + X2§2, where we take 0; € C§°([0,T] x Q; C>*(Y;)), (i =
1,2).
Using Proposition 3.11, the right hand side of (3.43) is nonnegative. Thus (3.43)

becomes

T T
- / / / Grotrdydzdt + / / / pa(y, Vur + V,Uy + 06,) o6 dydxdt
0 QJ" 0 QJIY
T . T . -
- / / / Goobadydzdt + / / / po(y, Vug + V,Us + 00s)0brdydadt
0 Q Yo 0 Q Yo
T . T L
- / / / gso&dydzdt + / / / ps(y, V,Us + 0&)oédydxdt > 0.
0 Q Y2 0 Q Y2

Following Bensoussan’s argument in [21], first we divide the above equation by o

and then let ¢ — 0 to obtain

T
/ / / ((y, Vur + V,Uy) — G161 dydzdt
0o JoJvn
r —
+ / / / [y, Vug + V,Us) — go]Oadydadt
0o JoJv
g g e
0o JoJvn

Hence owing to Minty’s trick (Lemma 1.28) [84] and as implemented by Bensoussan

in [21], we conclude that

Gi(t,z,y) = i (y, Vug + V,Up) in (0,7) x Q x Y, P-ass
Go(t, x,y) = p2(y, Vug + V,Us) in (0,7) x Q X Yy P-a.s
gs(t,x,y) = pus(y,V,Us) in (0,7) x Q x Yy P-as

This completes the proof of Theorem 3.13. O
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Chapter 4

Conclusion

Due to the relevance of stochastic models in applied science and environmental
engineering, we studied the stochastic model of groundwater flow and pollution and

stochastic diffusion model of single-phase flow through partially fissured medium.

In the first part of the research, we initiated the investigation of coupled stochas-
tic diffusion-convection, reaction-diffusion and steady Stokes equations governing
processes of groundwater contamination. The porous medium is modeled as a
perforated domain and we made use of the powerful method of homogenization as
our main tool of investigation coupled with some crucial compactness results of
both analytic and probabilistic nature; in particular we successfully implemented
Prokhorov and Skorokhod compactness procedures. We constructed the corre-
sponding macroscopic homogenized problems using both Tartar’s method of oscil-

lating test functions and the formal asymptotic expansion method.

In the second part of the research, we investigated a double-porosity model for
flow of single-phase fluid through a partially fissured medium. The medium is
modeled as a domain consisting of periodic perforated domain and a system of frac-
tures with a transmission condition at the interface of the sub-domains. We used
Nguetseng’s two-scale convergence, Minty’s monotonicity method and Prokhorov-

Skorokhod compactness process for the homogenization process.
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To the best of our knowledge, our work is the first to systematically investigate
process of groundwater contamination governed by stochastic partial differential
equations in perforated porous medium and to use the more advanced tool of
stochastic partial differential equations driven by random forces to study the ran-

dom fluctuations on a flow through partially fissured media.

The novelty of the research is that it opens several avenues for the development
of the homogenization theory for SPDEs for theoretical and practical problems in

applied science. Here are some open problems:

1. The corrector result for a flow in a partially fissured medium modeled using

SPDEs.

2. Homogenization of stochastic convection-diffusion equation with levy pro-

Cess.
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