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Abstract

E. granulosus is a cestode that causes Cystic Echinococcosis (CE), a zoonotic disease with

worldwide presence. The immune response generated by the host against the metacestode

induces a permissive Th2 response, as opposed to pro-inflammatory Th1 response. In this

view, mixed Th2 and regulatory responses allow parasite survival. Overall, larval Echinococ-

cus infections induce strong regulatory responses. Fasciola hepatica, another common hel-

minth parasite, represents a major infection in cattle. Co-infection with different parasite

species in the same host, polyparasitism, is a common occurrence involving E. granulosus

and F. hepatica in cattle. ‘While it is known that infection with F. hepatica also triggers a polar-

ized Th2/Treg immune response, little is reported regarding effects on the systemic immune

response of this example of polyparasitism. F. hepatica also triggers immune responses

polarized to the Th2/ Treg spectrum. Serum samples from 107 animals were analyzed, and

were divided according to their infection status and Echinococcal cysts fertility. Cytokines

were measured utilizing a Milliplex Magnetic Bead Panel to detect IFN-γ, IL-1, IL-2, IL-4, IL-6,

IL-10, IL-12 and IL-18. Cattle infected only with F. hepatica had the highest concentration of

every cytokine analyzed, with both 4.24 and 3.34-fold increases in IL-10 and IL-4, respec-

tively, compared to control animals, followed by E. granulosus and F. hepatica co-infected

animals with two-fold increase in IL-10 and IL-4, compared to control animals, suggesting

that E. granulosus co-infection dampens the cattle Th2/Treg immune response against F.

hepatica. When considering Echinococcal cyst fertility and systemic cytokine concentrations,

fertile cysts had higher IFN-γ, IL-6 and IL-18 concentrations, while infertile cysts had higher

IL-10 concentrations. These results show that E. granulosus co-infection lowers Th1 and Th2

cytokine serological concentration when compared to F. hepatica infection alone. E. granulo-

sus infections show no difference in IFN-γ, IL-1, IL-2, IL-6 and IL-18 levels compared with

control animals, highlighting the immune evasion mechanisms of this cestode.
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Introduction

Cystic Echinococcosis (CE), formerly known as hydatid disease, is a zoonosis with worldwide

distribution [1, 2]. It is caused by Echinococcus granulosus sensu lato metacestodes. The meta-

cestode, usually called hydatid cyst but currently termed Echinococcal cyst, is found in a wide

range of mammals such as cattle and sheep [3], while humans act as dead-end hosts [4]. This

parasite has an indirect life cycle, with canids such as dogs participating as definitive hosts,

with the adult worm living in the small intestine and eliminating gravid proglottids and eggs

with the feces, which are later ingested by the aforementioned herbivores, who participate as

intermediate hosts [5]. Echinococcal cysts develop within the internal organs (frequently liver

and lungs) of intermediate hosts as unilocular fluid-filled bladders, where protoscoleces are

formed [6]. Finally, when a definitive host ingests viable protoscoleces, they evaginate and

attach to the small intestine, developing the adult parasite and completing the cycle [7].

Within the viscera of intermediate hosts, Echinococcal cysts are able to survive by evading

the host immune response [8]. Research in human CE patients and secondary CE mouse mod-

els indicate that during chronic infection, the immune responses has mixed T helper 1 (Th1),

T helper 2 (Th2) and T regulatory (Treg) profile, which plays an important role in promoting

the progression of the disease by the secretion of both IFN-γ and IL-4 [9–11].

The biological importance of a polarized cytokine response is seen in some infectious dis-

eases where Th1 or Th2 responses are correlated with susceptibility or resistance [12, 13].

Understanding what drives cytokine responses towards different expression patterns is rele-

vant for the rational design of immune intervention, possible vaccination protocols and diag-

nosis. In fact, parasite immune modulation can interfere with diagnostic tests, such as in

Mycobacterium and Fasciola co infections [14, 15]. Polarization of cytokine response is a com-

plex phenomenon which is affected by the conditions present during T-cell activation, such as

cytokines, co-stimulation, strength of TCR signaling, immunomodulatory molecules produced

by parasites and the chemical nature of antigens [12, 16].

Cattle immune responses to CE follows the same pattern of mixed immune response with,

an early Th1 response with a later Th1, Th2, and Treg mixed response, which is responsible

for CE chronic infection [17]. In chronic parasitic infections, parasites express effective

immune evasion mechanisms. This is particularly noted as EC’s often live several years and

grow to a large size within the host [18].

It was previously understood that Echinococcus cyst immune evasion was due to pure Th2

instead of a Th1 response [19, 20]. It is now accepted, through other studies, the evasion is

achieved by a combination of Th2 and Treg responses [21, 22]. This type of response, called

Th2-like response in some publications, promotes parasite survival in the intermediate host

[18]. In human parasitic infections the host utilizes several innate and acquired protective

mechanisms but not all of these responses are effective. A particular characteristic of CE is

chronic infections persist with detectable humoral and cellular responses. Different antigens

are expressed during different stages. The human host responds independently to a myriad of

antigenic stimuli; the invading oncosphere, the metacestode in transformation from the onco-

sphere, and finally the mature metacestode [23].

Two kinds of Echinococcal cysts are found In naturally infected intermediate hosts; (1) fer-

tile cysts, in which protoscoleces are attached to the germinal layer or free into the hydatid

fluid; and (2) infertile cysts, where protoscoleces are absent and the parasite life cycle ends

[24]. The reason why these two type of cysts exist is unclear [25]. The host immune response is

likely to participate in generating infertile Echinococcus cysts [24]. However, the parasite anti-

gen that drives this immune response remains unknown.
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Previous reports indicate that 71.5–91.2% [26–29] of cattle Echinococcal cysts are infertile

[29], implying that cattle are an important source of infection to the definitive hosts of this par-

asite, as 8.8–28.5% of cysts are fertile. Regarding the metacestode tropism, the lung is the most

common organ for the development of fertile cysts [26, 30]. Fertile and infertile cysts are

caused by the same haplotype of Echinococcus granulosus sensu stricto [24], suggesting that par-

asite genetics alone cannot explain the fertility of Echinococcus cysts.

Since most data of cyst fertility comes from naturally infected cattle slaughtered at abattoirs,

the hosts are usually infected with other parasites besides Echinococcus granulosus, a condition

known as polyparasitism. This condition may affect the host susceptibility to other infections,

some are fatal [31–34]. Although extremely relevant for the comprehension of the host-para-

site relationship, there is scarce information in the literature that allows determination of the

real effects of polyparasitism in host health [35]. A previous study indicates that polyparasitism

between Echinococcus granulosus and Fasciola hepatica is associated with a decrease in Echino-
coccal cysts found in liver by CE and, an increase in lung Echinococcal cysts, particularly small

cysts [36]. There are no differences between B and T cell infiltration in the adventitial layer of

both fertile and infertile cysts when the host is co-infected with Fasciola hepatica [37].

Fasciola hepatica, also a platyhelminth, represents a major infection in cattle named fascioli-

asis. A study of Echinococcus granulosus and Fasciola hepatica co-infection showed that it can

happen in almost 10% of cattle [36]. As with other helminths, Fasciola hepatica infection trig-

gers a mixed Th2/Treg immune response [38]. Both E. granulosus and F. hepatica induce a

chronic infection surviving inside its mammalian host for more than a decade [6, 39].

The purpose of this study was to explore the effect of Fasciola hepatica polyparasitism on

the systemic cytokine profiles in serum from cattle with both fertile and infertile Echinococcal
cysts. This co-infection is common but reports related to serum cytokine profile are not found

in current literature.

Materials and methods

Sampling

The Universidad Andres Bello Bioethics Board approved the study protocol (protocol number

016/2016). One slaughtering-day visit per week was scheduled. Official abattoir veterinarian

inspectors examined the animals before the slaughter and were deemed healthy for slaughter-

ing. After slaughter, internal organs (lungs, liver, heart, spleen and kidney) of slaughtered cat-

tle where thoroughly examined for the presence of Echinococcus granulosus sensu lato and

Fasciola hepatica infection. Only adult animals (>2 years) were included. To ensure that all CE

samples were from late stage of infection, only echinococcal cysts larger than 1.5 cm that were

found in liver and/or lungs were sampled and transported in iced boxes within 2 hours to the

laboratory for further examination. To determine cyst fertility, they were inspected through

direct microscopy for the presence of protoscoleces. From each individual cyst, protoscoleces

and/or germinal layers were subjected to genotypification through PCR-restriction fragment

length polymorphism analysis using a 444-bp fragment of the cytochrome c oxidase subunit 1

(cox1) and the enzyme AluI, followed by PCR products sequencing to confirm Echinococcus
granulosus infection [29]. Only samples from Echinococcus granulosus sensu stricto were

included in the study. Fascioliasis diagnosis was made either by direct visualization of adult

parasites in bile ducts or by signs of chronic infection, as previously described [36]. Cattle were

considered co-infected when Echinococcus granulosus and Fasciola hepatica were found in the

same individual, not necessarily the same organ.

During bleeding blood samples from infected and control animals were collected from the

jugular vein in tubes added with a clot activator gel. Samples were kept refrigerated and
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transported in iced boxes within two hours to the laboratory. The samples were centrifuged at

1,000xg for 10 minutes, the serum was aspirated and stored at -20˚C until analyzed.

Cytokine quantification

Serum samples were prepared for analysis in a 96-well plate utilizing a Milliplex MAP Porcine

Cytokine/Chemokine Magnetic Bead Panel (Millipore Corp., Billerica, MA) following the kit-

specific protocols provided by Millipore to detect IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12

and IL-18. We validated the use of this kit by comparing the amino acidic sequence between

cattle and porcine cytokines; the similarity (%) was determined for IFN-γ (87.87%) (NM_

174086; NM_213948), IL-1 (79.98%) (NM_174092; NM_214029), IL-2 (84.3%) (AF348423.1;

JN851821.1), IL-4 (83.67%) (NM_173921.2; NM_214123.1), IL-6 (84.25%) (NM_173923.2;

NM_214399.1), IL-10 (83.36%) (NM_174088.1; L20001.1), IL-12 (91.13%) (NM_174355.2;

NM_213993.1) and IL-18 (90.67%) (NM_174091.2; AF191088.1). Analytes were quantified

using a Magpix analytical test instrument, which utilizes xMAP technology (Luminex Corp.,

Austin, TX), and xPONENT 4.2 software (Luminex). The results were expressed as ng/mL.

Study groups

In an initial analysis, cattle were classified as follows: Control "Ctrl" (n = 13), Cystic Echinococ-

cosis "CE" (n = 47), Fascioliasis "FH" (n = 19) and, Cystic Echinococcosis with Fascioliasis "CE

+FH" (n = 28). Control animals consisted in cattle without macroscopic parasite infections

and both normal hemogram and biochemical profiles. The CE group was further divided

according to their Echinococcal cysts fertility status either having fertile or infertile cysts then

labeled as “CE fer” or “CE inf”.

Statistical analysis

Data was entered into a Microsoft Excel 2010 database, followed by analysis carried out with

SPSS v.19 for Windows (SPSS Italia SRL, Bologna, Italy) and Prism 6 software (Graphpad Soft-

ware 6.0, San Diego, USA). Medians and interquartile ranges (IQR) were calculated for contin-

uous measures. The Kruskal-Wallis test and Mann-Whitney U test were used for comparisons

among several groups or pairwise comparisons, respectively. A statistically significant associa-

tion between variables was considered to exist if the p value was below the 0.05 threshold.

Results

Only cattle affected with Echinococcus granulosus sensu stricto were included in the present

study because they represented 98% of all the analyzed cysts. Cytokine concentration was mea-

sured in a total of 107 animals, which met the inclusion criteria, and divided according to their

infection status as follows: Ctrl (n = 13), CE (n = 47), FH (n = 19), CE+FH (n = 28). Echinococ-
cal cyst fertility status resulted in CE Fer (n = 22) and CE Inf (n = 25). All cytokine concentra-

tion results are expressed as mean SD.

The control group was used as baseline and fold changes of cytokine levels calculated with

respect to this group. The highest concentration of serological IL-4 was observed in the FH

group with a 3.43-fold increase, followed by CE+FH with a 2.5-fold increase and CE with a

1.68-fold increase. Significant differences were observed between all groups, with the higher

significance found in FH group with respect to Ctrl group (Fig 1A). For IL-10, the highest con-

centration was observed in the CE+FH group with a 4.25-fold increase, followed by CE with a

2-fold increase. Significant differences were observed between infected groups, with CE+FH

groups with higher significance with respect to Ctrl group (Fig 1B). For IL-12, the highest
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concentration was observed in the CE+FH group, which represented a 3-fold increase followed

by CE with a 2-fold increase. Significant differences were observed between control and

infected animals group (Fig 1C). For IL-2, the highest concentration was observed in the FH

group with a 2.4-fold increase, followed by 2.1-fold increase in CE+FH and 1.4-fold increase in

CE. High significance was observed between FH and Ctrl groups (Fig 1D). For IL-6, the high-

est concentration was observed in the CE+FH group with a 3-fold increase, followed by a

1.42-fold increase in CE group. Significant differences were observed between both infected

groups, with CE+FH group with high significance (Fig 1E). For IL18, the highest concentra-

tion was observed in the FH group with a 2.8 fold increase, followed by CE+FH with a 1.33

fold increase and CE with a 1.22 fold increase. The higher significance was found between FH

and CE infected animals (Fig 1F). For IL-1, the highest concentration was observed in the FH

group with a 2-fold increase, followed by a 1.5-fold increase in both CE+FH and CE infected

animals. High significance was observed between FH and Ctrl groups (Fig 1G). Finally, for

IFN-γ, the highest concentration was observed in the FH group with 1.41-fold increase, fol-

lowed by a 1.37-fold increase in CE+FH and 1.14-fold increase in CE infected animals. Sig-

nificant differences were observed between all groups, with the higher significance in FH and

CE+FH groups (Fig 1H).

When the fertility status of cysts of infected cattle was considered, analysis of serological IL-

1 (Fig 2A), IL-2 (Fig 2B), IL-4 (Fig 2C) and IL-12 (Fig 2D) showed no statistical difference

between cytokine levels of CE Fer and CE Inf groups (0.03±0.01ng/mL vs Inf 0.02±0.006ng/

mL), (0.16±0.08ng/mL vs 0.11±0.02ng/mL), (0.27±0.09ng/mL vs 0.27±0.11ng/mL) and (0.06

±0.02ng/mL vs 0.06±0.01ng/mL), respectively. A 1.13-fold for IFN-γ (Fig 2E), two-fold for IL-

6 (Fig 2F) and 1.33-fold IL-18 (Fig 2G) increase were found in CE Fer when compared to CE

Inf (0.85±0.17ng/mL vs 0.75±0.16ng/mL), (0.14±0.03ng/mL vs 0.07±0.02ng/mL) and (0.12

±0.05ng/mL vs 0.09±0.02ng/mL), respectively, with higher significance in IL-6. Finally, there

was a 1.42-fold increase of IL-10 (Fig 2H) in CE Inf when compared to CE Fer, with 0.10

±0.02ng/mL vs 0.07±0.02ng/mL, respectively.

Fig 1. Serological cytokine concentration in cattle. Animals are divided in Control (Ctrl), Cystic Echinococcosis (CE), Fascioliasis (FH) and, co-infected

animals (CE+FH). Cytokine concentrations for IL-4 (A), IL-10 (B), IL-12 (C), IL-2 (D), IL-6 (E), IL-18 (F), IL-1 (G) and IFN-γ (H) are shown. Dots represent

individual cytokine values in cattle and the horizontal bar represents the mean for each group. Statistical significance was tested between groups using the

Kruskal-Wallis test, with � = p< 0.05, �� = p< 0.01 and ��� = p< 0.001.

https://doi.org/10.1371/journal.pone.0238909.g001
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Overall, cattle in the FH group presented the highest cytokine concentrations, followed

always by the CE+FH group. When considering fertility status, fertile Echinococcal cysts showed

higher serological concentrations of IFN-γ, IL-6 and IL-18, while having lower IL-10 concentra-

tions, as compared to serological concentrations of cattle harboring infertile Echinococcal cysts.

Due to samples being below the detection level of the kit, values for IL-6, IL-10 and IL-12

single infected with Fasciola hepatica are not available.

Discussion

To the best of our knowledge, this is the first study dealing with serological cytokine produc-

tion from late CE infection in cattle, and their relationship with cyst fertility or other parasitic

co-infections.

Several studies show that both Th1 and Th2 cytokines are induced during CE. Cytokine

production depends on the clinical stage of the disease, localization of the cysts, and pharma-

cological or surgical treatment [40–42]. Our study determines and compares the serological

concentration of many circulating cytokines in control, single infected and co-infected cattle.

We provide evidence that many circulating cytokine levels are higher in cattle infected with

Fasciola hepatica compared to those co-infected with E. granulosus sensu stricto, with single

CE infection or control animals.

Immunological studies in humans show elevated in vitro production of parasite antigen-

driven Th1 (IFN-γ, IL-6), Th2 (IL-4, IL-5) and Treg (IL-10) cytokines by peripheral blood

mononuclear cells isolated from patients with CE confirming that human immune responses

to E. granulosus metacestode is regulated by a mixed Th1/Th2/Treg response [23]. Our results

also demonstrate this occurrence in cattle. Data in humans indicate that in CE, mixed Th2/

Treg responses, correlate with susceptibility to disease (active cysts) whereas a Th1 responses

correlate with protective immunity (in-active cysts) [43].

Fig 2. Comparison of serological concentration between fertile and infertile Echinococcal cysts. Animals are grouped in Cystic Echinococcosis with fertile cysts (CE

Fer) and Cystic Echinococcosis with infertile cysts (CE Inf) for IFN-γ (a), IL-1 (b), IL-2 (c), IL-4 (d), IL-6 (e), IL-10 (f), IL-12 (g) and IL-18 (h). Dots represent individual

cytokine values in cattle and the horizontal bar represents the mean for each group. Statistical significance was tested between groups using the Mann-Whitney U-test,

with � = p< 0.05, �� = p< 0.01 and ��� = p< 0.001.

https://doi.org/10.1371/journal.pone.0238909.g002
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IL-12 functions through the up-regulation of IFN-γ [44–46]. IFN-γ is shown to have in
vitro anti-Echinococcus activity. IFN-γ also enhances the production of IL-12, creating a positive

reinforcement loop which enhances Th1 type immunity [46]. IL-12 was originally termed ‘natu-

ral killer cell stimulatory factor’ or ‘cytotoxic lymphocyte maturation factor’. This is produced

mainly by activated macrophages/monocytes. It has a very important role in the initiation and

regulation of the innate cellular immune responses [44, 45, 47]. Interestingly, IL-12 levels were

higher in CE only infected cattle compared to healthy animals, but not between the fertile and

infertile CEs. We expected that infertile CEs would have higher levels of IL-12 cytokine as previ-

ous data on the role of cytokines in host anti-Echinococcus defense suggests that this cytokine

underscores the ability of the metacestode to trigger cytokine production [41, 48–51].

IFN-γ is also a key cytokine that triggers the activation of macrophage function which,

through nitric oxide (NO) production, inhibit the growth and function of helminths and other

infectious agents, playing a relevant role in the establishment of protective Th1-mediated

immunity during E. granulosus infection [50]. Elevated levels of both NO and IFN-γ are found

in vitro and in vivo during human CE infections. Re-infected patients do not show detectable

levels of either molecule [41, 48, 49]. Previous in vitro studies suggest that protoescoleces pro-

vide an activation signal, triggering NO induction in peripheral blood mononuclear cells from

human patients and healthy donors. This reflects a complex host-parasite interaction. Our

results were not in agreement with what was found for humans, as CE single infected animals

did not show higher levels of the cytokine; this could be due to differences in the cellular

immune response between cattle and humans. Significant differences were found between fer-

tile cysts an infertile cysts where fertile cysts had slightly higher levels.

Reports show that CE patients with active cysts have a predominant Th2 profile, character-

ized by IL-4 production [10, 52, 53], and in vitro assays show that IL-4 reduces protoescolex

killing, promoting parasite survival [54]. Previous work has shown that levels of IL-4 and IL-

10 increased after Echinococcus infection in humans and experimental mouse models [11, 55].

These studies suggest that IL-4/IL-10 impairs the Th1 protective response and allows the para-

site to survive in infected patients [40, 56]. Our study shows that IL-4 /IL-10 levels increase in

CE infected cattle. However, IL-4 levels between cattle with fertile cysts and infertile cysts

showed no significant differences.

The regulatory and anti-inflammatory cytokine IL-10 is abundantly expressed by leuko-

cytes in CE infected hosts, especially in the immediate vicinity of the parasite [11, 57]. Systemic

IL-10 levels increase in cattle with infertile cysts. This does not follow with the inflammatory

response found locally. The adventitial layer of infertile cysts usually feature a strong innate

inflammatory response consisting of a granulomatous reaction with palisading macrophages,

including infiltration and disorganization of the laminated layer. Fertile cysts usually have a

fibrotic local immune response [24]. Further studies on the expression of IL-10 in the adventi-

tial layer of fertile and infertile ECs are needed to complete this data, as it is plausible that the

granulomatous reaction of infertile ECs is concomitant with IL-10 expression.

In mouse experimental infections, the cytokine response during early stage of experimental

infection by E. granulosus depends on the parasite dosage: a low dose induces a regulatory

cytokine response while a high dose of parasites induces a type-2 cytokine response [58].

Cattle become infected with F. hepatica and E. granulosus while grazing. Echinococcus gran-
ulosus and Fasciola hepatica co-infection is present in almost 10% of cattle [36]. Since both

parasites are able to survive for more than a decade in its mammalian host [6, 39], the chronic

inflammatory response should also be simultaneous. Conversely, cattle that are slaughtered in

abattoirs are usually treated for Fasciola hepatica infection during their productive life cycle,

which eliminates the adult and migrating forms. In this scenario, it is plausible that adult co-

infected cattle harbor both acute F. hepatica infections and chronic E. granulosus infections.
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Cattle with Fascioliasis only, had significantly higher serological levels of IFN-γ, IL-1, IL-2,

IL-4, and IL-18 than control and CE single infected cattle. IL-6, IL-10, and IL-12 were not

obtained for this group however these cytokines were significantly higher in co-infected ani-

mals compared to healthy animals. IL-6, IL-10, and IFN-γ levels were higher in co-infected cat-

tle than CE only. There were no differences found with respect to cytokines IL-12, IL-6 and

IFN-γ between control and CE single infected animals. When FH co-infection was present, the

cytokine levels were higher.

Since our results are obtained from naturally infected cattle, there are some limitations to

our study, such as insecticide treatment during feeding, the temporality of F. hepatica and E.

granulosus infection and use of antiparasitic drugs. However, since cattle did not show signs of

other systemic diseases most of the confounding factors have been addressed.

To conclude, our results show that in naturally infected cattle, systemic cytokine profiles

follow a distinct pattern between control, FH, CE and CE+FH: the highest concentrations are

found when cattle are infected only with F. hepatica; these systemic concentrations decrease

following the order CE+FH, CE and control animals.
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