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Abstract
In this thesis, weighted Poisson distributions and processes are investigated, as alternatives
to Poisson distributions and processes, for the modelling of discrete data.

In order to determine whether the use of a weighted Poisson distribution can be theoretically
justified over the Poisson, goodness-of-fit tests for Poissonity are examined. In addition to
this research providing an overarching review of the current Poisson goodness-of-fit tests, it
is also examined how these tests perform when the alternative distribution is indeed realised
from a weighted Poisson distribution. Similarly, a series of tests are discussed which can be
used to determine whether a sample path is realised from a homogeneous Poisson process.

While weighted Poisson distributions and processes have received some attention in the liter-
ature, the list of potential weight functions with which they can be augmented is limited. In
this thesis 26 new weight functions are presented and their statistical properties are derived
in closed-form, both in terms of distributions and processes. These new weights allow, what
were already very flexible models, to be applied to a range of new practical situations.

In the application sections of the thesis, the new weighted Poisson models are applied to
many different discrete datasets. The datasets originate from a wide range of industries and
situations. It is shown that the new weight functions lead to weighted Poisson distributions
and processes that perform favourably in comparison to the majority of current modelling
methodologies. It is demonstrated that the weighted Poisson distribution can not only model
data from Poisson, binomial and negative binomial distributions, but also some more complex
distributions like the generalised Poisson and COM-Poisson.
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Chapter 1

Introduction

Since its initial publication nearly 200 years ago, the Poisson distribution has been widely
used to model count data in a range of different disciplines and scientific fields of study.
Consequently, a large number of researchers have studied its properties, proposed generalisa-
tions, additions and modifications in attempts to augment the initial distribution proposed
by Siméon Denis Poisson [110]. (See Haight [63], Patil and Joshi [106] and Johnson and Kotz
[74] for extensive lists and discussions of Poisson generalisations.) One of the properties of
the Poisson distribution is equidispersion, meaning that the distribution’s mean is equal to
its variance. This fact, although useful in specific settings, often limits the distribution’s
ability to accurately model observed data.

In practical situations data that are overdispersed (where the variance exceeds the mean)
are common (see Hinde et al. [70] and Lawless [86] for two examples), but underdispersed
situations (where the mean exceeds the variance) are not unheard of (see Wimmer et al.
[143] for an example). Böhning [71] noted that overdispersion is often the result of latent
heterogeneity in data, which means that a sample of variables consists of different sub-groups
that have not been distinguished from each other. This occurrence is often referred to as
“heterogeneity and aggregation” in the literature. Ideally, all subpopulations would be treated
and modelled separately; however, after data collection, it might not always be possible to
distinguish these subgroups from each other. It could also be possible that segmenting
the sample into subgroups would lead to such small sample sizes for the subgroups as to
make modelling them impractical. In such situations attempting to include the underlying
heterogeneity in the modelling of the data would be preferable to merely ignoring it.

Another factor that could lead to non-equidispersion is correlated data. Bosch and Ryan [16]
noted that natural situations that lead to competition (or alternatively stated, those that
have a negative correlation structure inherent in the data) result in underdispersed data,
whereas overdispersed situations result from a positive correlation structure. They anecdo-
tally demonstrated this by considering two previous papers. The first concerned the number
of sea-urchin eggs fertilised in various time intervals, where sperm were “competing” to fer-
tilise eggs, which led to an underdispersed data set. The second paper recorded the number
of patient visits to doctors in Canada, where one visit would increase the probability of a

1



CHAPTER 1. INTRODUCTION 2

repeat visit (is it postulated these repeat visits are either due to the patients not recovering
fully, or to doctors prescribing follow-up visits). This positive correlation in the data leads
to the number of visits being overdispersed.

To illustrate the shortcomings of the Poisson distribution to model data that are not realised
from an equidispersed distribution, a dataset of weekly sales figures of 800 items from a
store is used. This dataset can be found at https://archive.ics.uci.edu/ml/datasets/
Sales_Transactions_Dataset_Weekly, and was initially analysed by Tan and San Lau [136].
In Figure 1.1 below, the empirical probability mass function (Definition 10.2) of the data is
compared to the fitted probability mass function of the Poisson distribution (Definition 10.3),
using maximum likelihood parameter estimation. In Figure 1.1, the empirical values are
represented by blue dots with vertical lines and the theoretical values by black dots (which
are connected to make interpretation clearer). For illustrative purposes, only one extreme
underdispersed (item 726) and overdispersed (item 409) graph are shown out of the possible
800 items.

Figure 1.1: Underdispersion and overdispersion against fitted Poisson

As can be seen from the plots, the Poisson distribution does not provide a good fit to
the data, whether under or overdispersed. In the (first) underdispersed case, the Poisson
distribution underestimates probabilities close to the mean and overestimates those in the
tails. In contrast, in the (second) overdispersed case, the values close to the mean are
overestimated, and those in the tails tend to be underestimated.

It could be argued that the data could be better modelled by using a time series approach,
as was proposed by Tan and San Lau [136]; however, using the Poisson distribution is not
a wholly unsound idea since the data will likely adhere relatively closely to most of the
assumptions of the Poisson distribution. These being that:

1. The number of items sold during the week must be an integer amount ranging from 0
to infinity. (The data is “count” data.)

2. The event of an item being bought does not affect the likelihood that more or less of
the same item will be purchased. (Events are independent.)
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3. The average rate at which purchases occur from week to week is constant. (The rate
of events occurring is constant.)

The third restriction seems least likely to be met, since seasonal fluctuations may affect the
number of weekly sales.

To overcome the limitations of the Poisson distribution, several authors have developed or
proposed various alternative methods and distributions to model count data that are not
equidispersed. Many of these techniques are briefly discussed in Chapter 2. This thesis
proposes to use the weighted Poisson framework to deal with data that are not equidispersed
(and consequently do not follow the Poisson distribution). The thesis is laid out in such a
way that the order of the chapters largely follows the same progression that someone who
wishes to implement the proposed models would have to follow.

In Chapter 3, goodness-of-fit testing for the Poisson distribution will be discussed, where the
performance of classical tests of historical importance is compared to that of more recent tests
for Poissonity. The powers of these tests against weighted Poisson alternatives are considered
for the first time in the statistical literature in this study. In Chapter 4, a range of weight
functions, the vast majority which are novel, will be investigated. In this chapter, statistical
properties of the resulting weighted Poisson distributions will be derived, and plots will be
presented to demonstrate the potential shapes that the distributions can assume. Chapter 5
will demonstrate the application of the weighted Poisson methodologies to various observed
datasets to demonstrate the flexibility and wide range of applications of the proposed models.
The stochastic process equivalents of these topics will be discussed in Chapters 6, 7 and 8
respectively. This progression is summarised in Figure 1.2.
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Figure 1.2: Flow of the thesis

While the main focus of this thesis is concerned with the modelling of non-equidispersed
data, the weighted Poisson framework also offers some novel implementation possibilities for
specific practical problems. These will be discussed in more detail in later chapters; however,
they include concepts like the “zero-inflated” Poisson (which is often used to model churn
rate or insurance claim numbers), the modelling of truncated distributions, (for instance the
number of vehicles involved in car accidents is strictly one or more), as well as bi-modal (and
potentially multi-modal) distributions. As will be seen in Chapter 5, the weighted Poisson
distribution is also capable of modelling data which come from more traditional distributions
like the Poisson, binomial and negative binomial.



Chapter 2

Literature Review

This chapter is focused on alternatives to the Poisson distribution that can be used for the
modelling of non-equidispersed count data. These methods have received much attention,
and consequently, a few overview papers have been written regarding them (see Kokonendji
[82] and Sellers and Morris [124].) In Section 2.1, an overview of the methods currently
available in the literature is presented. However, this is in no way a definitive collection of
the vast body of research dedicated to the modelling of data exhibiting non-equidispersion.
In Section 2.2, the weighted Poisson distribution is formally defined, and the literature that
forms the foundation of this thesis is discussed.

Note that many of the techniques discussed in this chapter were initially presented in a
multivariate or regression-based settings. To standardise the notation, as well as to keep the
theme of the thesis coherent, these models will be reduced to the univariate cases. While it
may be possible to extend the weighted Poisson distributions discussed in this thesis to the
multivariate and regression realms, this lies outside the scope of this thesis.

2.1 Available methods
Before presenting the methodologies that are commonly used to model non-equidispersed
data, it is useful to define a measure of the dispersion of a random variable, so that a
coherent notion of what is meant by under, over and equidispersion can be conveyed.

While many different measures of dispersion exist (see Boos and Brownie [15]), the one that
is most commonly used in the relevant literature is the “Fisher index” (FI) defined below.

Definition 2.1.
Suppose that X is some random variable with expected value E (X) and variance V ar (X).
Then the Fisher index is given by

FI (X) =
V ar (X)

E (X)
. (2.1)

5
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If FI (X) = 1, X is said to be equidispersed. If FI (X) > 1, X is overdispersed, and if
FI (X) < 1, X is underdispersed.

Establishing the relationship between the expected value and the variance of a random vari-
able is a key feature noted in most relevant research papers, since it not only establishes if a
random variable is over or underdispersed, but it also determines the types of data structures
that can be modelled with specific distributions.

The remainder of this section is segmented by the types of data that the various models can
accommodate. Section 2.1.1 will discuss models that are overdispersed, Section 2.1.2 will
discuss models that are underdispersed, and Section 2.1.3 will discuss models that can be
both under and overdispersed.

2.1.1 Overdispersion
Below two models are considered that are used in the modelling of overdispersed data.

Negative binomial modelling

The most common approach to dealing with overdispersed data is to use the negative binomial
distribution. A random variable is said to follow the negative binomial distribution if it
has the probability mass function as given in Definition 10.6. A negative binomial random
variable, X, has expected value E (X) = pr

1−p
and variance V ar (X) = pr

(1−p)2
= E (X) 1

1−p
.

Since 0 < p < 1, it follows that 0 < 1 − p < 1, and consequently, the variance of a negative
binomial distribution is larger than its expected value.

There is a host of literature available which discusses the many ways in which the negative
binomial distribution can be justified theoretically as well as practically as an alternative
to the Poisson distribution when modelling count data. Arguably the most comprehensive
reference source for negative binomial modelling and regression is Hilbe [69] in which many
facets and applications of this method are discussed.

There are many ways in which the negative binomial distribution can be obtained from
the Poisson distribution. One example is using mixed Poisson modelling, discussed below.
It should also be noted that the Poisson distribution is a case distribution attained of the
negative binomial distribution when r → ∞ and λ = rp

1−p
.

Mixed Poisson modelling

Many authors have investigated the possibility of using mixed Poisson distributions to model
count data. In essence, X is said to follow a mixed Poisson distribution if X is Poisson (λ)
distributed. However, instead of λ being a parameter, λ is itself assumed to be a random vari-
able that has an underlying distribution. This method provides a rather intuitive approach
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to deal with aggregation and heterogeneity in data, since, as long as the distribution of λ ad-
equately models the distribution of the heterogeneity, the resulting Poisson (λ) distribution
should provide an adequate model for the overall population.

Feller [47] investigated the properties of this distribution and showed, among other things,
that mixed Poisson distributions always have a higher probability of observing zeros relative
to the Poisson distribution, given that they have the same mean. Shared [125] showed that
mixed Poisson distributions also have thicker tails. Karlis and Xekalaki [77] published an
overview paper discussing the general properties of mixed Poisson distributions. They also
derived the relationship between the mean and variance of the mixture distribution: E (X) =
E (λ) and V ar (X) = E (λ) + V ar (λ). Since V ar (λ) ≥ 0 mixed Poisson distributions
are overdispersed (or equidispersed in the trivial case that the random variable λ has no
variability, in which case the distribution reduces to the Poisson).

Greenwood and Yule [60], Cameron and Trivedi [18], Johnson et al. [74], Sichel [127, 128],
Willmot [141], Sankaran [97, 96] , Karlis and Xekalaki [77], and many others have discussed
a range of potential distributions that λ can follow. Greenwood and Yule [60], as well as
Cameron and Trivedi [18] specifically proposed using a gamma distribution for λ. Assuming
that λ follows a gamma distribution ensures that a random variable follows a negative bino-
mial distribution. For more details on the use of the multivariate case, see Hausman et al.
[64] and McCullagh and Nelder [93].

Lawless [86] discussed mixed Poisson distributions and negative binomial modelling of count
data in a similar vein to that of Cameron and Trivedi [18]. However, the discussion focused
more on the specifics of how parameters could be estimated as well as the robustness of the
achieved estimates. In the paper, special attention was paid to dealing with overdispersed
data; however, the author noted that with only a slight relaxing of the constraints placed on
their distribution, it would also be possible to model underdispersed data through the use of
binomial or generalised binomial models (See Olkin et al. [104]).

2.1.2 Underdispersion
Below two models are considered that are used in the modelling of underdispersed data.

Binomial modelling

A frequently used method to deal with underdispersed data is to use the binomial distribution.
A random variable is said to follow the binomial distribution if it has the probability mass
function given in Definition 10.5. A binomial random variable, X, has expected value E (X) =
np and variance V ar (X) = np (1− p) = E (X) (1− p). Since 0 < p < 1, it follows that
0 < 1 − p < 1, and consequently, the variance of a binomial distribution is smaller than
its expected value. Due to the fact that the binomial distribution is extremely prevalent in
statistical implementations, its univariate properties have been very well researched. As a
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result, any research that has been published regarding it in the last decades have all concerned
multivariate or regression settings. Its univariate form, however, is still considered a useful
distribution to model underdispersed data.

Similar to the negative binomial distribution, a connection exists between the binomial and
Poisson distributions. The Poisson distribution is a limiting case of the binomial distribution,
obtained when n → ∞ and λ = np.

Condensed Poisson modelling

If X is a Poisson process (see Definition 10.25), then the inter-arrival times (see Definition
10.31) of events follow an exponential distribution (see Definition 10.7). However, if the inter-
arrival times of a process are defined to be Erlang(2, λ) distributed (see Definition 10.8) then
the resulting random number of events per unit time, say X∗, is said to follow a condensed
Poisson distribution.

The condensed Poisson distribution has probability mass function given by

f (x∗;λ) =

{
e−λ

(
1 + λ

2

)
x∗ = 0

e−λ
(

λ2n∗−1

2(2n∗−1)!
+ λ2n∗

2(2n∗)!
+ λ2n∗+1

2(2n∗+1)!

)
x∗ = 1, 2, ....

(2.2)

The condensed Poisson distribution has expected value E (X∗) = λ
2

and variance V ar (X∗) =
λ+e−λsinh(λ)

4
where sinh (λ) denotes the hyperbolic sin function. The Fisher index of this

distribution is strictly less than 1. Originally this distribution was named the “asynchronous
counting distribution” by Haight [63], but was renamed to the condensed Poisson distribution
by Chatfield and Goodhardt [20]. Chatfield and Goodhardt [20] also used the distribution
to model consumer purchasing data and showed that it provided an adequate representation
of the observed datasets.

2.1.3 Under and overdispersion
Below seven models are considered that are used in the modelling of over and underdispersed
data.

The generalised Poisson distribution

In some of the relevant literature, this distribution has also been called the Lagrange-Poisson
distribution.

One of the most prolific researchers into the modelling of non-equidispersed data is Prem Con-
sul. Consul and Jain [28, 29, 30] developed a generalised, two-parameter Poisson distribution
as a limiting form of the generalised negative binomial distribution. A random variable, X,
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is said to follow the generalised Poisson distribution if it has the probability mass function
as given in Definition 10.4. This distribution allows for under, over and equidispersion since

E (X) = λ1

1−λ2
and V ar (X) = λ1

(1−λ2)
3 = E (X) 1

(1−λ2)
2 .

Thus the mean of the generalised Poisson distribution will be smaller than, equal to, or
greater than the variance if the value of λ2 is positive, zero, or negative, respectively. Consul
and Jain [29] also applied their proposed model to different datasets, traditionally assumed
in the literature to follow the Poisson, binomial, and negative binomial distributions. They
showed that the use of the two-parameter generalised Poisson model resulted in satisfactory
measures of fit, even when considering that the datasets were traditionally assumed to be
realised from other distributions.

In the years after the derivation of the distribution, much research has been published inves-
tigating the various properties and applications of the distribution. See Consul [26, 27] as
well as Consul and Shoukri [31] to name a few.

A semi-parametric approach - Generalising the relationship between the mean
and the variance

Unlike in most of the literature, Hinde [70] attempted to model overdispersion in data not
by finding or deriving distributions that fit the data, but rather by explicitly specifying the
relationships between the expected value and variance in a model. It was noted in the paper
that in most binary response cases it was assumed that count data was binomially distributed,
but that data would often exhibit a greater level of overdispersion than the binomial model
allowed for. That is to say: assuming that X ∼ Bin (n, p),

E (X) = np and V ar (X) = np (1− p) = E (X) (1− p)

would underestimate the level of dispersion. In response to this problem, four alternative
variance formulations were proposed: The constant overdispersion model

V ar (X) = E (X)φ (1− p) ,

where φ is a constant. The beta-binomial overdispersion model

V ar (X) = E (X) (1− p) (1 + φ (n− 1)) ,

(this equation can be modified to account for excess underdispersion by replacing φ with the
correlation coefficient of data). The logistic normal model

V ar (X) = E (X) (1− p) (1 + σ2 (n− 1) p (1− p)) ,

and the general variance model

V ar (X) = E (X) (1− p)
(
1 + φ (n− 1)α (p (1− p))β

)
,
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which encapsulates the other three models (when α and/or β are set to either zero or one).

Using a similar methodology to the binomial distribution, Hinde [70] also investigated how
the variance-mean relationship of the Poisson distribution could be altered. Once again four
alternative models were proposed: the constant overdispersion model

V ar (X) = E (X)φ,

the negative binomial type variance

V ar (X) = E (X) + E(X)
k

,

(where k is a parameter of the gamma function), the Poisson-normal type models

V ar (X) = E (X) (1 + E (X) k) ,

and a generalised variance model where

V ar (X) = E (X) (1 + φE (X)α) .

Two important facts should be noted about Hinde’s [70] methodology. First, assuming the
desired form of the relationship between the model’s variance and expected value often results
in the models not being associated with any known probability distribution. This has the
disadvantage of not allowing for maximum likelihood estimation of parameters, but rather
requiring that some ad hoc, quasi-likelihood methods need to be implemented. Additionally,
many other important statistical properties are merely ignored when using this approach.
The second fact is that while probability distributions do not exist for most models, in some
particular cases, they do, especially when an approach similar to that applied earlier in this
section by Cameron and Trivedi [18] is used.

Ver Hoef and Beoveng [139] compared the modelling of overdispersed data using the nega-
tive binomial distribution and the quasi-Poisson approach (which is similar to the constant
Poisson overdispersion model discussed in Hinde [70]). While they did not make general state-
ments as to which method performs better, they noted that in the example they considered,
the quasi-Poisson method provided a better fit to the data.

The double Poisson distribution

Efron [42] proposed the double Poisson distribution as a special case of the double exponential
family. A random variable, X, is said to follow a double Poisson distribution with parameters
α, λ > 0 if it has the following probability mass function:

f (x;α, λ) = c (α, λ)
(

e−αλ
√
α

)(
e−xxx

x!

) (
eλ
x

)αλ
, x = 0, 1, 2, ..., (2.3)
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where c (α, λ) a normalising constant, and is given by

1

c (α, λ)
=

∞∑
j=0

(
e−αλ

√
α

)(
e−jjj

j!

)(
eλ

j

)αλ

≈ 1 +
1− α

12λα

(
1 +

1

λα

)
.

This distribution has expected value E (X) = λ and variance V ar (X) = λ
α
= E(X)

α
, and

consequently is overdispersed for 0 < α < 1, underdispersed when α > 1, and if α = 1 the
double Poisson distribution simplifies to the Poisson distribution.

The Conway-Maxwel-Poisson distribution

The Conway-Maxwel-Poisson distribution (more commonly referred to as the COM-Poisson
distribution) was initially proposed by Conway and Maxwell [32] in the context of queuing
theory. This two-parameter distribution possesses many properties which make it very at-
tractive for practical implementation. For example, it is a member of the exponential family,
which, in turn, enables simple maximum likelihood parameter estimation. It also contains
the binomial, negative binomial and Poisson distributions as special cases of the family, which
implies that the COM-Poisson distribution can accommodate both under and overdispersion.

Shmueli et al. [126] noted, however, that “no probabilistic or statistical characterisations
of this distribution and extremely few applications appear in the literature.” Consequently,
Shmueli et al. [126] derived many of the properties of the distribution as well as proposing
three methods by which parameter estimates of the distribution could be calculated. Fur-
thermore, their theoretical results were used in the analysis to two datasets. One contained
the quarterly sales of a specific paper of clothing at stores of a large national retailer (which
were overdispersed), the other contained the lengths of words in a Hungarian dictionary
(which were underdispersed). The authors showed that in both situations, the COM-Poisson
distribution provided a substantially better fit to the data than was the case for the Poisson
distribution. It should be noted that it is only after the Shmueli et al. [126] paper that the
COM-Poisson became a commonly used distribution to model non-equidispersed data.

A random variable, X, is said to follow a COM-Poisson distribution with parameters λ >
0, α ≥ 0, if it has the following probability mass function:

f (x;α, λ) = λx

(x!)αZ(α,λ)
, x = 0, 1, 2, ..., (2.4)

where Z (α, λ) a the normalising constant given by

Z (α, λ) =
∞∑
j=0

λj

(j!)α
.

Closed-form expressions for the moments of the COM-Poisson distribution do not exist, but
Sellers et al. [123] derived the following approximations based on the moment generating
function:
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E (X) ≈ λ
1
α − α−1

2α
and V ar (X) ≈ 1

α
λ

1
α

which hold when α < 1 or λ > 10α. The parameter α is often called the “dispersion parame-
ter” since it dictates whether the distribution will be over, under or equidispersed. If α > 1
the distribution is underdispersed, 0 < α < 1 implies overdispersion, and α = 1 will result in
the distribution simplifying to the Poisson. It should also be noted that if α → ∞, then the
COM-Poisson tends to the Bernoulli

(
λ

λ+1

)
distribution and if α = 0, λ < 1 the distribution

is geometric (λ).

Changing birth rate distribution

Bosch and Ryan [16], developed the ’changing birth rate distribution’, which allows for the
modelling of over and underdispersion. The distribution originated through the use of Markov
processes, and although closed-form expressions do not exist in general for the distribution,
there are special cases in which these expressions exist. The methodology applied by Bosch
and Ryan [16] is similar to that used by Consul [27, 26] when they proposed the two-parameter
generalised Poisson distribution.

The gamma count distribution

Winkelmann [144] proposed a distribution to model count data based on the difference be-
tween two lower-incomplete gamma functions. X is said to follow a gamma count distribution
with parameters α, λ > 0 if it has the following probability mass function

f (x;λ) =
1

Γ (αx)
γ (αx, λ)− 1

Γ (αx+ α)
γ (αx+ α, λ) (2.5)

where γ (.) is the lower incomplete gamma function as given in Definition 10.11 and Γ (.) is
the gamma function in Definition 10.9.

This distribution is overdispersed when 0 < α < 1 and underdispersed if α > 1. Closed-form
expressions for the moments of the distribution do not exist.

Compound Poisson modelling

Another class of distributions which can be used to model non-equidispersed data is the com-
pound Poisson distribution. Suppose that X is a Poisson random variable and that Z1, ..., ZX

are independent and identically distributed (i.i.d.) random count variables, independent of
X. Then Y is called a compound Poisson distribution if

Y =
X∑
j=1

Zj. (2.6)
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The properties of compound distributions are well known and can be found in most intro-
ductory statistics textbooks (see Bain and Engelhardt [4] and Johnson et al. [74]). Zhang
and Li [146] and Zhang et al. [147] studied the characterisation, properties and application
of this model to risk theory. It should be noted that the over or underdispersion of the com-
pound Poisson model is completely defined by the summands Zj, since E (Y ) = E (X)E (Z) ,

V ar (Y ) = E (X)E (Z2) , and consequently FI (Y ) =
E
(
Z2
)

E(Z)
.

2.2 The weighted Poisson distribution
Although many of the methods mentioned in Section 2.1 have been applied in various specific
practical situations, most of them have certain drawbacks that limit their application in more
general situations. Some can exclusively accommodate either over or underdispersion, some
do not have closed-form expressions for the probability mass functions or moments, and some
require nonstandard parameter estimation methods in order to fit these models to observed
data.

However, in 1934, Fisher [50] introduced the concept of weighted distributions through the
method of ascertainment. This concept has been used extensively since then as a method
to augment standard probability mass functions, the goal being to define more flexible dis-
tributions which allow users to better fit data and to facilitate the selection of appropriate
models for observed data. (It should be noted that while many authors cite Rao [113] when
discussing the method of ascertainment, it was, in fact, Fisher [50] who initially proposed
the idea.) Although some papers have been published that use this method in conjunction
with the Poisson distribution with specific weight functions, they are limited in number.

In addition to detailing the papers that discuss the weighted Poisson distributions in this
section, some initial definitions are given that will be used throughout the remainder of the
thesis.

Definition 2.2.
Let N be a random variable with probability mass function f (n) = P (N = n). Suppose that
when the event N = n occurs, the probability of ascertaining it is w (n). The observed value,
n, is then a realisation of the random variable Nw, which is said to be the weighted version
of N . The probability mass function of Nw is given by

fw (n) = P (Nw = n) = w(n)f(n)
E(w(N))

, n = 0, 1, 2, ..., (2.7)

where E (w (N)) =
∑∞

k=0w (k) f (k) < ∞ and w (n) is a non-negative function on N0.

See Definition 10.1 for the definitions of N0 and N1.

Another, possibly more natural, way of thinking about the method of ascertainment is to
think of w (n) as some non-negative “weight function” that is multiplied with the probability
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mass function of N to give some new “weighted” variable Nw. E (w (N)) can be interpreted
as the normalising constant. Suppose that N in Definition 2.2 is a Poisson random variable,
then the resulting random variable, Nw, is said to follow a weighted Poisson distribution with
weight function w (n). Exploring a wide range of these weight functions and the properties
of the resulting weighted Poisson distributions is at the core of this thesis.

An important point must be made about the notation of the weight function. Often in
the literature, the weight function is merely written as w (n). However, for the remainder
of this thesis, distinction will be made between weight functions that depend only on n,
denoted by w (n), functions that also include a (possibly vector-valued) free parameter, φ,
denoted by w (n;φ), and weight functions that depend on φ as well as the Poisson rate
parameter λ, w (n;λ, φ). These distinctions are important since some of the results available
in the literature are classified according to these different forms of weight functions (see
Balakrishnan and Kozubowski [6] for examples where this is the case).

For the remainder of this chapter, general statistical properties of the weighted Poisson
distribution, as well as various weight functions that are currently available in the literature,
will be discussed. Derivations showing some of the properties of these weight functions will
be included in Chapter 4.

If w (.) = c ∀n ∈ N0 where c is some constant, then the weighted Poisson distribution reduces
to the Poisson distribution. This result is easy to verify since this simplification in Equation
2.7 is apparent:

fw (n) =
w (n) f (n)

E (w (N))
=

cf (n)∑∞
k=0 cf (k)

=
cf (n)

c
∑∞

k=0 f (k)
= f (n) ,

since f (k) is the Poisson probability mass function and thus sums to 1.

If w (n) = n, the resulting weighted Poisson distribution is known as the “size-based” Pois-
son or “1-translated” Poisson distribution. This specific distribution was discussed by Patil
and Rao [107] and by Kokonendji et al. [83]. The size-based weight function leads to an
underdispersed weighted Poisson distribution.

If w (n;φ) = (n!)1−α , the weighted Poisson distribution is equal in distribution to the COM-
Poisson distribution discussed in Section 2.1. This equality has been discussed in many
papers, one of which is Kokonendji et al. [83]. As has already been mentioned, the COM-
Poisson can be under, over or equidispersed depending on the value of α.

The weight function w (n;φ) = (n+ a)r where a > 0 is a displacement parameter and
r ∈ R was discussed in depth by Castillo and Perez [38]. This weighted Poisson distri-
bution is overdispersed, underdispersed and equidispersed if and only if r < 0, r > 0 and
r = 0 respectively. As such, the parameter r can be interpreted as the dispersion parameter.
Castillo and Perez [38] derived many properties of the weighted Poisson distribution when
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w (n;φ) = (n+ a)r . They derived expressions for the stochastic order of many different pa-
rameterisations of their proposed weighted Poisson distribution. (Stochastic order quantifies
the notion of one random variables being “larger” than another. In essence it is the stochas-
tic equivalent of the traditional mathematical order operators like <,≤, >,≥). They also
showed that if two weighted random variables exist with the same form of weight function,
containing different parameter values, it is possible to consider one as a weighted version of
the other. Specifically, suppose that Nw is a weighted Poisson random variable with rate
parameter λ1 and weight function w (n;φ) = (n+ a)r1 , then if Nw is weighted again with
respect to weight function w1 (n;φ, λ2) =

(
λ2

λ1

)r1
, the resulting random variable Nw1 is equal

in distribution to a weighted Poisson distribution with rate parameter λ2 and weight function
w (n;φ) = (n+ a)r1 . Similarly the weights w2 (n;φ) = (n+ a1)

r1−r2 and w3 (n;φ) =
(

n+a2
n+a1

)r1
result in Nw2 being weighted Poisson distributed with rate parameter λ1 and weight function
w (n;φ) = (n+ a1)

r2 and Nw3 following a weighted Poisson distribution with rate parameter
λ1 and weight function w (n;φ) = (n+ a2)

r1 .

Castillo and Perez [39] also investigated the properties of the weighted Poisson distribution if
the weight function is given by w (n;φ) = ert(n;λ,φ), where t (n;λ, φ) is a real valued function
depending on n, and which may but need not depend on λ or φ. The majority of their
paper focuses on the various forms that t (n;λ, φ) can assume, and how these various forms
affect the overall properties of the distribution. Specifically they noted that if t (n;λ, φ) is
statistically bounded of order n (in other words if t (n;λ, φ) = O (n)) then their weighted
Poisson distribution would be a member of the regular exponential family. Many potential
forms of this function were given: t (n;φ) = na, 0 < a ≤ 1, t (n;φ) = ln (n+ a) , a > 0,
t (n) =

√
nln (n+ 1), t (n) = e−n and t (n;φ) = an+b

cn+d
where c and/or d are not equal to 0.

However, if t (n;λ, φ) is not statistically bounded of order n the resulting weighted Poisson
distributions are likely not members of the regular exponential family, but may still be valid
probability mass functions. Some of these cases were again presented: t (n;φ) = na+1, a > 0
(Gelfand and Dalal [54]), t(n) = en − 1 (Lindsay [91]) and t(n) = nln (n) − n (Efron [42]).
This second group of functions is only defined when r < 1. The relationship between the
parameter r, the convexity of t (n;λ, φ) and the dispersion of the distribution was derived
and it was shown that for a convex t (n;λ, φ), r < 0 implies overdispersion and r > 0 implies
underdispersion.

Other weight functions have been investigated that are of the same form as those proposed
by Castillo and Perez [39]. Two of these were discussed by Kokonendi et al. [83]. They occur
when w (n;λ, φ) = er|n−λ| and w (n;λ, φ) =

(
n
λ

)rn
= erI(n;λ), where I(n;λ) is the Kullback-

Leibler distance (also known as the relative entropy). See Ridout and Besbeas [117] for these
cases as well as the case where

w (n;λ, φ) =

{
e−β1(λ−n) n ≤ λ,

e−β2(n−λ) n > λ.
(2.8)

The origins of using the Kullback-Leibler distance as a weight function can be traced back
to Efron [42]. As was shown in Kokonendi et al. [83], both of these weight functions result in
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distributions which can be over, under or equidispersed depending on whether r > 0, r < 0
or r = 0 respectively.

In addition to discussing some specific weight functions already mentioned in this section,
Kokonendi et al. [83] also investigated many general properties of the weighted Poisson
distribution. Specifically, they investigated how the shape of the weight function is related
to the dispersion of the resulting weighted Poisson distribution. Their results can be seen as
a generalisation of the Castillo and Perez [39] paper since the theorems in Kokonendi et al.
[83] allow for arbitrary forms of weight functions. It is easiest to describe how the theorems
in their paper relate to each other by using the following flow chart:

Figure 2.1: Relation between the weight function and dispersion

Note that, in the above theorems, if logconvexity is replaced with logconcavity, the theo-
rems still hold, but with the resulting weighted Poisson distributions being underdispersed.
Logconcavity and logconvexity are defined in Definition 10.13. One other important concept
discussed by Kokonendi et al. [83] is the notion of “dual” weighted Poisson distributions.
Two weighted Poisson distributions with weight functions w1 (n) and w2 (n) are said to be
dual if w1 (n)w2 (n) = 1 ∀n ∈ N0. In essence this means that if one of the weighted Poisson
distributions is overdispersed, the other will be equally underdispersed. Consequently, hav-
ing a form of weight function that possesses a dual partner will guarantee that the resulting
weighted Poisson distributions are able to model both under and overdispersion.
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An important conclusion drawn from the above papers is that the dispersion of the weighted
Poisson random variable is directly linked to the logconcavity/logconvexity of the relevant
weight function.



Chapter 3

Poisson Distribution: Goodness-of-fit
Testing

In this chapter, goodness-of-fit tests for the Poisson distribution will be researched. In Section
3.1, many of the tests currently available in the literate will be discussed. This is by no means
a exhaustive list of all possible tests, but rather, focuses on some of the most commonly used
and efficient methods as described in recent papers. Two of the most recent overview papers
regarding Poisson goodness-of-fit are Gürtler and Henze [62] and Karlis and Xekalaki [76].
In Section 3.2, many of the different methods listed in Section 3.1 will be tested against a
range of different non Poisson simulated datasets to determine the cases in which specific
methods will perform the best and in which cases their performance may not be ideal. In
order to test the applicability of the different tests in as many different scenarios as possible,
the underlying data will be simulated out of a wide variety of discrete distributions, each
with varying parameters. In addition to simulating out of commonly used distributions like
the negative binomial and compound Poisson distributions, data will also be simulated out
of various weighted Poisson distributions since no literature exists describing how Poisson
goodness-of-fit tests fare against weighted Poisson alternatives.

Generally, goodness-of-fit tests can broadly be classified into one of three categories: The first
can be referred to as “standard” goodness-of-fit tests. These tests can be applied to general
distributions, and do not depend on the properties of a specific distribution. The majority of
these tests are non-parametric (also called distribution-free), and as a result, are often very
robust with respect to the underlying distribution of the data. An example of a commonly
used “standard” goodness-of-fit test is the Pearson chi-squared test, which can be applied
to any discrete distribution. The second is the group of tests that depend on a particular
property of the assumed underlying distribution under the null hypothesis. This category of
test is often more powerful than the first but does require that the underlying distribution of
the data be known or assumed, which, if incorrect, can lead to faulty conclusions from the
tests. The third category consists of tests where both the distributions under the null as well
as the alternative hypotheses are assumed. These tests can often be the most powerful, but
as a drawback also require that the most assumptions be made regarding the distributions. If
either (or both) of the distributions are misidentified, these tests can give unreliable results.

18
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In general, as the number of distributional assumptions increase, so too does the power of
the test; but so too does the error of the test when the assumptions are violated. It should
be noted that these three categories are not always as clear cut as they are presented above,
and that tests do exist that do not fit nicely into a single category. For example, Lee [88]
and Ghahfarokhi et al. [1] presented tests where the alternative hypothesis is not a singular
distribution, but rather a family of distributions, which would technically fall between the
second and third category as defined in this thesis.

3.1 Current tests
The process of conducting goodness-of-fit tests can be described as follows: A statistic is
created based on a sequence of random variables. The complexity, underlying methodology
and composition of these statistics can vary greatly, but in essence they all rely in some way
on data. Once the statistic has been defined, its distribution must be established under the
null hypothesis. This can be done in three different ways:

1. The theoretical distribution of the statistic can be derived - This process is the most
theoretically taxing, but if expressions for the distribution of the statistic can be found
the level of computation needed when testing the goodness-of-fit of a dataset may be
significantly reduced. Actually deriving the distribution of a statistic may also lead to
other insights regarding the performance and potential pitfalls of a certain statistic.

2. The asymptotic distribution of the statistic may be derived - In many practical cases
small sample sizes are not a concern for researchers or practitioners. This has become
especially true in the last decades as the sizes of datasets have increased dramatically.
In these cases merely deriving the asymptotic distribution of a statistic may provide
negligible differences from the theoretically derived distributions.

3. The values in the tails of the distribution can be simulated - This method requires the
most initial processing power since tables of values have to be generated for varying
percentiles with differing sample sizes and parameter choices. However, once these
values have been calculated, applying the actual tests are rudimentary.

The method chosen can depend on many factors, both practical and theoretical. In this thesis
the third method has been opted for. Once the percentiles in the tails of the distributions have
been obtained (under the null hypothesis), the appropriate statistic can be calculated from
a sequence of observations. If this calculated statistic falls outside of the relevant percentiles
in the relevant table, the hypothesis that the data is distributed as assumed under the null
hypothesis can be rejected.

What follows is a description of various different methods available in the literature that can
be used to test for Poissonity.
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3.1.1 Probability mass function tests
The chi-square test is arguably the most well known, non-parametric goodness-of-fit test that
exists. The test’s statistic is given by

χ2 =
∑k

j=0

(
(Oj−Ej)

2

Ej

)
(3.1)

where Oj is the number of actual observations equal to j, Ej is the expected number of obser-
vations equal to j under the null hypothesis, and k is the largest “bin” of the statistic. The
chi-square statistic usually requires that observations be grouped into bins if the frequency
of observations is very low, especially in the tails of the distribution. The choice of the size of
the bins is usually the most problematic part of the chi-square test, where different choices
of k can lead to varying conclusions of the test. Other problems include the fact that while
the statistic is known to follow a chi-square distribution asymptotically, this is only true for
large samples, and where each Ej value is larger than 5. Additionally, the test gives very
little insight into what the actual distribution is if the null distribution does get rejected,
although this is a problem with the vast majority of goodness-of-fit tests.

To overcome the problem of grouping data into bins Nass [99] proposed an alternate statistic

N =

∑m
j=0

O2
j

Ej
−n−m+1√

m−1
m

(
2m− (m−1)2+2m

n
+
∑m

j=0
1
Ej

) (3.2)

which is asymptotically normally distributed. (Where n is the sample size and m is the
largest observation.) While this statistic does overcome the binning problem, it does so at
the cost of having a larger variance relative to the traditional chi-square test.

A range of similar tests exists in the literature. To name a few, these are the Neyman chi-
square test [102], the Freeman-Tukey test [52] and the likelihood ratio test [73]. Read and
Cressie [116] proposed a general test which includes all of these tests as special cases, their
test statistic is given by

Iλ = 1
λ(λ+1)

∑m
j=0Ej

((
Oj

Ej

)λ+1

− 1

)
. (3.3)

Beltran-Beltran and O’Reilly[12] proposed a ratio test based, not only on the number of
observations Oj but also conditional on the sum of all the observations T . Their proposed
statistic is given by

∆ =

T !∏m
j=0(j!)

Oj

(
1
n

)T
∏m

j=0(Oj !)

n!

. (3.4)
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Gonzalez-Barrios et al. [58] proposed a novel test based on the conditional probability mass
function of the Poisson distribution. In essence their test considers the number of different
ways in which a given sum of observations could have occurred, then calculates the
probability that a specific realisation would come out of a Poisson distribution. Suppose
that the realisation of a collection of random variables, X1, ..., Xn is ordered: x1 ≤ ... ≤ xn,
and that

∑n
j=1 xj = t. Then

P (x1, ..., xn|t) = (Number of permuations)
(

t
xn

)(
t− xn

xn−1

)
×

(
t− xn − xn−1

xn−2

)
...

(
t− xn − ...− x2

x1

)(
1
n

)t
.

(3.5)

By calculating all the probabilities of possible permutations such that
∑n

j=1 xj = t, it is
possible to determine which permutations have such a low likelihood of occurring that their
presence would indicate likely deviance from the Poisson distribution. It should be noted
that while this test works for small sums of observations, for high totals, this test becomes
computationally impractical to implement.

3.1.2 Cumulative distribution function tests
Another commonly used goodness-of-fit test is the Kolmogorov-Smirnov test [84], the statistic
of which is given by

KS = sup
∣∣∣F (x)− F̂ (x)

∣∣∣ (3.6)

where F (x) is the cumulative distribution function under the null hypothesis, and F̂ (x) is
the empirical cumulative distribution function based on a sample. This test was initially
proposed for continuous distributions but was later extended to discrete distributions by
Conover [25]. Campbell and Oprian [19] developed an approximate Kolmogorov-Smirnov
test specifically for the Poisson distribution, with a series of tables that could be applied to
various parameter estimates of the Poisson distribution. Henze [65] overcame the need for
tables by applying a bootstrap test. More recently, Frey [53] proposed an exact conditional
Poisson Kolmogorov-Smirnov test based on the summation of the observations. The exact
conditional Kolmogorov-Smirnov test statistic is given by

D = sup
∣∣∣F̂ (x)− E

[
F̂ (x) |T = t

]∣∣∣ . (3.7)

Klar [80] proposed using the sum of the absolute differences between the theoretical and
empirical distribution functions, rather than the supremum as in the Kolmogorov-Smirnov
test. Consequently, the following test statistic was proposed:

L =
√
n

n∑
j=1

∣∣∣F (x)− F̂ (x)
∣∣∣ . (3.8)
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Cramér and von Mises (CVM) [34, 140] proposed a non-parametric test that could detect
deviation from a specific distribution. In their original papers, the statistic was proposed only
for continuous distributions. Choulakain et al. [21] extended upon the definition to allow
the test to apply to discrete distributions. Spinelli and Stephens[131] further improved on
the research by looking at specific discrete distributions; additionally they also investigated
modified versions of the statistic. Henze [65] also discusses a modified CVM type statistic.
In all, there are four CVM statistics commonly discussed in the literature:

CVM1 =
1

n

M∑
j=0

Z2
j pj (3.9)

CVM2 =
1

n

M∑
j=0

Z2
j pj

F (j) (1− F (j))
(3.10)

CVM3 =
1

n

M∑
j=0

Z2
j (3.11)

CVM4 =
1

n2

M∑
j=0

Z2
jOj (3.12)

where Zj =
∑j

i=0 (Oi − Ei) and pj is the theoretical probability of an observation having
value j. Statistic 3.9 is considered to be the “standard” CVM statistic. Statistic 3.10 is
also known as the Anderson-Darling test. Statistic 3.11 gives more weight to deviations in
the tails of the distributions relative to Statistic 3.9, and Statistic 3.12, the one proposed
by Henze [65], uses observed relative frequencies instead of the theoretical probabilities in
Statistic 3.9. The performance of these four statistics was investigated in-depth by Karlis
and Xekalaki [76]. It should be noted that in all four CVM statistics, the theoretical upper
summation limit is infinity, but for practical reasons, Karlis and Xekalaki [76] replaced this
with a value M such that pM < 0.0001.

3.1.3 Integrated distribution function tests
In addition to the test based on the cumulative distribution function Klar [80] also proposed
a test that is based on the integrated distribution function. Define Ψ(t) =

´∞
t

(1− F (x)) dx

as the integrated distribution function and Ψ̂n (t) =
1
n

∑n
j=1 (Xj − t) I(Xj>t) as the empirical

integrated distribution function, (where I() is the indicator function in Definition 10.14) then
the proposed statistic is given by

IDF =supt≥0

√
n
∣∣∣Ψ(t)− Ψ̂n (t)

∣∣∣ . (3.13)
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Practically speaking, since the Poisson distribution is discrete, the integrated distribution
function would be given by Ψ(t) =

∑
j=btc+1 (j − t) pj where btc is the integer part of t.

In Gürtler and Henze [62] it was shown that this statistic performs very well in detecting
deviations from the Poisson distribution, usually outperforming the Kolmogorov-Smirnov
and CVM type tests.

3.1.4 Poisson moments tests
One of the most common ways in which Poisson goodness-of-fit tests are constructed is by
using the fact that Poisson random variables are equidispersed. A vast number of tests have
been proposed based on this fact.

One of the first papers where this equidispersion was noted is Fisher [51]. As a result, the
Fisher index as defined in Equation 2.1, is a common statistic used to detect deviations from
Poissonity. Note that some authors also define the Fisher index to be (n− 1) S2

X
. In this

thesis, this will be referred to as the “variance test” instead. The difference between the
two statistics is mostly inconsequential though since n is deterministic. However, Anderson
and Siddiqui [3] did note that the Fisher index could be better modelled by the chi-square
distribution than the variance test. Another reason the Fisher index is usually preferred over
the variance test is because it gives a clear link between the statistic value and the over,
under and equidispersion of data.

The variance test

V T = (n− 1)
S2

X
(3.14)

and Fisher index are typically two-sided tests, where either very large or small values would
lead to the null hypothesis of Poissonity being rejected. Due to its widespread use as a
goodness-of-fit statistic, the variance test has been the focus of considerable research. Selby
[122], Anderson and Siddiqui [3], Bartko et al. [10], Dahiya and Gurland [35], Potthoff and
Whittinghill [111], Collings and Margolin [24], Kim and Park [17], Perry and Mead [108]
and Kharshikar [? ] all studied the properties of either the variance test or the Fisher
index. Bateman [11] and Darwin [36] studied the power of the variance test against a range
of alternative distributions. A crucial caveat must be given regarding the use of both the
Fisher index and variance tests; this being that the value of the test statistic has often been
erroneously used as a diagnostic to determine if a distribution is over or underdispersed, where
large statistic values are associated with overdispersion and small values with underdispersion.
Henze and Klar [66], however, showed that this could lead to erroneous conclusions. As a
result, they proposed a rescaled version of the variance test, which would only be rejected
for large values of the statistic:

S∗ =
X (V T − n)2∑n

j=1

((
Xj −X

)2 −Xj

) . (3.15)
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Another rescaled version of the variance test was proposed by Rayner and McIntyre [115]

U2 =

(
1√
2n

(V T − n)

)2

(3.16)

Böhning [14] and Potthoff and Whittinghill [111] proposed yet another statistic based on the
Fisher index

O2 =

√
n− 1

2
(FI − 1) . (3.17)

This test was shown to be the locally most powerful against the negative binomial distribu-
tion.

Zelterman [145] proposed a slightly modified version of Statistic 3.17:

Z =

√
n

2
(FI − 1) . (3.18)

de Oliveira [37] attempted to model the difference between the sample variance and sample
mean

(
S2 − X̄

)
. Consequently, they derived the statistic OT =

√
n
(
S2−X̄

)√(
1−2

√
X̄+3X̄

) , and claimed

that its limiting distribution under the null hypothesis is standard normal. Prompted by a
simulation study, Böhning [71] demonstrated that they had made errors in their deriva-
tion of the statistic’s variance, and that in fact the statistic should have been Onew

T =√
n−1
2

(
S2

X̄
− 1
)

, which was noted to be very similar to the variance test, and is in fact
exactly the same statistic that was proposed by Böhning [14] and Potthoff and Whittinghill
[111].

Kyriakoussis et al. proposed another goodness-of-fit test that is based on the second product
moment:

c =
1
n

∑n
j=1 (Xj (Xj − 1))(
1
n

∑n
j=1 (Xj)

)2 . (3.19)

Rayner and McIntyre [115] proposed a test statistic which was designed to function well
against the generalised Poisson distribution (see Consul [27])

W =
n

2
(FI − 1)2 . (3.20)

For the above tests it has been found that the variance test (Equation 3.14) is the locally
most powerful unbiased test against a negative binomial alternative hypothesis, the Z-test
(Equation 3.18) against a general central mixture alternative hypothesis and the W-test
(Equation 3.20) against the generalised Poisson distribution alternative hypothesis.
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Pettigrew and Mohler [109] proposed a test based on the moments of the Poisson distribution.
Unlike the tests mentioned earlier in this subsection, this test could be implemented using
higher order moments of the Poisson distribution. While it was suggested that lower order
moments be used to reduce the variability of the statistic, it is possible to use higher order
cumulants. Their proposed statistic is given by

Zp = kp−X√
var(kj |X)

, p = 2, 3, 4 (3.21)

where kp is the pth sample cumulant and var (kj|X) is the variance of the pth cumulant given
the sum of the observations. For p = 2 this statistic reduces to

Z2 = S2−X√
2nX

(
nX−1

)n√n− 1 . (3.22)

Similarly for p = 3 and p = 4 the statistics become

Z3 = m3−X√
6nX

(
nX−1

)(
3+nX−2

n−2

)n√n− 1 (3.23)

Z4 = m4−3S2−X√√√√2nX
(
nX−1

)(
49+

108
(
nX−2

)
n−2

+
12(n+1)

(
nX−2

)(
nX−3

)
n(n−2)(n−2)

)n√n− 1
(3.24)

with mp =
∑n

j=1

(
Xj−X

)p
n

.

Another test which depends on higher order moments was proposed by Gupta et al. [61]

M =
1

2

√
n

1 + 24X + 6X
2

m2 (m4 − 3m2
2)−m3

X
2 . (3.25)

Cox [33] proposed a test based on the log of the probability mass function of the Poisson
distribution. The proposed test statistic is given by

C =
n∑

j=1

((
∂ln (f (xj;λ))

∂λ

)2

+
∂2ln (f (xj;λ))

∂λ2

)
. (3.26)

3.1.5 Probability generating function tests
Kocherlakota and Kocherlakota [81] proposed a goodness-of-fit test for discrete distributions
based on the probability generating function. The probability generating function is defined
as g (t) = E

(
tX
)
=
∑∞

j=0 P (X = j) tj, and it’s empirical equivalent as gn (t) =
1
n

∑n
j=1 t

Xj .
The statistic proposed by Kocherlakota and Kocherlakota is T =

√
n (gn (t)− g (t)). Which,

after taking into account the Poissonity of the null distribution. equates to

K =
√
n

φn (t)− ex̄(t−1)

ex̄(t2−1) − e2x̄(t−1)
(
1 + x̄ (t− 1)2

) . (3.27)
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This test does have the drawback that it depends on a specific choice of t, and although the
statistic is not very sensitive with respect to the parameter, it does require that some value
for t be chosen.

To overcome this problem Rueda et al. [121] and Rueda and O’Reilly [120] proposed using the
square of Statistic 3.27, integrated over 0 to 1 with respect to t, and thus the newly proposed
statistic becomes Rn =

´ 1

0
(
√
n (gn (t)− g (t)))

2
dt. After simplification this statistic is

R =
1

n

n∑
i=1

n∑
j=1

1

Xi +Xj + 1
− 2e−λ

n∑
i=1

T (Xi, λ) + n
1− e−2λ

2λ
(3.28)

where T (x, λ) =
´ 1
0
txeλtdt.

Baringhaus et al. [7] further generalised on the statistic by adding a weight function, and
their resulting statistic is given by

Ra =

ˆ 1

0

(√
n (gn (t)− g (t))

)2
tadt (3.29)

which is equivalent to

Ra ≈ n
∞∑
i=0

∞∑
j=0

(
(fn (i)− f (i)) (fn (j)− f (j))

i+ j + a+ 1

)
. (3.30)

Additionally, Baringhaus and Henze [8] proposed a goodness-of-fit test based on a unique
property of the Poisson probability generating function, this being that ∂

∂t
g (t) = λg (t) .

Consequently their proposed statistic is T = n
´ 1
0

(
Xgn (t)− g

′
n (t)

)2
dt which again simplifies

to

B =
1

n

n∑
i=1

n∑
j=1

(
X

2

Xi +Xj + 1
+

XiXj

Xi +Xj − 1

)
− X̄ (n− f0) . (3.31)

Similar to Statistic 3.29, Statistic 3.31 was also generalised with the addition of a weight func-
tion by Treutler [138] with the result being the proposed statistic T = n

´ 1
0

(
Xgn (t)− g

′
n (t)

)2
tadt

which simplifies to

T =
1

n

n∑
i=1

n∑
j=1

(
X

2

Xi +Xj + a+ 1
− X (Xi +Xj)

Xi +Xj + a
+

XiXj

Xi +Xj + a− 1

)
. (3.32)

Nakamura and Perez-Abreu [98] also utilised the unique derivative properties of the Poisson
probability generating function by noting that ∂2

∂t2
ln (g (t)) = 0. This led them to propose the

following test statistic

V =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(
Xi (Xi −Xj − 1)Xk (Xk −Xl − 1) I(Xi+Xj=Xk+Xl)

)
, (3.33)
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which they then modified to

V ∗ =

(
Vn

X
1.45

)
. (3.34)

One of the particularly interesting and useful aspects of the Nakamura and Perez-Abreu
statistic is that it is asymptotically independent of λ. It should be noted, however, that the
four-fold summation is extremely computationally intensive, and for practical purposes, an
alternate expression, found in both Nakamura and Perez-Abreu [98] and Gürtler and Henze
[62] is implemented in Section 3.2.

Meintanis and Nikitin [94] constructed a test similar to the one proposed by Baringhaus and
Henze [8]. Their statistic is given by

T ∗
a =

1

n

n∑
j=1

(
Xj

Xj + a
+

X

Xj + a− 1

)
. (3.35)

3.1.6 Other tests
Rayner and Best [13, 114] proposed the use of Poisson-Charlier polynomials to test the
goodness-of-fit for a Poisson distribution

Sk =
k∑

i=2

 1√
n

n∑
j=1


√√√√ λ̂i

i!

i∑
k=0

(−1)i−k

(
i
k

)
k!

λ̂k

(
Xj

k

)2

. (3.36)

See Ledwina and Wyłupek [87] for a followup paper on Charlier polynomials.

Szekely and Rizzo [135] proposed a test based on the mean distance between a Poisson random
variable X and some integer value k. Their proposed test statistic is the same as CVM1
(equation 3.9), however, instead of using Zj =

∑j
i=0 (Oi − Ei) they proposed constructing

the empirical cumulative mass function out of a recursive formula given by

f̂ (k) =
m̂k+1 −

(
k + 1− λ̂

)(
2F̂X (k − 1)− 1

)
2 (k + 1)

. (3.37)

The statistic is given by

SR = n

∞∑
j−0

(
F̂ (j)− Fλ̂ (j)

)2
fλ̂ (j) . (3.38)

Another test that has been widely implemented (see [137]), not only in the Poisson case, is
the likelihood ratio test. The statistic for this test is given by

L∗ = 2 (L1 − L0) (3.39)
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where L0 and L1 are the maximised log-likelihoods under the respective hypotheses.

Karlis and Xekalaki [75] proposed a test similar to the likelihood ratio test, but which is
based on the minimum Hellinger distance rather than the maximised log-likelihoods. Their
proposed statistic is given by

HDT = 4n (HD0 −HD1) (3.40)

where HD0 and HD1 are the minimised Hellinger distances under the two respective hy-
potheses.

Many graphical methods have also been developed to detect deviations from the Poisson
distribution. See Lindsay [91] and Lindsay and Roeder [92] for two graphical examples, and
Karlis and Xekalaki [76] for an extensive list of other authors who used or proposed graphical
tests.

Cameron and Trivedi [18] in addition to discussing a compound Poisson alternative that
can be used to model count data (where the parameter λ was assumed to follow some
gamma distribution (see Section 2.1), also proposed tests for Poissonity. Their family of
tests can be summarised as follows:

H0 : Xi ∼ Poisson (λ)
HA : E (Xi) = λ

V ar (Xi) = λ+ aλb.

3.2 Test comparison
As has already been mentioned, not all of the tests discussed in Section 3.1 will be imple-
mented in the computational comparison between the statistics. One reason for this is the
sheer amount of tests that were mentioned. More importantly, however, is the fact that many
of the tests have been shown not to be extremely powerful when tested against a general range
of alternative distributions. Some tests, like a few of those based on the Poisson moments,
may be powerful, even the most powerful, against a specific distribution, but perform poorly
against more general alternatives. Taking this into account, the tests that will be considered
are:

• W : Rayner and McIntyre’s test based on the variance test (Equation 3.16).

• KS: The Kolmogorov-Smirnov test (Equation 3.6).

• CVM1: The Cramér von Mises test (Equation 3.9).

• L: Klar’s test based on the differences between the theoretical and empirical distribu-
tion functions (Equation 3.8).

• IDF : Klar’s test based on the integrated distribution function (Equation 3.13).
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• R: The Rueda et al. test based on the probability generating function (Equation 3.28).

• T : Treutler’s test based on the probability generating function (Equation 3.32).

• V ∗: Nakamura and Perez-Abreu’s test based on the probability generating function
(Equation 3.34).

• SR : Szekely and Rizzo’s test based on mean distances (Equation 3.38).

• T ∗
a : Meintanis and Nikitin’s test (Equation 3.35).

The performance of the above statistics will be tested against a range of alternative distribu-
tions, with various parameter combinations. The distributions are: The Poisson distribution
Poisson (λ), the discrete uniform distribution Unif (a, b), the negative binomial distribu-
tion NegBin (r, p), the mixed Poisson distribution MixPoi (p, λ1, λ2) = pPoisson (λ1) +
(1− p)Poisson (λ2), the generalised Poisson distribution GenPoi (λ1, λ2), the zero-inflated
Poisson distribution ZiPoi (λ, ε) (see Theorem 4.17) and the weighted Poisson distribution
WeiPoi (λ, a, b) (with weight function w (n;φ) = an2 + bn + 1). While some of these dis-
tributions have been used before in similar comparison tests, weighted Poisson distributions
have never been selected as the alternative distribution.

For each test-distribution combination the sample size will also be varied. The samples sizes
that are considered are n = 30, 50, 100, 200.

Traditionally, a parametric bootstrap procedure is used in order to evaluate the performance
of these tests, see Gürtler and Henze [62]. The process can be described as follows:

• Define Wn to be the statistic that will be tested (which depends on a sample of n
observations), Wn (X1, X2, ..., Xn)

• Let Hn,λ (t) = P (Wn ≤ t) be the distribution function of the null distribution of Wn.
(In other words Hn,λ (t) is the distribution of the statistic if the underlying distribution
is indeed Poisson (λ) distributed.)

• The critical value(s), c, for this test will then be the (1− α)th quantile of Hn,λ (t) for a
one sided test or the α

2
th and

(
1− α

2

)th quantiles of Hn,λ (t) for a two sided test.

This percentile will be estimated using the following Monte Carlo procedure:

• Generate a sample of size n from a Poisson (λ) distribution, (X1, X2, ..., Xn).

• Using this sample, calculate the maximum likelihood estimate of λ, λ̂ =
∑n

i=1 Xi

n
.

• Generate M random samples of size n from a Poisson
(
λ̂
)

distribution,
(
X∗

j1, X
∗
j2, ..., X

∗
jn

)
, j =

1, 2, ...M.

• Calculate the statistic value for each sample, W ∗
j,n =Wn

(
X∗

j1, X
∗
j2, ..., X

∗
jn

)
, j = 1, 2, ...M.
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• Based on the set of M statistic values, calculate the empirical distribution function,
H∗

n,M (t).

• Calculate the critical value(s), c∗n,M , of H∗
n,M (t). (Baringhaus and Henze [8] found this

critical value to be sufficiently accurate only in cases where M ≥ 5n.)

In general, the above procedure would have to be repeated many (say B) times, and the final
critical value would be set as the average of the B c∗n,M values. This can be extremely compu-
tationally intensive. However, a much less intensive method was developed by Giacomini et
al. [55], which they named the “warp speed” bootstrap method, which significantly reduces
the computational time needed to calculate the critical values. In essence their method is the
same as the one described above, with the main difference being that M = 1. It was found
that this method is dramatically faster to calculate, and gives near identical results to the
traditional parametric bootstrap approach. For more detail on the implementation of this
warp speed approach see Allison et al. [2], and Henze and Klar [67].

The results from the above procedure are given in tables 3.1 to 3.4, where the test values
reported are the various percentages that the different tests will result in rejection of the null
hypothesis.

While it is impossible to give a set of definitive recommendations on which test will always
perform the best, the tables below do give some insights into general situations when the
tests might perform well. Some interesting points to note:

• As expected, the tests perform better the more the dispersion of the alternative distri-
butions deviate from equidispersion.

• Treutler’s (T ) and Meintanis and Nikitin’s (T ∗
a ) tests (both based on the probability

generating functions) appear to perform particularly well when data is underdispersed
and sample sizes are relatively small, however, both tests are much less competitive op-
tions when data is overdispersed (Treutler’s test more so than Meintanis and Nikitin’s)

• The “historic” tests (W,KS,CVM1) perform relatively well at detecting deviations
from Poissonity when the alternative data is overdispersed (irrespective of sample size),
with the only “more modern” tests giving consistent good performance being Nakamura
and Perez-Abreu’s (V ∗) and Meintanis and Nikitin’s (T ∗

a ) tests. It should be noted,
however, that the power of the Nakamura and Perez-Abreu test performed relatively
poorly for larger sample sizes.
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Alternative
Distribution

Dispersion of
Alternative
Distribution

W KS CVM1 L IDF R T V ∗ SR T ∗
a

Poisson (0.5) 1.00 5 4 4 5 5 4 4 5 5 5
Poisson (1) 1.00 5 5 5 5 5 4 5 5 5 5
Poisson (5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (10) 1.00 5 5 5 5 5 5 5 5 5 5
Uni (0, 4) 1.00 2 6 6 32 19 34 10 43 32 4
WeiPoi (1, 1,−1) 1.00 4 6 6 13 11 10 6 10 13 5
Uni (0, 2) 0.67 18 18 18 28 29 33 38 29 28 19
WeiPoi (1, 2, 1) 0.68 22 27 27 20 8 20 26 6 19 30
WeiPoi (1, 1, 1) 0.75 12 16 17 13 5 12 16 4 13 18
Bin (4, 0.25) 0.75 11 15 15 13 4 11 14 2 13 15
Bin (20, 0.25) 0.75 12 12 11 12 6 11 15 4 11 14
WeiPoi (1, 1, 0) 0.83 6 8 8 10 4 8 10 3 10 9
Bin (10, 0.1) 0.90 4 5 5 6 3 5 6 2 6 6
Bin (50, 0.1) 0.90 5 5 5 6 4 5 6 3 6 6
MixPoi (0.01, 1, 5) 1.03 6 7 7 5 5 6 5 6 5 6
NegBin (9, 0.9) 1.11 10 8 8 6 9 7 7 10 6 8
NegBin (45, 0.9) 1.11 9 9 8 6 7 8 7 9 6 7
MixPoi (0.05, 1, 5) 1.16 12 18 18 7 7 10 10 11 7 15
Uni (0, 5) 1.17 8 26 27 41 31 47 22 56 40 21
GenPoi (4, 0.1) 1.24 17 16 15 8 11 13 13 16 8 13
MixPoi (0.5, 3, 5) 1.25 18 17 17 9 13 15 14 17 10 16
ZiPoi (3, 0.1) 1.30 23 33 33 14 26 21 19 24 14 29
NegBin (15, 0.75) 1.33 26 24 23 12 16 20 20 23 12 21
NegBin (3, 0.75) 1.33 25 20 21 13 21 18 18 25 14 21
Uni (0, 6) 1.33 24 54 54 54 44 62 43 68 53 47
NegBin (2, 0.667) 1.50 39 34 34 23 34 28 31 39 23 36
NegBin (10, 0.667) 1.50 42 39 38 20 25 34 34 36 19 35
ZiPoi (3, 0.2) 1.60 55 71 71 44 70 56 55 59 44 67
MixPoi (0.5, 2, 5) 1.64 57 57 57 35 41 49 52 52 35 55
NegBin (1, 0.5) 2.00 69 62 63 53 64 56 58 67 53 65

Table 3.1: Test comparison, n = 30
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Alternative
Distribution

Dispersion of
Alternative
Distribution

W KS CVM1 L IDF R T V ∗ SR T ∗
a

Poisson (0.5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (1) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (10) 1.00 5 5 5 5 5 5 5 5 5 5
Uni (0, 4) 1.00 1 9 9 54 33 60 18 74 53 6
WeiPoi (1, 1,−1) 1.00 4 7 7 21 18 16 8 15 21 6
Uni (0, 2) 0.67 37 29 31 52 53 59 67 75 52 33
WeiPoi (1, 2, 1) 0.68 40 45 46 30 13 34 41 15 30 47
WeiPoi (1, 1, 1) 0.75 23 26 27 19 7 21 25 8 19 28
Bin (4, 0.25) 0.75 18 22 23 18 5 18 22 5 18 25
Bin (20, 0.25) 0.75 21 20 19 17 7 18 23 8 17 24
WeiPoi (1, 1, 0) 0.83 10 11 11 13 5 12 14 6 13 11
Bin (10, 0.1) 0.90 5 7 7 7 3 6 7 2 7 7
Bin (50, 0.1) 0.90 6 6 6 6 4 6 7 4 7 7
MixPoi (0.01, 1, 5) 1.03 6 7 7 5 5 6 5 6 5 6
NegBin (9, 0.9) 1.11 11 9 9 7 10 8 8 10 7 9
NegBin (45, 0.9) 1.11 10 10 9 7 8 9 9 10 6 9
MixPoi (0.05, 1, 5) 1.16 15 23 23 8 8 13 12 12 8 20
Uni (0, 5) 1.17 11 42 41 66 48 74 40 83 66 34
GenPoi (4, 0.1) 1.24 23 21 20 11 14 18 19 19 11 19
MixPoi (0.5, 3, 5) 1.25 24 23 22 13 16 20 21 21 13 22
ZiPoi (3, 0.1) 1.30 31 47 47 22 38 31 30 32 24 42
NegBin (15, 0.75) 1.33 36 32 32 17 21 28 30 29 17 30
NegBin (3, 0.75) 1.33 35 30 30 19 30 25 27 32 19 31
Uni (0, 6) 1.33 37 75 74 79 64 87 66 91 79 68
NegBin (2, 0.667) 1.50 54 48 49 35 47 42 44 50 34 48
NegBin (10, 0.667) 1.50 57 54 54 30 35 47 50 48 30 52
ZiPoi (3, 0.2) 1.60 75 89 89 68 90 79 78 79 67 86
MixPoi (0.5, 2, 5) 1.64 77 77 76 55 61 71 74 70 55 75
NegBin (1, 0.5) 2.00 86 81 82 74 82 77 78 82 73 83

Table 3.2: Test comparison, n = 50
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Alternative
Distribution

Dispersion of
Alternative
Distribution

W KS CVM1 L IDF R T V ∗ SR T ∗
a

Poisson (0.5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (1) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (10) 1.00 5 5 5 5 5 5 5 5 5 5
Uni (0, 4) 1.00 1 18 16 88 68 94 45 99 88 10
WeiPoi (1, 1,−1) 1.00 4 10 9 40 32 35 13 29 40 7
Uni (0, 2) 0.67 82 60 62 92 97 97 98 100 92 69
WeiPoi (1, 2, 1) 0.68 73 78 78 57 27 67 74 43 57 78
WeiPoi (1, 1, 1) 0.75 47 51 51 34 14 41 46 21 34 51
Bin (4, 0.25) 0.75 45 46 46 35 11 36 43 17 35 49
Bin (20, 0.25) 0.75 45 41 40 30 13 36 44 22 30 45
WeiPoi (1, 1, 0) 0.83 20 18 18 22 6 21 24 12 22 20
Bin (10, 0.1) 0.90 8 10 10 8 3 8 9 3 8 10
Bin (50, 0.1) 0.90 9 9 9 8 4 8 10 5 8 10
MixPoi (0.01, 1, 5) 1.03 6 8 8 6 5 6 6 6 5 7
NegBin (9, 0.9) 1.11 15 12 12 9 14 10 11 13 8 12
NegBin (45, 0.9) 1.11 14 13 13 8 10 11 12 12 8 12
MixPoi (0.05, 1, 5) 1.16 22 35 36 11 11 20 19 18 11 31
Uni (0, 5) 1.17 19 72 70 95 81 98 74 99 95 61
GenPoi (4, 0.1) 1.24 36 32 32 17 22 29 31 27 18 31
MixPoi (0.5, 3, 5) 1.25 40 37 37 22 26 33 36 31 22 36
ZiPoi (3, 0.1) 1.30 51 73 72 38 68 55 54 52 39 68
NegBin (15, 0.75) 1.33 57 53 52 30 35 47 50 45 30 52
NegBin (3, 0.75) 1.33 54 49 50 35 47 41 46 47 34 50
Uni (0, 6) 1.33 63 96 95 98 93 100 94 100 98 93
NegBin (2, 0.667) 1.50 79 74 75 60 72 68 71 71 61 75
NegBin (10, 0.667) 1.50 83 80 80 53 58 73 77 71 54 78
ZiPoi (3, 0.2) 1.60 95 99 99 94 100 98 98 97 94 99
MixPoi (0.5, 2, 5) 1.64 96 96 96 86 88 94 95 92 86 96
NegBin (1, 0.5) 2.00 99 98 98 96 98 96 97 97 96 98

Table 3.3: Test comparison, n = 100



CHAPTER 3. POISSON DISTRIBUTION: GOODNESS-OF-FIT TESTING 34

Alternative
Distribution

Dispersion of
Alternative
Distribution

W KS CVM1 L IDF R T V ∗ SR T ∗
a

Poisson (0.5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (1) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson (10) 1.00 5 5 5 5 5 5 5 5 5 5
Uni (0, 4) 1.00 1 37 33 100 99 100 93 100 100 20
WeiPoi (1, 1,−1) 1.00 4 15 14 74 59 70 28 57 74 10
Uni (0, 2) 0.67 100 93 94 100 100 100 100 100 100 96
WeiPoi (1, 2, 1) 0.68 96 97 98 88 57 94 96 84 88 98
WeiPoi (1, 1, 1) 0.75 79 81 82 63 29 72 78 54 63 83
Bin (4, 0.25) 0.75 81 79 79 64 26 69 75 47 64 80
Bin (20, 0.25) 0.75 80 73 73 55 27 68 76 53 55 76
WeiPoi (1, 1, 0) 0.83 40 32 33 40 12 40 44 30 40 36
Bin (10, 0.1) 0.90 15 16 16 12 3 13 15 6 13 17
Bin (50, 0.1) 0.90 15 15 15 11 5 13 16 8 11 16
MixPoi (0.01, 1, 5) 1.03 7 9 9 6 5 6 6 6 5 8
NegBin (9, 0.9) 1.11 21 19 19 12 19 16 17 17 12 19
NegBin (45, 0.9) 1.11 21 19 19 11 14 16 18 15 11 17
MixPoi (0.05, 1, 5) 1.16 35 56 56 18 19 33 33 29 18 53
Uni (0, 5) 1.17 36 95 94 100 99 100 98 100 100 89
GenPoi (4, 0.1) 1.24 58 53 53 32 36 48 52 43 31 53
MixPoi (0.5, 3, 5) 1.25 65 61 61 40 44 56 61 51 40 61
ZiPoi (3, 0.1) 1.30 79 95 94 70 94 85 84 81 71 93
NegBin (15, 0.75) 1.33 83 79 79 54 57 74 77 69 53 79
NegBin (3, 0.75) 1.33 80 77 78 61 73 69 73 69 61 78
Uni (0, 6) 1.33 91 100 100 100 100 100 100 100 100 100
NegBin (2, 0.667) 1.50 96 95 95 89 93 92 94 92 88 96
NegBin (10, 0.667) 1.50 98 97 97 84 85 95 96 93 84 97
ZiPoi (3, 0.2) 1.60 100 100 100 100 100 100 100 100 100 100
MixPoi (0.5, 2, 5) 1.64 100 100 100 99 99 100 100 100 99 100
NegBin (1, 0.5) 2.00 100 100 100 100 100 100 100 100 100 100

Table 3.4: Test comparison, n = 200



Chapter 4

Weighted Poisson Distribution:
Theory

In this chapter, various weight functions will be discussed. While other authors have already
investigated some of these weight functions, the vast majority are novel. (It should be noted
that an infinite number of possible weight functions can be constructed. Consequently, this
chapter will only focus on weights that result in closed-form expressions for the weighted
Poisson distribution.)

The weights that are included in this thesis are a small subsection of weights that were
considered during the research process. They were chosen for a few reasons:

• They could be classified into various overarching families of weights where setting spe-
cific parameters equal to 0 would often result in the weighted Poisson distribution
reducing to another family member.

• The weights resulted in weighted Poisson distributions that could potentially have niche
applications.

• The weights had a “good” trade-off between predictive ability while remaining relatively
parsimonious.

As was mentioned previously, one of the main advantages of using the weighted Poisson
distribution instead of the original Poisson distribution is that it overcomes the inherent
restriction of equidispersion. As will become apparent in this chapter, the weighted Poisson
distribution can offer some other interesting properties that could potentially be useful in
applications.

The first of these useful properties, that has received considerable attention in the literature,
is the concept of the zero-inflated (also known as the zero-modified) Poisson distribution. Real
datasets often exhibit an excess of zero counts relative to what a fitted Poisson distribution
predicts, and the zero-inflated Poisson distribution is one of the methods that can be employed
to overcome this problem. While the zero-inflated Poisson distribution has been described

35
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in the framework of weighted Poisson distributions before (see Castillo and Perez [39]), it
is usually presented in a way which either results in needlessly complicated expressions, or
otherwise in distributions that are piece-wise defined.

Another useful property demonstrated by the weighted Poisson distribution is its ability
to model truncated data. This property has only been explored to a minimal extent in
previous studies. The most notable distribution that falls into this category is the zero-
truncated Poisson distribution (see Cohen [23], and Dietz and Böhning [40] for details and
applications). Some of the weighted Poisson distributions in this thesis will explore the
modelling of truncated data in much greater detail. The proposed weight functions will
allow for arbitrary points of lower and/or upper truncation, which have not been explored
to data. These distributions have a wide range of potential applications, in multiple fields of
insurance and actuarial modelling.

Furthermore, the weighted Poisson distribution is also capable of modelling multimodal data.
These situations are most commonly modelled using mixture distributions; however, the
weighted Poisson distribution gives a more unified and coherent way to model these situations.

The remainder of this chapter will be subdivided into sections, each representing a specific
family of weight functions. For each weight function, specific properties will be derived.
These include the normalising constant that appears in the probability mass function, the
probability mass function, the probability generating function, the expected value, as well
as the variance. Additionally, parameter and domain restrictions will be provided in each
case. Each distribution will also be accompanied by a series of plots of the probability mass
function with a fixed expected value of 10 and varying parameter choices to demonstrate
potential shapes. These graphs are included in the hope of facilitating a better understand-
ing of the various shapes that the mass functions may take on, as well as to give insight
into some of the novel applications mentioned previously. All plots will be superimposed
over a Poisson (10) probability mass function (in black) to provide a reference distribution.
Overdispersed weighted Poisson plots will be shown in red and underdispersed in blue. The
discrete points of the various probability mass functions will be joined by lines to avoid
confusion, which may otherwise occur due to the number of overlain graphs. This is done
purely for aesthetic reasons. These distributions should not be confused with continuous
distributions.

For each weight function, the format is similar, with each weight function being stated,
followed by the resulting properties of the weighted Poisson distribution, and lastly by graphs
of the various probability mass functions. Proofs for some of the weighted Poisson properties
will be presented in this chapter, but the vast majority of them can be found in Chapter 10.

While the importance of stating and deriving expressions for the various weighted Poisson
distributions may initially seem questionable, there are very real theoretical and practical
reasons for doing so. From a theoretical perspective it not only enables insight into the
various different data structures that each distribution can accommodate, but also leads to
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some additional restrictions on parameters which would otherwise not be obvious. From a
practical perspective, having closed form representations for the various expressions result in
significant time and computational savings when the distributions are fit to observed data.

4.1 Polynomial weight functions
As has already been mentioned in this thesis (Section 2.2), one commonly used weight func-
tion is w (n) = n. Here this weight function is expanded into a family of a several different
functions based on polynomials.

4.1.1 w (n) = n

Theorem 4.1. If the weight function in Equation 2.7 is w (n) = n then

E (w (N ;φ)) = λ.

fw (n) = e−λλn−1

(n−1)!
.

g (z) = eλ(z−1)z.

E (Nw) = λ+ 1.

V ar (Nw) = λ.

Restrictions:

• Domain: n ∈ N1.

• Parameters: λ > 0.
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Figure 4.1: Probability mass function - w (n) = n

The variance associated with the weighted Poisson probability mass function in the above
plot is 9. The domain of this weighted Poisson distribution does not include n = 0. This is
called a “zero truncated”, “shifted” or “one translated” Poisson distribution, but should not
be confused with the “zero truncated Poisson distribution” (See Singh [129]). Specifically,
a “zero truncated” Poisson distribution is one that cannot have observations of zero. A few
weight functions that will be discussed in this chapter result in truncated distributions.

4.1.2 w (n;φ) = n−a

Theorem 4.2. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = n−a then

E (w (N ;φ)) = λe−λ
a+1Fa+1 (1, ..., 1; 2, ..., 2;λ) .

fw (n) = λn−1

nan!a+1Fa+1(1,...,1;2,...,2;λ)
.

g (z) = za+1Fa+1(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)
.

E (Nw) = aFa(1,...,1;2,...,2;λ)

a+1Fa+1(1,...,1;2,...,2;λ)
.

V ar (Nw) = a−1Fa−1(1,...,1;2,...,2;λ)−aFa(1,...,1;2,...,2;λ)

a+1Fa+1(1,...,1;2,...,2;λ)

+ E (Nw)− (E (Nw))2 ,

where pFq (·; ·; ·) is the generalised hypergeometric function (Definition 10.17.)
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Restrictions:

• Domain: n ∈ N1.

• Parameters: λ > 0, a ∈ N1.

Note: Since the generalised hypergeometric function’s subscripts contain a’s the number of
1’s and 2’s will vary depending on the value of a.

Proof. From the definition of the normalising constant, it follows that
E (w (N)) =

∑∞
k=0w (k) f (k)

=
∑∞

k=0 k
−a e−λλk

k!
.

Since 0a = 0 for all a > 0. This fraction is 0 when k = 0. Thus it follows that
E (w (N)) = e−λ

∑∞
k=1

λk

kak!

= λe−λ
∑∞

k=1
λk−1

kak!
.

After reparameterising, it follows that
E (w (N)) = λe−λ

∑∞
m=0

λm

(m+1)am!

= λe−λ
∑∞

m=0
Γ(m+1)a

Γ(m+2)a
λm

m!

= λe−λ
∑∞

m=0
Γ(m+1)aΓ(2)a

Γ(1)aΓ(m+2)a
λm

m!

= λe−λ
a+1Fa+1 (1, ..., 1; 2, ..., 2;λ) .

This proof, and many of the proofs in this thesis, rely on repeated use of the following result:
Γ (1) = 1.
Γ (2) = 1.
Γ(m+2)
Γ(m+1)

= m+ 1.

They are stated here to facilitate understanding of the derivations, and they will not explicitly
be stated again.
From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
n−a e−λλn

n!

λe−λ
a+1Fa+1(1,...,1;2,...,2;λ)

= λn−1

nan!a+1Fa+1(1,...,1;2,...,2;λ)
.

From the definition of the probability generating function, it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0
λk−1

kak!a+1Fa+1(1,...,1;2,...,2;λ)
zk.

Since 0a = 0 for all a > 0. This fraction is 0 when k = 0. Thus it follows that
g (z) =

∑∞
k=1

λk−1

kak!a+1Fa+1(1,...,1;2,...,2;λ)
zk

= z
a+1Fa+1(1,...,1;2,...,2;λ)

∑∞
k=1

λk−1

kak!
zk−1

= z
a+1Fa+1(1,...,1;2,...,2;λ)

∑∞
k=1

(λz)k−1

kak!
.

After reparameterising, it follows that

g (z) = z
a+1Fa+1(1,...,1;2,...,2;λ)

∑∞
m=0

(λz)m

(m+1)am!

= z
a+1Fa+1(1,...,1;2,...,2;λ)

∑∞
m=0

Γ(m+1)a

Γ(m+2)a
(λz)m

m!

= z
a+1Fa+1(1,...,1;2,...,2;λ)

∑∞
m=0

Γ(m+1)aΓ(2)a

Γ(1)aΓ(m+2)a
(λz)m

m!

= za+1Fa+1(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

Thus it follows that
∂
∂z
g (z) = ∂

∂z

(
za+1Fa+1(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)

)
.

By using Theorem 10.7, it follows that
∂
∂z
g (z) = ∂

∂z

(
za+1Fa+1(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)

)
= a+1Fa+1(1,...,1;2,...,2;λz)+aFa(1,...,1;2,...,2;λz)−a+1Fa+1(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)

= aFa(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)
.

Consequently, it follows that

E (Nw) = limz→−1
aFa(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)

= aFa(1,...,1;2,...,2;λ)

a+1Fa+1(1,...,1;2,...,2;λ)
.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
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∂2

∂z2
g (z) = ∂

∂z

(
aFa(1,...,1;2,...,2;λz)

a+1Fa+1(1,...,1;2,...,2;λ)

)
=

1
z
(a−1Fa−1(1,...,1;2,...,2;λz)−aFa(1,...,1;2,...,2;λz))

a+1Fa+1(1,...,1;2,...,2;λ)

= a−1Fa−1(1,...,1;2,...,2;λz)−aFa(1,...,1;2,...,2;λz)
za+1Fa+1(1,...,1;2,...,2;λ)

.

Consequently, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1
a−1Fa−1(1,...,1;2,...,2;λz)−aFa(1,...,1;2,...,2;λz)

za+1Fa+1(1,...,1;2,...,2;λ)

+ E (Nw)− (E (Nw))2

= a−1Fa−1(1,...,1;2,...,2;λ)−aFa(1,...,1;2,...,2;λ)
za+1Fa+1(1,...,1;2,...,2;λ)

+ E (Nw)− (E (Nw))2 .

Figure 4.2: Probability mass functions - w (n;φ) = n−a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 11.3168, 13.2258, 16.2999 and 21.63 for a equal to 1,2,3 and 4 respectively. From the
plots, it may appear as if this weight function always results in an overdispersed distribution.
This is not the case. From a numerical investigation, it can be seen that for each a value, there
is a corresponding λ for which the distribution is equidispersed. As the a value increases, the
corresponding λ value required for equidispersion also increases. The expected values of the
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respective equidispersed distributions decrease as a function of a. These findings are briefly
summarised in the table below.

Weight function Poisson parameter E (Nw)

w (n) = n−1 λ = 3.75 2.84
w (n) = n−2 λ = 4.189 2.185
w (n) = n−3 λ = 5.292 1.855
w (n) = n−4 λ = 6.967 1.640
w (n) = n−5 λ = 9.253 1.483
w (n) = n−6 λ = 12.173 1.359
w (n) = n−7 λ = 15.689 1.162

Table 4.1: Equidispersed parameterisations - w (n;φ) = n−a

From the above table, it is clear that this specific weighted Poisson distribution can only be
underdispersed for relatively small expected values. The plots below demonstrate some of
the varying shapes of the distribution when the expected value is fixed at 1.5.

Figure 4.3: Probability mass functions - w (n;φ) = n−a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 0.642, 0.753, 0.913 and 1.1594 for a equal to 1,2,3 and 4 respectively.
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4.1.3 w (n;φ) = n+ ε

Theorem 4.3. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = n+ ε then

E (w (N ;φ)) = λ+ ε.

fw (n) = (n+ε)e−λλn

(λ+ε)n!
.

g (z) = e(z−1)λ(ε+λz)
λ+ε

.

E (Nw) = λ(1+λ+ε)
λ+ε

.

V ar (Nw) =
λ
(
(λ+ε)2+ε

)
(λ+ε)2

.

Restrictions:

• Domain: n ∈ N0.

• Parameters: λ, ε > 0.

Figure 4.4: Probability mass functions - w (n;φ) = n+ ε

The variance associated with the weighted Poisson probability mass function in the above
plot is 9.0022.
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When w (n;φ) = n in Theorem 4.1, the resulting weighted Poisson distribution cannot ac-
commodate zero counts. By adding a constant shift parameter to the weight function, this
restriction is overcome while maintaining a similar Fisher index.

4.1.4 w (n;φ) = an3 + bn2 + cn

Theorem 4.4. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = an3 + bn2 + cn then

E (w (N ;φ)) = λ (a+ b+ c) + λ2 (3a+ b+ λa) .

fw (n) =
(
an3+bn2+cn

)
(λ(3a+b+λa)+(a+b+c))

e−λλn

n!
.

g (z) =
eλ(z−1)z

(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
a(λ2+3λ+1)+b(λ+1)+c

.

E (Nw) =
a
(
λ3+6λ2+7λ+1

)
+b
(
λ2+3λ+1

)
+c(λ+1)

a(λ2+3λ+1)+b(λ+1)+c
.

V ar (Nw) =
a
(
λ4+9λ3+19λ2+8λ

)
+b
(
λ3+5λ2+4λ

)
+c
(
λ2+2λ

)
a(λ2+3λ+1)+b(λ+1)+c

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N1.

• Parameters: a, b, c ≥ 0, λ > 0.

Figure 4.5: Probability mass functions - w (n) = an3 + bn2 + cn
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The variances associated with the weighted Poisson probability mass functions in the above
plots are 7.5546, 8.0208 and 9.0003 as a, b and c are increased respectively. This figure
demonstrates how slight the change in the probability mass function is for large changes in
the parameters of the weight function. The three variables, a, b and c, were each changed from
their baseline value of one to one million to demonstrate that even changing these variables
by a considerable amount results in very small changes in the variance of the distribution
(while keeping the expected value fixed). It was also observed that while a, b and c could
vary substantially with minimal effect on the distribution, the expected value and variance
are much more sensitive to the value of λ.

4.1.5 w (n;φ) = (n+ a) (n− b)2

As was seen above in Theorem 4.4, the weighted Poisson distribution with weight function
w (n) = an3 + bn2 + cn; a, b, c ≥ 0 varies minimally as the polynomial parameters change.
There is one other potential problem with that specific weight function that must be high-
lighted: It is well known that a third-degree polynomial (as seen above) has at most two
turning points. As a result, it is possible to construct a cubic weight function with turning
points that assumes negative values on at least some of the negative integers but which is a
non-negative function on the set of non-negative integers, and thus a valid weight function.
Reparameterising the cubic weight function as w (n;φ) = (n+ a) (n− b)2 , a, b ≥ 0 gives one
such situation which is a special case of Theorem 4.4. In this case, there are zeros at −a
and b. Note, however, that the zero at b is also the turning point of the weight function, and
as a result, the weight function is never smaller than zero on the non-negative integers. See
Figure 4.6 below for four examples of possible parameterisations: a = 1, b = 3, a = 2, b = 5,
a = 3, b = 8 and a = 1000, b = 7.
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Figure 4.6: w (n;φ) = (n+ a) (n− b)2

Theorem 4.5. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (n+ a) (n− b)2 then

E (w (N ;φ)) = λ (b2 − 2ab− 2b+ a+ 1) + λ2 (λ+ a− 2b+ 3) + ab2.

fw (n) = (n+a)(n−b)2

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2
e−λλn

n!
.

g (z) =
eλ(z−1)

(
(λz)

(
b2−2ab−2b+a+1

)
+(λz)2(λz+a−2b+3)+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

E (Nw) =
λ
(
1+7λ+6λ2+λ3+b2(1+λ)−2b

(
1+3λ+λ2

)
+a
(
1+b2+3λ+λ2−2b(1+λ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

V ar (Nw) =
λ2
(
8+19λ+9λ2+λ3+b2(2+λ)−2b

(
4+5λ+λ2

)
+a
(
4+b2+5λ+λ2−2b(2+λ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N0.

• Parameters: a, b ≥ 0, λ > 0.
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Figure 4.7: Probability mass function - w (n;φ) = (n+ a) (n− b)2; |b− E (Nw)| large

The variances associated with the weighted Poisson probability mass functions in the above
plot are 7.0811 and 8.8749 for b values of 2 and 18 respectively.

Figure 4.8: Probability mass function - w (n;φ) = (n+ a) (n− b)2; |b− E (Nw)| medium

The variances associated with the weighted Poisson probability mass functions in the above
plots are 8.5704 and 19.2228 for b equal to 5 and 15 respectively.
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Figure 4.9: Probability mass function - w (n;φ) = (n+ a) (n− b)2; |b− E (Nw)| small

The variances associated with the weighted Poisson probability mass functions in the
above plots are 25.8628 and 28.4565 for b equal to 9 and 11 respectively.

From the figures above, it is apparent that using this form of cubic weight function can result
in a wide range of shapes for the probability mass function. Some general statements can be
made about the parameters of the weight function: The parameter a has a less pronounced
effect on the shape of the probability mass function than is the case for b. The parameter
b corresponds to the turning point of the probability mass function where there is a zero
probability of observing data points, and consequently, the parameter b can be interpreted
as a clear divide between mixtures of data. The relationship between b and E (Nw) not only
determines the overall shape of the distribution but also whether the resulting distribution
will be under or overdispersed. If |b− E (Nw)| is “large”, in other words, if the value of b (the
turning point) is in the tails of the distribution, it appears as if the probability mass function
does not contain a second local mode. Strictly speaking, this is not true; the second local
mode is merely being masked by already small probabilities in the tails of the distribution.
If |b− E (Nw)| is “small” the distribution will be overdispersed. What constitutes “large”
and “small” is not investigated, but the effect of these quantities has been demonstrated
graphically. In the above graphs it was assumed that b is an integer. This need not be the
case.

4.1.6 w (n;φ) = (n+ a)
(
n2 − bn+ c

)
It is possible to further reparameterise the weight function given in Theorem 4.5. In The-
orem 4.5 it is implicitly assumed that the factor (n− b)2 can be factorised from n2 −
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2bn + b2. If, however, it cannot, a more general solution is obtained where w (n;φ) =
(n+ a) (n2 − bn+ c). This new weight function comes with benefits as well as costs rela-
tive to w (n;φ) = (n+ a) (n− b)2 . The fact that the weight function in Theorem 4.5 has a
turning point and obtains a zero value when n = b potentially allows for a novel modelling
opportunity where bi-modal data is completely separable into two distinct groups. How-
ever, this narrow application is also its greatest weakness since such data would likely not
be observed frequently. By having a factor which does not attain the value of zero for any
n, there would be no non-negative integer which will be observed with probability zero, and
consequently, bi-modal data could potentially be modelled more realistically. The problem
with w (n;φ) = (n+ a) (n2 − bn+ c), however, is that it introduces additional restrictions
on the parameters contained in the weight fynction. Due to the fact that n2 − bn + c must
have no real roots, an added restriction is that b2− 4c < 0. Additional parameter restrictions
are also introduced by the expression for probability mass function.

Below in Figure 4.10 some graphs are provided demonstrating the wide range of shapes
that this weight function can assume. The parameterisations are a = 1, b = 3, c = 5;
a = 1, b = 4, c = 5; a = 1, b = 6, c = 15 and a = 2, b = 4, c = 5.

Figure 4.10: w (n;φ) = (n+ a) (n2 − bn+ c)

Theorem 4.6. If the weight function used in the weighted Poisson probability mass function
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is chosen as w (n;φ) = (n+ a) (n2 − bn+ c) then

E (w (N ;φ)) = λ3 + λ2 (a− b+ 3) + λ (a+ c− b− ab+ 1) + ac.

fw (n) =
(n+a)

(
n2−bn+c

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

e−λλn

n!
.

g (z) =
eλ(z−1)

(
λ3z3+λ2z2(a−3+b)+λz(a+c−b−ab+1)+ac

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

.

E (Nw) =
λ
(
1+c+7λ+cλ+6λ2+λ3−b

(
1+3λ+λ2

)
+a
(
1+c+3λ+λ2−b(1+λ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

.

V ar (Nw) =
λ2
(
8+2c+19λ+cλ+9λ2+λ3−b

(
4+5λ+λ2

)
+a
(
4+c+5λ+λ2−b(2+λ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N0.

• Parameters: a, b, c ≥ 0, λ > 0, λ3 + λ2 (a− b+ 3) + λ (a+ c− b− ab+ 1) + ac > 0.

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 (k + a) (k2 − bk + c) e−λλk

k!

=
∑∞

k=0 (k
3 + k2 (a− b) + k (c− ab) + ac) e−λλk

k!

=
∑∞

k=0 k
3 e−λλk

k!
+ (a− b)

∑∞
k=0 k

2 e−λλk

k!

+ (c− ab)
∑∞

k=0 k
e−λλk

k!
+ ac

∑∞
k=0

e−λλk

k!
.

Since the first three sums in the above equations are the third, second and first moments
respectively of a Poisson distribution with parameter λ, and the fourth sum is the Poisson
probability mass function, it follows that

E (w (N ;φ)) = (λ3 + 3λ2 + λ) + (a− b) (λ2 + λ) + (c− ab)λ+ ac

= λ3 + λ2 (a− b+ 3) + λ (a+ c− b− ab+ 1) + ac.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
(n+a)

(
n2−bn+c

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

e−λλn

n!
.

From the definition of the probability generating function, it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0

(k+a)
(
k2−bk+c

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

e−λλk

k!
zk

=
∑∞

k=0

(
k3+k2(a−b)+k(c−ab)+ac

)
e−λλk

k!
zk

λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

=
e−λ

∑∞
k=0

(
k3 λk

k!
zk+k2(a−b)λ

k

k!
zk+k(c−ab)λ

k

k!
zk+acλk

k!
zk
)

λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

=
e−λ

(∑∞
k=0 k

3 λk

k!
zk+

∑∞
k=0 k

2(a−b)λ
k

k!
zk+

∑∞
k=0 k(c−ab)λ

k

k!
zk+

∑∞
k=0 ac

λk

k!
zk
)

λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

=
e−λ

e−λz

(∑∞
k=0 k

3aλ,k,z+(a−b)
∑∞

k=0 k
2aλ,k,z+(c−ab)

∑∞
k=0 kaλ,k,z+ac

∑∞
k=0 aλ,k,z

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

where aλ,k,z =
(λz)ke−λz

k!
.

Since the first three sums in the above equations are the third, second and first moments
respectively of a Poisson distribution with parameter λz, and the fourth sum is equals 1, it
follows that

g (z) =
e−λ

e−λz

(
(λz)3+3(λz)2+λz+(a−b)

(
(λz)2+λ

)
+(c−2ab)λz+ac

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

=
eλ(z−1)

(
λz(c−ab−b+a+1)+(λz)2(λz+a−b+3)+ac

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,

∂
∂z
g (z) = ∂

∂z

(
eλ(z−1)

(
λz(c−ab−b+a+1)+(λz)2(λz+a−b+3)+ac

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

)

=
(

∂
∂z
eλ(z−1)

) ( (λz)(c−ab−b+a+1)+(λz)2(λz+a−b+3)+ac
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

)
+

(
eλ(z−1)

λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

)
×

(
∂
∂z

(λz) (c− ab− b+ a+ 1) + (λz)2 (λz + a− b+ 3) + ac
)

=
eλ(z−1)λ

(
λz(c−ab−b+a+1)+(λz)2(λz+a−b+3)+ac

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+
(

eλ(z−1)
(
λ(c−ab−b+a+1)+λ2z(3λz+2a−2b+6)

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

)
=

eλ(z−1)λ
(
1+c+7zλ+czλ+6z2λ2+z3λ3−b

(
1+3zλ+z2λ2

)
+a
(
1+c+3zλ+z2λ2−b(1+zλ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

.
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Consequently, it follows that

E (Nw) = limz→−1
eλ(z−1)λ

(
1+c+7zλ+czλ+6z2λ2+z3λ3−b

(
1+3zλ+z2λ2

)
+a
(
1+c+3zλ+z2λ2−b(1+zλ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

=
λ
(
1+c+7λ+cλ+6λ2+λ3−b

(
1+3λ+λ2

)
+a
(
1+c+3λ+λ2−b(1+λ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
eλ(z−1)λ

(
1+c+7zλ+czλ+6z2λ2+z3λ3−b

(
1+3zλ+z2λ2

)
+a
(
1+c+3zλ+z2λ2−b(1+zλ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

)
=

(
∂
∂z
eλ(z−1)

) λ
(
1+c+7zλ+czλ+6z2λ2+z3λ3−b

(
1+3zλ+z2λ2

)
+a
(
1+c+3zλ+z2λ2−b(1+zλ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+
(

eλ(z−1)

λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

)
× ∂

∂z
(λ (1 + c+ 7zλ+ czλ+ 6z2λ2 + z3λ3 − b (1 + 3zλ+ z2λ2))

+λa (1 + c+ 3zλ+ z2λ2 − b (1 + zλ)))

=
eλ(z−1)λ2

(
zλ(1+a−b−ab+c)+z2λ2(3+a−b+zλ)+ac

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+
2eλ(z−1)λ2

(
1+a−b−ab+c+6zλ+2azλ−2bzλ+3z2λ2

)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+ eλ(z−1)λ2(6+2a−2b+6zλ)
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

=
eλ(z−1)λ2

(
8+2c+19zλ+czλ+9z2λ2+z3λ3−b

(
4+5zλ+z2λ2

)
+a
(
4+c+5zλ+z2λ2−b(2+zλ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

.

Consequently, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1
eλ(z−1)λ2

(
8+2c+19zλ+czλ+9z2λ2+z3λ3−b

(
4+5zλ+z2λ2

)
+a
(
4+c+5zλ+z2λ2−b(2+zλ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+ E (Nw)− (E (Nw))2

=
λ2
(
8+2c+19λ+cλ+9λ2+λ3−b

(
4+5λ+λ2

)
+a
(
4+c+5λ+λ2−b(2+λ)

))
λ3+λ2(a−b+3)+λ(a+c−b−ab+1)+ac

+ E (Nw)− (E (Nw))2 .
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Figure 4.11: Probability mass function - w (n;φ) = (n+ a) (n2 − bn+ c)

The variances associated with the weighted Poisson probability mass functions in the above
plots are 13.7047 and 21.4081 in the cases where b equals 13 and 21.0741 respectively. From
the graph it is apparent that if the added parameter restrictions do not limit the shape of the
probability mass function, this weighted Poisson distribution is more flexible, and therefore
it may be a more realistic model for observed bi-modal data.

4.1.7 w (n;φ) = a∗n+b∗

c∗n+d∗ = a+ b−ac
n+c

Another potential weight function is the ratio between two first order polynomials a∗n + b∗

and c∗n+ d∗. The number of parameters in this expression can be reduced as follows:

a∗n+b∗

c∗n+d∗
= a∗n+b∗

c∗
a∗ a

∗n+d∗
= a∗n+b∗

c∗
a∗ a

∗n+d∗
= a∗n+b∗

c∗
(
n+ d∗

c∗

)
=

a∗
c∗ n+ b∗

c∗(
n+ d∗

c∗

) = an+b
n+c

= a(n+c)+b−ac
n+c

= a+ b−ac
n+c

If the weight function used in the weighted Poisson probability mass function is chosen as
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w (n) = a+ b−ac
n+c

then

E (w (N ;φ)) = e−λ (−λ)−c (aeλ (−λ)c + (b− ac) γ (c,−λ)
)
.

fw (n) = (b+an)(−λ)cλn

(c+n)n!
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .
g (z) =

(−λ)c
(
aezλ(−zλ)c+(b−ac)γ(c,−λz)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
(−zλ)c

.

E (Nw) =
(
eλ(−λ)c(b−ac+aλ)+c(ac−b)γ(c,−λ)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

V ar (Nw) =
(−λ)c

(
eλ(−λ)c

(
(1+c)(ac−b)+(b−ac)λ+aλ2

)
+c(1+c)(b−ac)γ(c,−λ)

)
(−λ)c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N0.

• Parameters: a, b > 0, λ > 0, c ∈ N0.

The restriction that c ∈ N0 comes from the (−λ)c term in the equations above. Since λ > 0,
−λ < 0. Raising a negative value to some exponent may lead to multiple complex solutions
if the exponent is not an integer. To avoid these potential complications it is assumed that
c ∈ N0.

Figure 4.12: Probability mass function - w (n;φ) = a+ b−ac
n+c
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The variances associated with the weighted Poisson probability mass functions in the above
plots are 9.5753 and 10.2040 for b values equal to 5 and 50 respectively. Based on the plots
for this distribution, it appears as if it can model relatively small deviations from the Poisson
distribution.

4.2 Probability mass/density functions as weight func-
tions

One class of potential weight function that has received no research attention to date are
weight functions that are in and of themselves probability mass functions. In this section,
some of these weights will be investigated.

4.2.1 w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r

If w (n;φ) is assumed to be the probability mass function of the negative binomial distribution
the following results are obtained.

Theorem 4.7. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r then

E (w (N ;φ)) = e−λ (1− p)r 1F1 (r; 1; pλ) .

fw (n) =

 n+ r − 1
n


1F1(r;1;pλ)

(pλ)n

n!
.

g (z) = 1F1(r;1;pzλ)

1F1(r;1;pλ)
.

E (Nw) = λpr1F1(r+1;2;pλ)

1F1(r;1;pλ)
.

V ar (Nw) =
λ2p2r(r+1)1F1(r+2;3;pλ)

21F1(r;1;pλ)
+ E (Nw)− (E (Nw))2 .

where 1F1 (·; ·; ·) is the confluent hypergeometric function in Definition 10.15.

Restrictions:

• Domain: n ∈ N0.

• Parameters: r ∈ N1, 0 < p < 1, λ > 0.
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Figure 4.13: Probability mass function - w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r, varying r

The variances associated with the weighted Poisson probability mass functions in the above
plots are 7.8725, 6.9238 and 6.4648 for r equal to 5, 10 and 15 respectively.

and

Figure 4.14: Probability mass function - w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r, varying p



CHAPTER 4. WEIGHTED POISSON DISTRIBUTION: THEORY 57

The variances associated with the weighted Poisson probability mass functions in the above
plots are 6.3786 and 6.465 for p equal to 0.05 and 0.95 respectively. From the above plots it is
apparent that the distribution’s shape is more sensitive to changes in r, than in p. It may seem
counter intuitive that the negative binomial distribution, which is itself overdispersed, results
in an underdispersed weighted Poisson distribution when it is used as a weight function.
However, once the logconcavity result from Kokonendi et al. [83] is taken into account, this
conclusion becomes apparent.

4.2.2 w (n;φ) =

(
m
n

)
pn (1− p)m−n

If w (n;φ) is assumed to be the probability mass function of the binomial distribution the
following results are obtained.

Theorem 4.8. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
m
n

)
pn (1− p)m−n then

E (w (N ;φ)) = e−λ (1− p)m Lm

(
pλ
p−1

)
.

fw (n) =

(
m
n

)
(pλ)n

(1−p)nn!Lm

(
pλ
p−1

) .

g (z) =
Lm

(
pλz
p−1

)
Lm

(
pλ
p−1

) .

E (Nw) =
pλL1

m−1

(
pλ
p−1

)
(1−p)Lm

(
pλ
p−1

) .

V ar (Nw) = +
(pλ)2L2

m−2

(
pλ
p−1

)
(p−1)2Lm

(
pλ
p−1

) + E (Nw)− (E (Nw))2 .

where Lm (·) is the Laguerre polynomial and Lα
m (·) is the generalised Laguerre polynomial

(Definition 10.19).

Restrictions:

• Domain: n ∈ {0, 1, ...,m} . This restriction follows from the fact that if n > m,
(

m
n

)
is defined to be 0.

• Parameters: 0 < p < 1, λ > 0, Lm

(
pλ
p−1

)
≥ 0. The restriction that Lm

(
pλ
p−1

)
≥ 0 is

a consequence of requiring that the probability mass function be non-negative. Since
no general expressions exist for when the Laguerre polynomial is positive, this general
statement is given.
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Figure 4.15: Probability mass function - w (n;φ) =

(
m
n

)
pn (1− p)m−n, varying m

The variances associated with the weighted Poisson probability mass functions in the above
plots are 2.5398, 3.3963 and 3.8263 for m equal to 15, 20 and 25 respectively.

Figure 4.16: Probability mass function - w (n;φ) =

(
m
n

)
pn (1− p)m−n, varying p
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The variance associated with the weighted Poisson probability mass functions in the above
plot is 4.0851 for all values of p. This implies that varying the parameter p is completely
ineffective as a means of changing the shape of the probability mass function of this specific
weighted Poisson distribution (when the expected value is fixed). The reason for this can
clearly be seen in the expressions of the equations as well as in the above plot: In all cases,
when p decreases, λ is required to increase in order for the mean of the distribution to remain
constant. The interaction between these parameters is of such a nature an increase in one
cancels out the decrease in the other.

4.2.3 w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

If w (n;φ) is assumed to be the probability mass function of the Yule-Simon distribution the
following results are obtained.

Theorem 4.9. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = aΓ(n)Γ(a+1)

Γ(n+a+1)
then

E (w (N ;φ)) = ae−λλΓ(1+a)
Γ(2+a) 2

F2 (1, 1; 2, 2 + a;λ) .

fw (n) =
λn−1 Γ(n)Γ(1+a)

Γ(n+a+1)

ae−λλ
Γ(1+a)
Γ(2+a) 2

F2(1,1;2,2+a;λ)
.

g (z) = z 2F2(1,1;2,2+a;λz)

2F2(1,1;2,2+a;λ)
.

E (Nw) =
2F2(1,1;2,2+a;λ)+ λ

2(2+a) 2
F2(2,2;3,3+a;λ)

2F2(1,1;2,2+a;λ)
.

V ar (Nw) =
λ−1−a

(
eλ(λ−1−a)

)
Γ(2+a)+(1+a)

(
λ1+a−eλ(λ−1−a)Γ(1+a,λ)

)
2F2(1,1;2,2+a;λ)

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N1.

• Parameters: a > 0, λ > 0.

Proof. From the definition of the normalising constant, it follows that
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E (w (N ;φ)) =
∑∞

k=0 w (k) f (k)

=
∑∞

k=0 a
Γ(k)Γ(a+1)
Γ(k+a+1)

e−λλk

k!

= ae−λΓ (a+ 1)
∑∞

k=0
Γ(k)

Γ(k+a+1)
λk

k!

= ae−λ Γ(a+1)
Γ(a+2)

∑∞
k=0

Γ(k)Γ(a+2)
Γ(k+a+1)

λk

k!

= ae−λλΓ(a+1)
Γ(a+2)

∑∞
k=0

Γ(k)Γ(a+2)
Γ(k+a+1)

λk−1

k!

= ae−λλΓ(a+1)
Γ(a+2)

∑∞
k=1

Γ(a+2)
Γ(k+a+1)

λk−1

k
.

By reparameterising m = k − 1, it follows that

E (w (N ;φ)) = ae−λλΓ(a+1)
Γ(a+2)

∑∞
m=0

Γ(a+2)
Γ(k+a+1)

λm

m+1

= ae−λλΓ(a+1)
Γ(a+2)

∑∞
m=0

Γ(m+2)
Γ(m+2)

Γ(a+2)
Γ(k+a+1)

λm

m+1

= ae−λλΓ(a+1)
Γ(a+2)

∑∞
m=0

Γ(m+1)
Γ(m+2)

Γ(a+2)
Γ(k+a+1)

λm

= ae−λλΓ(1+a)
Γ(2+a)

∑∞
m=0

Γ(1+m)Γ(1+m)
Γ(m+2)

Γ(a+2)
Γ(m+a+2)

λm

m!

= ae−λλΓ(1+a)
Γ(2+a)

∑∞
m=0

Γ(1+m)
Γ(1)

Γ(1+m)
Γ(1)

Γ(2)
Γ(2+m)

Γ(a+2)
Γ(2+a+m)

λm

m!

= ae−λλΓ(1+a)
Γ(2+a) 2

F2 (1, 1; 2, 2 + a;λ) .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
a
Γ(n)Γ(a+1)
Γ(n+a+1)

ae−λλ
Γ(a+1)
Γ(a+2) 2

F2(1,1;2,2+a;λ)

e−λλn

n!

= Γ(n)Γ(2+a)
Γ(n+a+1)2F2(1,1;2,2+a;λ)

λn−1

n!
.

From the definition of the probability generating function, it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0
Γ(k)Γ(a+2)

Γ(k+a+1)2F2(1,1;2,2+a;λ)
λk−1

k!
zk

= z
2F2(1,1;2,2+a;λ)

∑∞
k=0

Γ(k)Γ(a+2)
Γ(k+a+1)

(λz)k−1

k!

= z
2F2(1,1;2,2+a;λ)

∑∞
k=1

Γ(a+2)
Γ(k+a+1)

(λz)k−1

k
.

By reparameterising m = k − 1, it follows that

g (z) = z
2F2(1,1;2,2+a;λ)

∑∞
m=0

Γ(a+2)
Γ(k+a+1)

(λz)m

m+1

= z
2F2(1,1;2,2+a;λ)

∑∞
m=0

Γ(m+2)
Γ(m+2)

Γ(a+2)
Γ(k+a+1)

(λz)m

m+1

= z
2F2(1,1;2,2+a;λ)

∑∞
m=0

Γ(m+1)
Γ(m+2)

Γ(a+2)
Γ(k+a+1)

(λz)m

= z
2F2(1,1;2,2+a;λ)

∑∞
m=0

Γ(1+m)Γ(1+m)
Γ(m+2)

Γ(a+2)
Γ(m+a+2)

(λz)m

m!

= z
2F2(1,1;2,2+a;λ)

∑∞
m=0

Γ(1+m)
Γ(1)

Γ(1+m)
Γ(1)

Γ(2)
Γ(2+m)

Γ(a+2)
Γ(2+a+m)

(λz)m

m!
.

The sum in the above equation is 2F2 (1, 1; 2, 2 + a;λz), and thus it follows that

g (z) = z2F2(1,1;2,2+a;λz)

2F2(1,1;2,2+a;λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

(
z2F2(1,1;2,2+a;λz)

2F2(1,1;2,2+a;λ)

)
.

The derivative of generalised hypergeometric functions with respect to z is well known. This
result is given in Theorem 10.6. Consequently,

∂
∂z
g (z) =

∂
∂z

z2F2(1,1;2,2+a;λz)

2F2(1,1;2,2+a;λ)

=
2F2(1,1;2,2+a;λz)+ zλ

2(2+a) 2
F2(2,2;3,3+a;λz)

2F2(1,1;2,2+a;λ)
.

It then follows that

E (Nw) = limz→−1
2F2(1,1;2,2+a;λz)+ zλ

2(2+a) 2
F2(2,2;3,3+a;λz)

2F2(1,1;2,2+a;λ)

=
2F2(1,1;2,2+a;λ)+ λ

2(2+a) 2
F2(2,2;3,3+a;λ)

2F2(1,1;2,2+a;λ)
.

From the definition of the variance, it follows that
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V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,

∂2

∂z2
g (z) = ∂

∂z

(
2F2(1,1;2,2+a;λz)+ zλ

2(2+a) 2
F2(2,2;3,3+a;λz)

2F2(1,1;2,2+a;λ)

)

=
λ

2(2+a) 2
F2(2,2;3,3+a;λz)+ λ

2(2+a) 2
F2(2,2;3,3+a;λz)+ z22λ2

2(2+a)3(3+a) 2
F2(3,3;4,4+a;λz)

2F2(1,1;2,2+a;λ)

=
λ

(2+a) 2
F2(2,2;3,3+a;λz)+ z2λ2

(2+a)3(3+a) 2
F2(3,3;4,4+a;λz)

2F2(1,1;2,2+a;λ)
.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1

λ
(2+a) 2

F2(2,2;3,3+a;λz)+ z2λ2

(2+a)3(3+a) 2
F2(3,3;4,4+a;λz)

2F2(1,1;2,2+a;λ)

+ E (Nw)− (E (Nw))2

=
λ

(2+a) 2
F2(2,2;3,3+a;λ)+ 2λ2

(2+a)3(3+a) 2
F2(3,3;4,4+a;λ)

2F2(1,1;2,2+a;λ)
+ E (Nw)− (E (Nw))2 .

Figure 4.17: Probability mass function - w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

, small a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 11.4508, 12.6751 and 15.4346 for a equal to 0.1, 1 and 3 respectively.
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Figure 4.18: Probability mass function - w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

, large a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 20.7045, 29.897 and 34.5357 for a equal to 7, 15 and 20 respectively. This distribution
can assume a very wide range of shapes. When a is very large (larger than the values in the
above graphs), the distribution assumes an almost “exponential decay” shape. Additionally,
if λ is large the tails of this distribution can be quite thick. (As will be seen in Figure 10.27.)

4.2.4 w (n;φ) = aba

na+1

If w (n;φ) is assumed to be the probability density function of the Pareto distribution the
following results are obtained.

Theorem 4.10. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = aba

na+1 then the following results hold:

E (w (N ;φ)) = ae−λλb(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))
b!b

.

fw (n) = λn−bba+1b!
na+1n!a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

.

g (z) = zba+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

E (Nw) = ba+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λ)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

V ar (Nw) = b2aFa(1,b,...,b;1+b,1+b,...,1+b;λ)−ba+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λ)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

+ E (Nw)− (E (Nw))2 .
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Note: The classical Pareto distribution has continuous support, while the weighted Poisson
has discrete support. While it might initially seem that the Pareto probability density func-
tion and Poisson probability mass function are incompatible, this is not the case. The only
requirement for a weight function is that it must be non-negative on N0. This restriction is
clearly met by any probability mass/density function.

Restrictions:

• Domain: n ∈ {b, b+ 1, b+ 2, ...} . From the Pareto distribution, the parameter b is
defined to be the minimum possible value that the distribution can assume. Since
the Poisson distribution is discrete, the domain of the weighted Poisson distribution
becomes {b, b+ 1, b+ 2, ...} .

• Parameters: a ∈ N1, b ∈ N1, λ > 0. These restrictions originate from the expressions
given above. If b = 0, then fw (n) = 0. The above equations all include a a+2Fa+2 (; ; )
term. The number of parameters of a generalised hypergeometric function must be
integers, and if a = 0 then w (n;φ) = 0

n1 = 0. It should also be noted that the number
of finite moments of the distribution is directly linked to the value a. (Only the first a
moments exist.)

Figure 4.19: Probability mass function - w (n;φ) = aba

na+1 , varying a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 13.2257 and 44.6502 for a equal to 1 and 5 respectively.
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Figure 4.20: Probability mass function - w (n;φ) = aba

na+1 , varying b (small)

The variances associated with the weighted Poisson probability mass functions in the above
plots are 13.2257 and 10.1139 for b equal to 1 and 5 respectively.

Figure 4.21: Probability mass function - w (n;φ) = aba

na+1 , varying b (large)

The variances associated with the weighted Poisson probability mass functions in the above
plots are 6.3313 and 1.6567 for b equal to 7 and 9 respectively. For the majority of parameter
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combinations considered this distribution is overdispersed; however, if b is close to the mean
of the data, it will be underdispersed.

4.2.5 w (n;φ) = −1
ln(1−p)

pn

n

If w (n;φ) is assumed to be the probability mass function of the logarithmic distribution the
following results are obtained.

Theorem 4.11. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = −1

ln(1−p)
pn

n
then the following results hold:

E (w (N ;φ)) = −p
ln(1−p)

e−λλ2F2 (1, 1; 2, 2;λp) .

fw (n) = (pλ)n−1

n.n!2F2(1,1;2,2;λp)
.

g (z) = z2F2(1,1;2,2;λpz)

2F2(1,1;2,2;λp)
.

E (Nw) = 1F1(1;2;λp)

2F2(1,1;2,2;λp)
.

V ar (Nw) = λp1F1(2;3;λp)
22F2(1,1;2,2;λp)

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N1.

• Parameters: 0 < p < 1, λ > 0.
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Figure 4.22: Probability mass function - w (n;φ) = −1
ln(1−p)

pn

n

The variance associated with the weighted Poisson probability mass functions in the above
plot is 11.3163 for all values of p. Similar to Theorem 4.8, when p decreases, λ increases. The
interaction between these parameters is of such a nature that an increase in one negates the
decrease in the other.

4.2.6 w (n;φ) = Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

If w (n;φ) is assumed to be the probability mass function of the beta-negative binomial
distribution the following results are obtained.

Theorem 4.12. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = Γ(r+n)

n!Γ(r)
Beta(a+r,b+n)

Beta(a,b)
then the following results hold:

E (w (N ;φ)) = e−λBeta(a+r,b)2F2(b,r;1,a+b+r;λ)
Beta(a,b)

.

fw (n) = λnBeta(a+r,b+n)Γ(r+n)

Beta(a+r,b)(n!)2Γ(r)2F2(b,r;1,a+b+r;λ)
.

g (z) = 2F2(b,r;1,a+b+r;λz)

2F2(b,r;1,a+b+r;λ)
.

E (Nw) = brλ2F2(1+b,1+r;2,1+a+b+r;λ)
(a+b+r)2F2(b,r;1,a+b+r;λ)

.

V ar (Nw) = + b(1+b)r(1+r)λ2
2F2(2+b,2+r;3,2+a+b+r;λ)

2(a+b+r)(1+a+b+r)2F2(b,r;1,a+b+r;λ)
+ E (Nw)− (E (Nw))2 .

Restrictions:
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• Domain: n ∈ N0.

• Parameters: a, b, r, λ > 0.

Figure 4.23: Probability mass function - w (n;φ) = Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

, varying b

The variances associated with the weighted Poisson probability mass functions in the above
plots are 12.2903, 11.1712 and 10.6113 for b equal to 1, 3 and 5 respectively.
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Figure 4.24: Probability mass function - w (n;φ) = Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

, varying a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 11.0492, 12.1551 and 13.1668 for a equal to 1, 3 and 5 respectively.

Figure 4.25: Probability mass function - w (n;φ) = Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

, varying r

The variances associated with the weighted Poisson probability mass functions in the above
plots are 12.2903, 11.1712 and 10.6113 for r equal to 1, 3 and 5 respectively.
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4.3 Truncating weight functions

4.3.1 w (n;φ) = I (n ≥ a)

Theorem 4.13. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = I (n ≥ a) then

E (w (N ;φ)) = γ(a,λ)
Γ(a)

.

fw (n) = I(n≥a)e−λλnΓ(a)
n!γ(a,λ)

.

g (z) = eλ(z−1)γ(a,λz)
γ(a,λ)

.

E (Nw) = e−λλa+λγ(a,λ)
γ(a,λ)

.

V ar (Nw) =
e−λ

(
λ1+a+λa(a−1)+eλλ2γ(a,λ)

)
γ(a,λ)

+ E (Nw)− (E (Nw))2 .

Restrictions:
• Domain: n ∈ {a, a+ 1, ...}.

• Parameters: a ∈ N0, λ > 0. The restriction that a ∈ N0 is a practical one since this
weighted Poisson distribution is only defined on n ∈ N0. If a were assumed to be a real
number between two integers, b1 < b2, the parameter used in the equations below would
be b1, since the decimal component of a does not affect the mapping of the discrete
distribution. A similar argument holds for the next few weight functions.

Figure 4.26: Probability mass function - w (n;φ) = I (n ≥ a)
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The variances associated with the weighted Poisson probability mass functions in the above
plots are 8.6918 and 5.7935 for a equal to 5 and 7 respectively.

4.3.2 w (n;φ) = I (n ≤ b)

Theorem 4.14. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = I (n ≤ b) then

E (w (N ;φ)) = Γ(1+b,λ)
Γ(1+b)

.

fw (n) = I(n≤b)e−λλnΓ(1+b)
n!Γ(1+b,λ)

.

g (z) = eλ(z−1)Γ(1+b,λz)
Γ(1+b,λ)

.

E (Nw) = λ− e−λλ1+b

Γ(1+b,λ)
.

V ar (Nw) = λ
(
λ− e−λλb(λ+b)

Γ(1+b,λ)

)
+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ {0, 1, ..., b− 1, b}.

• Parameters: b ∈ N0, λ > 0.

Figure 4.27: Probability mass function - w (n;φ) = I (n ≤ b)
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The variances associated with the weighted Poisson probability mass functions in the above
plots are 5.0179 and 7.5461 for b equal to 13 and 15 respectively.

4.3.3 w (n;φ) = I (n ≥ a) I (n ≤ b)

Theorem 4.15. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = I (n ≥ a) I (n ≤ b) then

E (w (N ;φ)) = Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)
Γ(a)Γ(1+b)

.

fw (n) = Γ(a)Γ(1+b)
Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)

I(n≥a)I(n≤b)e−λλn

n!
.

g (z) = eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

E (Nw) =
e−λ

(
λΓ(a)

(
λb−eλΓ(1+b,λ)

)
−Γ(1+b)

(
λa−eλλΓ(a,λ)

))
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

V ar (Nw) =
e−λ

((
λ2+b+bλ1+b

)
Γ(a)+

(
λa−λ1+a−aλa

)
Γ(1+b)+eλλ2(Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ))

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ {a, a+ 1, ..., b− 1, b}.

• Parameters: a, b ∈ N0, a < b, λ > 0.

Figure 4.28: Probability mass function - w (n;φ) = I (n ≥ a) I (n ≤ b)
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The variances associated with the weighted Poisson probability mass functions in the above
plots are 3.4460 and 6.7146 for b equal to 13 and 15 respectively.

4.3.4 w (n;φ) =

(
n
a

)
Note that if p = 0.5 in Theorem 4.8, the resulting weight function will be equal in distribution
to the weight function discussed below.

Theorem 4.16. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
n
a

)
where a ∈ {0, 1, 2, ...} then

E (w (N ;φ)) = λa

a!
.

fw (n) = e−λλn−a

(n−a)!
.

g (z) = eλ(z−1)za.

E (Nw) = a+ λ.

V ar (Nw) = λ.

Restrictions:

• Domain: n ∈ {a, a+ 1, ...}.

• Parameters: a ∈ N0, λ > 0.
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Figure 4.29: Probability mass function - w (n;φ) =

(
n
a

)

The variances associated with the weighted Poisson probability mass functions in the above
plots are 9, 7 and 5 for a equal to 1, 3 and 5 respectively.

4.4 Miscellaneous weight functions
In this section, weight functions that could not be classified into one of the previous categories
are discussed.

4.4.1 w (n;φ) = ε n!
e−λλnI (n = 0) + (1− ε)

The zero-inflated Poisson distribution is defined as a Poisson distribution that has been
modified to have probability ε of realising a value of zero and has the Poisson probability
mass function on the rest of the domain, normalised by 1− ε.

Theorem 4.17. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = ε n!

e−λλn I (n = 0) + (1− ε) then
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E (w (N ;φ)) = 1.

fw (n) =
(
ε n!
e−λλn I (n = 0) + (1− ε)

)
e−λλn

n!
.

g (z) = ε+ eλ(z−1) (1− ε) .

E (Nw) = λ (1− ε) .

V ar (Nw) = λ (1− ε) (1 + ελ) .

Restrictions:

• Domain: n ∈ N0 if 0 < ε < 1, n ∈ N1 if ε = 0 and n = 0 if ε = 1.

• Parameters: 0 ≤ ε ≤ 1, λ > 0.

Figure 4.30: Probability mass function - w (n;φ) = ε n!
e−λλn I (n = 0) + (1− ε) , small epsilon

The variances associated with the weighted Poisson probability mass functions in the above
plots are 21.1111, 35 and 52.857 for ε equal to 0.1, 0.2 and 0.3 respectively.



CHAPTER 4. WEIGHTED POISSON DISTRIBUTION: THEORY 76

Figure 4.31: Probability mass function - w (n;φ) = ε n!
e−λλn I (n = 0)+(1− ε) , medium epsilon

The variances associated with the weighted Poisson probability mass functions in the above
plots are 76.6661, 110 and 160 for ε equal to 0.4, 0.5 and 0.6 respectively.

It should be noted that by merely changing the index of the indicator function, it is possible
to inflate any part of the probability mass function,
If w (n;φ) = ε n!

e−λλn I (n = b) + (1− ε) then

E (w (N ;φ)) = 1.

fw (n) =
(
ε n!
e−λλn I (n = b) + (1− ε)

)
e−λλn

n!
.

g (z) = εzb + eλ(z−1) (1− ε) .

E (Nw) = λ+ (b− λ) ε.

V ar (Nw) = (1− ε)
(
ε (λ− b)2 + λ

)
.
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4.4.2 w (n;φ) = (a)n = Γ(a+n)
Γ(a)

Theorem 4.18. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (a)n then

E (w (N ;φ)) = e−λ (1− λ)−a .

fw (n) =
(1−λ)aλn(a)n

n!
.

g (z) = (1− λ)a (1− λz)−a .

E (Nw) = aλ
1−λ

.

V ar (Nw) = aλ
(λ−1)2

.

Restrictions:

• Domain: n ∈ N0.

• Parameters: a > 0, 0 < λ < 1.

Figure 4.32: Probability mass function - w (n;φ) = (a)n, small a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 1010, 210 and 110 for a equal to 0.1, 0.5 and 1 respectively.
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Figure 4.33: Probability mass function - w (n;φ) = (a)n, large a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 54.9974, 30 and 20 for a equal to 2, 5 and 10 respectively.

4.4.3 w (n;φ) = (n)a =
Γ(a+n)
Γ(n)

Theorem 4.19. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (n)a then

E (w (N ;φ)) = e−λλΓ (1 + a) 1F1 (1 + a; 2;λ) .

fw (n) =
λn−1(n)a

n!Γ(1+a)1F1(1+a;2;λ)
.

g (z) = z1F1(1+a;2;λz)

1F1(1+a;2;λ)
.

E (Nw) = 21F1(1+a;2;λ)+(1+a)λ1F1(2+a;3;λ)
21F1(1+a;2;λ)

.

V ar (Nw) = (1+a)λ(61F1(2+a;3;λ)+(2+a)λ1F1(3+a;4;λ))
61F1(1+a;2;λ)

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N1.

• Parameters: a > 0, λ > 0.
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Figure 4.34: Probability mass function - w (n;φ) = (n)a, small a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 9.4353 and 9 for a equal to 0.5 and 1 respectively.

Figure 4.35: Probability mass function - w (n;φ) = (n)a, large a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 8.3538, 7.2624 and 6.4501 for a equal to 2, 5 and 10 respectively.
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4.5 Inverted weight functions
The notion of a dual pair of weight functions was discussed in Kokonendji et al. [83] (as well
as Section 2.2). In this section, potential dual partners of the previously discussed weight
functions be will investigated. As will be seen, while some inverted versions of the weight
functions result in valid weighted Poisson distributions, the majority of them are not suitable
for the construction of dual partners.

In this section, proofs of the relevant derivations will not be shown. These proofs are omitted
due to their similarity to others presented in this chapter and in chapter 10.

In Table 4.2 below the weight functions from the previous part of the chapter that cannot
be inverted (or are excluded for other reasons) are listed. Following the table, the various
weighted Poisson distributions that have closed-form expressions are discussed.

Table 4.2: Non invertable weight functions

Weight function Reason for lack of closed-form probability mass function
na While closed-form expressions exist for specific integer

values of a, no general formula exists.
(n+ ε)−1 Closed-form expressions can be derived for this weight

function, however, the expressions include a term (−λ)ε.
Since λ > 0 and ε ∈ (0, 1) the term is complex, and thus
the resulting probability mass function is invalid.

(an3 + bn2 + cn)
−1 Closed-form expressions for this weight function exist.

However, the expressions, even after fully simplifying
them, are extremely lengthy. For instance, the
expressions of the normalising constant and probability
mass function are each more than half a page in length,
with the other expressions being dramatically longer.
For this reason, this weight function has been omitted
from the thesis.(

(n+ a) (n− b)2
)−1 Closed-form expressions can be derived for this weight

function, however, the expressions include many terms
that lead to contradictions in the parameter restrictions.
The most obvious example is that λ is required to be
both greater and less than 0. Consequently this weight
function does not lead to a valid probability mass
function.
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((n+ a) (n2 − bn+ c))
−1 Closed-form expressions can be derived for this weight

function, however, the expressions include terms that
lead to contradictions in the parameter restrictions.
Consequently this weight function does not lead to a
valid probability mass function.((

m
n

)
pn (1− p)m−n

)−1
A general closed-form expression for this weight function
does not exist. However, if the parameter m is assumed
to be fixed, an expression does exist. Since m is the
upper bound of the domain of this specific weighted
Poisson distribution, it is not unrealistic to assume that
practically the value of m could be determined by real
world constrains.(

aba

na+1

)−1 While closed-form expressions exist for specific values of
a and b, no general formula exists.

(I (n ≥ a))−1 The non-inverted weight function has 0 probability when
n < a. By contrast the inverted weighted Poisson
distribution is undefined when n < a. If the domain of
the function is assumed to be the more practical
n ∈ {a, a+ 1, ...} the function exists, however, since
(I (n ≥ a))−1 returns a 1 if true, the non-zero values of
the probability mass function are the same as the
non-inverted version. The same fact applies to all three
indicator weight functions.

(I (n ≤ b))−1 The non-inverted weight function has 0 probability when
n > b. By contrast the inverted weighted Poisson
distribution is undefined when n > b.

(I (n ≥ a) I (n ≤ b))−1 The non-inverted weight function has 0 probability when
n < a or n > b. By contrast the inverted weighted
Poisson distribution is undefined when n < a or n > b.(

ε n!
e−λλn I (n = 0) + (1− ε)

)−1 A closed-form expression exists for this specific weight
function. However, the shape of the resulting probability
mass function is not substantially affected by the value
of ε. Since the objective is the construction of flexible
distributions, this weight function is omitted below.

4.5.1 w (n;φ) =
(
a+ b−ac

n+c

)−1

Theorem 4.20. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
a+ b−ac

n+c

)−1 then
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E (w (N ;φ)) =
ce−λ

2F2

(
b
a
,1+c;1+ b

a
,c;λ
)

b
.

fw (n) = bλn

c
(
a+ b−ac

n+c

)
n!2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

g (z) =
2F2

(
b
a
,1+c;1+ b

a
,c;λz

)
2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

E (Nw) =
b

(
aeλ(ac+aλ−b)+b(b−ac)

(
Γ
(

b
a

)
−Γ
(

b
a
,−λ

))
(−λ)−

b
a

)
a32F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

V ar (Nw) =
aeλ(−λ)

b
a
(
b2−ab(c+λ−1)+a2

(
λ2+cλ−c

))
+b(a+b)(ac−b)

(
Γ
(

b
a

)
−Γ
(

b
a
,−λ

))
a3eλ(−λ)

b
a+a2(ac−b)

(
Γ
(

b
a

)
−Γ
(

b
a
,−λ

))
+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N0.

• Parameters: a, b, c > 0, λ > 0.

Figure 4.36: Probability mass function - w (n;φ) =
(
a+ b−ac

n+c

)−1

The variances associated with the weighted Poisson probability mass functions in the above
plots are 10.4806 and 9.8041 for b equal to 5 and 50 respectively.
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4.5.2 w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

Theorem 4.21. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

then

E (w (N ;φ)) =
e
−λ+λ

p (r−1)λ
(
Γ(r−1)−Γ

(
r−1,λ

p

))
p
(

λ
p
(1−p)

)r .

fw (n) =
λn−1

(
λ
p

)r n+ r − 1
n

n!
(
Γ(r−1)−Γ

(
r−1,λ

p

))
e
λ
p pn−1(r−1)

.

g (z) =
ze

λ(z−1)
p

(
λ
p

)r(
Γ(r−1)−Γ

(
r−1,λz

p

))
(

zλ
p

)r(
Γ(r−1)−Γ

(
r−1,λ

p

)) .

E (Nw) =
e
−λ

p p2(r−1)
(

λ
p

)r
+λ(λ+p(1−r))

(
Γ(r)−(r−1)Γ

(
r−1,λ

p

))
p(r−1)λ

(
Γ(r−1)−Γ

(
r−1,λ

p

)) .

V ar (Nw) =
e
−λ

p

(
−p2(r−1)(pr−λ)

(
λ
p

)r
+e

λ
p λ
(
p2(r−1)r−2p(r−1)λ+λ2

)(
Γ(r−1)−Γ

(
r−1,λ

p

)))
p2(r−1)λ

(
Γ(r−1)−Γ

(
r−1,λ

p

))
+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N0.

• Parameters: r ∈ {2, 3, ...} , 0 < p < 1, λ > 0.
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Figure 4.37: Probability mass function - w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

The variances associated with the weighted Poisson probability mass functions in the above
plots are 13.9412, 18.4926 and 22.4981 for r equal to 5, 10 and 15 respectively.

Figure 4.38: Probability mass function - w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

The variance associated with the weighted Poisson probability mass functions in the above
plot is 22.4982 for both values of p. This, together with Figure 4.38, shows varying the



CHAPTER 4. WEIGHTED POISSON DISTRIBUTION: THEORY 85

parameter p is completely ineffective in changing the shape of the probability mass function
of this specific weighted Poisson distribution (when the expected value is fixed). The reason
for this can clearly be seen in the expressions of the equations as well as in the above plot: In
all cases, when p decreases, λ is required to increase in order for the mean of the distribution
to remain constant. The interaction between these parameters is of such a nature that an
increase in one cancels out the decrease in the other.

4.5.3 w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

Theorem 4.22. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

then

E (w (N ;φ)) = e−λλΓ(a+2)1F1(a+2;2;λ)
aΓ(a+1)

.

fw (n) = λn−1Γ(1+a+n)
n!Γ(a+2)Γ(n)1F1(a+2;2;λ)

.

g (z) = z1F1(a+2;2;λz)

1F1(a+2;2;λ)
.

E (Nw) = 1 + (a+2)λ1F1(a+3;3;λ)
21F1(a+2;2;λ)

.

V ar (Nw) = (a+2)λ(61F1(a+3;3;λ)+(a+3)λ1F1(a+4;4;λ))
61F1(a+2;2;λ)

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N1.

• Parameters: a > 0, λ > 0.
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Figure 4.39: Probability mass function - w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

, small a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 8.9238, 8.3539 and 7.539 for a equal to 0.1, 1 and 3 respectively.

Figure 4.40: Probability mass function - w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

, large a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 6.6978, 5.9939 and 5.7759 for a equal to 7, 15 and 20 respectively.
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4.5.4 w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

Theorem 4.23. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
−1

ln(1−p)
pn

n

)−1

then

E (w (N ;φ)) = − e

(
λ
p−λ

)
λ ln(1−p)
p

.

fw (n) = e
−λ

p p1−nλn−1

(n−1)!
.

g (z) = ze
λ(z+p−1)

p
−λ.

E (Nw) = p+λ
p
.

V ar (Nw) = λ
p
.

Restrictions:

• Domain: n ∈ N1.

• Parameters: 0 < p < 1, λ > 0.

Figure 4.41: Probability mass function - w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

The variance associated with the weighted Poisson probability mass functions in the above
plot is 9 for all values of p. This implies that varying the parameter p is entirely ineffective



CHAPTER 4. WEIGHTED POISSON DISTRIBUTION: THEORY 88

in affecting the shape of the probability mass function of this specific weighted Poisson
distribution (when the expected value is fixed). The reason for this can be seen in the
expressions of the equations as well as in the above plot: In all cases, when p decreases, λ
is required to increase in order for the mean of the distribution to remain constant. The
interaction between these parameters is of such a nature that an increase in one nullifies the
decrease in the other.

4.5.5 w (n;φ) =
(
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

Theorem 4.24. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

then

E (w (N ;φ)) = e−λBeta(a,b)2F2(1,a+b+r;b,r;λ)
Beta(a+r,b)

.

fw (n) = λnBeta(a+r,b)Γ(r)
Beta(a+r,b+n)Γ(r+n)2F2(1,a+b+r;b,r;λ)

.

g (z) = 2F2(1,a+b+r;b,r;λz)

2F2(1,a+b+r;b,r;λ)
.

E (Nw) = (a+b+r)λ2F2(2,1+a+b+r;1+b,1+r;λ)
br2F2(1,a+b+r;b,r;λ)

.

V ar (Nw) = 2(a+b+r)(1+a+b+r)λ2
2F2(3,2+a+b+r;2+b,2+r;λ)

b(1+b)r(1+r)2F2(1,a+b+r;b,r;λ)
+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N0.

• Parameters: a, b, r, λ > 0.
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Figure 4.42: Probability mass function - w (n;φ) =
(

Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

, varying a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 9.1278, 8.4831 and 8.0419 for a equal to 1, 3 and 5 respectively.

Figure 4.43: Probability mass function - w (n;φ) =
(

Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

, varying r

The variances associated with the weighted Poisson probability mass functions in the above
plots are 8.4493, 9.0393 and 9.4505 for r equal to 1, 3 and 5 respectively.
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Figure 4.44: Probability mass function - w (n;φ) =
(

Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

, varying b

The variances associated with the weighted Poisson probability mass functions in the above
plots are 8.4493, 9.0393 and 9.4505 for b equal to 1, 3 and 5 respectively. From the above
graphs, it is apparent that changing r or b from some baseline results in the same change in
the other properties of the weighted Poisson distribution.

4.5.6 w (n;φ) =

(
n

a

)−1

Theorem 4.25. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
n
a

)−1

where a ∈ N0 then
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E (w (N ;φ)) = e−λλa
2F2(1,1;1+a,1+a;λ)

a!
.

fw (n) = λn−aa! n
a

n!2F2(1,1;1+a,1+a;λ)

.

g (z) = za2F2(1,1;1+a,1+a;λz)

2F2(1,1;1+a,1+a;λ)
.

E (Nw) = a+ λ2F2(2,2;2+a,2+a;λ)

(1+a)22F2(1,1;1+a,1+a;λ)
.

V ar (Nw) =
a(a−1)

(
a2+3a+2

)2
2F2(1,1;1+a,1+a;λ)

(1+a)2(2+a)22F2(1,1;1+a,1+a;λ)

+
2λ
(
a(2+a)22F2(2,2;2+a,2+a;λ)+2λ2F2(3,3;3+a,3+a;λ)

)
(1+a)2(2+a)22F2(1,1;1+a,1+a;λz)

+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain:n ∈ {a, a+ 1, ...} .

• Parameters: a ∈ N0, λ > 0.

Figure 4.45: Probability mass function - w (n;φ) =

(
n
a

)−1

The variances associated with the weighted Poisson probability mass functions in the above
plots are 11.3163, 16.5437 and 20.3559 for a equal to 1, 3 and 5 respectively.
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4.5.7 w (n;φ) = ((a)n)
−1 = Γ(a)

Γ(a+n)

Theorem 4.26. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (a)n then

E (w (N ;φ)) = e−λ
0F1 (a;λ) .

fw (n) = λn

n!0F1(a;λ)(a)n
.

g (z) = 0F1(a;λz)

0F1(a;λ)
.

E (Nw) =
λ1−a

2 Ia
(
2
√
λ
)
Γ(1+a)

a0F1(a;λ)
.

V ar (Nw) =
λ

3
2−a

2 I1+a

(
2
√
λ
)
Γ(2+a)

a(1+a)0F1(a;λ)
+ E (Nw)− (E (Nw))2 .

where Ia (·) is the modified Bessel function of the first kind (Definition 10.20)

Restrictions:

• Domain: n ∈ N0.

• Parameters: a, λ > 0.

Figure 4.46: Probability mass function - w (n;φ) = ((a)n)
−1, small a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 4.8923, 5 and 5.1283 for a equal to 0.1, 0.5 and 1 respectively.
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Figure 4.47: Probability mass function - w (n;φ) = ((a)n)
−1, large a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 5.3656, 5.9537 and 6.6547 for a equal to 2, 5 and 10 respectively.

4.5.8 w (n;φ) = ((n)a)
−1 = Γ(n)

Γ(n+a)

Theorem 4.27. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (a)n then

E (w (N ;φ)) = e−λλ2F2(1,1;2,1+a,λ)
(1)a

.

fw (n) =
λn−1(1)a

n!2F2(1,1;2,1+a,λ)(n)a
.

g (z) = z2F2(1,1;2,1+a,λz)

2F2(1,1;2,1+a,λ)
.

E (Nw) = eλλ−a(Γ(1+a)−aΓ(a,λ))

2F2(1,1;2,1+a,λ)
.

V ar (Nw) =
λ−a

(
aλa+eλ(a−λ)

)
(aΓ(a,λ)−Γ(1+a))

2F2(1,1;2,1+a,λ)
+ E (Nw)− (E (Nw))2 .

Restrictions:

• Domain: n ∈ N1.

• Parameters: a, λ > 0.
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Figure 4.48: Probability mass function - w (n;φ) = ((a)n)
−1, small a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 10.6498 and 11.3163 for a equal to 0.5 and 1 respectively.

Figure 4.49: Probability mass function - w (n;φ) = ((a)n)
−1, large a

The variances associated with the weighted Poisson probability mass functions in the above
plots are 12.6751, 16.784 and 24.1581 for a equal to 2, 5 and 10 respectively.
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While some of the weight functions listed above are suitable dual partners for their non-
inverted counterparts, some are not. In Table 4.3 below, the duality of the various weight
functions is briefly summarised.

Table 4.3: Duality of weight functions

Weight function If applicable, reason for non-duality
(an3 + bn2 + cn)

−1 While a closed-form expression exists (see Table 4.2),
the original weight function results in a probability mass
function that is defined on n ∈ N0. By contrast the
inverse is defined on n ∈ N1.(

a+ b−ac
n+c

)−1 This weight function results in a dual pair. However, the
original function had the restriction that c ∈ N0 whereas
the inverted counterpart only requires that c > 0.((

n+ r − 1
n

)
pn (1− p)r

)−1
This weight function results in a dual pair. However, the
original function had the restriction that r ∈ N1 whereas
the inverted counterpart requires that r ∈ {2, 3, ...} .(

aΓ(n)Γ(a+1)
Γ(n+a+1)

)−1 This weight function results in a dual pair.(
−1

ln(1−p)
pn

n

)−1 This weight function results in a dual pair.(
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1 This weight function results in a dual pair.(
n
a

)−1
While this weight function does not result in a dual pair
as defined by Kokonendji et al. [83].
(w1 (n)w2 (n) = 1∀n ∈ N0), it adheres to this property
on the domain n ∈ {a, a+ 1, ...} .

((a)n)
−1 This weight function results in a dual pair. However, the

original function had the restriction that 0 < λ < 1
whereas the inverted counterpart only requires that
0 < λ.

((n)a)
−1 While this weight function does not result in a dual pair

as defined by Kokonendji et al. [83], it adheres to this
property on the domain n ∈ N1.



Chapter 5

Weighted Poisson Distribution:
Applications

In this chapter, the weighted Poisson distributions derived earlier in the thesis will be fitted to
a variety of discrete datasets to demonstrate the flexibility and wide range of applications of
the distributions. In Section 5.1 the numerical methods used to find the parameter estimates
and their confidence intervals will be discussed. In Section 5.2 datasets that were obtained
mostly from Kaggle.com will be modelled using the various weighted Poisson distributions.
This is done to investigate how well the newly derived distributions perform. In Section
5.3, the weighted Poisson distributions will be applied to some datasets that were used in
previously published papers that proposed alternate methods for modelling discrete data.
This section is included to compare the performance of the newly derived distributions with
those that were previously proposed in an attempt to compare the efficacy of the different
methodologies.

5.1 Parameter estimation and confidence intervals
In this thesis parameter estimates will be calculated using a maximum likelihood approach.
Since many of the weight functions result in complicated probability mass functions for the
weighted Poisson distributions, obtaining explicit solutions for the parameter estimates is
usually impossible. As a result, numerical methods have to be applied to find the estimates.

Many different methods exist which could be used to find these estimates. In general, the
methods can be categorised as either being based on the gradient of the function being op-
timised, or as “direct search” methods. The gradient based approaches typically rely on the
first or second derivatives of the function being optimised, and include the Newton-Raphson
method which was first discussed by Newton [101] in 1669, the augmented Lagrangian method
(originally known as the method of multipliers) which was discussed by Hestenes [68] and
Powell [112], the interior point methods (Karmarkar [78]) and the sequential quadratic pro-
gramming method (Nocedal and Wright [103]). In contrast, direct search methods do not

96
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rely on the derivatives of the function, and include the genetic algorithm (Holland [72] and
Goldberg and Holland [57]), differential evolution (Storn [132] and Storn and Price [133]),
simulated annealing (Kirkpatrick et al. [79]), and the Nelder–Mead (Nelder and Mead [100])
methods.

While an in-depth discussion about the various methods is beyond the scope of this thesis,
in general, the direct search methods tend to converge more slowly, but are more tolerant to
the presence of noise in the dataset relative to gradient based methods. Of the direct search
methods mentioned, the Nelder–Mead is one of the most commonly used, with relatively fast
and stable convergence properties. For this reason it is the algorithm that will be implemented
to find the maximum likelihood estimates. The Nelder–Mead algorithm that is implemented
can be described as follows:

• Let l (φ|n) be the log-likelihood function of a specific weighted Poisson distribution.

• Suppose that l (φ|n) consists of m variables that have to be estimated.

• A set of m + 1 points (x1, x2, ..., xm+1), will be selected which forms the vertices of a
polytope in m dimensional space.

• For each iteration of the algorithm the log-likelihood function will be calculated at
the m + 1 points, and the points will be ordered such that l (x1|n) ≥ l (x2|n) ≥ ... ≥
l (xm+1|n).

• Since the log-likelihood functions are ordered, it is known that (x1, x2, ..., xm) is the set
of the best m points. The aim is to replace the worst point, xm+1, with an improved
one.

• This is achieved by first calculating the centre of the best m points c = 1
m

∑m
i=1 xi.

• A new “test point” xt is generated by reflecting xm+1 though c. xt = c+ α (c− xm+1),
(α > 0).

• This test point can either be the best new point l (xt|n) ≥ l (x1|n), the worst new point
l (xm|n) ≥ l (xt|n), or neither the best or the worst l (x1|n) ≥ l (xt|n) ≥ l (xm|n). The
next step of the algorithm depends on which of the three cases is true:

• If xt is the worst point, a new test point x∗
t is generated

x∗
t =

{
c+ γ (xm+1 − c) , if l (xt|n) ≤ l (xm+1|n)
c+ γ (xt − c) , if l (xt|n) > l (xm+1|n)

, (0 < γ < 1) and x∗
t replaces xm+1 in

(x1, x2, ..., xm+1).

• If xt is the best point, the reflection that resulted in xt was very successful, and the
reflection is further expanded. x∗

t = c + β (xt − r) where β > 1. If l (x∗
t |n) ≥ l (xt|n)

the further expansion is successful and x∗
t replaces xm+1 in the list (x1, x2, ..., xm+1).

Conversely, if the further expansion was not successful, l (xt|n) ≥ l (x∗
t |n), and xt

replaces xm+1.
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• If xt is neither the best or the worst, xt replaces xm+1.

• These steps are repeated until the best point, x1, and best function, l (x1|n), do not
change significantly between iterations.

• The maximum likelihood estimates are then set as the m parameters that make up x1.

While many different values could have been chosen for α, β and γ in the Nelder–Mead
algorithm, the selection in this chapter is based on values that have previously been used in
this model’s applications. Consequently α = 1, β = 2, γ = 0.5 have been selected.

Once parameters have been estimated, the next question that has be addressed is how confi-
dence intervals for the parameters will be constructed. Many software packages, specifically
those designed with mathematical or statistical implementations in mind, have builtin con-
fidence interval calculation functionalities. While these functions are extremely useful in
general, the computational methods that they use to calculate the intervals can either result
in errors, or in intervals that are narrower or wider than they should be when dealing with
novel distributions. As a result, the intervals in this thesis will be coded manually, first using
R and then with Mathematica to validate the results. While the confidence intervals will
receive minimal comment, they have been included to give a sense of the accuracy of the
point estimates, as well as to indicate whether certain special cases of the weight function
could potentially be more suitable.

Three approaches are commonly used to construct confidence intervals for parameters. The
first method, which is what most software packages provide, calculates asymptotic confidence
intervals based on the Fisher information matrix. The second method, which was proposed
by Efron and Tibshirani [44], is called the non-parametric bootstrap method, and the third
is called the parametric bootstrap. While many different alterations and modifications have
been proposed to the above methods, in general they can be described as follows.

5.1.1 The Fisher information matrix
The first confidence interval method based on the Fisher information matrix can be described
as follows:

• Let l (φ|n) be the log-likelihood function of a specific distribution.

• Let φ = [φ1, ..., φm]
T be a vector of the parameters of the distribution, and φ̂ =[

φ̂1, ..., φ̂m

]T
be a vector of maximum likelihood estimates of the parameters of the

distribution.

• The Fisher information matrix is defined as the negative matrix consisting of the partial
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second derivatives of the log likelihood function:

I (φ) = −


∂2l(φ|n)

∂φ2
1

∂2l(φ|n)
∂φ1∂φ2

· · · ∂2l(φ|n)
∂φ1∂φm

∂2l(φ|n)
∂φ2∂φ1

∂2l(φ|n)
∂φ2

2
· · · ∂2l(φ|n)

∂φ2∂φm

... ... . . . ...
∂2l(φ|n)
∂φm∂φ1

∂2l(φ|n)
∂φm∂φ2

· · · ∂2l(φ|n)
∂φ2

m

 .

• The observed Fisher information matrix is merely the Fisher information matrix eval-
uated the maximum likelihood estimates:

I
(
φ̂
)
= −



∂2l
(
φ̂|n
)

∂φ2
1

∂2l
(
φ̂|n
)

∂φ1∂φ2
· · ·

∂2l
(
φ̂|n
)

∂φ1∂φm

∂2l
(
φ̂|n
)

∂φ2∂φ1

∂2l
(
φ̂|n
)

∂φ2
2

· · ·
∂2l
(
φ̂|n
)

∂φ2∂φm

... ... . . . ...
∂2l
(
φ̂|n
)

∂φm∂φ1

∂2l
(
φ̂|n
)

∂φm∂φ2
· · ·

∂2l
(
φ̂|n
)

∂φ2
m


.

• The inverse of the observed Fisher information matrix,
[
I
(
φ̂
)]−1

, is an estimator of
the asymptotic covariance matrix (if certain consistency requirements are met). (See
Efron and Hinkley [43] for a discussion on using the observed versus expected Fisher
information matrix in these estimates). Thus, using the central limit theorem and the

law of large numbers it follows that φ̂ ∼ N

(
φ,
[
I
(
φ̂
)]−1

)
.

• As a result, the asymptotic confidence intervals for the parameters can be constructed
as follows:

φ̂i ± z1−α
2

[[
I
(
φ̂
)]−1

]0.5
(i,i)

, i = 1, 2, ...,m.

For an m-parameter, discrete distribution, a set of sufficient requirements for the maximum
likelihood estimates to be consistent (and thus for the above confidence interval method to
be implemented) is:

1. The observations X1, X2, ..., Xn are n i.i.d. random variables with probability density
function fφ (x) = Pφ (Xi = x).

2. The distributions, fφ (x) , are distinct. In other words if fφ1 (x) = fφ2 (x) it implies
that the parameters are the same, φ1 = φ2.

3. The parameter space, Φ, is open.

4. The set A on which fφ (x) is positive is independent of φ.
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5. For all x in A the third partial derivatives ∂3

∂φi∂φj∂φk
fφ (x) for i, j, k ∈ {1, 2, ...,m} exist

and are continuous, and the third partial derivatives of
∑n

i=1 fφ (xi) can be obtained
by differentiating under the summation sign.

6. If φ0 = (φ0
1, φ

0
2, ..., φ

0
k) denotes the true value of φ, there exists a function Mijk (x) and

a positive number c (φ0) such that∣∣∣∣ ∂3

∂φi∂φj∂φk

ln (fφ (x))

∣∣∣∣ ≤ Mijk (x) ,

for all φ with
∑k

i=1 (φi − φ0
i )

2
< c (φ0) , where Eφ0 (Mijk (x)) < ∞ for all i, j, k.

7. The information matrix I (φ) is positive definite and has finite elements.

Note that the requirements for a single parameter distribution are very similar and can be
found in Lehmann [89] p469.

Showing that a specific distribution meets the aforementioned consistency requirements can
range from trivial to impossible, depending of the makeup and complexity of the probability
mass function under consideration. A few examples of weighted Poisson distributions from
Chapter 4 that fall on this spectrum are discussed.

It can immediately be established that some of the weighted Poisson distributions do not
meet the above sufficient requirements. Namely, all of the distributions that have parame-

ters that affects their respective domains (w (n;φ) =

(
m
n

)
pn (1− p)m−n , w (n;φ) = aba

na+1 ,

w (n;φ) = I (n ≥ a) , w (n;φ) = I (n ≤ b) , w (n;φ) = I (n ≥ a) I (n ≤ b) , w (n;φ) =

(
n
a

)
,

w (n;φ) =

(
n
a

)−1

) clearly violate requirement 4 above. Similarly, all of the distributions

that have parameters that are defined exclusively on N0 or N1 (w (n;φ) = n−a, w (n;φ) =(
n+ r − 1

n

)
pn (1− p)r , w (n;φ) =

(
m
n

)
pn (1− p)m−n , w (n;φ) = aba

na+1 , w (n;φ) =(
n
a

)
, w (n;φ) =

(
n
a

)−1

, w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

) violate require-

ment 3 since the natural numbers is not an open set.

It can also be demonstrated that some simple weights result in distributions that meet the
sufficient set of requirements for consistency specified above. For example when w (n;φ) = n.

Requirements 1 though 4 are clearly met by the definition of the probability mass function.

The third derivative of the probability mass function is:

d3

dλ3
e−λλn−1

(n−1)!
=

e−λλn−4
(
n3−3n2(2+λ)+n(11+3λ(3+λ))−λ(6+λ(3+λ))−6

)
(n−1)!

.
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The order of summation and differentiation can be swapped around∑∞
n=0

∂3

∂λ3
e−λλn−1

(n−1)!

=
∑∞

n=0

e−λλn−4
(
n3−3n2(2+λ)+n(11+3λ(3+λ))−λ(6+λ(3+λ))−6

)
(n−1)!

= λ3+6λ2+7λ+1
λ3 − 3

(
λ4+5λ3+7λ2+2λ

)
λ4 + 3λ4+12λ3+20λ2+11λ

λ4 − λ4+3λ3+6λ2+6λ
λ4

= 0.

Thus the 5th requirement has been met.

The log of the probability mass function is given by

ln
(

e−λλn−1

(n−1)!

)
= −λ+ (n− 1) ln (λ)− ln ((n− 1)!) .

The third derivative of the log of the probability mass function is:
d3

dλ3 (−λ+ (n− 1) ln (λ)− ln ((n− 1)!)) = 2(n−1)
λ3 .

If λ0 denotes the true value of λ and c (λ0) = λ0

2
then

max
1
2
λ0<λ< 3

2
λ0

∣∣∣ d3

dλ3 (−λ+ (n− 1) ln (λ)− ln ((n− 1)!))
∣∣∣

= max
1
2
λ0<λ< 3

2
λ0

2(n−1)
λ3

< 2(n−1)(
1
2
λ0
)3

= 16(n−1)

(λ0)3
.

It then follows that

Eλ0 (Mλ0 (N))

=
∑∞

n=1
16(n−1)

(λ0)3
e−λ

(
λ0
)n−1

(n−1)!

= 16e−λ0

(λ0)3

∑∞
n=1

(n−1)
(
λ0
)n−1

(n−1)!

= 16e−λ0

(λ0)2

∑∞
n=1

(
λ0
)n−2

(n−2)!

= 16e−λ0

(λ0)2
eλ0

= 16
(λ0)2

.

Thus the 6th requirement has been met. (Note that the 7th requirement is not applicable for
a single parameter distribution.)

As a slightly more complicated example, suppose that w (n;φ) = n+ ε.
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Requirements 1, 3 and 4 are clearly met by the definition of the probability mass function.
However, demonstrating requirement 2 (that the distribution is identifiable) is not trivial.

The probability mass function of the distribution is given by fw (n) = (n+ε)e−λλn

(λ+ε)n!
. It follows

that fw (0) = εe−λ

(λ+ε)
, fw (1) = (1+ε)e−λλ

(λ+ε)
and fw (2) = (2+ε)e−λλ2

(λ+ε)2
. Using these three equalities it

follows that 2fw(2)−λfw(1)
fw(1)−λfw(0)

= λ, and consequently that

fw (0)λ2 − 2fw (1)λ+ 2fw (2) = 0.

Using this quadratic equation it is possible to get solutions for λ.

λ =
fw (1)±

√
(fw (1))2 − 2fw (0) fw (2)

fw (0)
. (5.1)

Since (fw (1))2−2fw (0) fw (2) = e−2λλ2

(λ+ε)2
> 0, Equation (5.1) constitutes a pair of real solutions

for λ. Since fw (1) −
√

(fw (1))2 − 2fw (0) fw (2) > 0, both of the solutions are positive.
Solving for ε gives the following expression:

ε = λ

(
e−λ

fw (1)− λfw (0)
− 1

)
> 0. (5.2)

Since λ has two solutions, ε has two solutions as well. In order to demonstrate identifiability,
it needs to be shown that a function (which is monotone in λ) exists, that if λ is given, results
in a single, unique value for ε.

From Equation (5.2) it follows that if λ is known, ε will be known as well. Consider fw (0) =
εe−λ

(λ+ε)
. By taking its derivative with respect to λ it follows that

∂
∂λ

εe−λ

(λ+ε)

= ∂
∂λ

λ
(

e−λ

fw(1)−λfw(0)
−1
)
e−λ

λ+λ
(

e−λ

fw(1)−λfw(0)
−1
)
e−λ

=
−λe−λ

(
e−λ

fw(1)−λfw(0)
−1
)(

1+λ+λ
(

e−λ

fw(1)−λfw(0)
−1
))

(
λ+λ

(
e−λ

fw(1)−λfw(0)

))2 .

From Equation (5.2) it follows that ∂
∂λ
fw (0) < 0. As a result, it has been proven that

fw (0) , fw (1) and fw (2) uniquely determine λ and ε and thus that 2nd consistency require-
ment has been met.

The third partial derivatives of the distribution are:
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∂3

∂λ3

(n+ε)e−λλn

(λ+ε)n!

=
(n+ε)e−λλn−3

(
3λε2(n−λ−1)

(
λ2−2nλ+n(n−3)

))
(λ+ε)4n!

− (n+ε)e−λλn−3
(
3λ2ε

(
2λ−(n−λ−2)

(
n(n−3)−2nλ+λ2

)))
(λ+ε)4n!

+
(n+ε)e−λλn−3

(
ε3
(
n3−λ3−3n2(1+λ)+n(2+3λ(1+λ))

))
(λ+ε)4n!

+
(n+ε)e−λλn−3

(
λ3
(
n3−3n2(2+λ)−6−λ(6+λ(3+λ))+n(11+3λ(3+λ))

))
(λ+ε)4n!

,

∂3

∂ε3
(n+ε)e−λλn

(λ+ε)n!

= 6e−λλn(n−λ)

(λ+ε)4n!
,

∂3

∂λ2∂ε
(n+ε)e−λλn

(λ+ε)n!

=
e−λλn−2

(
λ2
(
2λ−(n−λ−2)

(
λ2−2nλ+n(n−3)

)))
(λ+ε)4n!

− e−λλn−2
(
ε2(n−λ)

(
λ2−2(n+1)λ+n(n−1)

))
(λ+ε)4n!

− e−λλn−2
(
2ελ
(
2λ+(n−λ)

(
λ2−2nλ+n(n−3)

)))
(λ+ε)4n!

,

and

∂3

∂λ∂ε2
(n+ε)e−λλn

(λ+ε)n!

=
2e−λλn−1

(
ε
(
(n−λ)2−λ

))
(λ+ε)4n!

+
2e−λλn−1

(
λ
(
n2+λ(λ+2)−n(3+2λ)

))
(λ+ε)4n!

,

respectively.

The order of summation and differentiation of the probability mass function can also be
swapped around. This is demonstrated for the four cases discussed above.∑∞

n=0
∂3

∂λ3

(n+ε)e−λλn

(λ+ε)n!

=
∑∞

n=0

(n+ε)e−λλn−3
(
3λε2(n−λ−1)

(
λ2−2nλ+n(n−3)

))
(λ+ε)4n!

−
∑∞

n=0

(n+ε)e−λλn−3
(
3λ2ε

(
2λ−(n−λ−2)

(
n(n−3)−2nλ+λ2

)))
(λ+ε)4n!

+
∑∞

n=0

(n+ε)e−λλn−3
(
ε3
(
n3−λ3−3n2(1+λ)+n(2+3λ(1+λ))

))
(λ+ε)4n!

+
∑∞

n=0

(n+ε)e−λλn−3
(
λ3
(
n3−3n2(2+λ)−6−λ(6+λ(3+λ))+n(11+3λ(3+λ))

))
(λ+ε)4n!

= 0 + 6ε
(λ+ε)4

+ 0− 6ε
(λ+ε)4

= 0.

∑∞
n=0

∂3

∂ε3
(n+ε)e−λλn

(λ+ε)n!

=
∑∞

n=0
6e−λλn(n−λ)

(λ+ε)4n!

= 0.
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∑∞
n=0

∂3

∂λ2∂ε
(n+ε)e−λλn

(λ+ε)n!

=
∑∞

n=0

e−λλn−2
(
λ2
(
2λ−(n−λ−2)

(
λ2−2nλ+n(n−3)

)))
(λ+ε)4n!

−
∑∞

n=0

e−λλn−2
(
ε2(n−λ)

(
λ2−2(n+1)λ+n(n−1)

))
(λ+ε)4n!

−
∑∞

n=0

e−λλn−2
(
2ελ
(
2λ+(n−λ)

(
λ2−2nλ+n(n−3)

)))
(λ+ε)4n!

= 0− 0− 0
= 0.

∑∞
n=0

∂3

∂λ∂ε2
(n+ε)e−λλn

(λ+ε)n!

=
∑∞

n=0

2e−λλn−1
(
ε
(
(n−λ)2−λ

))
(λ+ε)4n!

+
∑∞

n=0

2e−λλn−1
(
λ
(
n2+λ(λ+2)−n(3+2λ)

))
(λ+ε)4n!

= 0 + 0
= 0.

Thus this distribution meets the 5th requirement.

The the log of the probability mass function is given by

ln
(

(n+ε)e−λλn

(λ+ε)n!

)
= −λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!) .

The third partial derivatives of the log of the probability mass function are:
∂3

∂λ3 (−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))
= 2n

λ3 − 2
(λ+ε)3

,

∂3

∂ε3
(−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))

= 2
(n+ε)3

− 2
(λ+ε)3

,

∂3

∂λ2∂ε
(−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))

= − 2
(λ+ε)3

,

and
∂3

∂λ∂ε2
(−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))

= − 2
(λ+ε)3

,

respectively.

Let λ0 denote the true value of λ and ε0 the true value of ε. If c (λ0, ε0) =
(
1
2
min (λ0, ε0)

)2
,

then λ ∈
(
1
2
λ0, 3

2
λ0
)

and ε ∈
(
1
2
ε0, 3

2
ε0
)
.

It then follows that
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∂λ3 (−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))
∣∣∣

=
∣∣∣2nλ3 − 2

(λ+ε)3

∣∣∣
≤ 2n

λ3 +
2

(λ+ε)3
.

This function is decreasing in both λ and ε. Thus it holds that

2n
λ3 +

2
(λ+ε)3

≤ 2n(
1
2
λ0
)3 + 2(

1
2
λ0+ 1

2
ε0
)3

= 16
(

n
(λ0)3

+ 1
(λ0+ε0)3

)
.

It then follows that

E
(
16
(

n
(λ0)3

+ 1
(λ0+ε0)3

))
= 16

(
1

(λ0+ε0)3
+

λ0
(
1+λ0+ε0

)
(λ0)3(λ0+ε0)

)
< ∞.

Similarly ∣∣∣ ∂3

∂λ2∂ε
(−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))

∣∣∣
= 2

(λ+ε)3
.

This function is again decreasing in both λ and ε. Thus it holds that

2
(λ+ε)3

≤ 2(
1
2
λ0+ 1

2
ε0
)3

= 16
(λ0+ε0)3

,

and

E
(

16
(λ0+ε0)3

)
= 16

(
1

(λ0+ε0)3
+

λ0
(
1+λ0+ε0

)
(λ0)3(λ0+ε0)

)
< ∞.

Lastly ∣∣∣ ∂3

∂ε3
(−λ+ ln (n+ ε) + nln (λ)− ln (λ+ ε)− ln (n!))

∣∣∣
=

∣∣∣ 2
(n+ε)3

− 2
(λ+ε)3

∣∣∣
≤ 2

(n+ε)3
+ 2

(λ+ε)3
.

This function is again a decreasing in both λ and ε. Thus it holds that
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2
(n+ε)3

+ 2
(λ+ε)3

≤ 2(
n+ 1

2
ε0
)3 + 2(

1
2
λ0+ 1

2
ε0
)3

= 2(
n+ 1

2
ε0
)3 + 16

(λ0+ε0)3
,

and

E

(
2(

n+ 1
2
ε0
)3 + 16

(λ0+ε0)3

)
= 16

(λ0+ε0)3
+ E

(
2(

n+ 1
2
ε0
)3
)

≤ 16
(λ0+ε0)3

+ E

(
2(

1
2
ε0
)3
)
.

since n ≥ 0. Thus

E

(
2(

n+ 1
2
ε0
)3 + 16

(λ0+ε0)3

)
≤ 16

(λ0+ε0)3
+ 16(

1
2
ε0
)3

< ∞.

Consequently the 6th requirement is met.

Proving the 7th requirement is more complicated to demonstrate since it requires that all
eigenvalues of the information matrix be positive, and while an expression for the eigen
values exists, without observations from an actual dataset it is difficult to determine if this is
indeed the case. The expression is given below. Let I denote the Fisher information matrix;

I (φ) = −

(
∂2l(φ|n)

∂λ2

∂2l(φ|n)
∂λ∂ε

∂2l(φ|n)
∂ε∂λ

∂2l(φ|n)
∂ε2

)

=

( (
λ2+ε2+2λε

)∑n
i=1 xi−λ2n

λ2(ε+λ)2
− n

(ε+λ)2

− n
(ε+λ)2

∑n
i=1

1
(ε+xi)

2 − n
(ε+λ)2

)
.

Then

det (I (φ)− E ∗ I)
= E2 −

( (
λ2+ε2+2λε

)∑n
i=1 xi−λ2n

λ2(ε+λ)2
+
∑n

i=1
1

(ε+xi)
2 − n

(ε+λ)2

)
E

+
(
λ2+ε2+2λε

)∑n
i=1 xi−λ2n

λ2(ε+λ)2

(∑n
i=1

1
(ε+xi)

2 − n
(ε+λ)2

)
−
(

n
(ε+λ)2

)2
= E2 −

( ∑n
i=1 xi

λ2
∑n

i=1(ε+xi)
2

)
E +

(
λ2+ε2+2λε

)∑n
i=1 xi−λ2n

λ2(ε+λ)2

∑n
i=1

1
(ε+xi)

2

−
(
λ2+ε2+2λε

)∑n
i=1 xi−λ2n

λ2(ε+λ)2
n

(ε+λ)2
−
(

n
(ε+λ)2

)2
= E2 −

∑n
i=1 xi

λ2
∑n

i=1(ε+xi)
2E

+
∑n

i=1 xi

λ2
∑n

i=1(ε+xi)
2 − n

(ε+λ)2
∑n

i=1(ε+xi)
2 − n

∑n
i=1 xi

λ2(ε+λ)2

= E2 −
∑n

i=1 xi

λ2
∑n

i=1(ε+xi)
2E +

(ε+λ)2
∑n

i=1 xi−nλ2−n
∑n

i=1(ε+xi)
2∑n

i=1 xi

λ2(ε+λ)2
∑n

i=1(ε+xi)
2
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E =

∑n
i=1 xi

λ2
∑n

i=1

(
ε+xi

)2±
√( ∑n

i=1
xi

λ2
∑n

i=1

(
ε+xi

)2
)2

−4
(ε+λ)2

∑n
i=1

xi−nλ2−n
∑n

i=1

(
ε+xi

)2 ∑n
i=1

xi

λ2(ε+λ)2
∑n

i=1

(
ε+xi

)2
2

If it is assumed that
( ∑n

i=1 xi

λ2
∑n

i=1(ε+xi)
2

)2
− 4

(ε+λ)2
∑n

i=1 xi−nλ2−n
∑n

i=1(ε+xi)
2∑n

i=1 xi

λ2(ε+λ)2
∑n

i=1(ε+xi)
2 > 0 and( ∑n

i=1 xi

λ2
∑n

i=1(ε+xi)
2

)
−
√( ∑n

i=1 xi

λ2
∑n

i=1(ε+xi)
2

)2
− 4

(ε+λ)2
∑n

i=1 xi−nλ2−n
∑n

i=1(ε+xi)
2∑n

i=1 xi

λ2(ε+λ)2
∑n

i=1(ε+xi)
2 > 0 the informa-

tion matrix I (φ) will be positive definite and the requirements to show that a distribution
has consistent maximum likelihood estimates will be met.

There are also some distributions that may adhere to the above regularity conditions, but that
have expressions which are so complicated that these results may be infeasible or impossible.
For example if w (n;φ) = (n+ a) (n− b)2 , then ∂3

∂φi∂φj∂φk
ln (fφ (x)) results in expressions

that consist of 4 or more terms, each of which are longer than half a page. In this situation
finding expressions for Mijk (x) is unlikely. Similarly, any of the probability mass functions
that contain hypergeometric functions result in partial derivatives that contain digamma
functions. In these situations it is impossible to show that the order of differentiation and
summation can be swapped.

5.1.2 Non-parametric bootstrap
The second confidence interval method (non-parametric bootstrap approach) can be de-
scribed as follows:

• Assume that A is a sample consisting of n observations, A = {X1, X2, ..., Xn}.

• Using these n observations the maximum likelihood estimates of the model, φ̂ =[
φ̂1, ..., φ̂m

]
, can be calculated (as discussed earlier in this chapter).

• It is possible to calculate confidence intervals for φ̂ without making any assumptions
regarding the distribution of φ̂; if one assumes that the sample is an accurate represen-
tation of the population.

• To do this, create B bootstrap samples, each of size n, by sampling, with replacement,
from A.

• For each bootstrap sample calculate the “bootstrap parameter estimates”, φ̂∗
i, i =

1, 2, ..., B.

• The empirical distribution of these B estimates represents the uncertainty about the
true value of φ̂.

• The confidence interval of φ can be obtained by using the quantiles of φ̂∗.

• Confidence interval:
[
φ̂∗

α
2
, φ̂∗

1−α
2

]
.
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5.1.3 Parametric bootstrap
The third confidence interval method (parametric bootstrap approach) can be described as
follows:

• Assume that A is a sample consisting of n observations, A = {X1, X2, ..., Xn}.

• Using these n observations the maximum likelihood estimates of the model, φ̂ =[
φ̂1, ..., φ̂m

]
, can be calculated (as discussed earlier in this chapter).

• The maximum likelihood probability mass function is then given by f
(
x|φ̂
)
.

• Generate B bootstrap samples of size m, Bi = {Xi1, Xi2, ..., Xim}, by generating
pseudo-random data points from f

(
x|φ̂
)
.

• For each bootstrap sample calculate the bootstrap parameter estimates, φ̂∗
i, i = 1, 2, ..., B,

as well as the bootstrap parameter difference, δ̂∗i = φ̂∗
i − φ̂.

• The confidence interval of φ can be obtained by using the quantiles of δ̂∗.

• Confidence interval:
[
φ̂− δ̂∗ α

2
, φ̂− δ̂∗1−α

2

]
.

These three methods for constructing confidence intervals all have different pros and cons
which have been discussed at length by various authors. However, they can be briefly sum-
marised as follows:

The Fisher information approach gives asymptotic confidence intervals. This means that, in
addition to the restrictions discussed earlier in this section, this method is unsuitable for rel-
atively small sample sizes (what constitutes “small” varies from distribution to distribution),
since the method relies on the law of large numbers and the central limit theorem. This
method also relies on finding the inverse of the Fisher information matrix. In some cases,
when two (or more) parameters are highly correlated, calculating these inverses may result
in matrices that are numerically unstable, although some authors have proposed methods
to mitigate the impact of this (see Gill and King [56]). The final concern that is applica-
ble to this research, is that some derivatives of the log-likelihood function (with respect to
the parameters) can become computationally impractical to calculate for large sample sizes
(although they exist theoretically).

The non-parametric bootstrap method assumes that the sample is an accurate representation
of the population. Consequently, if the sample is small, the non parametric bootstrap sam-
ples may underestimate the amount of variation in the population. Additionally, while this
method is less prone to experiencing the “computationally impractical calculations” of the
Fisher information method, it may still be a computationally intensive method for calculating
the confidence intervals.
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In contrast, the parametric bootstrap method usually provides more accurate confidence
intervals than the non-parametric bootstrap, but it does so while assuming an inherently
arbitrary choice of model. This selected model may not necessarily be a good choice to fit to
the data.

In Section 5.2, 95% confidence intervals will be provided for the parameter estimates of the
weighted Poisson distribution that gives the best fit to the data. All three estimation methods
discussed will be implemented (when the restrictions mentioned above do not prohibit their
calculation or implementation). For the non-parametric bootstrap, the number of bootstrap
samples will be B = 1000. Similarly for the parametric bootstrap the number of bootstrap
samples will be B = 1000 and the bootstrap sample size will be m = 500 (when computational
intensity allows).

5.2 Novel data fits
The datasets that are used in this section were almost all obtained from www.Kaggle.com.
They range in the number of observations from 52 to close to 7 million. Some datasets only
contained observations from the discrete variables that will be modelled, while others also
had dozens of related explanatory variables.

The purpose of this chapter is not to provide the best possible regression fit for the data,
but rather to demonstrate how well the weighted Poisson distribution can model observed
discrete data, even when the data do not adhere to the restrictions of the Poisson distribu-
tion. As a result, it is almost certain that better model fits could be obtained by using any
number of different regression modelling methodologies that take into account the various
explanatory variables in the datasets (since using these methods would decrease the unex-
plained heterogeneity in the response variable). However, as was stated in the introductory
chapter, one of the aims of the weighted Poisson distribution is actually to be able to model
latent heterogeneity in data. It is for this reason that the datasets are also minimally cleaned.
Only observations that had missing or nonsensical values were removed; outliers and other
data points that would usually be removed before modelling were kept in the datasets in
an attempt to keep the data as noisy as possible. If the outliers were to be removed, the
weighted Poisson fits could be substantially better.

It is important to note that the datasets and graphs which are in this thesis have in no way
been cherry-picked to shed a favourable light on the weighted Poisson distribution. All of the
datasets which were analysed during the writing of this thesis are presented, including those
for which the weighted Poisson distributions do not provide impressive measures of fit.

For all of the different datasets that are investigated in this section, at least one graph
is provided. In the graphs, the blue dots with the vertical filling represent the empirical
probability mass function. The black dots represent the fitted Poisson probability mass
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function, and the red dots represent the fitted weighted Poisson probability mass function.
The dots of the Poisson and weighted Poisson probability mass functions are again joined
by lines for clarity/aesthetic reasons. Estimation was done using maximum likelihood as
previously described. Parameter estimates were obtained using R, and were verified with
Mathematica. To increase the likelihood that estimates converge to the same stable values,
the starting values of the optimisation functions were varied, and the programs run multiple
times.

It should be noted that some of the fits achieved in this chapter are either near-perfect, or
result in two models being visually indistinguishable from each other. In these situations, it
might appear as if only a single plot is present on a graph. This, however, is not the case:
the two plots are merely so similar that the one overlaps the other.

The process for the fitting of each dataset is as follows:

• The minimum observed value of the dataset is determined. The minimum is crucial
since many of the weighted Poisson distributions derived in Chapter 4 are only appli-
cable when only non-zero observations are present. Thus if zeros are observed, only
weighted Poisson distributions that are defined on the domain n ∈ N0 can be imple-
mented. However, if datasets have a minimum observed value larger than zero, weighted
Poisson distributions that are defined on n ∈ N0 are still viable. (Transforming the
non-compliant data is a viable practical alternative, but was not used in this thesis, in
an attempt to demonstrate the flexibility of the weighted Poisson distribution.)

• The maximum likelihood estimate for the Poisson distribution’s parameter is calculated
as well as the values for the maximum log-likelihood, Akaike information criterion
(AIC), small sample Akaike information criterion (AICc), and the Bayesian information
criterion (BIC) of the fit.

• For all of the viable weighted Poisson distributions, the maximum likelihood estimates
for the parameters are calculated as well as values for the maximum log-likelihood, AIC,
AICc and BIC of the fit. (Tables containing these results can be found in Chapter 10.)

• Of all of the fitted models, the one that has the smallest AIC, AICc and BIC values
is plotted against the Poisson distribution in the graphs. (While the AIC and AICc
can give a different pronouncement on the best model in comparison to the BIC this
occurred extremely rarely.)

• The different sets of confidence intervals are calculated for the best weighted Poisson
model using the methods described earlier in the chapter.

After all of the datasets have been analysed and presented, a general discussion will be given,
which highlights some of the findings and shortcomings of the various weighted Poisson
distributions.
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The first dataset contains information about mass shootings in the USA between 2013
and 2017, and originated from “Shooting Tracker”. While there are many versions of this
data available online (an even larger dataset, which spans from 1966 to 2017 can be found
at https://www.kaggle.com/zusmani/us-mass-shootings-last-50-years) the source of
our data is https://www.shootingtracker.com.

Shooting Tracker uses the FBI definition of a mass shooting which is “four or more shot and/or
killed in a single event [incident], at the same general time and location, not including the
shooter”. This means that the total number of victims per incident will be at least 4. For
this reason it is expected that one of the truncating weighted Poisson distributions will be a
suitable model.

For the first variable, the number of victims per incident, of the 27 weight functions that were
tested, 12 models perform better than the Poisson, and 1 additional model may (the AIC and
AICc disagree with the BIC). The best fit is achieved when w (n;φ) = 9×49

n10 and λ = 19.5315.
This is shown in Figure 5.1. The weighted Poisson distribution gives a substantially better
fit than the Poisson. For demonstration purposes, a second graph is also included where the
extreme outliers have been removed from the data. This is shown in Figure 5.2.

The confidence intervals for the weighted Poisson parameters are as follows:
Non-parametric bootstrap Parametric bootstrap

λ (5.4933; 36.6402) (5.71414; 19.5361)
a (2; 14) (1; 9)

Figure 5.1: Mass shootings - Victims per incident
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Figure 5.2: Mass shootings - Victims per incident excluding outliers
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For the second variable, the number of incidents per day, of the 14 weight functions that were
tested, 7 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
(2.08179)n and λ = 0.294394. This is shown in Figure 5.3. In this case, the weighted Poisson
distribution clearly gives a better fit to the data. In fact, the fit is near-perfect.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.239908; 0.34888) (0.237945; 0.343552) (0.182261; 0.386682)
a (1.54953; 2.61404) (1.677704; 2.74481) (1.3965; 3.79694)

Figure 5.3: Mass shootings - Incidents per day
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The next dataset contains information about vehicle accidents in Great Britain in 2015. This
dataset can be found at https://www.kaggle.com/silicon99/dft-accident-data. The
original dataset spanned from 2005 to 2015.

For the first variable, the number of incidents per hour, of the 13 weight functions that were
tested, 8 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
Γ(0.887543+n)
n!Γ(0.887543)

Beta(1352.2475,0.877599+n)
Beta(1351.36,0.877599)

and λ = 1373.38. This is shown in Figure 5.4. In this case,
the weighted Poisson distribution gives a good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (1242.59; 1504.17) (834.854; 4714.48) (850.5; 5058.23)
a (1246.66; 1486.06) (803.479; 4887.09) (817.737; 5193.52)
b (0.691629; 1.06357) (0.2776; 1.83454) (0.193936; 2.1056)
r (0.69158; 1.06351) (0.344266; 1.94401) (0.22022; 2.23273)

Figure 5.4: Britain accidents - Incidents per hour
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For the second variable fit, the number of vehicles per incident, of the 26 weight functions
that were tested, 19 models perform better than the Poisson. The best fit is achieved when
w (n;φ) = (n+ 0.00000001) (n− 0.655111)2 and λ = 0.229596. This is shown in Figure 5.5.
In this case, the weighted Poisson distribution gives a very good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.228948; 0.230245) (0.164424; 0.364196) (0.137628; 0.330561)
a (0; 0.00000001) (0.0000001; 0.00000013) (0.0000001; 0.00000015)
b (0.653885; 0.656338) (0.37588; 0.74394) (0.425134; 0.810132)

Figure 5.5: Britain accidents - Vehicles per incident



CHAPTER 5. WEIGHTED POISSON DISTRIBUTION: APPLICATIONS 116

The next dataset contains information about gun violence in the USA from 1 January 2014
until 31 December 2017. This dataset can be found at https://www.kaggle.com/jameslko/
gun-violence-data.

The first variable, the number of injuries per incident, of the 12 weight functions that were
tested, 8 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
Γ(3.07126+n)
n!Γ(3.07126)

Beta(126.39226,3.1556+n)
Beta(123.321,3.1556)

and λ = 6.93968. This is shown in Figure 5.6. In this case,
both the Poisson and weighted Poisson distributions give very good fits to the data. The
AIC of the best weighted Poisson distribution is only 0.38% smaller than that of the Poisson
distribution.

The confidence intervals for the weighted Poisson parameters are as follows:
Non-parametric bootstrap Parametric bootstrap

λ (0.0127158; 997.491) (0.0549575; 112.377)
a (0.0100005; 5128.67) (0.01; 1342.73)
b (1.13517; 99.6114) (0.896717; 123.845)
r (1.24204; 142.748) (0.624673; 128.555)

Figure 5.6: USA gun violence - Injured per incident
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For the second variable, the number of fatalities per day, of the 28 weight functions that were
tested, 9 models perform better than the Poisson, and 1 additional model may (the AIC
and AICc disagree with the BIC). The best fit is achieved when w (n;φ) = (30.8585)n and
λ = 0.557367. This is shown in Figure 5.7. In this case, the weighted Poisson distribution
gives a relatively good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.526156; 0.588577) (0.505001; 0.598864) (0.493193; 0.608775)
a (26.9723; 34.7448) (25.8952; 37.9053) (24.9895; 39.8908)

Figure 5.7: USA gun violence - Fatalities per day
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The next dataset contains information about all of the goals scored in the English Premier
League (EPL) between 2002 and 2016. This dataset cannot be found on Kaggle but was
constructed piece by piece from other sources.

For the number of home team goals per game, of the 14 weight functions that were tested, only
1 model performs better than the Poisson, and 5 additional model may (the AIC and AICc
disagree with the BIC). The best fit is achieved when w (n;φ) = (16.5054)n and λ = 0.084907.
This is shown in Figure 5.8. In this case, both the Poisson and weighted Poisson distributions
give a very good fit to the data. The AIC of the weighted Poisson distribution is only 0.11%
smaller than that of the Poisson distribution.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.0505357; 0.119278) (0.0497925; 0.112234) (0.00710242; 0.188799)
a (9.21295; 23.7979) (11.2234; 29.3604) (6.63044; 210.04)

Figure 5.8: EPL games - Home team goals per game
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The next dataset contains information about flights in the USA in 2015. This dataset can
be found at https://www.kaggle.com/usdot/flight-delays#flights.csv.

For the number of minutes that arrivals are delayed, of the 26 weight functions that were
tested, 12 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
(0.748927)n and λ = 0.977883. This is shown in Figure 5.9. In this case, the weighted Poisson
distributions gives an acceptable fit to the data, although the number of short delays of up
to 20 minutes are underestimated.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.977832; 0.977934) (0.968609; 0.983902) (0.973909; 0.980871)
a (0.747635; 0.75022) (0.639775; 0.89591) (0.672767; 0.855432)

Figure 5.9: USA flights - Arrival delay
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From all of the above plots, it is apparent that the weighted Poisson distribution performs
well in modelling observed discrete data. This is the case not only when the Poisson distri-
bution is not an appropriate modelling choice, but also when the underlying data appears
to be roughly Poisson distributed. In many of the datasets (EPL home team goals - Figures
5.8, US gun violence injuries per incident - Figure 5.6) the Poisson distribution produced
very good measures of fit. However, it was nevertheless outperformed by the weighted Pois-
son distribution, even after penalising the weighted Poisson distributions for the additional
parameters.

Out of all of the weight functions that were presented in this thesis, there are two that gave
the best fits most often (based on these datasets). These are when w (n;φ) = (a)n and
w (n;φ) = Γ(r+n)

n!Γ(r)
Beta(a+r.b+n)

Beta(a,b)
(although other weight functions are prevalent as well). That is

not to say that the other weight functions are less useful, just that for these specific datasets,
they did not result in optimal fit characteristics. It may very well be that for other datasets
the other weight functions may be more prevalent. Additionally, the use of specific weight
functions may vary depending on practical considerations. For example, when looking at the
plot of the arrival delays of US flights (Figure 5.9), an airline may wish to choose a weight
function that accurately models the tail of the distribution rather than values close to zero
(since passengers, airlines and airports are likely to be dramatically more inconvenienced by
longer delays).

Two of the weight functions, w (n;φ) =

(
m
n

)
pn (1− p)m−n and w (n;φ) = aba

na+1 , were often

excluded from the above fit attempts. This was done because of the excessive computational
time required to calculate the maximum likelihood estimates. When the weight function is
chosen to be the binomial probability mass function, the resulting weighted Poisson distribu-
tion contains an mth order Laguerre polynomial. The parameter m has to be at least as large
as the largest observation in the dataset. Since a general closed-form expression does not
exist for Laguerre polynomials, this can quickly become computationally impractical to cal-
culate. As a result, the binomial weight function was only used when the maximum observed
value in the dataset was relatively small (although no consistent cut-off point for “small” was
used). When the weight function is chosen to be the Pareto probability density function, a
similar problem occurs. The parameter b is defined to be the minimum observed value. If the
value of b is relatively large, the computation time required to calculate maximum likelihood
estimates dramatically increases. (In the tables in Chapter 10 these cases are clearly labelled
as “Computationally intractable”)

Unsurprisingly the Pareto weight function gave the best fit for the “Mass shootings - Victims
per incident” dataset (figures 5.1 and 5.2). Based on all of the models presented in this chapter
a general statement can be made with regards to the truncating weight functions: These
specific weight functions can perform very well, however, for them to provide a significantly
better fit than the Poisson distribution the mode of the data has to be close to the truncated
part of the distribution. For example, in the “Mass shootings - Victims per incident” dataset,
the mean of the data is 5.37894 and the minimum value is 4. For this dataset, all three
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lower truncated weight functions resulted in models which performed better than Poisson
models. In contrast, the “US gun violence - Injuries per day” dataset had a mean of 75.8547
and a minimum value of 17. None of the truncating weight functions provided a better than
Poisson distribution in this situation. Since the Poisson distribution is centred around 75.8547
it naturally has a close to zero probability of observing a value of 17 without artificially
truncating the distribution at that point.

It should also be mentioned that the lower truncating weight functions might be of question-
able practical use. It might be easier, and give a larger set of candidate weight functions,
if the data are merely transformed to start at 0. However, there may be specific practical
situations where using these lower truncating weights can be of use. (For instance when data
values are consistently larger than 0, but there is no theoretical reason why the values cannot
be lower.)

For the analyses in this chapter, the models that were applied to specific datasets were based
purely on the domains that the various weight functions allowed. This decision was made
because the aim was to demonstrate the wide range of potential shapes that the weighted
Poisson distribution could assume and accurately model. Practically speaking, however, this
approach is unlikely to be implemented in the real world. For example, in the “US flights
- Arrival delay” dataset (Figure 5.9), the best weighted Poisson function allows for zero
observations, which is practically nonsensical since delays will have observations of at least
1 minute (unless zeros are used to denote flights that are on time). The reverse situation
also occurs where models which are strictly defined on n ∈ N1 were applied to datasets
which, although they did not demonstrate zero observations, could, in practice, have these
values. As an example, in the “US gun violence - Fatalities per day” dataset (Figure 5.7),
the minimum observation was 15 and the maximum 93. In this case, weight functions which
can only model data strictly larger than zero were applied (in addition to those that can
accommodate zeros). A practitioner may wish to discard these weight functions since there
is no theoretical reason why there might not be a day in which no fatalities occur.

It should also be noted that there were a few limited situations where weight functions expe-
rienced convergence problems. In general, these occurred when nonsensical weight functions
were fit to data. This happened most often when the zero-inflated Poisson distribution was
applied to a dataset that had no zero observations. In a few rare situations, convergence
problems also occurred when a pair of dual weight functions were considered. Occasionally if
one weight function gave a very good fit, the dual partner of that function would not converge.
(These situations are clearly labelled in the tables in Chapter 10 as “Convergence”.)

One last caveat must be provided regarding the model fits in the chapter. In the practical
modelling environment, if a parameter is estimated to have a value that is not statistically
significantly different from zero, it is often assumed to be zero, and the reduced model can be
refit to the data. This may lower the respective AIC, AICc and BIC values for the fit since
the number of parameter estimates is being reduced. This approach of reducing parameters
was not implemented in this thesis, since the changes to the AIC, AICc and BIC were usually
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negligible and did not affect the model selection. As a result, some of the AIC, AICc and
BIC values reported in Chapter 10 are slightly larger than they would be if the models were
implemented in a real-world setting.

5.3 Previous method comparisons
In this section, the fit of the various weighted Poisson distributions derived in this thesis
will be compared to other modelling methodologies presented in Chapter 2. The scope of
this section is limited, however, because many of the papers mentioned in Chapter 2 either
did not provide/publish their datasets, did not provide sufficient information to recreate the
datasets, or used datasets that are not publicly available. In these cases, direct comparisons
are impossible and are omitted from this section. However, if data could be obtained (either
through the papers or by other means), the models fitted are compared to the fitted weighted
Poisson distributions.

For the plots in this section, similar to the previous sections, the observed proportions in
the data will be represented by blue dots and a vertical line and the best weighted Poisson
fit will be graphed in red. However, unlike in previous sections, the corresponding Poisson
distribution will not be plotted. Instead, the best proposed fitted model from the relevant
published paper will be provided in green to allow easy comparison between the two methods.

5.3.1 Generalised Poisson distribution - Bosch and Ryan
Bosch and Ryan [16] proposed using generalised Poisson distributions to model discrete data.
In the paper, they used two datasets (as has already been mentioned in Chapter 2). The
first dataset concerns the number of sea-urchin eggs fertilised in various time intervals. The
second recorded the number of annual doctor visits per patient.
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When weighted Poisson distributions are fit to the sea-urchin dataset, it is found that the
weighted Poisson distribution outperforms their original generalised Poisson approach. The
best fit is achieved when w (n;φ) = n + 0.00515226 and λ = 0.204567. This is shown in
Figure 5.10.

Figure 5.10: Fertilisation of sea-urchin eggs
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When weighted Poisson distributions are fit to the doctor visit dataset it is found that
the weighted Poisson distribution does not outperform their original generalised Poisson ap-
proach. The best weighted Poisson fit is achieved when w (n;φ) = Γ(0.541878+n)

n!Γ(0.541878)
Beta(330.535878,0.541878+n)

Beta(329.994,0.541878)

and λ = 296.025. This is shown in Figure 5.11.

Figure 5.11: Doctor visits

However, it is observed that on the main body of the data, the two models give near-
identical, near-perfect fits, with the generalised Poisson model only providing a better fit at
the extreme point of the data (20). If one inspects the actual data, it is observed that the
value of 20 was chosen as the truncating point. In other words, “20” actually refers to “≥ 20”.
Additionally, a substantial number of observations fall into this category.

It may well be that using Markov processes to model data with such a “bump” at the end of
the support of the distribution gives excellent fit characteristics (as Bosch and Ryan [16] did).
However, Sur et al. [134] demonstrated that this could also be achieved with COM-Poisson
mixture models.
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5.3.2 Generalised Poisson distribution - Consul and Jain
Consul and Jain [29] proposed using an alternative form of generalised Poisson distribution.
In the paper, they looked at four datasets to demonstrate that their distribution could closely
adhere to the shapes of other discrete distributions (binomial, negative binomial and Pois-
son). The first dataset recorded the number of accidents of women working on shells, and
the second recorded the number of lost papers found in the Bell Telephone and Telegraph
Buildings in New York City, both of which are traditionally assumed to be negative bino-
mially distribution. The third dealt with the number of deaths caused by horse kicks in the
Prussian army, which is traditionally assumed to be Poisson distributed. The fourth dataset
recorded “ten shots fired from a rifle at each of 100 targets” and is assumed in the literature
to be binomially distributed.

It should be noted that Consul and Jain [29] performed their analyses using the method of
moment estimates for the parameters. For consistency’s sake, maximum likelihood estimates
are obtained for their model, which enables more accurate comparisons between the models.
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For the first dataset, the number of accidents of women working on shells, the weighted
Poisson distribution outperforms the generalised Poisson distribution. The best weighted
Poisson fit is achieved when w (n;φ) = (0.865116)n and λ = 0.349703. This is shown in
Figure 5.12.

Figure 5.12: Shell accidents

It is observed, however, that the two fits are nearly identically.
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For the second dataset, the number of deaths due to horse kicks, the weighted Poisson
distribution outperforms the generalised Poisson distribution. The best weighted Poisson fit
is achieved when w (n;φ) = Boole (n ≤ 4) and λ = 0.61194. It is unlikely, however, that
there would be a practical reason why the number of horse kick deaths would be limited to
4. Consequently the second best performing weight function was selected, which is achieved
when w (n;φ) = n+ 15.1684 and λ = 0.573565. This is shown in Figure 5.13.

Figure 5.13: Horse kick deaths

It is observed that the two fits are nearly identical.
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For the third dataset, the number of lost items in the telephone building, the weighted
Poisson distribution outperforms the generalised Poisson distribution. The best weighted
Poisson fit is achieved when w (n;φ) = (n+ 0) (n2 − 2.15404n+ 1.2518) and λ = 0.884193.
This is shown in Figure 5.14.

Figure 5.14: Lost items

It is again observed that the two fits are nearly identical.
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For the fourth dataset, the number of rifle shots at targets, the weighted Poisson distribution
does not outperform the generalised Poisson distribution. The best weighted Poisson fit is
achieved when w (n;φ) = (n)13.3313 and λ = 1.123831. This is shown in Figure 5.15.

Figure 5.15: Rifle shots on targets

The above four datasets and plots provide some evidence that the weighted Poisson performs
roughly the same as the generalised Poisson distribution when the distribution of the data
being modelled resembles the binomial, negative binomial or Poisson distributions.

Consul and Jain [29] authored a book that discussed, in much greater detail, the theory and
applications of their proposed model. Since the four plots above were intended to demonstrate
that the model could accommodate data from well-known distributions, three datasets from
the book will be analysed that do not appear to be realised from these distributions. The
first dataset concerns the number of home injuries to 122 men between 1937 and 1942.
The second, which is also used by Castillo and Perez [38], recorded the number of strike
outbreaks in the coal industry in the United Kingdom between 1948 and 1959. The third
contains the number of authors who published papers in the journal “Theoretical Statistics
and Probability” between 1700 and 1943.
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For the first dataset, the number of home injuries to men, the weighted Poisson distribution
outperforms the generalised Poisson distribution. The best weighted Poisson fit is achieved
when w (n;φ) = (4.41713)n and λ = 0.109111. This is shown in Figure 5.16.

Figure 5.16: Home accidents to men
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For the second dataset, the number of strike outbreaks, the weighted Poisson distribution
outperforms the generalised Poisson distribution. The best weighted Poisson fit is achieved
when w (n;φ) = n+ 0.418559 and λ = 0.466504. This is shown in Figure 5.17.

Figure 5.17: Strike outbreaks
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For the third dataset, the number of authors in “Theoretical Statistics and Probability”,
the weighted Poisson distribution outperforms the generalised Poisson distribution. The
best weighted Poisson fit is achieved when w (n;φ) = Γ(0.449024+n)

Γ(0.449024)n!
Beta(19.100524,0.449024+n)

Beta(18.6515,0.449024)
and

λ = 22.5577. This is shown in Figure 5.18.

Figure 5.18: Statistical journal authors
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5.3.3 COM-Poisson - Shmueli et al.
As has already been discussed, the COM-Poisson distribution is a member of the weighted
Poisson family. In fact, it is arguably the most commonly used weighted Poisson distribution.
The aim here is to establish how the newly derived distributions perform in comparison to the
COM-Poisson. Shmueli et al. [126] applied the COM-Poisson distribution to two discrete
datasets. The first dataset contains a count of the number of syllables in the Hungarian
words. The second recorded the sales numbers of a specific item of clothing.

Due to the limited number of COM-Poisson data fits available in the literature, some of
the datasets discussed in Section 5.2 will be reanalysed with the COM-Poisson distribution.
The aim is to more accurately compare the performance of the COM-Poisson against the
other weighted Poisson distributions. These specific datasets have not been cherry-picked.
They were chosen based on three criteria: First, any peculiar datasets (truncated, bi-modal,
zero-inflated), which would probably result in bad fits for the COM-Poisson, are excluded.
Second, the chosen datasets include a range of fits, from near-perfect to less than optimal
under the weighted Poisson models of this thesis. Lastly, they all include small counts. The
range of fit characteristics is important because in both of the datasets in Shmueli et al.
[126], the COM-Poisson and weighted Poisson distributions give very good (near-identical)
fits. The third condition that only small count levels were analysed was done purely for
computational reasons. Since the COM-Poisson does not have a closed-form expression for its
probability mass function, calculating maximum likelihood estimates for datasets that have
a large number of observations, and a broad range of values can become computationally
intensive.
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For the first dataset discussed in Shmueli et al. [126], the length of Hungarian words, the
weighted Poisson distribution outperforms the COM-Poisson distribution. The best weighted
Poisson fit is achieved when w (n;φ) = (n+ 0) (n2 − 2.15404n+ 1.2518) and λ = 0.884193.
This is shown in Figure 5.19. While the weighted Poisson fit is better, the difference is
minimal.

Figure 5.19: Hungarian word length
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For the second dataset, the number of clothing sales, the weighted Poisson distribution does
not outperform the COM-Poisson distribution. The best weighted Poisson fit is achieved
when w (n;φ) = Γ(2.6095+n)

n!Γ(2.6095)
Beta(1752.71095,0.571388+n)

Beta(1755.11,0.571388)
and λ = 1152.17. This is shown in Figure

5.20. While the COM-Poisson fit is better, the difference is again marginal.

Figure 5.20: Clothing item sales



CHAPTER 5. WEIGHTED POISSON DISTRIBUTION: APPLICATIONS 136

The first novel dataset to which both the weighted Poisson and the COM-Poisson distribu-
tions are fitted is the “Number of airplane accidents per month” (shown in Figure 10.5). As
was stated the best weighted Poisson fit occurs when w (n;φ) = (34.9643)n and λ = 0.148743.
For the COM-Poisson distribution, the best fit occurs when w (n;φ) = (n!)1−0.837851 and
λ = 4.49253. In this situation, the weighted Poisson outperforms the COM-Poisson, but
only marginally. The corresponding plots are given in Figure 5.21.

Figure 5.21: Airplane accidents - Incidents per month
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The next dataset reanalysed is “US gun violence - Injuries per incident” (Figure 5.6). As
stated the best weighted Poisson fit occurs when w (n;φ) = Γ(3.07126+n)

n!Γ(3.07126)
Beta(126.39226,3.1556+n)

Beta(123.321,3.1556)

and λ = 6.93968. For the COM-Poisson distribution, the best fit occurs when w (n;φ) =
(n!)1−1.12583 and λ = 0.59374. In this situation the weighted Poisson outperforms the COM-
Poisson. These plots are given in Figure 5.22. While the weighted Poisson fit is better, the
difference is marginal.

Figure 5.22: US gun violence - Injured per incident
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The next dataset reanalysed is “Canada accidents - Vehicles per incident” (Figure 10.16). As
stated the best weighted Poisson fit occurs when w (n;φ) = (n+ 9.1268× 10−12) (n− 0.324713)2

and λ = 0.340524. For the COM-Poisson distribution, the best fit occurs when w (n;φ) =
(n!)1−1.97762 and λ = 5.45389. In this situation the weighted Poisson substantially outper-
forms the COM-Poisson. These plots are given in Figure 5.23.

Figure 5.23: Canada accidents - Vehicles per incident

From the above five plots and sets of fits, it appears as if the range of new weighted Poisson
distributions performs either better than the COM-Poisson distribution or roughly equally
well. (This is, of course, anecdotal, and has not been vigorously tested.)
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5.3.4 Weighted Poisson - Castillo and Perez
Castillo and Perez [39] applied four variations of their proposed weighted Poisson distribu-
tion: w (n;φ) = e

r
(
−
√
n2+a

)
, w (n;φ) = er

(
−e−an

)
, w (n;φ) = e

r
(

n+1
n+a

)
and w (n;φ) = erln(n+a).

The resulting distributions were fitted to a dataset that contained information about car
accidents. All four of these weight functions perform better than the weighted Poisson distri-
butions derived in this thesis. The best variation from Castillo and Perez [39] occurred when
w (n;φ) = e

−4.3
(
−
√
n2+32

)
and λ = 0.115553. The best weighted Poisson (from this thesis)

fit is achieved when w (n;φ) = (0.701512)n and λ = 0.234045. These two fits are shown in
Figure 5.24.

Figure 5.24: Car accidents

Even though the Castillo and Perez weight functions perform better; from a graphical
perspective, the two models are indistinguishable.

Castillo and Perez [38] fitted their weighted Poisson distribution to two datasets. The first
is the same dataset used by Consul and Jain [29], which recorded the number of accidents
to women working on shells and the second recorded the number of strike outbreaks in the
United Kingdom.
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For the first dataset, number of accidents to women working on shells, the weighted Poisson
distributions in this thesis outperform their proposed weighted Poisson distribution. The
best weighted Poisson fit is achieved when w (n;φ) = (0.865116)n and λ = 0.349703. This is
shown in Figure 5.25. As can be seen, the performance is only marginally better.

Figure 5.25: Castillo and Perez - Shell accidents
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For the second dataset, number of strike outbreaks, the weighted Poisson distributions in this
thesis outperform their proposed weighted Poisson distribution. The best weighted Poisson
fit is achieved when w (n;φ) = n+0.418559 and λ = 0.466504. This is shown in Figure 5.26.
As can be seen the new weighted Poisson performs better.

Figure 5.26: Castillo and Perez - Number of strike outbreaks

In addition to the 8 fits presented in Section 5.2, 25 other variables were also modelled.
This was done to give a more accurate view of the prevalence of the newly derived weighted
Poisson distributions, as well as to get a better sense of the comparative performance of the
weighted Poisson distributions against the Poisson. These additional fits can be found in
Chapter 10. The modelled variables come from a range of different industries/settings and
include:

• Weekly sales figures of items over the span of a year (which was discussed in the
introductory chapter). The sales numbers of item 409 and 726 were reanalysed.

• Global airplane accidents from 1960 to 2009. The number of fatalities per incident as
well as the number incidents per month were analysed.

• USA mass shooting between 2013 and 2017. In addition to the number of victims per
incident (Figure 5.1) and incidents per day (Figure 5.3), the number of injuries per



CHAPTER 5. WEIGHTED POISSON DISTRIBUTION: APPLICATIONS 142

incident, injuries per day, injuries per month, fatalities per incident, fatalities per day,
fatalities per month and incidents per month were also analysed.

• Vehicle accidents in Great Britain in 2015. In addition to the number of incidents per
hour (Figure 5.4) and vehicles per incident (Figure 5.5), the number of casualties per
incident, casualties per hour and vehicles per hour were also analysed.

• Vehicle accidents in Canada in 2014. The number of vehicles per incident, incidents
per hour and vehicles per hour were analysed.

• USA gun violence data between 2014 and 2017. In addition to the number of injuries
per incident (Figure 5.6) and fatalities per day (Figure 5.7), the number of fatalities
per day and injuries per day were analysed.

• EPL game data between 2002 and 2016. In addition to the number of home team goals
per game (Figure 5.8), the number of away team goals per game, home team shots on
target per game and away team shots on target per game were analysed.

• Flight delay data for all flights in the USA from 2015. In addition to the arrival delay
time (Figure 5.9), the departure delay, the time spent taxiing on takeoff and time spent
taxiing on landing were analysed.

Of the 33 datasets that were analysed in Section 5.2, the weighted Poisson distribution
outperformed the Poisson in every case.

Of the 17 datasets that were analysed in Section 5.3, the weighted Poisson outperformed the
various alternative modelling methodologies 13 times, which is roughly 76%. In total, 45
different datasets were analysed. In Table 5.1 below, the prevalence of the various weight
functions that gave the best fit is presented.

Weight function Frequency Percentage occurrence
w (n;φ) = (a)n 21 46.67%

w (n;φ) = Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

11 24.44%
w (n;φ) = n+ ε 4 8.89%

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

2 4.44%
w (n;φ) = (n+ a) (n2 − bn+ c) 2 4.44%

w (n;φ) = (n+ a) (n− b)2 2 4.44%
w (n;φ) =

(
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

1 2.22%
w (n;φ) = (n)a 1 2.22%
w (n;φ) = aba

na+1 1 2.22%

Table 5.1: Weight function occurrence



Chapter 6

Poisson Process: Goodness-of-fit
Testing

Up to this point of the thesis, the focus has solely been on weighted Poisson distributions and
no attention has been paid to how events occur as time progresses. This clearly limits the
potential applications of the weighted Poisson framework. Consequently, chapters 6, 7 and
8 will extend the notions of goodness-of-fit (Chapter 3), the newly derived weighted Poisson
distributions (Chapter 4) and their applications (Chapter 5) to stochastic processes.

The stochastic process extension of the Poisson distribution is called the Poisson process.
This process has received considerable research attention, and as a result has many different
applications (see Feller [48]), specifically in the actuarial industry (see Konstantinides [85],
Rolski et al. [118] and Willmot and Lin [142]). This large amount of research has led to many
different (equivalent) definitions of the Poisson process (definitions 10.25, 10.26 and 10.27).
Using these definitions, a list of tests will be discussed that can indicate whether a dataset
represents a sample path from a homogeneous Poisson process or not. These tests will be
differentiated based on different types of information used in the underlying statistics.

6.1 Tests based on the number of events per interval
In the first category of tests, it is assumed that the number of events that occur in consecutive,
non-overlapping, intervals is known, where {Ni} , i = 1, 2, ..., k, represents the number of
events in each interval and {ti} , i = 1, 2, ..., k, represents the length of each interval (where∑k

i=1 ti = T is the entire length of time for which the process is observed).

6.1.1 Chi-square test
It is known that if the rate (λ) of a Poisson process does not change with respect to time that
Ni ∼ Poi (λti) , i = 1, 2, ..., k. Furthermore, the distribution of Ni, when the total number of
events, N = N1 +N2 + ...+Nk, is known, follows a binomial distribution with parameters n

and pi =
ti
T
, i = 1, 2, ..., k. Written formally: P (Ni = ni|N = n) =

(
n
ni

)(
ti
T

)ni
(
1− ti

T

)n−ni

143
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(See Ross [119]).

It then follows that the joint probability mass function of the number of events in the k
different intervals follow a multinomial distribution: P (N1 = n1, N2 = n2, ..., Nk = nk) =

n!
n1!n2!...nk!

(
t1
T

)n1
(
t2
T

)n2 ...
(
tk
T

)nk .

If the assumption is made that all tiN values are sufficiently large (“large” is usually assumed
to be greater than or equal to 5), it is possible to construct a chi-square test statistic:

k∑
i=1

(
Ni − ti

T
N
)2

ti
T
N

,

which is χ2 (k − 1) distributed under the null hypothesis that the data are realised from a
homogeneous Poisson process.

6.1.2 Fisher index test
If a Poisson process is homogeneous, non-overlapping intervals are independent of each other.
This leads to the ability to construct tests based on statistics from each individual increment
{Ni} , i = 1, 2, ..., k. The Fisher index test for homogeneous Poisson processes is constructed
in the following manner:

The mean, N̄ =
∑k

i=1
Ni

k
, and variance, S2 =

∑k
i=1

(
Ni−N̄

)2
k−1

, of the number of the number of
events is calculated, and the Fisher index is calculated, FI (N1, ..., Nk) =

S2

N̄
. As Anderson

and Siddiqui [3] discussed, this statistic can be modeled reasonably well by a χ2 (1) distri-
bution. This distribution is, however, an approximation and not the exact distribution of
FI (N1, ..., Nk). As a result Table 6.1 contains the 95% confidence intervals for FI (N1, ..., Nk)
for various rates and number of intervals. The values chosen for k correspond to values that
are likely to occur in practice like days in a week or minutes in an hour.
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k = 8760 365 60 52
λ = 5 (0.9989; 1) (0.9753; 1.2315) (0.8644; 1.4576) (0.8431; 1.4510)

10 (0.9982; 0.9997) (0.9588; 1.2009) (0.7966; 1.4224) (0.7647; 1.4650)
25 (0.9961; 1.0659) (0.9176; 1.1875) (0.7119; 1.4100) (0.6925; 1.4510)
50 (0.9929; 1.0406) (0.8791; 1.1645) (0.6942; 1.3898) (0.6667; 1.4510)
100 (0.9869; 1.0368) (0.8684; 1.1621) (0.6787; 1.3927) (0.6587; 1.4283)
250 (0.9736; 1.0331) (0.8626; 1.1524) (0.6728; 1.3975) (0.6545; 1.4236)
500 (0.9726; 1.0312) (0.8651; 1.149) (0.6727; 1.3933) (0.6508; 1.4276)
1000 (0.9716; 1.0308) (0.8619; 1.1534) (0.6712; 1.3828) (0.6542; 1.4287)

k = 24 12 7
λ = 5 (0.6957; 1.6335) (0.5151; 2) (0.3333; 2.25)

10 (0.6087; 1.6547) (0.4126; 2) (0.2; 2.33333)
25 (0.5409; 1.6522) (0.3636; 2) (0.2150; 2.3566)
50 (0.5217; 1.6530) (0.3482; 2) (0.2138; 2.4)
100 (0.5130; 1.6593) (0.3550; 1.9802) (0.2061; 2.3918)
250 (0.5109; 1.6633) (0.3478; 1.9910) (0.2028; 2.4027)
500 (0.5088; 1.6562) (0.3436; 1.9822) (0.2061; 2.3809)
1000 (0.5115; 1.6668) (0.3435; 1.9890) (0.2121; 2.3973)

Table 6.1: Fisher index confidence intervals

6.1.3 Likelihood ratio test
Fierro and Tapia [49] proposed a test, which, in its simplest form, can detect if a process is
a homogeneous Poisson process, or as an alternative, is a nonhomogeneous Poisson process
with piece-wise constant intensity functions. Stated more formally, their test is

H0 : λ1 = λ2 = ... = λk,
HA : λi 6= λj for at least one i 6= j,

where λi is the constant intensity of events in interval Ni.

What makes their test particularly interesting is that (under a more complicated test formu-
lation given in their paper) it is also possible to test whether certain parts of a process could
be considered homogeneous, rather than simply considering the entire process as a whole. In
addition to deriving an expression for the likelihood function, they also showed that this test
is asymptotically optimal.

6.2 Tests based on the exact time of events
For the second class of test, assume that the times when individual events occur, 0 < τ1 <
τ2 < ... < τN is known. From this, a sequence of inter-arrival times, {Ti} , i = 1, 2, ..., N can
be constructed.
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6.2.1 Uniformity tests
Lewis [90] discussed a series of tests based on an idea proposed by Barnard [9]. The tests
are based on using the ratio between the time of events occurring and the length of the time
interval considered as a sequence of statistics. The statistics are given by

Ui =
τi
T
, i = 1, 2, ..., N,

where each Ui is i.i.d with a standard uniform distribution. Since these statistics are inde-
pendent of λ, a range of distribution-free goodness-of-fit tests can be applied to them. In
the paper Lewis [90] discusses using chi-square, Kolmogorov-Smirnov, Cramér-von Mises and
Anderson-Darling tests on these statistics. He did note, however, that Durbin [41] proposed
a transformation of the data which resulted in higher powers of the tests.

6.2.2 Exponentiality tests
Epstein [45] proposed 12 different tests that can be used to detect deviation from the ex-
ponential distribution. Although the paper was written in the context of life data, these
tests are particularly applicable to Poisson processes as well, because, if a Poisson process
is homogeneous, it follows that Ti ∼ Exp (λ) , i = 1, 2, ..., N which are independent of each
other. The formulation of the proposed tests varied greatly: there are two graphical tests,
a chi-square test, a test based on the conditional distribution of the Ti values and the con-
ditional rate of the process, tests to detect if T1 occurs abnormally early or late, there are
tests to detect if the mean of the variables fluctuate or experience consistent shifts, as well
as a test that can detect if Ti values are abnormally large.

In addition to discussing some classical and powerful exponential tests that are available in
the literature (similar to those in Chapter 3), Oosthuysen et al. [105] proposed a series of
new tests based on the L1, L2 and L∞ distances between the empirical mass function of the
sample increments and the corresponding Poisson probability mass function. The tests were
found to have comparable or improved performance over many other tests for exponentiality.

6.2.3 A test based on waiting times
It is a well known property of exponential distributions that the sum of independent ex-
ponential distributions is gamma distributed. It then follows that the sum of all of the
inter-arrival times of a homogeneous Poisson process is gamma distributed: T =

∑N
i=1 Ti ∼

Gamma
(
N, 1

λ

)
. Using this result it is possible to construct 95% confidence intervals for T

for various values of λ and N . (See Table 6.2 below.)
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N = 5 10 25 50
λ = 5 (0.3247; 2.0483) (0.9591; 3.4170) (3.2357; 7.1420) (7.4221; 12.9561)

10 (0.1623; 1.0242) (0.4795; 1.7085) (1.6179; 3.5710) (3.7111; 6.4781)
25 (0.0649; 0.4097) (0.1918; 0.6834) (0.6471; 1.4284) (1.4844; 2.5912)
50 (0.0325; 0.2048) (0.0959; 0.3417) (0.3236; 0.7142) (0.7422; 1.2956)
100 (0.0162; 0.1024) (0.0480; 0.1708) (0.1618; 0.3571) (0.3711; 0.6478)
250 (0.0065; 0.0410) (0.0192; 0.0683) (0.0647; 0.1428) (0.1484; 0.2591)
500 (0.0032; 0.0205) (0.0096; 0.0342) (0.0324; 0.0714) (0.0742; 0.1296)
1000 (0.0016; 0.0102) (0.0048; 0.0171) (0.0162; 0.0357) (0.0371; 0.0648)

N = 100 250 500 1000
λ = 5 (16.2728; 24.1058) (43.9936; 56.3852) (91.4257; 108.953) (187.795; 212.584)

10 (8.1364; 12.0529) (21.9968; 28.1926) (45.7129; 54.4765) (93.8973; 106.292)
25 (3.2546; 4.8212) (8.7987; 11.277) (18.2851; 21.7906) (37.5589; 42.5168)
50 (1.6273; 2.4106) (4.3994; 5.6385) (9.1426; 10.8953) (18.7795; 21.2584)
100 (0.8136; 1.2053) (2.1997; 2.8193) (4.5713; 5.4477) (9.3897; 10.6292)
250 (0.3255; 0.4821) (0.8799; 1.1277) (1.8285; 2.1791) (3.7559; 4.2517)
500 (0.1627; 0.2411) (0.4399; 0.5639) (0.9143; 1.0895) (1.8780; 2.1258)
1000 (0.0813; 0.1205) (0.2199; 0.2819) (0.4571; 0.5448) (0.9390; 1.0629)

Table 6.2: Exponential waiting time test

6.2.4 Change point type test
By drawing on the literature from stochastic process control (SPC) it is possible to construct
a change point type test to detect if the rate of a process changes. This test is useful since it
not only detects if λ changes, but it can also give an indication as to when the change occurs.

Assume that before some time k, 0 < k < T, the rate of the process is λ, and that the rate
experiences a single sustained shift from λ to aλ where a 6= 1 from time k onward.

While this test is explicitly set up to detect a consistent change after a specific point in time,
the test is able to detect a gradual shift in the rate (although at a lower power).

The hypotheses of the proposed test is as follows:

H0 : Ti ∼ Exp (λ) i = 1, 2, ..., N.
HA : Ti ∼ Exp (λ) i = 1, 2, ..., k − 1.

Ti ∼ Exp (aλ) i = k, ..., N.

The difficulty in developing this test is that, not only is the size of shift in λ unknown,
but the location where the shift occurs, k, is also unknown (although it is assumed to be
deterministic.)
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To estimate the point where the shift in the rate occurs a series of comparisons need to be
made:

T1 is compared to T2, T3, ..., TN ,
T1, T2 is compared to T3, T4, ..., TN ,
T1, T2, T3 is compared to T4, T5, ..., TN ,

and so forth until
T1, T2, ..., TN−1 is compared to TN .

If there are N inter-arrival times there will be N−1 different comparisons made to determine
whether, and, if applicable where the process experiences a change in its rate.

The series of statistics that make up the building blocks of the proposed test are given by

Ur =

∑N
i=r Ti

(N−r+1)∑r−1
i=1

Ti
(r−1)

=
(r − 1)

∑N
i=r Ti

(N − r + 1)
∑r−1

i=1 Ti

, r =, 2, ..., N. (6.1)

Under the null hypothesis of no shift having occurred, and by using the fact that
∑r−1

i=1 Ti ∼
Gamma

(
r − 1, 1

λ

)
and

∑N
i=r Ti ∼ Gamma

(
N − r + 1, 1

λ

)
it follows that

Ur ∼ F (2 (N − r + 1) , 2 (r − 1)) , r = 2, 3, ..., N.

The test statistic is then chosen to be U = min {U2, U3, ..., UN} if a > 1 and U = max {U2, U3, ..., UN}
if 0 < a < 1. With the reasoning for this choice given as follows:
Suppose that an increase in the process rate does indeed occur at time k, then:

• The statistic Uk’s numerator will only contain values from Exp (λa) distributions,
whereas the denominator will only contain values that come from Exp (λ) distribu-
tions.

• If b is some integer value such that 2 ≤ b < k, then statistic Ub will contain k− b values
in its numerator that are from Exp (λ) distributions. This will increase the average of
the data in Ub’s numerator in comparison to the numerator of Uk.

• Similarly, if c is some integer value such that k < c ≤ N , then statistic Uc will contain c
values in its denominator that are from a Exp (λa) distribution. This will decrease the
weighted average of the data in Uc’s denominator in comparison to the denominator of
Uk.

• Thus, any statistic other than the one immediately following the shift in the process
rate, will contain either larger (on average) observations in its numerator, or smaller (on
average) observations in its denominator. Either of these scenarios result in all other
statistics being larger relative to Uk (assuming that the the denominator is greater than
1).

• This leads to the conclusion that the most probable place where a shift in the process
rate will be detected is at the statistic immediately following the shift. The value that
this statistic assumes also has a high likelihood of being the minimum value of all the
Ur, r = 2, 3, ..., N statistics.
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• As such, the most reasonable method of calculating the critical value (to detect an
upwards shift in the process rate) is to calculate the minimum order statistic of Ur, r =
2, 3, ..., N , (under the null hypothesis) and to set the critical value equal to some per-
centile of the distribution of the minimum order statistic.

Using a similar but inverted argument, it can be justified that the critical value of the test
should be set equal to some percentile of the maximum order statistic of Ur, r = 2, 3, ..., N ,
under the null hypothesis of no shift having occurred, if the detection of a downward shift in
the process rate is of concern.

As a result, by calculating the minimum and maximum order statistics of Ur, r = 2, 3, ..., N ,
both a decrease or an increase in λ, as well as the location where the shift occurred, k, can
be estimated.

To demonstrate this test, suppose that 20 events occurred and that λ = 100. After the 10th
event the rate doubles to λ = 200. Table 6.3 below gives a simulated set of the data and
statistics for this test. A plot of the statistics is given in Figure 6.1.

Waiting time (Ti)

1 0.00399765
2 0.00956458
3 0.00449458
4 0.010561
5 0.00511407
6 0.00864347
7 0.0211931
8 0.0111455
9 0.0256652
10 0.013708
11 0.00358537
12 0.00726844
13 0.00291053
14 0.00667508
15 0.00838265
16 0.00626938
17 0.00361156
18 0.00061888
19 0.00611749
20 0.0185206

Statistic (Ur)
2 2.29147
3 1.34757
4 1.5636
5 1.30539
6 1.4261
7 1.37214
8 0.9697
9 0.922033
10 0.633064
11 0.560623
12 0.627089
13 0.637575
14 0.729131
15 0.754854
16 0.737627
17 0.774066
18 0.936728
19 1.44544
20 2.20585

Table 6.3: Example - Change point method
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Figure 6.1: Example - Change point method

As can be seen, the minimum of the set of statistics occurs immediately after the change in
the rate of the process.

It should be noted that this test has some inherent shortcomings, like the masking of the
location where the shift in the rate occurs, as well as the potential for large/small statistics
to occur at the endpoints of the series (making this a poor test for detecting rate shifts either
early or late in the process, or for very short processes). The relative pros and cons of a
similar test, along with a much lengthier theoretical and practical discussion can be found
in Mijburgh et al. [95]. Additionally, Balakrishnan et al. [5] proposed a series of tests based
on the same change point type setup.

In tables 6.4 and 6.5 below, the 2.5% and 97.5% quantiles of the minimum and maximum
order statistics of Ur, r = 2, 3, ..., N will be given. The observed events will be varied, but
the rate will not, since under the null hypothesis the tests are independent of the rate. When
calculating the order statistics, the first and last 10% of the Ur statistics will be excluded to
stabilise the critical values of the test.

N = 5 10 25 50 100 250 500 1000
Min (Ur)0.025 0.02443 0.02498 0.18571 0.29379 0.43178 0.59166 0.68983 0.76715

Table 6.4: Ur Minimum order statistic - 2.5% quantile
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N = 5 10 25 50 100 250 500 1000
Max (Ur)0.975 41.1653 9.5407 5.4009 3.1084 2.2575 1.6796 1.4491 1.3016

Table 6.5: Ur Maximum order statistic - 97.5% quantile

6.3 Test comparison
In this section, the performance of the four tests (Chi-square, Fisher index, sum of waiting
times and change point) that have not received a power analysis in the above mentioned
papers will be compared against a range of alternative stochastic processes. The alternate
processes have various different parameterisations, but will all have an expected number of
events which corresponds to the Poisson process under the null hypothesis. The first group
of alternate processes are all nonhomogeneous Poisson processes, where λ is a function of t.
The expression relating t to λ will be varied for each alternate process. For the second group
of processes, the distribution of the inter-arrival times will be varied. Tables 6.6, 6.7 and 6.8
contain powers in percentages.

Chi-square Fisher index Waiting times Change point
Poisson (λ = 100) 5 5 5 5

Poisson (λ = 95 + 10t) 5.01 5.07 3.98 5.07
Poisson (λ = 90 + 20t) 5.10 5.33 3.32 5.97
Poisson (λ = 85 + 30t) 5.25 5.80 2.55 7.43
Poisson (λ = 80 + 40t) 5.44 6.48 2.01 9.66
Poisson (λ = 75 + 50t) 5.77 7.56 1.60 12.67
Poisson (λ = 70 + 60t) 6.47 9.10 1.19 16.72
Poisson (λ = 65 + 70t) 6.73 9.66 1.57 18.01
Poisson (λ = 60 + 80t) 8.82 13.22 0.72 29.03
Poisson (λ = 55 + 90t) 10.74 16.22 0.51 37.22
Poisson (λ = 50 + 100t) 12.87 19.6 0.04 46.40
Poisson (λ = 45 + 110t) 16.37 24.09 0.03 56.40
Poisson (λ = 40 + 120t) 20.32 29.21 0.02 66.79
Poisson (λ = 35 + 130t) 24.94 34.84 0.00 76.08
Poisson (λ = 30 + 140t) 30.72 41.59 0.00 84.01
Poisson (λ = 25 + 150t) 37.36 48.77 0.00 90.36
Poisson (λ = 20 + 160t) 44.68 56.30 0.00 94.96
Poisson (λ = 15 + 170t) 52.83 64.32 0.00 97.67
Poisson (λ = 10 + 180t) 60.55 71.41 0.00 99.03
Poisson (λ = 5 + 190t) 68.73 78.54 0.00 99.69
Poisson (λ = 200t) 76.10 84.50 0.00 99.93

Table 6.6: Power of homogeneous Poisson tests 1, k = 52, N = 100
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Chi-square Fisher index Waiting times Change point
Poisson (λ = 100) 5 5 5 5

Poisson (λ = 105− 10t) 5.07 5 6.51 5.37
Poisson (λ = 110− 20t) 5.13 5.34 7.96 6.37
Poisson (λ = 115− 30t) 5.15 5.73 9.68 8.20
Poisson (λ = 120− 40t) 5.60 6.68 11.93 11.0
Poisson (λ = 125− 50t) 5.85 7.59 14.55 14.98
Poisson (λ = 130− 60t) 6.43 8.94 17.10 21.0
Poisson (λ = 135− 70t) 7.34 10.78 20.41 28.56
Poisson (λ = 140− 80t) 8.73 13.09 23.11 37.66
Poisson (λ = 145− 90t) 10.46 16.04 25.47 45.56
Poisson (λ = 150− 100t) 12.96 19.52 26.37 52.34
Poisson (λ = 155− 110t) 16.22 24.10 27.35 57.71
Poisson (λ = 160− 120t) 20.02 28.97 28.80 61.63
Poisson (λ = 165− 130t) 25.13 35.03 31.59 64.63
Poisson (λ = 170− 140t) 30.96 41.64 36.63 66.67
Poisson (λ = 175− 150t) 39.44 50.84 42.74 68.38
Poisson (λ = 180− 160t) 44.76 56.38 49.48 69.22
Poisson (λ = 185− 170t) 52.69 64.10 55.86 70.10
Poisson (λ = 190− 180t) 60.76 71.58 62.99 70.37
Poisson (λ = 195− 190t) 68.69 78.48 69.01 70.52
Poisson (λ = 200− 200t) 75.97 84.34 75.01 70.91

Table 6.7: Power of homogeneous Poisson tests 2, k = 52, N = 100

Chi-square Fisher index Waiting times Change point
Ti ∼ Gamma

(
0.5, 1

50

)
83.20 89.27 16.78 27.75

Ti ∼ Gamma
(
0.9, 1

90

)
7.73 11.82 6.41 6.98

Ti ∼ Exp (100) 5 5 5 5
Ti ∼ Gamma

(
1.1, 1

110

)
6.46 1.86 4.08 3.53

Ti ∼ Gamma
(
1.5, 1

150

)
35.66 0.17 1.75 0.99

Ti ∼ Gamma
(
1.75, 1

175

)
60.74 0 0.98 0.54

Ti ∼ Gamma
(
2, 1

200

)
79.71 0 0.60 0.23

Ti ∼ Beta (0.5, 49.5) 81.58 88 16.23 26.64
Ti ∼ Beta (0.75, 74.25) 22.38 31.75 8.95 10.82

Ti ∼ Beta (1, 99) 4.95 4.32 4.88 4.71
Ti ∼ Beta (1.25, 123.75) 12.03 0.30 2.76 2.07
Ti ∼ Beta (1.5, 148.5) 37.58 0.01 1.61 0.96

Table 6.8: Power of homogeneous Poisson tests 3, k = 52, N = 100
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Based on the reported powers in the above tables it appears as if the change point test
performs particularly well when the rate of the process varies in a linear manner, but the
chi-square test outperforms it if the distribution of the inter-arrival times are varied.



Chapter 7

Weighted Poisson Process: Theory

In this chapter the expansion of weighted Poisson distributions into weighted Poisson pro-
cesses will be discussed.

Balakrishnan and Kozubowski [6] extended the idea of weighted Poisson distributions to
weighted Poisson processes, and derived many of the statistical properties associated with
weighted Poisson processes.

Traditionally, Poisson processes are defined either as in Definition 10.25 or Definition 10.26;
however, Balakrishnan and Kozubowski [6] used the notion of compound Poisson processes
(see Definition 10.28) to define a Poisson process as a special case of the compound Poisson
process as follows:

Definition 7.1.

N (t) is said to be a Poisson process with rate λ > 0, denoted by {N (t) , t ∈ [0, 1]}, if

N (t)
d
=

N∑
j=1

I[0,t] (Uj) , t ∈ [0, 1] ,

where N is a Poisson random variable with rate λ and Uj are independent standard uniform
random variables, which are also independent of N .

Using this definition of a Poisson process, rather than definitions 10.25 or 10.26, gives a
convenient and simple way to define a weighted Poisson process. By replacing the Poisson
random variable in the upper summation limit with a weighted Poisson version, the stochastic
process becomes a weighted Poisson process. Stated more formally:

Definition 7.2.

Nw (t) is said to be a weighted Poisson process with intensity λ and weight function w (· ),
on the interval [0, 1], denoted by {Nw (t) , t ∈ [0, 1]}, if

154
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Nw (t)
d
=

Nw∑
j=1

I[0,t] (Uj) , t ∈ [0, 1] , (7.1)

where Nw is a weighted Poisson random variable with rate λ and weight function w (· ) , and
Uj are standard uniform random variables independent of each other and of Nw.

It should be noted that earlier t was defined on the interval [0, T ] , and here the interval has
been altered to be [0, 1] . This apparent change has no real practical impact since the time
scale and rate of the process can be redefined as needed. For example, say a process/dataset
spans 200 days then, instead of each daily increment being represented by an increase of 1 in
t, each daily increment could be represented by an increase of 1

200
in t with the upper bound

set equal to 1. These two situation, after accounting for the change in the process’s rate, are
equivalent.

The reason for this change in t is that the I[0,t] (Uj) in the above equation are independent
and identically distributed, and if t ∈ [0, 1] each I[0,t] (Uj) is a Bernoulli random variable with
parameter t. Thus, the stochastic process observed at a specific point in time can in fact be
seen to be a compound random variable, the properties of which are well established in the
literature. Consequently, the statistical properties of the weighted Poisson process are simple
to determine, assuming that the relevant properties of the corresponding weighted Poisson
distribution can be determined.

Additionally, Balakrishnan and Kozubowski [6] reached the following conclusions regarding
weighted Poisson processes:

• For each t > 0, the random variable Nw (t) has a weighted Poisson distribution with
rate parameter λt, and weight function wt(n) =

∑∞
k=0

[(1−t)λ]k

k!
w (n+ k) , n = 0, 1, 2, ...

(where t is included in the subscript of the weight function to indicate the reliance of
the function on t).

• The dispersion of the entire stochastic process is determined by the dispersion of the
related weighted Poisson random variable. This fact is given by the linear equation

V ar (Nw (t))

E (Nw (t))
= 1 + t

(
V ar (Nw)

E (Nw)
− 1

)
.

In essence, if the dispersion of the weighted Poisson random variable is known, it will
also be known for the associated stochastic process for each specific value of t.

• Consecutive, non-overlapping increments of weighted Poisson processes are positively
correlated if the weighted Poisson random variable is overdispersed, and negatively
correlated if the random variable is underdispersed. This is in contrast to the Poisson
processes where the increments are not correlated. It should be noted, however, that
the unconditional distributions of individual increments are stationary.
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• The direct link between the weighted Poisson process and distribution results in the
fact that closed form expressions exist for many of the statistical properties of the
weighted Poisson process if the corresponding weighted Poisson distribution properties
can be found.

Using the results from Balakrishnan and Kozubowski [6] the weighted Poisson distributions
from Chapter 4 will be expanded into weighted Poisson processes. For each weighted Poisson
process the following properties will be listed in the sections below:

• The weight function, wt (n;φ), for t ∈ [0, 1].

• The probability mass function, fw,t (n) = P (Nw (t) = n) , n = 0, 1, 2, ...

• The probability generating function, gt (z).

• The expected value, E (Nw (t)).

• The variance, V ar (Nw (t)).

• The probability generating function of the increments of the process, gt−s (z), where
0 ≤ s < t ≤ 1.

• The joint probability mass function fw,(s,t) (a, b) = P (Nw (s) = a,Nw (t) = b), where
0 < a ≤ b.

• The covariance between Nw (s) and Nw (t) , Cov (Nw (s) , Nw (t)) = Covs,t.

• The covariance between two consecutive increments Nw (s) and Nw (t)−Nw (s) ,
Cov (Nw (s) , Nw (t)−Nw (s)) = Covs,t−s

Derivations of the various results will not be provided, since their proofs are relatively simple
to obtain after taking the results of Balakrishnan and Kozubowski [6] into account, and by
applying similar methods to those demonstrated in Chapter 4.



CHAPTER 7. WEIGHTED POISSON PROCESS: THEORY 157

7.1 Polynomial weight functions

7.1.1 w (n) = n

Theorem 7.1. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = n then

wt (n) = eλ(1−t) (n+ λ (1− t)) .

fw,t (n) = e−λt(λt)n

n!

(
n
λ
+ 1− t

)
.

gt (z) = eλt(z−1) (1 + t (z − 1)) .

E (Nw (t)) = t (λ+ 1) .

V ar (Nw (t)) = t (λ+ 1− t) .

gt−s (z) = eλ(t−s)(z−1) (1 + s (1− z) + t (z − 1)) .

fw,(s,t) (a, b) =

(
b
a

)
e−λt

(
1− s

t

)b−a( s
t

)a
tbλb−1(b+λ(1−t))

b!
.

Covs,t = s (1− t+ λ) .

Covs,t−s = s (s− t) .
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7.1.2 w (n;φ) = n−a

Theorem 7.2. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = n−a then

wt (n;φ) = aFa(n,...,n;1+n,...,1+n;λ(1−t))
na .

fw,t (n) = tnλn−1Γ(n)a−1
aFa(n,...,n;1+n,...,1+n;λ(1−t))

nΓ(n+1)aa+1Fa+1(1,...,1;2,...,2;λ)
.

gt (z) = (1+t(z−1))a+1Fa+1(1,...,1;2,...,2;λ(1+t(z−1)))

a+1Fa+1(1,...,1;2,...,2;λ)
.

E (Nw (t)) = taFa(1,...,1;2,...,2;λ)

a+1Fa+1(1,...,1;2,...,2;λ)
.

V ar (Nw (t)) = t2(a−1Fa−1(1,...,1;2,...,2;λ)−aFa(1,...,1;2,...,2;λ))

a+1Fa+1(1,...,1;2,...,2;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+(t−s)(z−1))a+1Fa+1(1,...,1;2,...,2;(1+(t−s)(z−1))λ)

a+1Fa+1(1,...,1;2,...,2;λ)
.

fw,(s,t) (a, b) =

(
b
a

) (
1− s

t

)b−a( s
t

)a
tbλb−1Γ(b)a−1

aFa(b,...,b;1+b,...,1+b;λ(1−t))

bΓ(1+b)aa+1Fa+1(1,...,1;2,...,2;λ)
.

Covs,t = − s(−ta−1Fa−1(1,...,1;2,...,2;λ)+(t−1)aFa(1,...,1;2,...,2;λ))a+1Fa+1(1,...,1;2,...,2;λ)

a+1Fa+1(1,...,1;2,...,2;λ)
2

− staFa(1,...,1;2,...,2;λ)
2

a+1Fa+1(1,...,1;2,...,2;λ)
2 .

Covs,t−s = s(s−t)(aFa(1,...,1;2,...,2;λ)−a−1Fa−1(1,...,1;2,...,2;λ))a+1Fa+1(1,...,1;2,...,2;λ)

a+1Fa+1(1,...,1;2,...,2;λ)
2

+ s(s−t)aFa(1,...,1;2,...,2;λ)
2

a+1Fa+1(1,...,1;2,...,2;λ)
2 .
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7.1.3 w (n;φ) = n+ ε

Theorem 7.3. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = n+ ε then

wt (n;φ) = eλ(1−t) (n+ ε+ λ (1− t)) .

fw,t (n) = e−λt(λt)n

n!
n+ε+λ(1−t)

ε+λ
.

gt (z) = eλt(z−1)(ε+λ(1+t(z−1)))
ε+λ

.

E (Nw (t)) = tλ(1+ε+λ)
ε+λ

.

V ar (Nw (t)) = (tλ)2(2+ε+λ)
ε+λ

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = eλ(t−s)(z−1)(ε+λ(1+s(1−z)+t(z−1)))
ε+λ

.

fw,(s,t) (a, b) =

(
b
a

)
e−λt

(
1− s

t

)b−a( s
t

)a
(tλ)b(b+ε+λ(1−t))

b!(ε+λ)
.

Covs,t =
sλ
(
ε+ε2+2ελ+λ(1−t+λ)

)
(ε+λ)2

.

Covs,t−s = s(s−t)λ2

(ε+λ)2
.
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7.1.4 w (n;φ) = an3 + bn2 + cn

Theorem 7.4. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = an3 + bn2 + cn then

wt (n;φ) = eλ(1−t) (λ (1− t) (b+ c+ 2bn+ a (1 + 3n (1 + n))))
+ eλ(1−t)n (c+ n (b+ an))

+ eλ(1−t)
(
λ2 (t− 1)2 (b+ 3a (1 + n))− aλ3 (t− 1)3

)
.

fw,t (n) = e−λt(n+1)tnλn−1

(b(1+λ)+c+a(1+λ(λ+3)))Γ(n+2)
wt(n)

eλ(1−t) .

gt (z) =
etλ(z−1)(1+t(z−1))

(
a+b+c+λ(3a+b)(1+t(z−1))+a(1+t(z−1))2λ2

)
b(1+λ)+c+a(1+λ(λ+3))

.

E (Nw (t)) =
t
(
b+c+3bλ+cλ+bλ2+a

(
1+7λ+6λ2+λ3

))
b+c+bλ+a(1+3λ+λ2)

.

V ar (Nw (t)) =
t2λ
(
c(2+λ)+b

(
4+5λ+λ2

)
+a
(
8+19λ+9λ2+λ3

))
b+c+bλ+a(1+3λ+λ2)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = eλ(t−s)(z−1)(1+s(1−z)+t(z−1))
b+c+bλ+a(1+λ(3+λ))

×
(
a+b+c+λ(3a+b)(1+s(1−z)+t(z−1))+a(1+s(1−z)+t(z−1))2λ2

)
b+c+bλ+a(1+λ(3+λ))

.

fw,(s,t) (a, b) =

(
b
a

)
(1+b)e−λt

(
1− s

t

)b−a( s
t

)a
tbλb−1

(b+c+bλ+a(1+λ(3+λ)))Γ(b+2)

×
(
(1 + a) b3 + bc− a (t− 1)3 λ3λ (t− 1)

+ (a+ b+ 3ab+ (2 + 3a) b2 + c) + (b+ 3a (1 + b)) (t− 1)3 λ2
)
.

Covs,t = s (1−t)(b+c+bλ+a(1+λ(3+λ)))(b+c+λ(c+b(3+λ))+a(1+λ(7+λ(6+λ))))

(b+c+bλ+a(1+λ(3+λ)))2

×
(
s
tλ
(
c2+bc(3+2λ)+b2(2+λ(2+λ))+a2(4+λ(10+λ(14+λ(6+λ))))

)
(b+c+bλ+a(1+λ(3+λ)))2

+ s tλ(a(c(5+2λ(5+λ))+b(6+λ(12+λ(9+2λ)))))

(b+c+bλ+a(1+λ(3+λ)))2

)
.

Covs,t−s =
s(s−t)

(
(a+b+c)2+2(3a+b)(a+b+c)λ+2(3a+b)2λ2+4a(3a+b)λ3+3a2λ4

)
(b+c+bλ+a(1+λ(3+λ)))2

.
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7.1.5 w (n;φ) = (n+ a) (n− b)2

Theorem 7.5. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (n+ a) (n− b)2 then

wt (n;φ) = eλ(1−t)
(
(b− n)2 (a+ n) + (3 + a− 2b+ 3n) (t− 1)2 λ2

)
+ eλ(1−t)

(
λ (t− 1) (1 + b2 + 3n (1 + n))− (t− 1)3 λ3

)
+ eλ(1−t) (λ (t− 1) (a (1− 2b+ 2n)− 2b (1 + 2n))) .

fw,t (n) = e−λt(n+1)tnλn(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)
Γ(n+2)

wt(n;φ)

eλ(1−t) .

gt (z) =
etλ(z−1)

(
ab2+λ

(
a+(b−1)2−2ab

)
(1+t(z−1))

)
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

+
etλ(z−1)

(
(3+a−2b)(1+t(z−1))2λ2+(1+t(z−1))3λ3

)
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

.

E (Nw (t)) =
tλ
(
1+7λ+6λ2+λ3+b2(1+λ)−2b

(
1+3λ+λ2

)
+a
(
1+b2+3λ+λ2−2b(1+λ)

))
a(b2+λ−2bλ+λ2)+λ(1+b2+3λ+λ2−2b(1+λ))

.

V ar (Nw (t)) =
(tλ)2

(
8+19λ+9λ2+λ3+b2(2+λ)−2b

(
4+5λ+λ2

)
+a
(
4+b2+5λ+λ2−2b(2+λ)

))
a(b2+λ−2bλ+λ2)+λ(1+b2+3λ+λ2−2b(1+λ))

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) =
eλ(t−s)(z−1)

((
a+(b−1)2−2ab

)
λ(1+s(1−z)+t(z−1))+λ3(1+s(1−z)+t(z−1))3

)
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

×
eλ(t−s)(z−1)

(
ab2+λ2(1+s(1−z)+t(z−1))2(3+a−2b)

)
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

.

fw,(s,t) (a, b) =

(
b
a

)
(1+b)e−λt

(
1− s

t

)b−a( s
t

)a
(λt)b

Γ(b+2)
(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)
×

(
λ (1 + a+ b) (1− t) + λ2 (3 + a+ b) (t− 1)2 − λ3 (t− 1)3

)
.
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Covs,t =
sλ
(
a(1+a)(b−1)2b2+λ2a

(
1+(b−4)(b−1)2b−t−2(b−2)bt

))
(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2
−

sλ2
(
(t−1)(b−1)4+a2

(
4(b−1)2b+t+2(b−2)bt−1

))
(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2
+

sλ3
(
2a2(2−t+b(3b+2t−5))+(b−1)2(10−6t+b(b−8+4t))

)
(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2
− sλ3

(
2a
(
4t−7+b

(
19−17b+4b2+2t(b−5)

)))(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2
+

2sλ4
(
2a(6+a−18b)−b

(
24+2a2−13b−6ab2+2b2

)
−t(3+a−2b)2+14

)
(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2
+

sλ5
(
16+13a+a2−26b−8ab+6b2−4(3+a−2b)t

)(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2
+ sλ6(9+2a−4b−3t)+sλ7(

a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+λ)+λ(3+λ))

)2 .

Covs,t−s =
s(s−t)λ2

(
(b−1)4−λ2(b−1)2(2b−3)+2(3−2b)2λ2+4(3−2b)λ3

)
(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+b)+λ(3+λ))

)2
+

s(s−t)λ22a
((
1+2b2(1+λ)+2λ(1+λ)(2+λ)−2b(2+λ)(1+2λ)

))(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+b)+λ(3+λ))

)2
+

s(s−t)λ2
(
3λ4+a2

(
1+2b2−4b(1+λ)+2λ(1+λ)

))(
a
(
(b−λ)2+λ

)
+λ(1+b2−2b(1+b)+λ(3+λ))

)2 .
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7.1.6 w (n;φ) = (n+ a)
(
n2 − bn+ c

)
Theorem 7.6. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (n+ a) (n2 − bn+ c) then

wt (n;φ) = eλ(1−t) ((a+ n) (c+ n (n− b)))
+ eλ(1−t)λ ((t− 1) (1 + c+ 3n (1 + n)))
+ eλ(1−t)λ ((t− 1) (a (1− b+ 2n)− b (1 + 2n)))

+ eλ(1−t)λ2
(
(t− 1)2 (3 + a− b+ 3n)

)
− eλ(1−t)λ3

(
(t− 1)3

)
.

fw,t (n) = e−λt(1+n)(λt)n(a+n)(c+n(n−b))
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))Γ(2+n)

− e−λt(1+n)(λt)nλ(t−1)(1+c+3n(1+n)−b(1+2n)+a(1−b+2n))
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))Γ(2+n)

+ e−λt(1+n)(λt)nλ2(t−1)2(3+a−b+3n)
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))Γ(2+n)

− e−λt(1+n)(λt)nλ3(t−1)3

(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))Γ(2+n)
.

gt (z) = eλt(z−1)(ac+λ(1+t(z−1))(c−(b−1)(1+a)))
λ(1+c−b(1+λ)+λ(3+λ)+a(c+λ(1−b+λ)))

+
eλt(z−1)

(
λ2(1+t(z−1))2(3+a−b)+λ3(1+t(z−1))3

)
λ(1+c−b(1+λ)+λ(3+λ)+a(c+λ(1−b+λ)))

.

E (Nw (t)) =
λt
(
1+c+7λ+cλ+6λ2+λ3−b

(
1+3λ+λ2

)
+a
(
1+c+3λ+λ2−b(1+λ)

))
λ(1+c+3λ+λ2−b(1+λ))+a(c+λ(1−b+λ))

.

V ar (Nw (t)) =
(λt)2

(
8+2c+19λ+cλ+9λ2+λ3−b

(
4+5λ+λ2

)
+a
(
4+c+5λ+λ2−b(2+λ)

))
λ(1+c+3λ+λ2−b(1+λ))+a(c+λ(1−b+λ))

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = eλ(t−s)(z−1)(ac+λ(1+s(1−z)+t(z−1))(1−b)(1+a))
λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ))

+
eλ(t−s)(z−1)

(
λ2(1+s(1−z)+t(z−1))2(3+a−b)+λ3(1+s(1−z)+t(z−1))3

)
λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ))

.

fw,(s,t) (a, b) =

(
y
x

)
e−λt

(
1− s

t

)y−x( s
t

)x
(λt)y(1+y)

(
(a+y)(c+y(y−b))−λ3(t−1)3

)
λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ))

× λ(1−t)(1+c+3y(1+y)−b(1+2y)+a(1−b+2y))+λ2(t−1)2(3+a−b+3y)
Γ(2+y)

.
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Covs,t = stλ((a(1+a)c(1−b+c)+2λac(7−a(b−3)−3b+c)))

(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

+
stλ3

((
(1+a)(2+a)(b−2)(b−1)+c(5+2a(9+a−2b)−3b)+c2

))
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

− stλ4(2(1+a)(5+a−b)(b−1)+(b−2a−5))

(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

+
stλ5

(
a2+a(9−4b)+(b−9)b+2(7+c)

)
+2stλ6(3+a−b)+stλ7

(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

+ stλ(1−t)(1+c+7λ−b(1+λ(3+λ))+a(1+c−b(1+λ)+λ(3+λ))+λ(c+λ(6+λ)))

(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2
.

Covs,t−s =
s(s−t)λ2

(
(1−b+c)2+2λ(b−3)(b−c−1)+2λ2(b−3)2−4λ3(b−3)+3λ4

)
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

+
s(s−t)λ2

(
a2
(
1+b2−2c−2b(1+λ)+2λ(1+λ)

))
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

+
s(s−t)λ2

(
2a
(
1+b2(1+λ)−2c(1+λ)+2λ(1+λ)(2+λ)−b(2+λ)(1+2λ)

))
(λ(1+c−b(1+λ)+λ(3+λ))+a(c+λ(1−b+λ)))2

.
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7.1.7 w (n;φ) = a∗n+b∗

c∗n+d∗ = a+ b−ac
n+c

Theorem 7.7. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = a+ b−ac

n+c
then

wt (n;φ) = aeλ(1−t) + (b−ac)γ(c+n,λ(t−1))

(λ(t−1))c+n .

fw,t (n) =
(λt)n(−λ)c

(
aeλ(1−t)(λ(t−1))c+n+(b−ac)γ(c+n,λ(t−1))

)
(λ(t−1))c+nΓ(n+1)

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

gt (z) =
(−λ)c

(
aeλ(1+t(z−1))(−1+t(1−z))c+(b−ac)γ(c,λ(−1+t(1−z)))

)
(−1+t(1−z))c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

E (Nw (t)) =
t
(
aeλ(−λ)c(b−ac+aλ)−(b−ac)Γ(1+c)+c(b−ac)Γ(c,−λ)

)
aeλ(−λ)c+bγ(c,−λ)−aΓ(1+c)+acΓ(c,−λ)

.

V ar (Nw (t)) =
t2
(
(−λ)ceλ

(
−b+ac−bc+ac2+λb

)
+(−λ)c+1eλac+(−λ)c+2eλa

)
aeλ(−λ)c+bγ(c,−λ)−aΓ(1+c)+acΓ(c,−λ)

+
t2
(
(b−ac+bc)Γ(1+c)+Γ(c,−λ)

(
ac2(c+1)−bc(c+1)

)
−ac3Γ(c)

)
aeλ(−λ)c+bγ(c,−λ)−aΓ(1+c)+acΓ(c,−λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) =
(−λ)c

(
aeλ(1+s(1−z)+t(z−1))(λ(−1+t(1−z)+s(z−1)))c

)
(λ(−1+t(1−z)+s(z−1)))c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
+ (−λ)c(b−ac)γ(c,λ(−1+t(1−z)+s(z−1)))

(λ(−1+t(1−z)+s(z−1)))c
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

fw,(s,t) (a, b) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)y(−λ)c

(
aeλ(1−t)(λ(t−1))c+y+(b−ac)γ(c+y,λ(t−1))

)
(λ(t−1))c+yΓ(1+y)

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

Covs,t = se2λ(−λ)2c((ac−b)(a(t−1)+bt)+aλ(a−bt+act))(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)2
+

s(b−ac)
(
eλ(−λ)cγ(c,−λ)

(
b(1+t(c+λ−1))+a

(
λ+λ2t+c(t(2+λ)−2)

)))(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)2
+ s(b−ac)2(t−1)(Γ(c)Γ(1+c)+Γ(c,−λ)(cΓ(c,−λ)−2Γ(1+c)))(

aeλ(−λ)c+(b−ac)γ(c,−λ)
)2 .

Covs,t−s =
s(s−t)(b−ac)

(
e2λ(−λ)2c(a+b+aλ)−eλ(−λ)cΓ(c)(2ac+b(c+λ−1)+aλ(c+λ))

)
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)2
+

s(s−t)(b−ac)
(
(−λ)cE1−c(−λ)

(
eλ(−λ)c(2ac+b(c+λ−1)+aλ(c+λ))+2(b−ac)Γ(1+c)

))(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)2
+

s(s−t)(b−ac)c(ac−b)
(
Γ(c)2−Γ(c,−λ)2

)
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)2 .
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7.2 Probability mass/density function weight functions

7.2.1 w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r

Theorem 7.8. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r then

wt (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1F1 (n+ r; 1 + n;λp (1− t)) .

fw,t (n) =

(
n+ r − 1

n

)
(λpt)n 1F1(n+r;1+n;λp(1−t))

1F1(r;1;λp)Γ(n+1)
.

gt (z) = 1F1(r;1;λp(1+t(z−1)))

1F1(r;1;λp)
.

E (Nw (t)) = λprt1F1(r+1;2;λp)

1F1(r;1;λp)
.

V ar (Nw (t)) = (λpt)2r(r+1)1F1(r+2;3;λp)
21F1(r;1;λp)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = 1F1(r;1;λp(1+s(1−z)+t(z−1)))

1F1(r;1;λp)
.

fw,(s,t) (a, b) =

(
b+ r − 1

n

)(
b
a

) (
1− s

t

)b−a( s
t

)a
(λpt)b1F1(b+r;1+b;λp(1−t))

Γ(b+1)1F1(r;1;λp)
.

Covs,t = prsλ(−2prtλ1F1(1+r;2;λp))2

21F1(r;1;λp)
2

+ 1F1 (r; 1;λp) (21F1 (1 + r; 2;λp) + p (1 + r) tλ1F1 (2 + r; 3;λp)) .

Covs,t−s =
(λp)2rs(t−s)

(
(1+r)1F1(r;1;λp)1F1(2+r;3;λp)−2r1F1(1+r;2;λp)2

)
21F1(r;1;λp)

2 .
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7.2.2 w (n;φ) =

(
m

n

)
pn (1− p)m−n

Theorem 7.9. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
m
n

)
pn (1− p)m−n then

wt (n;φ) =

(
m
n

)
pn (1− p)m−n

1F1

(
n−m; 1 + n; λp(1−t)

p−1

)
.

fw,t (n) =

(
m
n

)(
λpt
1−p

)n 1F1

(
n−m;1+n;

λp(1−t)
p−1

)
Lm

(
pλ
p−1

)
Γ(1+n)

.

gt (z) =
Lm

(
pλ(1+t(z−1))

p−1

)
Lm

(
pλ
p−1

) .

E (Nw (t)) =
λptL1

m−1

(
pλ
p−1

)
(p−1)Lm

(
pλ
p−1

) .

V ar (Nw (t)) =
(λpt)2L2

m−2

(
pλ
p−1

)
(p−1)2Lm

(
pλ
p−1

) + E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) =
Lm

(
pλ(1+s(1−z)+t(z−1))

p−1

)
Lm

(
pλ
p−1

) .

fw,(s,t) (a, b) =

(
m
b

)(
b
a

) (
1− s

t

)b−a( s
t

)a
(λpt)b1F1

(
b−m;1+b;

pλ(1−t)
p−1

)
Γ(1+b)(1−p)bLm

(
pλ
p−1

) .

Covs,t =
psλ

(
Lm

(
pλ
p−1

)(
ptλL2

m−2

(
pλ
p−1

)
+(1−p)L1

m−1

(
pλ
p−1

))
−ptλL1

m−1

(
pλ
p−1

)2)
(
(p−1)Lm

(
pλ
p−1

))2 .

Covs,t−s =
(λp)2s(t−s)

(
L1
m−1

(
pλ
p−1

)2
−Lm

(
pλ
p−1

)
L2
m−2

(
pλ
p−1

))
(
(p−1)Lm

(
pλ
p−1

))2 .
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7.2.3 w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

Theorem 7.10. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = aΓ(n)Γ(a+1)

Γ(n+a+1)
then

wt (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1) 1F1 (n;n+ a+ 1;λ (1− t)) .

fw,t (n) = tnλn−1

n
1F1(n;n+a+1;λ(1−t))

2F2(1,1;2,2+a;λ)
Γ(2)Γ(2+a)
Γ(n+a+1)

.

gt (z) = (1+t(z−1))2F2(1,1;2,2+a;λ(1+t(z−1)))

2F2(1,1;2,2+a;λ)
.

E (Nw (t)) = (1+a)eλtλ−1−aγ(1+a,λ)

2F2(1,1;2,2+a;λ)
.

V ar (Nw (t)) =
t2λ−1−a

(
eλ(λ−a−1)Γ(2+a)+(1+a)

(
λ1+a−eλ(λ−a−1)Γ(1+a,λ)

))
2F2(1,1;2,2+a;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+s(1−z)+t(z−1))2F2(1,1;2,2+a;λ(1+s(1−z)+t(z−1)))

2F2(1,1;2,2+a;λ)
.

fw,(s,t) (a, b) =

(
b
a

) (
1− s

t

)b−a( s
t

)a
tbλb−1

1F1(b;1+a+b;λ(1−t))

b2F2(1,1;2,2+a;λ)
Γ(2)Γ(2+a)
Γ(1+a+b)

.

Covs,t =
(1+a)sλ−2(1+a)

(
−(1+a)e2λtγ(1+a,λ)2

)
2F2(1,1;2,2+a;λ)2

+
(1+a)sλ−2(1+a)

(
λ1+a

(
tλ1+a+eλ(1+t(λ−1−a))γ(1+a,λ)

)
2F2(1,1;2,2+a;λ)

)
2F2(1,1;2,2+a;λ)2

.

Covs,t−s =
(1+a)s(s−t)λ−2(1+a)

(
(1+a)e2λγ(1+a,λ)2

)
2F2(1,1;2,2+a;λ)2

+
(1+a)s(s−t)λ−2(1+a)

(
λ1+a

(
−λ1+a+eλ(1+a−λ)γ(1+a,λ)

)
2F2(1,1;2,2+a;λ)

)
2F2(1,1;2,2+a;λ)2

.
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7.2.4 w (n;φ) = aba

na+1

Theorem 7.11. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = aba

na+1 then

wt (n;φ) = abaa+1Fa+1(n,...,n;n+1,...,n+1;λ(1−t))
na+1 .

fw,t (n) = tnλn−b
a+1Fa+1(n,...,n;n+1,...,n+1;λ(1−t))

na+2Fa+2(1,b,...b;b+1,...,b+1;λ)
Γ(n)aΓ(b+1)a+2

Γ(n+1)a+1Γ(b)a+1 .

gt (z) = (1+t(z−1))ba+2Fa+2(1,b,...b;b+1,...,b+1;(1+t(z−1))λ)

a+2Fa+2(1,b,...b;b+1,...,b+1;λ)
.

E (Nw (t)) = tba+1Fa+1(1,b,...b;b+1,...,b+1;λ)

a+2Fa+2(1,b,...b;b+1,...,b+1;λ)
.

V ar (Nw (t)) = t2b(baFa(1,b,...b;b+1,...,b+1;λ)−a+1Fa+1(1,b,...b;b+1,...,b+1;λ))

a+2Fa+2(1,b,...b;b+1,...,b+1;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+s(1−z)+t(z−1))ba+2Fa+2(1,b,...b;b+1,...,b+1;(1+s(1−z)+t(z−1))λ)

a+2Fa+2(1,b,...b;b+1,...,b+1;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
tyλy−b

a+1Fa+1(y,...,y;1+y,...,1+y;λ(1−t))

ya+2Fa+2(1,b,...,b;1+b,...,1+b;λ)

× Γ(y)aΓ(1+b)a+2

Γ(1+y)a+1Γ(b)a+1 .

Covs,t =
bs
(
−bta+1Fa+1(1,b,...,b;1+b,...,1+b;λ)2

)
a+2Fa+2(1,b,...,b;1+b,...,1+b;λ)2

− bs((t−1)a+1Fa+1(1,b,...,b;1+b,...,1+b;λ)a+2Fa+2(1,b,...,b;1+b,...,1+b;λ))

a+2Fa+2(1,b,...,b;1+b,...,1+b;λ)2

+ bs(btaFa(1,b,...,b;1+b,...,1+b;λ)a+2Fa+2(1,b,...,b;1+b,...,1+b;λ))

a+2Fa+2(1,b,...,b;1+b,...,1+b;λ)2
.

Covs,t−s = bs(s−t)ba+1Fa+1(1,b,...,b;1+b,...,1+b;λ)2

a+2Fa+2(1,b,...,b;1+b,...,1+b;λ)2

+ bs(s−t)(a+1Fa+1(1,b,...,b;1+b,...,1+b;λ)a+2Fa+2(1,b,...,b;1+b,...,1+b;λ))

a+2Fa+2(1,b,...,b;1+b,...,1+b;λ)2

− bs(s−t)(baFa(1,b,...,b;1+b,...,1+b;λ)a+2Fa+2(1,b,...,b;1+b,...,1+b;λ))

a+2Fa+2(1,b,...,b;1+b,...,1+b;λ)2
.



CHAPTER 7. WEIGHTED POISSON PROCESS: THEORY 170

7.2.5 w (n;φ) = −1
ln(1−p)

pn

n

Theorem 7.12. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = −1

ln(1−p)
pn

n
then

wt (n;φ) = − pnγ(n,p(t−1)λ)
(p(t−1)λ)n ln(1−p)

.

fw,t (n) = (λp)n−1tn1F1(n;n+1;p(1−t)λ)
n(n!)2F2(1,1;2,2;pλ)

.

gt (z) = (1+t(z−1))2F2(1,1;2,2;p(1+t(z−1))λ)

2F2(1,1;2,2;pλ)
.

E (Nw (t)) = t1F1(1;2;pλ)

2F2(1,1;2,2;pλ)
.

V ar (Nw (t)) =
t2
(
epλ−1F1(1;2;pλ)

)
2F2(1,1;2,2;pλ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+s(1−z)+t(z−1))2F2(1,1;2,2;p(1+s(1−z)+t(z−1))λ)

2F2(1,1;2,2;pλ)
.

fw,(s,t) (x, b) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
ty(λp)y−1

1F1(y;1+y;p(1−t)λ)

y(y!)2F2(1,1;2,2;pλ)
.

Covs,t =
s
((

epλt+(1−t)1F1(1;2;pλ)
)
2F2(1,1;2,2;pλ)−t1F1(1;2;pλ)

2
)

2F2(1,1;2,2;pλ)
2 .

Covs,t−s =
s(s−t)

((
1F1(1;2;pλ)−epλ

)
2F2(1,1;2,2;pλ)+1F1(1;2;pλ)

2
)

2F2(1,1;2,2;pλ)
2 .
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7.2.6 w (n;φ) = Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

Theorem 7.13. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = Γ(r+n)

n!Γ(r)
Beta(a+r,b+n)

Beta(a,b)
then

wt (n;φ) = Γ(r+n)Beta(a+r,b+n)2F2(b+n,r+n;1+n,a+b+n+r;λ(1−t))
Γ(r)Γ(1+n)Beta(a,b)

.

fw,t (n) = (λt)nΓ(r+n)Beta(a+r,b+n)2F2(b+n,r+n;1+n,a+b+n+r;λ(1−t))

Γ(r)Γ(1+n)2Beta(a+r,b)2F2(b,r;1,a+b+r;λ)
.

gt (z) = 2F2(b,r;1,a+b+r;(1+t(z−1))λ)

2F2(b,r;1,a+b+r;λ)
.

E (Nw (t)) = brtλ2F2(1+b,1+r;2,1+a+b+r;λ)
(a+b+r)2F2(b,r;1,a+b+r;λ)

.

V ar (Nw (t)) = b(1+b)r(1+r)(tλ)22F2(2+b,2+r;3,2+a+b+r;λ)
2(a+b+r)(1+a+b+r)2F2(b,r;1,a+b+r;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = 2F2(b,r;1,a+b+r;(1+s(1−z)+t(z−1))λ)

2F2(b,r;1,a+b+r;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)yBeta(a+r,y+b)

Beta(a+r,b)

× Γ(y+r)2F2(y+b,y+r;1+y,1+b+y+r;λ(1−t))

Γ(1+y)2Γ(r)2F2(b,r;1,a+b+r;λ)
.

Covs,t =

(
brsλ

(
−brtλ2F2(1+b,1+r;2,1+a+b+r;λ)2

)
Γ(1+c+d+r)2

+ brsλ(2F2(b,r;1,a+b+r;λ))
Γ(c+d+r)

×(
2F2(1+b,1+r;2,1+a+b+r;λ)

Γ(1+a+b+r)
+ (1+b)(1+r)tλ2F2(2+b,2+r;3,2+a+b+r;λ)

Γ(3)Γ(2+a+b+r)

))
× Γ(a+b+r)2

2F2(b,r;1,a+b+r;λ)2
.

Covs,t−s =
((

s(s−t)(λbr)22F2(1+b,1+r;2,1+a+b+r;λ)2

Γ(1+a+b+r)2

)
− brs(s−t)λ2(1+b)(1+r)2F2(b,r;1,a+b+r;λ)2F2(2+b,2+r;3,2+a+b+r;λ)

Γ(a+b+r)Γ(3)Γ(2+a+b+r)

)
× Γ(a+b+r)2

2F2(b,r;1,a+b+r;λ)2
.
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7.3 Truncating weight functions

7.3.1 w (n;φ) = I (n ≥ a)

Theorem 7.14. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = I (n ≥ a) then

wt (n;φ) = eλ(1−t).

fw,t (n) = (tλ)ne−λtΓ(a)
n!γ(a,λ)

.

gt (z) = eλt(z−1)γ(a,λ(1+t(z−1)))
γ(a,λ)

.

E (Nw (t)) = t
(
λ+ e−λλa

γ(a,λ)

)
.

V ar (Nw (t)) = t
(
λ− te−2λλ2a

γ(a,λ)2
+ e−λ(1+t(a−λ−1))λa

γ(a,λ)

)
.

gt−s (z) = e(t−s)λ(1−z)γ(a,1+s(1−z)+t(z−1))
γ(a,λ)

.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)ye−λtΓ(a)

Γ(1+y)γ(a,λ)
.

Covs,t = s
(
λ− te−2λλ2c

γ(a,λ)2
+ e−λ(1+t(a−λ−1))λa

γ(a,λ)

)
.

Covs,t−s =
s(s−t)λae−2λ

(
λa+eλ(λ+1−a)γ(a,λ)

)
γ(a,λ)2

.
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7.3.2 w (n;φ) = I (n ≤ b)

Theorem 7.15. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = I (n ≤ b) then

wt (n;φ) = eλ(1−t)Γ(1+b−n,λ(1−t))
(b−n)!

.

fw,t (n) = e−λt(λt)nb!Γ(1+b−n,λ(1−t))
n!(b−n)!Γ(1+b,λ)

.

gt (z) = e−λt(z−1)Γ(1+b,λ(1+t(z−1)))
Γ(1+b,λ)

.

E (Nw (t)) = λt
(
1− e−λλb

Γ(1+b,λ)

)
.

V ar (Nw (t)) = − e−λt2λ
(
bλb+λb+1−λeλΓ(1+b,λ)

)
Γ(1+b,λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = eλ(t−s)(z−1)Γ(1+b,λ(1+s(1−z)+t(z−1)))
Γ(1+b,λ)

.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)ye−λtb!Γ(1+b−y,λ(1−t))

y!(b−y)!Γ(1+b,λ)
.

Covs,t = s
(
λ− e−2λt

E−b(λ)
2 +

e−λ(λt−tb−1)
E−b(λ)

)
.

Covs,t−s =
e−2λs(s−t)

(
1−eλ(λ−b)E−b(λ)

)
E−b(λ)

2 .

Where En (.) is the exponential integral (Definition 10.22).
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7.3.3 w (n;φ) = I (n ≥ a) I (n ≤ b)

Theorem 7.16. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = I (n ≥ a) I (n ≤ b) then

wt (n;φ) = eλ(1−t)Γ(1+b−n,λ(1−t))
(b−n)!

.

fw,t (n) = e−λt(λt)nb!Γ(a)Γ(1+b−n,λ(1−t))
n!(b−n)!(Γ(1+b,λ)Γ(a)−b!Γ(a,λ))

.

gt (z) = eλt(z−1)(b!Γ(a,λ(1+t(z−1)))−Γ(a)Γ(1+b,λ(1+t(z−1))))
b!Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

E (Nw (t)) =
e−λt

(
Γ(1+b)

(
λeλΓ(a,λ)−λa

)
+λΓ(a)

(
λb−eλΓ(1+b,λ)

))
b!Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

V ar (Nw (t)) = − e−λt2
(
λ1+bΓ(a)

(
λ−eλλ2E−b(λ)+b

)
+λaΓ(1+b)

(
1−λ−a+eλλ2E1−a(λ)

))
b!Γ(a,λ)−Γ(a)Γ(1+b,λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = eλ(t−s)(z−1)(b!Γ(a,λ(1+s(1−z)+t(z−1)))−Γ(a)Γ(1+b,λ(1+s(1−z)+t(z−1))))
b!Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)ye−λtb!Γ(a)Γ(1+b−y,λ(1−t))

y!(b−y)!(Γ(a)Γ(1+b,λ)−b!Γ(a,λ))
.

Covs,t =
e−2λsλ2a(b!)2

(
eλE1−a(λ)

(
λt+t−1+λeλE1−a(λ)

)
−t
)

(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2

+
e−2λsλ1+a+bb!Γ(a)

(
2t−eλE−b(λ)(λt+t−1)+eλE1−a(λ)

(
1−λt+tb−2λeλE−b(λ)

))
(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2

+
e−2λsλ2(1+b)Γ(a)2

(
λe2λ(E−b(λ))

2+eλE−b(λ)(λt−tb−1)−t
)

(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2

− e−2λseλtλab!(ab!Γ(a,λ)−a!Γ(1+b,λ))

(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2
.

Covs,t−s =
e−2λs(s−t)λ1+a+bb!Γ(a)

(
eλ(1+λ−a)E−b(λ)+eλ(λ−b)E1−a(λ)−2

)
(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2

+
e−2λs(s−t)λ2(1+b)Γ(a)2

(
1−eλ(λ−b)E−b(λ)

)
(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2

+
e−2λs(s−t)λa(b!)2Γ(a,λ)

(
λa−eλ(1+λ−a)

)
(b!Γ(a,λ)−Γ(a)Γ(1+b,λ))2

.
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7.3.4 w (n;φ) =

(
n

a

)
Theorem 7.17. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
n
a

)
then

wt (n;φ) =

(
n
a

)
1F1 (1 + n, 1− a+ n;λ (1− t)) .

fw,t (n) =

(
n
a

)
e−λtnλn−aa!1F1(1+n,1−a+n;λ(1−t))

n!
.

gt (z) = eλt(z−1) (1 + t (z − 1))a .

E (Nw (t)) = t (a+ λ) .

V ar (Nw (t)) = t (a (1− t) + λ) .

gt−s (z) = eλ(t−s)(z−1) (1 + s (1− z) + t (z − 1))a .

fw,(s,t) (x, y) =

(
y
x

)(
y
a

) (
1− s

t

)y−x( s
t

)x
e−λλy−atya!1F1(1+y,1−a+y;λ(1−t))

y!
.

Covs,t = s (a (1− t) + λ) .

Covs,t−s = as (s− t) .
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7.4 Miscellaneous weight functions

7.4.1 w (n;φ) = ε n!
e−λλnI (n = 0) + (1− ε)

Theorem 7.18. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = ε n!

e−λλn I (n = 0) + (1− ε) then

wt (n;φ) = eλ(1−t) (1− ε) .

fw,t (n) = e−λt(λt)n(1−ε)
n!

.

gt (z) = eλt(z−1) (1− ε) + ε.

E (Nw (t)) = λt (1− ε) .

V ar (Nw (t)) = λt (1− ε) (1 + ελt) .

gt−s (z) = eλ(t−s)(z−1) (1− ε) + ε.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
e−λt(λt)y(1−ε)

y!
.

Covs,t = s (1− ε)λ (1 + ελt) .

Covs,t−s = s (t− a) (1− ε) ελ2.
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7.4.2 w (n;φ) = (a)n = Γ(a+n)
Γ(a)

Theorem 7.19. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (a)n then

wt (n;φ) =
(a)n

(1+λ(t−1))a+n .

fw,t (n) =
(λt)n(1−λ)a(a)n
(1+λ(t−1))a+n .

gt (z) = (1−λ)a

(1+λ(t(1−z)−1))
.

E (Nw (t)) = atλ
1−λ

.

V ar (Nw (t)) = atλ(1+λ(t−1))

(λ−1)2
.

gt−s (z) = (1−λ)a

(1+λ(s(z−1)+t(1−z)−1))a
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)y(1−λ)a(a)y

y!(1+λ(t−1))y+a .

Covs,t = asλ(1+λ(t−1))

(λ−1)2
.

Covs,t−s = as(t−s)λ2

(λ−1)2
.
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7.4.3 w (n;φ) = (n)a =
Γ(a+n)
Γ(n)

Theorem 7.20. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = (n)a then

wt (n;φ) = (n)a 1F1 (a+ n, n;λ (1− t)) .

fw,t (n) = tnλn−1Γ(n+a)1F1(a+n,n;λ(1−t))
Γ(n)Γ(1+a)Γ(1+n)1F1(1+a,2;λ)

.

gt (z) = (1+t(z−1))1F1(1+a,2;λ(1+t(z−1)))

1F1(1+a,2;λ)
.

E (Nw (t)) = t+ (1+a)λt1F1(2+a,3;λ)
21F1(1+a,2;λ)

.

V ar (Nw (t)) = t2λ(1+a)(61F1(2+a,3;λ)+λ(2+a)1F1(3+a,4;λ))
61F1(1+a,2;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+s(1−z)+t(z−1))1F1(1+a,2;λ(1+s(1−z)+t(z−1)))

1F1(1+a,2;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
tyλy−1

1F1(a+y,y;λ(1−t))

1F1(1+a,2;λ)
Γ(a+y)

Γ(1+a)Γ(1+y)Γ(y)
.

Covs,t =
s
(
12(t−1)1F1(1+a,2;λ)2+3(1+a)2tλ2

1F1(2+a,3;λ)2
)

121F1(1+a,2;λ)2

− s2(1+a)λ1F1(1+a,2;λ)(31F1(2+a,3;λ)+(2+a)tλ1F1(3+a,4;λ))

121F1(1+a,2;λ)2
.

Covs,t−s =
s(s−t)

(
121F1(1+a,2;λ)2+3(1+a)2λ2

1F1(2+a,3;λ)2
)

121F1(1+a,2;λ)2

− s(s−t)2(1+a)(2+a)λ2
1F1(1+a,2;λ)1F1(3+a,4;λ)

121F1(1+a,2;λ)2
.
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7.5 Inverted weight functions

7.5.1 w (n;φ) =
(
a+ b−ac

n+c

)−1

Theorem 7.21. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
a+ b−ac

n+c

)−1 then

wt (n;φ) =
(n+c)2F2

(
b
a
+n,1+c+n;1+ b

a
+n,c+n;λ(1−t)

)
n+an

.

fw,t (n) =
b(c+n)(λt)n2F2

(
b
a
+n,1+c+n;1+ b

a
+n,c+n;λ(1−t)

)
c(b+an)n!2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

gt (z) =
2F2

(
b
a
,1+c;1+ b

a
,c;λ(1+t(z−1))

)
2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

E (Nw (t)) =
bt

(
aeλ(−λ)

b
a (a(c+λ)−b)+a(b−ac)Γ

(
a+b
a

)
+b(ac−b)Γ

(
b
a
,−λ

))
(−λ)

b
a a3c2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

V ar (Nw (t)) =
t2aeλ(−λ)

b
a
(
b2−ab(λ+c−1)+a2

(
λ2+c(λ−1)

))
a2
(
aeλ(−λ)

b
a+(ac−b)γ

(
b
a
,−λ

))

−
t2aeλ(−λ)

b
a

(
b(a+b)(b−ac)γ

(
b
a
,−λ

))
a2
(
aeλ(−λ)

b
a+(ac−b)γ

(
b
a
,−λ

)) + E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) =
2F2

(
b
a
,1+c;1+ b

a
,c;λ(1+s(1−z)+t(z−1))

)
2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)y(c+y)b2F2

(
b
a
+y,1+c+y;1+ b

a
+y,c+y;λ(1−t)

)
c(a+ay)y!2F2

(
b
a
,1+c;1+ b

a
,c;λ
) .

Covs,t = st
a2

(
aeλ(−λ)

b
a
(
b2−ab(λ+c−1)+a2

(
λ2+c(λ−1)

))
−b(a+b)(b−ac)γ

(
b
a
,−λ

))
aeλ(−λ)

b
a−(b−ac)γ

(
b
a
,−λ

)
− s

a6
b (−λ)

2b
a

(
aeλ (−λ)

b
a (a (c+ λ)− b) + b (b− ac) γ

(
b
a
,−λ

))
×

(
b2(b−ac)tγ

(
b
a
,−λ

))
+a(−λ)

b
a

(
−beλt(b−a(c+λ))−a2c2F2

(
b
a
,1+c;1+ b

a
,c;λ
))

c22F2

(
b
a
,1+c;1+ b

a
,c;λ
)2 .

Note that the expression for Cov (Nw (s) , Nw (t)−Nw (s)) is extremely lengthy, and can
barely be simplified beyond the given definition. Thus it is excluded.
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7.5.2 w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

Theorem 7.22. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

then

wt (n;φ) =
1F1

(
1+n,n+r;

λ(1−t)
p

)
p(1−p)

 n+ r − 1
n

 .

fw,t (n) =
(λt)nΓ(r−1)1F1

(
1+n,n+r;

λ(1−t)
p

)
e
λ
p pnΓ(n+r)γ

(
r−1,λ

p

) .

gt (z) =
e
λt(z−1)

p
(

λ
p

)r−1
γ
(
r−1,

1+λt(z−1)
p

)
(

1+λt(z−1)
p

)r−1
γ
(
r−1,λ

p

) .

E (Nw (t)) =
e
− t

p t

(
p2(r−1)

(
λ
p

)r
+e

λ
p λ(p−pr+λ)

(
Γ(r)−(r−1)Γ

(
r−1,λ

p

)))
p(r−1)λγ

(
r−1,λ

p

) .

V ar (Nw (t)) =
e
− 2t

p t

(
e
λ
p pλ(r−1)

(
λ
p

)r
(p+pt(r−2)−tλ)

(
Γ(r)−(r−1)Γ

(
r−1,λ

p

)))
pλ2(r−1)2γ

(
r−1,λ

p

)2
+

e
− 2t

p t

(
e
2t
p λ2(p(r−1)(t−1)+λ)

(
Γ(r)−(r−1)Γ

(
r−1,λ

p

))2
−p3(r−1)2t

(
λ
p

)2r)
pλ2(r−1)2γ

(
r−1,λ

p

)2 .

gt−s (z) =
e
λ(t−s)(z−1)

p

(
λ
p

)r−1

γ
(
r−1,

λ(1+s(1−z)+t(z−1))
p

)
(

λ(1+s(1−z)+t(z−1))
p

)r−1
γ
(
r−1,λ

p

) .

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)y

(
λ
p

)r−1
Γ(r−1)1F1

(
1+y,y+r;

λ(1−t)
p

)
e
λ
p pyΓ(r+y)γ

(
r−1,λ

p

) .
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Covs,t =
e
− 2t

p s

(
e
λ
p pλ(r−1)

(
λ
p

)r
(p+pt(r−2)−tλ)

(
Γ(r)−(r−1)Γ

(
r−1,λ

p

)))
pλ2(r−1)2γ

(
r−1,λ

p

)2
+

e
− 2t

p s

(
e
2t
p λ2(p(r−1)(t−1)+λ)

(
Γ(r)−(r−1)Γ

(
r−1,λ

p

))2
−p3(r−1)2t

(
λ
p

)2r)
pλ2(r−1)2γ

(
r−1,λ

p

)2 .

Covs,t−s =
e
− 2t

p s(t−s)

(
e
λ
p λ
(
Γ(r)−(r−1)Γ

(
r−1,λ

p

))
(p(r−2)−λ)

(
λ
p

)r)
λ2(r−1)γ

(
r−1,λ

p

)2
+

e
− 2t

p s(t−s)

(
e
λ
p λ
(
Γ(r)−(r−1)Γ

(
r−1,λ

p

))
e
λ
p λ
(
Γ(r)−(r−1)Γ

(
r−1,λ

p

)))
λ2(r−1)γ

(
r−1,λ

p

)2
−

e
− 2t

p s(t−s)

((
p2(r−1)

(
λ
p

)2r)
(p(r−2)−λ)

(
λ
p

)r)
λ2(r−1)γ

(
r−1,λ

p

)2
−

e
− 2t

p s(t−s)

((
p2(r−1)

(
λ
p

)2r)
e
λ
p λ
(
Γ(r)−(r−1)Γ

(
r−1,λ

p

)))
λ2(r−1)γ

(
r−1,λ

p

)2 .
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7.5.3 w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

Theorem 7.23. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

then

wt (n;φ) = Γ(n+a+1)1F1(n+a+1;n;λ(1−t))
a2Γ(a)Γ(n)

.

fw,t (n) = tnλn−1Γ(n+a+1)1F1(n+a+1;n;λ(1−t))
Γ(a+2)Γ(n+1)Γ(n)1F1(2+a;2;λ)

.

gt (z) = (1+t(z−1))1F1(2+a;2;λ(1+t(z−1)))

1F1(2+a;2;λ)
.

E (Nw (t)) = t+ (2+a)λt1F1(3+a;3;λ)
21F1(2+a;2;λ)

.

V ar (Nw (t)) = t2λ(2+a)(61F1(3+a;3;λ)+(3+a)λ1F1(4+a;4;λ))
61F1(2+a;2;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+s(1−z)+t(z−1))1F1(2+a;2;λ(1+s(1−z)+t(z−1)))

1F1(2+a;2;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
tyλy−1Γ(1+a+y)1F1(1+a+y,y;λ(1−t))

Γ(2+a)Γ(1+y)Γ(y)1F1(2+a;2;λ)
.

Covs,t = s(2(2+a)λ1F1(2+a;2;λ)(31F1(3+a;3;λ)+(3+a)λt1F1(4+a;4;λ)))

121F1(2+a;2;λ)2

−
s
(
3(2+a)2tλ2

1F1(3+a;3;λ)2(31F1(3+a;3;λ)+(3+a)λt1F1(4+a;4;λ))
)

121F1(2+a;2;λ)2

−
s
(
12(t−1)1F1(2+a;2;λ)2(31F1(3+a;3;λ)+(3+a)λt1F1(4+a;4;λ))

)
121F1(2+a;2;λ)2

.

Covs,t−s =
s(s−t)

(
(4−4aλ)1F1(2+a;2;λ)2+a2λ2

1F1(2+a;3;λ)2
)

41F1(2+a;2;λ)2

+ s(s−t)2aλ(2+λ)1F1(2+a;2;λ)1F1(2+a;3;λ)

41F1(2+a;2;λ)2
.
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7.5.4 w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

Theorem 7.24. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
−1

ln(1−p)
pn

n

)−1

then

wt (n;φ) = e
λ(1−t)

p (λt−λ−np) ln(1−p)
pn+1 .

fw,t (n) = e
−λt

p tnλn−1(np+λ−λt)
pnn!

.

gt (z) = e
λt(z−1)

p (1 + t (z − 1)) .

E (Nw (t)) = t(p+λ)
p

.

V ar (Nw (t)) = t(λ+p−pt)
p

.

gt−s (z) = e
λ(t−s)(z−1)

p (1 + s (1− z) + t (z − 1)) .

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
tyλy−1e

−λt
p (py+λ−tλ)

y!
.

Covs,t = s(p−pt+λ)
p

.

Covs,t−s = s (s− t) .
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7.5.5 w (n;φ) =
(
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

Theorem 7.25. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) =

(
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

)−1

then

wt (n;φ) = Beta(a,b)Γ(1+n)Γ(r)2F2(1+n,a+b+n+r;b+n,n+r;λ(1−t))
Γ(n+r)Beta(a+r,b+n)

.

fw,t (n) = (λt)nBeta(a+r,b)Γ(r)2F2(1+n,a+b+n+r;b+n,n+r;λ(1−t))
Γ(n+r)Beta(a+r,b+n)2F2(1,a+b+r;b,r;λ)

.

gt (z) = 2F2(1,a+b+r;b,r;λ(1+t(z−1)))

2F2(1,a+b+r;b,r;λ)
.

E (Nw (t)) = (a+b+r)λt2F2(2,1+a+b+r;1+b,1+r;λ)
br2F2(1,a+b+r;b,r;λ)

.

V ar (Nw (t)) = 2(a+b+r)(1+a+b+r)(λt)22F2(3,2+a+b+r;2+b,2+r;λ)
b(1+b)r(1+r)2F2(1,a+b+r;b,r;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = 2F2(1,a+b+r;b,r;λ(1+s(1−z)+t(z−1)))

2F2(1,a+b+r;b,r;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)yBeta(a+r,b)Γ(r)

Beta(a+r,b+y)Γ(r+y)

× 2F2(1+y,a+b+r+y;b+y,r+y;λ(1−t))

2F2(1,a+b+r;b,r;λ)
.

Covs,t =
(a+b+r)st

(
−(a+b+r)tλ2F2(2,1+a+b+r;1+b,1+r;λ)2

)
(br)22F2(1,a+b+r;b,r;λ)2

+ 2F2(1,a+b+r;b,r;λ)2F2(2,1+a+b+r;1+b,1+r;λ)

br2F2(1,a+b+r;b,r;λ)2

+ 2(1+a+b+r)tλ2F2(1,a+b+r;b,r;λ)2F2(3,2+a+b+r;2+b,2+r;λ)

(b+b2)(r+r2)2F2(1,a+b+r;b,r;λ)2
.

Covs,t−s =
(a+b+r)s(s−t)λ2

(
−(a+b+r)2F2(2,1+a+b+r;1+b,1+r;λ)2

)
(br)22F2(1,a+b+r;b,r;λ)2

+ (a+b+r)s(s−t)λ22(1+a+b+r)2F2(1,a+b+r;b,r;λ)2F2(3,2+a+b+r;2+b,2+r;λ)

(b+b2)(r+r2)2F2(1,a+b+r;b,r;λ)2
.
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7.5.6 w (n;φ) =

(
n
a

)−1

Theorem 7.26. If the weight function used in the weighted Poisson probability mass function

is chosen as w (n;φ) =

(
n
a

)−1

then

wt (n;φ) = 1F1(1−a+n;1+n;λ(1−t)) n
a

 .

fw,t (n) = tnλn−aa!1F1(1−a+n;1+n;λ(1−t)) n
a

n!2F2(1,1;1+a,1+a;λ)

.

gt (z) = (1+t(z−1))a2F2(1,1;1+a,1+a;λ(1+t(z−1)))

2F2(1,1;1+a,1+a;λ)
.

E (Nw (t)) =
t
(
a(1+a)22F2(1,1;1+a,1+a;λ)+λ2F2(2,2;2+a,2+a;λ)

)
(1+a)22F2(1,1;1+a,1+a;λ)

.

V ar (Nw (t)) = t2a(a−1)2F2(1,1;1+a,1+a;λ)

2F2(1,1;1+a,1+a;λ)

+
2t2λ

(
a(2+a)22F2(2,2;2+a,2+a;λ)+2λ2F2(3,3;3+a,3+a;λ)

)
(1+a)2(2+a)22F2(1,1;1+a,1+a;λ)

+ E (Nw (t))− (E (Nw (t)))2 .

gt−s (z) = (1+s(1−z)+t(z−1))a2F2(1,1;1+a,1+a;λ(1+s(1−z)+t(z−1)))

2F2(1,1;1+a,1+a;λ)
.

fw,(s,t) (x, y) =

(
y
x

)(
y
a

)−1 (
1− s

t

)y−x( s
t

)x
tyλy+aa!1F1(1−a+y;1+y;λ(1−t))

2F2(1,1;1+a,1+a;λ)
.

Covs,t = sa (1− t)− stλ2
2F2(2,2;2+a,2+a;λ)2

(1+a)42F2(1,1;1+a,1+a;λ)2

+ sλ2F2(1,1;1+a,1+a;λ)2F2(2,2;2+a,2+a;λ)

(1+a)22F2(1,1;1+a,1+a;λ)2

+ 4stλ2
2F2(1,1;1+a,1+a;λ)2F2(3,3;3+a,3+a;λ)

(1+a)2(2+a)22F2(1,1;1+a,1+a;λ)2
.

Covs,t−s = −as(t−s)Γ(1+a)2

2F2(1,1;1+a,1+a;λ)2
− s(t−s)λ2

2F2(2,2;2+a,2+a;λ)2

(1+a)22F2(1,1;1+a,1+a;λ)2

+ s(t−s)42F2(3,3;3+a,3+a;λ)

2F2(1,1;1+a,1+a;λ)Γ(1+a)2(2+a)2
.
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7.5.7 w (n;φ) = ((a)n)
−1

Theorem 7.27. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = ((a)n)

−1 then

wt (n;φ) = 0F1(a+n;λ(1−t))Γ(a)
Γ(a+n)

.

fw,t (n) = Γ(λ)(λt)n0F1(a+n;λ(1−t))
Γ(1+n)Γ(a+n)0F1(a;λ)

.

gt (z) = 0F1(a;λ(1+λt(z−1)))

0F1(a;λ)
.

E (Nw (t)) = tλ0F1(1+a;λ)

0F1(a;λ)a
.

V ar (Nw (t)) = λt2 − (λt)20F1(1+a;λ)2

a20F1(a;λ)
2 + λt(1−at)0F1(1+a;λ)

a0F1(a;λ)
.

gt−s (z) = 0F1(a;λ(1+s(1−z)+t(z−1)))

0F1(a;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
(λt)y0F1(a+y;λ(1−t))Γ(a)

Γ(1+y)0F1(a;λ)Γ(a+y)
.

Covs,t = λst− stλ2
0F1(1+a;λ)2

a20F1(a;λ)
2 + sλ(1−at)0F1(1+a;λ)

a0F1(a;λ)
.

Covs,t−s = s(s−t)λ2Γ(a)2

0F1(a;λ)
2

(
0F1(1+a;λ)2

Γ(1+a)2
− 0F1(a;λ)0F1(2+a;λ)

Γ(a)Γ(2+a)

)
.
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7.5.8 w (n;φ) = ((n)a)
−1

Theorem 7.28. If the weight function used in the weighted Poisson probability mass function
is chosen as w (n;φ) = ((n)a)

−1 then

wt (n;φ) = Γ(n)1F1(n,n+a;λ(1−t))
Γ(n+a)

.

fw,t (n) = tnλn−1
1F1(n,n+a;λ(1−t))

n2F2(1,1;2,1+a;λ)
.

gt (z) = (1+t(z−1))2F2(1,1;2,1+a;λ(1+t(z−1)))

2F2(1,1;2,1+a;λ)
.

E (Nw (t)) = eλt(Γ(1+a)−aΓ(a,λ))
λa

2F2(1,1;2,1+a;λ)
.

V ar (Nw (t)) =
te−2a

(
2F2(1,1;2,1+a;λ)λa

(
atλa+eλ(1−at+λt)(Γ(1+a)−aΓ(a,λ))

))
2F2(1,1;2,1+a;λ)2

−
te−2a

(
e2λt(Γ(1+a)−aΓ(a,λ))2

)
2F2(1,1;2,1+a;λ)2

.

gt−s (z) = (1+s(1−z)+t(z−1))2F2(1,1;2,1+a;λ(1+s(1−z)+t(z−1)))

2F2(1,1;2,1+a;λ)
.

fw,(s,t) (x, y) =

(
y
x

) (
1− s

t

)y−x( s
t

)x
tyλy−1Γ(1+a)1F1(y;a+y;λ(1−t))

yΓ(a+y)2F2(1,1;2,1+a;λ)
.

Covs,t =
sλ−2a

(
2F2(1,1;2,1+a;λ)λa

(
atλa+eλ(1−at+tλ)(Γ(1+a)−aΓ(a,λ))

))
2F2(1,1;2,1+a;λ)

−
sλ−2a

(
e2λt(Γ(1+a)−aΓ(a,λ))2

)
2F2(1,1;2,1+a;λ)

.

Covs,t−s =
s(s−t)λ−2a

(
2F2(1,1;2,1+a;λ)λa

(
eλ(λ−a)(aΓ(a,λ)−Γ(1+a))−aλa

))
2F2(1,1;2,1+a;λ)

+
s(s−t)λ−2a

(
e2λt(Γ(1+a)−aΓ(a,λ))2

)
2F2(1,1;2,1+a;λ)

.



Chapter 8

Weighted Poisson Process:
Applications

In this chapter, the weighted Poisson processes proposed in Chapter 7 will be applied to a
range of datasets similar to what was done in Chapter 5.

The number of datasets that will be analysed in this chapter will be smaller than was the
case in Chapter 5. The main reason for this is that many of the datasets exhibit cyclical
patterns and trends. Typically, when time series are modelled, “seasonal adjustments” need
to be made to remove these cycles. To limit this problem in the modelling, the duration of
the data analysed has been limited to relatively short time spans.

Theoretically, Poisson and weighted Poisson processes are continuous time stochastic pro-
cesses, however none of the available datasets have time variables that are fine enough that
they can truly be considered “continuous time”. For instance, the US gun violence dataset
spans 1551 days, but none of the events have an hour, minute or second associated with
them. This leads to the practical limitation that the time variable t ∈ [0, 1] can, at best,
be subdivided into 1551 intervals of equal length. As was discussed in Chapter 6, this is a
common practical occurrence, and this discrete approximation of the continuous time domain
will be present in the upcoming analyses.

The discretisation of time leads to some interesting implications for parameter estimation:
A traditional realisation of a process has, at each time, only one value associated with it
since two events occurring at exactly the same time is practically impossible. However, since
numerous events can happen in the same interval of time, some datasets, like the US gun
injuries per incident (shown in Figure 8.1), can have multiple data points at “each time”.
This has the practical effect that if increments of the processes are modelled, the “sample
size” can be larger than one at each time step.
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Figure 8.1: US Gun violence - Injuries per incident

For all the weighted Poisson processes discussed in Chapter 7, the maximum likelihood
estimates of the parameters are calculated (using the Nelder-Mead algorithm which was
described in Chapter 5). Since the time domain is being approximated by many small
discrete intervals of equal length it is possible to calculate the maximum likelihood estimates
by using the probability mass function of the processes at the various time points. In addition
to the maximum log-likelihood, the AIC, AICc and BIC of the fit will also be calculated.
(Tables containing these results can be found in Chapter 10.) Of all of the fitted models, the
one that has the smallest AIC, AICc and BIC values is selected as the “best model”.

While it is possible to plot a “hybrid” graph which combines the discrete variable n and the
continuous variable t (see Figure 8.2 as an example), these graphs become extremely difficult
to interpret for large ranges of n. As a result, the marginal distribution of the best weighted
Poisson process will be plotted (in red) against the Poisson process (in black) at a few t
values. For each plot a vertical reference line will be inserted to indicate what the actual
value of the process is at that time.
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Figure 8.2: Hybrid plot - Poisson (10t) ;n = 0, 1, 2, ...; t ∈ [0, 1]

It should also be noted (as was mentioned earlier in this thesis) that many of the weight
functions discussed result in weighted Poisson probability mass functions that are computa-
tionally intensive to calculate if n becomes large. When data was modelled from a purely
distributional perspective this was a minimal problem since these values were rarely sizable
enough to cause major concerns. However, since count processes are non-decreasing as t
increases, the number of events in a time period can grow quickly. This is especially true
for processes that span long time periods and have high rates of incidents. When certain
weighted Poisson processes are too taxing they are excluded from the comparisons.
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8.1 Novel data fits
For the Weekly sales - Item 409 data, of the 20 weight functions that were tested, only 1 model
performs better than the Poisson process. The best fit is achieved when w (n;φ) = (912.948)n
and λ = 0.70881. Figure 8.3 shows the increments of the process and in Figure 8.4 below
the probability mass functions of the Poisson and weighted Poisson processes are given for
t = 10

52
, 20
52
, 30
52
, 40
52

.

Figure 8.3: Weekly sales - Item 409, increments
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Figure 8.4: Weekly sales - Item 409, fits at various t
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To eliminate or minimise the seasonal patterns that are present in nearly all of the datasets
discussed thus far, the remaining analyses will be done on small (weekly, monthly or yearly)
sections of the previously discussed data. For example, if the number of mass shootings
incidents in June 2013 are analysed it is found that of the 25 weighted processes, 5 outperform
the Poisson process and 2 additional weighted Poisson processes may. Interestingly, the best
fit occurs when w (n;φ) = I (n ≤ 31) and λ = 37.4904. While there is no practical reason
why the number of incidents in a month should be limited to 31, June and July are the
months where the most events tend to occur. Thus, this model may actually give insight
into how frequently mass shootings occur over monthly time periods. The second best fit
is achieved when w (n;φ) =

(
1762.3Γ(n)Γ(1763.3)

Γ(n+1763.3)

)−1

and λ = 0.422858. Figure 8.5 shows the
increments of the process and in Figure 8.6 below the probability mass functions are given
for t = 5

30
, 10
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, 20
30
, 25
30
, 30
30
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Figure 8.5: Mass shooting incidents - June 2013, increments
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Figure 8.6: Mass shooting incidents - June 2013, fits at various t
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When the daily number of gun violence incidents in Rhode Island for 2014 is analysed it
is found that out of the 22 weighted Poisson processes, 3 perform better than the Poisson
process, and 1 additional weighted Poisson process may be. The best fit is achieved when
w (n;φ) =

(
Γ(1492.15+n)
Γ(1492.15)n!

Beta(1492.17,411.724+n)
Beta(0.017301,411.724)

)−1

and λ = 474.181. Figure 8.7 shows the incre-
ments of the process and in Figure 8.8 below the probability mass functions are given for
t = 60

365
, 120
365

, 180
365

, 240
365

, 300
365

, 365
365

.

Figure 8.7: US gun violence - Rhode Island, increments
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Figure 8.8: Mass shooting incidents, fits at various t
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The next dataset contains information about global terrorist attacks between 1970 and 2017.
When the number successful bombing attacks in January of 2017 is analysed it is found that
out of the 22 weighted Poisson processes, 4 perform better than the Poisson process, and
3 may. The best fit is achieved when w (n;φ) =

(
8882.71Γ(n)Γ(8883.71)

Γ(n+8883.71)

)−1

and λ = 11.1034.
Figure 8.9 shows the increments of the process and in Figure 8.10 below the probability mass
functions are given for t = 5
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, 20
31
, 25
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Figure 8.9: Global terrorism - January 2017 successful bombings, increments
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Figure 8.10: Global terrorism - January 2017 successful bombings, fits at various t
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The next dataset contains information on accidents reported by the NYPD. When the number
injuries to cyclists between January and March of 2016 is analysed it is found that out of
the 19 weighted Poisson processes, 2 perform better than the Poisson process. The best fit
is achieved when w (n;φ) = (196.481)n and λ = 0.733446. Figure 8.11 shows the increments
of the process and in Figure 8.12 below the probability mass functions are given for t =
15
91
, 30
91
, 45
91
, 60
91
, 75
91
, 1.

Figure 8.11: NYPD accidents - Cyclist injuries January to March 2016, increments
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Figure 8.12: NYPD accidents - Cyclist injuries January to March 2016, fits at various t
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The next dataset contains information on crimes in Boston between June of 2015 and June
of 2018. When the number bomb hoaxes is analysed over the 37 month period it is found
that out of the 22 weighted Poisson processes, 5 perform better than the Poisson process.
The best fit is achieved when w (n;φ) = (278.742)n and λ = 0.790089. Figure 8.13 shows the
increments of the process and in Figure 8.14 below the probability mass functions are given
for t = 6
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Figure 8.13: Boston crimes - Bomb hoaxes, increments
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Figure 8.14: Boston crimes - Bomb hoaxes, fits at various t
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The final dataset contains weekly unemployment information in Barry County, Missouri for
2019. When the number of unemployment claims is analysed over the 52 week period it
is found that out of the 19 weighted Poisson processes, 2 perform better than the Poisson
process. The best fit is achieved when w (n;φ) = (23.8434)n and λ = 0.0.958732. Figure 8.15
shows the increments of the process and in Figure 8.16 below the probability mass functions
are given for t = 10
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Figure 8.15: Barry County - Unemployment claims, increments
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Figure 8.16: Barry County - Unemployment claims, fits at various t



Chapter 9

Conclusion

This thesis aimed to investigate distributions and methods by which non-equidispersed data
could be modelled. As a result, weighted Poisson distributions and processes were investi-
gated in-depth.

After a discussion into currently available methods of modelling non-equidispersed data, a
power study was performed on a range of classical and more recent tests for Poissonity. This
was followed by the introduction of 26 novel weight functions that can be used to augment the
probability mass function of the Poisson distribution. The resulting distribution is referred
to as a weighted Poisson distribution. Closed form statistical properties were derived for
all the proposed weighted Poisson distributions. The newly derived distributions were then
fitted to a variety of datasets, where, based on the AIC, AICc and BIC, it was found that
the weighted Poisson distribution gave better fits than the Poisson in every case considered.
The weighted Poisson distributions were also compared to a series of alternate methods that
have been used in the past to model discrete data. In this case the weighted Poisson models
outperformed the previous distributions in 13 of 17 cases considered.

Following an investigation into tests for homogeneous Poisson processes, the new weighted
Poisson distributions were expanded into stochastic processes, referred to as weighted Poisson
processes. Once again, closed form statistical properties of the processes were derived. These
weighted Poisson processes were fitted to observed datasets and shown to have favourable fit
characteristics relative to the traditional Poisson process.

There is, however, a considerable amount of followup research that can be conducted into
the weighted Poisson distributions which would lead to the distribution being more useful in
practice:

• The zero-inflated Poisson distribution has received relatively little attention in this the-
sis, and the conditional weighted Poisson distribution none. It is theoretically possible,
however, to model zero-inflated data with conditional weighted Poisson distributions.
This concept should be further investigated.

• The potential relationships that may exist between the weighted Poisson distribution
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and others (like the power distributions and the Lagrangian family of distributions)
remains to be studied.

• An exploration into niche “compound” weight functions remains to be conducted. Cer-
tain specific practical situations might benefit from combining two or more weights.
As an example, imagine a situation where there is an excess amount of zero observa-
tions, but where the zero-inflated Poisson distribution does not provide a good fit. It is
also possible that a truncating distribution could be needed, but one of the truncating
weights mentioned in this thesis might not provide a sufficiently good fit. In this situ-
ation it is worth exploring whether a truncating function, in combination with another
weight, might be suitable.

• This thesis has solely investigated univariate weighted Poisson distributions. Due to
the inherent flexibility of these distributions, expanding them into multivariate forms
could have useful practical applications.

• In order for the weighted Poisson distribution to be more widely used in practice, a
regression methodology needs to be developed.

• The parameters in this research were estimated with a numerical maximum likelihood
method. The development of a formal EM algorithm is yet to be explored.

• An investigation into the weighted Poisson distributions use in a Bayesian framework
remains to be done. Specifically, research into suitable priors for the parameters in the
weights is worthy of consideration.



Chapter 10

Appendix

10.1 Definitions
Definition 10.1. Natural numbers
For notational purposes throughout this thesis N0 will represent the set of natural numbers
starting at 0. Similarly N1 will represent the set of natural numbers starting at 1.
N0 = {0, 1, 2, ...}
N1 = {1, 2, 3, ...} .

Definition 10.2. Empirical probability mass function
Let X1, ..., Xn be n, i.i.d. discrete random variables. The empirical probability mass function
is then defined as

f̂ (X1, ..., Xn)i = Number of realizations equal to i
n = 1

n

∑n
j=1 I (Xj = i) , i = 0, 1, 2, ...

Definition 10.3. Poisson probability mass function
A discrete random variable, X, is said to follow the Poisson distribution with parameter λ > 0
if it has the following probability mass function

f (x;λ) = λxe−λ

x!
, x = 0, 1, 2, ...

This is denoted by X ∼ Poi (λ) .

Definition 10.4. Generalised Poisson probability mass function
A discrete random variable, X, is said to follow the generalised Poisson distribution with
parameters λ1 > 0 and |λ2| < 1 if it has the following probability mass function

f (x;λ1, λ2)
λ1(λ1+xλ2)

x−1e−(λ1+xλ2)

x!
, x = 0, 1, 2, ...

This is denoted by X ∼ GenPoi (λ1, λ2) .
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Definition 10.5. Binomial probability mass function
A discrete random variable, X, is said to follow the binomial distribution with parameters
n ∈ 0, 1, 2, ... and 0 < p < 1 if it has the following probability mass function

f (x;n, p) =

(
n
x

)
px (1− p)n−x , x = 0, 1, 2, ...

This is denoted by X ∼ bin (n, p) .

Definition 10.6. Negative binomial probability mass function
A discrete random variable, X, is said to follow the negative binomial distribution with pa-
rameters r > 0 and 0 < p < 1 if it has the following probability mass function

f (x; r, p) =

(
x+ r − 1

x

)
px (1− p)r , x = 0, 1, 2, ...

This is denoted by X ∼ negbin (r, p). It should be noted that many different forms of the
negative binomial probability mass function exist in the literature. These differences occur
when the random variable X is counting different things.

Definition 10.7. Exponential probability density function
A continuous random variable, X, is said to follow the exponential distribution with parameter
λ > 0 if it has the following probability density function

f (x;λ) = λe−λx , x ≥ 0

This is denoted by X ∼ exp (λ).

Definition 10.8. Erlang probability density function
A continuous random variable, X, is said to follow the Erlang distribution with parameters
λ > 0 and k ∈ 1, 2, ... if it has the following probability density function

f (x;λ, k) = λkxk−1e−λx

(k−1)!
, x ≥ 0

This is denoted by X ∼ Erl ((x;λ, k)).
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Definition 10.9. Gamma function
The gamma function is defined as

Γ (α) =

ˆ ∞

0

tα−1e−tdt.

Definition 10.10. Upper incomplete gamma function
The upper incomplete gamma function is defined as

Γ (α, β) =

ˆ ∞

β

tα−1e−tdt.

Definition 10.11. Lower incomplete gamma function
The lower incomplete gamma function is defined as

γ (α, β) =

ˆ β

0

tα−1e−tdt.

Definition 10.12. Beta function
The beta function is defined as

Beta (α, β) =
Γ (α) Γ (β)

Γ (α + β)

where Γ () is the gamma function (Definition 10.9)

Definition 10.13. Locconvexity and concavity
A function g () is said to be logconvex if ∀x1, x2 in the domain of g () and ∀t ∈ [0, 1]

log (g (tx1 + (1− t)x2)) ≤ tlog (g (x1)) + (1− t) log (g (x2))

= g (tx1 + (1− t)x2) ≤ g (x1)
t g (x2)

1−t .

If g () is twice differentiable then an equivalent condition exists, that states that g () is log-
convex if ∀x in the domain of g ()

g
′′
(x) g (x) ≥

(
g

′
(x)
)2

.

Similarly a function h () is said to be logconacve if ∀x1, x2 in the domain of h () and ∀t ∈ [0, 1]
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log (h (tx1 + (1− t)x2)) ≥ tlog (h (x1)) + (1− t) log (h (x2))

= h (tx1 + (1− t)x2) ≥ h (x1)
t h (x2)

1−t .

If g () is twice differentiable then an equivalent condition exists that states that g () is logcon-
cave if for all x in the domain of g ()

h
′′
(x)h (x) ≤

(
h

′
(x)
)2

.

Note that strict logconvexity and logconcavity is achieved when the same inequalities hold as
above but with strictly larger than or smaller than symbols.

Definition 10.14. Indicator function
If A is a set, then the indicator function of A, denoted by IA is defined as

IA (x) =

{
1 if x ∈ A

0 if x /∈ A.

Bain and Engelhardt [4] p341.

Definition 10.15. Confluent hypergeometric function
The confluent hypergeometric function, sometime also referred to as the degenerate or Kum-
mer hypergeometric functions, is defined as

1F1 (α; γ; z) =
∞∑
n=0

(α)n
(γ)n

zn

n!

where ()n is the Pochhammer symbol defined in Definition 10.18. Gradshteyn and Ryzhik
[59] p1023.

Definition 10.16. Gauss hypergeometric function
The Gauss hypergeometric function is defined as

2F1 (α, β; γ; z) =
∞∑
n=0

(α)n (β)n
(γ)n

zn

n!

where ()n is the Pochhammer symbol defined in Definition 10.18.
Gradshteyn and Ryzhik [59] p1005.
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Definition 10.17. Generalised hypergeometric function
The generalised hypergeometric function is defined as

pFq (α1, ..., αp; β1, ..., βq; z) =
∞∑
n=0

(α1)n ... (αp)n
(β1)n ... (βq)n

zn

n!

where ()n is the Pochhammer symbol defined in Definition 10.18. Note that pFq (α1, ..., αp; β1, ..., βq; z)
converges absolutely ∀z if p < q + 1. If p = q + 1 convergence occurs if |z| < 1, and diverges
∀z 6= 0 if p > q + 1. While it is possible to use analytic continuation to define that function
at z = 0 this extension will not be required in this thesis.
Gradshteyn and Ryzhik [59] p1010.

Definition 10.18. Pochhammer symbol
(a)n is known as the Pochhammer symbol. It is defined as

(a)n = a (a+ 1) ... (a+ n− a) =
Γ (a+ n)

Γ (a)

where (a)0 = 1.
Gradshteyn and Ryzhik [59] pxliii.

Definition 10.19. Laguerre polynomials
Ln (x) is known as the Laguerre polynomials. They are the solutions to the Laguerre equation

xy
′′
+ (1− x) y

′
+ ny = 0.

Ln (x) has the following expression:

Ln (x) =
n∑

k=0

(
n
k

)
(−1)k

k!
xk.

Lα
n (x) is known as the generalised Laguerre polynomials.

Lα
n (x) has the following expression:

Lα
n (x) =

n∑
k=0

(
n+ α
n− k

)
(−1)k

k!
xk.

Note that L0
n (x) = Ln (x) .

Gradshteyn and Ryzhik [59] p1000.
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Definition 10.20. Modified Bessel function (1st kind)
In (x) is known as the modified Bessel function of the first kind. It satisfies the following
differential equation

x2y
′′
+ xy

′ −
(
x2 − n2

)
y = 0.

In (x) has the following expression:

In (x) =
∞∑
i=0

1

i!Γ (i+ n+ 1)

(x
2

)2i+n

.

Definition 10.21. Hurwitz zeta function
The Hurwitz zeta function is defined as

ζ (a, b) =
∞∑
n=0

1

(b+ n)a
.

Definition 10.22. Exponential Integral function
En (z) is known as the exponential integral function. It is defined as

En (z) =

∞̂

1

e−zt

tn
dt.

Definition 10.23. Stochastic process
A stochastic process {N (t) , t ∈ T} is a collection of random variable. That is, for each t in
the set T , N (t) is a random variable. If T is a countable set the stochastic process is said to
be “discrete-time”, and if T is a continuum it is said to be a “continuous-time” process. If
N (t) can only assume integer values the stochastic process is said to be an “integer-valued”
stochastic process, whereas if N (t) can assume any real value the process is called a “real-
valued” stochastic process.

Definition 10.24. Counting process
A stochastic process (see Definition 10.23) {N (t) , t ≥ 0} is said to be a counting process if
N (t) represents the total number of events that have occurred up to time t. As such for a
stochastic process to qualify as a counting process it must satisfy four fundamental properties:

1. N (t) > 0.
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2. N (t) is integer valued.

3. If s < t, then N (s) ≤ N (t) .

4. For s < t, N (t)−N (s) is the number of events that occurred in the interval (s, t] .

Definition 10.25. Poisson process - version 1
A counting process (See Definition 10.24) {N (t) , t ≥ 0} is said to be a Poisson process having
rate λ > 0 if:

1. N (0) = 0.

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson distributed with mean λt.
In other words, for 0 < s < t it follows that

P (N (t+ s)−N (s) = n) =
e−λt (λt)n

n!
, n = 0, 1, 2, ...

Definition 10.26. Poisson process - version 2
A counting process (See Definition 10.24) {N (t) , t ≥ 0} is said to be a Poisson process having
rate λ > 0 if:

1. N (0) = 0.

2. The process has stationary and independent increments.

3. P (N (h) = 1) = λh+ o (h) .

4. P (N (h) ≥ 2) = o (h) .

Definition 10.27. Poisson process - version 3
A counting process (See Definition 10.24) {N (t) , t ≥ 0} is said to be a Poisson process having
rate λ > 0 if:
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N (t) =
∑
n≥1

I(0,t] (Xn) , t ≥ 0,

where the sequence (Xn) has i.i.d. increments T1, T2, ... each of which follows an exp (λ)
distribution. The Xn are called arrival epochs and the Tn inter-arrival times.

Definition 10.28. Compound Poisson process

A stochastic process {X (t) , t ≥ 0} is said to be a compound Poisson process if it can be
represented, for t ≥ 0, by

X (t) =

N(t)∑
i=1

Xi

where {N (t) , t ≥ 0} is a Poisson process and X1, X2, ... is a family of independent identically
distributed random variables that is independent of the process {N (t) , t ≥ 0}.

Definition 10.29. Sample mean
Let X1, ..., Xn be a sample of size n, The sample mean is then defined to be

X̄ = 1
n

∑∞
j=0Xj.

Definition 10.30. Sample variance
Let X1, ..., Xn be a sample of size n, The sample variance is then defined to be

S2 = 1
n−1

∑∞
j=0

(
Xj − X̄

)
.

Definition 10.31. Waiting and inter-arrival times

Consider a counting process N (t), and let X1 denote the time of the first event. Further,
for n ≥ 1, let Xn denote the time between the (n− 1)st and the nth event. The sequence
{Xn, n ≥ 1} is called the sequence of inter-arrival times. If Sn is defined as the sum of inter-
arrival times up to an including the nth event (i.e. Sn =

∑n
i=1Xi, n ≥ 1), then Sn is said to

be the waiting time until the nth event occurs.
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10.2 Results and proofs
Theorem 10.1. The Poisson properties
Suppose that X is a Poisson random variable with with parameter λ > 0 (Definition 10.3).
Then E (X) = λ and V ar (X) = λ.

See Bain and Engelhardt [4] p104.

Theorem 10.2. The binomial properties
Suppose that X is a binomial random variable with with parameters n = 0, 1, 2, ... and 0 <
p < 1 (Definition 10.5). Then E (X) = np and V ar (X) = np (1− p).

See Bain and Engelhardt [4] p95.

Theorem 10.3. The negative binomial properties
Suppose that X is a negative binomial random variable with with parameters r = 0, 1, 2, ...
and 0 < p| < 1 (Definition 10.6). Then E (X) = rp

1−p
and V ar (X) = rp

(1−p)2
.

See Bain and Engelhardt [4] p102.

Theorem 10.4. The generalised Poisson
Suppose that X is a generalised Poisson random variable with with parameters λ1 > 0 and
|λ2| < 1 (Definition 10.4). Then E (X) = λ1

1−λ2
and V ar (X) = λ1

(1−λ2)
3 .

See Consul and Jain [29].

Theorem 10.5. Derivative of the confluent hypergeometric function
Suppose that 1F1 (α; γ; z) confluent hypergeometric function (Definition 10.15). Then its first
derivative with respect to z is given by

∂

∂z
1F1 (α; γ; z) =

α

γ
1F1 (α + 1; γ + 1; z) .

See Erdélyi [46].

Theorem 10.6. Derivative of the generalised hypergeometric function
Suppose that pFq (α1, ..., αp; β1, ..., βq; z) is the hypergeometric function (Definition 10.17).
Then its first derivative with respect to z is given by

∂

∂z
pFq (α1, ..., αp; β1, ..., βq; z) =

α1α2...αp

β1β2...βq
pFq (α1 + 1, ..., αp + 1; β1 + 1, ..., βq + 1; z) .
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See Slater [130].

Theorem 10.7. Generalised hypergeometric function derivative identity
Suppose that pFq (α1, ..., αp; β1, ..., βq; z) is the hypergeometric function (Definition 10.17) and
that αp + 1 = βq. Then its first derivative of the hypergeometric function with respect to z is
given by

∂
∂z p

Fq (α1, ..., αp; β1, ..., βq; z) = αp

z p−1Fq−1 (α1, ..., αp−1; β1, ..., βq−1; z)
− αp

z pFq (α1, ..., αp; β1, ..., βq; z) .

Proof. From Theorem 10.6 we know that

∂
∂z p

Fq (α1, ..., αp; β1, ..., βq; z) = α1α2...αp

β1β2...βq
pFq (α1 + 1, ..., αp + 1; β1 + 1, ..., βq + 1; z)

= pFq (α1, ..., αp; β1, ..., βq; z)
+ z α1α2...αp−1

β1β2...βq
pFq (α1 + 1, ..., αp + 1; β1 + 1, ..., βq + 1; z)

=
(
1 + z

αp

d
dz

)
pFq (α1, ..., αp; β1, ..., βq; z) .

By using Euler’s integral transform (Slater [130]) it follows that

pFq (α1, ..., αp; β1, ..., βq; z) = Γ(βq)

Γ(αp)Γ(βq−βp)

(´ 1
0
tαp−1 (1− t)βq−αp−1

× p−1Fq−1 (α1, ..., αp−1; β1, ..., βq−1; t) dt) .

By using the assumption that αp + 1 = βq, and by reparameterising zt = u it follows that

pFq (α1, ..., αp; β1, ..., βq; z) = αp

´ 1
0
tαp−1

p−1Fq−1 (α1, ..., αp−1; β1, ..., βq−1; zt) dt.

= αp

zαp

´ z
0
uαp−1

p−1Fq−1 (α1, ..., αp−1; β1, ..., βq−1;u) du.

Consequently it holds that
∂
∂z p

Fq (α1, ..., αp; β1, ..., βq; z) = αp

z p−1Fq−1 (α1, ..., αp−1; β1, ..., βq−1; z)
− αp

z pFq (α1, ..., αp; β1, ..., βq; z) .

Theorem 10.8. Confluent hypergeometric relations
Suppose that 1F1 (α; γ; z) is the confluent hypergeometric function (Definition 10.15). Then
the following relationships hold:

1F1 (α; γ; z) = ez1F1 (γ − α; γ;−z) .
z
γ 1F1 (α + 1; γ + 1; z) = 1F1 (α + 1; γ; z)− 1F1 (α; γ; z) .

α1F1 (α + 1; γ + 1; z) = (α− γ) 1F1 (α; γ + 1; z) + γ1F1 (α; γ; z) .
α1F1 (α + 1; γ; z) = (z + 2α− γ) 1F1 (α; γ; z) + (γ − α) 1F1 (α− 1; γ; z) .
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See Gradshteyn and Ryzhik [59] p1023.

Theorem 10.9. Gauss hypergeometric relations
Suppose that 2F1 (α, β; γ; z) is the Gauss hypergeometric function (Definition 10.16). Then
the following relationships hold:

2F1 (−n, β; β;−z) = (1 + z)n .

2F1 (1, 1; 2;−z) = ln(1+z)
z

.

See Gradshteyn and Ryzhik [59] p1023.

Theorem 10.10. Gamma function relationships
Suppose that Γ (α) ,Γ (α, β) and γ (α, β) are gamma, upper incomplete gamma and lower
incomplete gamma functions as defined in Definitions 10.9, 10.10 and 10.11 respectively.
Then the following relationships hold:

Γ (α) = γ (α, β) + Γ (α, β) .

Γ (α, β) = (α− 1)!e−β
∑α−1

i=0
βi

i!
.

γ (α, β) = (α− 1)!
(
1− e−β

∑α−1
i=0

βi

i!

)
.

Γ (α, β) = Γ (α)−
∑∞

i=0
(−1)iβa+i

i!(a+i)
.

γ (α, β) =
∑∞

i=0
(−1)iβa+i

i!(a+i)
.

γ (α, β) = βa
∑∞

i=0
(−β)i

i!(a+i)
.

Γ (α, β)− Γ (α, β + δ) = γ (α, β + δ)− γ (α, β) .
Γ (α) Γ (α + δ, β)− Γ (α + δ) Γ (α, β) = Γ (α + δ) γ (α, β)− Γ (α) γ (α + δ, β) .

γ (α + 1, β) = αγ (α, β)− βαe−β.
Γ (α + 1, β) = αΓ (α, β) + βαe−β.

dγ(α,β)
dβ

= βα−1e−β.
dΓ(α,β)

dβ
= −βα−1e−β.

See Gradshteyn and Ryzhik [59] p899-901.

Theorem 10.11. Laguerre polynomial derivatives
If Ln (x) are the Laguerre polynomials and Lα

n (x) are the generalised Laguerre polynomials
as defined in Definition 10.19 then

d
dx
Lα
n (x) = −Lα+1

n−1 (x)



CHAPTER 10. APPENDIX 218

See Gradshteyn and Ryzhik [59] p 1001.

Theorem 10.12. Hurwitz zeta relations
Suppose that ζ (a, b) is the Hurwitz zeta function (Definition 10.21). Then the following
relationships hold:

ζ (a, b) = ζ (a, b+ 1) + b−a.

∂ζ(a,b)
∂b

= −aζ (a+ 1, b) .

See Coffey [22].

Theorem 10.13. Properties of weighted Poisson processes
Suppose that Nw (t) is a weighted Poisson process as given in Definition 10.25 and Nw

is a weighted Poisson random variable as given in Definition 2.2. Using the properties of
compound distributions it then follows that:
The expected value of the process is given by

E (Nw (t)) = E (Nw)E
(
I[0,t] [Uj]

)
= E (Nw) t.

The variance of the process is given by

V ar (Nw (t)) = E (Nw)V ar
(
I[0,t] [Uj]

)
+ V ar (Nw)E

(
I[0,t] [Uj]

)2
= E (Nw) t (1− t) + V ar (Nw) t2.

The probability generating function of the process is given by

GNw(t) (z) = GNw

(
GI[0,t][Uj ] (z)

)
= GNw (1− t+ tz) .

The probability generating function of an increment of the process is given by

GNw(t)−Nw(s) (z) = GNw

(
GI[s,t][Uj ] (z)

)
= GNw (1− (t− s) + (t− s) z) .

The joint probability mass function of the process is given by

P (Nw (s) = k,Nw (t) = n) =

(
n
k

)(s
t

)k (
1− s

t

)n−k

P (Nw = n) .
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The covariance of the process is given by

Cov (Nw (s) , Nw (t)) = stV ar (Nw) + s (1− t)E (Nw)

= s (tV ar (Nw) + (1− t)E (Nw)) .

The covariance between two independent increments of the process is given by

Cov (Nw (s) , Nw (t)−Nw (s)) = Cov (Nw (s) , Nw (t))− V ar (Nw (s))

= s (t− s) (V ar (Nw)− E (Nw)) .

See Balakrishnan and Kozubowski [6].

Theorem 10.14. If the weight function in Equation 2.7 is w (n) = n then

E (w (N ;φ)) = λ.

fw (n) = e−λλn−1

(n−1)!
.

g (z) = eλ(z−1)z.

E (Nw) = λ+ 1.

V ar (Nw) = λ.

Proof. From the definition of the normalising constant, it follows that
E (w (N)) =

∑∞
k=0w (k) f (k)

=
∑∞

k=0 k
e−λλk

k!
.

Since this is the first moment of a Poisson distribution with parameter λ it follows that
E (w (N)) = λ.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
n e−λλn

n!

λ

= ne−λλn−1

n!

= e−λλn−1

(n−1)!
.



CHAPTER 10. APPENDIX 220

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
ke−λλk−1

k!
zk

= ze−λ

e−λz

∑∞
k=1

e−λz(λz)k−1

(k−1)!
.

Since this is the probability mass function of a Poisson distribution with parameter λz it
follows that g (z) = e(z−1)λz.

From the definition of the expected value it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

(
e(z−1)λz

)
=

(
∂
∂z
eλ(z−1)

)
(z) +

(
eλ(z−1)

) (
∂
∂z
z
)

= eλ(z−1)λz + eλ(z−1)

= eλ(z−1) (λz + 1) .

Consequently, it follows that
E (Nw) = limz→−1e

λ(z−1) (λz + 1)

= λ+ 1.

From the definition of the variance it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
eλ(z−1) (λz + 1)

)
=

(
∂
∂z
eλ(z−1)

)
(λz + 1) +

(
eλ(z−1)

) (
∂
∂z
λz + 1

)
= eλ(z−1)λ (λz + 1) + eλ(z−1)λ

= eλ(z−1) (λ (λz + 1) + λ) .



CHAPTER 10. APPENDIX 221

Consequently, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1e
λ(z−1) (λ (λz + 1) + λ) + (1 + λ)− (1 + λ)2

= (λ (λ+ 1) + λ) + (1 + λ)− (1 + λ)2

= λ2 + 3λ+ 1− (λ2 + 2λ+ 1)

= λ.

Theorem 10.15. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = n+ ε then

E (w (N ;φ)) = λ+ ε.

fw (n) = (n+ε)e−λλn

(λ+ε)n!
.

g (z) = e(z−1)λ(ε+λz)
λ+ε

.

E (Nw) = λ(1+λ+ε)
λ+ε

.

V ar (Nw) =
λ
(
(λ+ε)2+ε

)
(λ+ε)2

.

Proof. From the definition of the normalising constant, it follows that
E (w (N)) =

∑∞
k=0w (k) f (k)

=
∑∞

k=0 (k + ε) e−λλk

k!

=
∑∞

k=0 k
e−λλk

k!
+ ε

∑∞
k=0

e−λλk

k!
.

Since
∑∞

k=0 k
e−λλk

k!
is the first moment of a Poisson distribution with parameter λ, and∑∞

k=0
e−λλk

k!
= 1, it follows that E (w (N)) = λ+ ε.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
(n+ε) e

−λλn

n!

λ+ε

= (n+ε)e−λλn

(λ+ε)n!
.
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From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
(k+ε)e−λλk

(λ+ε)k!
zk

= e−λ

(λ+ε)

∑∞
k=0

(k+ε)(λz)k

k!

= e−λ

(λ+ε)

(∑∞
k=0

k(λz)k

k!
+
∑∞

k=0
ε(λz)k

k!

)
= e−λ

(λ+ε)

(∑∞
k=1

k(λz)k

k!
+
∑∞

k=0
ε(λz)k

k!

)
= e−λ

(λ+ε)

(
λzeλz + εeλz

)
= e(z−1)λ(ε+λz)

λ+ε
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

(
e(z−1)λ(ε+λz)

λ+ε

)
= e(z−1)λλ

λ+ε
+ e(z−1)λλ(ε+λz)

λ+ε

= e(z−1)λλ(ε+λz+1)
λ+ε

.

Consequently, it follows that

E (Nw) = limz→−1
e(z−1)λλ(ε+λz+1)

λ+ε

= λ(1+λ+ε)
λ+ε

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
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∂2

∂z2
g (z) = ∂

∂z

(
e(z−1)λλ(ε+λz+1)

λ+ε

)
= 2e(z−1)λλ2

λ+ε
+ e(z−1)λλ2(ε+λz)

λ+ε

= e(z−1)λλ2(ε+λz+2)
λ+ε

.

Consequently, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1
e(z−1)λλ2(ε+λz+2)

λ+ε
+ λ(1+λ+ε)

λ+ε
−
(

λ(1+λ+ε)
λ+ε

)2
= λ2(ε+λ+2)

λ+ε
+ λ(1+λ+ε)

λ+ε
−
(

λ(1+λ+ε)
λ+ε

)2
= (λ+ε)λ2(ε+λ+2)+(λ+ε)λ(1+λ+ε)−λ2(1+λ+ε)2

(λ+ε)2

=
λ
(
ε+ε2+2ελ+λ2

)
(λ+ε)2

=
λ
(
(λ+ε)2+ε

)
(λ+ε)2

.

Theorem 10.16. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = an3 + bn2 + cn then

E (w (N ;φ)) = λ (a+ b+ c) + λ2 (3a+ b+ λa) .

fw (n) =
(
an3+bn2+cn

)
(λ(3a+b+λa)+(a+b+c))

e−λλn

n!
.

g (z) =
eλ(z−1)z

(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
a(λ2+3λ+1)+b(λ+1)+c

.

E (Nw) =
a
(
λ3+6λ2+7λ+1

)
+b
(
λ2+3λ+1

)
+c(λ+1)

a(λ2+3λ+1)+b(λ+1)+c
.

V ar (Nw) =
a
(
λ4+9λ3+19λ2+8λ

)
+b
(
λ3+5λ2+4λ

)
+c
(
λ2+2λ

)
a(λ2+3λ+1)+b(λ+1)+c

+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
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E (w (N ;φ)) =
∑∞

k=0 w (k) f (k)

=
∑∞

k=0 (ak
3 + bk2 + ck) e−λλk

k!

=
∑∞

k=0 ak
3 e−λλk

k!
+
∑∞

k=0 bk
2 e−λλk

k!
+
∑∞

k=0 ck
e−λλk

k!

= a
∑∞

k=0 k
3 e−λλk

k!
+ b
∑∞

k=0 k
2 e−λλk

k!
+ c
∑∞

k=0 k
e−λλk

k!
.

Since the three sums in the above equations are the third, second and first moments respec-
tively of a Poisson distribution with parameter λ, it follows that

E (w (N ;φ)) = a (λ3 + 3λ2 + λ) + b (λ2 + λ) + cλ

= λ (a+ b+ c) + λ2 (3a+ b+ λa) .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
(
an3+bn2+cn

)
e−λλn

n!

λ(a+b+c)+λ2(3a+b+λa)

=
(
an3+bn2+cn

)
λ(a+b+c)+λ2(3a+b+λa)

e−λλn

n!
.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0

(
ak3+bk2+ck

)
λ(a+b+c)+λ2(3a+b+λa)

e−λλk

k!
zk

= 1
λ(a+b+c)+λ2(3a+b+λa)

(∑∞
k=0 ak

3 λke−λ

k!
zk

+
∑∞

k=0 bk
2 λke−λ

k!
zk +

∑∞
k=0 ck

λke−λ

k!
zk
)

= e−λ

e−λz(λ(a+b+c)+λ2(3a+b+λa))

(
a
∑∞

k=0 k
3 (λz)

ke−λz

k!

+ b
∑∞

k=0 k
2 (λz)

ke−λz

k!
+ c
∑∞

k=0 k
(λz)ke−λz

k!

)
.

Since the three sums in the above equations are the third, second and first moments respec-
tively of a Poisson distribution with parameter λz, it follows that

g (z) = e−λ

e−λz(λ(a+b+c)+λ2(3a+b+λa))

(
a
(
(λz)3 + 3 (λz)2 + λz

)
+ b
(
(λz)2 + λ

)
+ cλz

)
=

e−λ+λzλz
(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
λ(a+b+c)+λ2(3a+b+λa)

=
eλ(z−1)z

(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
a(λ2+3λ+1)+b(λ+1)+c

.
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From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,

∂
∂z
g (z) = ∂

∂z

eλ(z−1)z
(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
a(λ2+3λ+1)+b(λ+1)+c

=
(

∂
∂z
eλ(z−1)

) z
(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
a(λ2+3λ+1)+b(λ+1)+c

+ eλ(z−1)

a(λ2+3λ+1)+b(λ+1)+c

(
∂
∂z
z
(
a
(
(λz)2 + 3λz + 1

)
+ b (λz + 1) + c

))
=

eλ(z−1)λz
(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c

)
a(λ2+3λ+1)+b(λ+1)+c

+
eλ(z−1)

(
a
(
(λz)2+3λz+1

)
+b(λz+1)+c+z

(
a
(
2λ2z+3λ

)
+bλ

))
a(λ2+3λ+1)+b(λ+1)+c

=
eλ(z−1)

(
(λz)3a+(λz)2(6a+b)+λz(7a+3b+c)+a+b+c

)
a(λ2+3λ+1)+b(λ+1)+c

.

Consequently, it follows that

E (Nw) = limz→−1

eλ(z−1)
(
(λz)3a+(λz)2(6a+b)+λz(7a+3b+c)+a+b+c

)
a(λ2+3λ+1)+b(λ+1)+c

=
eλ(1−1)

(
λ3a+λ2(6a+b)+λ(7a+3b+c)+a+b+c

)
a(λ2+3λ+1)+b(λ+1)+c

=
a
(
λ3+6λ2+7λ+1

)
+b
(
λ2+3λ+1

)
+c(λ+1)

a(λ2+3λ+1)+b(λ+1)+c
.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
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∂2

∂z2
g (z) = ∂

∂z

eλ(z−1)
(
(λz)3a+(λz)2(6a+b)+λz(7a+3b+c)+a+b+c

)
a(λ2+3λ+1)+b(λ+1)+c

=
(

∂
∂z
eλ(z−1)

)
(λz)3a+(λz)2(6a+b)+λz(7a+3b+c)+a+b+c

a(λ2+3λ+1)+b(λ+1)+c

+ eλ(z−1)

a(λ2+3λ+1)+b(λ+1)+c

(
∂
∂z

(λz)3 a+ (λz)2 (6a+ b)
)

+ eλ(z−1)

a(λ2+3λ+1)+b(λ+1)+c

(
∂
∂z
λz (7a+ 3b+ c) + a+ b+ c

)
=

eλ(z−1)λ
(
(λz)3a+(λz)2(6a+b)+λz(7a+3b+c)+a+b+c

)
a(λ2+3λ+1)+b(λ+1)+c

+
eλ(z−1)

(
3λ3z2a+2λ2z(6a+b)+λ(7a+3b+c)

)
a(λ2+3λ+1)+b(λ+1)+c

=
eλ(z−1)λ

(
(λz)3a+(λz)2(6a+b)+λz(7a+3b+c)+a+b+c+3λ2z2a+2λz(6a+b)+(7a+3b+c)

)
a(λ2+3λ+1)+b(λ+1)+c

=
eλ(z−1)λ

(
(λz)3a+(λz)2(6a+b)+λz(19a+5b+c)+8a+4b+2c

)
a(λ2+3λ+1)+b(λ+1)+c

.

Consequently, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1

eλ(z−1)λ
(
(λz)3a+(λz)2(9a+b)+λz(19a+5b+c)+8a+4b+2c

)
a(λ2+3λ+1)+b(λ+1)+c

+ E (Nw)− (E (Nw))2

=
eλ(1−1)λ

(
λ3a+λ2(9a+b)+λ(19a+5b+c)+8a+4b+2c

)
a(λ2+3λ+1)+b(λ+1)+c

+ E (Nw)− (E (Nw))2

=
λ
(
λ3a+λ2(9a+b)+λ(19a+5b+c)+8a+4b+2c

)
a(λ2+3λ+1)+b(λ+1)+c

+ E (Nw)− (E (Nw))2

=
a
(
λ4+9λ3+19λ2+8λ

)
+b
(
λ3+5λ2+4λ

)
+c
(
λ2+2λ

)
a(λ2+3λ+1)+b(λ+1)+c

+ E (Nw)− (E (Nw))2 .

Theorem 10.17. If the weight function used in the weighted Poisson probability mass func-
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tion is chosen as w (n;φ) = (n+ a) (n− b)2 then

E (w (N ;φ)) = λ (b2 − 2ab− 2b+ a+ 1) + λ2 (λ+ a− 2b+ 3) + ab2.

fw (n) = (n+a)(n−b)2

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2
e−λλn

n!
.

g (z) =
eλ(z−1)

(
(λz)

(
b2−2ab−2b+a+1

)
+(λz)2(λz+a−2b+3)+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

E (Nw) =
λ
(
1+7λ+6λ2+λ3+b2(1+λ)−2b

(
1+3λ+λ2

)
+a
(
1+b2+3λ+λ2−2b(1+λ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

V ar (Nw) =
λ2
(
8+19λ+9λ2+λ3+b2(2+λ)−2b

(
4+5λ+λ2

)
+a
(
4+b2+5λ+λ2−2b(2+λ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 (k + a) (k − b)2 e−λλk

k!

=
∑∞

k=0 (k
3 + k2 (a− 2b) + k (b2 − 2ab) + ab2) e−λλk

k!

=
∑∞

k=0 k
3 e−λλk

k!
+ (a− 2b)

∑∞
k=0 k

2 e−λλk

k!

+ (b2 − 2ab)
∑∞

k=0 k
e−λλk

k!
+ ab2

∑∞
k=0

e−λλk

k!
.

Since the first three sums in the above equations are the third, second and first moments
respectively of a Poisson distribution with parameter λ, and the fourth sum equals 1, it
follows that

E (w (N ;φ)) = (λ3 + 3λ2 + λ) + (a− 2b) (λ2 + λ) + (b2 − 2ab)λ+ ab2

= λ (b2 − 2ab− 2b+ a+ 1) + λ2 (λ+ a− 2b+ 3) + ab2.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

= (n+a)(n−b)2

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2
e−λλn

n!
.

From the definition of the probability generating function, it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0
(k+a)(k−b)2

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2
e−λλk

k!
zk

=
∑∞

k=0

(
k3+k2(a−2b)+k

(
b2−2ab

)
+ab2

)
e−λλk

k!
zk

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
e−λ

(∑∞
k=0

(
k3 λk

k!
zk+k2(a−2b)λ

k

k!
zk+k

(
b2−2ab

)
λk

k!
zk+ab2 λk

k!
zk
))

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
e−λ

(∑∞
k=0 k

3 λk

k!
zk+

∑∞
k=0 k

2(a−2b)λ
k

k!
zk+

∑∞
k=0 k

(
b2−2ab

)
λk

k!
zk+

∑∞
k=0 ab

2 λk

k!
zk
)

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
e−λ

e−λz

(∑∞
k=0 k

3ak,λ,z+(a−2b)
∑∞

k=0 k
2ak,λ,z+

(
b2−2ab

)∑∞
k=0 kak,λ,z+ab2

∑∞
k=0 ak,λ,z

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

with ak,λ,z =
(λz)ke−λz

k!
.

Since the first three sums in the above equations are the third, second and first moments
respectively of a Poisson distribution with parameter λz, and the fourth sum equals 1, it
follows that

g (z) =
e−λ

e−λz

((
(λz)3+3(λz)2+λz

)
+(a−2b)

(
(λz)2+λ

)
+
(
b2−2ab

)
λz+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
eλ(z−1)

(
(λz)

(
b2−2ab−2b+a+1

)
+(λz)2(λz+a−2b+3)+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

eλ(z−1)(λz)
((
b2−2ab−2b+a+1

)
+(λz)(λz+a−2b+3)+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
(

∂
∂z
eλ(z−1)

) ((λz)(b2−2ab−2b+a+1
)
+(λz)2(λz+a−2b+3)+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ eλ(z−1)

λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

× ∂
∂z

(
(λz) (b2 − 2ab− 2b+ a+ 1) + (λz)2 (λz + a− 2b+ 3) + ab2

)
=

eλ(z−1)λ
(
(λz)

(
b2−2ab−2b+a+1

)
+(λz)2(λz+a−2b+3)+ab2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+
eλ(z−1)

(
λ
(
b2−2ab−2b+a+1

)
+λ2z(3λz+2a−4b+6)

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
eλ(z−1)λ

(
1+7zλ+6z2λ2+z3λ3+b2(1+zλ)−2b

(
1+3zλ+z2λ2

)
+a
(
1+b2+3zλ+z2λ2−2b(1+zλ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.
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Consequently, it follows that

E (Nw) = limz→−1
eλ(z−1)λ

(
1+7zλ+6z2λ2+z3λ3+b2(1+zλ)

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ limz→−1
eλ(z−1)λ

(
a
(
1+b2+3zλ+z2λ2−2b(1+zλ)

)
−2b

(
1+3zλ+z2λ2

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
λ
(
1+7λ+6λ2+λ3+b2(1+λ)−2b

(
1+3λ+λ2

)
+a
(
1+b2+3λ+λ2−2b(1+λ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

eλ(z−1)λ
(
1+7zλ+6z2λ2+z3λ3+b2(1+zλ)

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ ∂
∂z

eλ(z−1)λ
(
a
(
1+b2+3zλ+z2λ2−2b(1+zλ)

)
−2b

(
1+3zλ+z2λ2

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
(

∂
∂z
eλ(z−1)

) (λ
(
1+7zλ+6z2λ2+z3λ3+b2(1+zλ)−2b

(
1+3zλ+z2λ2

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

)
+

(
eλ(z−1)+λa

(
1+b2+3zλ+z2λ2−2b(1+zλ)

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

)
× ∂

∂z
(λ (1 + 7zλ+ 6z2λ2 + z3λ3 + b2 (1 + zλ)− 2b (1 + 3zλ+ z2λ2))

+λa (1 + b2 + 3zλ+ z2λ2 − 2b (1 + zλ)))

=
eλ(z−1)λ2

(
zλ
(
1+b2+3zλ+z2λ2−2b(1+zλ)

)
+a
(
b2−2bzλ+zλ(1+zλ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+
2eλ(z−1)λ2

(
1+a−2b−2ab+b2+6zλ+2azλ−4bzλ+3z2λ2

)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ eλ(z−1)λ2(6+2a−4b+6zλ)
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

=
eλ(z−1)λ2

(
8+19zλ+9z2λ2+z3λ3+b2(2+zλ)−2b

(
4+5zλ+z2λ2

)
+a
(
4+b2+5zλ+z2λ2−2b(2+zλ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

.

Consequently, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1
eλ(z−1)λ2

(
8+19zλ+9z2λ2+z3λ3+b2(2+zλ)−2b

(
4+5zλ+z2λ2

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ limz→−1
eλ(z−1)λ2

(
a
(
4+b2+5zλ+z2λ2−2b(2+zλ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ E (Nw)− (E (Nw))2

=
λ2
(
8+19λ+9λ2+λ3+b2(2+λ)−2b

(
4+5λ+λ2

)
+a
(
4+b2+5λ+λ2−2b(2+λ)

))
λ(b2−2ab−2b+a+1)+λ2(λ+a−2b+3)+ab2

+ E (Nw)− (E (Nw))2 .
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Theorem 10.18. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n) = a+ b−ac

n+c
then

E (w (N ;φ)) = e−λ (−λ)−c (aeλ (−λ)c + (b− ac) γ (c,−λ)
)
.

fw (n) = (b+an)(−λ)cλn

(c+n)n!
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .
g (z) =

(−λ)c
(
aezλ(−zλ)c+(b−ac)γ(c,−λz)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
(−zλ)c

.

E (Nw) =
(
eλ(−λ)c(b−ac+aλ)+c(ac−b)γ(c,−λ)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

V ar (Nw) =
(−λ)c

(
eλ(−λ)c

(
(1+c)(ac−b)+(b−ac)λ+aλ2

)
+c(1+c)(b−ac)γ(c,−λ)

)
(−λ)c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0

(
a+ b−ac

k+c

)
e−λλk

k!

=
∑∞

k=0 a
e−λλk

k!
+
∑∞

k=0
b−ac
k+c

e−λλk

k!

= a
∑∞

k=0
e−λλk

k!
+ e−λ (b− ac)

∑∞
k=0

λk

(k+c)k!

= a
∑∞

k=0
e−λλk

k!
+ e−λ (b− ac) (−λ)−c (−λ)c

∑∞
k=0

λk

(k+c)k!
.

Since the first infinite sum above equals 1 and (−λ)c
∑∞

k=0
λk

(k+c)k!
= γ (c,−λ) (See Theorem

10.10), it follows that
E (w (N ;φ)) = a+ e−λ (b− ac) (−λ)−c γ (c,−λ) .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=

(
a+ b−ac

n+c

)
e−λλn

n!

a+e−λ(b−ac)(−λ)−cγ(c,−λ)

=
an!(n+c)+(b−ac)e−λλn

n!(n+c)

a+e−λ(b−ac)(−λ)−cγ(c,−λ)

= an!(n+c)+(b−ac)e−λλn

(n+c)n!
(
a+e−λ(b−ac)(−λ)−cγ(c,−λ)

)

= (b+an)(−λ)cλn

(c+n)n!
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .
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From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
(b+ak)(−λ)cλk

(c+k)k!
(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)zk

= (−λ)c(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)∑∞
k=0

(b+ak)(λz)k

(c+k)k!

= (−λ)c(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) (b∑∞
k=0

(λz)k

(c+k)k!
+ a

∑∞
k=0

k(λz)k

(c+k)k!

)
= (−λ)c(

aeλ(−λ)c+(b−ac)γ(c,−λ)
) (b∑∞

k=0
(λz)k

(c+k)k!
+ aλz

∑∞
k=1

(λz)k−1

(c+k)(k−1)!

)
.

By reparameterising m = k−1 and using the fact that
∑∞

k=0
(λz)k

(c+k)k!
= γ(c,−λz)

(−λz)c
and

∑∞
m=0

(λz)m

(c+1+m)m!
=

−γ(c+1,−λz)
(λz)(−λz)c

(See Theorem 10.10), it follows that

g (z) = (−λ)c(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) ( b
(−λz)c

γ (c,−λz)− aγ(c+1,−λz)
(−λz)c

)
= (−λ)c(

aeλ(−λ)c+(b−ac)γ(c,−λ)
) ( b

(−λz)c
γ (c,−λz)− aγ(c+1,−λz)

(−λz)c

)
.

By using the relation γ (α + 1, β) = αγ (α, β)− βαe−β (See Theorem 10.10), it follows that

g (z) = (−λ)c(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) ( b
(−λz)c

γ (c,−λz)− a
(−λz)c

(
cγ (c,−λz)− (−λz)c eλz

))
=

(−λ)c
(
aezλ(−λz)c+(b−ac)γ(c,−λz)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
(−λz)c

.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

(−λ)c
(
aezλ(−λz)c+(b−ac)γ(c,−λz)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
(−λz)c

= (−λ)c(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) ∂
∂z

(
aezλ(−λz)c+(b−ac)γ(c,−λz)

)
(−λz)c

= (−λ)c

aeλ(−λ)c+(b−ac)γ(c,−λ)

×
( (

aezλ(−λz)c+(b−ac)γ(c,−λz)
)

cλ(−λz)c+1 +

(
−acezλλ(−λz)c−1+aezλλ(−λz)c−(b−ac)ezλλ(−λz)c−1

)
(−λz)c

)

=
(−λ)c

(
ezλ(−λz)c(b−ac+aλz)+c(ac−b)γ(c,−λz)

)
(−λz)cz

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .
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Note that the expression for the derivative of the lower incomplete gamma function can be
found in Theorem 10.10.
Consequently, it follows that

E (Nw) = limz→−1
(−λ)c

(
ezλ(−λz)c(b−ac+aλz)+c(ac−b)γ(c,−λz)

)
(−λz)cz

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
=

(
eλ(−λ)c(b−ac+aλ)+c(ac−b)γ(c,−λ)

)(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(−λ)c
(
ezλ(−λz)c(b−ac+aλz)+c(ac−b)γ(c,−λz)

)
(−λz)cz

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
= (−λ)ceλz(−λz)c(b(λz+c−1)+aλz(c+λz))

(−λz)caeλ(−λ)c+(b−ac)γ(c,−λ)

+
2cλ2(−λ)ceλz

(
a(−λz)c−b(−λz)c−1

)
(−λz)c+1aeλ(−λ)c+(b−ac)γ(c,−λ)

− c(−c−1)(−λ)cλ2
(
aeλz(−λz)c+(b−ac)γ(c,−λz)

)
(−λz)c+2aeλ(−λ)c+(b−ac)γ(c,−λ)

=
(−λ)c

(
eλz(−λz)c

(
(1+c)(ac−b)+(b−ac)λz+az2λ2

)
+c(1+c)(b−ac)γ(c,−λz)

)
z2(−λz)c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

) .

Consequently, it follows that

V ar (Nw) = limz→−1
(−λ)c

(
eλz(−λz)c

(
(1+c)(ac−b)+(b−ac)λz+az2λ2

)
+c(1+c)(b−ac)γ(c,−λz)

)
z2(−λz)c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
+ E (Nw)− (E (Nw))2

=
(−λ)c

(
eλ(−λ)c

(
(1+c)(ac−b)+(b−ac)λ+aλ2

)
+c(1+c)(b−ac)γ(c,−λ)

)
(−λ)c

(
aeλ(−λ)c+(b−ac)γ(c,−λ)

)
+ E (Nw)− (E (Nw))2 .

Theorem 10.19. If the weight function used in the weighted Poisson probability mass func-
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tion is chosen as w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r then

E (w (N ;φ)) = e−λ (1− p)r 1F1 (r; 1; pλ) .

fw (n) =

 n+ r − 1
n


1F1(r;1;pλ)

(pλ)n

n!
.

g (z) = 1F1(r;1;pzλ)

1F1(r;1;pλ)
.

E (Nw) = λpr1F1(r+1;2;pλ)

1F1(r;1;pλ)
.

V ar (Nw) =
λ2p2r(r+1)1F1(r+2;3;pλ)

21F1(r;1;pλ)
+ E (Nw)− (E (Nw))2 .

where 1F1 (; ; ) is the confluent hypergeometric function in Definition 10.15.
Proof. From the definition of the normalising constant, it follows that

E (w (N ;φ)) =
∑∞

k=0 w (k) f (k)

=
∑∞

k=0

(
k + r − 1

k

)
pk (1− p)r e−λλk

k!

=
∑∞

k=0
(k+r−1)!
k!(r−1)!

pk (1− p)r e−λλk

k!

= e−λ (1− p)r
∑∞

k=0
Γ(k+r)

Γ(k+1)(r−1)!
(pλ)k

k!

= e−λ (1− p)r
∑∞

k=0
Γ(k+r)

Γ(k+1)Γ(r)
(pλ)k

k!

= e−λ (1− p)r
∑∞

k=0
Γ(k+r)
Γ(r)

Γ(1)
Γ(k+1)

(pλ)k

k!
.

The sum in the above equation is1F1 (r; 1; pλ), and thus it follows that
E (w (N ;φ)) = e−λ (1− p)r 1F1 (r; 1; pλ) .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=

 n+ r − 1
n

pn(1−p)r

e−λ(1−p)r1F1(r;1;pλ)
e−λλn

n!

=

 n+ r − 1
n


1F1(r;1;pλ)

(pλ)n

n!
.
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From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0

 k + r − 1
k


1F1(r;1;pλ)

(pλ)k

k!
zk

= 1
1F1(r;1;pλ)

∑∞
k=0

(
k + r − 1

k

)
(pλz)k

k!

= 1
1F1(r;1;pλ)

∑∞
k=0

Γ(k+r)
Γ(k+1)Γ(r)

(pλz)k

k!

= 1
1F1(r;1;pλ)

∑∞
k=0

Γ(k+r)
Γ(r)

Γ(1)
Γ(k+1)

(pλz)k

k!
.

The sum in the above equation is 1F1 (r; 1; pzλ), and thus it follows that

g (z) = 1F1(r;1;pzλ)

1F1(r;1;pλ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z
1F1(r;1;pzλ)

1F1(r;1;pλ)
.

The derivative of confluent hypergeometric functions is well known with respect to its argu-
ment z. This result is given in Theorem 10.5. Consequently,

∂
∂z
g (z) =

∂
∂z 1F1(r;1;pzλ)

1F1(r;1;pλ)

=
r1F1(r+1;2;pzλ) ∂

∂z
(pzλ)

1F1(r;1;pλ)

= λpr1F1(r+1;2;pzλ)

1F1(r;1;pλ)
.

It then follows that
E (Nw) = limz→−1

λpr1F1(r+1;2;pzλ)

1F1(r;1;pλ)

= λpr1F1(r+1;2;pλ)

1F1(r;1;pλ)
.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z
λpr1F1(r+1;2;pzλ)

1F1(r;1;pλ)
.
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By using the result in Theorem 10.5, if follows that
∂2

∂z2
g (z) =

r+1
2

λpr1F1(r+2;3;pzλ) ∂
∂z

(pzλ)

1F1(r;1;pλ)

=
λ2p2r(r+1)1F1(r+2;3;pzλ)

21F1(r;1;pλ)
.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1
λ2p2r(r+1)1F1(r+2;3;pzλ)

21F1(r;1;pλ)
+ E (Nw)− (E (Nw))2

=
λ2p2r(r+1)1F1(r+2;3;pλ)

21F1(r;1;pλ)
+ E (Nw)− (E (Nw))2 .

Theorem 10.20. If the weight function used in the weighted Poisson probability mass func-

tion is chosen as w (n;φ) =

(
m
n

)
pn (1− p)m−n then

E (w (N ;φ)) = e−λ (1− p)m Lm

(
pλ
p−1

)
.

fw (n) =

(
m
n

)
(pλ)n

(1−p)nn!Lm

(
pλ
p−1

) .

g (z) =
Lm

(
pλz
p−1

)
Lm

(
pλ
p−1

) .

E (Nw) =
pλL1

m−1

(
pλ
p−1

)
(1−p)Lm

(
pλ
p−1

) .

V ar (Nw) =
(pλ)2L2

m−2

(
pλ
p−1

)
(p−1)2Lm

(
pλ
p−1

)
+ E (Nw)− (E (Nw))2 .

Where Lm () is the Laguerre polynomial and Lα
m () is the generalised Laguerre polynomial

(Definition 10.19).

Proof. Note that
(

m
n

)
= 0 when n > m. As a result

∑∞
n=0

(
m
n

)
=
∑m

n=0

(
m
n

)
. This

fact will be used often in the proofs for this specific weight function, as well as many other
truncating weight functions.
From the definition of the normalising constant, it follows that
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E (w (N ;φ)) =
∑∞

k=0 w (k) f (k)

=
∑∞

k=0

(
m
k

)
pk (1− p)m−k e−λλk

k!

=
∑m

k=0

(
m
k

)
pk (1− p)m−k e−λλk

k!

= e−λ (1− p)m
∑m

k=0

(
m
k

)(
p

1−p

)k
λk

k!

= e−λ (1− p)m
∑m

k=0

(
m
k

)
(−1)k

(
pλ
p−1

)k
k!

.

Since the sum is the Laguerre polynomial, Lm

(
pλ
p−1

)
, it follows that

E (w (N ;φ)) = e−λ (1− p)m Lm

(
pλ
p−1

)
.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=

 m
n

pn(1−p)m−n

e−λ(1−p)mLm

(
pλ
p−1

) e−λλn

n!

=

(
m
n

)
(pλ)n

(1−p)nn!Lm

(
pλ
p−1

) .
From the definition of the probability generating function, it follows that

g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0

(
m
k

)
(pλ)k

(1−p)kk!Lm

(
pλ
p−1

)zk

= 1

Lm

(
pλ
p−1

)∑m
k=0

(
m
k

) (
pλz
1−p

)k
k!

= 1

Lm

(
pλ
p−1

)∑m
k=0

(
m
k

)
(−1)k

(
pλz
p−1

)k
k!

.

Since the sum is the Laguerre polynomial it follows that

g (z) =
Lm

(
pλz
p−1

)
Lm

(
pλ
p−1

) .
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From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,

∂
∂z
g (z) = ∂

∂z

Lm

(
pλz
p−1

)
Lm

(
pλ
p−1

)

= 1

Lm

(
pλ
p−1

) ∂
∂z
Lm

(
pλz
p−1

)
.

From Theorem 10.11, it follows that

∂
∂z
g (z) = −

L1
m−1

(
pλz
p−1

)
Lm

(
pλ
p−1

) ∂
∂z

pλz
p−1

=
pλL1

m−1

(
pλz
p−1

)
(1−p)Lm

(
pλ
p−1

) .
It then follows that

E (Nw) = limz→−1

pλL1
m−1

(
pλz
p−1

)
(1−p)Lm

(
pλ
p−1

)

=
pλL1

m−1

(
pλ
p−1

)
(1−p)Lm

(
pλ
p−1

) .
From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,

∂2

∂z2
g (z) = ∂

∂z

pλL1
m−1

(
pλz
p−1

)
(1−p)Lm

(
pλ
p−1

) .
By using the result in Theorem 10.11, it follows that

∂2

∂z2
g (z) =

p2λ2L2
m−2

(
pλz
p−1

)
(p−1)2Lm

(
pλ
p−1

) .
Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2

= limz→−1

p2λ2L2
m−2

(
pλz
p−1

)
(p−1)2Lm

(
pλ
p−1

) + E (Nw)− (E (Nw))2

=
p2λ2L2

m−2

(
pλ
p−1

)
(p−1)2Lm

(
pλ
p−1

) + E (Nw)− (E (Nw))2 .
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Theorem 10.21. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = aba

na+1 then the following results follow

E (w (N ;φ)) = ae−λλb(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))
b!b

.

fw (n) = λn−bba+1b!
na+1n!a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

.

g (z) = zba+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

E (Nw) = ba+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λ)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

V ar (Nw) = b2aFa(1,b,...,b;1+b,1+b,...,1+b;λ)−ba+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λ)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=b
aba

ka+1
e−λλk

k!

= abae−λ
∑∞

k=b
λk

ka+1k!

= abae−λ
∑∞

k=b
Γ(k)a+1λk

Γ(k+1)a+1k!
.

By reparameterising m = k − b, it follows that

E (w (N ;φ)) = abae−λ
∑∞

m=0
Γ(m+b)a+1λ(m+b)

Γ(m+b+1)a+1(m+b)!

= abae−λλb
∑∞

m=0
Γ(m+b)a+1λm

Γ(m+b+1)a+2

= abae−λλb
∑∞

m=0
Γ(m+1)Γ(m+b)a+1

Γ(m+b+1)a+2
λm

m!

= abae−λλb
∑∞

m=0
Γ(m+1)Γ(m+b)a+1

Γ(1)Γ(b+1)a+2Γ(m+b+1)a+2
λm

m!

= ae−λλb

b!b

∑∞
m=0

Γ(m+1)Γ(m+b)a+1Γ(b+1)a+2

Γ(1)Γ(b)a+1Γ(m+b+1)a+2
λm

m!

= ae−λλb(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))
b!b

.

From the definition of the weighted Poisson probability mass function, it follows that
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fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
aba

na+1
e−λλn

n!

ae−λλb
(
a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

)
b!b

= aba

na+1
e−λλn

n!
b!b

ae−λλb(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

= λn−bba+1b!
na+1n!(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=b fw (k) zk

=
∑∞

k=b
λk−bba+1b!

ka+1k!(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))
zk.

By reparameterising m = k − b, it follows that

g (z) = 1
(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

∑∞
m=0

λmba+1b!
(m+b)a+1(m+b)!

zm+b

= zb

(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

∑∞
m=0

ba+1b!(λz)m

(m+b)a+1(m+b)!

= zb

(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

∑∞
m=0

Γ(m+b)a+1ba+1b!(λz)m

Γ(m+b+1)a+1(m+b)!

= zb

(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

∑∞
m=0

Γ(m+b)a+1ba+1b!(λz)m

Γ(m+b+1)a+2

= zb

(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

∑∞
m=0

Γ(m+1)Γ(m+b)a+1ba+1b!

Γ(1)Γ(m+b+1)a+2
(λz)m

m!

= zb

(a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ))

∑∞
m=0

Γ(m+1)Γ(m+b)a+1Γ(m)a+2

Γ(1)Γ(m)a+1Γ(m+b+1)a+2
(λz)m

m!

= zba+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

(
zba+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

)
.

By using Theorem 10.7, it follows that
∂
∂z
g (z) = bzb−1

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

−
b
z
(a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz)−a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λz))

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

= bzb−1
a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.
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It then follows that
E (Nw) = limz→−1

bzb−1
a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

= ba+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λ)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
bzb−1

a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

)
= b(b−1)zb−2

a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

+
b
z
(aFa(1,b,...,b;1+b,1+b,...,1+b;λz)−a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz))

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

= bzb−2(baFa(1,b,...,b;1+b,1+b,...,1+b;λz)−a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz))

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)
.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
bzb−2(baFa(1,b,...,b;1+b,1+b,...,1+b;λz)−a+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λz))

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

+ E (Nw)− (E (Nw))2

= b2aFa(1,b,...,b;1+b,1+b,...,1+b;λ)−ba+1Fa+1(1,b,...,b;1+b,1+b,...,1+b;λ)

a+2Fa+2(1,b,...,b;1+b,1+b,...,1+b;λ)

+ E (Nw)− (E (Nw))2 .

Theorem 10.22. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = −1

ln(1−p)
pn

n
then the following results follow

E (w (N ;φ)) = −p
ln(1−p)

e−λλ2F2 (1, 1; 2, 2;λp) .

fw (n) = (pλ)n−1

n.n!2F2(1,1;2,2;λp)
.

g (z) = z2F2(1,1;2,2;λpz)

2F2(1,1;2,2;λp)
.

E (Nw) = 1F1(1;2;λp)

2F2(1,1;2,2;λp)
.

V ar (Nw) = λp1F1(2;3;λp)
22F2(1,1;2,2;λp)

+ E (Nw)− (E (Nw))2 .
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Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=1
−1

ln(1−p)
pk

k
e−λλk

k!

= −1
ln(1−p)

e−λ
∑∞

k=1
(pλ)k

k!k
.

By reparameterising m = k − 1, it follows that

E (w (N ;φ)) = −1
ln(1−p)

e−λ
∑∞

m=0
(pλ)m+1

(m+1)!(m+1)

= −pλ
ln(1−p)

e−λ
∑∞

m=0
(pλ)m

(m+1)!(m+1)

= −pλ
ln(1−p)

e−λ
∑∞

m=0
(pλ)m

(m+1)(m+1)m!

= −pλ
ln(1−p)

e−λ
∑∞

m=0
Γ(m+1)Γ(m+1)
Γ(m+2)Γ(m+2)

(pλ)m

m!

= −pλ
ln(1−p)

e−λ
∑∞

m=0
Γ(m+1)Γ(m+1)Γ(2)Γ(2)
Γ(1)Γ(1)Γ(m+2)Γ(m+2)

(pλ)m

m!

= −pλ
ln(1−p)

e−λ
2F2 (1, 1; 2, 2;λp) .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
−1

ln(1−p)
pn

n
e−λλn

n!
−pλ

ln(1−p)
e−λ

2F2(1,1;2,2;λp)

= −1
ln(1−p)

pn

n
e−λλn

n!
ln(1−p)

−pλe−λ
2F2(1,1;2,2;λp)

= (pλ)n−1

n.n!2F2(1,1;2,2;λp)
.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=1
(pλ)k−1

k.k!2F2(1,1;2,2;λp)
zk

= 1
2F2(1,1;2,2;λp)

∑∞
k=1

(pλ)k−1

k.k!
zk.

By reparameterising m = k − 1, it follows that
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g (z) = 1
2F2(1,1;2,2;λp)

∑∞
m=0

(pλ)m

(m+1).(m+1)!
zm+1

= z
2F2(1,1;2,2;λp)

∑∞
m=0

(pλz)m

(m+1).(m+1)!

= z
2F2(1,1;2,2;λp)

∑∞
m=0

(pλz)m

(m+1)(m+1)m!

= z
2F2(1,1;2,2;λp)

∑∞
m=0

Γ(m+1)Γ(m+1)
Γ(m+2)Γ(m+2)

(pλz)m

m!

= z
2F2(1,1;2,2;λp)

∑∞
m=0

Γ(m+1)Γ(m+1)Γ(2)Γ(2)
Γ(1)Γ(1)Γ(m+2)Γ(m+2)

(pλz)m

m!

= z2F2(1,1;2,2;λpz)

2F2(1,1;2,2;λp)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However, by using Theorem 10.7, it follows that
∂
∂z
g (z) = ∂

∂z

(
z2F2(1,1;2,2;λpz)

2F2(1,1;2,2;λp)

)
= 2F2(1,1;2,2;λpz)

2F2(1,1;2,2;λp)
+ 1F1(1;2;λpz)−2F2(1,1;2,2;λpz)

2F2(1,1;2,2;λp)

= 1F1(1;2;λpz)

2F2(1,1;2,2;λp)
.

It then follows that
E (Nw) = limz→−1

1F1(1;2;λpz)

2F2(1,1;2,2;λp)

= 1F1(1;2;λp)

2F2(1,1;2,2;λp)
.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
1F1(1;2;λpz)

2F2(1,1;2,2;λp)

)
= λp1F1(2;3;λpz)

22F2(1,1;2,2;λp)
.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
λp1F1(2;3;λpz)
22F2(1,1;2,2;λp)

+ E (Nw)− (E (Nw))2

= λp1F1(2;3;λp)
22F2(1,1;2,2;λp)

+ E (Nw)− (E (Nw))2 .
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Theorem 10.23. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = Γ(r+n)

n!Γ(r)
Beta(a+r,b+n)

Beta(a,b)
then the following results follow

E (w (N ;φ)) = e−λBeta(a+r,b)2F2(b,r;1,a+b+r;λ)
Beta(a,b)

.

fw (n) = λnBeta(a+r,b+n)Γ(r+n)

Beta(a+r,b)(n!)2Γ(r)2F2(b,r;1,a+b+r;λ)
.

g (z) = 2F2(b,r;1,a+b+r;λz)

2F2(b,r;1,a+b+r;λ)
.

E (Nw) = brλ2F2(1+b,1+r;2,1+a+b+r;λ)
(a+b+r)2F2(b,r;1,a+b+r;λ)

.

V ar (Nw) = b(1+b)r(1+r)λ2
2F2(2+b,2+r;3,2+a+b+r;λ)

2(a+b+r)(1+a+b+r)2F2(b,r;1,a+b+r;λ)
+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0
Γ(r+k)
k!Γ(r)

Beta(a+r,b+k)
Beta(a,b)

e−λλk

k!

= e−λ

Beta(a,b)

∑∞
k=0

Γ(r+k)
k!Γ(r)

Γ(a+r)Γ(b+k)
Γ(a+r+b+k)

λk

k!

= e−λ

Beta(a,b)
Γ(a+r)Γ(b)
Γ(a+r+b)

∑∞
k=0

Γ(a+r+b)
Γ(a+r)Γ(b)

Γ(r+k)
k!Γ(r)

Γ(a+r)Γ(b+k)
Γ(a+r+b+k)

λk

k!

= e−λBeta(a+r,b)
Beta(a,b)

∑∞
k=0

Γ(b+k)Γ(r+k)Γ(1)Γ(a+b+r)
Γ(b)Γ(r)Γ(1+k)Γ(a+b+r+k)

λk

k!

= e−λBeta(a+r,b)2F2(b,r;1,a+b+r;λ)
Beta(a,b)

= e−λBeta(a+r,b)2F2(b,r;1,a+b+r;λ)
Beta(a,b)

.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

e−λλn

n!

e−λBeta(a+r,b)2F2(b,r;1,a+b+r;λ)
Beta(a,b)

= Γ(r+n)
n!Γ(r)

Beta(a+r,b+n)
Beta(a,b)

e−λλn

n!
Beta(a,b)

e−λBeta(a+r,b)2F2(b,r;1,a+b+r;λ)

= λnBeta(a+r,b+n)Γ(r+n)

Beta(a+r,b)(n!)2Γ(r)2F2(b,r;1,a+b+r;λ)
.

From the definition of the probability generating, function it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0
λkBeta(a+r,b+k)Γ(r+k)

Beta(a+r,b)(k!)2Γ(r)2F2(b,r;1,a+b+r;λ)
zk

= 1
2F2(b,r;1,a+b+r;λ)

∑∞
k=0

Γ(a+r)Γ(b+k)Γ(a+r+b)Γ(r+k)

Γ(a+r+b+k)Γ(a+r)Γ(b)(k!)2Γ(r)
(λz)k

= 1
2F2(b,r;1,a+b+r;λ)

∑∞
k=0

Γ(b+k)Γ(r+k)Γ(k)Γ(a+r+b)
Γ(b)Γ(r)Γ(k+1)Γ(a+r+b+k)

(λz)k

k!

= 2F2(b,r;1,a+b+r;λz)

2F2(b,r;1,a+b+r;λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However, by using Theorem 10.6
∂
∂z
g (z) = ∂

∂z
2F2(b,r;1,a+b+r;λz)

2F2(b,r;1,a+b+r;λ)

= brλ2F2(1+b,1+r;2,1+a+b+r;λz)
(a+b+r)2F2(b,r;1,a+b+r;λ)

.

It then follows that
E (Nw) = limz→−1

brλ2F2(1+b,1+r;2,1+a+b+r;λz)
(a+b+r)2F2(b,r;1,a+b+r;λ)

= brλ2F2(1+b,1+r;2,1+a+b+r;λ)
(a+b+r)2F2(b,r;1,a+b+r;λ)

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z
brλ2F2(1+b,1+r;2,1+a+b+r;λz)

(a+b+r)2F2(b,r;1,a+b+r;λ)

= b(b+1)r(r+1)λ2
2F2(1+b,1+r;2,1+a+b+r;λz)

2(a+b+r)(a+b+r+1)2F2(b,r;1,a+b+r;λ)
.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
b(b+1)r(r+1)λ2

2F2(1+b,1+r;2,1+a+b+r;λz)
2(a+b+r)(a+b+r+1)2F2(b,r;1,a+b+r;λ)

+ E (Nw)− (E (Nw))2

= b(b+1)r(r+1)λ2
2F2(1+b,1+r;2,1+a+b+r;λ)

2(a+b+r)(a+b+r+1)2F2(b,r;1,a+b+r;λ)
+ E (Nw)− (E (Nw))2
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Theorem 10.24. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = I (n ≥ a) then

E (w (N ;φ)) = γ(a,λ)
Γ(a)

.

fw (n) = I(n≥a)e−λλnΓ(a)
n!γ(a,λ)

.

g (z) = eλ(z−1)γ(a,λz)
γ(a,λ)

.

E (Nw) = e−λλa+λγ(a,λ)
γ(a,λ)

.

V ar (Nw) =
e−λ

(
λ1+a+λa(a−1)+eλλ2γ(a,λ)

)
γ(a,λ)

+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 I (k ≥ a) e−λλk

k!

=
∑∞

k=a
e−λλk

k!
.

Since
∑∞

k=0
e−λλk

k!
= 1 (the Poisson probability mass function sums to one) it follows that

∞∑
k=a

e−λλk

k!
= 1−

a−1∑
k=0

e−λλk

k!
.

However,
∑a−1

k=0
e−λλk

k!
is the the cumulative distribution function of a Poisson distribution

with parameter λ at the point a − 1. The fact that this cumulative distribution function
equals Γ(a,λ)

Γ(a)
can be found in many introductory statistical textbooks. Using the fact that

Γ (a)− Γ (a, λ) = γ (a, λ) (Theorem 10.10), it follows that

E (w (N ;φ)) = 1− Γ(a,λ)
Γ(a)

= γ(a,λ)
Γ(a)

.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
I(n≥a) e

−λλn

n!
γ(a,λ)
Γ(a)

= I(n≥a)e−λλnΓ(a)
n!γ(a,λ)

.
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From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
I(k≥a)e−λλkΓ(a)

k!γ(a,λ)
zk

= e−λΓ(a)
e−λzγ(a,λ)

∑∞
k=a

e−λz(λz)k

k!

= e−λΓ(a)
e−λzγ(a,λ)

(
1−

∑a−1
k=0

e−λz(λz)k

k!

)
= e−λΓ(a)

e−λz(Γ(a)−Γ(a,λ))

(
1− Γ(a,λz)

Γ(a)

)
= eλ(z−1)γ(a,λz)

γ(a,λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However, by using Theorem 10.10 for the derivative of the lower incomplete gamma function,
it follows that

∂
∂z
g (z) = ∂

∂z
eλ(z−1)γ(a,λz)

γ(a,λ)

= λeλ(z−1)γ(a,λz)+eλ(z−1)(λz)a−1e−λzλ
γ(a,λ)

= λeλ(z−1)γ(a,λz)+e−λ(λz)a−1λ
γ(a,λ)

.

It then follows that
E (Nw) = limz→−1

λeλ(z−1)γ(a,λz)+e−λ(λz)a−1λ
γ(a,λ)

= e−λλa+λγ(a,λ)
γ(a,λ)

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z
λeλ(z−1)γ(a,λz)+e−λ(λz)a−1λ

γ(a,λ)

= λ2eλ(z−1)γ(a,λz)+λeλ(z−1)(λz)a−1e−λzλ+e−λ(a−1)(λz)a−2λ2

γ(a,λ)

= λ2eλ(z−1)γ(a,λz)+λe−λ(λz)a−1λ+e−λ(a−1)(λz)a−2λ2

γ(a,λ)
.
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Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
λ2eλ(z−1)γ(a,λz)+λe−λ(λz)a−1λ+e−λ(a−1)(λz)a−2λ2

γ(a,λ)

+ E (Nw)− (E (Nw))2

=
e−λ

(
λ1+a+λa(a−1)+eλλ2γ(a,λ)

)
γ(a,λ)

+ E (Nw)− (E (Nw))2 .

Theorem 10.25. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = I (n ≤ b) then

E (w (N ;φ)) = Γ(1+b,λ)
Γ(1+b)

.

fw (n) = I(n≤b)e−λλnΓ(1+b)
n!Γ(1+b,λ)

.

g (z) = eλ(z−1)Γ(1+b,λz)
Γ(1+b,λ)

.

E (Nw) = λ− e−λλ1+b

Γ(1+b,λ)
.

V ar (Nw) = λ
(
λ− e−λλb(λ+b)

Γ(1+b,λ)

)
+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 I (k ≤ b) e−λλk

k!

=
∑b

k=0
e−λλk

k!
.∑b

k=0
e−λλk

k!
is the cumulative distribution function of a Poisson distribution with parameter

λ at point b. Thus, it follows that
E (w (N ;φ)) = Γ(1+b,λ)

Γ(1+b)
.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
I(k≤b) e

−λλn

n!
Γ(1+b,λ)
Γ(1+b)

= I(n≤b)e−λλnΓ(1+b)
n!Γ(1+b,λ)

.

From the definition of the probability generating function, it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0
I(k≤b)e−λλkΓ(1+b)

k!Γ(1+b,λ)
zk

= e−λΓ(1+b)
Γ(1+b,λ)

∑b
k=0

λk

k!
zk

= e−λΓ(1+b)
Γ(1+b,λ)e−λz

∑b
k=0

e−λz(λz)k

k!

= e−λΓ(1+b)
Γ(1+b,λ)e−λz

Γ(1+b,λz)
Γ(1+b)

= eλ(z−1)Γ(1+b,λz)
Γ(1+b,λ)

.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However, by using Theorem 10.10 for the derivative of the upper incomplete gamma function,
it follows that

∂
∂z
g (z) = ∂

∂z
eλ(z−1)Γ(1+b,λz)

Γ(1+b,λ)

= λeλ(z−1)Γ(1+b,λz)−eλ(z−1)(λz)be−λzλ
Γ(1+b,λ)

= λeλ(z−1)Γ(1+b,λz)−e−λ(λz)bλ
Γ(1+b,λ)

.

It then follows that
E (Nw) = limz→−1

λeλ(z−1)Γ(1+b,λz)−e−λ(λz)bλ
Γ(1+b,λ)

= λ− e−λλ1+b

Γ(1+b,λ)
.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z
λeλ(z−1)Γ(1+b,λz)−e−λ(λz)bλ

Γ(1+b,λ)

= λ2eλ(z−1)Γ(1+b,λz)−λ2eλ(z−1)(λz)be−λz−e−λλb+1bzb−1

Γ(1+b,λ)

= λ2eλ(z−1)Γ(1+b,λz)−λ2e−λ(λz)b−e−λλb+1bzb−1

Γ(1+b,λ)
.
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Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
λ2eλ(z−1)Γ(1+b,λz)−λ2e−λ(λz)b−e−λλb+1bzb−1

Γ(1+b,λ)

+ E (Nw)− (E (Nw))2

= λ
(
λ− e−λλb(λ+b)

Γ(1+b,λ)

)
+ E (Nw)− (E (Nw))2 .

Theorem 10.26. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = I (n ≥ a) I (n ≤ b) then

E (w (N ;φ)) = Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)
Γ(a)Γ(1+b)

.

fw (n) = Γ(a)Γ(1+b)
Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)

I(n≥a)I(n≤b)e−λλn

n!
.

g (z) = eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

E (Nw) =
e−λ

(
λΓ(a)

(
λb−eλΓ(1+b,λ)

)
−Γ(1+b)

(
λa−eλλΓ(a,λ)

))
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

V ar (Nw) =
e−λ

((
λ2+b+bλ1+b

)
Γ(a)+

(
λa−λ1+a−aλa

)
Γ(1+b)+eλλ2(Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ))

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

+ E (Nw)− (E (Nw))2 .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 I (n ≥ a) I (n ≤ b) e−λλk

k!

=
∑b

k=a
e−λλk

k!
.

Since
∑∞

k=a
e−λλk

k!
+
∑b

k=0
e−λλk

k!
−
∑∞

k=0
e−λλk

k!
=
∑b

k=a
e−λλk

k!
the above summation can be split

into three parts.

E (w (N ;φ)) =
∑∞

k=a
e−λλk

k!
+
∑b

k=0
e−λλk

k!
−
∑∞

k=0
e−λλk

k!

= γ(a,λ)
Γ(a)

+ Γ(1+b,λ)
Γ(1+b)

− 1

= γ(a,λ)Γ(1+b)+Γ(1+b,λ)Γ(a)−Γ(a)Γ(1+b)
Γ(a)Γ(1+b)

= (Γ(a)−Γ(a,λ))Γ(1+b)+Γ(1+b,λ)Γ(a)−Γ(a)Γ(1+b)
Γ(a)Γ(1+b)

= Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)
Γ(a)Γ(1+b)

.
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From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
I(n≥a)I(n≤b) e

−λλn

n!
Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)

Γ(a)Γ(1+b)

= Γ(a)Γ(1+b)
Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)

I(n≥a)I(n≤b)e−λλn

n!
.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
Γ(a)Γ(1+b)

Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)
I(n≥a)I(n≤b)e−λλn

n!
zk

= Γ(a)Γ(1+b)e−λ

Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)

∑b
k=a

(λz)k

k!

= Γ(a)Γ(1+b)e−λ

Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)e−λz

∑b
k=a

e−λz(λz)k

k!
.

Using the same reasoning as the normalising constant derivation, it follows that

g (z) = Γ(a)Γ(1+b)e−λ

Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)e−λz

(∑∞
k=a

e−λz(λz)k

k!

+
∑b

k=0
e−λz(λz)k

k!
−
∑∞

k=0
e−λz(λz)k

k!

)
= Γ(a)Γ(1+b)e−λ

Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)e−λz

((
1−

∑a−1
k=0

e−λz(λz)k

k!

)
+

∑b
k=0

e−λz(λz)k

k!
−
∑∞

k=0
e−λz(λz)k

k!

)
= Γ(a)Γ(1+b)e−λ

Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)e−λz

((
1− Γ(a,λz)

Γ(a)

)
+ Γ(1+b,λz)

Γ(1+b)
− 1
)

= eλ(z−1)Γ(a)Γ(1+b)
Γ(a)Γ(1+b,λ)−Γ(1+b)Γ(a,λ)

(
Γ(a,λz)Γ(1+b)+Γ(a)Γ(1+b,λz)

Γ(a)Γ(1+b)

)
= eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))

Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However by using Theorem 10.10 for the derivative of the upper incomplete gamma function,
it follows that
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∂
∂z
g (z) = ∂

∂z
eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))

Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

=
λeλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))+eλ(z−1)

(
−Γ(1+b)(λz)a−1e−λzλ−Γ(a)(λz)be−λzλ

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

=
λeλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))−e−λ

(
Γ(1+b)(λz)a−1λ+Γ(a)(λz)bλ

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

It then follows that

E (Nw) = limz→−1

λeλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))−e−λ
(
Γ(1+b)(λz)a−1λ+Γ(a)(λz)bλ

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

=
λ(Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ))−e−λ

(
Γ(1+b)(λ)a−1λ+Γ(a)(λ)bλ

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

=
e−λ

(
λΓ(a)

(
λb−eλΓ(1+b,λ)

)
−Γ(1+b)

(
λa−eλλΓ(a,λ)

))
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,

∂2

∂z2
g (z) = ∂

∂z

λeλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))−e−λ
(
Γ(1+b)(λz)a−1λ+Γ(a)(λz)bλ

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

=
λ2eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))+λeλ(z−1)

(
−Γ(1+b)(λz)a−1eλzλ+Γ(a)(λz)beλzλ

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

−
e−λ

(
(a−1)Γ(1+b)(λz)a−2λ2+Γ(a)b(λz)b−1λ2

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

=
λ2eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))+λ2e−λ

(
Γ(a)(λz)b−Γ(1+b)(λz)a−1

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

−
e−λ

(
(a−1)Γ(1+b)(λz)a−2λ2+Γ(a)b(λz)b−1λ2

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1

λ2eλ(z−1)(Γ(1+b)Γ(a,λz)−Γ(a)Γ(1+b,λz))+λ2e−λ
(
Γ(a)(λz)b−Γ(1+b)(λz)a−1

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

− limz→−1

e−λ
(
(a−1)Γ(1+b)(λz)a−2λ2+Γ(a)b(λz)b−1λ2

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

+ E (Nw)− (E (Nw))2

=
λ2(Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ))+λ2e−λ

(
Γ(a)λb−Γ(1+b)λa−1

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

− e−λ
(
(a−1)Γ(1+b)λa+Γ(a)bλb+1

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

+ E (Nw)− (E (Nw))2

=
e−λ

((
λ2+b+bλ1+b

)
Γ(a)+

(
λa−λ1+a−aλa

)
Γ(1+b)+eλλ2(Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ))

)
Γ(1+b)Γ(a,λ)−Γ(a)Γ(1+b,λ)

+ E (Nw)− (E (Nw))2 .
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Theorem 10.27. If the weight function used in the weighted Poisson probability mass func-

tion is chosen as w (n;φ) =

(
n
a

)
where a ∈ {0, 1, 2, ...} then

E (w (N ;φ)) = λa

a!
.

fw (n) = e−λλn−a

(n−a)!
.

g (z) = eλ(z−1)za.

E (Nw) = a+ λ.

V ar (Nw) = λ.

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0

(
k
a

)
e−λλk

k!

=
∑∞

k=a

(
k
a

)
e−λλk

k!

=
∑∞

k=a
k!

a!(k−a)!
e−λλk

k!

= e−λ

a!

∑∞
k=a

λk

(k−a)!
.

By reparameterising m = k − a, it follows that

E (w (N ;φ)) = e−λ

a!

∑∞
m=0

λm+a

(m)!

= e−λλa

a!

∑∞
m=0

λm

(m)!

= e−λλa

a!
eλ

= λa

a!
.

From the definition of the weighted Poisson probability mass function, it follows that
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fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=

 n
a

 e−λλn

n!

λa

a!

= n!
a!(n−a)!

e−λλn

n!
a!
λa

= e−λλn−a

(n−a)!
.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=a
e−λλk−a

(k−a)!
zk.

By reparameterising m = k − a, it follows that

g (z) = e−λza
∑∞

m=0
(λz)m

m!

= eλ(z−1)za.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z

(
eλ(z−1)za

)
= λeλ(z−1)za + eλ(z−1)aza−1

= eλ(z−1) (λza + aza−1) .

It then follows that
E (Nw) = limz→−1e

λ(z−1) (λza + aza−1)

= a+ λ.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
eλ(z−1) (λza + aza−1)

)
= λeλ(z−1) (λza + aza−1) + eλ(z−1) (λaza−1 + a (a− 1) za−2)

= eλ(z−1)za−2 (λ2z2 + 2λaz + a (a− 1)) .
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Consequently, the variance can be expressed as
V ar (Nw) = limz→−1e

λ(z−1)za−2 (λ2z2 + 2λaz + a (a− 1))

+ E (Nw)− (E (Nw))2

= λ2 + 2λa+ a (a− 1) + a+ λ− (a+ λ)2

= λ.

Theorem 10.28. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = ε n!

e−λλn I (n = 0) + (1− ε) then

E (w (N ;φ)) = 1.

fw (n) =
(
ε n!
e−λλn I (n = 0) + (1− ε)

)
e−λλn

n!
.

g (z) = ε+ eλ(z−1) (1− ε) .

E (Nw) = λ (1− ε) .

V ar (Nw) = λ (1− ε) (1 + ελ) .

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0

(
ε k!
e−λλk I (k = 0) + (1− ε)

)
e−λλk

k!

= ε
∑∞

k=0 I (n = 0) + (1− ε)
∑∞

k=0
e−λλk

k!

= ε+ (1− ε)

= 1.

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
(
ε n!
e−λλn I (n = 0) + (1− ε)

)
e−λλn

n!
.

From the definition of the probability generating function, it follows that
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g (z) =
∑∞

k=0 fw (k) zk

=
∑∞

k=0

(
ε k!
e−λλk I (k = 0) + (1− ε)

)
e−λλk

k!
zk

= ε
∑∞

k=0
k!

e−λλk I (k = 0) e−λ(λz)k

k!
+ (1− ε)

∑∞
k=0

e−λ(λz)k

k!

= ε
∑∞

k=0
(λz)k

λk I (k = 0) + (1− ε) e−λ
∑∞

k=0
(λz)k

k!

= ε+ eλ(z−1) (1− ε) .

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z)

∂
∂z
g (z) = ∂

∂z

(
ε+ eλ(z−1) (1− ε)

)
= λeλ(z−1) (1− ε) .

It then follows that
E (Nw) = limz→−1λe

λ(z−1) (1− ε)

= λ (1− ε) .

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
λeλ(z−1) (1− ε)

)
= λ2eλ(z−1) (1− ε) .

Consequently, the variance can be expressed as
V ar (Nw) = limz→−1λ

2eλ(z−1) (1− ε) + E (Nw)− (E (Nw))2

= λ2 (1− ε) + λ (1− ε)− (λ (1− ε))2

= λ (1− ε) (1 + ελ) .
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Theorem 10.29. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = (a)n then

E (w (N ;φ)) = e−λ (1− λ)−a .

fw (n) =
(1−λ)aλn(a)n

n!
.

g (z) = (1− λ)a (1− λz)−a .

E (Nw) = aλ
1−λ

.

V ar (Nw) = aλ
(λ−1)2

.

Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 (a)n
e−λλk

k!

= e−λ
∑∞

k=0
Γ(a+k)
Γ(a)

λk

k!

= e−λ
1F0 (a;λ)

= e−λ (1− λ)−a .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
(a)n

e−λλn

n!

e−λ(1−λ)−a

=
(1−λ)aλn(a)n

n!
.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
(1−λ)aλk(a)k

k!
zk

= (1− λ)a
∑∞

k=0
Γ(a+k)
Γ(a)

(λz)k

k!

= (1− λ)a 1F0 (a;λz)

= (1− λ)a (1− λz)−a .
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From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z)

∂
∂z
g (z) = ∂

∂z

(
(1− λ)a (1− λz)−a)

= (1− λ)a aλ (1− λz)−a−1 .

It then follows that
E (Nw) = limz→−1 (1− λ)a aλ (1− λz)−a−1

= (1− λ)a aλ (1− λ)−a−1

= aλ
1−λ

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z

(
(1− λ)a aλ (1− λz)−a−1)

= (1− λ)a a (1 + a)λ2 (1− λz)−a−2 .

Consequently, the variance can be expressed as
V ar (Nw) = limz→−1 (1− λ)a a (1 + a)λ2 (1− λz)−a−2 + E (Nw)− (E (Nw))2

= (1− λ)a a (1 + a)λ2 (1− z)−a−2 + aλ
1−λ

−
(

aλ
1−λ

)2
= aλ

(λ−1)2
.

Theorem 10.30. If the weight function used in the weighted Poisson probability mass func-
tion is chosen as w (n;φ) = (n)a then

E (w (N ;φ)) = e−λλΓ (1 + a) 1F1 (1 + a; 2;λ) .

fw (n) =
λn−1(n)a

n!Γ(1+a)1F1(1+a;2;λ)
.

g (z) = z1F1(1+a;2;λz)

1F1(1+a;2;λ)
.

E (Nw) = 21F1(1+a;2;λ)+(1+a)λ1F1(2+a;3;λ)
21F1(1+a;2;λ)

.

V ar (Nw) = (1+a)λ(61F1(2+a;3;λ)+(2+a)λ1F1(3+a;4;λ))
61F1(1+a;2;λ)

+ E (Nw)− (E (Nw))2 .
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Proof. From the definition of the normalising constant, it follows that
E (w (N ;φ)) =

∑∞
k=0 w (k) f (k)

=
∑∞

k=0 (k)a
e−λλk

k!

= e−λ
∑∞

k=0
Γ(a+k)
Γ(k)

λk

k!

= e−λλ
∑∞

k=0
Γ(a+k)k
Γ(k+1)

λk−1

k!

= e−λλ
∑∞

k=1
Γ(a+k)
Γ(k+1)

λk−1

(k−1)!
.

By reparameterising m = k − 1, it follows that

E (w (N ;φ)) = e−λλ
∑∞

m=0
Γ(a+m+1)
Γ(m+2)

λm

m!

= e−λλΓ (1 + a)
∑∞

m=0
Γ(a+m+1)
Γ(a+1)

Γ(2)
Γ(m+2)

λm

m!

= e−λλΓ (1 + a) 1F1 (1 + a; 2;λ) .

From the definition of the weighted Poisson probability mass function, it follows that

fw (n) = w(n)f(n)∑∞
k=0 w(k)f(k)

=
e−λλn

n!

e−λλΓ(1+a)1F1(1+a;2;λ)

=
λn−1(n)a

n!Γ(1+a)1F1(1+a;2;λ)
.

From the definition of the probability generating function, it follows that
g (z) =

∑∞
k=0 fw (k) zk

=
∑∞

k=0
λk−1(k)a

k!Γ(1+a)1F1(1+a;2;λ)
zk

= z
1F1(1+a;2;λ)

∑∞
k=0

Γ(k+a)(λz)k−1

Γ(k)Γ(1+a)k!

= z
1F1(1+a;2;λ)

∑∞
k=0

kΓ(k+a)(λz)k−1

Γ(k+1)Γ(1+a)k!

= z
1F1(1+a;2;λ)

∑∞
k=0

Γ(k+a)(λz)k−1

Γ(k+1)Γ(1+a)(k−1)!
.

By reparameterising m = k − 1, it follows that
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g (z) = z
1F1(1+a;2;λ)

∑∞
m=0

Γ(m+a+1)
Γ(m+2)Γ(1+a)

(zλ)m

m!

= z
1F1(1+a;2;λ)

∑∞
m=0

Γ(m+a+1)Γ(2)
Γ(a+1)Γ(m+2)

(λz)m

m!

= z1F1(1+a;2;λz)

1F1(1+a;2;λ)
.

From the definition of the expected value, it follows that
E (Nw) = limz→−1

∂
∂z
g (z) .

However,
∂
∂z
g (z) = ∂

∂z
z1F1(1+a;2;λz)

1F1(1+a;2;λ)
.

By using the result in Theorem 10.6, it follows that
∂
∂z
g (z) = 1F1(1+a;2;λz)

1F1(1+a;2;λ)
+

1+a
2 1

F1(2+a;3;λz)

1F1(1+a;2;λ)

= 21F1(1+a;2;λz)+(1+a)λz1F1(2+a;3;λz)
21F1(1+a;2;λ)

.

It then follows that
E (Nw) = limz→−1

21F1(1+a;2;λz)+(1+a)λz1F1(2+a;3;λz)
21F1(1+a;2;λ)

= 21F1(1+a;2;λ)+(1+a)λ1F1(2+a;3;λ)
21F1(1+a;2;λ)

.

From the definition of the variance, it follows that

V ar (Nw) = limz→−1
∂2

∂z2
g (z) + E (Nw)− (E (Nw))2 .

However,
∂2

∂z2
g (z) = ∂

∂z
21F1(1+a;2;λz)+(1+a)λz1F1(2+a;3;λz)

21F1(1+a;2;λ)

= (1+a)λ(61F1(2+a;3;λz)+(2+a)λz1F1(3+a;4;λz))
61F1(1+a;2;λ)

.

Consequently, the variance can be expressed as

V ar (Nw) = limz→−1
(1+a)λ(61F1(2+a;3;λz)+(2+a)λz1F1(3+a;4;λz))

61F1(1+a;2;λ)
+ E (Nw)− (E (Nw))2

= (1+a)λ(61F1(2+a;3;λ)+(2+a)λ1F1(3+a;4;λ))
61F1(1+a;2;λ)

+ E (Nw)− (E (Nw))2 .
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10.3 Additional weighted Poisson distribution fits

10.3.1 Weekly sales figures
For item 409, of the 28 weight functions that were tested, 9 models perform better than the
Poisson, and 1 additional model may (the AIC and AICc disagree with the BIC). The best
fit is achieved when w (n;φ) = (19.7293)n and λ = 0.683935. This is shown in Figure 10.1.
Although the weighted Poisson is able to capture the behaviour in tails of the distribution
more accurately than the Poisson, the model still seems to be unable to model the observed
distribution with a high degree of accuracy.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.56222; 0.805649) (0.493803; 0.766735) (0.637741; 0.720464)
a (8.71696; 30.7417) (13.3244; 42.8965) (16.6434; 24.1238)

Figure 10.1: Weekly sales - Item 409
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For item 726, of the 14 weight functions that were tested, only 1 model may perform better
than the Poisson (the AIC and AICc disagree with the BIC). This fit is achieved when
w (n;φ) = n + 0.400104 and λ = 0.540675, and is shown in Figure 10.2. Although the AIC
and AICc disagree with the BIC, the weighted Poisson fit appears to be better since it is
much closer to the observed probabilities in four out of five observed frequencies, and only
slightly further away at one. In general, it appears as if the model gives a better fit at the
mean as well as in the tails.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.240878; 0.830472) (0.098893; 1.01923) (0.453359; 0.638422)
ε (0; 0.964982) (0.116912; 7.59677) (0.263534; 0.661297)

Figure 10.2: Weekly sales - Item 726
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10.3.2 Airplane accidents
For the fatalities per incident, of the 12 weight functions that were tested, 6 models perform
better than the Poisson. The best fit is achieved when w (n;φ) = Γ(0.822916+n)

n!Γ(0.822916)
Beta(252204.8229,0.822409+n)
Beta(252204.8229,0.822409)

and λ = 245318. This is shown in Figure 10.3. Clearly the weighted Poisson gives a better
fit to the data relative to the Poisson.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (88399.3; 402237) (2065.29; 323419) (311.51; 104585)
a (90830.6; 413578) (2048.53; 332785) (270.076; 107810)
b (0.756138; 0.888679) (0.742345; 0.842701) (0.131846; 1.31792)
r (0.756625; 0.889206) (0.698649; 0.837322) (0.35423; 1.54961)

Figure 10.3: Airplane accidents - Fatalities per incident

Due to the long tail of the data, seeing the details of the fit may not be clear. Thus Figure
10.4 shows a cropped view of the plot.
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Figure 10.4: Airplane accidents - Cropped fatalities per incident
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For the number of incidents per month, of the 14 weight functions that were tested, 3 models
perform better than the Poisson, and 3 additional models may (the AIC and AICc disagree
with the BIC). The best fit is achieved when w (n;φ) = (34.9643)n and λ = 0.148743. This
is shown in Figure 10.5. For this plot, the weighted Poisson appears to give a better fit close
to the mean as well as in the parts of the tail of the distribution.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.0504211; 0.247065) (0.0315781; 0.237445) (0.0361087; 0.240409)
a (7.8418; 62.0868) (19.0901; 136.867) (19.3759; 163.146)

Figure 10.5: Airplane accidents - Incidents per month
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10.3.3 USA mass shootings
For the number of people injured per incident, of the 12 weight functions that were tested, 5
models perform better than the Poisson, and 1 additional model may (the AIC and AICc dis-
agree with the BIC). The best fit is achieved when w (n;φ) = Γ(2.37867+n)

n!Γ(2.37867)
Beta(19156.67867,2.35224+n)

Beta(19154.3,2.35224)

and λ = 9526.54. This is shown in Figure 10.6. Visually it appears as if the Poisson distri-
bution gives a better fit for this dataset even though based on the AIC, AICc and BIC this
is not the case. In fact, the weighted Poisson’s AIC is roughly 25% smaller than that of the
Poisson. The reason for this seeming contradiction is the influence of outliers. There have
been relatively few shootings where more than twenty people have been injured, but these
occurrences are enough to ensure that the thicker tail of the weighted Poisson distribution
gives a better overall fit.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0; 19376.5) (2.55522; 160563) (6.85417; 4557.64)
a (0; 40470.6) (0.001; 194802) (2.30547; 8467.86)
b (1.83189; 2.87258) (1.05666; 428.689) (0.734741; 23.2924)
r (1.84965; 2.9077) (0.40318; 339.651) (0.385286; 5.22879)

Figure 10.6: Mass shootings - Injuries per incident
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For the number of people injured per day, of the 12 weight functions that were tested, 7 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = Γ(0.0470452+n)

n!Γ(0.0470452)
Beta(5728.197,3.10309+n)

Beta(5728.15,3.10309)

and λ = 4565.16. This is shown in Figure 10.7. In this case, the weighted Poisson distribution
clearly gives a better fit to the data, especially in the thicker tails of the distribution.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (2917.62; 6212.7) (115.975; 65163.3) (22.9515; 132601)
a (3656.65; 7799.64) (100.18; 68724.8) (11.8711; 16485.5)
b (2.74708; 3.45909) (0.01; 0.025) (0.0405052; 4.14726)
r (0.036617; 0.0574734) (0.01; 0.0366) (0.0237813; 3.02111)

Figure 10.7: Mass shootings - Injuries per day
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For the number of people injured per month, of the 23 weight functions that were tested, 10
models perform better than the Poisson. The best fit is achieved when w (n;φ) = (4.7508)n
and λ = 0.95932. This is shown in Figure 10.8. In this case, the mean of the data is 112.033
and the variance is 4610.74. The expected value and variance of the Poisson distribution is
112.033. For the weighted Poisson distribution the expected value is 112.034 and the variance
is 2754.03. Clearly the weighted Poisson distribution gives a better fit to the data, especially
in the thicker tails of the distribution. However, neither distribution can be said to give a
good fit.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.944505; 0.974134) (0.910151; 0.978254) (0.953218; 0.964407)
a (3.03747; 6.46417) (2.8018; 10.3215) (4.17055; 5.41539)

Figure 10.8: Mass shootings - Injuries per month
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For the number of fatalities per incident, of the 14 weight functions that were tested, 8 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = (0.778335)n and
λ = 0.594393. This is shown in Figure 10.9. The weighted Poisson distribution gives a
substantially better fit than the Poisson.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.556888; 0.631899) (0.492291; 0.673708) (0.519699; 0.657046)
a (0.671146; 0.885523) (0.599329; 1.0886) (0.608221; 1.00297)

Figure 10.9: Mass shootings - Fatalities per incident
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For the number of fatalities per day, of the 14 weight functions that were tested, 7 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = (0.291193)n and
λ = 0.77284. This is shown in Figure 10.10. In this case, the weighted Poisson distribution
clearly gives a better fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.745399; 0.800281) (0.727203; 0.810189) (0.7133311; 0.819651)
a (0.25543; 0.326955) (0.250118; 0.345572) (0.2288; 0.37079)

Figure 10.10: Mass shootings - Fatalities per day
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For the number of fatalities per month, of the 26 weight functions that were tested, 9 models
perform better than the Poisson, and 3 additional models may (the AIC and AICc disagree
with the BIC). The best fit is achieved when w (n;φ) = (7.36203)n and λ = 0.803742. This
is shown in Figure 10.11. In this case, the weighted Poisson distribution gives a better fit to
the data, although the model is still far from ideal.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.73372; 0.873764) (0.609418; 0.878808) (0.774038; 0.826452)
a (4.18496; 10.5391) (4.43696; 18.0328) (6.30695; 8.68692)

Figure 10.11: Mass shootings - Fatalities per month
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For the number of incidents per month, of the 14 weight functions that were tested, 3 models
perform better than the Poisson, and 3 additional models may (the AIC and AICc disagree
with the BIC). The best fit is achieved when w (n;φ) = (14.3382)n and λ = 0.648321. This
is shown in Figure 10.12. In this case, the weighted Poisson distribution gives a better fit to
the data, although the model is far from perfect.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.520868; 0.775787) (0.50007; 0.724876) (0.598068; 0.688329)
a (6.41148; 22.265) (9.98108; 26.0307) (11.934; 17.6548)

Figure 10.12: Mass shootings - Incidents per month

In all three of the above “per month” analyses, the fits of the distributions are not ideal.
This could be due to the relative sparsity in the number of months in the dataset.
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10.3.4 Vehicle accidents in Great Britain
For the number of casualties per hour, of the 10 weight functions that were tested, 5 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = (0.998156)n and
λ = 0.981357. This is shown in Figure 10.13. In this case, the weighted Poisson distribution
gives a good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.980712; 0.982001) (0.98051; 0.982225) (0.97816; 0.983616)
a (0.970047; 1.02627) (0.957641; 1.03497) (0.889065; 1.12995)

Figure 10.13: Britain accidents - Casualties per hour
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For the number of vehicles per hour, of the 13 weight functions that were tested, 7 models per-
form better than the Poisson. The best occurs when w (n;φ) =

(
Γ(26974+n)
n!Γ(26974)

Beta(27820,73964+n)
Beta(846,73964)

)−1

and λ = 19416. This is shown in Figure 10.14. In this case, the weighted Poisson distribution
gives a good fit to the data.

The weight function that results in the best fit contains quite a few gamma functions with
extremely large parameters. This results in extremely slow calculations (even after optimising
code and parallelising processing). As a result, calculating accurate confidence intervals, while
theoretically possible, quickly becomes intractable. For this reason the confidence intervals
for this specific application have been excluded.

Figure 10.14: Britain accidents - Vehicles per hour
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For the number of casualties per incident, of the 28 weight functions that were tested, 24
models perform better than the Poisson. The best fit is achieved when w (n;φ) = a ×
Γ(n)Γ(a+1)
Γ(n+a+1)

, a = 23606565.3873 and λ = 13919592.9622. This is shown in Figure 10.15. In
this case, the weighted Poisson distribution gives a very good fit to the data. The fit is
near-perfect.

The confidence intervals for the weighted Poisson parameters are as follows:
Non-parametric bootstrap Parametric bootstrap

λ (7575030; 36708075) (3.48211; 16295772)
a (12924999; 62246590) (3.21385; 28046485)

Figure 10.15: Britain accidents - Casualties per incident
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10.3.5 Vehicle accidents in Canada
For the number of vehicles per incident, of the 27 weight functions that were tested, 23 models
perform better than the Poisson. The best fit occurs if w (n;φ) = (n+ 0.001) (n− 0.324713)2

and λ = 0.340524. This is shown in Figure 10.16. In this case, the weighted Poisson
distribution gives a very good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.339489; 0.341559) (0.183299; 0.810372) (0.270302; 0.420862)
a (0; 0.00000001) (0.00000001; 0.000000015) (0.00000001; 0.000000018)
b (0.322944; 0.326479) (0.0000001; 0.66193) (0.0349641; 0.500586)

Figure 10.16: Canada accidents - Vehicles per incident
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For the number of incidents per hour, of the 26 weight functions that were tested, 10 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = (1.43859)n and λ =
0.990283. This is shown in Figure 10.17. In this case, the weighted Poisson distribution gives
a decent fit to the data. To better visualise the shape of the weighted Poisson distribution a
cropped graph is provided in Figure 10.18.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.98963; 0.990935) (0.989165; 0.991296) (0.988855; 0.991453)
a (1.35645; 1.52074) (1.31013; 1.60878) (1.2946; 1.62693)

Figure 10.17: Canada accidents - Incidents per hour



CHAPTER 10. APPENDIX 277

Figure 10.18: Canada accidents - Incidents per hour cropped
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For the number of vehicles per hour, of the 27 weight functions that were tested, 12 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = (1.15352)n and
λ = 0.996256. This is shown in Figure 10.19. In this case, the weighted Poisson distribution
gives a decent fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.995999; 0.996513) (0.995679; 0.996728) (0.995678; 0.996712)
a (1.08948; 1.21756) (1.03408; 1.2974) (1.04076; 1.29827)

Figure 10.19: Canada accidents - Vehicles per hour
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10.3.6 USA gun violence
For the number of fatalities per incident, of the 13 weight functions that were tested, 3 models
perform better than the Poisson. The best fit occurs when w (n;φ) = Γ(2.47+n)

n!Γ(2.47)
Beta(1894.47+n)
Beta(1892,2.47)

and λ = 78.1346. This is shown in Figure 10.20. In this case, both the Poisson and weighted
Poisson distributions give very good fits to the data. The AIC of the weighted Poisson
distribution is only 0.1% smaller than that of the Poisson distribution.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0; 184.332) (0.0103529; 499.332) (0.0107802; 112.431)
a (0; 4473.66) (0.01; 2928.57) (0.01; 1203.33)
b (2.11297; 2.82715) (0.508997; 84.7026) (0.389424; 99.713)
r (2.11298; 2.82716) (0.924693; 93.7917) (0.770778; 116.815)

Figure 10.20: USA gun violence - Casualties per incident
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For the number of injuries per day, of the 27 weight functions that were tested, 10 models
perform better than the Poisson. The best fit is achieved when w (n;φ) = (14.3355)n and
λ = 0.841052. This is shown in Figure 10.21. In this case, the weighted Poisson distribution
gives a good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.829742; 0.852362) (0.828722; 0.852457) (0.818613; 0.858138)
a (13.1402; 15.5308) (13.136; 15.6432) (12.5645; 16.8175)

Figure 10.21: USA gun violence - Injuries per day



CHAPTER 10. APPENDIX 281

10.3.7 English Premier League matches
For the number of away team goals per game, of the 14 weight functions that were tested, 6
models perform better than the Poisson, and 1 additional model may (the AIC and AICc dis-
agree with the BIC). The best fit is achieved when w (n;φ) = (10.0312)n and λ = 0.101221.
This is shown in Figure 10.22. In this case, both the Poisson and weighted Poisson distribu-
tions give a very good fit to the data. However, the weighted Poisson is clearly better.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.0662003; 0.136241) (0.0645825; 0.133055) (0.0072111; 0.205716)
a (6.17849; 13.8839) (7.35292; 16.2707) (4.33554; 152.284)

Figure 10.22: EPL games - Away team goals per game



CHAPTER 10. APPENDIX 282

For the number of home team shots on target per game, of the 13 weight functions that were
tested, 8 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
(8.43405)n and λ = 0.440041. This is shown in Figure 10.23. In this case the weighted
Poisson distributions gives a very good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.418597; 0.461485) (0.417954; 0.459797) (0.352096; 0.502905)
a (7.70901; 9.15909) (7.76895; 9.23608) (6.55745; 12.0993)

Figure 10.23: EPL games - Home team shots on target per game
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For the number of away team shots on target per game, of the 14 weight functions that were
tested, 7 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
(7.56268)n and λ = 0.401701. This is shown in Figure 10.24. In this case, the weighted
Poisson distributions gives a very good fit to the data.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information Non-parametric bootstrap Parametric bootstrap

λ (0.378727; 0.424675) (0.379324; 0.42346) (0.315481; 0.467525)
a (6.84868; 8.27668) (6.91557; 8.29845) (5.77729; 11.0422)

Figure 10.24: EPL games - Away team shots on target per game
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10.3.8 USA flight delays
For the number of minutes spent taxiing before takeoff, of the 27 weight functions that
were tested, 12 models perform better than the Poisson. The best fit is achieved when
w (n;φ) = Γ(3.34795+n)

n!Γ(3.34795)
Beta(2567.667,3.27899+n)

Beta(2564.32,3.27899)
and λ = 1884.32. This is shown in Figure 10.25.

In this case, the weighted Poisson distributions gives a better fit to the data, although the
fitted model underestimates the number of observations close to the mode and overestimates
the number of observations in the tails of the distribution.

The confidence intervals for the weighted Poisson parameters are as follows:
Non-parametric bootstrap Parametric bootstrap

λ (24.6591; 32626.3) (61.3091; 11263.8)
a (30.0165; 43080.3) (52.8322; 15430.3)
b (1.84894; 11.8597) (0.599897; 9.5549)
r (0.997799; 4.57705) (0.31564; 6.41553)

Figure 10.25: USA flights - Departure taxi time
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For the number of minutes spent taxiing after landing, of the 27 weight functions that were
tested, 16 models perform better than the Poisson. The best fit is achieved when w (n;φ) =
Γ(2.51019+n)
n!Γ(2.51019)

Beta(1603.52,2.47317+n)
Beta(1601.01,2.47317)

and λ = 1019.78. This is shown in Figure 10.26. In this case,
the weighted Poisson distributions gives a decent fit to the data, although the frequency
associated with the mode is underestimated.

The confidence intervals for the weighted Poisson parameters are as follows:
Non-parametric bootstrap Parametric bootstrap

λ (55.5336; 29285.6) (11.3282; 8157.55)
a (83.9117; 39976.4) (3.73751; 13421.6)
b (1.56802; 5.04119) (0.188981; 6.44642)
r (1.18525; 4.16455) (0.387331; 8.71784)

Figure 10.26: USA flights - Arrival taxi time
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For the number of minutes delayed before departure, of the 26 weight functions that were
tested, 12 models perform better than the Poisson. The best fit is achieved when w (n;φ) =

22903× Γ(n)Γ(22904)
Γ(n+22904)

and λ = 22896.9. This is shown in Figure 10.27. In this case, the weighted
Poisson distributions gives a decent fit to the data, although the probability of being delayed
for 1 minute is dramatically overestimated.

The confidence intervals for the weighted Poisson parameters are as follows:
Fisher Information

λ (22896.4; 22897.4)
a (22902.5; 22903.5)

Figure 10.27: USA flights - Departure delay

10.4 Tables

10.4.1 Novel distributional data fits
Note:

• Some of the parameters of the weight functions have been relabeled. This is done to
enable the tables to better fit onto a single page.
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• Some parameter estimates are either extremely small, extremely large or extremely
close to their boundaries. These values have all been rounded. For example, in the
case of the zero-inflated Poisson distribution, it was often found that the fit of the
distribution was extremely poor, ε̂ = 2 × 10−28. Even though ε̂ > 0, this value would
be rounded to 0 in the tables below. Similarly, to avoid computational errors, variables
that are strictly larger than 0 were often set minimum bounds of 0.00001. Purely for
simplicity’s sake these values will also be rounded to 0 since arbitrary precision could
be achieved with no practical change in the fit of the weighted Poisson distribution.

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 42.6923 -227.19 456.38 456.46 458.331
w (n) = n 41.6923 -228.519 459.038 459.118 460.989

w (n;φ) = n−a 56.9258 1 -406.165 816.33 816.575 820.232
w (n;φ) = n+ p 42.6923 1078390 -227.19 458.38 458.624 462.282

w (n;φ) = an3 + bn2 + cn 41.241 0.0277221 0 165.919 -228.215 464.43 465.281 482.235
w (n;φ) = (n+ a) (n− b)2 48.8243 1324560 54.2155 -212.731 431.463 431.963 437.316

w (n;φ) = (n+ a) (n2 − bn+ c) 44.2058 14364.6334 132.26128 5110.2942 -225.2441 458.488 459.339 466.293
w (n;φ) = a+ b−ac

n+c
42.6929 8.81485 0.459659 1 -227.249 462.498 463.349 470.303

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 28.2316 23 1 -247.059 500.118 500.618 505.972

w (n;φ) =

(
r
n

)
pn (1− p)r−n 1.56039 97 0.958191 -355.457 716.914 717.414 722.768

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

125.28 79.4522 -201.99 407.979 408.224 411.882
w (n;φ) = aba

na+1 46.9285 3 23 -221.997 449.994 450.494 455.848
w (n;φ) = −1

ln(1−p)
pn

n
108.477 0.403007 -225.876 455.753 455.997 459.655

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

6358.1 8883.77 8.38997 8.60047 -200.069 408.139 408.99 415.944
w (n;φ) = Boole (n ≥ a) 42.6842 23 -227.1703 458.341 458.586 462.243
w (n;φ) = Boole (n ≤ b) 42.6923 73 -227.189 458.379 458.624 462.281

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 42.6845 23 73 -227.1699 460.34 460.84 466.193

w (n;φ) =

(
n
a

)
29.6923 13 -253.89 544.78 512.025 515.683

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 42.6923 0 -227.189 458.38 458.624 462.282
w (n;φ) = (a)n 0.683935 19.7293 -200.17 404.34 404.585 408.243
w (n;φ) = (n)a 42.6923 0 -227.19 458.38 458.624 462.282

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

30.1297 5 0.645281 -222.587 451.175 451.675 457.028

w (n;φ) =
(
a+ b−ac

n+c

)−1 43.7136 13225.9 1.12249 13097.9 -225.876 459.753 460.604 467.558

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.601794 0.0144342 -228.519 461.038 461.282 464.94

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

41.6923 0 -228.519 461.038 461.282 464.94

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

121.236 0.072205 640.686 96.7254 -201.763 411.526 412.377 419.331

w (n;φ) =

(
n
a

)−1

42.6923 0 -227.19 458.38 458.624 462.282

w (n;φ) = (a)−1
n 1 0 -12515.5 25034.9 25035.2 25038.8

w (n;φ) = (n)−1
a 125.28 80.4522 -201.99 407.979 408.224 411.882

Table 10.1: Weekly sales - Item 409
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.11538 -66.3403 134.681 134.761 136.632

w (n;φ) = n+ p 0.540675 0.400104 -64.4861 132.972 133.217 136.875
w (n;φ) = (n+ a) (n− b)2 0.213082 0.00000165 0.257714 -64.2744 134.549 135.049 140.403

w (n;φ) = (n+ a) (n2 − bn+ c) 0.24 162903 0.391944 0.0947748 -64.2616 136.523 137.374 144.328
w (n;φ) = a+ b−ac

n+c
0.586767 1.39547 0.547372 10 -64.4915 136.983 137.834 144.788

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.420488 7 0.59767 -64.4242 134.848 135.348 140.702

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.773401 13 0.173523 -64.5231 135.046 135.546 140.9

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.211438 39.6573 29.2015 30.081 -64.3878 134.776 135.276 140.629
w (n;φ) = Boole (n ≤ b) 1.14132 4 -66.026 136.052 136.297 139.955

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.11538 0 -66.3403 136.684 136.926 140.583
w (n;φ) = (a)n 0.000566858 1965.94 -66.3451 136.69 136.935 140.593

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.17465 2 1 -68.5086 143.017 143.517 148.871

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.541014 0 3.37762 0.400104 -64.4861 136.972 137.823 144.777

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.0628858 30.2442 1.04496 1.04577 -64.3863 136.773 137.624 144.578
w (n;φ) = (a)−1

n 1 0.404091 -65.8125 135.625 135.87 139.527

Table 10.2: Weekly sales - Item 726

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 23.0116 -74390.2 148782 148782 148789

w (n;φ) = n+ p 23.0116 7.30× 107 -74390.2 148784 148784 148797
w (n;φ) = (n+ a) (n− b)2 24.2626 1.09× 108 25.4228 -65820.3 131647 131647 131665

w (n;φ) = (n+ a) (n2 − bn+ c) 22.4594 35.9042 38.9042 1398.82 -73532.4 147073 147073 147098
w (n;φ) = a+ b−ac

n+c
24.0116 0 665.221 1 -71728.3 143465 143465 143489

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 23.0327 1 0.9999081 -74390.2 148786 148786 148805

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

245318 252204 0.822409 0.822916 -14904.8 29817.6 29817.6 29842.4
w (n;φ) = Boole (n ≤ b) 23.0116 583 -74390.2 148784 148784 148797

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 23.0116 0 -74390.2 148784 148784 148797
w (n;φ) = (a)n 0.971239 0.681436 -14912.6 29829.1 29829.1 29841.5

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

27.3793 21 0.636568 -48600.9 97207.8 97207.8 97226.4

w (n;φ) =
(
a+ b−ac

n+c

)−1 24.3737 9712.73 0.0004299 311869 -70495.7 140999 140999 141024

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence
w (n;φ) = (a)−1

n 1 0.0045999 -499431 998866 998866 998878

Table 10.3: Airplane accidents - Fatalities per incident

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 6.10943 -1420.39 2842.78 2842.78 2847.16

w (n;φ) = n+ p 6.10943 8.03× 106 -1420.39 2844.78 2844.8 2853.55
w (n;φ) = (n+ a) (n− b)2 3.65182 1.31× 107 2.37104 -1542.26 3090.52 3090.57 3103.69

w (n;φ) = (n+ a) (n2 − bn+ c) 10.0025 183.203 36.894 14873.7 -1952.72 3913.44 3913.51 3930.99
w (n;φ) = a+ b−ac

n+c
7.10358 0 3037.5 1 -1416.28 2840.57 2840.64 2858.11

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 6.11554 0.999001 -1420.39 2846.78 2846.82 2859.94

w (n;φ) =

(
r
n

)
pn (1− p)r−n 2.86169 32 0.351522 -1600.13 3206.27 3206.31 3219.43

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

20.2736 106.103 44.2786 0.641189 -1416.07 2840.13 2840.2 2857.68
w (n;φ) = Boole (n ≤ b) 6.11031 17 -1420.35 2844.69 2844.71 2853.47

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 6.10943 0 -1420.39 2844.78 2844.8 2854.55
w (n;φ) = (a)n 0.148743 34.9643 -1416.38 2836.76 2836.78 2845.53

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

7.09647 2 0.998999 -1416.28 2838.57 2838.61 2851.73

w (n;φ) =
(
a+ b−ac

n+c

)−1 7.08583 75.8755 81.352 2189.85 -1416.28 2840.55 2840.62 2858.1

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

7.0304 0 205.421 1.99333 -1416.28 2840.57 2840.64 2858.12
w (n;φ) = (a)−1

n 1 0.002117 -8007.85 16019.7 16019.7 16028.5

Table 10.4: Airplane accidents - Incidents per month
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 4.23934 -5051.88 10105.8 10105.8 10111.1

w (n;φ) = n+ p 4.23834 3.515× 107 -5051.88 10107.8 10107.8 10118.5
w (n;φ) = (n+ a) (n− b)2 2.20844 5.68× 107 1.37183 -5385.64 10777.3 10777.3 10793.4

w (n;φ) = (n+ a) (n2 − bn+ c) 4.22476 85476.5 1.03014 2585 -5047.97 10103.9 10104 10125.4
w (n;φ) = a+ b−ac

n+c
5.20972 0 11.0138 1 -4966.01 9940.03 9940.05 9961.5

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 4.2384 1 1 -5051.88 10109.8 10109.8 10125.9

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

9526.54 19154.3 2.35224 2.37867 -3738.96 7485.92 7485.92 7507.39
w (n;φ) = Boole (n ≤ b) 4.23834 443 -5051.88 10107.8 10107.8 10118.5

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 4.23832 0 -5051.88 10107.8 10107.8 10118.5
w (n;φ) = (a)n 0.538578 3.63116 -3759.92 7523.85 7523.86 7534.59

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

8.90156 6 1 -4837.3 9678.6 9678.61 9689.34

w (n;φ) =
(
a+ b−ac

n+c

)−1 Convergence

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

22865.2 24167 55700.6 82222.7 -4052.34 8112.68 8112.71 7134.16
w (n;φ) = (a)−1

n 1 0.024201 -15150.9 30305.7 30305.7 30316.5

Table 10.5: Mass shootings - Injuries per incident

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 3.68127 -9192.71 18387.4 18387.4 18392.9

w (n;φ) = n+ p 3.68127 2.39× 109 -9192.71 18389.4 18389.4 18400.4
w (n;φ) = (n+ a) (n− b)2 2.57429 1.023× 108 2.52017 -7843.98 15694 15698 15710.5

w (n;φ) = (n+ a) (n2 − bn+ c) 2.96312 3.43268 6.43268 24.0814 -8762.18 17532.4 17532.4 17554.4
w (n;φ) = a+ b−ac

n+c
4.63587 0 401953 1 -8294.91 16597.8 16597.8 16619.8

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 3.68127 1 1 -9192.71 18391.4 18391.4 18407.9

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

4565.16 5728.15 3.10309 0.0470452 -3948.78 7905.57 7925.59 7927.61
w (n;φ) = Boole (n ≤ b) 3.68127 443 -9192.71 18389.4 18389.4 18400.4

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 3.68127 0 -9192.71 18389.4 18389.4 18400.4
w (n;φ) = (a)n 0.926499 0.92042 -4040.79 8085.59 8085.59 8096.61

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

16.6244 16 1 -6002.75 12011.5 12011.5 12028

w (n;φ) =
(
a+ b−ac

n+c

)−1 8.61433 4631.92 6.11644 3748.83 -5546.01 11100 11100.1 11122.1

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence
w (n;φ) = (a)−1

n 1 0.405254 -23544.2 47092.3 47092.3 47103.3

Table 10.6: Mass shootings - Injuries per day
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 112.033 -1055.68 2113.17 2113.44 2115.46
w (n) = n 111.033 -1062.2 2126.39 2126.46 2128.49

w (n;φ) = n−a 160.077 30 -529.806 1063.61 1063.82 1067.8
w (n;φ) = n+ p 112.033 2.24× 1010 -1055.68 2115.37 2115.58 2119.56

w (n;φ) = an3 + bn2 + cn 110.712 0.010865 0 702.956 -1061.13 2130.26 2130.98 2138.63
w (n;φ) = (n+ a) (n− b)2 122.37 257622 131.722 -1000.89 2007.78 2008.21 2014.07

w (n;φ) = (n+ a) (n2 − bn+ c) 111.19 2293.62 0 15658.6 -1056.23 2120.46 2121.19 2128.84
w (n;φ) = a+ b−ac

n+c
112.914 0.0100995 2599.32 16 -1050.72 2109.44 2110.16 2117.81

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 41.6609 191 0.999662 -1531.66 3069.32 3069.75 3075.61

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

3240.51 3090.74 -344.827
w (n;φ) = aba

na+1 Computationally intractable
w (n;φ) = −1

ln(1−p)
pn

n
146.305 0.772647 -1049.17 2102.35 2102.56 2106.53

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

110254 114698 2.27168 3.34894 -318.573 645.145 645.873 653.523
w (n;φ) = Boole (n ≥ a) 112.033 33 -1055.68 2115.37 2115.58 2119.56

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 112.033 33 532 -1055.68 2117.17 2117.8 2123.65

w (n;φ) =

(
n
a

)
80.0333 32 -1364.47 2732.93 2733.14 2737.12

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 112.033 0 -1055.68 2115.37 2115.58 2119.56
w (n;φ) = (a)n 0.95932 4.75082 -318.171 640.343 640.553 644.532
w (n;φ) = (n)a 112.033 0 -1055.68 2115.37 2115.58 2119.56

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

71.9513 2 0.63655 -1049.29 2104.58 2105.01 2110.87

w (n;φ) =
(
a+ b−ac

n+c

)−1 113.042 6424.37 0.00117072 227907 -1049.17 2106.35 2107.07 2114.72

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

1.49224 0.0134396 -1062.2 2128.39 2128.6 2132.58

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

111.033 0 -1062.2 2128.39 2128.6 2132.58

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

5384.65 1884.69 6679.2 33151.2 -333.008 674.016 674.743 682.393

w (n;φ) =

(
n
a

)−1

112.033 0 -1055.68 2115.37 2115.58 2119.56

w (n;φ) = (a)−1
n 1 0.00001 -51858.7 103721 103722 103726

w (n;φ) = (n)−1
a 3240.51 3091.74 -344.827 693.654 693.865 697.843

Table 10.7: Mass shootings -Injuries per month

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.14061 -2858.79 5719.59 5719.59 5724.96

w (n;φ) = n+ p 1.14061 2.74× 107 -2858.79 5721.59 5721.6 5732.33
w (n;φ) = (n+ a) (n− b)2 1.29369 1.86215 2.55274 -2768.056 5543.11 5543.13 5559.22

w (n;φ) = (n+ a) (n2 − bn+ c) 0.85154 2.32335 3.05372 6.96681 -2763.04 5534.09 5534.11 5555.56
w (n;φ) = a+ b−ac

n+c
1.53609 0 42.6905 2 -2775.18 5558.36 5558.36 5579.83

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.14061 1 1 -2858.79 5723.59 5723.6 5739.7

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.652784 87 0.0344308 -3679.83 7365.66 7365.68 7381.77

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

15902.2 26485.7 0.874543 0.8741 -2339.55 4687.1 4687.12 4708.58
w (n;φ) = Boole (n ≤ b) 1.14061 -2858.79 5721.59 5721.6 5721.33

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.14061 0 -2858.79 5721.59 5721.6 5721.33
w (n;φ) = (a)n 0.594393 0.778335 -2339.86 4683.71 4683.72 4694.45

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

8.79587 25 0.611163 -2426.7 4857.41 4857.41 4868.14

w (n;φ) =
(
a+ b−ac

n+c

)−1 2.70857 599.884 109.958 600.533 -2591.12 5190.24 5190.27 5211.72

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

99140.3 385968 732877 380693 -2345.92 4699.083 4699.86 4721.31
w (n;φ) = (a)−1

n 1 0.773409 -3861.49 7726.99 7726.99 7737.72

Table 10.8: Mass shootings - Fatalities per incident
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.99069 -3446.38 6894.75 6894.75 6900.26

w (n;φ) = n+ p 0.99069 2.84× 107 -3446.38 6896.75 6896.76 6907.77
w (n;φ) = (n+ a) (n− b)2 1.05806 5.91× 107 1.60114 -2896.17 5798.34 5798.35 5814.87

w (n;φ) = (n+ a) (n2 − bn+ c) 0.812589 1.34192 4.09836 7.30162 -3170.44 6348.87 6348.89 6370.91
w (n;φ) = a+ b−ac

n+c
1.58111 0.01000 305032 1 -3172.59 6353.17 6353.19 6375.21

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.99069 1 1 -3446.38 6898.75 6898.76 8915.28

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.264656 86 0.0717673 -4687.64 9381.29 9381.3 9397.82

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

23723.9 29986.8 0.368011 0.792581 -2345.9 4699.8 4699.82 4721.84
w (n;φ) = Boole (n ≤ b) 0.99069 62 -3446.38 6896.75 6896.76 6907.77

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.99069 0 -3446.38 6896.75 6896.76 6907.77
w (n;φ) = (a)n 0.77284 0.291193 -2346.05 4696.11 4696.12 4707.13

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

12.8065 24 0.998971 -2649.28 5304.57 5304.58 5321.1

w (n;φ) =
(
a+ b−ac

n+c

)−1 3.72279 127.336 4.8648 20396.4 -2596.13 5200.26 5200.28 5222.3

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

35088 277523 220115 234510 -2519.58 5047.17 5047.19 5069.21
w (n;φ) = (a)−1

n 1 1.19751 -4732.6 9469.19 9469.2 9480.21

Table 10.9: Mass shootings - Fatalities per day

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 30.15 -320.808 643.615 643.684 645.709
w (n) = n 29.15 -324.849 653.698 653.909 657.887

w (n;φ) = n−a 43.2861 11 -485.048 972.095 972.164 974.19
w (n;φ) = n+ p 30.1499 316932 -320.808 645.645 645.804 649.804

w (n;φ) = an3 + bn2 + cn 28.8351 0.00406793 0.00026508 16.2694 -324.079 656.158 656.885 664.535
w (n;φ) = (n+ a) (n− b)2 35.1377 1.97× 106 39.4537 -309.305 624.61 625.038 630.893

w (n;φ) = (n+ a) (n2 − bn+ c) 29.8039 331.06 15.1988 4714.85 -319.794 647.589 648.316 655.966
w (n;φ) = a+ b−ac

n+c
31.1165 0.0100414 914.533 2 -317.281 642.562 643.28 650.94

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 60.15 1 1 -320.808 645.615 645.826 649.804

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

146.386 110.417 -245.84 495.681 495.891 499.869
w (n;φ) = aba

na+1 Computationally intractable
w (n;φ) = −1

ln(1−p)
pn

n
48.7061 0.640293 -316.803 637.606 637.817 641.795

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

26459.4 326410.2 3.88403 3.87992 -232.338 472.677 473.404 481.054
w (n;φ) = Boole (n ≥ a) 30.1471 13 -320.798 645.597 645.807 649.785
w (n;φ) = Boole (n ≤ b) 30.15 96 -320.808 645.615 645.826 649.804

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 30.1471 13 96 -320.798 647.597 648.025 653.88

w (n;φ) =

(
n
a

)
18.15 12 -406.981 817.962 818.172 822.15

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 30.15 0 -320.808 645.615 645.826 649.804
w (n;φ) = (a)n 0.803742 7.36203 -232.631 469.262 469.472 473.45
w (n;φ) = (n)a 30.15 0 -320.808 645.615 645.826 649.804

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

23.6505 8 0.636621 -299.181 604.362 604.791 610.645

w (n;φ) =
(
a+ b−ac

n+c

)−1 31.181 773.637 0.0107979 6706.91 -316.803 641.606 642.334 649.984

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

28.8595 0.99033 -324.849 653.698 653.909 657.887

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

29.15 0 -324.849 653.698 653.909 657.887

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

189.838 11.7074 271905 174.107 -242.213 492.427 493.154 500.804

w (n;φ) =

(
n
a

)−1

36.2011 5 -298.254 600.508 600.719 604.697

w (n;φ) = (a)−1
n 1 0 -9175.96 18355.9 18356.1 18360.1

w (n;φ) = (n)−1
a 126.387 111.417 -245.84 495.681 495.891 499.869

Table 10.10: Mass shootings - Fatalities per month
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 5.37894 -5255.57 10513.1 10513.1 10518.5
w (n) = n 4.37894 -5284.02 10570 10570.1 10575.4

w (n;φ) = n−a 5.35349 -7730.6 15465.2 15465.2 15475.9
w (n;φ) = n+ p 5.37894 3.51× 107 -5255.57 10515.1 10515.1 10525.9

w (n;φ) = an3 + bn2 + cn 4.36418 0.00727 0 24.9933 -5279.88 10567.8 10567.8 10589.2
w (n;φ) = (n+ a) (n− b)2 3.39887 3.576× 107 0.557962 -5345.11 10696.2 10696.2 10712.3

w (n;φ) = (n+ a) (n2 − bn+ c) 3.41962 2981.51 1.00008 0.250042 -5345.16 10698.3 10698.3 10719.8
w (n;φ) = a+ b−ac

n+c
5.02137 1.05× 106 0.01 2 -5234.55 10471.1 10471.1 10492.6

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 5.37894 1 1 -5255.57 10517.1 10517.2 10533.2

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

1.27584× 108 1.36161× 108 -4650.39 9304.79 9301.8 9315.53
w (n;φ) = aba

na+1 19.5315 9 4 -3498.29 7002.58 7002.6 7018.69
w (n;φ) = −1

ln(1−p)
pn

n
7.98941 0.82352 -5252.74 10509.5 10509.5 10520.2

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

20641.2 27455.8 1.53417 1.50215 -4040.13 8088.26 8088.28 8109.73
w (n;φ) = Boole (n ≥ a) 3.99914 4 -4694.22 9392.44 9392.45 9403.18
w (n;φ) = Boole (n ≤ b) 5.37894 501 -5255.57 10515.1 10515.1 10525.9

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 3.99914 4 500 -4694.22 9392.44 9392.45 9403.18

w (n;φ) =

(
n
a

)
5.37894 0 -5255.57 10515.1 10515.1 10525.9

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 5.37894 0 -5255.57 10515.1 10515.1 10525.9
w (n;φ) = (a)n 0.502206 5.33169 -3865.19 7734.38 7734.39 7745.12
w (n;φ) = (n)a 5.32812 0.0204444 -5248.12 10500.2 10500.2 10511

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

11.1393 7 1 -5183.78 10373.6 10373.6 10389.7

w (n;φ) =
(
a+ b−ac

n+c

)−1 5.05654 1.05711 1.77551 0 -5231.38 10470.8 10470.8 10492.2

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

3.19286 0.72914 -5284.02 10572 10572.1 10582.8

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

4.37894 0 -5284.02 10572 10572.1 10582.8

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

52.9669 1.0141421 4664.97 55.4862 -4925.07 9858.14 9858.17 9879.62

w (n;φ) =

(
n
a

)−1

5.37894 0 -5255.57 10515.1 10515.1 10525.9

w (n;φ) = (a)−1
n 1 0 -20413.1 40830.1 40830.1 80840.8

w (n;φ) = (n)−1
a 1.72556× 108 1.8416× 108 -4650.39 9304.79 9304.8 9315.53

Table 10.11: Mass shootings -Victims per incident

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.868565 -2387.48 4776.96 4776.96 4782.47

w (n;φ) = n+ p 0.868565 2.596× 107 -2387.48 4778.96 4778.96 4789.98
w (n;φ) = (n+ a) (n− b)2 0.248353 3.39× 107 0.406871 -2451.08 4908.16 4908.17 4924.69

w (n;φ) = (n+ a) (n2 − bn+ c) 0.639885 1.16682 3.31916 5.02521 -2335.45 4678.91 4678.93 4700.95
w (n;φ) = a+ b−ac

n+c
1.41435 0 45.8972 1 -2347.37 4700.75 4700.76 4717.28

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.868565 1 1 -2387.48 4780.96 4780.97 4797.49

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.223217 33 0.15822 -2629.43 5264.85 5264.86 5281.38

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

5.86299 12.1811 1.22613 1.22613 -2333.45 4674.89 4674.91 4696.93
w (n;φ) = Boole (n ≤ b) 0.868783 6 -2387.41 4778.83 4778.84 4789.85

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.868586 0 -2387.48 4778.96 4778.96 4789.98
w (n;φ) = (a)n 0.294394 2.08179 -2333.77 4671.54 4671.55 4682.56

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

2.90984 5 0.998999 -2333.99 4673.97 4673.99 4690.5

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.71337 21.8731 11.0648 283.827 -2336.58 4681.16 4681.18 4703.2

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

2.63085 1.30812 53.68 5.04484 -2333.99 4675.99 4676.01 4698.03
w (n;φ) = (a)−1

n 1 0.905651 -2657.2 5318.4 5318.41 5329.42

Table 10.12: Mass shootings - Incidents per day
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 26.4333 -236.732 475.464 475.533 477.558
w (n) = n 25.4333 -238.919 479.837 479.936 481.932

w (n;φ) = n−a 36.2731 9 -415.142 834.285 834.495 939.474
w (n;φ) = n+ p 26.4333 1.4× 107 -236.732 477.464 477.674 481.653

w (n;φ) = an3 + bn2 + cn 24.9693 0.02811 0 60.4092 -238.431 480.862 481.072 485.051
w (n;φ) = (n+ a) (n− b)2 28.043 188.714 29.6047 -224.964 455.928 456.357 462.211

w (n;φ) = (n+ a) (n2 − bn+ c) 25.9335 1002.01 2.62906 2118.53 -236.209 480.418 481.145 488.795
w (n;φ) = a+ b−ac

n+c
27.3949 0 499.363 2 -234.909 477.817 478.544 496.194

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 20.9492 8 0.999018 -248.624 503.249 503.677 509.532

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

65.7355 36.5779 -214.656 433.312 433.523 437.501
w (n;φ) = aba

na+1 Computationally intractable
w (n;φ) = −1

ln(1−p)
pn

n
59.0935 0.464933 -234.595 473.19 473.4 477.378

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

873.766 1216.87 5.83227 5.81087 -213.003 434.006 434.733 442.383
w (n;φ) = Boole (n ≥ a) 26.4293 11 -236.718 477.435 477.696 481.219
w (n;φ) = Boole (n ≤ b) 26.4334 49 -236.732 477.464 477.725 481.247

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 26.43 11 49 -236.716 479.432 479.965 485.108

w (n;φ) =

(
n
a

)
23.4333 3 -244.079 494.157 494.586 500.44

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 26.4333 0 -236.732 477.464 477.674 481.653
w (n;φ) = (a)n 0.648321 14.3382 -213.078 430.155 430.366 434.344
w (n;φ) = (n)a 26.4333 0 -236.732 477.464 477.674 481.653

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

18.7383 4 0.636635 -231.365 468.729 469.158 475.012

w (n;φ) =
(
a+ b−ac

n+c

)−1 27.4739 1288.17 0.129728 48849.7 -234.595 477.19 477.917 485.567

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.936754 0.0368317 -238.919 481.837 482.048 486.026

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

25.4333 1.72*10^-9 238.919 481.837 482.048 486.026

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

69.9403 2.11859 921.197 48.2353 -214.207 436.414 437.141 444.791

w (n;φ) =

(
n
a

)−1

26.4333 0 -236.732 477.464 477.674 481.653

w (n;φ) = (a)−1
n 1 0 -7523.52 15051 15051.3 15055.2

w (n;φ) = (n)−1
a 65.7355 37.5779 -214.656 433.312 433.523 437.501

Table 10.13: Mass shootings - Incidents per month

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 32.5683 -114035 228073 228073 228080

w (n;φ) = n+ p 32.5683 1.77× 108 -114035 228075 228075 228089
w (n;φ) = (n+ a) (n− b)2 32.1584 4× 108 32.4529 -97171.9 194360 194350 194371

w (n;φ) = (n+ a) (n2 − bn+ c) 32.0235 459.83 2.62997 3251.3 -113492 226993 226993 227021
w (n;φ) = a+ b−ac

n+c
33.5375 0 6512.19 2 -110837 221753 221753 221782

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 32.6023 1 0.998957 -114035 228077 228077 228098

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

1373.38 1351.36 0.877599 0.887543 -39038.6 78085.3 78085.3 78113.6
w (n;φ) = Boole (n ≤ b) 32.5683 164 -114035 228075 228075 228089

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 32.5683 0 -114035 228075 228075 228089
w (n;φ) = (a)n 0.963976 1.2171 -39324.7 78653.4 78653.4 78667.6

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

26.28 10 0.632214 -91785.6 183575 183575 183589

w (n;φ) =
(
a+ b−ac

n+c

)−1 33.5884 28961.2 9807.78 24560.5 -109867 219742 219742 219770

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

1617.54 0.414822 4604.42 2515.88 -39091 78190 78190 78208.3
w (n;φ) = (a)−1

n 1 0.00784581 −1.6243× 106 3.2486× 106 3.2486× 106 3.24862× 106

Table 10.14: Britain accidents - Incidents per hour
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 52.5414 -208595 417192 417192 417199

w (n;φ) = n+ p 52.5414 1.89× 108 -208595 417194 417194 417208
w (n;φ) = (n+ a) (n− b)2 51.5402 5.54799× 108 51.5396 -187328 374661 374661 374682

w (n;φ) = (n+ a) (n2 − bn+ c) Convergence
w (n;φ) = a+ b−ac

n+c
34.9097 1 5.89619 1 -241216 482440 482440 482468

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 52.5414 1 1 -208.595 417196 417196 417217

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

425.216 336.303 0.330653 0.237527 -64281.7 128571 128571 128600
w (n;φ) = Boole (n ≤ b) 52.5414 1697 -208595 417194 417194 417208

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 52.5414 0 -208595 417194 417194 417208
w (n;φ) = (a)n 0.981357 0.998156 -43546.5 87096.9 87096.9 87111.1

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

43.6181 17 0.636376 -162481 324968 324968 324989

w (n;φ) =
(
a+ b−ac

n+c

)−1 53.5862 21354.7 0.00156815 2618.06 -199403 398814 398814 398842

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence
w (n;φ) = (a)−1

n Convergence

Table 10.15: Britain accidents - Casualties per hour

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 68.7079 -246757 493515 493515 493522

w (n;φ) = n+ p 68.7079 1.82× 108 -246757 493517 493517 493531
w (n;φ) = (n+ a) (n− b)2 66.9842 5.5648× 108 66.6207 -222827 445661 445661 445682

w (n;φ) = (n+ a) (n2 − bn+ c) 25.9007 0.273147 0.395746 5.49594 -448824 897656 897656 897684
w (n;φ) = a+ b−ac

n+c
69.7079 0.01 260075 1 -242086 484180 484180 484208

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 68.7971 1 0.998703 -246757 493519 493519 493541

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

6250.74 6231.48 0.0710545 2.06448 -46141.6 92291.2 92291.2 92319.5
w (n;φ) = Boole (n ≤ b) 68.7079 1746 -246757 493517 493517 493531

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 68.7079 0 -246757 493517 493517 493531
w (n;φ) = (a)n 0.985755 0.992867 -45876.9 91757.8 91757.8 91772

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

55.789 20 0.636077 -190919 381845 381845 381866

w (n;φ) =
(
a+ b−ac

n+c

)−1 69.8865 5182.54 0.000731412 1258.57 -237712 475431 475431 475460

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

19416.2 846.226 73964.1 26974.3 -45798.2 91604.3 91604.3 91632.6
w (n;φ) = (a)−1

n 1 0.00666583 −4.3551× 106 8.71025× 106 8.71025× 106 8.71025× 106

Table 10.16: Britain accidents - Vehicles per hour
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.61324 -423711 847424 847424 847434
w (n) = n 0.613239 -354265 708532 708532 708543

w (n;φ) = n−a 6.84661 5 -396959 793922 793922 793943
w (n;φ) = n+ p 0.613239 0 -354265 708534 708534 708555

w (n;φ) = an3 + bn2 + cn 0.546157 0.0102276 0 0.310151 -351943 703.895 703.895 703.937
w (n;φ) = (n+ a) (n− b)2 0.352571 2.1× 107 0 -373093 746192 746192 746224

w (n;φ) = (n+ a) (n2 − bn+ c) 0.431924 0 3 3.87129 -340708 681423 681423 681465
w (n;φ) = a+ b−ac

n+c
0.861735 6.8774× 106 0.0000011 1 -345790 691588 691588 691630

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.672225 4 1 -407945 815896 815896 815927

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.912061 47 0.0790988 -423968 847942 847942 847973

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

1.39196*10^7 2.36066× 107 -299951 599907 599907 599928
w (n;φ) = aba

na+1 4.50033 2 1 -307844 615694 615694 615725
w (n;φ) = −1

ln(1−p)
pn

n
1.9144 0.913869 -324130 648264 648264 648285

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

318.43 4866.42 6.0371 6.03686 -401359 802726 802726 802769
w (n;φ) = Boole (n ≥ a) 1.04702 1 -377793 675589 675589 675611
w (n;φ) = Boole (n ≤ b) 1.61324 38 -423711 847426 847426 847447

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 1.04702 1 38 -337793 675591 675591 675623

w (n;φ) =

(
n
a

)
0.613239 1 -354.265 708534 708534 708555

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) Convergence
w (n;φ) = (a)n 0.0583323 26.0428 -422526 845057 845057 845078
w (n;φ) = (n)a 1.04702 0 -337793 675589 675589 675611

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

0.67225 4 1 -407945 815896 815896 815927

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.02575 0.576635 0.0651226 0.001 -340753 681514 681514 681557

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.513662 0.837622 -354362 708534 708534 708555

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

0.613238 0 -354265 708534 708534 708555

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.631434 0.01 0.01 107.51 -356436 712881 712881 712923

w (n;φ) =

(
n
a

)−1

1.74951 1 -324130 648264 648264 648285

w (n;φ) = (a)−1
n 1 0.001 -409889 819782 819782 819803

w (n;φ) = (n)−1
a 1.36191× 107 2.30963× 107 -299951 599907 599907 599928

Table 10.17: Britain accidents -Casualties per incident
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 2.10965 -416619 833239 833239 833250
w (n) = n 1.10965 -354893 709789 709789 709800

w (n;φ) = n−a 1.73899 1 -564853 1.12971× 106 1.12971× 106 1.12973× 106

w (n;φ) = n+ p 1.10965 0 -354893 709791 709791 709812
w (n;φ) = an3 + bn2 + cn 0.43485 75557 1.8425 2.09252 -334040 668089 668089 668131
w (n;φ) = (n+ a) (n− b)2 0.229596 0 0.655111 -321998 644001 644001 644033

w (n;φ) = (n+ a) (n2 − bn+ c) 0.231486 0 1.29826 0.42137 -321992 643992 643992 644034
w (n;φ) = a+ b−ac

n+c
Convergence

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.300066 17 1 -369313 738631 738631 738663

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.501504 45 0.20713 -365564 731134 731134 731166

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

2.67996 0 -394801 789606 7890606 789628
w (n;φ) = aba

na+1 4.04092 1 1 -424314 848633 848633 848654
w (n;φ) = −1

ln(1−p)
pn

n
3.18041 0.842364 -394785 789575 789575 789596

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.049853 290.15 329.59 320.36 -366356 732698 732698 732740
w (n;φ) = Boole (n ≥ a) 1.73899 1 -372034 744072 744072 744093
w (n;φ) = Boole (n ≤ b) 2.10965 37 -416619 833241 833241 833263

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 1.73899 -372134 744072 744072 744093

w (n;φ) =

(
n
a

)
1.10965 1 -354893 709789 709789 709800

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) Convergence
w (n;φ) = (a)n 0.0134907 154.184 -417744 835493 835493 835514
w (n;φ) = (n)a 0.0528901 58.0781 -341853 683709 683709 683730

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

2.94252 2 0.998721 -445083 890172 890172 890204

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.13961 0.000108859 0.00456108 0100144577 -355062 710131 710131 10173

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.959759 0.864922 -354893 709791 709791 709812

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

0.0528901 57.0781 -341853 683709 683709 683730

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.122043 14.3606 0 0 -335465 670938 670938 670980

w (n;φ) =

(
n
a

)−1

2.67907 1 -394785 789575 789575 789596

w (n;φ) = (a)−1
n 1 0 -468025 936053 936053 936074

w (n;φ) = (n)−1
a 1.74 0 -372067 744138 744138 744160

Table 10.18: Britain accidents - Vehicles per incident

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 2.09274 -465223 930447 930447 930458
w (n) = n 1.09274 -408602 817206 817206 817217

w (n;φ) = n−a 1.7168 1 -607832 1.21567× 106 1.21567× 106 1.21569× 106

w (n;φ) = n+ p 1.09274 0 -408602 817208 817208 817229
w (n;φ) = an3 + bn2 + cn 0.425756 3.30051 0 0 -404136 808281 808281 808323
w (n;φ) = (n+ a) (n− b)2 0.340524 0 0.324713 -403086 806179 806179 806211

w (n;φ) = (n+ a) (n2 − bn+ c) 0.340524 0 0.649426 0.105438 -403086 806181 806181 806223
w (n;φ) = a+ b−ac

n+c
1.22966 3020.8 0.00100023 6 -408137 816282 816282 816324

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.744359 8 0.763716 -436292 872589 872589 872621

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.953299 0.0768837 -449553 899113 899113 899144

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

2.65186 0.0001 73 -432653 865309 865309 865330
w (n;φ) = aba

na+1 4.00689 1 1 -454507 909019 909019 909051
w (n;φ) = −1

ln(1−p)
pn

n
3.05935 0.866514 -432642 865289 865289 865310

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

12.3477 363.762 11.7833 11.0575 -430720 861448 861448 861490
w (n;φ) = Boole (n ≥ a) 1.7168 1 -417739 835483 835483 835504
w (n;φ) = Boole (n ≤ b) 2.09274 57 -465223 930449 930449 930471

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 1.7168 1 57 -417739 835485 835485 835516

w (n;φ) =

(
n
a

)
1.09274 1 -408602 817208 817208 817229

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) Convergence
w (n;φ) = (a)n 0.0413737 48.4887 -464182 928368 928368 928389
w (n;φ) = (n)a 0.829444 1.802 -407633 815271 815271 815292

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

2.92712 2 1 -490.204 980414 980414 980446

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.23285 0.000142232 0.000849372 0.00125779 -408271 816550 816550 816592

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.74982 0.64515 -408602 817208 817208 817229

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

0.829444 0.890198 -407633 815271 815271 815292

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.685721 1.01525 0 0 -404445 808897 808897 808940

w (n;φ) =

(
n
a

)−1

2.65097 1 -432642 865289 865289 865310

w (n;φ) = (a)−1
n 1 0 -553070 1.10614× 106 1.10614× 106 1.10617× 106

w (n;φ) = (n)−1
a 1.71781 0 -417761 835527 835527 835548

Table 10.19: Canada accidents - Vehicles per incident
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 146.61 -91412.1 182826 182826 182832
w (n) = n 145.61 -92198.7 184399 184399 184405

w (n;φ) = n−a 178.83 30 -77888.2 155780 155780 155792
w (n;φ) = n+ p 146.61 4.68659× 107 -91412.1 182828 182828 182839

w (n;φ) = an3 + bn2 + cn 145.103 0.310127 0 19328.9 -92083.5 184175 184175 174197
w (n;φ) = (n+ a) (n− b)2 148.777 248121 150.381 -84752.7 169511 169511 169528

w (n;φ) = (n+ a) (n2 − bn+ c) 146.417 223376 384.375 115549 -91158.2 182324 182324 172347
w (n;φ) = a+ b−ac

n+c
147.603 0 544.899 2 -90669.5 181347 181347 181369

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 38.3317 369 1 -153324 306654 306654 306671

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

9737.73 9512.07 -12187.7 24379.3 24379.3 24390.6
w (n;φ) = aba

na+1 Computationally intractable
w (n;φ) = −1

ln(1−p)
pn

n
238.734 0.618332 -90625.6 181255 181255 181266

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

169.421 41.7711 0 0 -71060.1 142128 142128 142151
w (n;φ) = Boole (n ≥ a) 146.61 2 -91412.1 182828 182828 182839
w (n;φ) = Boole (n ≤ b) 146.61 631 -91412.1 182828 182828 182839

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 146.61 2 631 -91412.1 182830 182830 182847

w (n;φ) =

(
n
a

)
144.61 2 -93010.6 186025 186025 186036

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 146.61 0 -91412.1 182828 182828 182839
w (n;φ) = (a)n 0.990283 1.43859 -12007 24017.9 24017.9 24029.1
w (n;φ) = (n)a 146.61 0 -91412.1 182828 182828 182839

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

91.2411 2 0.618122 -90648.5 181303 181303 181320

w (n;φ) =
(
a+ b−ac

n+c

)−1 147.61 712.629 0 20867 -90625.6 181259 181259 181282

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

144.121 0.989772 -92198.7 184401 184401 184413

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

145.61 0 -92198.7 184401 184401 184413

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

5434.28 508.108 32193.7 6508.9 -12633.4 25274.9 25274.9 25297.3

w (n;φ) =

(
n
a

)−1

146.61 0 -91412.1 182828 182828 182839

w (n;φ) = (a)−1
n 1 0 −2.53181× 106 5.06363× 106 5.06363× 106 5.06364× 106

w (n;φ) = (n)−1
a 9737.73 951307 -12187.7 24379.3 24379.3 24390.6

Table 10.20: Canada accidents - Incidents per hour

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 306.945 -235594 471190 471190 471196
w (n) = n 305.945 -236591 473185 473185 473190

w (n;φ) = n−a 338.521 31 -216226 432455 432455 432467
w (n;φ) = n+ p 306.945 4.4638× 107 -235594 471192 471192 471204

w (n;φ) = an3 + bn2 + cn 304.961 0.00190825 54.8669 0.942041 -237589 475185 475185 475207
w (n;φ) = (n+ a) (n− b)2 305.726 1.37838× 108 305.616 -227098 454201 454201 454218

w (n;φ) = (n+ a) (n2 − bn+ c) 305.357 641366 1.03581 22967.8 -236042 472092 472092 472115
w (n;φ) = a+ b−ac

n+c
226.519 17.6518 0.0345541 2 -261500 523007 523007 523030

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 80.3893 363 1 -415310 830625 830625 830642

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

79952.4 79386.3 -14099.5 28203.1 28203.1 28214.3
w (n;φ) = aba

na+1 Computationally intractable
w (n;φ) = −1

ln(1−p)
pn

n
321.901 0.956656 -234597 469198 469198 469209

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

850.649 710.397 0 97.303 -132491 264991 264991 264013
w (n;φ) = Boole (n ≥ a) 306.945 2 -235594 471192 471192 471204
w (n;φ) = Boole (n ≤ b) 306.945 4591 -235594 471192 471192 471204

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 306.945 2 4591 -235594 471194 471194 471211

w (n;φ) =

(
n
a

)
304945 2 -237607 475218 475218 475229

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 306.945 0 -235594 471192 471192 471204
w (n;φ) = (a)n 0.996256 1.15352 -13552 27108 27108 27119.2
w (n;φ) = (n)a 306.945 0 -235594 471192 471192 471204

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

24.7612 2 0.0804078 -234614 469233 469233 469250

w (n;φ) =
(
a+ b−ac

n+c

)−1 307.948 50272.4 0.00646671 549978 -234597 469202 469202 496224

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

07988 0.00261092 -236591 473187 473187 473198

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

305.945 0 -236591 473187 473187 473198

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

198014 169617 800252 319489 -13595 27197.9 18198 27220.4

w (n;φ) =

(
n
a

)−1

80570.8 80004.6 -14099.6 28203.1 28203.1 28214.3

w (n;φ) = (a)−1
n 1 0 −6.31134× 106 1.26227× 107 1.26227× 107 1.26227× 107

w (n;φ) = (n)−1
a 80570.8 80004.6 -14099.6 28203.1 28203.1 28214.3

Table 10.21: Canada accidents - Vehicles per hour
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.490491 -218606 437213 437213 437224

w (n;φ) = n+ p 0.303192 1.31557 -218443 436891 436891 436912
w (n;φ) = (n+ a) (n− b)2 0.0789986 3.22185× 107 0.274108 -221709 443425 443425 443456

w (n;φ) = (n+ a) (n2 − bn+ c) 0.279406 1.03389 1.03389 40.8218 -218272 436553 436553 436594
w (n;φ) = a+ b−ac

n+c
Convergence

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.274879 2 1 -218489 436962 436962 436993

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.157002 61 0.0627272 -221709 443423 443423 443455

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

6.93968 123.321 3.1556 3.07126 -217765 435538 435538 435579
w (n;φ) = Boole (n ≤ b) 0.490491 53 -218606 437215 437215 437236

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) Convergence
w (n;φ) = (a)n 0.0200181 24.0119 -218549 437102 437102 437123

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

0.351081 0 0.657169 114.61 -281257 436523 436523 436564

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.394499 1.47576 0.101053 0.0478654 -217944 435896 435896 435938

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.351081 0 0.657169 114.61 -218257 436523 436523 436564
w (n;φ) = (a)−1

n 1 1.74005 -220077 440158 440158 440178

Table 10.22: US gun violence - Injured per incident

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.251258 -148452 296905 296905 296915

w (n;φ) = n+ p 0.251258 1.86× 107 -148452 296907 296907 296928
w (n;φ) = (n+ a) (n− b)2 0.695869 7.13765× 106 2.69528 -148961 297928 297928 297960

w (n;φ) = (n+ a) (n2 − bn+ c) 0.233164 6.59339 2.00731 28.0876 -148454 296917 296917 296958
w (n;φ) = a+ b−ac

n+c
Convergence

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.251258 1 1 -148452 296909 296909 296940

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.581466 54 0.0090356 -149964 299934 299934 299966

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

78.1346 1892.53 2.47006 2.47007 -148240 296488 296488 296529
w (n;φ) = Boole (n ≤ b) 0.251258 50 -148452 296907 296907 296928

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.251258 0 -148452 296907 296907 296928
w (n;φ) = (a)n 0.0238964 10.2632 -148376 296756 296756 296777

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

0.465925 2 0.998996 -148743 297493 297493 297524

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.237411 0.137768 0.216916 1.33844 -148447 296902 296902 296943

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.132467 17.6383 1.03718 19.2308 -148484 296977 296977 297018
w (n;φ) = (a)−1

n 1 3.80208 -148792 297592 297592 297613

Table 10.23: US gun violence - Casualties per incident
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 38.8572 -5986.62 11975.2 11975.3 11980.6
w (n) = n 37.8572 -6012.05 12026.1 12026.1 12031.4

w (n;φ) = n−a 51.9448 12 -11377.8 22757.6 22757.6 22762.9
w (n;φ) = n+ p 38.8572 2.80937× 107 -5986.62 11977.2 11977.3 11987.9

w (n;φ) = an3 + bn2 + cn 37.401 0.0553273 0 269.192 -6006.21 12020.4 12020.4 12041.8
w (n;φ) = (n+ a) (n− b)2 45.0877 2.58267× 107 52.5344 -6341.24 12688.5 12688.5 12704.5

w (n;φ) = (n+ a) (n2 − bn+ c) 38.3367 686.626 0.00246164 5015.97 -5980.99 11970 11970 11991.4
w (n;φ) = a+ b−ac

n+c
38.9608 1 1.0178 1 -5986.81 11981.6 11981.7 12003

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 30.3448 12 0.999049 -6211.98 12430 12430 12446

w (n;φ) =

(
r
n

)
pn (1− p)r−n 4.41476 119 0.811073 -7907.33 15820.7 15820.7 15836.7

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

82.8808 41.8087 -5663.38 11330.8 11330.8 11341.5
w (n;φ) = aba

na+1 40.9244 1 15 -5936.93 11879.9 11879.9 11895.9
w (n;φ) = −1

ln(1−p)
pn

n
62.6276 0.636851 -5961.76 11927.5 11927.5 11938.2

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

87.1396 48.2218 0 3.08924 -5660.48 11329 11329 11350.3
w (n;φ) = Boole (n ≥ a) 38.8572 15 -5986.62 11977.2 11977.3 11987.9
w (n;φ) = Boole (n ≤ b) 38.8572 93 -5986.62 11977.2 11977.3 11987.9

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 38.8572 15 93 -5986.62 11979.20 11979.3 11995.3

w (n;φ) =

(
n
a

)
29.857 9 -6308.69 12621.4 12621.4 12632.1

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 38.8572 0 -5986.62 11977.2 11977.3 11987.9
w (n;φ) = (a)n 0.557367 30.8585 -5635.72 11275.4 11275.5 11286.1
w (n;φ) = (n)a 38.8572 0 -5986.62 11977.2 11977.3 11987.9

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

51.8572 14 1 -5779.52 11565 11565 11581.1

w (n;φ) =
(
a+ b−ac

n+c

)−1 39.8844 1.00025× 107 13741.1 3.59431× 106 -5961.76 11931.5 11931.6 11952.9

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.786974 0.0007879 -6012.05 12028.1 12028.1 12038.8

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

37.8573 0 -6012.05 12028.1 12028.1 12038.8

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

80.3881 72.5824 1465.69 49.0207 -5660.92 11329.8 11329.9 11351.2

w (n;φ) =

(
n
a

)−1

38.8572 0 -5986.62 11977.2 11977.3 11987.9

w (n;φ) = (a)−1
n 1 0 -327069 654142 654142 654153

w (n;φ) = (n)−1
a 82.8808 42.8087 -5663.38 11330.8 11330.8 11341.5

Table 10.24: US gun violence - Fatalities per day

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 75.8547 -9603.64 19209.3 19209.3 19214.6
w (n) = n 74.8547 -9659.06 19320.1 19320.1 19325.5

w (n;φ) = n−a 99.3405 21 -15175.8 30355.6 30355.6 30366.3
w (n;φ) = n+ p 75.8546 1.5739× 107 -9603.64 19211.3 19211.3 19222

w (n;φ) = an3 + bn2 + cn 74.3854 0.0382021 0 699.054 -9646.73 19301.5 19301.5 19322.8
w (n;φ) = (n+ a) (n− b)2 84.564 3.1444× 107 94.3097 -9395.99 18798 18798 18814

w (n;φ) = (n+ a) (n2 − bn+ c) 75.3398 44471.6 1.35605 15834.7 -9591.25 19190.5 19190.5 19211.9
w (n;φ) = a+ b−ac

n+c
76.8412 0 275.884 2 -9551.42 19110.8 19110.9 19132.2

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 29.6486 120 0.999028 -12170.5 24346.9 24346.9 24363

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

430.585 348.465 -6990.39 13984.8 13984.8 13995.5
w (n;φ) = aba

na+1 60.0199 1 -12066.7 24137.5 24137.5 24148.1
w (n;φ) = −1

ln(1−p)
pn

n
119.904 0.641081 -9548.37 19100.7 19100.7 19111.4

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

97.6517 30.8128 39.274 0.0849167 -8996.44 18000.9 18000.9 18022.3
w (n;φ) = Boole (n ≥ a) 75.8547 17 -9603.64 19211.3 19211.3 19222
w (n;φ) = Boole (n ≤ b) 75.8547 179 -9603.64 19211.3 19211.3 19222

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 75.8547 17 179 -9603.64 19213.3 19213.3 19229.3

w (n;φ) =

(
n
a

)
58.8547 17 -10873.1 21750.1 21750.1 21760.8

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 75.8547 0 -9603.64 19211.3 19211.3 19222
w (n;φ) = (a)n 0.841052 14.3355 -6933.12 13870.2 13870.2 13880.9
w (n;φ) = (n)a 75.8547 0 -9603.64 19211.3 19211.3 19222

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

82.771 8 0.998991 -9259.34 18524.7 18524.7 18540.7

w (n;φ) =
(
a+ b−ac

n+c

)−1 76.8635 1748.86 0.000107766 997.53 -9548.69 19105.4 19105.4 19126.8

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.724281 0.00967583 -9659.06 19322.1 19322.1 19332.8

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

74.8546 0 -9659.06 19322.1 19322.1 19332.8

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

400.028 6.54918 1505.67 437.535 -6980 13968 13968 13989.4

w (n;φ) =

(
n
a

)−1

75.8547 0 -9603.64 19211.3 19211.3 19222

w (n;φ) = (a)−1
n 1 0 -795058 1.59012× 106 1.59012× 106 1.59013× 106

w (n;φ) = (n)−1
a 430.585 349465 -6990.39 13984.8 13984.8 13995.5

Table 10.25: US gun violence - Injuries per day
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.53145 -8907.89 17817.8 17817.8 17824.4

w (n;φ) = n+ p 1.53145 3.99959× 107 -8907.89 17819.8 17819.8 17833.1
w (n;φ) = (n+ a) (n− b)2 0.431881 6.01615× 107 0.378461 -9284.08 18574.2 18574.2 18594.1

w (n;φ) = (n+ a) (n2 − bn+ c) 1.45965 4.59652 7.07963 34.0248 -8896.86 17801.7 17801.1 17828.3
w (n;φ) = a+ b−ac

n+c
1.66616 2.91371 4.60381 1 -8899.63 17807.3 17807.3 18833.8

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.53299 1 0.999001 -8907.89 17821.8 17821.8 17841.7

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.471547 20 0.270272 -9613.4 19232.8 19232.8 19252.7

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

8.87021 57.2139 10.0619 1.08593 -8896.41 17800.8 17800.8 17827.4
w (n;φ) = Boole (n ≤ b) 1.5315 9 -8907.87 17819.7 17819.7 17833

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.53145 0 -8907.89 17819.8 17819.8 17833.1
w (n;φ) = (a)n 0.084907 16.5054 -8896.4 17796.8 17796.8 17810.1

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

2.26763 2 0.998999 -8924.23 17854.5 17854.5 17874.4

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.94461 71.9657 176.371 824.332 -8898.06 17804.1 17804.1 17830.7

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

1.47692 2.94988 18.953 1.33312 -8899.65 17807.3 17807.3 17833.9
w (n;φ) = (a)−1

n 1 0.279681 -11103.5 22211 22211 22224.3

Table 10.26: EPL games - Home team goals per game

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.12972 -7923.45 15848.9 15848.9 15855.5

w (n;φ) = n+ p 1.12972 3.3176× 107 7923.45 15850.9 15850.9 15864.2
w (n;φ) = (n+ a) (n− b)2 0.291115 4.50759× 107 0.364134 -8156.11 16318.2 16318.2 16338.1

w (n;φ) = (n+ a) (n2 − bn+ c) 0.820105 2.34584 2.55243 10.7358 -7906.58 15821.2 15821.2 15847.7
w (n;φ) = a+ b−ac

n+c
1.33036 1.20031 2.55621 1 -7907.6 15823.2 15823.2 15849.7

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.12972 1 1 -7923.45 15852.9 15852.9 15872.8

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.416032 17 0.230515 -8498.16 17002.3 17002.3 17022.2

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

1.68843 0.41548 1.35939 1.35939 -7906.92 15821.8 15821.8 15848.4
w (n;φ) = Boole (n ≤ b) 1.13078 6 -7922.46 15848.9 15848.9 15862.2

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.12972 0 -7923.45 15850.9 15850.9 15864.2
w (n;φ) = (a)n 0.101221 10.0312 -7907.71 15819.4 15819.4 15832.7

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.76522 2 1 -7917.19 15840.4 15840.4 15860.3

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.56653 10.2208 17.3917 292.49 -7907 15822 15822 15848.5

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

1.39057 0 54.6125 1.45495 -7907.33 15822.7 15822.7 15849.2
w (n;φ) = (a)−1

n 1 0.531647 -8905.6 17815.2 17815.2 17828.5

Table 10.27: EPL games - Away team goals per game

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 6.62786 -15249.1 30500.1 30500.1 30506.7

w (n;φ) = n+ p 6.62786 7.677× 107 -15249.1 30502.1 30502.1 30515.4
w (n;φ) = (n+ a) (n− b)2 3.9235 0.115532 4.48468 -17391.3 34788.6 34788.6 34808.5

w (n;φ) = (n+ a) (n2 − bn+ c) 5.72877 6.6459 9.6459 66.1057 -15019 30046 30046 30072.6
w (n;φ) = a+ b−ac

n+c
7.62413 0 75039 1 -15008.2 30024.4 30024.4 30051

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 6.62786 1 1 -15249.1 30504.1 30504.1 30524

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

54.9179 87.5138 1.64204 4.55045 -14684.6 29377.3 29377.3 29403.8
w (n;φ) = Boole (n ≤ b) 6.62786 24 -15249.1 30502.1 30502.1 30515.4

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 6.62786 0 -15249.1 30502.1 30502.1 50515.4
w (n;φ) = (a)n 0.440041 8.43405 -14685.5 29375.1 29375.1 29388.3

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

11.5442 6 1 -14760.6 29527.1 29527.1 29547

w (n;φ) =
(
a+ b−ac

n+c

)−1 7.81974 8484.8 2241.44 28706.6 -14957.3 29922.7 29922.7 29949.2

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

11.6702 0 591.779 6.25691 -14760.2 29528.3 29528.3 29554.9
w (n;φ) = (a)−1

n 1 0.00241219 -90217.6 180439 180439 180452

Table 10.28: EPL games - Home team shots on target per game
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 5.07762 -14115.1 28232.2 28232.2 28238.9

w (n;φ) = n+ p 5.07762 7.326× 107 -14115.1 28234.2 28234.2 28247.5
w (n;φ) = (n+ a) (n− b)2 2.26153 0.235644 2.49518 -16295.7 32597.5 32597.5 32617.4

w (n;φ) = (n+ a) (n2 − bn+ c) 4.45409 31.205 2.69845 54.7052 -14015.6 28039.3 28039.3 28065.8
w (n;φ) = a+ b−ac

n+c
6.06348 0 82621.6 1 -13889.3 27786.6 27786.6 27813.1

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 5.07762 1 1 -14115.1 28236.2 28236.2 28256.1

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.900728 36 0.514681 -16518.1 33042.2 33042.2 33062.1

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

48.3317 84.2263 3.68949 1.79638 -13680 27368 27368 27394.5
w (n;φ) = Boole (n ≤ b) 5.07762 20 -14115.1 28234.2 28234.2 28247.5

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 5.07762 0 -14115.1 28234.2 28234.2 28247.5
w (n;φ) = (a)n 0.401701 7.56268 -13681.7 27367.4 27367.4 27380.7

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

7.02665 3 0.998999 -13794.3 27594.7 27594.7 27614.6

w (n;φ) =
(
a+ b−ac

n+c

)−1 6.26389 156.375 65.2648 8586.57 -13854.4 27716.9 27716.9 27743.4

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

8.56664 0 537.852 4.68777 -13753.7 27515.5 27515.5 27542
w (n;φ) = (a)−1

n 1 0.0089961 -59095 118194 188194 118207

Table 10.29: EPL games - Away team shots on target per game

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 16.0717 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n) = n 15.0717 −2.41985× 107 4.8397× 107 4.8397× 107 4.8397× 107

w (n;φ) = n−a 24.5102 7 −3.72876× 107 7.45753× 107 7.45753× 107 7.45753× 107

w (n;φ) = n+ p 16.0717 8.78091× 108 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) = an3 + bn2 + cn 14.7735 0.788063 0 1063.35 −2.41218× 107 4.82436× 107 4.82436× 107 4.82436× 107

w (n;φ) = (n+ a) (n− b)2 19.0517 1.39386× 108 21.5172 −2.20494× 107 4.40989× 107 4.40989× 107 4.40989× 107

w (n;φ) = (n+ a) (n2 − bn+ c) 15.7465 527.513 3.52896 1336.59 −2.36873× 107 4.73746× 107 4.73746× 107 4.73747× 107

w (n;φ) = a+ b−ac
n+c

17.0717 0.001 86236.4 1 −2.3408× 107 4.68161× 107 4.68161× 107 4.68161× 107

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 16.0908 1 0.998808 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

53.2362 33.3994 −2.05635× 107 4.11269× 107 4.11269× 107 4.11269× 107

w (n;φ) = aba

na+1 22.5027 4 −2.20171× 107 4.40342× 107 4.40342× 107 4.40342× 107

w (n;φ) = −1
ln(1−p)

pn

n
24.6641 0.695107 −2.33636× 107 4.67272× 107 4.67272× 107 4.67272× 107

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

1884.32 2564.32 3.27899 3.34795 −1.92024× 107 3.84048× 107 3.84048× 107 3.84049× 107

w (n;φ) = Boole (n ≥ a) 16.0717 1 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) = Boole (n ≤ b) 16.0717 225 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 16.0717 1 225 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) =

(
n
a

)
15.0717 1 −2.41985× 107 4.8397× 107 4.8397× 107 4.8397× 107

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 16.0717 0 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) = (a)n 0.713479 6.45412 −1.92327× 107 3.84655× 107 3.84655× 107 3.84655× 107

w (n;φ) = (n)a 16.0717 0 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

18.0487 3 0.998728 −2.30899× 107 4.61797× 107 4.61797× 107 4.61798× 107

w (n;φ) =
(
a+ b−ac

n+c

)−1 17.1445 1408.35 11.5715 93017.2 −2.33644× 107 4.67288× 107 4.67288× 107 4.67288× 107

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

14.9238 0.990187 −2.41985× 107 4.8397× 107 4.8397× 107 4.8397× 107

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

15.0717 0 −2.41985× 107 4.8397× 107 4.8397× 107 4.8397× 107

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

64.5809 361.343 2244.12 62.2009 −2.02037× 107 4.04073× 107 4.04073× 107 4.04074× 107

w (n;φ) =

(
n
a

)−1

16.0717 0 −2.37739× 107 4.75478× 107 4.75478× 107 4.75478× 107

w (n;φ) = (a)−1
n 1 0.001 −3.62224× 108 4.24447× 108 4.24447× 108 4.24447× 108

w (n;φ) = (n)−1
a 53.2362 34.3994 −2.05635× 107 4.11269× 107 4.11269× 107 4.11269× 107

Table 10.30: US flights - Departure taxi time
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 7.43497 −1.8776× 107 3.75521× 107 3.75521× 107 3.75521× 107

w (n) = n 6.43497 −1.93262× 107 3.86523× 107 3.86523× 107 3.86523× 107

w (n;φ) = n−a 11.8344 4 −2.84427× 107 5.68853× 107 5.68853× 107 5.68854× 107

w (n;φ) = n+ p 7.43497 5.88967× 108 −1.8776× 107 3.75521× 107 3.75521× 107 3.75521× 107

w (n;φ) = an3 + bn2 + cn 6.2197 0.210416 0 81.5885 −1.92361× 107 3.84723× 107 3.84723× 107 3.84723× 107

w (n;φ) = (n+ a) (n− b)2 9.55213 8.23308× 107 11.5555 −1.74343× 107 3.48687× 107 3.48687× 107 3.48687× 107

w (n;φ) = (n+ a) (n2 − bn+ c) 7.10275 104.646 3.77721 293.825 −1.8665× 107 3.7330× 107 3.7330× 107 3.7331× 107

w (n;φ) = a+ b−ac
n+c

8.43314 0 668021 1 −1.83903× 107 3.67807× 107 3.67807× 107 3.67807× 107

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 7.42497 1 1 −1.8776× 107 3.75521× 107 3.75521× 107 3.75521× 107

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

23.4717 13.2667 −1.72623× 107 3.45246× 107 3.45246× 107 3.45246× 107

w (n;φ) = aba

na+1 10.0541 1 1 −1.79858× 107 3.59716× 107 3.59716× 107 3.59716× 107

w (n;φ) = −1
ln(1−p)

pn

n
10.5532 0.816398 −1.83072× 107 3.66144× 107 3.66144× 107 3.66144× 107

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

1019.78 1601.01 2.47317 2.51019 −1.58951× 107 3.17902× 107 3.17902× 107 3.17902× 107

w (n;φ) = Boole (n ≥ a) 7.43056 1 −1.87726× 107 3.75453× 107 3.75453× 107 3.75453× 107

w (n;φ) = Boole (n ≤ b) 7.43497 248 −1.8776× 107 3.75521× 107 3.75521× 107 3.75521× 107

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 7.43056 1 248 −1.87726× 107 3.75453× 107 3.75453× 107 3.75453× 107

w (n;φ) =

(
n
a

)
7.43497 0 −1.8776× 107 3.75521× 107 3.75521× 107 3.75521× 107

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 7.43497 0 −1.8776× 107 3.75521× 107 3.75521× 107 3.75521× 107

w (n;φ) = (a)n 0.620404 4.54911 −1.59678× 107 3.19356× 107 3.19356× 107 3.19356× 107

w (n;φ) = (n)a 7.43156 0 −1.87726× 107 3.75453× 107 3.75453× 107 3.75453× 107

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

9.41572 3 0.998718 −1.81077× 107 3.62155× 107 3.62155× 107 3.62155× 107

w (n;φ) =
(
a+ b−ac

n+c

)−1 8.57604 970.704 307.543 78764.4 −1.83567× 107 3.67135× 107 3.67135× 107 3.67136× 107

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

10.5532 0.816398 −1.83072× 107 3.66144× 107 3.66144× 107 3.66144× 107

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

6.43497 0 −1.9326× 107 3.86523× 107 3.86523× 107 3.86523× 107

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

31.6508 0.111737 105.704 37.7525 −1.70191× 107 3.40382× 107 3.40382× 107 3.40382× 107

w (n;φ) =

(
n
a

)−1

8.61557 1 −1.83072× 107 3.66144× 107 3.66144× 107 3.66144× 107

w (n;φ) = (a)−1
n 1 0 −1.15371× 107 2.30742× 108 2.30742× 108 2.30742× 108

w (n;φ) = (n)−1
a 23.4717 14.2667 −1.72623× 107 3.42546× 107 3.42546× 107 3.42546× 107

Table 10.31: US flights - Arrival taxi time

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 32.6729 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n) = n 31.6729 −5.86609× 107 1.17322× 108 1.17322× 108 1.17322× 108

w (n;φ) = n−a 65.3631 16 −3.94468× 107 7.88936× 107 7.88936× 107 7.88936× 107

w (n;φ) = n+ p 32.6729 4.21475× 109 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) = an3 + bn2 + cn 31.3892 0.00218118 0 13.5185 −5.85037× 107 1.17007× 108 1.17007× 108 1.17007× 108

w (n;φ) = (n+ a) (n− b)2 31.7376 132161 31.7703 −5.14456× 107 1.02891× 108 1.02891× 108 1.02891× 108

w (n;φ) = (n+ a) (n2 − bn+ c) 31.4181 248.26 4.88903 969.517 −5.69675× 107 1.13935× 108 1.13935× 108 1.13935× 108

w (n;φ) = a+ b−ac
n+c

33.6729 0 76064.3 1 −5.52614× 107 1.10523× 108 1.10523× 108 1.10523× 108

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 43.4 1 0.752832 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

22896.9 22903 −9.41825× 106 1.88365× 107 1.88365× 107 1.88365× 107

w (n;φ) = aba

na+1 34.7723 1 −5.3196× 107 1.06392× 108 1.06392× 108 1.06392× 108

w (n;φ) = −1
ln(1−p)

pn

n
63.0721 0.534398 −5.50164× 107 1.10033× 108 1.10033× 108 1.10033× 108

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

112.619 78.2942 0.0110069 4.44404 −3.01042× 107 6.02085× 107 6.02085× 107 6.02086× 107

w (n;φ) = Boole (n ≥ a) 32.6729 1 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) = Boole (n ≤ b) 32.6729 1988 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 32.6729 1 1988 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) =

(
n
a

)
316729 1 −5.86609× 107 1.17322× 108 1.17322× 108 1.17322× 108

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 32.6729 0 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) = (a)n 0.978876 0.70507 −9.48171× 106 1.89634× 107 1.89634× 107 1.89634× 107

w (n;φ) = (n)a 32.6728 0 −5.68381× 107 1.13676× 108 1.13676× 108 1.13676× 108

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

28.9754 14 0.634411 −4.36879× 107 8.73758× 107 8.73758× 107 8.73758× 107

w (n;φ) =
(
a+ b−ac

n+c

)−1 33.6837 24089.3 14794.4 22454.2 −5.51802× 107 1.1036× 108 1.1036× 108 1.1036× 108

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

1.30411 0.0411744 −5.86609× 107 1.17322× 108 1.17322× 108 1.17322× 108

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

31.6729 0 −5.86609× 107 1.17322× 108 1.17322× 108 1.17322× 108

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence

w (n;φ) =

(
n
a

)−1

33.7056 1 −5.50164× 107 1.10033× 108 1.10033× 108 1.10033× 108

w (n;φ) = (a)−1
n 1 0 −4.54496× 108 9.08992× 108 9.08992× 108 9.08992× 108

w (n;φ) = (n)−1
a 23168.8 23177.2 −9.41826× 108 1.88365× 107 1.88365× 107 1.88365× 107

Table 10.32: US flights - Departure delay
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 33.113 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n) = n 32.113 −5.63536× 107 1.12707× 108 1.12707× 108 1.12707× 108

w (n;φ) = n−a 65.4194 16 −3.93039× 107 7.86077× 107 7.86077× 107 7.86077× 107

w (n;φ) = n+ p 33.133 7.1043× 109 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) = an3 + bn2 + cn 31.8311 0.0303346 0 194.668 −5.62038× 107 1.12408× 108 1.12408× 108 1.12408× 108

w (n;φ) = (n+ a) (n− b)2 34.312 189612 35.4338 −4.92968× 107 9.85935× 107 9.85935× 107 9.85935× 107

w (n;φ) = (n+ a) (n2 − bn+ c) 25.9007 0.273149 0.395746 5.49594 −5.99639× 107 1.19928× 108 1.19928× 108 1.19928× 108

w (n;φ) = a+ b−ac
n+c

34.113 0 13330 1 −5.32196× 107 1.06439× 108 1.06439× 108 1.06439× 108

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 33.113 1 1 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) =

(
r
n

)
pn (1− p)r−n Computationally intractable

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

20006.7 19995.6 −9.39228× 106 1.87846× 107 1.87846× 107 1.87846× 107

w (n;φ) = aba

na+1 35.211 1 −5.13396× 107 1.02679× 108 1.02679× 108 1.02679× 108

w (n;φ) = −1
ln(1−p)

pn

n
58.7597 0.581101 −5.30098× 107 1.0602× 108 1.0602× 108 1.0602× 108

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

122.467 86.3643 0.0101213 1.88191 −2.36087× 107 4.72174× 107 4.72174× 107 4.72174× 107

w (n;φ) = Boole (n ≥ a) 33.113 1 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) = Boole (n ≤ b) 33.113 1971 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 33.113 1 1971 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) =

(
n
a

)
32.113 1 −5.63536× 107 1.12707× 108 1.12707× 108 1.12707× 108

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 33.113 0 −5.46812× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) = (a)n 0.977883 0.748927 −9.3647× 106 1.87294× 107 1.87294× 107 1.87294× 107

w (n;φ) = (n)a 33.113 0 −5.468122× 107 1.09362× 108 1.09362× 108 1.09362× 108

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

27.8055 12 0.630326 −4.36262× 107 8.72524× 107 8.72524× 107 8.72524× 107

w (n;φ) =
(
a+ b−ac

n+c

)−1 34.1452 36903.1 0.0228884 2.2621× 106 −5.30098× 107 1.0602× 108 1.0602× 108 1.0602× 108

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

1.14546 0.0356697 −5.63536× 107 1.12707× 108 1.12707× 108 1.12707× 108

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

32.113 0 −5.63536× 107 1.12707× 108 1.12707× 108 1.12707× 108

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence

w (n;φ) =

(
n
a

)−1

34.1452 1 −5.30098× 107 1.0602× 108 1.0602× 108 1.0602× 108

w (n;φ) = (a)−1
n 1 0 −4.50245× 108 9.0049× 108 9.0049× 108 9.0049× 108

w (n;φ) = (n)−1
a 20531.3 20523.6 −9.39229× 106 1.87846× 107 1.87846× 107 1.87846× 107

Table 10.33: US flights - Arrival delay

10.4.2 Previous method comparisons
Note that for the Bosch and Ryan [16] models, the variable they referred to at θ has been
replaced with a to enable the tables to fit onto a page.

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.18 -113.836 229.673 229.673 232.224

w (n;φ) = n+ p 0.204567 0.00515226 -64.0713 132.143 132.266 137.353
w (n;φ) = (n+ a) (n− b)2 0.102357 3.07979× 106 0.047958 -64.6117 135.223 135.473 143.039

w (n;φ) = (n+ a) (n2 − bn+ c) 0.182852 0.00274333 3.00274 5.05765 -63.6656 135.331 135.752 145.752
w (n;φ) = a+ b−ac

n+c
0.269135 4.35299 0.0196282 1 -63.9696 135.939 136.36 146.36

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.135101 15 1 -95.1111 196.222 196.472 204.038

w (n;φ) =

(
r
n

)
pn (1− p)r−n 1.15154 4 0.380495 -87.5313 181.063 181.313 188.878

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.0291491 1007.63 395.359 335.85 -93.6167 195.233 195.655 205.654
w (n;φ) = Boole (n ≤ b) 1.21277 4 -113.069 230.139 230.263 235.349

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.18 0 -113.866 231.673 231.796 236.883
w (n;φ) = (a)n 0.000231007 5105.82 -113.845 231.691 231.814 236.901

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.83046 2 1 -124.761 255.523 255.773 263.338

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.366978 0.0932228 0.0112236 0.001 -63.7608 135.522 135.943 145.942

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.202347 0.01 0.01 0.020542 -64.0799 136.16 136.581 146.581
w (n;φ) = (a)−1

n 0.44172 0.011195 -64.8869 133.774 133.898 138.984
CBRD1 0.46 1.47 -99.95 203.9 204.024 209.11
CBRD2 -3.5 3.6 -67.75 139.5 139.624 144.71

Table 10.34: Sea-urchin egg fertilization
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.63133 -35943.9 71889.9 71889.9 71897.4

w (n;φ) = n+ p 1.63133 1.3969× 108 -35943.9 71891.9 71891.9 71906.9
w (n;φ) = (n+ a) (n− b)2 1.90467 2.1831× 108 2.57342 -28429.8 56865.6 56865.6 56888.1

w (n;φ) = (n+ a) (n2 − bn+ c) 1.1885 3.20848 2.94118 8.25925 -33781.7 67571.5 67571.5 67601.5
w (n;φ) = a+ b−ac

n+c
2.3903 0.00100002 176741 1 -32448.1 64904.2 64904.2 64934.2

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.63133 1 1 -35943.9 71893.9 71893.9 71916.4

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.405822 49 0.163602 -52937.8 105882 105882 105904

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

296.025 329.994 0.541878 0.541878 -21814.3 43636.6 43636.6 43666.7
w (n;φ) = Boole (n ≤ b) 1.63133 20 -35943.9 71891.9 71891.9 71906.9

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.63133 0 -35943.9 71891.9 71891.9 71906.9
w (n;φ) = (a)n 0.842871 0.304116 -21821.8 43647.5 43647.5 43662.6

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

4.9171 10 0.636688 -26734.8 53475.6 53475.6 53498.1

w (n;φ) =
(
a+ b−ac

n+c

)−1 4.88589 10188.3 223.071 3443.11 -25070.1 50148.3 50148.3 50178.3

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence
w (n;φ) = (a)−1

n 1 0.775677 -60280.8 120566 120566 120581
CBRD1 1.89 0.56 -21635 43274 43274 43289
CBRD2 1 0.97 -23551.5 47107 47107 47112

Table 10.35: Canadian doctor visits

Note that for the Consul and Jain [29] models, the variable they referred to at λ1 has been
replaced with λ, and λ2 has been replaced with a to enable the tables to fit onto a page.

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.465224 -617.184 1236.37 1236.37 1240.84

w (n;φ) = n+ p 0.465224 9.59731× 106 -617.184 1238.37 1238.39 1247.31
w (n;φ) = (n+ a) (n− b)2 0.165211 0.0518097 1.42071 -592.188 1190.38 1190.41 1203.79

w (n;φ) = (n+ a) (n2 − bn+ c) 0.566645 0.705085 0.971961 0.317144 -671.182 1350.36 1350.43 1368.25
w (n;φ) = a+ b−ac

n+c
0.819698 0 7345.4 1 -604.039 1216.08 1216.14 1233.97

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.4656589 1 0.999001 -617.184 1240.37 1240.41 1453.79

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.378581 15 0.0959253 -674.718 1355.44 1355.47 1368.85

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

2.16807 1.66555 0.624742 0.624742 -591.642 1191.28 1191.35 1209.17
w (n;φ) = Boole (n ≤ b) 0.465277 5 -617.178 1238.36 1238.38 1247.3

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.465224 0 -617.184 1238.37 1238.39 1247.31
w (n;φ) = (a)n 0.349703 0.865116 -592.267 1188.53 1188.55 1197.48

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

3.02373 8 0.973263 -594.008 1194.02 1194.05 1207.43

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.39995 15.2451 3.85134 113.613 -591.888 1191.78 1191.84 1209.67

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

224952 1.4961× 106 3.29855× 106 1.46374× 106 -592.48 1192.96 1193.02 1210.85
w (n;φ) = (a)−1

n 1 2.05042 -647.086 1298.17 1298.19 1307.12
Generalised Poisson 0.371 0.2 -592.61 1189.22 1189.24 1198.16

Table 10.36: Accidents to women working on shells
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.61 -206.107 414.213 414.234 417.512

w (n;φ) = n+ p 0.573565 15.1684 -206.106 416.213 416.274 422.809
w (n;φ) = (n+ a) (n− b)2 0.128252 0 0.319025 -206.856 419.712 419.835 429.607

w (n;φ) = (n+ a) (n2 − bn+ c) 0.254283 1.37211 0 2.76619 -206.075 420.15 420.355 433.343
w (n;φ) = a+ b−ac

n+c
0.614758 1.24228 2.56433 2 -206.106 420.213 420.418 433.406

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.61 1 1 -206.107 418.213 418.336 428.108

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.194581 13 0.254212 -212.102 430.205 430.327 440.1

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.62615 0.01 0.985023 65.8905 -206.106 420.212 420.418 433.406
w (n;φ) = Boole (n ≤ b) 0.61194 4 -206.021 416.042 416.103 422.639

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.61 0 -206.107 416.213 416.274 422.81
w (n;φ) = (a)n 0.0120028 50.1931 -206.118 416.236 416.297 422.832

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.04217 2 1 -206.943 419.886 420.009 429.781

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.617962 2.7687 0.0737525 0.0272801 -206.103 420.206 420.411 433.339

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.232044 9.32095 2.03606 2.64239 -206.178 420.155 420.36 433.348
w (n;φ) = (a)−1

n 1 1.32888 -209.564 423.128 423.188 429.724
Generalised Poisson 0.611 0 -206.107 416.214 416.275 422.811

Table 10.37: Deaths due to horse kicks

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.03783 -584.389 1170.78 1170.79 1174.83

w (n;φ) = n+ p 1.03782 6.51046× 106 -584.389 1172.78 1172.81 1180.87
w (n;φ) = (n+ a) (n− b)2 0.28184 1.59856× 107 0.38857 -599.089 1204.18 1204.23 1216.32

w (n;φ) = (n+ a) (n2 − bn+ c) 0.802309 6.29444 1.90788 6.62244 -579.768 1167.54 1167.63 1183.72
w (n;φ) = a+ b−ac

n+c
1.40823 0.001 4120.26 1 -581.313 1170.63 1170.72 1186.82

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.03886 1 0.999001 -584.389 1174.78 1174.84 1186.92

w (n;φ) =

(
r
n

)
pn (1− p)r−n 1.69985 17 0.0602107 -637.14 1280.28 1280.34 1292.42

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

7.44123 77.5626 16.7709 0.605035 -579.568 1167.14 1167.23 1183.33
w (n;φ) = Boole (n ≤ b) 1.03792 7 -584.383 1172.77 1172.8 1180.86

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.03783 0 -584.389 1172.78 1172.81 1180.87
w (n;φ) = (a)n 0.190002 4.42434 -579.864 1163.73 1163.76 1171.82

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.64253 2 0.998999 -579.667 1165.33 1165.39 1177.48

w (n;φ) =
(
a+ b−ac

n+c

)−1 1.62603 16.0382 13.904 19.8735 -597.597 1167.19 1167.29 1183.38

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

1.693 0.25025 44.579 2.24363 -579.596 1167.19 1167.29 1183.38
w (n;φ) = (a)−1

n 1 0.651758 -657.679 1319.36 1319.39 1327.45
Generalised Poisson 0.931 0.1 -579.913 1163.83 1163.85 1171.92

Table 10.38: Lost items in the telephone building
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 5 -199.144 400.227 400.268 402.833
w (n) = n 4 -194.898 391.795 391.836 394.4

w (n;φ) = n−a 4.96511 1 -352.843 709.686 709.81 714.897
w (n;φ) = n+ p 4 0 -194.898 393.795 393.919 399.005

w (n;φ) = an3 + bn2 + cn 2.72816 3.42902 0 5.17431 -192.327 392.655 393.076 403.075
w (n;φ) = (n+ a) (n− b)2 2.10291 0 1.51033 -193.191 392.381 392.631 400.197

w (n;φ) = (n+ a) (n2 − bn+ c) 2.329 2.32802 1.2081 0.671049 -195.683 399.367 399.788 409.788
w (n;φ) = a+ b−ac

n+c
4.18324 565.636 0.001 17 -195.030 398.061 398.482 408.481

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.68746 17 0.754036 -191.56 389.121 389.371 396.936

w (n;φ) =

(
r
n

)
pn (1− p)r−n 3.62875 24 0.283745 -191.636 389.272 389.552 397.088

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

6.19462 0.00100014 -204.706 413.412 413.536 418.623
w (n;φ) = aba

na+1 7.75959 1 1 -215.02 436.04 436.29 443.856
w (n;φ) = −1

ln(1−p)
pn

n
7.2486 0.85443 -204.7 413.4 413.524 418.611

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.441622 127.681 174.66 157.161 -191.239 390.477 390.899 400.898
w (n;φ) = Boole (n ≥ a) 4.96511 1 -198.426 400.852 400.975 406.062
w (n;φ) = Boole (n ≤ b) 5.23715 9 -195.445 394.89 395.013 400.1

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 5.20015 1 9 -194.879 395.758 396.008 403.573

w (n;φ) =

(
n
a

)
4 1 -194.898 393.795 393.919 399.005

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 5 0 -199.114 402.227 402.351 407.438
w (n;φ) = (a)n 0.00529091 939.341 -199.239 402.479 402.603 407.689
w (n;φ) = (n)a 1.123831 13.3313 -191.856 387.711 387.835 392.922

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

5.9849 2 1 -203.538 413.076 413.326 420.891

w (n;φ) =
(
a+ b−ac

n+c

)−1 4.0004 0 2.5893 0.001 -194.899 397.798 398.219 408.209

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

1.43543 0.358858 -194.898 393.795 393.919 399.005

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

1.23831 12.3313 -191.856 387.711 387.835 392.922

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.125224 238.582 1.28712 1.29898 -191.133 390.266 390.687 400.687

w (n;φ) =

(
n
a

)−1

5 0 -199.144 402.277 402.351 407.438

w (n;φ) = (a)−1
n 1 0 -899.884 1803.77 1803.89 1808.98

w (n;φ) = (n)−1
a 4.96631 0 -198.432 400.864 400.988 406.074

Generalised Poisson 6.901 -0.38 -190.448 384.896 385.02 390.107

Table 10.39: Rifle shots at targets

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.540984 -120.241 242.482 242.516 245.286

w (n;φ) = n+ p 0.540983 1.5338× 106 -120.241 244.482 244.583 250.09
w (n;φ) = (n+ a) (n− b)2 0.12478 4.91676× 106 0.339667 -121.622 249.324 249.528 257.736

w (n;φ) = (n+ a) (n2 − bn+ c) 0.495974 1.64572 4.12282 8.26209 -119.771 247.542 247.884 258.758
w (n;φ) = a+ b−ac

n+c
0.820968 0.16096 1.04241 -119.895 245.791 245.994 254.203

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.540984 1 1 -120.241 246.482 246.686 254.895

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.377661 10 0.163963 -126.122 258.245 258.448 266.657

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

55.0716 378.351 1.83511 1.83795 -199.821 247.642 247.984 258.859
w (n;φ) = Boole (n ≤ b) 0.542118 4 -120.211 244.422 244.523 250.03

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.540984 0 -120.241 244.482 244.583 250.09
w (n;φ) = (a)n 0.109111 4.41713 -119.836 243.671 243.772 249.279

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

0.937565 2 1 -119.897 245.794 245.997 254.206

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.889296 3.2606 3.82269 698.832 -119.884 247.768 248.11 258.984

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.854577 0 1.82234 105.648 -119.891 247.781 248.123 258.997
w (n;φ) = (a)−1

n 1 1.59599 -123.27 250.54 250.641 256.148
Generalised Poisson 0.511 -0.06 -119.835 243.67 243.771 249.278

Table 10.40: Home accidents to 122 men
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.99359 -191.936 385.872 385.898 388.922

w (n;φ) = n+ p 0.466504 0.418559 -187.598 379.196 379.275 385.296
w (n;φ) = (n+ a) (n− b)2 0.172976 6.5707× 106 0.248971 -189.981 385.962 386.12 395.111

w (n;φ) = (n+ a) (n2 − bn+ c) 0.113551 0.00523427 2.74439 1.88739 -186.533 381.065 381.33 393.264
w (n;φ) = a+ b−ac

n+c
0.636592 2.14173 0.531118 -187.435 380.87 381.027 390.019

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.24597 6 1 -187.913 381.827 381.985 390.977

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.729007 10 0.196983 -189.141 384.282 384.44 393.432

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.628316 31.8071 11.2521 11.367 -187.901 383.801 384.066 396.001
w (n;φ) = Boole (n ≤ b) 1.00957 4 -191.361 386.722 386.8 392.821

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.99359 0 -191.936 387.872 387.951 393.972
w (n;φ) = (a)n 0.00235533 420.485 -191.984 387.968 388.046 394.068

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.58343 2 0.998999 -197.311 400.623 400.781 409.772

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.729674 1.09927 0.00353164 0.00144138 -187.291 382.582 382.847 394.781

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.511201 0 0.329303 122.553 -187.53 383.061 383.326 395.26
w (n;φ) = (a)−1

n 1 0.529493 -190.525 385.05 385.129 391.15
Generalised Poisson 1.131 -0.14 -188.827 381.654 381.732 387.754

Table 10.41: Number of coal strike outbreaks in the UK

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 1.43987 -1438.79 2879.58 2879.59 2884.03

w (n;φ) = n+ p 1.43987 3.37274× 108 -1438.79 2881.58 2881.6 2890.48
w (n;φ) = (n+ a) (n− b)2 1.7965 2.2778× 107 2.52791 -1123.23 2252.45 2252.49 2265.8

w (n;φ) = (n+ a) (n2 − bn+ c) 0.94613 0.830066 3.83007 5.17921 -1267.74 2543.48 2543.54 2561.27
w (n;φ) = a+ b−ac

n+c
2.1579 0 11035.4 1 -1309.11 2626.22 2626.28 2644.01

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1.44131 1 0.999001 -1438.79 2883.58 2883.62 2896.93

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.449691 32 0.175704 -2022.7 4051.41 4051.45 4064.75

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

22.5577 18.6515 0.449024 0.449024 -975.509 1959.02 1959.08 1976.81
w (n;φ) = Boole (n ≤ b) 1.4399 9 -1438.79 2881.58 2881.6 2890.47

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 1.43987 0 -1438.79 2881.58 2881.6 2890.47
w (n;φ) = (a)n 0.81113 0.335273 -981.678 1967.36 1967.37 1976.25

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

24.5155 39 0.998988 -1065.13 2136.26 2136.3 2149.61

w (n;φ) =
(
a+ b−ac

n+c

)−1 4.43721 319.809 9.59517 1200.52 -1034.31 2076.62 2076.69 2094.42

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

Convergence
w (n;φ) = (a)−1

n 1 0.815425 -2235.63 4475.26 4475.28 4484.16
Generalised Poisson 0.571 0.6 -987.685 1979.37 1979.39 1988.27

Table 10.42: Number of statistics journal authors

Note that for the Shmueli et al. [126] models, the variable they referred to at λ1 has been
replaced with λ, and γ has been replaces with a to enable the tables to fit onto a page.
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 3.30448 -97715 195432 195432 195441
w (n) = n 2.30448 -91428.5 182859 182859 182868

w (n;φ) = n−a 3.16498 1 -160643 321289 321289 321307
w (n;φ) = n+ p 2.30448 0 -91428.5 182861 182861 182879

w (n;φ) = an3 + bn2 + cn 1.2238 3.52834 0 0 -87223 174454 17444 174490
w (n;φ) = (n+ a) (n− b)2 1.02905 0 0.567443 -86402.6 172811 172811 172838

w (n;φ) = (n+ a) (n2 − bn+ c) 0.884193 0 2.15404 1.2518 -86192.1 172392 172392 172428
w (n;φ) = a+ b−ac

n+c
2.49434 2.4251× 108 0 7 -91626.6 183261 183261 183297

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.507641 22 1 -89138.9 178284 178284 178311

w (n;φ) =

(
r
n

)
pn (1− p)r−n 1.34038 9 0.61674 -86851.4 173709 173709 173736

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

4.33553 0 -101179 202362 202362 202380
w (n;φ) = aba

na+1 5.89614 1 1 -109240 218486 218486 218512
w (n;φ) = −1

ln(1−p)
pn

n
5.01724 0.863904 -101174 202353 202353 202371

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.0623577 126.859 455.044 463.294 -88463.8 176936 176936 176972
w (n;φ) = Boole (n ≥ a) 3.16498 1 -95410.8 190826 190826 190844
w (n;φ) = Boole (n ≤ b) 3.32075 9 -97585.3 195175 195175 195193

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 3.17876 1 9 -95311.6 190629 190629 190656

w (n;φ) =

(
n
a

)
2.30448 1 -91428.5 182861 182861 182879

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 3.30448 0 -97715 195434 195434 195452
w (n;φ) = (a)n 0.020986 154.087 -98101.8 196208 196208 196226
w (n;φ) = (n)a 0.0325661 276.284 -86837.9 173680 173680 173698

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

4.24262 2 1 -102244 204493 204493 204520

w (n;φ) =
(
a+ b−ac

n+c

)−1 2.30505 0 1.65847 0.001 -91433.6 182875 182875 182911

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

2.17504 0.943832 -91428.5 182861 182861 182879

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

0.0154007 586.727 -86823.3 173651 173651 173669

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.0378432 172.867 0.01 0.01 -86257 172522 172522 172558

w (n;φ) =

(
n
a

)−1

3.30448 0 -97715 195434 195434 195452

w (n;φ) = (a)−1
n 1 0 -231124 462251 462251 462269

w (n;φ) = (n)−1
a 3.16622 0 -95418 190840 190840 190858

w (n;φ) = (n!)1−α 52.1802 3.05325 -86327.9 172660 172660 172678

Table 10.43: Hungarian word length

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 3.61732 -9130.96 18263.9 18263.9 18270

w (n;φ) = n+ p 3.61732 5.67322× 107 -9130.96 18265.9 18265.9 18278.1
w (n;φ) = (n+ a) (n− b)2 2.5686 8.35738× 107 2.54412 -9135.52 18707 18707.1 18725.3

w (n;φ) = (n+ a) (n2 − bn+ c) 2.79606 2.95678 5.95678 19.6129 -8673.47 17354.9 17355 17379.3
w (n;φ) = a+ b−ac

n+c
4.56947 0.001 67454.5 1 -8620.95 17249.9 17249.9 17274.2

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 3.61732 1 1 -9130.96 18267.9 18267.9 18286.2

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.564059 54 0.3396 -12033.5 24073 24073 24091.2

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

1152.17 1755.11 0.571388 2.6095 -7690.77 15389.5 15389.5 15413.8
w (n;φ) = Boole (n ≤ b) 3.61732 30 -9130.96 18265.9 18265.9 18278.1

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 3.61732 0 -9130.96 18265.9 18265.9 18278.1
w (n;φ) = (a)n 0.692012 1.60993 -7695.01 15394 15394 15406.2

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

4.06259 4 0.636041 -8187.85 16381.7 16381.7 16399.9

w (n;φ) =
(
a+ b−ac

n+c

)−1 5.44784 8336.51 804.955 1683.06 -8145.52 16299 16299.1 16323.4

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

29.2262 1.05636 173.441 40.1638 -7699.21 15406.4 15406.4 15430.7
w (n;φ) = (a)−1

n 1 0.106285 -24876.1 49756.3 49756.3 49758.4
w (n;φ) = (n!)1−α 0.991097 0.135148 -7691.54 15387.1 15387.1 15399.2

Table 10.44: Clothing sales
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Weight function λ̂ â Max log-likelihood AIC AICc BIC
w (n;φ) = (a)n 0.148743 34.9643 -1416.38 2836.76 2836.78 2845.53

w (n;φ) = (n!)1−α 4.49253 0.837851 -1416.21 2836.41 2836.43 2845.39

Table 10.45: Airplane Crashes – Number incidents per month

Weight function λ̂ â b̂ r̂ Max log-likelihood AIC AICc BIC
w (n;φ) = Γ(r+n)

Γ(r)n!
Beta(a+r,b+n)

Beta(a,b)
6.93968 123.321 3.1556 3.07126 -217765 435538 435538 435579

w (n;φ) = (n!)1−α 0.59374 1.12583 -218534 437071 437071 437092

Table 10.46: US gun violence – Injured per incident

Weight function λ̂ â b̂ Max log-likelihood AIC AICc BIC
w (n;φ) = (n+ a) (n− b)2 0.340524 0 0.324713 -403086 806179 806179 806211

w (n;φ) = (n!)1−α 5.45389 1.97762 -444474 888953 888953 888974

Table 10.47: Airplane Crashes – Number incidents per month

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.214354 -5490.78 10983. 10983.6 10990.7

w (n;φ) = n+ p 0.214354 2.01633× 107 -5490.78 10985.6 10985.6 10999.9
w (n;φ) = (n+ a) (n− b)2 0.616986 71.70982× 107 2.59526 -5560.80 11127.6 11127.6 11149.1

w (n;φ) = (n+ a) (n2 − bn+ c) 0.0566645 0.705085 0.971961 0.317144 -5464.29 10936.6 10936.6 10965.2
w (n;φ) = a+ b−ac

n+c
0.151408 1.62859 1.29233 1.51643 -5556.07 11120.1 11120.1 11148.8

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.214354 1 1 -5490.78 10987.6 10987.6 11009

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.780194 14 0.0215932 -5755.85 11517.7 11517.7 11539.2

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

211.309 865.385 0.812762 0.824369 -5348.01 10704 10704 10732.6
w (n;φ) = Boole (n ≤ b) 0.214354 7 -5490.78 10983.6 10983.6 10990.7

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.214354 0 -5490.78 10983.6 10983.6 10990.7
w (n;φ) = (a)n 0.234045 0.701512 -5348.04 10700.1 10700.1 10714.4

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

3.59363 20 0.997925 -5361.63 10729.3 10729.3 10750.7

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.787352 76.3369 19.8757 1014 -5363.03 10734.1 10734.1 10762.7

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

333387 6.12324× 106 5.21406× 106 6.43914× 106 -5354.68 10715.4 10715.4 10736.8
w (n;φ) = (a)−1

n 1 4.63489 -5557.63 11119.3 11119.3 11133.6
w (n;φ) = e

r
(
−
√
n2+a

)
0.115553 32 -4.3 -5342.15 10690.3 10690.3 10711.8

w (n;φ) = er
(
−e−ak

)
10.1691 0.2 -22.64 -5342.32 10690.6 10690.6 10712.1

w (n;φ) = e
r
(

k+1
k+a

)
54.8966 14.25 -94.72 -5342.78 10691.6 10691.6 10713

w (n;φ) = erln(k+a) 99.9148 7 -47.85 -5342.55 10691.1 10691.1 10712.6

Table 10.48: Castillo and Perez - Car accidents

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n;φ) = (a)n 0.349703 0.865116 -592.267 1188.53 1188.55 1197.48

w (n;φ) = (n+ a)r 2.14237 0.783974 -2.42914 -591.63 1189.26 1189.3 1202.68

Table 10.49: Accidents to women working on shells
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 0.99359 -191.936 385.872 385.898 388.922

w (n;φ) = n+ p 0.466504 0.418559 -187.598 379.196 379.275 385.296
w (n;φ) = (n+ a) (n− b)2 0.172976 6.5707× 106 0.248971 -189.981 385.962 386.12 395.111

w (n;φ) = (n+ a) (n2 − bn+ c) 0.113551 0.00523427 2.74439 1.88739 -186.533 381.065 381.33 393.264
w (n;φ) = a+ b−ac

n+c
0.636592 2.14173 0.531118 -187.435 380.87 381.027 390.019

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 0.24597 6 1 -187.913 381.827 381.985 390.977

w (n;φ) =

(
r
n

)
pn (1− p)r−n 0.729007 10 0.196983 -189.141 384.282 384.44 393.432

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

0.628316 31.8071 11.2521 11.367 -187.901 383.801 384.066 396.001
w (n;φ) = Boole (n ≤ b) 1.00957 4 -191.361 386.722 386.8 392.821

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 0.99359 0 -191.936 387.872 387.951 393.972
w (n;φ) = (a)n 0.00235533 420.485 -191.984 387.968 388.046 394.068

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

1.58343 2 0.998999 -197.311 400.623 400.781 409.772

w (n;φ) =
(
a+ b−ac

n+c

)−1 0.729674 1.09927 0.00353164 0.00144138 -187.291 382.582 382.847 394.781

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.511201 0 0.329303 122.553 -187.53 383.061 383.326 395.26
w (n;φ) = (a)−1

n 1 0.529493 -190.525 385.05 385.129 391.15
w (n;φ) = (n+ a)r 0.0591327 5.02521 17.6826 -188.209 382.418 382.576 391.567

Table 10.50: Number of strike outbreaks

10.4.3 Novel process data fits

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 2219.92 -264.096 530.193 530.273 532.144
w (n) = n 2218.92 -264.1 530.2 530.28 532.151

w (n;φ) = n−a 334.292 2 -61798.8 123602 123602 123606
w (n;φ) = n+ p 2219.92 447518 -264.096 532.193 532.438 536.095

w (n;φ) = an3 + bn2 + cn 2217.92 0 406.852 14.8862 -264.103 536.206 537.087 544.011
w (n;φ) = (n+ a) (n− b)2 2219.92 180315 299010 -264.096 534.193 534.693 540.047

w (n;φ) = (n+ a) (n2 − bn+ c) 2217.9 86040.1 0.348517 126.878 -364.103 536.206 537.057 544.011

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 1931.39 332 1 -265.048 536.096 536.596 541.95

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

316.896 0.0153326 58.9356 1.35271 -64411.6 128831 128832 128839
w (n;φ) = Boole (n ≥ a) 2219.92 42 -264.096 532.193 532.438 536.095
w (n;φ) = Boole (n ≤ b) 2283.98 2220 -289.592 583.184 583.428 587.086

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 2219.92 0 -264.096 532.193 532.438 536.095
w (n;φ) = (a)n 0.70881 912.948 -261.929 527.858 528.103 531.76
w (n;φ) = (n)a 1128.79 1925.27 -311.639 627.279 627.523 631.181

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

15.4094 2 1 -234445 468895 468896 468901

w (n;φ) =
(
a+ b−ac

n+c

)−1 472.142 1.03425 89.509 4.88025 -45003.8 90015.6 90016.5 90023.4

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

1.03402 0.00046599 -264.1 532.2 532.444 536.102

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

1128.79 1925.27 -311.21574 626.4315 626.67638 630.3339

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

994.804 0.004569 182.013 6.00783 -14931 29870.1 29870.9 29877.9

w (n;φ) =

(
n
a

)−1

2219.92 0 -264.096 532.193 532.438 536.095

w (n;φ) = (a)−1
n 1 0 -760228 1520461 1520461 1520461

Table 10.51: Item sales - Item 409
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 27.5484 -71.6355 145.271 145.414 146.672
w (n) = n 26.5504 -71.4551 144.91 145.053 146.311

w (n;φ) = n−a 28.587 1 -71.829 147.658 148.103 150.46
w (n;φ) = n+ p 26.5504 0 -71.4551 146.91 147.355 149.713

w (n;φ) = an3 + bn2 + cn 24.6687 1248.43 0.00592 0.0795168 -71.1284 150.257 151.857 155.862
w (n;φ) = (n+ a) (n− b)2 31.6161 0 40.431 -69.00054 144.001 144.924 148.205

w (n;φ) = (n+ a) (n2 − bn+ c) 24.5577 0.154709 3.15471 2.48806 -71.09 148.18 149.103 152.384

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 9.05278 84 0.774777 -69.396488 144.793 145.716 148.997

w (n;φ) = aΓ(n)Γ(a+1)
Γ(n+a+1)

28.5881 0 -71.8292 147.658 148.103 150.461
w (n;φ) = −1

ln(1−p)
pn

n
48.1208 0.594068 -71.829 147.658 148.103 150.46

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

2.39206 1.21919 640.546 591.03 -69.0788 146.158 147.758 151.762
w (n;φ) = Boole (n ≥ a) 27.5484 2 -71.6355 147.271 147.715 150.073
w (n;φ) = Boole (n ≤ b) 37.4904 31 -65.602 135.204 135.648 138.006

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 37.4904 2 31 -65.602 137.204 138.127 141.408

w (n;φ) =

(
n
a

)
25.5334 2 -71.2732 146.546 146.991 149.349

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 27.5484 0 -71.6355 147.271 147.715 150.073
w (n;φ) = (a)n 0.0325355 818.433 -71.8035 147.607 148.051 150.409
w (n;φ) = (n)a 0.470287 1582.61 -68.9551 141.91 142.355 144.713

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

14.054 2 0.492305 -71.8144 149.629 150.552 153.832

w (n;φ) =
(
a+ b−ac

n+c

)−1 26.5508 0 6.67601 0 -71.4551 150.91 152.51 156.515

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.928012 0.0349529 -71.4551 146.91 147.355 149.713

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

0.422858 1762.3 -68.9526 141.905 142.35 144.708

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

0.754396 943.086 0.0514531 0.01 -68.9253 145.851 147.451 151.455

w (n;φ) =

(
n
a

)−1

27.5484 -71.6355 147.271 147.715 150.073

w (n;φ) = (a)−1
n 1.99999 0 -1850.09 3704.17 3704.62 3706.98

w (n;φ) = (n)−1
a 27.5494 0 -71.6357 147.271 147.716 150.074

Table 10.52: Mass shooting incidents - June 2013

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 184.929 -1442.87 2887.75 2887.76 2891.65
w (n) = n 183.955 -1443.23 2888.46 2888.47 2892.36

w (n;φ) = n−a 194.962 10 -1439.24 2882.48 2882.51 2890.28
w (n;φ) = n+ p 184.929 358088000 -1442.87 2889.75 2889.78 2897.55

w (n;φ) = an3 + bn2 + cn 183.424 0 0 739.083 -1443.14 2894.28 2894.4 2909.88
w (n;φ) = (n+ a) (n− b)2 184.928 216447 322937000 -1442.87 2891.75 2891.82 2903.45

w (n;φ) = (n+ a) (n2 − bn+ c) 184.373 389572000 0.665283 90020.9 -1442.79 2893.57 2893.68 2909.17

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 110.122 131 0.99899 -1446.02 2938.04 2938.11 2949.74

w (n;φ) = −1
ln(1−p)

pn

n
228.293 0.81434 -1442.52 2889.04 2889.07 2896.84

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

236.188 57.0505 16.3393 0.74365 -1429.15 2866.31 2866.42 2881.91
w (n;φ) = Boole (n ≥ a) 184.929 1 -1442.87 2889.74 2889.77 2897.54
w (n;φ) = Boole (n ≤ b) 22905900 189 -1684.95 3373.9 3373.93 3381.7

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 265333 1 189 -1684.97 3375.94 3376.01 3387.64

w (n;φ) =

(
n
a

)
183.955 1 -1443.23 2890.46 2890.49 2898.26

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 184.929 0 -1442.87 2889.74 2889.77 2897.54
w (n;φ) = (a)n 0.666966 90.0725 -1404.44 2812.87 2812.9 2820.67
w (n;φ) = (n)a 187.853 0 -1447.06 2898.12 2898.16 2905.92

w (n;φ) =
(
a+ b−ac

n+c

)−1 185.899 305.608 2.20237 21077.1 -1442.52 2893.04 2893.15 2908.63

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.591063 0.003213 -1443.23 2890.46 2890.49 2898.26

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

183.955 0 -1443.23 2890.46 2890.49 2898.26

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

474.181 0.017301 411.724 1492.15 -1400.42 2804.84 2804.88 2812.64

w (n;φ) =

(
n
a

)−1

184.929 0 -1442.87 2889.75 2889.78 2897.55

w (n;φ) = (a)−1
n 1 0 -271803 543640 543640 543618

Table 10.53: US gun violence – Rhode Island 2014
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 321.312 -110.048 222.096 222.234 223.53
w (n) = n 320.305 -110.027 222.054 222.192 223.488

w (n;φ) = n−a 331.566 10 -110.261 224.522 224.951 227.39
w (n;φ) = n+ p 320.305 0 -110.027 224.054 224.483 226.922

w (n;φ) = an3 + bn2 + cn 318.299 766.169 0.572295 50.7653 -109.986 227.972 229.51 233.708
w (n;φ) = (n+ a) (n− b)2 337.207 0 360.009 -108.058 222.116 223.005 226.418

w (n;φ) = (n+ a) (n2 − bn+ c) 318.289 2.71599 5.71599 17.5258 -109.985 227.971 229.509 233.707

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 72.947 1088 0.999221 -106.623 219.245 220.134 223.547

w (n;φ) = −1
ln(1−p)

pn

n
327.871 0.983079 -110.069 224.138 224.566 227.006

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

323.849 14.6766758671 51.2828 -109.917 227.834 229.372 233.57
w (n;φ) = Boole (n ≤ b) 213986 316 -95.2035 194.407 194.836 197.275

w (n;φ) =

(
n
a

)
310.226 11 -109.817 223.634 224.062 226.502

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 321.312 0 -110.048 224.096 224.525 226.964
w (n;φ) = (a)n 0.280466 824.898 -112.338 228.676 229.104 231.544
w (n;φ) = (n)a 20.9069 4565.11 -106.116 216.312 216.740 219.180

w (n;φ) =

((
n+ r − 1

n

)
pn (1− p)r

)−1

28.2663 3302.08 0.285396 1.35243 -106.222 220.444 221.983 226.18

w (n;φ) =
(
a+ b−ac

n+c

)−1 320.305 0 58.4612 0 -110.027 228.054 229.593 233.79

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.694326 0.00216771 -110.027 224.054 224.483 226.922

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

11.1034 8882.71 -106.075 216.149 216.578 219.017

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

28.2663 3302.08 0.285312 1.35245 -106.222 220.444 221.982 226.18

w (n;φ) =

(
n
a

)−1

321.312 0 -110.048 224.096 224.525 226.964

w (n;φ) = (a)−1
n 1 0 -46574.3 93152.6 93153.1 93155.5

Table 10.54: Global terrorism - Successful bombings January 2017

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 549.543 -435.190 872.381 872.426 874.892
w (n) = n 548.561 -435.292 872.584 872.629 875.094

w (n;φ) = n−a 550.528 1 -435.089 874.178 874.314 879.2
w (n;φ) = n+ p 549.543 100000000 -435.19 874.381 874.517 879.402

w (n;φ) = an3 + bn2 + cn 547.58 0 107.027 0.0200431 -435.393 878.786 879.252 888.83
w (n;φ) = (n+ a) (n− b)2 549.543 662198 23133700 -435.19 876.381 876.657 883.913

w (n;φ) = (n+ a) (n2 − bn+ c) 547.74 725646 1.00551 3999.87 -435.387 878.773 879.817 888.817

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 333.181 366 0.999968 -456.688 919.376 919.652 926.908

w (n;φ) = Boole (n ≥ a) 549.543 4 -435.19 874.381 874.517 879.402
w (n;φ) = Boole (n ≤ b) 549.558 633 -435.359 874.718 874.855 879.74

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 549.558 4 633 -435.359 876.718 876.994 884.251

w (n;φ) =

(
n
a

)
545.613 4 -435.598 875.196 875.333 880.218

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 549.543 0 -435.19 874.381 874.517 579.402
w (n;φ) = (a)n 0.733446 196.481 -399.913 803.825 803.962 808.847
w (n;φ) = (n)a 337.032 347.423 -456.522 917.045 917.181 922.066

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.865993 0.00157866 -435.292 874.584 874.72 879.605

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

548.567 0 -435.292 874.584 874.72 879.605

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

553.372 3.21783 190.296 29.7279 -403.957 815.913 816.378 825.956

w (n;φ) =

(
n
a

)−1

549.543 0 -435.19 874.381 874.517 879.402

w (n;φ) = (a)−1
n 1 0 -257038 514080 514080 514085

Table 10.55: New York cyclist injuries - January 1 to March 31 2016
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Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 93.9474 -152.071 306.141 306.255 307.752
w (n) = n 92.9082 -152.268 306.535 306.65 308.146

w (n;φ) = n−a 117.236 20 -148.026 300.052 300.405 303.274
w (n;φ) = n+ p 93.9472 452622 -152.071 308.141 308.494 311.363

w (n;φ) = an3 + bn2 + cn 92.4272 0.0386308 0 1036.87 -152.22 312.439 313.689 318.883
w (n;φ) = (n+ a) (n− b)2 97.1057 1084130 97.9639 -138.303 282.606 283.3333 287.439

w (n;φ) = (n+ a) (n2 − bn+ c) 93.4867 716561 0.923608 28939.4 -152.022 312.044 313.294 318.488

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 49.6997 81 0.999015 -159.812 325.624 326.351 330.457

w (n;φ) = −1
ln(1−p)

pn

n
185.806 0.511275 -151.873 307.746 308.099 310.968

w (n;φ) = Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

320.934 215.939 0.0100002 0.0100039 -139.295 286.59 287.84 293.033
w (n;φ) = Boole (n ≥ a) 93.9474 2 -152.071 308.141 308.494 311.363
w (n;φ) = Boole (n ≤ b) 3850030 71 -337.013 678.025 678.378 681.247

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 983164 2 71 -337.014 680.027 680.754 684.86

w (n;φ) =

(
n
a

)
91.8685 2 -152.469 308.937 309.29 312.159

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 93.9474 0 -152.071 308.141 308.494 311.363
w (n;φ) = (a)n 0.790089 26.2131 -137.371 278.742 279.095 281.964
w (n;φ) = (n)a 93.9474 0 -152.071 308.141 308.494 311.363

w (n;φ) =
(
a+ b−ac

n+c

)−1 94.9053 667.595 910.724 912.805 -151.88 311.761 313.011 318.204

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.692236 0.00745076 -152.268 308.535 308.888 311.757

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

92.9082 0 -152.268 308.535 308.888 311.757

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

435.257 0.168068 350.743 11666.5 -138.42 284.841 286.091 291.284

w (n;φ) =

(
n
a

)−1

93.9474 0 -152.071 308.141 308.494 311.363

w (n;φ) = (a)−1
n 1 0 -11835.8 23675.6 23676 23678.9

Table 10.56: Boston crime – Monthly bomb hoaxes June 2015 to June 2018

Weight function λ̂ â b̂ ĉ r̂ p̂ Max log-likelihood AIC AICc BIC
w (n) = 1 599.849 -335.645 673.291 673.371 675.242
w (n) = n 598.872 -335.688 673.375 673.455 675.326

w (n;φ) = n+ p 599.848 669196 -335.645 675.291 675.536 679.193
w (n;φ) = an3 + bn2 + cn 598.261 0.364801 362.72 442486 -335.689 679.378 680.29 687.183
w (n;φ) = (n+ a) (n− b)2 599.855 1046790 182444 -335.645 677.291 677.791 683.145

w (n;φ) = (n+ a) (n2 − bn+ c) 597.905 95840.2 1.00547 523.993 -335.729 679.458 680.31 687.263

w (n;φ) =

(
n+ r − 1

n

)
pn (1− p)r 340.516 470 0.9999 -344.728 695.456 695.956 701.31

w (n;φ) = −1
ln(1−p)

pn

n
605.935 0.991572 -335.603 675.207 675.452 679.109

w (n;φ) = Boole (n ≥ a) 599.849 5 -335.645 675.29 675.535 679.192
w (n;φ) = Boole (n ≤ b) 599.852 704 -335.645 675.29 675.535 679.192

w (n;φ) = Boole (n ≥ a)Boole (n ≤ b) 599.852 5 704 -335.645 677.289 677.789 683.143

w (n;φ) =

(
n
a

)
594.964 5 -335.856 675.712 675.957 679.615

w (n;φ) = p n!
e−λλnBoole (n = 0) + (1− p) 599.849 0 -335.645 675.29 675.535 679.192
w (n;φ) = (a)n 0.958732 23.8434 -278.183 560.366 560.611 564.269
w (n;φ) = (n)a 600.013 0.000001 -335.646 675.291 675.536 679.193

w (n;φ) =
(

−1
ln(1−p)

pn

n

)−1

0.895279 0.00149 -335.688 675.375 675.62 679.278

w (n;φ) =
(
aΓ(n)Γ(a+1)

Γ(n+a+1)

)−1

598.875 0.000059 -335.688 675.375 675.62 679.278

w (n;φ) =
(

Γ(r+n)
Γ(r)n!

Beta(a+r,b+n)
Beta(a,b)

)−1

605.106 0.277841 162.454 24.4205 -329.245 666.491 667.342 674.296

w (n;φ) =

(
n
a

)−1

559.849 0 -335.645 675.291 675.536 679.193

w (n;φ) = (a)−1
n 1 0.0000001 -165043 330090 330090 330094

Table 10.57: Missouri Barry County – Weekly unemployment claims 2019
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