Live and lyophilized fungi-algae pellets as novel biosorbents for gold recovery: Critical parameters, equilibrium, kinetics and regeneration studies

E-supplementary data

Na Shen* and Evans M.N. Chirwa

Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa

Table S1 Comparison of gold adsorption capacity by fungi-algae pellets with individual

 algae and fungi and synthesized adsorbents reported in the literature.

Figure S1 Schematic of fungi-algae pelletized reactor for gold recovery from wastewater.

Figure S2 SEM images of live fungi-algae pellets with diameters at (a) 3-4 mm, (b) 6-7mm

and (c) 9-10 mm, and lyophilized fungi-algae pellets with diameters at (d) 3-4 mm, (e) 6-7mm and (f) 9-10 mm (Magnification 1000x).

Figure S3 Colour change of live co-pellet before (a) and after (b) adsorption for 3 h, and lyophilized co-pellets before (c) and after (d) adsorption for 6 h.

Figure S4 FTIR spectra of live (a) and lyophilized (b) co-pellets before and after adsorption, and (c) comparison of FTIR spectra of live and lyophilized co-pellets.

* Corresponding author

E-mail address: nashen2016@gmail.com.

Adsorbent	Size (mm)	Adsorption time (h)	Capacity (mg/g)	Reference
l-lysine modified crosslinked chitosan resin	0.1–0.2	7	70.34	(Fujiwara et al., 2007)
proteins immobilized in microcapsules	0.1	1	20	(Kiyoyama et al., 2008)
activated carbon derived from apricot stones	0.3-0.5	24	30.21	(Soleimani and Kaghazchi, 2008)
alfalfa immobilized on silica polymer	0.42 - 0.84	-	35.97	(Gamez et al., 2003)
ion exchange resin Purolite A-500	0.6–0.85	0.5	147.05	(Nguyen et al., 2010)
ion exchange resin Bonlite BA304	0.45-0.70	0.5	123.4	(Nguyen et al., 2010)
ion exchange resin Amberlite XAD-7HP	0.56-0.71	0.5	78.12	(Nguyen et al., 2010)
Fucus vesiculosus	-	24	68.95	(Mata et al., 2009)
Aspergillus niger AHU 7296	-	2	42.36	(Nakajima, 2003)
raw date pits	9-10	6	78	(Al-Saidi, 2016)
live fungi-algae pellets	9-10	6	104.17	this study
lyophilized fungi-algae pellets	9-10	6	112.36	this study

Table S1 Comparison of gold adsorption capacity by fungi-algae pellets with individualalgae, fungi and synthesized adsorbents reported in the literature.

Figure S1 Schematic of fungi-algae pelletized reactor for gold recovery from wastewater

Live fungi-algae pellets

Lyophilized fungi-algae pellets

Figure S2 SEM images of live fungi-algae pellets with diameters at (a) 3-4 mm, (b) 6-7mm and (c) 9-10 mm, and lyophilized fungi-algae pellets with diameters at (d) 3-4 mm, (e) 6-7mm and (f) 9-10 mm (Magnification 1000x).

Figure S3 Colour change of live co-pellet before (a) and after (b) adsorption for 3 h, and lyophilized co-pellets before (c) and after (d) adsorption for 6 h.

Figure S4 FTIR spectra of live (a) and lyophilized (b) co-pellets before and after adsorption, and (c) comparison of FTIR spectra of live and lyophilized co-pellets.