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Highlights 

 Performance of an airfoil is studied experimentally using an equipped wind tunnel. 
 The experiments are done for five attack angles as well as three jet velocities. 
 A direct relationship between the jet velocity and the stall angle is found. 
 A reverse relationship between the jet velocity and the wake effect is found. 

 

Abstract 

An experimental study is conducted to investigate the impact of different parameters on the 
performance of CFJ0025-065-196 airfoil. For this purpose, an equipped wind tunnel with the 
motor capacity of 7 kW as well as high-tech measuring instruments are employed, and the 
impact of attack angle on the average velocity profiles for different jet flow velocities, in 
addition to the self-similar velocity profiles for different attack angles, and the wake effect 
are found and discussed comprehensively. The experiments are done for five different values 
of the attack angle, which are 0, 5, 12, 20, and 25° as well three magnitude for the jet flow 
velocity, including 0, 19.7, and 32.2 m s−1. According to the results, the attack angle in which 
the performance of the airfoil decreases has an upward trend when the jet flow velocity 
increases, and it reaches from 20 to 25° when jet flow velocity changes from 0 to 19.7 m s−1. 
Moreover, increasing the attack angle from 0 to 12° makes the jet frountier wider whereas a 
downward trend happens by chaning the attack angle from 12 to 25°. Additionally, the higher 
the jet velocity is, the weaker wake stream has. 
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1. Introduction 

Airfoils are increasingly being used for different purposes in the both engineering and 
industry areas [1]. They are made in different sizes and have a wide range of application, 
from wind turbines to air planes, and so on [2]. In improving design process and achieving a 
better condition for an airfoil, knowing the performance plays a crucial role. As a result, 
several studies have been conducted to investigate the performance of airfoils from different 
points of view [3]. In such investigations, like other topics [[4], [5], [6], [7]], either numerical 
modelling or experiments have been employed [[8], [9], [10]]. 

In the studies which have employed numerical modelling, the governing equations, including 
mass, energy, and momentum balances have been considered and solved to find a model 
describing the system behavior [[11], [12], [13], [14]]. The investigations done in references 
[3,[15], [16], [17], [18]] are some examples of these studies. Since in the numerical models, 
some assumptions have been taken into account for the sake of simplification, they have 
usually high level of error compared to the experimental results [[19], [20], [21], [22], [23], 
[24]]. Moreover, because of the done simplifications, some phenomena happen in the reality 
might be ignored when numerical models are considered [[25], [26], [27], [28]]. 

On the other hand, the experimental studies are able to reflect the aspects which might be 
ignored in the numerical models while they usually have higher level of accuracy [[29], [30], 
[31]]. Considering the mentioned benefits, several experimental studies have been also 
carried out in the field of airfoils. 

As two examples of the experimental works, Zha et al. [32,33], examined a novel proposed 
way to control the flow for an airfoil, which led to having a higher lift coefficient and a better 
performance against stall effect. In another work, Bagheri and Kabiri-Samami [34] developed 
a model for free surface flow in the streamlined weirs and validated the model with the 
experimental recorded data. Chen et al. [35] also conducted an experimental study to analyze 
the transient behavior in the luminescent mini-tufts and Liu et al. [36] did an experimental 
study with the subject of investigating the performance of dynamic ice accretion. 

Review of the literature shows that despite the valuable studies have been done so far, there 
are still some gaps should be filled by conducting new research items. Considering this point, 
in the current study, an equipped wind tunnel in addition to the high-tech measuring devices 
are employed to carry out experimental tests to study the performance of CFJ0025-065-196 
airfoil in details. The impact of attack angle (AoA) on the average velocity profiles for 
different jet flow velocities, in addition to the self-similar velocity profiles for different attack 
angles, and the wake effect are found and discussed in details in this study. Using the results 
found here helps the designers to design airfoils in a better way by having more extensive 
information about the airfoil performance from the mentioned points of view. The 
experiments are done for five different attack angles, including the values of 0, 5, 12, 20, and 
25°, as well as three magnitudes for the jet flow velocity, which are 0, 19.7, and 32.2 m s−1. 
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2. The experiments 

2.1. The investigated airfoil 

The investigated airfoil is CFJ0025-065-196. As shows in Fig. 1, in the airfoil length, there 
are some holes as well as a pipe which is composed of a porous material. In addition, the 
airfoil enjoys a new design. Using the new design, the injection and suction processes are 
happening in a more uniform way. 

 

Fig. 1. The investigated airfoil, which is CFJ0025-065-196 [37]. 

2.2. The wind tunnel and measuring instruments 

The experiments are done using the test equipment of the Hakim Sabzevari University. The 
equipment consists of a wind tunnel with hot wire anemometry apparatus as well as 
measuring devices such as the devices to measure the velocity. Having an accurate and 
complete set of measuring devices is necessary to obtain reliable results [[38], [39], [40], 
[41], [42], [43]]. In addition, there are the controlling systems to adjust the suction and 
injection process. This wind tunnel has a motor whose power is 7 kW, and the dimensions 
indicated in Fig. 2. 

 

Fig. 2. The schematic figure of the wind tunnel in which the dimension are also indicated in 
millimeters [37]. 
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2.3. The method of measuring the boundary layer velocity 

In order to measure the boundary layer properties, the HM 170.24 boundary layer analyzer 
with pitot tube, manufactured by Gunt company, is employed. It is depicted in Fig. 3. 

 

Fig. 3. The schematic of the HM 170.24 boundary layer analyzer with pitot tube, manufacture by 
Gunt company [44]. 

In this measuring device, the stream flows into the surfaces. The stream is parallel to the 
plate. Two surfaces have different roughness values, and it makes the possibility of recording 
the boundary layer properties in case they are going to be investigated. 

In addition, there is a Pitot tube in the device. By employing this Pitot tube, which has the 
availability to move across the stream, the total pressure can be determined. The plate is also 
able to move in the horizontal axis, which makes the possibility of measuring flow along the 
path. There is a manometer in the system, and using this manometer, the pressure can be 
obtained. Using the manometer, the dynamic pressure as well as the velocity are determined. 

2.4. Measuring instruments and their accuracy 

Having accurate measuring instruments play an important role in obtaining accurate result 
[45,46]. Based on the comprehensive information, which is available on reference [44], the 
error in measuring the velocity, as the main measured parameter is 2.8%. It should be also 
noted that in this study, like the former similar done investigations [[47], [48], [49], [50]], 
more information about the measurements are considered beyond the scope of this survey, 
and for more details the manufacture's catalogue is referred. 
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3. Results and discussion 

3.1. The impact of attack angle on for average velocity profiles for different jet flow 
velocities 

In order to compare the impact of attack angle (AoA) on the airfoil flow, the profiles for 
average velocity are evaluated for the  

in three conditions, which are jet flow velocity of 0.0, 19.7, and 32.2 m s−1. The results are 
shown in Fig. 4. For the jet flow velocity of 0.0, the investigated attack angles are 0, 5, 12, 
and 20° while for two other aforementioned jet flow velocity values, i.e., 19.7 and 32.2 m s−1, 
in addition to the indicated attack angles, the results for values of 25, 30, and 35° are also 
reported. 

 

Fig. 4. The impacts of attack angle on the average velocity profiles for  in three different jet 
flow velocity values; (a) jet flow velocity of 0.0 m s−1; (a) jet flow velocity of 19.7 m s−1; (a) jet flow 
velocity of 32.2 m s−1. 
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According to Fig. 4a, increasing the attack angle from 0 to 5°, and 5 to 12° for the jet flow 
velocity of 0.0 leads to an increase in the average velocity. It means the location of stagnation 
point starts to get closer to the trailing edge. However, when the attack angle changes from 12 
to 20°, the average velocity goes down because of flow separation issue. 

Fig. 4b demonstrates that in this case, i.e., jet velocity of 19.7 m s−1, up to the attack angle of 
25°, the average velocity increases. Nevertheless, for bigger angles, the average velocity has 
a downward trend, which indicates that the airfoil does not perform effectively in that range. 
In addition, comparing Fig. 4a and b reveals that the higher the jet flow velocity is, the higher 
angle in which separation happens, is observed. 

In addition, based on Fig. 4c, the same trend as Fig. 4b is seen for the jet velocity of 
32.2 m s−1. Here, however, the shape of average velocity profile for some attack angles like 5 
and 35° is totally different than jet velocity of 19.7 m s−1, but for some other ones, the similar 
shape is seen. 

3.2. The self-similar velocity profiles for different attack angles 

In five conditions for the attack angle, which are 0, 5, 12, 20, and 25°, the self-similar 
velocity profile is found and discussed in details. For this purpose, the vertical distance gets 
dimensionless using the distance “y0’ depicted in Fig. 5, while the process of getting the 
average velocity profiles dimensionless for the outer and inner areas is done by employing 
the “U0” and “Um”, shown in Fig. 5, respectively. 

 

Fig. 5. Introducing the parameters used in the studying the self-similar velocity profile [51]. 

The results for the five aforementioned attack angles are reported in Fig. 6. The first point is 
for all the attack angles, good agreement between the obtained data and the results of 
Mitsudharmadi and Zhang [51] is observed, which proves the validity of the reported 
experimental information. 
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Fig. 6. The self-similar velocity profile for different attack angles; (a) 0°; (b) 5°; (c) 12°; (d) 20°; (e) 
25°. 

In addition, according to Fig. 6a–e, by increasing the attack angle from 0 to 12°, the jet 
frontier gets wider. In other words, the profile for the maximum velocity tends to be wider. 
Nevertheless, a downward trend happens by changing the attack angle from 12 to 25°. It is 
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due to the point that when the attack angle becomes more, the flow is more affected by the 
reverse pressure. This phenomenon is also accompanied by a decrease in the distance 
between Ym and Y1/2, indicated in Fig. 5. 

3.3. The wake effect 

For the three investigated values for the jet flow velocity, i.e., 0.0, 19.7, and 32.2 m s−1, the 
wake effect for the airfoil is shown in Fig. 7. In this figure, in addition to the three 
previously-mentioned conditions, the data for the wake of CFJ0025-065-000 airfoil is also 
reported for the sake of comparison in a better way. 

 

Fig. 7. The wake effect for the three investigated values of the velocity for CFJ0025-065-196 airfoil 
as well as the wake of CFJ0025-065-000 airfoil. 

 

Fig. 8. The drag coefficient for different investigated conditions reported in Fig. 4 at various attack 
angles. 
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The obtained results in Fig. 7 reveal that despite the fact that the airfoil CFJ0025-065-000 has 
a large but low-momentum wake, the CFJ0025-065-196 airfoil almost does not have wake. 
The wake effect is weaker at the higher jet flow velocity magnitudes. The reason is the 
interaction between jet and main flow stream. The point can be discussed better by 
considering the drag coefficient for the investigated conditions at different attack angles, 
which are obtained from the correlations found in references [32,52,53], and shown in Fig. 8. 

As observed, for a constant attack angle, the drag coefficient has the highest value for the 
velocity of 0.0 (jet off condition), and after that, the coefficients for the jet velocity values of 
19.7 and 32.2 m s−1 are in the next places, respectively. The lowest magnitude of drag 
coefficient also belongs to the CFJ0025-056-000 air foil. As an example of numerical values 
for the mentioned point, when the attack angle is 0°, the drag coefficient for the four 
mentioned conditions, i.e., the velocity magnitudes of 0.0, 19.7, and 32.2 m s−1, and 
CFJ0025-056-000 air foil, are 0.3, 0.04, 0.01, and −0.01, respectively. Since there is a reverse 
relationship between the drag coefficient and the wake effect, the shown trend for the wake in 
Fig. 4 is obtained. 

4. Conclusions 

Airfoil CFJ0025-065-196 was studied experimentally using an equipped wind tunnel and 
high-tech measuring devices to study three important performance phenomena, which are the 
wake effect, the impact of attack angle on for average velocity profiles for different jet flow 
velocities, and the self-similar velocity profiles for different attack angles. The results showed 
that there is a reverse relationship between the jet flow velocity and drag coefficient, based on 
which the wake gets weaker by increasing the jet flow velocity. In addition, changing the 
angle of attack from 0 to 12° made the jet frontier wider whereas from 12 to 25° a downward 
trend was observed. It was also found that for some attack angles like 12 and 20°, the average 
velocity profiles have the same shape for the jet flow velocity of 19.7 and 32.2 m s−1, but for 
some other values such as 5 and 35°, they are completely different. 
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