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Abstract. Suppose that n ≥ 1 and that, for all i and j with 1 ≤ i, j ≤ n

and i 6= j, zij ∈ T are given such that zji = zij for all i 6= j. If V1, . . . , Vn

are isometries on a Hilbert space such that V ∗
i Vj = zijVj V

∗
i for all i 6= j,

then (V1, . . . , Vn) is called an n-tuple of doubly non-commuting isometries.
The generators of non-commutative tori are well-known examples. In this
paper, we establish a simultaneous Wold decomposition for (V1, . . . , Vn). This
decomposition enables us to classify such n-tuples up to unitary equivalence.

We show that the joint listing of a unitary equivalence class of a representation
of each of the 2n non-commutative tori that are naturally associated with
the structure constants is a classifying invariant. A dilation theorem is also
established, showing that an n-tuple of doubly non-commuting isometries can

be extended to an n-tuple of doubly non-commuting unitary operators on an
enveloping Hilbert space.

1. Introduction and overview

Suppose that n ≥ 1 and that, for all i and j with 1 ≤ i, j ≤ n and i 6= j,
zij ∈ T are given such that zji = zij for all i 6= j. If V1, . . . , Vn are isometries on
a Hilbert space such that V ∗i Vj = zijVj V

∗
i for all i 6= j, then we shall refer to

(V1, . . . , Vn) as an n-tuple of doubly non-commuting isometries. In this paper, we
shall show that, up to unitary equivalence, such n-tuples are uniquely determined by
unitary equivalence classes of representations of the 2n non-commutative tori that
are naturally associated with the zij . Equivalently, this gives a parameterization
of the unitary equivalence classes of the representations of the universal C∗-algebra
that is generated by n isometries satisfying the above relations.

The existing literature also suggests other names for our n-tuples. In [15], where
n = 2, the corresponding universal C∗-algebra is called the tensor twist of the two
isometries. In [8] and [11], concerned with general n, no particular terminology is
employed. In the case where zij = 1 for all i and j, [10] and [13] speak of doubly
commuting isometries, and [1] of star-commuting (power partial) isometries. Since
the non-commuting relation V ∗i Vj = zijVj V

∗
i implies a second non-commuting

relation ViVj = zijVjVi (this goes back to [7]; see Lemma 3.1 below), we believe that
our terminology is justifiable. It also suggests a relation with the non-commutative
tori that, in fact, exists and is an essential part of the picture.

We shall now give a combined overview and discussion of the paper.
Section 2 is concerned with the space decomposition that underlies the classical

Wold decomposition of one isometry. This is briefly reviewed, and supplemented
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with some results that, although easy, are convenient tools in the sequel. In the case
of one isometry, the identity operator is the sum of two projections, corresponding to
the purely isometric and the unitary part of the operator in the Wold decomposition.
Furthermore, it is possible to write each of these projections as a strong operator
limit in terms of the isometry and its adjoint; see equations (2.2) and (2.3). These
two facts will be the key to a relatively smooth proof of the space decomposition
(and then of the subsequent Wold decomposition) for arbitrary n-tuples.

In Section 3 the case of a general n-tuple (V1, . . . , Vn) is taken up. Taking the
product of the decompositions of the identity operator for the various Vi, one obtains
a decomposition of the space into 2n simultaneously reducing subspaces, with the
property that in each of these every Vi acts as a pure isometry or as a unitary
operator; see Theorem 3.4. Each of the 2n corresponding projections is a product
of n projections taken from the decompositions of the identity operator for the
various Vi. Such a product of projections is then further analysed by invoking the
appropriate strong operator limits from equations (2.2) and (2.3) for its factors.
After identifying the various range projections of partial isometries in the result, a
structure theorem for each of the 2n space components is then obtained in terms of
a wandering subspace; see Theorem 3.6. In the case where all zij are equal to 1 this
can already be found as [13, Theorem 3.1]; we also refer to [13] for an overview of
the preceding literature on the Wold decomposition for n-tuples of (then) doubly
commuting isometries. Our analysis for general structure constants continues from
here, however, and the starting point for this continuation is to observe that the Vi
that act as unitary operators on the space component at hand leave its wandering
subspace invariant; see Theorem 3.6 again. The ensuing actions of 2n different
non-commutative tori on their corresponding wandering subspaces will turn out to
be the core of the simultaneous action of our n-tuple.

We would like to mention explicitly that the method of taking a product of
various decompositions of the identity operator differs from inductive approaches
as in [1, 8, 11, 13]. Employing such a product may be a more transparent way of
working, although this remains a matter of taste. At any rate, it has the advantage
that it could conceivably also be of use in other contexts, e.g. when all operators in
an n-tuple are of a different type and induction may not be so easy to apply.

In Section 4 we use the results from Section 3 to show that, up to unitary
equivalence, all n-tuples (V1, . . . , Vn) of doubly non-commuting isometries are a
direct sum of 2n so-called standard n-tuples. This Wold decomposition for all
operators in the n-tuple simultaneously is the statement of Theorem 4.6; if all zij are
equal to 1, this is a particular case of [1, Theorem 2.25]. The 2n standard n-tuples
correspond to the 2n components in the decomposition of the space from Section 3
as mentioned above. The structure of such a standard n-tuple is completely explicit
once the action of the pertinent non-commutative torus on the pertinent wandering
subspace is given; see the material preceding Theorem 4.5. The actions of the
non-commutative tori on the wandering spaces (described by the wandering data as
defined in Definition 3.7) should be thought of as the parameters for the n-tuple.

It is only in this Section 4 that a natural class of examples of n-tuples of doubly
non-commuting isometries first appears. The structure results from Section 3, that
could conceivably be applicable only to operators on the zero space, inform us what
such examples should look like. It is then easy to check that the ensuing Ansatz
actually works, and this results in the standard n-tuples. In the irreducible case,
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the structure of these examples is already visible in [11, Theorem 2]. The proof
of [11, Theorem 2] is only indicated; the absence of the framework of the general
Wold decomposition as an aid in formulating such a proof can perhaps explain
this. We shall include a strengthened version of [11, Theorem 2] in Section 5; see
Theorem 5.4. It gives a parameterization of the unitary equivalence classes of the
irreducible representations of the universal C∗-algebra generated by n isometries
satisfying equation (1.1), and it follows rather easily from the results in the present
paper on general representations.

Section 5 is concerned with the unitary equivalence classes of n-tuples of doubly
non-commuting isometries or, equivalently, with the unitary equivalence classes of
representations of the universal C∗-algebra generated by isometries satisfying our
relations. The result, formulated in Theorem 5.3, has a certain aesthetic appeal:
these classes are parameterized by the lists of 2n unitary equivalence classes of
representations of the 2n non-commutative tori that are naturally associated with
the given structure constants zij , containing one such class for each non-commutative
torus. In a worked example for the case n = 1 it is then seen that the unitary
equivalence class of an isometry is determined by the combination of an equivalence
class of a representation of the non-commutative 0-torus and an equivalence class
of a representation of the non-commutative 1-torus. The classifying invariants for
an isometry (the multiplicity of the unilateral shift and the equivalence class of its
unitary component) are thus retrieved from a more general framework.

We include a dilation theorem in Section 6; see Theorem 6.2. As for n = 1, now
that a Wold decomposition is available, this is merely a matter of extending the
range of indices from the non-negative to all integers where needed.

Remark. There are certain standard n-tuples that are particularly elementary. As
it turns out, these give faithful representations of the universal C∗-algebras that are
generated by n doubly non-commuting isometries where specified generators are
required to be even unitary. The known faithfulness of the Fock representation of
one of these algebras (see [11, Proposition 8] and [8, Corollary 1]) is then a special
case. We refer to Remark 4.7 for some more comments. We shall report on these
universal C∗-algebras, their interrelations, and their representations in a separate
paper, for which the current paper also serves as a preparation.

We conclude by listing our conventions. First of all, we shall always work in the
following context.

Fixed context. H is a Hilbert space, n ≥ 1, and (V1, . . . , Vn) is an n-tuple of
isometries on H. For all i and j with 1 ≤ i, j ≤ n and i 6= j, zij ∈ T are given such
that zji = zij for all such i and j, and the isometries V1, . . . , Vn satisfy

(1.1) V ∗i Vj = zijVjV
∗
i

for all such i and j.

We shall then say that (V1, . . . , Vn) is an n-tuple of doubly non-commuting
isometries, without any further reference to the structure constants in terminology
or notation. If n = 1, then the n-tuple reduces to a given single isometry without
further requirements. If the need arises, we shall sometimes write zi,j instead of zij .
With the sole exception of Lemma 5.1, we shall not vary the structure constants zij .

All Hilbert spaces are complex, and subspaces are always closed subspaces. The
bounded operators on H are denoted by B(H), and we write 0 and 1 for the zero
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and the identity operator on H, respectively. Projections are always orthogonal
projections. An empty product of operators on H is to be read as 1. If T ∈ B(H)
and L is a subspace of H that is invariant under T , then T |L is the restriction of T
to L.

If H and H ′ are Hilbert spaces, and (T1, . . . , Tn) and (T ′1, . . . , T
′
n) are n-tuples of

operators on H and H ′, respectively, then we say that (T1, . . . , Tn) and (T ′1, . . . , T
′
n)

are unitarily equivalent if there exists an isometry between H and H ′ that is a
unitary equivalence for all pairs Ti and T ′i with 1 ≤ i ≤ n simultaneously.

If A ⊆ {1, . . . , n} is a (possibly empty) set of indices, then we shall write |A| for
its number of elements, and let Ac denote the complement of A in {1, . . . , n}.

Finally, we let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }.

2. Space decomposition for one isometry

The Wold decomposition (see e.g. [9, Theorem 3.5.17]) for an isometry on a
Hilbert space asserts that it is the direct sum of a number of copies of the unilateral
shift and of a unitary operator, where each summand can be zero. The first step
in proving this is to decompose the space as a Hilbert direct sum of a subspace on
which the operator acts as a pure isometry on the one hand, and a subspace on
which it acts as a unitary operator on the other hand. In the second step, which is
almost just an afterthought, the aforementioned structure of the operator is then
clear from the available explicit decomposition of the summand where the operator
acts as a pure isometry.

For general n-tuples of doubly non-commuting isometries the global approach is
the same. The first step is to decompose the space (see Theorems 3.4 and 3.6), and
the second one is to use this decomposition as a starting point for a description of
the structure of the n-tuple (see Theorem 4.6).

This section is a preparation for the first step for the general case. We give a
short proof for the space decomposition for the case n = 1 (see Proposition 2.1),
and add a few small results that, in later sections, will be very convenient to have
been mentioned explicitly.

Throughout this section, V is an isometry on a Hilbert space H.
We start with the decomposition of the space. Since V ∗V = 1, the subspaces

V k(kerV ∗) and V k′(kerV ∗) are easily seen to be pairwise orthogonal if k, k′ ≥ 0
and k 6= k′. Using an anticipating notation, we can, therefore, define

H iso :=

∞⊕
k=0

V k(kerV ∗)

as a Hilbert direct sum. Furthermore, we let

Huni :=

∞⋂
k=0

V k(H).

We denote by P iso the projection onto H iso and by P uni the projection onto
Huni.

The following fact is classical; see [14, Theorem I.1.1] for a proof, for example.

Proposition 2.1. H iso and Huni are both V -reducing subspaces of H, and we have
H = H iso

⊕
Huni as a Hilbert direct sum.



DOUBLY NON-COMMUTING ISOMETRIES 5

Remark 2.2. As V is unitary on Huni (see [14, Theorem I.1.1]; it is also a
consequence of Proposition 2.4, below), the Wold decomposition of V is immediate
from Proposition 2.1: the copies of the unilateral shift correspond to the elements
of an orthonormal basis of kerV ∗.

As a first preparation for Section 3, we note that, trivially,

(2.1) 1 = P iso + P uni.

As a second preparation, we shall now express each of the summands in terms of
range projections of partial isometries. For this, we recall that the projection onto
the range of a partial isometry T is given by TT ∗; see [4, p. 23].

Since kerV ∗ = (ranV )⊥, the projection onto kerV ∗ is 1 − V V ∗. Therefore,
for k ≥ 0, the range of V k(1 − V V ∗) is V k(kerV ∗). Since V k is an isometry
and (1− V V ∗) is a projection, V k(1− V V ∗) is a partial isometry, and its range
projection is then V k(1− V V ∗)(1− V V ∗)∗V ∗k = V k(1− V V ∗)V ∗k. All in all, we
see that V k(1− V V ∗)V ∗k is the projection onto V k(kerV ∗). We know from their
interpretations (this can also easily be verified algebraically) that the projections
for different k are orthogonal. Consequently,

(2.2) P iso =

∞∑
k=0

V k(1− V V ∗)V ∗k,

where the series converges to P iso in the strong operator topology as a consequence
of [4, Lemma I.6.4].

The projection onto
⋂∞

k=0 V
k(H) is the infimum of the decreasing sequence of

projections onto the spaces V k(H), i.e. the infimum of the projections V kV ∗k. Again
by [4, Lemma I.6.4], we see that

(2.3) P uni = SOT− lim
k→∞

V kV ∗k,

The equations (2.1), (2.2), and (2.3) are at the heart of the space decomposition
for the general case in Section 3.

As announced in the introduction of this section, we shall now collect a few results
on invariant and reducing subspaces such that the restricted operator is unitary or
purely isometric. Propositions 2.4 and 2.8 will be unified and generalised as a part
of Theorem 3.4, and Proposition 2.10 will be generalised as Proposition 3.5.

We start with the unitary case.

Lemma 2.3.

(1) Let L be a V -invariant subspace of H. If V |L is unitary, then L reduces V ,
and L ⊆ Huni.

(2) Let L be a V -reducing subspace of H. If L ⊆ Huni, then V |L is unitary.

Proof. (1) It is easy to check that L reduces V . The hypothesis implies that
V k(L) = L for all k ≥ 0. Hence L =

⋂∞
k=0 V

k(L) ⊆
⋂∞

k=0 V
k(H) = Huni.

(2) We need to show that ran(V |L) = L, or equivalently, that (ran(V |L))
⊥L = {0},

where the orthogonal complement is taken in L. But

(ran(V |L))
⊥L = ker(V |L)∗ = ker(V ∗|L).

Since L ⊆ Huni ⊆ V (H), and V ∗ is injective on V (H) because V ∗V = 1, we see
that ker(V ∗|L) = {0}, as required. �
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The following is now obvious.

Proposition 2.4. Let L be a V -reducing subspace of H. Then the following are
equivalent:

(1) V is unitary on L;
(2) L ⊆ Huni;
(3) PLP

uni = PL, where PL denotes the projection onto L.

The following notion of a pure isometry (the absence of all non-trivial unitarity) is
somewhat more intuitive than what is usually found in the literature, which is that
Huni should be the zero subspace; see e.g. [5, p. 154] or [2, p. 113]. Proposition 2.6
shows that the two definitions are, in fact, equivalent.

Definition 2.5. Let L be a V -invariant subspace of H. Then V is a pure isometry
on L, or V |L is a pure isometry, if {0} is the only V -invariant subspace of L on
which V is unitary.

The following is a consequence of Proposition 2.1, the first part of Lemma 2.3,
and Proposition 2.4.

Proposition 2.6. The following are equivalent:

(1) V is a pure isometry on H;
(2) H iso = H;
(3) Huni = {0};
(4) {0} is the only V -reducing subspace of H on which V is unitary.

Lemma 2.7.

(1) Let L be a V -invariant subspace of H. If L ⊆ H iso, then V is a pure
isometry on L.

(2) Let L be a V -reducing subspace of H. If V is a pure isometry on L, then
L ⊆ H iso.

Proof. (1) In view of Proposition 2.6, we need to show that Luni =
⋂∞

k=0(V |L)k(L) =
{0}. For this it is sufficient to show that

⋂∞
k=0 V

k(H iso) = {0}. This follows from
the observation that V k(H iso) =

⊕∞
n=k V

n(kerV ∗) for every k.
(2) We know from Proposition 2.1 and Proposition 2.6 that

L =

∞⊕
k=0

(V |L)k (ker(V |L)∗)⊕
∞⋂
k=0

(V |L)k(L) =

∞⊕
k=0

(V |L)k (ker(V |L)∗) .

Since L is a V -reducing subspace of H, we have (V |L)∗ = V ∗|L. Hence ker(V |L)∗ ⊆
kerV ∗, and then L ⊆

⊕∞
k=0 (V |L)

k
(kerV ∗) ⊆ H iso. �

Since H iso is invariant under V by Proposition 2.1, V is a pure isometry on H iso.
The following is now clear.

Proposition 2.8. Let L be a V -reducing subspace of H. Then the following are
equivalent:

(1) V is a pure isometry on L;
(2) L ⊆ H iso;
(3) PLP

iso = PL.

The unitary counterpart of Proposition 2.6, proved using Propositions 2.1 and 2.4,
and Lemma 2.7, is as follows.
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Proposition 2.9. The following are equivalent:

(1) V is unitary on H;
(2) Huni = H;
(3) H iso = {0};
(4) {0} is the only V -reducing subspace of H on which V is a pure isometry.

The next result follows from Propositions 2.1, 2.4, and 2.8.

Proposition 2.10.

(1) If Liso and Luni are V -reducing subspaces such that V |Liso and V |Luni are a
pure isometry and unitary, respectively, then Liso ⊥ Luni.

(2) If H = Liso ⊕ Luni (algebraically), where Liso and Luni are V -reducing
subspaces such that V |Liso and V |Luni are a pure isometry and unitary,
respectively, then Liso = H iso and Luni = Huni.

3. Space decomposition in the general case

We shall now establish a space decomposition for an n-tuple (V1, . . . , Vn) of doubly
non-commuting isometries. This is done in two parts. In the first part, the space is
written as a Hilbert sum of (possibly zero) subspaces on which each of the Vi acts
as a pure isometry or a unitary operator; see Theorem 3.4. This is an elementary
consequence of the results in Section 2. In the second part, which is more involved,
each of the summands from the first step is written as a Hilbert direct sum of copies
of a wandering subspace; see Theorem 3.6. The method to obtain this is not an
inductive procedure as in [1, 8, 11,13], but consists of multiplying n decompositions
of the identity operator and interpreting the result.

As a side remark let us note that, at this stage, it is not clear within the framework
of the current paper that, for general n ≥ 2, there are any non-zero examples of
n-tuples of doubly non-commuting isometries at all. We shall see in Section 4,
however, that non-zero examples of a very simple nature exist. The results in the
present section will guide us towards these examples.

We start by collecting a few algebraic results.
The first part of the next result and its proof can already be found in [7, p. 2671].

It shows that the use of complex conjugation in equation (1.1) is not so unnatural
after all.

Lemma 3.1. For all i 6= j,

(1) ViVj = zijVjVi;
(2) V ∗j Vi = zijViV

∗
j ;

(3) V ∗j V
∗
i = zijV

∗
i V
∗
j .

Proof. An easy computation shows that (ViVj−zijVjVi)∗(ViVj−zijVjVi) = 0, which
gives (1). The other parts follows by taking adjoints. �

As remarked in [7, p. 2671], the relation V1V2 = zV2V1 for isometries V1, V2 and
z ∈ T does not imply that V ∗1 V2 = zV2V

∗
1 . Although this implications holds true for

unitary operators, it is not valid in general. There is an elementary counterexample
in [15, Lemma 1.2].

Corollary 3.2. Let k ≥ 0. Then, for all i 6= j,

(1) Vi and V k
j V
∗k
j commute;

(2) V ∗i and V k
j V
∗k
j commute;
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(3) Vi and V ∗i commute with V k
j (1− VjV ∗j )V ∗kj .

Proof. For part (1) we may suppose that k, l ≥ 1. Repeated use of Lemma 3.1 and
equation (1.1), combined with zji = zij , shows that

Vi V
k
j V
∗k
j = zkijV

k
j ViV

∗k
j = zkijz

k
jiV

k
j V
∗k
j Vi = V k

j V
∗k
j Vi ,

as claimed. Part (2) follows from part (1) by taking adjoints. Part (3) is immediate
from the parts (1) and (2). �

Lemma 3.3. Let A = {i1, . . . , il} ⊆ {1, . . . , n} be a (possibly empty) set of l
different indices, and let ki1 , . . . , kil ≥ 0 be exponents. Then[

V
ki1
i1

(1− Vi1V
∗
i1)V

∗ki1
i1

]
· · ·
[
V

kil
il

(1− VilV
∗
il

)V
∗kil
il

]
=
[
V

ki1
i1
· · ·V kil

il

][
(1− Vi1V

∗
i1) · · · (1− VilV

∗
il

)
][
V
∗kil
il
· · ·V ∗ki1

i1

](3.1)

and

(3.2)
[
V

ki1
i1

V
∗ki1
i1

]
· · ·
[
V

kil
il

V
∗kil
il

]
=
[
V

ki1
i1
· · ·V kil

il

][
V
∗kil
il
· · ·V ∗ki1

i1

]
.

Proof. We prove equation (3.1) by induction on l, the number of factors in the left
hand side. For l = 0 and l = 1 all is clear. Assuming the statement for l, the
induction hypothesis for the product of the first l factors shows that the product
with (l + 1) factors equals

V
ki1
i1
· · ·V kil

il
(1−Vi1V

∗
i1) · · · (1−VilV

∗
il

)V
∗kil
il
· · ·V ∗ki1

i1
·V

kil+1

il+1
(1−Vil+1

V∗il+1
)V
∗kil+1

il+1
.

We move V
kil+1

il+1
to the left of V

∗kil
il
· · ·V ∗ki1

i1
at the cost of a unimodular constant

that can be determined from equation (1.1). Since the indices are all different,
Corollary 3.2 shows that it can then freely be moved further to the left of (1 −
Vi1V

∗
i1

) · · · (1− VilV
∗
il

). We thus see that the product equals

z
ki1kil+1

i1il+1
· · · z

kil
kil+1

ilil+1
V

ki1
i1
· · ·V kil

il
V

kl+1

il+1
(1− Vi1V

∗
i1) · · · (1− VilV

∗
il

)V
∗kil
il
· · ·V ∗ki1

i1

· (1−Vil+1
V∗il+1

)V
∗kl+1

il+1
.

Again since the indices are all different, Corollary 3.2 implies that the factor

(1−Vil+1
V∗il+1

) can subsequently freely be moved to the left of V
∗kil
il
· · ·V ∗ki1

i1
. After

that, all that remains to be done is move V
∗kl+1

il+1
to the left of the now preceding

sub-product V
∗kil
il
· · ·V ∗ki1

i1
. This introduces a second unimodular constant, but

part (3) of Lemma 3.1 and the fact that zij = zji show that this second constant
is the complex conjugate of the earlier constant. This completes the proof of
equation (3.1).

The proof of equation (3.2) is also by induction. In this case, one need merely
note that, since the indices are all different, Corollary 3.2 shows that an extra factor

V
kl+1

il+1
V
∗kl+1

il+1
commutes with the preceding factor V

∗kil
il
· · ·V ∗ki1

i1
that arises from the

induction hypothesis. �

After these algebraic preparations, we can now proceed towards the first part
of the space decomposition for (V1, . . . , Vn). For each i = 1, . . . , n, equations (2.1),
(2.2), and (2.3) yield the decomposition

(3.3) 1 = P iso
i + P uni

i
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of the identity operator, where

P iso
i P uni

i = 0

and

(3.4) P iso
i =

∞∑
ki=0

V ki
i (1− Vi V ∗i )V ∗ki

i , P uni
i = SOT− lim

mi→∞
V mi
i V ∗mi

i .

Corollary 3.2 shows that the projections V ki
i (1 − Vi V ∗i )V ∗ki

i and V mi
i V ∗mi

i in
equation (3.4) for a fixed index i commute with Vj and V ∗j for all j 6= i. Taking the

SOT-limits, we see that the projections P iso
i and P uni

i commute with Vj and V ∗j
for all j 6= i; we know from Proposition 2.1 that they also commute with Vi and
V ∗i . Taking limits once more, it is now clear that we have 2n pairwise commuting
projections P iso

1 , . . . , P iso
n , P uni

1 , . . . , P uni
n , and that all of these commute with all Vi

and V ∗i .
The following first part of the decomposition of the space is now a consequence

of elementary manipulations with commuting projections, combined with Proposi-
tions 2.4 and 2.8. For n = 1, it reproduces Propositions 2.1, 2.4, and 2.8.

Theorem 3.4 (Space decomposition according to types of actions). Let (V1, . . . , Vn)
be an n-tuple of doubly non-commuting isometries. For every (possibly empty) set
A ⊆ {1, . . . , n} of indices, set

P iso
A :=

∏
i∈A

P iso
i ,

P uni
Ac :=

∏
i∈Ac

P uni
i ,

(3.5)

(3.6) PA := P iso
A P uni

Ac ,

and

HA := PA(H).

Then

HA =
⋂
i∈A

H iso
i

⋂
i∈Ac

Huni
i ,

and

(3.7) H =
⊕

A⊆{1,...,n}

HA

is a Hilbert space direct sum such that all summands HA reduce all Vi. For all
A ⊆ {1, . . . , n} and i = 1, . . . , n, Vi|HA

is a pure isometry if i ∈ A, and Vi|HA
is

unitary if i ∈ Ac.
Furthermore, if L is a subspace of H that reduces all operators V1, . . . , Vn and if

A ⊆ {1, . . . , n}, then the following are equivalent:

(1) Vi|L is a pure isometry for all i ∈ A, and unitary for all i ∈ Ac;
(2) L ⊆ HA;
(3) PLPA = PL.

The remarks preceding the theorem show that the order of the factors in equa-
tions (3.5) and (3.6) is immaterial, and that all these products commute with each
other and with all Vi and V ∗i .
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Proof. It is clear from commutativity that HA =
⋂

i∈AH
iso
i

⋂
i∈Ac Huni

i .
Taking the product of equation (3.3) over all indices 1, . . . , n, we see that we have

a decomposition

1 =

n∏
i=1

(
P iso
i + P uni

i

)
=

∑
A⊆{1,...,n}

P iso
A P uni

Ac =
∑

A⊆{1,...,n}

PA

of the identity operator into 2n projections. Each summand corresponds to a
combination of choices for either P iso

i or P uni
i for each i = 1, . . . , n when expanding

the product, where P iso
i has been chosen for i ∈ A, and P uni

i for i ∈ Ac. If A and A′

are different sets of indices, then PAPA′ involves a factor P iso
i P uni

i for some i. Since
this is zero, HA and HA′ are then orthogonal.

Since all PA commute with all Vi, all subspaces HA reduce all Vi.
If i ∈ A, then PA contains a factor P iso

i , so that PAP
iso
i = PA. Similarly,

PAP
uni
i = PA if i ∈ Ac. Hence Propositions 2.4 and 2.8 show that Vi is a pure

isometry on HA if i ∈ A and unitary if i ∈ Ac.
It remains to establish the equivalence of the statements concerning a reducing

subspace L.
The equivalence of (2) and (3) is clear.
We prove that (1) implies (3). We know from Propositions 2.4 and 2.8 that

PLP
iso
i = PL for all i ∈ A, and that PLP

uni
i = PL for all i ∈ Ac . Then clearly

PLPA = PL.
We prove that (3) implies (1). If i ∈ A, then P iso

A P iso
i = P iso

A , since P iso
A

contains a factor P iso
i . Therefore, we infer from PLPA = PL and commutativity that

PLP
iso
i = PLPAP

iso
i = PLP

iso
A P uni

Ac P iso
i = PLP

iso
A P iso

i P uni
Ac = PLP

iso
A P uni

Ac = PLPA =
PL. Likewise, PLP

uni
i = PL for i ∈ Ac. Hence (1) follows from Propositions 2.4

and 2.8. �

The following generalisation of Proposition 2.10 is clear from Theorem 3.4.

Proposition 3.5.

(1) Let A,B ⊆ {1, . . . , n} with A 6= B. Suppose that LA and LB are subspaces
reducing all V1, . . . , Vn and such that Vi|LA

is a pure isometry for i ∈ A,
Vi|LA

is unitary for i ∈ Ac, Vi|LB
is a pure isometry for i ∈ B, and Vi|LB

is unitary for i ∈ Bc. Then LA ⊥ LB.
(2) Suppose that, for each A ⊆ {1, . . . , n}, LA is a subspace that reduces all

V1, . . . , Vn and such that Vi|LA
is a pure isometry for i ∈ A and Vi|LA

is
unitary for i ∈ Ac. If H =

⊕
A⊆{1,...,n} LA (algebraically), then LA = HA

for all A.

The second part of the space decomposition is a decomposition of each HA. This
is obtained by inserting the right hand sides in equation (3.4) into the product that
is PA. This will involve manipulations with limits in the strong operator topology,
and we make a few preparatory remarks for this.

Firstly, if {Qi : i ∈ I } is a countable collection of pairwise orthogonal projections,
then it is easy to see that the series

∑
iQi converges in the strong operator topology

independent of the order of summation. In fact, one can partition the index set as
one sees fit, sum over these (finite or infinite) subsets in any order, and then sum
these partial sums in any order. The outcome is always the supremum of the Qi.
This implies that, in particular, multiple (countable) summations of such projections
can be summed in the strong operator topology in any order.
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Secondly, if (Qn)∞n=1 and (Q′n′)
∞
n′=1 are two decreasing sequences of projections

with infimum Q and Q′, respectively, and such that all Qn commute with all Q′n′ ,
then one readily checks that the net (QnQ

′
n′)(n,n′)∈N2 (with the product ordering

on N × N) is decreasing, and that its infimum is QQ′. The analogous statement
holds for an arbitrary finite termwise product of such sequences.

With this in mind, we can now establish our next result. It defines and uses a
subspace WA of HA that we shall call a wandering subspace; see Definition 3.7. If
zij = 1 for all i and j the first part of the theorem can be found as [13, Theorem 3.1].
We emphasise, however, that WA is not the analogue of the wandering subspace
in [13, p. 292], which is

⋂
i∈A kerV ∗i ; the reader can also compare Theorem 3.6

and [13, equation (3.2)]. Our subspace WA acts as a core for HA on which the
operators corresponding to indices in Ac (if any) act unitarily, and that is moved
around isometrically in HA by the operators corresponding to the indices in A (if
any). HA is then the Hilbert direct sum of all these copies. If WA is not moved
because A = ∅, then this means that WA and HA coincide. We believe that
the sequel, in which our wandering subspaces play a crucial role, shows that the
definition in the present paper is the appropriate one. We shall give a conceptual
characterisation of WA in Proposition 3.9.

Theorem 3.6 (Space decomposition for given types of actions). Let (V1, . . . , Vn)be
an n-tuple of doubly non-commuting isometries. Suppose that A = {i1, . . . , il} ⊆
{1, . . . , n} is a (possibly empty) set of l different indices, with Ac = {j1, . . . , jn−l}.
Set

WA :=

∞⋂
mj1

,...,mjn−l
=0

V
mj1
j1
· · ·V

mjn−l

jn−l

( ⋂
i∈A

kerV ∗i

)
.

Then WA ⊆ HA, and

HA =

∞⊕
ki1 ,...,kil

=0

V
ki1
i1
· · ·V kil

il
(WA)

as a Hilbert direct sum.
Here, if A = ∅, then these equations should be read as

W∅ :=

∞⋂
mj1 ,...,mjn=0

V
mj1
j1
· · ·V mjn

jn
(H)

and
H∅ = W∅,

and, if A = {1, . . . , n}, then these equations should be read as

W{1,...,n} :=
⋂

i∈{1,...,n}

kerV ∗i

and

H{1,...,n} =

∞⊕
ki1 ,...,kin=0

V
ki1
i1
· · ·V kin

in

(
W{1,...,n}

)
.

Furthermore:

(1) For all i ∈ Ac, WA reduces Vi, and Vi|WA
is unitary;

(2) We have (Vi|WA
)∗(Vj |WA

) = zij(Vj |WA
)(Vi|WA

)∗ for all i, j ∈ Ac such that
i 6= j;
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(3) For all i ∈ A, V ∗i |WA
= 0;

(4) For all r ∈ {1, . . . , l} and ki1 , . . . , kil ≥ 0,

Vir

(
V

ki1
i1
· · ·V kir

ir
· · ·V kil

il
(WA)

)
= V

ki1
i1
· · ·V kir+1

ir
· · ·V kil

il
(WA).

Definition 3.7. The (possibly zero) subspace WA in Theorem 3.6 will be called the
A-wandering subspace of (V1, . . . , Vn). We may list the indices in Ac in increasing
order as j1 < · · · < jn−l. In that case, we shall refer to the (|Ac| + 1)-tuple
(1WA

, Vj1 |WA
. . . , Vjn−l

|WA
) as the A-wandering data of (V1, . . . , Vn), and we shall

denote it by DA; the obvious convention is that D{1,...,n} = (1WA
).

Remark 3.8. If one so wishes, one can renumber the Vi in any order and place
them in a new n-tuple of doubly non-commuting isometries with permuted structure
constants. The space HA, however, does not depend on the numbering of the
Vi, but only on the set of operators {Vi : i ∈ A }. This follows from the fact
that all factors in equations (3.5) and (3.6) commute. Likewise, the A-wandering
subspace WA and the set of summands in the decomposition of HA in Theorem 3.6
depend on the set {Vi : i ∈ A } but not on the numbering; this is a consequence
of the fact that the Vi commute up to non-zero scalars. In view of all this, it
seems perhaps more natural to define the A-wandering data not as a tuple but
as the set {1WA

, Vj1 |WA
. . . , Vjn−l

|WA
}, which would then also be independent of

the numbering. In that case, however, if i ∈ Ac, then the link between Vi and
its restriction Vi|WA

would be lost. All one would know is that this restriction is
‘somewhere’ in the set of A-wandering data. This is undesirable when considering
unitary equivalence of n-tuples in the sequel. It is for this reason that we insist
on keeping our numbering of the Vi fixed and listing the restricted operators in
the wandering data in order of increasing index. This ensures that it is always
still possible to couple the original operator and its restriction to the wandering
subspace.

Proof of Theorem 3.6. We shall give the proof if l is such that 1 ≤ l ≤ n− 1. The
proofs for the remaining cases where l = 0 or l = n are similar and somewhat easier;
they are left to the reader.

We start by proving that each HA is the Hilbert direct sum as stated.
We have

PA = P iso
A P uni

Ac

=

(∏
i∈A

P iso
i

)
· P uni

Ac

=

 ∞∑
ki1

=0

V
ki1
i1

(1− Vi1V
∗
i1)V

∗ki1
i1

 · · ·
 ∞∑

kil
=0

V
kil
il

(1− VilV
∗
il

)V
∗kil
il

 · P uni
Ac .

Within each series, the summands are pairwise orthogonal projections. Since these
summands commute with all summands of the other series by Corollary 3.2, and
also with P uni

Ac , we see that we can write
(3.8)

PA =

∞∑
ki1

,...,kil
=0

([
V

ki1
i1

(1− Vi1Vi1)V
∗ki1
i1

]
· · ·
[
V

kil
il

(1− VilV
∗
il

)V
∗kil
il

]
· P uni

Ac

)
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as an SOT-convergent series of pairwise orthogonal projections, the ranges of
which are then contained in the range of PA, i.e. in HA. Hence the proof of the
decomposition of HA as a Hilbert direct sum will be complete when we show that
the summands in the decomposition correspond to the images of the projection
summands in equation (3.8).

For this, fix a projection summand[
V

ki1
i1

(1− Vi1V
∗
i1)V

∗ki1
i1

]
· · ·
[
V

kil
il

(1− VilV
∗
il

)V
∗kil
il

]
· P uni

Ac .

We apply equation (3.1) and the fact that P uni
Ac commutes with all Vi to see that

this projection summand equals

(3.9) V
ki1
i1
· · ·V kil

il

(
P uni
Ac (1− Vi1V

∗
i1) · · · (1− VilV

∗
il

)
)
V
∗kil
il
· · ·V ∗ki1

i1
.

Note that (1− Vi1V
∗
i1

) · · · (1− VilV
∗
il

) is a product of commuting projections. Hence
it is the projection onto the intersection of their images

⋂
i∈A kerV ∗i . We denote

this projection by QA for short.
We shall now first identify the factor P uni

Ac QA in the middle of equation (3.9), and
for this we proceed as follows. Note that P uni

Ac is the infimum of the decreasing net(
V

mj1
j1

V
∗mj1
j1

· · ·V
mjn−l

jn−l
V
∗mjn−l

jn−l

)
(mj1

,...,mjn−l
)∈Nn−l

.

Since QA commutes with all elements of this net by Corollary 3.2 (there is no overlap
in indices between A and Ac), the net(

V
mj1
j1

V
∗mj1
j1

· · ·V
mjn−l

jn−l
V
∗mjn−l

jn−l
QA

)
(mj1

,...,mjn−l
)∈Nn−l

is again decreasing, and its infimum is P uni
Ac QA. Equation (3.2) and again Corol-

lary 3.2 show that the latter net can be rewritten as(
V

mj1
j1
· · ·V

mjn−l

jn−l
QAV

∗mjn−l

jn−l
· · ·V ∗mj1

j1

)
(mj1 ,...,mjn−l

)∈Nn−l
.

In this form we can recognise the elements of this net: they are the range projections

of the partial isometries V
mj1
j1
· · ·V

mjn−l

jn−l
QA. That is, they are the projections onto

V
mj1
j1
· · ·V

mjn−l

jn−l

(⋂
i∈A kerV ∗i

)
. But then P uni

Ac QA, being the infimum of the net, is

the projection onto
∞⋂

mj1
,...,mjn−l

=0

V
mj1
j1
· · ·V

mjn−l

jn−l

( ⋂
i∈A

kerV ∗i

)
,

which is WA.
Now that we have identified the range of the projection that is the middle factor

P uni
Ac (1 − Vi1V

∗
i1

) · · · (1 − VilV
∗
il

) in the projection summand in equation (3.9), we
can use a similar argument to see that the projection summand as a whole is the
projection onto

V
ki1
i1
· · ·V kil

il
(WA) .

The required correspondence between the images of the projection summands in
equation (3.8) and the summands of HA in the statement of the theorem has now
been established. Since we know that these summands are all subspaces of HA, this
is, in particular, true for WA.

We turn to the remaining statements.
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As we have seen above, the projection onto WA is PAQA, for which we have the
factorisation PAQA = P uni

Ac (1−Vi1V
∗
i1

) · · · (1−VilV
∗
il

). Since P uni
Ac commutes with all

Vi, and QA commutes with Vj1 , . . . , Vjl according to Corollary 3.2, PAQA commutes
with Vj1 , . . . , Vjl . Hence WA reduces these operators. Since WA ⊆ HA, and HA is
contained in each of Huni

j1
, . . . ,Huni

jn−l
, Proposition 2.4 shows that Vj1 , . . . , Vjn−l

are

all unitary on WA. We have thus established part (1).
Part (2) is evident since the relations as operators on H are inherited by their

restrictions to reducing subspaces.
Part (3) is clear once one realises that all isometries and their adjoints commute

up to scalars, so that, in particular, this the case for the V ∗i for i ∈ A on the one
hand, and Vj1 , . . . , Vjn−l

on the other hand.
Part (4) follows likewise from the fact that the Vi1 , . . . , Vil commute up to non-zero

constants.
�

The following result gives a conceptual characterisation of the subspace WA in
Theorem 3.6. If n = 1 and A = {1} it coincides with the familiar result that there
is only one wandering subspace for an isometry V , namely, kerV ∗.

Proposition 3.9. Let A = {i1, . . . , il} ⊆ {1, . . . , n} be a non-empty set of l different
indices, with Ac = {j1, . . . , jn−l}. Suppose that L is a subspace of HA that is
invariant under Vj1 , . . . , Vjn−l

and such that

(3.10) HA =

∞⊕
ki1

,...,kil
=0

V
ki1
i1
· · ·V kil

il
(L)

as a Hilbert direct sum. Then L = WA as in Theorem 3.6.

The case where A = ∅ has been left out, because then the interpretation of the
Hilbert direct sum in the statement becomes unclear. Conceptually, this case is
still included: if L ⊆ H∅ is such that H∅ is the Hilbert direct sums of L and all its
images under the operators corresponding to the indices in A (of which there are
none), then trivially L = H∅. Together with the definition of W∅ in Theorem 3.6
this shows that L = W∅.

Proof. Let r ∈ {1, . . . , l}. Since the isometries commute up to non-zero constants,
we see from an application of Vir to equation (3.10) that Vir (HA) is a Hilbert direct
sum of summands that already occur in the right hand side of equation (3.10). The
summand L, however, is no longer present, and this shows that L and Vir (HA) are
orthogonal. Since L, being a subspace of HA, is orthogonal to the spaces HA′ for all
A′ 6= A, and since these spaces are invariant under Vir , we see that L is orthogonal
to Vir (H). That is, L ⊆ kerV ∗ir . This shows that L ⊆

⋂
i∈A kerV ∗i .

If A = {1, . . . , n}, then this means that L ⊆ WA, where WA is as in Theorem 3.6.
A comparison of equation (3.10) and Theorem 3.6 now shows that we cannot have a
proper inclusion L (WA. Hence L = WA, as required.

If A ( {1, . . . , n}, we need to continue.
Let r ∈ {1, . . . , n− l}. Again since the isometries commute up to non-zero

constants, we see from an application of Vjr to equation (3.10) that

Vjr (HA) =

∞⊕
ki1

,...,kil
=0

V
ki1
i1
· · ·V kil

il
(Vjr (L)).
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Since we know from Theorem 3.4 that Vjr (HA) = HA, and Vjr (L) ⊆ L by hypothesis,
a comparison with equation (3.10) shows that there cannot be a proper inclusion
Vjr (L) ( L. Hence L = Vjr (L). Combining this with L ⊆

⋂
i∈A kerV ∗i , we see that

L ⊆ WA, where WA is as in Theorem 3.6. Now that we know this, a comparison
of equation (3.10) and Theorem 3.6 shows that we cannot have a proper inclusion
L (WA. Hence L = WA, as desired. �

We include the following inheritance result.

Proposition 3.10. Suppose that T ∈ B(H) commutes with the projections V k
i V
∗k
i

for all i = 1, . . . , n and all k ≥ 1; equivalently, suppose that V k
i (H) reduces T for

all i = 1, . . . , n and all k ≥ 1. Then, for all (possibly empty) A ⊆ {1, . . . , n}, all
summands in the decomposition of HA as a Hilbert direct sum in Theorem 3.6 reduce
T ; in particular this is the case for the A-wandering subspace WA. Consequently,
HA reduces T .

Proof. In view of the definition of P uni
Ac in equation (3.5), and of the P uni

i in
equation (2.3), he hypothesis evidently implies that the projection summands in the
proof of Theorem 3.6 commute with T . �

If all zij are equal to 1, if T is an isometry that commutes with all Vi and V ∗i ,
and if A = {1, . . . , n}, then Proposition 3.10 yields [13, Proposition 2.2].

We conclude this section with an application.

Lemma 3.11. Suppose that (V1, . . . , Vn) is an n-tuple of doubly non-commuting
isometries where V1, . . . , Vn are all pure isometries, and that

⋂n
i=1 kerV ∗i has finite

dimension. Let T ∈ B(H) and suppose that, for i = 1, . . . , n, TVi = τiViT for some
τi ∈ T, and T kerV ∗i ⊆ kerV ∗i .

If T has trivial kernel on
⋂n

i=1 kerV ∗i , then T maps H onto H.

Proof. Since T leaves
⋂n

i=1 kerV ∗i invariant and has trivial kernel on this finite
dimensional space, we see that T :

⋂n
i=1 kerV ∗i 7→

⋂n
i=1 kerV ∗i is a bijection. We let

T−1 denote its inverse on this subspace, which is automatically bounded.
By Theorems 3.4 and 3.6 we have

H =

∞⊕
k1,...,kn=0

V k1
1 · · ·V kn

n

( n⋂
i=1

kerV ∗i

)
.

Let x ∈ H. Then we can write

(3.11) x =

∞∑
k1,...,kn=0

V k1
1 · · ·V kn

n xk1,...,kn

as an orthogonal series, where xk1,...,kn ∈
⋂n

i=1 kerV ∗i and
∑∞

k1,...,kn=0 ‖xk1,...,kn‖
2

=

‖x‖2. It is clear from the relations between T and the Vi that

Tx =

∞∑
k1,...,kn=0

ck1,...,kn
V k1
1 · · ·V kn

n Txk1,...,kn

is then again an orthogonal series, where the ck1,...,kn
are unimodular constants.

We combine the above: if x ∈ H is as in equation (3.11), then, since T−1 is
bounded,

∞∑
k1,...,kn=0

c−1k1,...,kn
V k1
1 · · ·V kn

n T−1xk1,...,kn
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is a convergent orthogonal series. If y denotes its sum, then Ty = x. �

The following is an immediate consequence. It it conceivable that a proof can be
given that avoids the use of our results so far, but without these it might be hard to
spot the result at all.

Corollary 3.12. Let (V1, . . . , Vn) be an n-tuple of doubly non-commuting isome-
tries. Let l be such that 1 ≤ l ≤ n. If V1, . . . , Vl are pure isometries such that

dim(
⋂l

i=1 kerV ∗i ) <∞, then Vl+1, . . . , Vn are unitary operators on H.

Proof. This follows from Lemma 3.11 for (V1, . . . , Vl), combined with Lemma 3.1. �

As a particular case, if S is the unilateral shift on `2(N0), and V is an isometry
such that S∗V = zV S∗ with |z| = 1, then V is unitary.

Here certainly a direct proof is possible, as follows. Since S∗e0 = 0 and kerS∗ =
Ce0, we see from the given relation that V e0 = λe0 for some λ ∈ C. Then |λ| = 1 since
V is an isometry. Next, S∗V e1 = zV S∗e1 = zV e0 = λze0. Hence V e1 = λze1 +µe0
for some µ ∈ C. Then V e1 = λze1 since V is an isometry. Induction shows that
V ek = λzkek for k ≥ 0. Hence V is unitary.

4. Wold decomposition and examples

In view of Theorem 3.4, if A ⊆ {1, . . . , n}, then we would like to know more
about the structure of an n-tuple of doubly non-commuting isometries such that the
operators corresponding to the indices in A are pure isometries, and the operators
corresponding to the remaining indices are unitary. At the same time, we are
interested to find an example of such an n-tuple on a non-zero Hilbert space. We may
restrict ourselves to the case where the indices in A come first; this makes the notation
a little less demanding. Choosing a more suggestive notation than the generic letter
V , we shall, therefore, be working with an n-tuple (S1, . . . , Sl, Ul+1, . . . , Un) such
that S1, . . . , Sl are pure isometries and Ul+1, . . . , Un are unitary. Here 0 ≤ l ≤ n,
so that one of the two lists in the n-tuple could be absent. Using the results in
Section 3, we shall now analyse such n-tuples; this leads to a Wold decomposition.
As we shall see, this decomposition informs us how to find non-zero examples. As
explained in Section 1, the description of irreducible tuples in [11, Theorem 2] could
serve as an alternate source of inspiration.

We start with the case where l = 0, i.e. where the list of Si is empty. In view of
Proposition 2.9, an application of Theorems 3.4 and 3.6 yields that H = H∅ = W∅
and that the Ui are unitary operators on W∅ satisfying equation (1.1). That is merely
reiterating our starting point. There does not seem much that we can add here: we
are simply looking at a representation of the non-commutative n-torus and with
this we hit rock bottom. In the terminology of Definition 3.7, the ∅-wandering data
D∅ of (U1, . . . , Un) are (1H , U1, . . . , Un). For reasons of uniformity that will become
clear below, we prefer to denote the space that the pertinent unitary operators
act on by W , and we shall tautologically refer to such an n-tuple (U1, . . . , Un) of
doubly non-commuting isometries in which all isometries are unitary operators as
the standard n-tuple of doubly non-commutative isometries with ∅-wandering data
(1W , U1, . . . , Un). As a consequence of Proposition 2.9 and Theorem 3.4, all other
wandering data are zero tuples.

It seems as if the results in Section 3 do not help to find a non-zero example for
l = 0, and that we need to refer to the literature (e.g. to [12]) for these. That is not
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entirely true, though: we shall see how the analysis of the case where l ≥ 1 still tells
us how to construct such an example if l = 0. As we shall see, such ‘fully unitary’
examples are, in fact, also needed when l ≥ 1. Since they are easier than those
for the latter case and virtually immediate from that case, we defer the non-zero
example where l = 0 until the case where l ≥ 1 has been handled.

We turn to the case where l ≥ 1. Contrary to the case where l = 0, Theorems 3.4
and 3.6 now give some new information. We start by proving a Wold decomposition
for (S1, . . . , Sl, Ul+1, . . . , Un).

Let us first suppose that also l ≤ n−1, so that there are at least one pure isometry
and one unitary operator in our n-tuple; this avoids working with conventions for
empty sets of operators in the argumentation below. Theorems 3.4 and 3.6 show
that there exists a subspace W of H such that

(4.1) H =
∞⊕

k1,...,kl=0

Sk1
1 · · ·S

kl

l (W ).

Furthermore, W is invariant under Ul+1, . . . , Un, and these operators all act on W

as unitary operators. Writing Ũi = Ui|W , we have

Ũ∗i Ũj = zijŨjŨ
∗
i

for all i, j = l + 1, . . . , n with i 6= j.
Equation (4.1) enables us to define an isomorphism ϕ : H → `2(Nl

0) ⊗W , as
follows. Using the natural notation for the canonical orthonormal basis of `2(Nl

0),
set

(4.2) ϕ

 ∞∑
k1,...,kl=0

Sk1
1 · · ·S

kl

l xk1,...,kl

 =

∞∑
k1,...,kl=0

ek1,...,kl
⊗ xk1,...,kl

,

where the xk1,...,kl
are in W . We note that ‖ek1,...,kl

⊗ xk1,...,kl
‖ = ‖xk1,...,kl

‖ =

‖Sk1
1 · · ·S

kl

l xk1,...,kl
‖, so that the convergence of the orthogonal series in the left

hand side of equation (4.2) is equivalent with that of the orthogonal series in the
right hand side. Hence ϕ is indeed an isomorphism. Aside, we also note that,
although the decomposition in equation (4.1) as a Hilbert direct sum is (up to a
permutation of the summands) independent of the choice for the numbering of the
Si, this is no longer the case for the definition of ϕ in equation (4.2). This certainly
depends on this choice. However, since it is only the existence of such ϕ that we
need, this will not bother us. We simply work with ϕ as it is determined by the
chosen and fixed enumeration of our n isometries.

We can now transfer the action of our given S1, . . . , Sl and Un−l, . . . , Un to
`2(Nl

0)⊗W via ϕ. It is easy to determine what these transferred actions look like.

Doing so for the Si, one encounters expressions of the form Si · Sk1
1 · · ·S

kl

l xk1,...,kl
,

where Si needs to be moved to its ‘proper’ place in the operator part of Si ·Sk1
1 · · ·S

kl

l

of such an expression. Since Si needs to pass the powers of S1, . . . , Si−1 for this,
a constant appears that involves the (i− 1) constants zi,1, . . . , zi,i−1. Doing so for

the Ui, one encounters expressions of the form Ui · Sk1
1 · · ·S

kl

l xk1,...,kl
. In this case,

Ui always needs to be moved to become the final operator in the operator part
Ui · Sk1

1 · · ·S
kl

l . Thus there are always l constants involved, namely, zi,1, . . . , zi,l.

After having become the rightmost operator, Ui acts on xk1,...,kl
as Ũi.
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Thus one sees that, for i = 1, . . . , l,

(4.3) (ϕ ◦ Si ◦ ϕ−1)(ek1,...,kl
⊗ x) = zk1

i,1 · · · z
ki−1

i,i−1 ek1,...,ki−1,ki+1,ki+1,...,kl
⊗ x

for all k1, . . . , kl ≥ 0 and x ∈W , and that, for i = l + 1, . . . , n,

(4.4) (ϕ ◦ Ui ◦ ϕ−1)(ek1,...,kl
⊗m) = zk1

i,1 · · · z
kl

i,l ek1,...,kl
⊗ Ũix

for all k1, . . . , kl ≥ 0 and x ∈ W , where the Ũi are unitary operators on W satisfying

(4.5) Ũ∗i Ũj = zijŨ
∗
j Ũi

for all i, j = l+ 1, . . . , n with i 6= j. As elsewhere in this section, the empty products
in equation (4.3) that occur for i = 1 should be read as 1. Moving S1 is never
necessary.

There does not seem to be anything that can be said further. This would have to

be related to the structure of (Ũl+1, . . . , Ũn), but, as earlier, W is simply a module
over the pertinent non-commutative (n− l) torus and that is where it stops. We
have thus obtained a Wold decomposition.

It is now also clear how examples can be obtained: turning the tables, we simply
use equations (4.3) to (4.5) as an Ansatz.

Suppose, therefore, that l is such that 1 ≤ l ≤ n− 1 and that a Hilbert space W

is given with unitary operators Ũl+1, . . . , Ũn ∈ B(W ) satisfying equation (4.5) for all
i, j = l + 1, . . . , n with i 6= j. Then we introduce operators S1, . . . , Sl, Ul+1, . . . , Un

on `2(Nl
0)⊗W , as follows.

For i = 1, . . . , l, set

(4.6) Si(ek1,...,kl
⊗ x) := zk1

i,1 · · · z
ki−1

i,i−1 ek1,...,ki−1,ki+1,ki+1,...,kl
⊗ x

for all k1, . . . , kl ≥ 0 and x ∈W , and, for i = l + 1, . . . , n, set

(4.7) Ui(ek1,...,kl
⊗ x) := zk1

i,1 · · · z
kl

i,l ek1,...,kl
⊗ Ũix

for all k1, . . . , kl ≥ 0 and x ∈W .
The Si and Ui are all tensor products of operators on `2(Nl

0) and W . An operator
Si is the tensor product of an operator on `2(Nl

0) that is the direct sum of weighted
unilateral shifts (with a weight that is constant in every copy, but where the constant
that is this weight depends on the copy) and the identity operator on W . An operator
Ui is the tensor product of a diagonal unitary operator on `2(Nl

0) and the unitary

operator Ũj on W .
It is clear from Proposition 2.6 that the Si are pure isometries, since the corre-

sponding subspaces Huni
i are all the zero subspace. The Ui are obviously unitary.

Hence it remains to verify the relations, which we shall now do.
Using that S∗i Si = 1 and that kerS∗i = (Si(`

2(Nl
0)⊗W ))⊥, it is easy to see that

(4.8) S∗i (ek1,...,kl
⊗ x) =

{
zk1
i,1 · · · z

ki−1

i,i−1 ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ x if ki ≥ 1;

0 if ki = 0.

It is evident from equation (4.7) that, for i = l + 1, . . . , n,

(4.9) U∗i ek1,...,kl
⊗ x = zk1

i,1 · · · z
kl

i,l ek1,...,kl
⊗ Ũ∗i x

for all k1, . . . , kl ≥ 0 and x ∈W .



DOUBLY NON-COMMUTING ISOMETRIES 19

Lemma 4.1. For the pure isometries S1, . . . , Sl on `2(Nl
0) ⊗ W as defined in

equation (4.6), we have

S∗i Sj = zijSjS
∗
i

for all i, j = 1, . . . , l such that i 6= j.

Proof. If we can prove the statement when i < j, then the case where i > j follows
from taking adjoints and using that zji = zij whenever i 6= j. Hence we suppose
that i < j.

First of all, if ki = 0 then S∗i Sj(ek1,...,kl
⊗ x) and SjS

∗
i (ek1,...,kl

⊗ x) are both
zero. This is still immediately clear for all i and j: the reason is that Sj does not
increase ki. We shall use that i < j for the remaining case where ki ≥ 1, to which
we now turn. As we shall see, the factor zij in the relation originates from the fact
that the i-th index precedes the j-th index in the labelling of the ek1,...,kl

. Indeed,

S∗i Sj(ek1,...,kl
⊗ x)

= (zk1
j,1 · · · z

kj−1

j,j−1) · S∗i (ek1,...,kj−1,kj+1,kj+1,...,kl
⊗ x)

= (zk1
j,1 · · · z

kj−1

j,j−1) · (zk1
i,1 · · · z

ki−1

i,i−1) · ek1,...,ki−1,ki−1,ki+1,...,kj−1,kj+1,kj+1,...,kl
⊗ x

and

SjS
∗
i (ek1,...,kl

⊗ x)

= (zk1
i,1 · · · z

ki−1

i,i−1) · Sj(ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ x)

= (zk1
i,1 · · · z

ki−1

i,i−1) · (zk1
j,1 · · · z

ki−1

j,i−1z
ki−1
j,i z

ki+1

j,i+1 · · · z
kj−1

j,j−1)·
ek1,...,ki−1,ki−1,ki+1,...,kj−1,kj+1,kj+1,...,kl

⊗ x

= (zk1
i,1 · · · z

ki−1

i,i−1) · z−1j,i · (z
k1
j,1 · · · z

ki−1

j,i−1z
ki

j,iz
ki+1

j,i+1 · · · z
kj−1

j,j−1)·
ek1,...,ki−1,ki−1,ki+1,...,kj−1,kj+1,kj+1,...,kl

⊗ x

= z−1j,i · (z
k1
i,1 · · · z

ki−1

i,i−1) · (zk1
j,1 · · · z

kj−1

j,j−1)·
ek1,...,ki−1,ki−1,ki+1,...,kj−1,kj+1,kj+1,...,kl

⊗ x.

Hence S∗i Sjek1,...,kl
⊗ x = zijSjS

∗
i ek1,...,kl

⊗ x, as required. �

We turn to the relations among the Ui.

Lemma 4.2. For the unitary operators Ul+1, . . . , Un on `2(Nl
0) ⊗W as defined

in equation (4.7) in terms of the unitary operators Ũl+1, . . . , Ũn on W satisfying
equation (4.5), we have

U∗i Uj = zijU
∗
j Ui

for all i, j = l + 1, . . . , n such that i 6= j.

Proof. This is immediate from equations (4.5), (4.7), and (4.9). �

It remains to consider the relations between the pure isometries and the unitaries.

Lemma 4.3. For the pure isometries S1, . . . , Sl and the unitaries Ul+1, . . . , Un on
`2(Nl

0)⊗W as defined in equation (4.6) and equation (4.7), respectively, we have

S∗i Uj = zijUjS
∗
i

for all i = 1, . . . , l and j = l + 1, . . . , n.
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Proof. We start by establishing that S∗i Uj = zijUjS
∗
i .

If ki = 0, then S∗i Uj(ek1,...,kl
⊗ x) and UjS

∗
i (ek1,...,kl

⊗ x) are both zero. Hence
we may suppose that ki ≥ 1. In that case,

S∗i Uj(ek1,...,kl
⊗ x) = (zk1

j,1 · · · z
kl

j,l) · S
∗
i (ek1,...,kl

⊗ Ũjx)

= (zk1
j,1 · · · z

kl

j,l) · (z
k1
i,1 · · · z

ki−1

i,i−1) · ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ Ũjx,

and

UjS
∗
i (ek1,...,kl

⊗ x)

= (zk1
i,1 · · · z

ki−1

i,i−1) · Uj(ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ x)

= (zk1
i,1 · · · z

ki−1

i,i−1) · (zk1
j,1 · · · z

ki−1

j,i−1z
ki−1
j,i z

ki+1

j,i+1 · · · z
kl

j,l)·

ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ Ũjx

= (zk1
i,1 · · · z

ki−1

i,i−1) · z−1j,i · (z
k1
j,1 · · · z

ki−1

j,i−1z
ki

j,iz
ki+1

j,i+1 · · · z
kl

j,l)·

ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ Ũjx

= z−1j,i · (z
k1
i,1 · · · z

ki−1

i,i−1) · (zk1
j,1 · · · z

kl

j,l) · ek1,...,ki−1,ki−1,ki+1,...,kl
⊗ Ũjx.

Therefore, S∗i Uj = zijUjS
∗
i , as required. Taking the adjoint of this relation and

using that zij = zji shows that U∗j Si = zjiSiU
∗
j . �

We have now completed the verification that (S1, . . . , Sl, Ul+1, . . . , Un) is an n-
tuple of doubly non-commuting isometries on `2(Nl

0)⊗W . It is an easy consequence

of equation (4.8) and the unitarity of the Ũi that the {1, . . . , l}-wandering subspace of
(S1, . . . , Sl, Ul+1, . . . , Un) is e0,...,0 ⊗W , thus explaining the choice of the letter. We
shall identify this space with W . With this identification, the {1, . . . , l}-wandering

data D{1,...,l} of (S1, . . . , Sl, Ul+1, . . . , Un) are (1W , Ũl+1, . . . , Ũn). As a consequence
of Propositions 2.6 and 2.9 and Theorem 3.4, all other wandering data are zero
tuples.

For l = 1, . . . , n− 1, we shall refer to the n-tuple (S1, . . . , Sl, Ul+1, . . . , Un), where
the pure isometries S1, . . . , Sl and the unitary operators Ul+1, . . . , Un on `2(Nl

0)⊗W
are as defined in equation (4.6) and equation (4.7), respectively, and where the

unitary operators Ũl+1, . . . , Ũn on W satisfy equation (4.5), as the standard n-tuple

with {1, . . . , l}-wandering data (1W , Ũl+1, . . . , Ũn).
It remains to consider the case where l = n. In that case, Theorems 3.4 and 3.6

show again that there exists a subspace W of H such that

H =

∞⊕
k1,...,kn=0

Skn
1 · · ·Skn

n (W ).

One then again defines ϕ as in equation (4.2). In this case, there are no unitary
operators to transfer to `2(Nn)⊗W , and one is left with only equation (4.3), where
then l = n. This is then the Wold decomposition for the n-tuple (S1, . . . , Sn). In
obvious analogy with the classical result for one pure isometry, the action of the
tuple is a Hilbert sum of copies of the case where W = C.

Turning the tables, one defines, for i = 1, . . . , n, the operators S1, . . . , Sn on
`2(Nn)⊗W by

(4.10) Si(ek1,...,kn
⊗ x) := zk1

i,1 · · · z
ki−1

i,i−1 ek1,...,ki−1,ki+1,ki+1,...,kn
⊗ x
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for all k1, . . . , kn ≥ 0 and x ∈ W . Then the proof of Lemma 4.1, which applies
equally well if l = n, shows that (S1, . . . , Sn) is an n-tuple of doubly non-commuting
isometries on `2(Nn

0 ) ⊗W . It is evident from equation (4.8) that the {1, . . . , n}-
wandering subspace of (S1, . . . , Sn) as in Definition 3.7 is e0,...,0 ⊗W . We shall
identify this space with W again. With this identification, the {1, . . . , n}-wandering
data D{1,...,n} of (S1, . . . , Sn) reduce to the 1-tuple (1W ). As a consequence of
Proposition 2.6 and Theorem 3.4, all other wandering data are zero tuples.

We shall call (S1, . . . , Sn) the standard n-tuple with {1, . . . , n}-wandering data
(1W ).

It is now time to tie up the obvious loose end in the above: for l = 0, . . . , n− 1,

we still need to find unitary operators Ũl+1, . . . , Ũn on a non-zero Hilbert space W
that satisfy equation (4.5). Only this will give us non-zero examples of standard
n-tuples for such l. With the results above available, this is now easily done. We
simply mimic equation (4.6), where we now allow also negative integer indices. To
be precise: take W = `2(Zn−l), and denote the canonical orthonormal basis elements
by ekl+1,kn for kl+1, . . . , kn ∈ Z. For i = l + 1, . . . , n, we define

(4.11) Ũiekl+1,...,kn
:= z

kl+1

i,l+1 · · · z
ki−1

i,i−1 ekl+1,...,ki−1,ki+1,ki+1,...,kn

for kl+1, . . . , kn ∈ Z. Evidently,

(4.12) Ũ∗i ekl+1,...,kn
= z

kl+1

i,l+1 · · · z
ki−1

i,i−1 ekl+1,...,ki−1,ki+1,ki+1,...,kn

for kl+1, . . . , kn ∈ Z.

Lemma 4.4. For the unitary operators Ũl+1, . . . , Ũn on `2(Zn−l) as defined in
equation (4.11), we have

Ũ∗i Ũj = zijŨ
∗
j Ũi

for all i, j = l + 1, . . . , n such that i 6= j.

Proof. This has essentially already been done in the proof of Lemma 4.1. Comparing
that context with the present one, there are presently no cases that need to be
considered separately when indices labelling the orthonormal basis are zero. We are
only left with the analogue of the computational part of the proof of Lemma 4.1.
For this, we need merely note that this part of the proof of Lemma 4.1 does not
use that the indices k1, . . . , kl labelling the elements of the orthonormal basis are
non-negative. It is sufficient to have equation (4.6) and the first line of equation (4.8)
for all indices under consideration. Since equation (4.11) and equation (4.12) have a
structure that is completely analogous to that of equation (4.6) and the first line
of equation (4.8), respectively, a completely analogous computation establishes the
relations in the present lemma. As earlier, it originates from the fact that for a pair
of different indices labelling the elements of the orthonormal basis there is always
one that precedes the other. �

We have now described all n-tuples (V1, . . . , Vn) of doubly non-commuting isome-
tries that are of ‘pure type’ up to unitary equivalence, and we summarise this
description in the next result. We emphasise that Lemma 4.4 (which is not visible
in the statement) is necessary to show that it has substance. The convention in
its formulation is that lists where the lower bound of the index exceeds the upper
bound are absent.

Theorem 4.5. Let l be such that 0 ≤ l ≤ n.
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(1) Suppose that Ũl+1, . . . , Ũn are unitary operators on a Hilbert space W satis-
fying equation (4.5). Then the standard n-tuple (S1, . . . , Sl, Ul+1, . . . , Un)

with {i : 1 ≤ i ≤ l}-wandering data (1W , Ũl+1, . . . , Ũn) is an n-tuple of
doubly non-commuting isometries on `2(Nl

0)⊗W . The associated wandering
subspace W{i:1≤i≤l} of (S1, . . . , Sl, Ul+1, . . . , Un) is canonically isomorphic

to W , and the {i : 1 ≤ i ≤ l}-wandering data are then (1W , Ũl+1, . . . , Ũn).
All other wandering data are zero tuples. The operators S1, . . . , Sl are pure
isometries, and the operators Ul+1, . . . , Un are unitary.

(2) Suppose that (V1, . . . , Vn) is an n-tuple of doubly non-commuting isometries,
that the first l of these are pure isometries, and that the final (n− l) ones are
unitary. Let W be the wandering subspace of (V1, . . . , Vn) as in Theorem 3.6,

and let Ũl+1, . . . , Ũn denote the unitary restrictions of the respective operators
Ul+1, . . . , Un to W . Then the n-tuple (V1, . . . , Vn) is unitarily equivalent to
the standard n-tuple (S1, . . . , Sl, Ul+1, . . . , Un) with {i : 1 ≤ i ≤ l}-wandering

data (1W , Ũl+1, . . . , Ũn)

Naturally, one can carry out the construction of standard n-tuples for an arbitrary
subset A ⊆ {1, . . . , n} that is not necessarily an initial segment, and find an n-tuple
(V1, . . . , Vn) of doubly non-commuting isometries such that the Vi for i ∈ A are
pure isometries and the Vi for i ∈ Ac are unitary with pre-given restrictions to the
pre-given wandering subspace of (V1, . . . , Vn). One needs to be careful, though, when
defining the coupling between the list of restrictions in the A-wandering data and
the corresponding unitaries in the newly constructed n-tuple (V1, . . . , Vn), because
the structure constants of these restrictions are inherited by the corresponding
unitaries in (V1, . . . , Vn); see Lemma 4.2. We need to make sure that these inherited
constants are the corresponding zij in equation (1.1). Therefore, if |A| = l and
Ac = {j1, . . . , jn−l} with j1 < · · · jn−l, we insist that the pre-given A-wandering data

in DA are listed as (1W , Ũj1 , . . . , Ũjn−l
), and are such that Ũ∗jr Ũjs

= zjrjsŨjs
Ũ∗jr

for all r, s = 1, . . . , n− l such that r 6= s. This requirement is the counterpart of
the ordering of the indices as required in the definition of the A-wandering data of
an already existing n-tuple (V1, . . . , Vn) of doubly non-commuting isometries; see
Definition 3.7.

With this requirement on the ordering of the indices in place on two occa-
sions, the obvious analogue of Theorem 4.5 holds. Firstly, if |A| = l and Ac =
{j1, . . . , jn−l} with j1 < · · · jn−l, then one can construct an n-tuple (V1, . . . , Vn)
of doubly non-commuting isometries that has pre-given A-wandering data DA =

(1W , Ũj1 , . . . , Ũjn−l
) while all other wandering data are zero tuples, and where the

Vi for i ∈ A are pure isometries and the Vi for i ∈ Ac are unitary. This is called
the standard n-tuple of doubly non-commuting isometries with A-wandering data

(1W , Ũj1 , . . . , Ũjn−l
), and it is denoted by VDA

. Secondly, if (V1, . . . , Vn) is an n-
tuple of doubly non-commuting isometries such that the Vi for i ∈ A are pure
isometries and the Vi for i ∈ Ac are unitary, and if its A-wandering data DA are as
in Definition 3.7, then (V1, . . . , Vn) is unitarily equivalent to VDA

.
Now that we have described all n-tuples of ‘pure type’ (essentially on basis of

Theorem 3.6), the following is clear from Theorem 3.4. If zij = 1 for all i and j one
retrieves a particular case of [1, Theorem 3.1].
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Theorem 4.6 (Wold decomposition). Let (V1, . . . , Vn) be an n-tuple of doubly non-
commuting isometries. Then (V1, . . . , Vn) is unitarily equivalent to the Hilbert direct
sum

⊕
A⊆{1,...,n} VDA

, where DA denotes the A-wandering data of (V1, . . . , Vn).

There does not seem much more that we can add concerning the structure of
n-tuples of doubly non-commuting isometries. If n = 1, then the classical Wold
decomposition for an isometry provides no further information about the unitary
component, and here we have something similar for the (this role has now become
obvious) representations of non-commutative tori on the wandering subspaces.

We shall take up the parameterization of the unitary equivalence classes of
n-tuples in Section 5.

Remark 4.7. The equations (4.6), (4.7), and (4.11) provide a more or less ele-
mentary example of n doubly non-commuting isometries on `2(Nl

0)⊗ `2(Zn−l) such
that the first l are pure isometries and the final (n− l) are unitary. It can actually
be shown that the C∗-algebra that is generated by these operators is the universal
C∗-algebra that is generated by n doubly non-commuting isometries (still with
the same structure constants) such that the final (n− l) of these are unitary. In
particular, for l = 0, one retrieves the known fact (see [12]) that the C∗-algebra

that is generated by unitary operators Ũ , . . . , Ũn on `2(Zn) as in equation (4.11) is
isomorphic to the non-commutative n-torus. At the other extreme, if l = n, then
one sees that the Fock representation of the universal C∗-algebra that is generated
by n doubly non-commuting isometries is faithful. This is already known, but to
conclude this from the existing literature one has to distinguish two cases, and
combine [11, Proposition 8] and [8, Corollary 1]. Our proof is uniform.

We shall report on these universal C∗-algebras, their interrelations, and their
representations in a separate paper.

5. Classification

It is now easy to classify n-tuples of doubly non-commuting isometries up to
unitary equivalence. Theorem 4.6 provides an obvious candidate for a classifying
invariant, namely, the collections of unitary equivalence classes of representations of
the non-commutative tori that are naturally associated with the subsets of {1, . . . .n},
borrowing their structure constant from those for (V1, . . . , Vn). This is indeed the
case.

First, however, we include the following result. Though completely elementary,
the observation should still be made. We deviate for once from our convention that
the structure constants zij are fixed.

Lemma 5.1. Let (V1, . . . , Vn) be an n-tuple of doubly non-commuting isometries
with structure constants zij on a non-zero Hilbert space H, and let (V ′1 , . . . , V

′
n) be

an n-tuple of doubly non-commuting isometries with structure constants z′ij on a
non-zero Hilbert space H ′. If (V1, . . . , Vn) and (V ′1 , . . . , V

′
n) are unitarily equivalent,

then zij = z′ij for all i 6= j.

Proof. It follows from V ′i V
′
j = z′ijV

′
jV
′
i and the existence of an equivalence that

ViVj = z′ijVjVi. Hence z′ijVjVi = zijVjVi. Since H is not the zero space and the
isometries are injective, we must have zij = z′ij . �
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Hence we can safely return to our convention that the zij are fixed and that they
are suppressed in the notation. For such fixed structure constants, a part of the
classification up to unitary equivalence is provided by the following.

Theorem 5.2. Let (V1, . . . , Vn) be an n-tuple of doubly non-commuting isometries
on a Hilbert space H, and let (V ′1 , . . . , V

′
n) be an n-tuple of doubly non-commuting

isometries on a Hilbert space H ′, with identical structure constants in the relations.
Then the following are equivalent:

(1) The n-tuples (V1, . . . , Vn) and (V ′1 , . . . , V
′
n) are unitarily equivalent;

(2) The A-wandering data DA of (V1, . . . , Vn) and the A-wandering data D′A of
(V ′1 , . . . , V

′
n) are unitarily equivalent for all A ⊆ {1, . . . , n}.

Proof. We prove that (1) implies (2). If ϕ : H 7→ H ′ is a unitary equivalence of
(V1, . . . , Vn) and (V ′1 , . . . , V

′
n), then the definition of the wandering subspaces in

Theorem 3.6 shows that ϕ(WA) = W ′A for all sets A of indices. Alternatively, an
inspection of the proof of Theorem 3.6 shows that PWA

and PW ′A
are strong operator

limits of polynomials in the isometries and their adjoints in the respective spaces,
so that ϕ is also a unitary equivalence between these projections. At any rate, it
is thus clear that ϕ also implements a unitary equivalence between all respective
A-wandering data.

We prove that (2) implies (1). In view of Theorem 3.4, it is sufficient to show that,
for all A ⊆ {1, . . . , n}, the restriction of (V1, . . . , Vn) to HA is unitarily equivalent
to the restriction of (V ′1 , . . . , V

′
n) to H ′A. Fix A = {i1, . . . , il} with i1 < · · · < il,

and let ϕWA
: WA 7→W ′A be an isomorphism that is a unitary equivalence between

DA and D′A. We suppose that 1 ≤ l ≤ n− 1; the cases where l = 0 and l = n are
handled similarly. Using Theorem 3.6 for both HA and H ′A, we can define a map
ϕA : HA 7→ H ′A by

ϕ

 ∞∑
k1,...,kl=0

V
ki1
i1
· · ·V kil

il
xki1

,...,kil

 =

∞∑
k1,...,kl=0

V
′ki1
i1
· · ·V ′kil

il
ϕ(xki1

,...,kil
)

where xki1 ,...,kil
∈WA. On noting that

‖V ki1
i1
· · ·V kil

il
xki1

,...,kil
‖ = ‖xki1

,...,kil
‖ = ‖V ′ki1

i1
· · ·V ′kil

il
ϕ(xki1

,...,kil
‖

it becomes clear that ϕA is an isomorphism between HA and H ′A. It is then easy
to see that ϕA is a unitary equivalence between the restriction of (V1, . . . , Vn) to
HA and of (V ′1 , . . . , V

′
n) to H ′A. The reason is that, for i ∈ A, one picks up the same

constant when moving Vi to its proper position in a product Vir · V
ki1
i1
· · ·V kil

il
as is

picked up when doing the same sorting for V ′i · V
′ki1
i1
· · ·V ′kil

il
, and that, for i ∈ Ac,

one picks up the same constants when moving the factors Vi and V ′i through the
entire product. �

For every A ⊆ {1, . . . , n}, let TA be the non-commutative (n− |A|)-torus that is
determined by the indices in Ac and the corresponding structure constants zij for
i, j ∈ Ac with i 6= j. It is the universal C∗-algebra that is generated by unitaries
satisfying the pertinent relations; for A = {1, . . . , n} it equals C. If A is a set
of indices, then the possible A-wandering data DA that are the input for the
construction of the corresponding standard n-tuple VDA

are obviously in bijection
with the unital representations of TA, and two such representations of TA are
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unitarily equivalent if and only if the corresponding A-wandering data are unitarily
equivalent.

Theorem 5.3 (Classification). The unitary equivalence classes of n-tuples of doubly
non-commuting isometries are in natural bijection with enumerations of 2n unitary
equivalence classes of unital representations of the non-commutative tori TA, as
A ranges over the power set of {1, . . . , n}. The bijection is obtained by listing,
for a given unitary equivalence class with representing n-tuple (V1, . . . , Vn), the
unitary equivalences classes of the representations of TA that are associated with the
A-wandering data DA of (V1, . . . , Vn), as A ranges over the power set of {1, . . . , n}.
Proof. Theorem 5.2 shows that the map as described is well-defined and injective.
The existence of the standard n-tuples VDA

(as discussed following Theorem 4.5)
and then that of their Hilbert direct sums shows that it is surjective. �

As an application, we include a description and parameterization of the irreducible
n-tuples in this section. This improved version (there is now a classification part)
of [11, Theorem 2] is now easily seen to be a consequence of the results for arbitrary
n-tuples.

Theorem 5.4. Let (V1, . . . , Vn) be an n-tuple of doubly non-commuting isometries
on a Hilbert space H. Then the following are equivalent:

(1) H has only trivial subspaces that are invariant under the C ∗-algebra that is
generated by the operators in the n-tuple (V1, . . . , Vn);

(2) There exists a (possibly empty) set of indices A ⊆ {1, . . . , n} such that
(V1, . . . , Vn) is unitarily equivalent to a standard n-tuple VA with the property
that the A-wandering subspace WA of the pertinent Hilbert space has only
trivial subspaces that are invariant under the C ∗-algebra of operators on WA

that is generated by the operators in the A-wandering data DA of VA.

In that case, if H 6= {0}, two such n-tuples are unitarily equivalent if and only if the
corresponding sets of indices in part (2) are equal and the wandering data for these
equal sets of indices are unitarily equivalent.

Proof. We prove that (1) implies (2). If H = {0}, then one can take a zero
standard n-tuple on a zero space. If H 6= {0}, then Theorem 3.4 shows that
precisely one of the spaces HA is non-zero. According to (the general analogue of)
Theorem 4.5, (V1, . . . , Vn) is then unitarily equivalent to a standard n-tuple VA. It
is then immediate from the structure of the standard n-tuples that the irreducibility
of the action of the n-tuple on HA implies that the action of the operators in the
wandering data on WA must likewise be irreducible.

We prove that (2) implies (1). If WA = {0}, then H = {0}, and we are done.
Hence we suppose that WA 6= {0}. Resorting to the earlier notation, we suppose
for simplicity that the first l operators in the n-tuple are pure isometries, and that
the remaining ones are unitary. If l = 0, then there is nothing to prove. Hence we
suppose that l ≥ 1. Suppose that L ⊆ `2(Nl

0) ⊗WA is a non-zero subspace that
reduces the operators in the associated standard n-tuple. Choose a non-zero x ∈ L.
Then x =

∑
k1,...,kl≥0 ek1,...,kl

⊗ xk1,...,kl
with xk1,...,kl

∈ WA for all k1, . . . , kl ≥ 0.
Let ml be the minimal non-negative integer such that there exist k1, . . . , kl−1 ≥ 0
with xk1,...,kl−1,ml

6= 0. Then

x− Sml+1
l S

∗(ml+1)
l x =

∑
k1,...,kl−1≥0

ek1,...,kl−1,ml
⊗ xk1,...,kl−1,ml
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is a non-zero element of L. After applying S∗ml to this element, subsuming the
resulting unimodular constants into the xk1,...,kl−1,ml

, and relabelling the latter,
we see that L has a non-zero element x′ =

∑
k1,...,kl≥0 ek1,...,kl−1,0 ⊗ x′k1,...,kl−1,0

.

Repeating this procedure (l − 1) times, we see that L contains a non-zero element
e0,...,0 ⊗ x̃. We can now let the C∗-algebra that is generated by Ul+1, . . . , Un act on
e0,...,0 ⊗ x̃, and the irreducibility of WA then shows that L contains e0,...,0 ⊗WA.
The action of the C∗-algebra that is generated by S1, . . . , Sl then yields that L =
`2(Nl

0)⊗WA.
The proof of the equivalence of the parts (1) and (2) is now complete.
For the remaining statement, we note that Theorem 3.4 implies that the corre-

sponding sets of indices are equal. Then the unitary equivalence of the wandering
data follows from Theorem 5.2.

�

The following is now clear.

Corollary 5.5. The unitary equivalence classes of the non-zero irreducible represen-
tations of the C ∗-algebra that is generated by n isometries satisfying equation (1.1)
are parameterized by the unitary equivalence classes of the non-zero irreducible
representations of the 2n non-commutative tori that are naturally associated with
the structure constants zij in equation (1.1).

Example 5.6. We shall now discuss how the results work out if n = 1, when there
is only one isometry V .

Theorem 4.6 yields that the 1-tuple (V ) is unitarily equivalent to V∅ ⊕ V{1},
where V∅ is the standard 1-tuple with ∅-wandering data (1W∅ , V |W∅), and where
V{1} is the standard 1-tuple with {1}-wandering data (1W{1}). According to (the

discussion preceding) Theorem 5.3, the ∅-wandering data (1W∅ , V |W∅) arise from a
unital representation of the non-commutative 1-torus. This is equivalent to saying
that V |W∅ is a unitary operator on some (possibly zero) Hilbert space W∅. The
structure of the standard 1-tuple V∅ is simply that of the unitary operator V |W∅
acting on W∅; this is the case where l = 0 that is considered first in the beginning
of Section 4.

According to (the discussion preceding) Theorem 5.3, the {1}-wandering data
(1W{1}) arise from a unital representation of the non-commutative 0-torus. This
is equivalent to saying that W{1} is an arbitrary (possibly zero) Hilbert space.
According to equation (4.10) (we are in the case where l = n), the structure of the
standard 1-tuple V{1} is then that of S ⊗ 1W{1} acting on `2(N0)⊗W{1}; here S is
the unilateral shift.

Thus the classical Wold decomposition is retrieved: V is unitarily equivalent to
the Hilbert direct sum of a unitary operator and copies of the unilateral shift.

According to Theorem 5.2, the unitary equivalence classes of 1-tuples (V ) of
isometries are in bijection with the enumerations of both a unitary equivalence class
of (1W∅ , V |W∅) and a unitary equivalence class of (1W{1}). That is: an isometry
is determined, up to unitary equivalence, by the unitary equivalence class of its
unitary part and the multiplicity of the unilateral shift.

Although there is no mathematical gain for n = 1 by retrieving a decomposition
that was used as a key ingredient for the general result to begin with, and a
classification result that could have been cited from the literature, it still seems
satisfactory to see how the known classifying invariants for isometries fit into a more
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general picture, in which these 21 invariants are the unitary equivalence classes of
representations of the non-commutative 0- and 1-tori.

6. Dilation theorem

It is now easy to prove a dilation theorem. Just as in the case where n = 1, now
that a Wold decomposition is available from Section 4, this is merely a matter of
allowing negative indices where needed.

We start with the cases where there are only pure isometries and unitaries. As
earlier, the convention in its formulation is that lists where the lower bound of the
index exceeds the upper bound are absent.

Proposition 6.1. Let l ≥ 0, and suppose that (S1, . . . , Sl, Ul+1, . . . , Un) is an n-
tuple of doubly non-commuting isometries on a Hilbert space H, where S1, . . . , Sn

are pure isometries and Ul+1, . . . , Un are unitary.
Then there exists a Hilbert space K containing H, with projection PH : K → H,

and unitary operators U1, . . . ,Ul,Ul+1, . . . ,Un on K such that

(1) (U1, . . . ,Un) is an n-tuple of doubly non-commuting isometries;
(2) U1, . . . ,Un leave H invariant;
(3) The restriction of U1, . . . ,Un to H is S1, . . . , Sl, Ul+1, . . . , Un, respectively;
(4) U∗l+1, . . . ,U∗n leave H invariant;
(5) The restriction of U∗l+1, . . . ,U∗n to H is U∗l+1, . . . , U

∗
n, respectively;

(6) S∗i = (PH ◦ U∗i )|H for i = 1, . . . , l.

In view of the parts (4) and (5), one can add U∗i = (PH ◦ U∗i )|H to the list in
part (6) for the remaining indices i = l + 1, . . . , n, which is convenient for the proof
of Theorem 6.2 below.

Proof. If l = 0 we can take K = H. Hence we suppose that l ≥ 1. In view of
Theorem 4.5 we may suppose that (S1, . . . , Sl, Ul+1, Un) is the standard n-tuple of

doubly non-commuting isometries with {1, . . . , l}-wandering data (1W , Ũl+1, . . . , Ũn),

where the Ũi (if any) are the restrictions of the respective Ui to the wandering
subspace W of (S1, . . . , Sl, Ul+1, Un). In that model, we need merely extend the
range of the indices labelling the elements of the orthonormal basis of `2(Nl

0) in
equations (4.6) and (4.7) if l ≤ n − 1, or the range of the indices labelling the
elements of the orthonormal basis of `2(Nn) in equation (4.10) if l = n. We make
this explicit.

If l ≤ n− 1, then, for i = 1, . . . , l, we define

Ui(ek1,...,kl
⊗ x) := zk1

i,1 · · · z
ki−1

i,i−1 ek1,...,ki−1,ki+1,ki+1,...,kl
⊗ x

for all k1, . . . , kl ∈ Z and x ∈W , and, for i = l + 1, . . . , n, we define

Ui(ek1,...,kl
⊗ x) := zk1

i,1 · · · z
kl

i,l ek1,...,kl
⊗ Ũix

for all k1, . . . , kl ∈ Z and x ∈W .
If l = n, then, for i = 1, . . . , l, we define

Ui(ek1,...,kn
⊗ x) := zk1

i,1 · · · z
ki−1

i,i−1 ek1,...,ki−1,ki+1,ki+1,...,kn
⊗ x

for all k1, . . . , kn ∈ Z and x ∈W .
For all l ≤ n, U1, . . . ,Un are clearly unitary operators on `2(Zl)⊗W , which we

take as K.
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If l ≤ n− 1, then the first line of equation (4.8), extended to all integer values
of the labelling indices, describes U∗i for i = 1, . . . , l, whereas equation (4.9), also
extended to all integer values of the labelling indices, describes U∗i for i = l+1, . . . , n.
If l = n, then the first line of equation (4.8), extended to all integer values of the
labelling indices and where now l = n, describes U∗i for i = 1, . . . , n.

If l ≤ n − 1, the computational part of the proof of Lemma 4.1 shows that
U1, . . . ,Ul satisfy the pertinent relations among themselves, and the computational
part of the proof of Lemma 4.3 shows that this is likewise true for U1, . . . ,Ul on
the one hand, and Ul+1, . . . ,Un on the other hand. As with Lemma 4.2, it is clear
that Ul+1, . . . ,Un satisfy the pertinent relations among themselves. This establishes
part (1) if l ≤ n− 1.

If l = n − 1, the computational part of the proof of Lemma 4.1 shows that
U1, . . . ,Un satisfy the pertinent relations. This establishes part (1) if l = n.

The remaining statements follow by inspection. Economising on this a little, we
add that, if l ≤ n− 1, it is a direct consequence of the unitarity of Ul,Ul+1, . . . ,Un
(which implies that they reduce H) that the restriction of U∗l+1, . . . ,U∗n to H coincides
with U∗l+1, . . . , U

∗
n, respectively.

�

An appeal to Theorem 3.4, combined with the obvious generalisation of Proposi-
tion 6.1 to arbitrary A ⊆ {1, . . . , n} and with a Hilbert direct sum argument, then
yields the following.

Theorem 6.2 (Dilation theorem). Let (V1, . . . , Vn) be an n-tuple of doubly non-
commuting isometries on a Hilbert space H. Then there exists a Hilbert space K
containing H, with projection PH : K → H, and unitary operators U1, . . . ,Un on K
such that

(1) (U1, . . . ,Un) is an n-tuple of doubly non-commuting isometries;
(2) U1, . . . ,Un leave H invariant;
(3) The restriction of U1, . . . ,Un to H is V1, . . . , Vn, respectively;
(4) V ∗i = (PH ◦ U∗i )|H for i = 1, . . . , n.

Remark 6.3. On taking all structure constants equal to one, Theorem 6.2 specialises
to a dilation theorem for finitely many doubly commuting isometries: these can
be extended to commuting unitary operators on an enveloping space. They can,
in fact, even be extended to doubly commuting unitary operators; the pertinent
extra relations, however, are already automatic by Fuglede’s theorem. It should
be noted here that, in the commutative domain, a much stronger version is known
to be true than this specialisation of Theorem 6.2. Any (not necessarily finite)
family of commuting (not necessarily doubly commuting) isometries on a Hilbert
spaces can be extended to a family of commuting unitary operators on an enveloping
Hilbert space. This result goes back to Itô [6, Theorem 3] and Brehmer [3]; see
also [14, Theorem I.6.2]. As is well known, this fact implies the validity of a von
Neumann inequality for polynomials in several commuting isometries on a Hilbert
space.
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the Instituto Superior Técnico is gratefully acknowledged. The second author was
partially funded by FCT/Portugal through the Centre for Mathematical Analysis,



DOUBLY NON-COMMUTING ISOMETRIES 29

Geometry, and Dynamical Systems (CAMGSD). We thank the referee for the careful
reading of the manuscript and the constructive suggestions.

References

[1] A. an Huef, I. Raeburn, and I. Tolich, Structure theorems for star-commuting power partial
isometries, Linear Algebra Appl. 481 (2015), 107–114.

[2] W. Arveson, A short course on spectral theory, Graduate Texts in Mathematics, vol. 209,

Springer-Verlag, New York, 2002.
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