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ABSTRACT

Axle load distribution factors (ALDFs) are used as one of the primary traffic data inputs for

mechanistic-empirical (ME) pavement design methods for predicting the impact of varying

traffic loads on pavement performance with a higher degree of accuracy than empirical meth-

ods that are solely based on equivalent single axle load (ESAL) concept. Ideally, to ensure

optimal pavement structural design, site-specific traffic load spectra data—generated from

weigh-in-motion (WIM) systems—should be used during the pavement design process.

However, because of the limited number of available permanent WIM stations (in Texas,

for example), it is not feasible to generate a statewide ALDFs database for each highway

or project from permanent WIM data. In this study, two possible alternative methods, namely,

the direct measurement using a portable WIM system and the cluster analysis technique, were

explored for generating site-specific ME-compatible traffic data for a highway test section,

namely, state highway (SH) 7 in Bryan District (Texas). The traffic data were then used for

estimating pavement performance using a ME pavement design software, namely, the

Texas Mechanistic-Empirical Thickness Design System (TxME). The TxME-predicted pavement

performance (e.g., rutting) using the portable WIM-generated traffic input parameters closely

matched with the actual field performance. Overall, the study findings indicated that the port-

able WIM (with proper installation and calibration) constitutes an effective means for rapidly

collecting reliable site-specific ME-compatible traffic data.
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Introduction

One of the key steps/processes in the analysis and design of pavements is the ability to characterize traffic cor-

rectly. The development of the Mechanistic-Empirical Pavement Design Guide under the National Cooperative

Highway Research Program Project 1-371 and its subsequent adoption in mechanistic-empirical (ME) pavement

design software packages, such as the “AASHTOWare Pavement ME design,” has vastly changed the traffic char-

acterization requirements for pavement design, specifically, the use of traffic weight distributions in place of

single-point loads. That is, traditional pavement design methods, e.g., the AASHTO 1993, utilized 18-kips

(∼80-kN) equivalent single axle loads (ESALs) for establishing pavement layer thicknesses, whereas the current

ME pavement design systems require the axle load distributions for each axle type for both new and rehabilitation

pavement design processes. In addition, the pavement design methods need to be calibrated to local conditions. In

Texas, a prototype ME pavement design software has recently been developed, namely, the Texas Mechanistic-

Empirical Flexible Pavement Design System (TxME),2 thus necessitating an effort to generate ME-compatible

traffic input parameters for the Texas highways.

In ME pavement designs, traffic loading is one of the key parameters and main influencing factors for pave-

ment distress prediction.3 A typical ME pavement design system uses a hierarchical approach (Level 1 to Level 3)

for the traffic inputs. Level 1 (site specific), Level 2 (state/regional specific), and Level 3 (national/default) indicate

a good, modest, and poor knowledge/accuracy of past and future traffic characteristics, respectively. For example,

the TxME2 uses a two-level traffic data input scheme, in which Level 1 represents site-specific measured traffic

data (i.e., highest accuracy and reliability level) and Level 2 represents the state default traffic data. Many re-

searchers have reported that utilization of default (Level 3) traffic input parameters may, at times, result in in-

consistent and inaccurate pavement designs/analyses.4–8 This makes sense, in that traffic conditions at the local

level can be significantly different from the national (or default) expectation and can potentially influence the

pavement design and, ultimately, the performance of the designed pavement structure.

A study by Haider et al.9 indicated an alternative means of generating state-specific (Level 2) traffic data by

using clustering analysis (Level 2A) and grouping roads by similar attributes (Level 2B) to substitute for site-

specific (Level 1) traffic data. Another study by Sauber et al.10 showed that there were significant differences in

pavement performance when default (Level-3) traffic data are used instead of site-specific (Level 1) traffic data.

Therefore, site-specific (Level 1) traffic input parameters are deemed vital and more accurate for successful im-

plementation and optimization of the ME pavement designs. It is thus recommended to always use site-specific

(Level 1) traffic data whenever available.4

In Texas, traffic data (axle load spectra) for pavement design and performance prediction purposes are tradi-

tionally directly measured using permanent weigh-in-motion (WIM) stations. However, high installation and

maintenance costs associated with these permanent WIM stations dictate that their deployment is mostly limited

to major highways with high traffic volumes. For example, as at the time of writing this article (May 2019), the

Texas Department of Transportation (TxDOT) had about 41 operational permanent WIM locations within the

state, as illustrated in figure 1, the majority of which are on the interstate network. Therefore, alternative/

supplementary methods need to be explored for generating site-specific ME-compatible traffic data for highway

locations that lack permanent WIM stations.

With the aforementioned background, the objective of this study was to explore alternative methods for

generating site-specific ME-compatible traffic data (axle load spectra) to supplement the permanent WIM

stations. These alternate/supplementary methods include (a) direct measurement using portable WIM sys-

tems and (b) estimation of the axle load spectra data using cluster analysis techniques. To achieve the afore-

mentioned objective, the following tasks were undertaken using an in-service field test section located on state

highway (SH) 7, westbound direction (WB) in the Bryan District (Robertson County, Texas), as a case study:

• Measure and collect ME-compatible traffic data (load spectra) using a portable WIM system on
SH 7 (WB).
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• Develop a cluster analysis framework (namely, clusters or a cluster database) based on the nearest available
permanent WIM station data and, with the aid of pneumatic traffic tube (PTT) counter–measured traffic vol-
ume counts, utilize it to generate ME-compatible traffic data (axle load spectra) for SH 7 (WB).

• Compare the traffic load spectra generated with cluster analysis versus that measured with the portableWIM.
• Conduct pavement performance modeling of SH 7 (WB) with the TxME pavement design system using

Level 1 generated traffic data.
• Conduct pavement performance modeling of SH 7 (WB) with the TxME pavement design system using

default (Level 2) traffic inputs and compare with the Level 1 results obtained from both site-specific port-
able WIM traffic data measurements and cluster analysis.

• Compare the predicted pavement performance with in situ pavement conditions and field performance.

Figure 2 illustrates the flow chart of the work plan and research methodology employed to achieve

the study objective, namely, traffic data collection, data analysis, ME modeling, pavement performance

prediction, and comparison with the in-service pavement field conditions. These aspects are discussed in the

subsequent sections. Note in figure 2 that the ME traffic data generation based on “data processing” from actual

portable WIMmeasurements and traffic data collection was considered more reliable and representative of in situ

field conditions and was thus used as the reference datum. For the Clustering analysis method, the more the traffic

data (i.e., stations) and the more current they are, the better the reliability and prediction accuracy.

ME Traffic Data Rendering Methods

As previously stated, the ME-compatible traffic data for SH 7 were generated via two methods: (1) direct mea-

surements using a portable WIM system and (2) estimation of the axle load spectra data using the cluster analysis

technique applied to vehicle classification data obtained from PTT counters. As illustrated in figure 2, traffic data

gathered from nearest available permanent WIM stations were merely used to develop the clustering framework

and cluster database. The data collection procedures are described in the subsequent sections.

FIG. 1 Example of Texas permanent WIM station locations.
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DIRECT TRAFFIC MEASUREMENTS USING A PORTABLE WIM SYSTEM

A hybrid, portable WIM (Hp-WIM) system deployed in this study was set up using off-the-shelf components

and commercially available WIM controllers/data acquisition systems (namely, the Hastia units from EMC Inc.).

Figure 3 illustrates the schematic arrangement of the Hp-WIM setup and the sensor placement configuration

on the pavement surface. A custom-devised metal plate was used to install the piezoelectric (PZT) sensors on

to the pavement surface as well as to provide protection (durability) to the sensors, as can be seen in figure 3.

The metal plates (8 ft. by 6 in. by 0.04 in. [∼2.438 by ∼0.150 by ∼0.001 m], length by width by depth) also aided to

provide a stable flat surface for improved accuracy in the traffic data measurements, sensitivity, stability, and

longevity of the sensors.11–13 An end-cap crown provided protection at the sensor-cable joint connection. The

metal plates and end-cap crown were affixed to the pavement surface using silicon adhesives, road tapes, and

concrete nails.13 The piezo sensors were, in turn, affixed to the metal plates using pocket tape (see fig. 3).

A set of two piezo sensors (affixed on metal plates using pocket tape), placed 8 ft. (∼2.438 m) apart, were installed

in the one-wheel path only (typically, the right wheel path). The portable WIM unit automatically converts the data

collected from the single wheel path (or half lane width) to the total axle weight and gross vehicle weight (GVW) data

by applying a built-in multiplication factor of two, i.e., the measured wheel load is multiplied by two to obtain the axle

load. It should, however, be emphasized that because the weight measurements are done in a single wheel path, the

selection of the Hp-WIM installation location or site is critical in order to minimize measurement errors. As noted in

figure 3, the length of the PZT sensor is sufficient to cover the dual-tire width, including the wandering effects.

Generally, the preferred location for Hp-WIM installation should have less than 1 % and 2 % longitudinal

slope and transverse slope (cross fall), respectively.11 The measured longitudinal and transverse slopes at the site

location were 0.5 8 % and 1.06 %, respectively. Furthermore, a high-speed profile survey conducted prior to the

portable WIM setup indicated that the pavement surface was smooth enough and appropriate for the installation

of the portable WIM system. The measured international roughness index (IRI) for the site location was 85.15 in./

mile (1.34 mm/m), well below the Federal Highway Administration (FHWA)’s condition rating criterion of

170 in./mile (2.68 mm/m).12–16 Therefore, the dynamic effects that could have negatively impacted the traffic

measurements were considered minimal.13,17

FIG. 2 Flow chart of the research methodology.
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Prior to any real-time traffic data measurements, the Hp-WIM system must be calibrated on-site, preferably

using a Class 9 (or Class 6 dump) truck.12–14 Based on the FHWA’s vehicle classification system (as illustrated in

fig. 4), Class 9 is the most common truck found on the roads in the United States (i.e., over 50 % of trucks are

Class 9), and hence, it is the preferred reference datum for calibration purposes.15,16 In the state of Texas, Class 6

dumps trucks are also very common, and virtually almost all the state transportation/road agency at district level

has a Class 6 dump truck, and hence, this is often used in lieu of a Class 9 truck.

Because of the absence of a standard Class 9 (or Class 6) truck, a Class 3 pickup truck was used for on-site

Hp-WIM calibrations in this study. In accordance with the portable WIM on-site calibration procedure described

in Faruk et al.,12 a representative calibration factor, within ±5 % error margin of the steering axle weight and

GVW, was obtained by making several calibration runs of the pickup truck (with known weight) at different

wheel speeds. In addition to the manual in situ calibration, the portable WIM also employs an auto-calibration

function to recalibrate the system continuously.12 This accounts for any loss of sensor functionality and sensitivity

with time throughout the data collection process. Note that the WIM controller unit used in this study, as shown

in figure 3C, had an accuracy/error rating of ±20 %.12

Once the unit was properly installed and calibrated, real-time traffic data were measured and collected in-

termittently for one year. A one-year’s traffic measurement period allowed for the determination of the monthly

adjustment factors that are required as inputs for ME pavement design. Routine service maintenance (including

sensor replacement as needed) and calibrations were conducted every three-months’ period to maintain data

quality and accuracy. The Hp-WIM system used for this study had the capability to measure and record traffic

data for vehicle speeds of at least 20 mph (∼32.180 km/h), including12,13]:

FIG. 3 Hp-WIM system setup on SH 7 in Bryan District: (A) sensor configuration, (B) pavement surface setup, (C) WIM

controller (1 ft ≈0.304 m).
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• Vehicle volume counts,
• Axle spacing (in feet),
• Vehicle classification (FHWA class),
• Speed (in mph),
• Total number of axles,
• Axle configuration (combination and arrangement of single, tandem, tridem, or quad axles),
• Weight of each axle (in pounds) and GVW (in pounds).

The obtained raw data were processed using some customized in-house developed data analysis software and

Microsoft (MS) excel macros to obtain the following traffic volume and weight parameters12,13:

a) Traffic volume parameters: Average daily traffic (ADT), average daily truck traffic (ADTT), percentage of
trucks, vehicle speed distribution, FHWA vehicle class distribution, and daily and hourly volume count
distribution.

b) Axle counts: number of axles per truck (ApT).
c) Traffic adjustment factors: hourly (HAF) and monthly (MAF).
d) Traffic weight parameters and axle load spectra: GVW distribution and axle weight distribution (axle load

spectra) for each axle group (single, tandem, tridem, and quad), equivalent axle load factors, axle load
distribution factors (ALDFs), and 18-kip (∼80 kN) ESALs.

ESTIMATION OF THE AXLE LOAD SPECTRA USING CLUSTER ANALYSIS

An alternative to using directly measured traffic data from WIM systems (permanent or portable) is to employ

cluster analysis techniques to estimate the axle load distribution based on available easy-to-obtain traffic data such

as volume counts and vehicle classification. As defined in various literature, cluster analysis is a process that

enables the generation of indirect traffic information for a specific site by synthesizing available ME-compatible

traffic information of sites that exhibit traffic characteristics similar to the specific site being analyzed.18–22

FIG. 4 FHWA vehicle classification system.15,16
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A detailed description of the clustering concepts can be found elsewhere.23–29 Obtaining axle load distribution

data for a specific highway through cluster analysis is basically a three-step process, namely, as follows:

• Step 1: Collecting traffic data from existing permanent WIM stations and grouping these data into clusters
of similar attributes to create a cluster database;

• Step 2: Collecting some easy-to-obtain traffic data, e.g., vehicle classification distribution (VCD), or using em-
pirical estimates for the specific highway location for which ME-compatible traffic data is being sought; and

• Step 3: Assigning the specific site to one of the clusters with closely matching attributes such as VCD and
using the representative traffic data (e.g., axle load distribution factors) of that cluster.

A variety of clustering analysis methodologies are available in the literature.18–22 Among these, the K-means

clustering18,19,22 and the hierarchical clustering20 have been successfully used to establish regional and statewide

axle load spectra data. In this study, the K-means clustering technique was used, following the graphical concepts

illustrated in figure 5.13

The K-means clustering predefines the number of clusters.13,18,19 Given a predefined cluster, K clusters are

created by associating every observation with the nearest mean and the least mean square error (MSE), standard

deviation, and coefficient of variation.13 The centroid of each K cluster then becomes the new mean, and the

previous steps are repeated until convergence has been reached.13,18,19 In this study, three years’ (2010 to 2012)

worth of traffic data from 29 (out of 35) selected Texas permanent WIM stations were grouped into 6 clusters,

herein referred to as the cluster database. The number of clusters was determined based on the MSE consid-

erations for the VCD and axle load distribution (ALD) data. A detailed description of the clustering techniques

adapted in this study can be found in Oh, Walubita, and Leidy21 and Walubita et al.13,30 Figure 6 exemplifies a

graphical representation of six Texas clusters based on the Class 9 tandem axle weight distribution data.22 As

previously stated, Class 9 are the most common trucks on the Texas roads, and the tandem constitutes the most

commonly loaded axle configuration and hence is exemplified in figure 6.13,22,30

To generate the ME-compatible traffic data for SH 7, PTT counters (as can be seen in fig. 7) were deployed

for also three weeks. Typical practice for PTT traffic measurements and data collection is 48 h versus the 504 h

conducted in this study.13 This system collects traffic volume, speed, and vehicle classification information.

However, no weight data are measured nor collected with the PTT counters and hence, the need to use clustering

analysis to estimate the axle load spectra and weight data. The collected data from the PTT counters were analyzed

to obtain the following traffic parameters12,13:

• ADT,
• ADTT,
• Truck percentage,

FIG. 5 K-means clustering concept. (A) One Cluster, (B) Two Clusters, (C) Four Clusters, (D) Six Clusters.
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• Vehicle speed information (average, maximum, and minimum speed for cars and trucks),
• FHWA VCD (Class 1 through 13).

The ADT, ADTT, truck percentage, and speed are among the traffic parameters that can be used as direct

inputs for ME modeling.13,22,30 The measured VCD data for trucks (namely, FHWA designation Class 4

through Class 13) were used as inputs for cluster analysis to identify the appropriate cluster from the cluster

database as follows: the measured VCD from SH 7 was mathematically and iteratively compared with the VCD

of each of the six established clusters and was assigned to a specific cluster (Cluster 1) by taking the least

absolute difference error between the measured and established VCD.13,22 That is, as shown in figure 8,

the VCD (trucks) measured from the PTT counters on SH 7 closely matched the VCD (trucks) for

Cluster 1 in the cluster database with an absolute MSE less than 0.05 %. Thereafter, the representative

ALD data and factors corresponding to the selected cluster (i.e., Cluster 1 in fig. 6 for this study) from

the cluster database were then used as the traffic input for the Level 1 ME pavement modeling and analysis.

In theory, the clustering analysis is essentially enabling a statistical-based selection of a cluster using the VCD

data for the PTT counters and then using the corresponding axle load spectra data for that cluster for ME

pavement design, modeling, and analysis.

ME Traffic Data Comparisons

The traffic data generated for the ME pavement modeling and analysis using the two aforementioned methods are

presented in Table 1 and figure9. It was observed that the volumetric traffic parameters obtained from the 2methods

are reasonably close, as can be seen in Table 1, with arithmetic differences significantly less than ±20 %. As compared
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with the Hp-WIM, the PTT counters recorded slightly higher ADT. However, the recorded ADTT was lower with

a lower truck percentage. Assuming 95 % reliability level, this small difference in the traffic volume measurements

(i.e., less than ±5 % difference) is statistically acceptable and bears a little negative impact on the ME pavement

performance prediction results.

Figure 9A and 9B present the VCD for the truck classes and the ALDFs for the Class 9 tandem axle. It needs

to be noted that the ALDFs were generated for all axle groups (single, tandem, tridem, and quad) and for all truck

classes (Class 4 through 13) to be used as ME modeling inputs. However, in figure 9B, the Class 9 truck tandem

axles were used as an example because it was the most commonly encountered truck axle configuration on high-

way SH 7 as well as most US roads.

It is noted that figure 9A shows similar truck class distribution patterns for both methods with a high

percentage of Class 9 trucks. However, the ALDFs obtained from the Hp-WIM varied significantly from those

estimated from the cluster analysis (Cluster 1), as shown in figure 9B. The Hp-WIM identifies a number of

overloaded Class 9 tandem axles with axle loads of 34 kips (∼151.240 kN) or higher (a total of 17.5 % overweight

tandem axles), whereas the cluster analysis does not predict too many overloaded tandem axles (a total of 3.8 %

overweight tandem axles). It needs to be noted that the ALDFs from the portable WIM are direct field mea-

surement results, whereas those from the cluster analysis are estimated based on the measured VCDs, and this

could be one potential source of the disparity. Nonetheless, this shows the limitations of a cluster analysis–based

ALDF estimation scheme in which a limited number of clusters or groups are established to represent a large

number of highways. Considering that two highways with similar VCDs can have vastly different traffic loading

patterns and distributions, cluster analysis can produce ALDFs that considerably diverge from the actual loading

patterns for a particular highway, as is the case observed in figure 9B. Thus, continuous update of the cluster

database with more current traffic data (and more stations) is inevitable to optimize the prediction accuracy and

reliability of the clustering analysis. Otherwise, in such scenarios in which the comparisons are unacceptable with

FIG. 8 Comparison of truck VCD data (PTT counters versus cluster database).

TABLE 1
Basic traffic input parameters for ME pavement analysis (SH 7, WB)

Parameter Hp-WIM PTT Counter Arithmetic Difference

ADT 940 955 +1.57 %

Truck percentage 38.2 % 37.0 % −3.24 %

ADTT 359 354 −1.41 %

Number of lanes in design direction 1 1 …

% truck in design lane 100 100 …

Operation speed 68.0 66.8 −1.80 %
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significant differences, the ALDF data generated based on actual portable WIM measurements should take prec-

edence, whereas the cluster analysis would be revisited, including reviewing the clusters and population with more

current traffic data.

Figure 10 shows bar-chat plots of the ApT based on the Hp-WIMmeasurements and the values correspond-

ing to the Cluster 1 (PTT-cluster analysis). Like the volumetric traffic parameters in Table 1, the ApT are fairly

comparable, with only 3 data points registering an arithmetic difference exceeding 5 % for the Class 4 (9.24 % for

the single axles), Class 10 (6.80 % for tandem axles), and Class 10 (15.38 % for the tandem axles) trucks (see

Table 2). Thus, the two methods could be considered indifferent with respect to the axle counts and configuration

characterization per truck class or type. Based on the magnitude of the average arithmetic differences, it is also

FIG. 9 Example traffic inputs for ME modeling: (A) VCD and (B) ALDF.

FIG. 10 Number of ApT. (A) Hp-WIM, and (B) Cluster 1.
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evident that truck Class 10 (at 4.44 % difference) and the quad axle (at 15.38 %) are associated with the highest

data variability but, nonetheless, less than ±20 %.12–16

Distinctly observed in figure 10 are the truck Classes 5, 6, 7, 10, 11, and 12 that consistently exhibit 2, 1, 1,

1, 5, and 4 total single axles, respectively, which is in concurrence with the FHWA axle configuration shown in

figure 4.15,16 Evidently, this further substantiates the accuracy/credibility of both methods (Hp-WIM and clus-

tering analysis) when it comes to volumetric counts in terms of the number and configuration of ApT class or

type. Similarly, the HAF and MAF analyses, which are also computed from the volume counts of vehicles, were

comparable, with both the arithmetic mean difference andMSE being less than 20 %. As exemplified in figure9B,

it is therefore apparent that the major difference (>20 %) between the 2 methods (i.e., Hp-WIM versus clustering

[PTT-cluster analysis]) is predominantly related to the axle load spectra and weight data, namely, the ALDFs—

which, as presented, subsequently could have a significant impact on ME pavement modeling and performance

prediction.

ME Modeling for Pavement Performance Prediction

The ME pavement modeling and performance prediction for SH 7 (WB) were conducted using the TxME soft-

ware and the traffic data generated using the two aforementioned methods, namely, the Hp-WIM direct mea-

surements and PTT-cluster analysis (i.e., using Cluster 1 traffic data). The pavement structure and the material

properties used for ME modeling are described in the subsequent subsections.

PAVEMENT STRUCTURE AND MATERIAL PROPERTIES FOR HIGHWAY SH 7 (WB)

The pavement structure details of SH 7 (WB) in Robertson County (Bryan District) is presented in Table 3, along

with a picture of the pavement surface. As documented in the Texas Flexible Pavements and Overlays Database

(namely, the DSS), the SH 7 pavement was rehabilitated with a 2.5-inch-thick hot-mix asphalt (HMA) overlay

(Type C) and surface treatment (seal coat) in March of 2014.30 The HMA material properties presented in

Table 4 were obtained from laboratory tests conducted on the overlay materials collected during the rehabili-

tation process. Moduli of the existing underlying layers, as presented in Table 5, were back-calculated from

falling-weight-deflectometer (FWD) deflection measurements.30,31

COMPARISON BETWEEN ME-PREDICTED AND FIELD PERFORMANCE DATA

The TxME software was used for ME pavement performance modeling to predict the SH 7 performance based on

the traffic parameters, pavement structure, and material properties, listed in Tables 1, 3, and 4, respectively.30

TABLE 2
Arithmetic differences in the ApT data between the Hp-WIM measurements and Cluster 1

Truck Class

Absolute Differences in the Axle Configuration/Type Quantification per Truck

Overall AverageSteering Single Tandem Tridem Quad Total Singles

Class 4 0.00 % 9.24 % 4.43 % … … 2.27 % 3.99 %

Class 5 0.00 % 0.00 % … … … 0.00 % 0.00 %

Class 6 0.00 % … 0.00 % … … 0.00 % 0.00 %

Class 7 0.00 % … 0.00 % … 0.00 % 0.00 %

Class 8 0.00 % 0.65 % 0.80 % … … 0.34 % 0.45 %

Class 9 0.00 % 0.44 % 0.05 % … … 0.13 % 0.15 %

Class 10 0.00 % … 6.80 % 0.00 % 15.38 % 0.00 % 4.44 %

Class 11 0.00 % 0.00 % … … … 0.00 % 0.00 %

Class 12 0.00 % 0.00 % 0.00 % 0.00 % … 0.00 % 0.00 %

Class 13 0.00 % … … 0.00 % … 0.00 % 0.00 %

Overall average 0.00 % 1.72 % 2.01 % 0.00 % 15.38 % 0.27 % …
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Three sets of analysis were conducted, namely (a) Level 1 traffic data generated from the Hp-WIM system, de-

noted as “Hp-WIM” in figure 11; (b) Level 1 traffic data generated from PTT-cluster analysis (i.e., Cluster 1 traffic

data), denoted as “Cluster Analysis” in figure 11; and (c) Level 2 default traffic data. For all the three case sce-

narios, the pavement structural conditions and material properties were kept the same, thus ensuring an objective

and similar baseline comparison of the effects of the traffic input parameters on the pavement performance

prediction. The TxME software predicted pavement performances in terms of total pavement rutting, thermal

cracking, and fatigue cracking as a function of time in months, which is presented in figure 11A for rutting

TABLE 4
HMA material properties (lab measured) used for ME modeling

Dynamic Modulus (ksi)

Temp (°F) 0.1 Hz 0.5 Hz 1 Hz 5 Hz 10 Hz 25 Hz

14 (−10°C) 1,319.7 1,879.2 2,157.2 2,635.6 2,932.1 3,226.8

40 (4.44°C) 667.9 1,003.2 1,163.1 1,532.5 1,740.5 2,007.6

70 (21.11°C) 289.1 431.6 550.4 809.5 944.5 1,181.4

100 (37.78°C) 54.7 93.8 123.9 226.7 291.7 411.0

130 (54.44°C) 20.2 30.9 40.8 74.1 99.2 154.0

Rutting Properties Fracture Properties Thermal Coefficient

Temp (°F) α μ A n A, in/in/°F

104 0.62 1.47 4.65 × 10−6 4.13 7.76 × 10−5

122 0.52 0.24

Note: 1 ksi≅ 6,895 kN/m2≅ 6.895 MPa; 1 in. ≅ 25 mm.

TABLE 5
Back-calculated layer moduli (field measured) from FWD testing

Pavement Temperature, °F

Layer Average Layer Modulus, ksiAt Surface At 1-in. (∼25-mm) Depth

105.95(41.08°C) 107.00(41.67°C) Overlay 344 (∼2,372 MPa)

Existing HMA 629 (∼4,337 MPa)

Cement-treated base 187 (∼1,289 MPa)

Flexible base 70 (∼483 MPa)

Subgrade 15 (∼103 MPa)

TABLE 3
SH 7 pavement structure details

# Layer Description Thickness, in. Year Constructed Pavement Surface Condition after 28-Months Service Life

1 Surface treatment (seal coat) <1.0 March, 2014

2 Overlay (Type C, PG 64-22) 2.5 March, 2014

3 Existing HMA 3.5 …

4 Cement-treated base 10.5 …

5 Flex base 8.0 …

6 Subgrade ∞ …

Note: 1 inch ≅ 25 mm.
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performance. Figure 11A also includes the actual field-measured surface rutting (i.e., pavement total rutting) after

28 months of service life.30 On the other hand, figure 11B pictorially presents the field pavement surface con-

ditions on the WB direction of SH 7 after 28 months of service life.

Rutting Performance—ME Prediction versus Actual Field Measurements

Figure 11A illustrates that the field rutting measurements closely matched with the TxME-predicted results for

this highway section when Level 1 traffic data generated from the Hp-WIM were used. Rutting performance

predictions for both cluster analysis–generated axle load spectra (Level 1) and default (Level 2) traffic data under-

predicted the pavement rutting performance for SH 7 (WB section), with the former performing slightly better

than the latter. Considering that the pavement structure and material property inputs for the TxME models were

identical, the differences in TxME model–predicted rutting performances are clearly derived from the differences

in the traffic inputs, specifically, the ALDF data. Indeed, from the Class 9 tandem ALDFs presented in figure 9B,

it was seen that the Hp-WIM identifies a number of overloaded Class 9 tandem axles with axle loads of 34 kips or

higher (17.5 %), whereas the cluster analysis does not predict too many overloaded axles (3.8 %).

The observed difference in the axle load spectra and overweight trucks in figure 9B is very critical, given that

pavement damage increases exponentially with axle loading.32,33 That is, the limitation of cluster analysis to ac-

curately predict the presence of overweight axles on the SH 7WB is probably why the ME performance prediction

using the Level 1 cluster analysis traffic inputs is underestimating the actual pavement rutting damage. Similarly,

the default traffic input (Level 2) underestimates the rutting damage even more, because no ALDF is considered in

this case, i.e., the ME modeling is conducted based only on basic traffic input parameters such as ADTT, truck

percentage, etc. (Table 1). The underpredictions by the Level 1 cluster analysis and Level 2 were computed

to be about 24.11 % and 40.15 % lower than the actual field rut measurements, respectively, whereas the average

arithmetical difference between the Hp-WIM–based TxME predictions and actual field rut measurements was

only 5.30 %.

Cracking Performance—ME Prediction versus Actual Field Measurements

In terms of thermal and fatigue cracking, all three traffic-based inputs predicted zero damage. Indeed, the pre-

vailing pavement condition after 28 months of service life, as presented in Table 3 and figure 11B, also showed no

visible cracking damage. Overall, the results in figure 11 shows that even though the traffic parameters generated

using the cluster analysis method can perform better than the default (Level 2) traffic input values when it comes

to ME pavement performance prediction, the actual field-measured traffic weight data (site specific) provide the

most reliable predictions of the pavement performance.

Note that although in this study, the clustering analysis underpredicted rutting performance, the opposite

has been reported by Li et al.33 These differences in the results and findings could partially be attributed to the

FIG. 11 SH 7 (WB) (A) rutting performance and (B) visual surface conditions after 28-months service life.
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accuracy and currency of the cluster database and the calibration status of the ME performance prediction models

used. Thus, as previously stated, it is imperative to always populate the cluster database with more up-to-date

current traffic data and, if possible, use locally calibrated ME performance prediction models that are more rep-

resentative of the local field conditions so as to optimize accuracy and reliability.13 That is, the more the traffic

data and the more current they are, the better the prediction accuracy of the clustering analysis. Additionally, the

clustering analysis technique used, such as the K-means in this study, can also be a contributing factor to the

differences in the generated traffic data and performance predictions. Therefore, for given available traffic data

sets, an exhaustive exploration of various clustering techniques is recommended to select the best clustering tech-

nique that will optimize accuracy and reliability.

Overall, although clustering analysis offers a rapid and cost-effective estimate of traffic loading, actual

traffic measurements provide the most accurate and reliable data, and when practically and financially feasible,

it is strongly recommended to always use actual traffic data measurements for ME modeling, pavement design,

and performance predictions.13,34 Therefore, in the event of different ME performance predictions (as exem-

plified in fig. 11A), the predictions based on actual portable WIM traffic measurements, which are more rep-

resentative of in situ field conditions, should take precedence over the performance predictions based on cluster

analysis.

Summary of Findings

In this study, two traffic data collection methods for generating site-specific ME-compatible traffic data were

adopted for a Texas SH section, namely SH 7 in Bryan District. In the first of the two methods, volume, speed,

and axle load spectra data were directly measured using an Hp-WIM. For the second method, volume and speed

data were directly collected using a pneumatic tube–based traffic counters and the axle load information (the

ALDFs) were then estimated using a cluster analysis technique. The traffic input parameters thus generated were

used to predict pavement performances using the TxME software. State default traffic input parameters were also

used to conduct ME pavement performance prediction modeling. The ME-predicted pavement performances

were then comparatively studied against the actual field pavement performance, in terms of three pavement

distresses, namely, total pavement rutting, thermal cracking, and fatigue cracking. The overall findings and

recommendations from the study are summarized as follows:

• Traffic volumetric counts and speed data, including the ADT, ATT, percent of trucks, ApT, etc., were
satisfactorily comparable (i.e., with less than 20 % arithmetic difference) between the Hp-WIM measure-
ments and the clustering analysis method. In contrast, differences were noted with the axle load spectra data
(in particular, the ADFs), as was exemplified for the Class 9 tandem axles in this study.

• Site-specific traffic input parameters (Level 1 traffic inputs) are vital for accurate estimation of pavement
performance. With the increasing trend of truck loading on Texas highways, the default (Level 2) traffic
input parameters are not always able to accurately predict the actual traffic loading conditions because they
lack the level of detailed traffic loading information that Level 1 traffic data can convey through parameters
such as the ALDFs.

• Even though the cluster analysis method can provide axle load spectra data suited for Level 1 traffic input, it
is not always 100 % representative of the actual site-specific traffic loading patterns (as was observed in case
of the SH 7 in this study), with the need for caution when interpreting the ME modeling results. This can be
due to the fact that the cluster analysis method is typically based on existing traffic databases that may not
contain the most recent traffic data nor adequately reflect the current trends of increased axle loads. Thus,
continuously updating the cluster analysis framework and cluster database with more recent traffic data is
critical to maximize the prediction accuracy of the clustering analysis.

• For the SH 7 (WB) section, the portable WIM system (Hp-WIM) was able to generate Level 1 traffic data
with reasonably reliable quality. The ME model–predicted pavement rutting, when using portable WIM-
generated traffic data, closely matched the actual pavement rutting performance, thus providing validity to
the traffic data measured using this rather novel approach.
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• TheMEmodel–predicted pavement performance indicators, such as fatigue cracking and thermal cracking,
did not yield any conclusive result, because no visible cracking distresses were observed on the pavement
and the fact that performance modeling and evaluation were conducted for a relatively shorter service life.

In general, the study findings showed that the Hp-WIM (with proper setup, installation, and calibration) can

be used as an effective and practical means for collecting reliable site-specific ME-compatible traffic data as well as

to supplement traditional methods such as permanent WIM stations.13,34 Therefore, the portable WIM (such as

the Hp-WIM discussed in this article), where feasible and practically applicable, would be the technically pre-

ferred method over cluster analysis for generating ME traffic data.13,34,35 With respect to clustering analysis,

continuously updating the clusters (i.e., the cluster database) with more up-to-date traffic data is imperative

to optimize its prediction accuracy and reliability.13 The more the traffic data and the more current they

are, the better the reliability and prediction accuracy of the clustering analysis. For given available traffic data

sets, an exhaustive exploration of various (and perhaps more advanced) clustering techniques (in addition to the

K-means used in this study) is also strongly recommended to select the best clustering technique that will

optimize accuracy and reliability. Overall, interpretive caution should be exercised with the clustering analysis,

particularly with respect to the axle load spectra data, namely, the ALDFs.
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