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Highlights

e Formulates linear and quadratic model of smart home energy coordination for
the intelligent microgrid application.

 Designs optimal energy flow control strategies by the use of a smart metering
system based on wireless communication.

e Compares the dynamic performance of the energy management schemes based
on demand response.

 Provides the consumer with an opportunity of selling the energy to the utility
for a microgrid connected to the main grid.

e Applies system analysis on the energy components of a residential home.



Abstract

Smart grid technologies are a catalyst for the modernisation of the electrical
system whilst satisfying all electrical power stakeholders. The application of
intelligent systems results in more flexibility and reliability. This paper presents a
dynamic energy management system for a microgrid connected to a grid for
residential application. The system models a smart metering system to collect data
from different components of the electrical system. A grid-tied photovoltaic and
energy storage system model is optimally designed. The model uses the framework
of a smart grid based on demand response and energy pricing to coordinate the
energy flow of a home. Three optimal control scenarios are formulated, where the
opportunity energy is considered to be injected to the main grid. These scenarios
are two linear methods (open and closed-loop models) and a quadratic approach
based on model predictive control. It was observed that the energy storage system
plays an essential role in the context of energy-saving and gain from the demand
side. The models provide benefits in terms of energy-saving and energy cost. The
performance of dynamic modelling is validated with the experimental data from
the smart metering system.
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Nomenclature

Parameters and constants

AC Altemative current

AMI Advanced metering infrastructure

BESS Battery energy storage system

cc Control computation

CL Closed-loop

cv Control variable

DC Direct current

DEG Distributed energy generation

DER Distributed energy resources

DES Distributed energy storage

DG Distributed generation

DR Demand response

DSM Demand side management

EMS Energy management system

ESS Energy storage system

EV Electric vehicle

GSM Global system mobile

IEEE Institute of Electrical and Electronics Engi-
neers

MPC Model predictive control

MV Manipulated variable

oP Open-loop

Pl Proportional-integral

PV Photovoltaic

RER Renewable energy resource

RES Renewable energy system

RTP Real-time price

SMS Smart metering system

Wi-Fi Wireless fidelity

Indices

bat Battery

¢ Control

ch, cha,5 Charging, input from battery charging

CL Closed-loop

d Demand

d.avrg Hourly average energy demand

dis, disc,3 Discharging, input from battery discharg-
ing

der Real-time signal from DER

h Predicted

i Initial or given bus of the network

inv Inverter

J Sampling of time control

gr Grid

I Load

max Maximum of the signal

min Minimum of the signal

oL Open loop




op.4 Opportunity, input from the opportunity

pu, | Photovoltaic, input from the PV
rw Renewable energy

ug.2 Utlity grid, input from the utility grid
Variables

4 Variation [-]

n Efficiency [-]

A State matrix [-]

B Input matrix [-]

= Output matrix [-]

Cost Cost [Rand]

CB Battery capadty [kWh]

D Feed forward matrix [-]

DOD Depth of discharge of ESS [-]

E Energy [kWh]

Ha Hours of autonomy of the BESS [h]

I Hourly solar irradiation incident [kW/m?]
F Performance index [Rand] and/or [-]

m Number of inputs [-]

n Rank of matrix or number of constraints [-]
N Time horizon of the system [h]

p Price (real-time pricing) [Rand/kWh]

q Number of outputs [-]

R Reference [Rand] and/or [-]

S Section or surface [m?]

soC State of charge of the ESS [-]

' Sampling of time [h]

u Input of the system [kWh]

x State vector [-]

¥ Output [Rand]

1. Introduction

The architectural evolution of the metering assists in the electrical network to
unpack new features of coordinating the power flow in real-time for the benefit of
all energy stakeholders. The genealogy tree of measuring the power flow in the
electrical system is currently being revolutionised by the generation of intelligent
grid technologies, which introduce the smart metering system (SMS) [1], [2], [3],
[4]- This innovation is based on the development of the advanced metering
infrastructure (AMI). The SMS has modernised the traditional power grid by
introducing a real-time bi-directional power monitoring system. Several energy
management opportunities have been created through the SMS for power network
applications with excellent monitoring of the power flow in the electrical

system [5].



The energy revolution is dependent on the features of smart grid technologies and
assists in the integration of renewable energy resources (RERs) into the electrical
grid. The energy management system (EMS), in the framework of smart grids,
creates an opportunity for both the consumer and supplier of electricity to operate
efficiently for an improved electrical system. The energy storage system (ESS)
plays an essential role in the operational process of the EMS when the RERs are
integrated into the grid [6], [7], [8], [9], [10]. The ESS has also improved the
operation of an isolated electrical system which is only supplied by RERs. The
application of a small microgrid, namely nanogrid or picogrid in the residential
sector usually requires the use of photovoltaic (PV), which has an ESS and can
operate either in grid-connected or islanded mode. The application of SMS allows
the energy system of a pico/nanogrid or residential home to be effectively
coordinated for improved performance of distributed energy resources (DERs) on
the electrical network [5]. One of the best applications for the AMI within the EMS
is demand response (DR).

There are several types of DR programs for EMS, namely contracted response,
price-based DR and incentive-based DR [5]. DR can provide opportunities for
ancillary services [11] and reliability for maintaining the electrical system during
extreme events [12]. Several research works present and apply the benefits of the
DR in the electrical system [13], [14], [15], [16], [17]. An optimisation based load
and DER scheduling method is designed through the use of an improved Nash-
equilibrium-based game-theoretic framework for demand side management
(DSM) to coordinate the energy flow of the electrical system in [18]. This method
was established by combining two DR programs, namely a real-time price (RTP)
retail tariff model based on historical and predicted wholesale prices and direct
load control. It was observed that the simulation of the developed algorithm
resulted in a reduction of peak demand.

The RTP model allows consumers to monitor the cost of energy consumption in
real-time [19]. Zhang et al. [20] proposed a novel price strategy that can deal with
power volatility on total energy production cost. The proposed method uses a
decentralised demand response scheme. The model explores the possibility of
reducing the volatility and peak-to-valley difference of aggregated load cure. The
designed model was based on a RTP environment. This strategy was also
adaptable to scenarios where the RERs could be integrated. The main objective of
peer-to-peer electricity trading pricing, which is driven by its benefits to both
prosumer and consumer, is assessed in [21]. The conceptual framework of the
developed model was implemented for a microgrid with a PV system in a
residential sector. The economic feasibility of the energy system was evaluated and
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optimal energy trading strategy among all stakeholders of the energy system was
established. The proposed model applied a DR scheme through the use of RTP to
increase profits.

Park et al. [22] developed a convex optimisation under DR program for a
residential home. The model applied smart grid technologies to reformulate the
nonconvex problem as a convex to ensure an optimal solution that can maximise
user convenience. As the optimisation model is designed by the DR scheme, the
mathematical formulation of the system model is developed through DR-based
two price policies, namely RTP and progressive approach. Therefore, a heuristic
algorithm is developed to obtain an optimal solution from the approximated near-
optimal solution for a given nonconvex problem. It was observed that the
developed model could also be implemented with the integration of RERs. In [23],
an optimal energy dispatch problem was formulated for household energy
management using DR. The proposed strategy was designed to combine two
different levels, distributed generation (DG) and RTP-based load control and
storage-based energy dispatch. The developed model ensures cost-effective energy
coordination by the use of a DSM application. The system used wind power and
solar panel as DG. The proposed model can meet the end-user’s requirements and
reduce the electricity costs from the utility grid.

A novel energy management based on real-time and long-term predictions of the
solar energy system and load demand is proposed in [24]. The performance of the
proposed EMS aims to coordinate energy distribution and analyse the cost of a
microgrid. The control system used predictive dynamic programming to manage
the energy flow for residential application optimally. The quasi microgrid topology
based on a fuzzy controlled energy management unit that can select the
appropriate operation mode is respectively designed in [25] and [26]. These
models consider the real-time and long-term data to coordinate the energy
generation and consumption. A fuzzy-logic controller was selected due to its
simplicity to design a comprehensive and intuitive EMS for a large microgrid and
its simple linguistic rules that do not require complex mathematical modelling.

In [27], the energy management of a smart home used a quasi configuration for
DG, grid integration and DR based RTP. The proposed model offered the end-user
an opportunity to sell energy to the main grid under an optimal control strategy.
The flexibility of the designed model enabled the coordination of different DER
and satisfies the consumer requirements of minimising the energy cost from the
utility grid and the energy payback opportunity from the utility grid. In [28], a
closed-loop model based on DR through the use of dynamic energy and RER



integration was developed. The proposed model used a proportional—integral (PI)
control to formulate a control-theoretic of the energy market management.
Through the applied dynamic approach, the difference between the demand and
RER was resolved by controlling the elastic demand and measuring the generation
of renewable energy.

The dynamic energy management system is effective when it is implemented in a
smart grid [29]. This methodology aims to coordinate the energy flow of several
power generation components that contain RER and battery energy storage
system (BESS) [30], [31]. The proposed system in [32] has the possibility to
handle the model uncertainty from the input signal of the DG and/or utility grid,
due to the integration of BESS. In [33], the uncertainty of the forecasted
parameters can be managed with a robust convex optimisation using the Monte
Carlo simulation method for EMS. The model predictive control (MPC) is
considered as one of the best techniques of formulating a dynamic EMS. The MPC
can effectively cope with data uncertainties in real-time [34]. This structure can be
implemented in an open or closed-loop scheme. In [35], a dynamic model for MPC
energy management based DR is developed. The designed formulation was under
a closed-loop structure for a hybrid system. Detailed research work identified an
essential gap in terms of payback energy cost opportunity for the end-user. This
paper is, therefore, an advanced model of [27], [35] for a residential application
where the SMS is used as an input to the EMS under DR based real-time
electricity pricing. The designed approach uses a linear methodology to develop
two control schemes, namely open and closed-loop model and the MPC controller
to formulate a closed-loop plan through a quadratic equation. The system
constitutes four main components. These are the utility grid to supply energy to
the load and DER that has three parts of the system. The DER contains
Distributed energy generation (DEG) (PV), distributed energy storage (DES) or
ESS and end-user. The PV and BESS are the two principal components of DER. It
is essential to note that in some scenarios the end-users can be considered as part
of DER while in other scenarios they cannot.

The key technical contributions made in this research work can be summarised as
follows:

+ Use the SMS’s feature to optimally determine the power flow of different
quadrants of a residential home in real-time.

+ Use the strategy to develop the optimal energy management of an intelligent
microgrid for residential power consumption.



» Design an optimal switching strategy to control different components of a
microgrid through the use of the DR scheme based on a real-time pricing
environment.

» Validate the designed models through real data from the intelligent
measurement of a residential home.

The remaining part of this research study can be summarised as follows: Section 2
presents the system description of the microgrid. Section 3 presents modelling
based on all different system scenarios. Section 4 assesses the system and provides
the computation structures of all scenarios. Section 5 depicts different results and
discussions. Section 6 presents the conclusion and proposes future research.

» Design an optimal switching strategy to control different components of a
microgrid through the use of the DR scheme based on a real-time pricing
environment.

+ Validate the designed models through real data from the intelligent
measurement of a residential home.

The remaining part of this research study can be summarised as follows: Section 2
presents the system description of the microgrid. Section 3 presents modelling
based on all different system scenarios. Section 4 assesses the system and provides
the computation structures of all scenarios. Section 5 depicts different results and
discussions. Section 6 presents the conclusion and proposes future research.

2. System description

It is not feasible to discuss RERs, ESSs and energy efficiency based on active
management without smart grid technologies [5]. The microgrid provides the
essence of systems thinking through the combination of several components of a
DER for improved power flow into the electrical system [36]. Fig. 1 presents a
detailed description of a microgrid operation. This structure is considered as a
model for energy management of a microgrid for the consumer and the supplier of
electric power [5]. This relationship can be summarised as follows:

»  When the utility supplier operates in microgrid environment without
considering any single relationship with the consumer, the need to have an
incredible resilience of that isolated system leads to the loss of reliability of the
electrical system, as shown in Fig. 1(a). The necessity of having a reliable



system can cause the entire system to lose its resilience, as explained in
Fig. 1(b).

+ For a microgrid operating as an islanded microgrid, as shown in Fig. 1(c),
i.e. disconnected from the utility grid, the need for end-users to have a more
reliable system reduces the resilience of the given power system. Conversely, if
consumers opt for greater resilience of the islanded microgrid system, the
reliability of the system is reduced. This is caused by the uncertainty and
resource constraints associated with RERs.

+ A microgrid connected to the main grid provides the electrical system with
excellent reliability and resilience that assist to achieve the power system’s
operational objectives of satisfying both the supplier and consumer of the
energy Fig. 1(d).

» The research study aims to investigate the system behaviour based on

microgrid goals, as depicted in Fig. 1. The system operates by integrating the
DER (PV and ESS) to the grid for residential applications based on intelligent
home energy management.

(a) Supplier and consumer resilience goal (b) Supplier and consumer reliability goal

Legend

Con. Consumer
Mic. Microgrid
Rel. Reliability

Res. Resilience
Sup. Supplier

(c¢) Microgrid implementation goal (d) Supplier and consumer in microgrid environment

Fig. 1. Microgrid goals: the relationship between supplier and consumer.



2.1. System layout

Fig. 2 presents an intelligent microgrid connected to the main grid for residential
application. It constitutes PV solar, ESS and utility grid to supply the power
demand of one home. The SMS provides an opportunity to collect the real-time
data of different energy generation components (PV, BESS and utility grid) of the
system. The communication of the network between the SMS and the optimal
switching of control computation (CC) model under EMS is based on wireless
fidelity (Wi-Fi). The model identifies the optimal behaviour of the system which
gives the consumers the opportunity to minimise the energy cost from the grid and
to maximise the energy from DER. Through the EMS philosophy for the
microgrid, as detailed in Fig. 1, the system operates in a manner that guarantees
the reliability and resilience of the entire electrical grid.

Control computation
ofthe EMS memmmeeeee- Wi-Fi (Communication)

Utility grid — |lectrical connection

Solar panel

Energy storage

1
]
i
i Residential home
]
1
1

Fig. 2. Smart microgrid for residential energy management system.

2.2, System distributed energy resource

The EMS for the microgrid requires accurate measurement of the energy
generation from different DER (PV and BESS). The energy from the solar panel is
a function of solar irradiation. The BESS uses a dynamic model based on either the
energy flow on the battery or state of charge (SOC) of the ESS. Eq. (1) describes
the time series of the energy generated from the solar panel [37], [38], [39].

E,, (t) = nmrAmrAt Zi\il Ly (t) (1)
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where I,,, is the solar irradiation incident measured on the PV panel [kW/m?], ¢ is
the time [h], N is the sampling time of the time series [h], At is the time variation
[h], A,, is the PV panel surface [m*], and Ml 18 the PV panel efficiency.

In this paper, the dynamic model of battery is formulated through the SOC of the
ESS. Therefore, the dynamic model of the SOC of the battery is formulated as [27]:

Eir (E) Ech ()7,
SOC (t + 1) = SOC (t) — =Tz + = ()
where E;, is the discharging energy from the battery [kWh], E,; is the energy to
charge to the battery [kWh], n,,, is the discharging efficiency of the ESS, 5, is the
charging efficiency of the BESS, 5, ., is the inverter efficiency of the ESS, and CB is
the capacity of the BESS [kWh], which is determined by:

— Ha Hn\'..:-.--_.;
CB = =565 "

where Ha, E;,,, and DOD are the hours of autonomy of the BESS [h], the average
of the energy demand [kWh/h] based on time series of the horizon N and depth of
discharge of BESS respectively. DOD is formulated by:

DOD (t) = 100 — SOC (t) (4)

Eq. (4) shows that the capacity of the BESS, as detailed Eq. (3), can vary as a
function of the time, which also affects Eq. (2). This variation demonstrates that
the capacity of BESS has a minimal, nominal and maximal value which depend on
the SOC of battery.

2.3. Utility grid

The energy flow from the main grid to the load is under dynamic electricity pricing
from the utility grid. Eq. (5) details the discrete dynamic model of the energy cost
system based on real-time electricity pricing. This model can be computed for the
energy generation system, either renewable or conventional power generation.
The SMS assists in the computation of Eq. (5) [19].

Costy (t + 1) = Costy (0) + py, () Ege (t) (5)

where Cost, p,, and E,, are the energy cost [Rand], the real-time electricity price
[Rand /kWh] and energy supply from the utility grid [kWh].
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. Model description and development

hrough this structure, the system energy flow can be expressed as follows:

E, (t) = Eg (t) @)
Epy (t) = Epi (t) + Een ()
Ebut {t} Ed:s (t) + Ech (t:' @
Ei {tJ' p’ui ﬂ + E } + Ed:'sc (t}
v | —>{ 54 »| BEss | —»] UG
I E Ecb(r)
i 1 E, )
A 4 A 4
E. () S5
E.(t (1
! ) di 1:
| DERs Pttt
. CC-EMS > SMS -
Electric connection CONSUMER E, (1)

(Home Demand)

Control connection

Fig. 3. Residential microgrid system connected to the grid for EMS.

where E,; is the supplied energy by the utility grid [kWh], E,., is the energy from
the PV to supply the load [kWh], E; is the energy demand [kWh], and E;,, is the
energy flow on the BESS [kWh]. The discharging energy of the battery as
described in Eq. (2) has two parts, namely the energy to supply the load and the
energy sold to the grid. This is expressed as follows:
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Egis (t) = Egise (t) + Eqp (1) (10)

where Eg;,. is the energy from the battery to supply the load [kWh], E,, is the
opportunity energy to sell to the utility grid [kWh]. Based on Egs. (2), (10) and the
limitations of ESS developed in [32], [40], the energy drawn on the battery
developed in Eq. (8) can be expressed during the charging and discharging process
respectively:

Eba!d:r {t:]

{Echu (t) 0 (11)
0 Edisc {t] + Eop (t}

where Ej,;, and Ep,, is the energy on the battery during the charging [kWh] and
discharging [kWh] process. Eq. (11) is also considered as the battery constraints to
avoid charging and discharging at the same time.

The input matrix of the designed system can be formulated through the analysis of
the model description as expressed in Fig. 3 and from Egs. (6) to (10). The control
variables (CVs) of the microgrid system is a function of the energy flow in each
component as described in Eq. (12).

(u(t)]=[E1(t) BEa2(t) Es(t) Ei(t) Es(t)]" (12)

where u (t) is the system input matrix [kWh], E; (t) = E,.; (t), Ex () = E, (1),

Ej (t) = Eaisc (1), By (t) = Eyp (t), and Es (t) = Ep, (t). From Eq. (12), it is shown
that the load demand does not directly affect the input of the system, but it is used
to model the system behaviour of CVs. Thus, if it assumed the system is
constituted of the controllable and non-controllable loads as developed in [41],
[42], [43], this can be effectively handled by the system modelling.

3.2. Open-loop EMS

The open-loop model aims to find an optimal solution of the input matrix of

Eq. (12). For a given time horizon of the system computation, it is assumed that
the control horizon is equated to the system horizon. The model performance
index is a function of the output of the system or manipulated variables (MVs) of
the designed system. From Eq. (5), the initial value of the energy cost (Cost (0)) in
most scenarios is equated t Cost (0) >0

Cost, (0) = Costy, (t) (13)
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The discrete model developed in Eq. (5) can be written as a function of Eq. (13)
and the CV of the utility grid can be defined in Eq. (12) as:

Costy (t + 1) = Costy (1) + p,, (1) Fa (t) (14)
Where Cost, is the utility electricity cost that the consumer pays to the DSO.

The same method, as way developed in Eq. (14), can be used for other MVs, the
designed system can be expressed as follows:

Costy (t + 1) = Costy (t) + p,, (t) Eq () (15)
Costs (L + 1) = Costs (L) + p,, (t) E5 (1) (16)
Costy (t + 1) = Costy (L) + p,, (t) Ey (1) (17)
Costs (t + 1) = Costs (t) + p., (t) E5 () (18)

where Cost,, Costs, Costy, Costy and p,,, are cost of energy supply by the PV
[Rand], cost of energy from the ESS to supply the load [Rand], cost of energy from
ESS to sell to the utility grid [Rand], cost of energy from the PV to charge the
battery [Rand] and the real-time electricity price from renewable energy resources
[Rand/kWh] respectively. From Egs. (14) to (18), the MVs matrix can be written
as:

[y (t)]=[Cost; (t) Costs (t) Costs (t) Costy (t) Costs (t)]" (19)
where y (t) is the output matrix of the open-loop system [Rand].

The objective function of the designed model is to maximise the use of DERs and
minimise the energy from the utility grid. Considering a given time horizon N, of
the system and linear expression of the output matrix as presented in Eq. (19) with
system objective function, the performance index can be expressed as:

min Jor, (t) = S, [Cost (t) —(Costy (t) + Costs (t) + Costy (t) + Costs (t))] (20)

where Jg; is the performance index of the open-loop system [Rand].

3.3. Closed-loop EMS

When the control horizon N. is different from the predicted time or output
horizon Ny, the closed-loop model can be described. The closed-loop scheme
objective function is written as:

min Joy (t) = 37 S0 [Costay, () —(Costyy, (t) + Costsy, (t) (21)

+ Costyy, (t) + Costyy, {f}}]
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3.4. Model predictive control EMS

The control scheme uses MPC. The objective function derives from a quadratic
design of the state space model. This is expressed as follows [37]:

ol ollie] -

where r (t) is the state vector, A is the state matrix, B is the input matrix, C is the
output matrix, and D is the feed forward matrix or disturbance matrix.

The designed system, as described in Fig. 2, Fig. 3, depends on combining energy
flow from different system components. These are detailed in Egs. (6), (9).
Through this design approach, the system model aims to be identified with the
dynamic model, expressed in Eq. (2). The dynamic model of the utility grid is
reformulated in Eq. (14). It is also worth noting that the energy flow on the
demand-side is assumed to be DER which does not generate any energy. The cost
of energies from the DER as the energy flows are detailed from Egs. (7) to (g) can
be written as a function of the system CVs described in Eq. (12) as:

Costy, (t + 1) = Costy, () + p,, (t) (Ey (t) + E5 (1)) (23)
Costpat (t +1) = Costyas (t) + ppy, (t) (B3 (t) + Eq (t) + Es (1)) (24)
Costy (t + 1) = Costy + p,, (t) By (t) + p,, (t) Bz (t) + py, (t) B3 (1) (25)

where Cost,, is the cost of energy on the PV generation [Rand], Costy,.: cost of
energy on the BESS [Rand] and Cost; cost of consumption energy [Rand].

The state vector of the MPC design is a function of Egs. (2), (14) to (23), (24), (25),
and it is expressed as follows:

(x(t)]= [SOC(t) Costy (t) Costy, (t) Costyy (t) Costy (t) ]T (26)

Through the state vector, Eq. (26), and the designed state—space model of
Eq. (22), the state matrix can be formulated as:

A=1, (27)

where I, is an identity matrix of n x n, with n = 5 which is the number of the
states of the system model and also the number of the CVs variables of the system
defined in Eq. (12). Based on the system model as described in Section 3.1 and
from Egs. (22) to (27), the input matrix of the MPC design is expressed as follows:
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[0 0 e TR TR | (28)
0 p,(t) 0 0 0
Bt)=|p, ) o0 0 0 Pru ()
0 0 Pro (t) Prw () Py (F)
[ Prw (8) P (B) P (E) 0 U

From Egs. (22) to (28), the output matrix of the state—space model can be written
as:

C=1I, (29)

Eq. (29) shows that the output matrix of the designed system is the same as the
state matrix. Therefore, the output vector of the MPC design is the same as the
state vector presented in Eq. (26). This system identification shows that the MV
vector of the linear open and closed-loop scheme, as detailed in Eq. (19), is
different from the output vector of the MPC design, which can be expressed as:

[y (t)]= [SOC (t) Costy (t) Costy, (t) Costyy (t) Cost; (t)]" (30)

The MPC performance index of the EMS system is determined by:

T

min Jype (£) = Y0 0 (us, (1) — Ry, (1) (w, (£) — Ry, (1)) (31)

where R (t) is the system reference in which the model should track. For a given
time ¢ of the predicted time horizon or system time horizon Nj, and the control
horizon sample j = ¢, the MV vector as described in Eq. (31) is determined by:

y(t) = Fz(t) + B (t)u(t) (32)
with F () = [cA ca? ... ca™]", and

CB() 0 0

CAB(t) CB(1) 0
(1) =

| cAM T B(t) cAMTIB(t) --- CAMNB(t) ]

Eq. (31) presents a performance index of a quadratic function for the MPC. The
designed structure of both open and closed-loop scheme has a linear model of the
objective function, as described in Egs. (21) and (20).
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3.5. System constraints

The system constraint of the control schemes derives from the CVs, MVs, designed
limitations, state vector and the increment of the input signal. It is important to
note that the constraint matrix depends on the system inputs constraints. Table 1
summarises the impact of the system constraints for each designed model, namely
open-loop, closed-loop and MPC. The determination of a maximal number of
constraints that can be handled on any designed control system is determined in
Eq. (33). This formulation is more applicable for an MPC system design [37], and
it can also be set for other control model schemes.

n = 4mN, + 2qN}, (33)

where m is the number of inputs and g is the number of outputs of the system
design.

Apart from Egs. (6), (7), (9), (11) which define the constraint matrix of load
demand, ESS, PV, utility grid, as presented in Table 1, the CVs, MVs, increment of
CV and state vector constraints can be listed as:

{ M, = [—fnff]T (24)
M, = [~ Emin, » Bmaa, |
{ M, = [-&,&|" (35)
Yo, = [(—Costpmin, + Fz(t)), (Costmas, — Fa ()"
My, = [~Uy,, Uy (36)
{'}'3,- = [(AEnin, + U1 AE; (k- 1)), (AEmas, — U1 AE; (k — 1}}].]1
{ My, = [~@m,, Tm,]" (37
Yy, = (i () = Zmin, ) Ly (Tmaa, — i (T)) L]T

where i = 1,2, 3,4 and 5, which represent each CV, MV and state vector of the
system. The particularity of the MPC design as described in Section 3.4 is that the
number of inputs, outputs and state of the system is equated. I and U; represent a
diagonal identity matrix attached to CV and MV respectively, U, is the lower
triangular vector and L is an identity vector of control horizon row which is joined
to x,,, . The system constraint is the computation of each constraint, as specified in
Table 1 depending on a given control scheme. For the open and closed-loop plan,
the state constraint that the system may consider is only based on the state of
charge of the battery and in its inequality model as described in Table 1. It should
be noted that the CVs contain the lower and upper boundaries constraints. The
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SOC constraint of the linear model does not have considerable impact on the
inequality constraint as compared to the MPC scheme. The computation matrix of
the constraint system is represented by [37]:

ME (t) < v (38)

where M and v individually combine all the M;, and v, where k represents the
type of constraint as described in Table 1.

Table 1. Summary of constraints matrix.

Constraint Type Open-loop Closed-Loop MPC Equation
Inputs (CVs) Inequality J v iy Eq. (34)
Outputs (MVs) Inequality X X vy Eq. (35)
Increment of CV Inequality X X v Eq. (36)
State vector Inequality X X v Eq. (37)
Load demand Equality v y v Eq. (9)
Battery storage Equality v y v Eq. (11)
Solar PV supply Equality v v v Eq. (7)
Utility grid Equality v v v Eq. (6)

4. System analysis and algorithm

Fig. 4 presents the system interaction based on system analysis and systems
thinking of the designed model. It shows the relationship of the entire electrical
system, as presented in Fig. 3. This is derived from several subsystems and is
composed of four main components and some subsystem components. The other
parts of the system are the energy market, IEEE standards, smart switching
system, optimal control system, and SMS that contains the AMI, user interface
and real-time monitoring to depict the non-optimal and optimal results. The
relationship of different subsystems permits determination of the interaction of
different components of the model. The analysis of different subsystems or
components of the system design layout for a grid-integrating DER is the
advanced development of Fig. 1, which provides the principal goals of a
microgrid’s operation.
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Through the layout model of the EMS, the computational steps of the system
design layout of the microgrid, as depicted in Fig. 4, can be used to describe the
implementation algorithm of each scenario. The summary algorithm for all control
schemes can be stepped as follows:

B IEEE Standards +
r 3
v *
Energy i o Utility =
Market /" " Grid * DER
r 3 ’
Advanced v
Metering C—I Advanced h 4
Infrastructure Optimal Control Smart
1 System Switching
A 2 | 4 System
User Interface

; A A
Normal Power Optimal Power
Supply Supply

A A A 4

Consumer <+

Y

Fig. 4. System design layout: grid-connected DER.

Step 1:
Start the optimal control process for either open or closed-loop or MPC
scheme by identifying the CVs.

Step 2:
Set the time horizon of the control structure and/or the control horizon N,
for the closed-loop and MPC model.

Step 3:
Update system parameters at a sample of time. This is chosen to be at ¢ = i
wherei = [1.. N

Step 4:
Read the energy flows on each component through the SMS as described in
Fig. 2, Fig. 3.
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Step 5:
Update the system constraints (Eq. (38)) at given time ¢ —= { for the
computing control scheme (open loop, closed-loop and MPC scheme) based
on Table 1 and system performance requirements.

Step 6:
Compute the EMS through the use of SMS strategy based on DR as
described in Egs. (20) or (21) or (31), for open-loop or closed loop or MPC
design respectively.

Step 7:
Find the optimal solution of the CVs for either open-loop or closed-loop or
MPC scheme. If this solution is not optimal, repeat step 2 to 7 to get the
optimal solution.

Step 8:
Generate the optimal solution for open-loop. Update the system control
horizon for either closed-loop or MPC scheme, at t,,,4,50q = i + 1.

Step o:
Repeat the system process for either the closed-loop or MPC control model
from step 2 and 9 until the computed model reaches the solution at the
specified time horizon.

Step 10:
Generate the optimal solution of the system from closed-loop control or
MPC design.
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Fig. 5. Daily energy demand and generated energy from PV panel.

5. Simulation of results and discussion

The computation of the system constraints, especially for MPC scheme as
presented in Table 1, does not necessarily consider all independent constraints of
MVs, state vector and the increment of CVs. The consideration of system
constraints depends on the system performance requirements that the MVs have
to follow. Fig. 5 depicts the load profile and the forecasting generated power from
the PV panel. It is assumed that these data are accurate and without uncertainty.
Table 2 provides the computational parameters. The energy price is expressed in
Rand/kWh. All minimum values of CVs are set to zero while their maximum
values are attached to the peak value of the energy demand.
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Table 2. Computation parameters.

Parameters Values Parameters Values
Men 0'85 SUCHH:H' 0.95
Miise 0.95 SOCin 0.40
lr-lr.iru- 0-92 H& 5
Pryr 1.25 Ny, 24
Prew 0-65 J"'lrc [1 ﬁnr.rt]
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Fig. 6. Energy supply to the load from the utility grid.
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5.1. Presentation of the results

Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10 present the system results of all CVs after the
computation of all different scenarios. For open-loop scheme, the control horizon,
N, is the same as the predicted horizon (N, = 24), as described in Table 2. The
closed-loop scheme has different values for control and predicted horizon, and
these computation parameters are set to N, = 1 and N, = 24. The MPC scheme
based on EMS used the quasi configuration as the closed-loop model setting of
N, =2and N, = 24. For the MPC, the control horizon, N, = 2, is set based on the
optimal selection as described in [35]. All scenarios used the same computation
scheme detailed in Table 2. The system computation of all three scenarios use the
designed objective function as formulated in Egs. (20), (21), and (31) respectively.
Eq. (31), which formulates the performance index of the MPC scheme shows that
the computation structure of these scenarios needs computational reference data.
Therefore, the system used the results from the closed-loop model to set the target
of the MPC structure.

Fig. 6 depicts the optimal results of the energy consumption from the main grid.
As a microgrid system, the energy from DER to supply the end-user is presented
in Fig. 7, Fig. 9, both BESS and PV. The implementation of results shows an
important minimisation of the energy from the utility grid and maximisation of
the energy from the PV and BESS to supply the load demand. Fig. 8 depicts the
optimal energy to charge the battery for all three scenarios.
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Fig. 7. Energy supply to the load from battery (discharging energy from ESS).
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5.2. Discussion of the results

It was observed that the generated energy from the PV to charge the BESS has the
same profile for all scenarios, as described in Fig. 8. However, the energy from the
discharged battery to supply the end-user, as depicted in Fig. 7, has an important
limitation in the morning, a slight difference when the PV is generating, and a
quasi great gap in the evening. Fig. 9 shows the quasi reality in terms of having the
same profile of generated energy from the PV to supply the demand. For the linear
models and quadratic MPC scheme, the energy supplied from the PV panel does
not have the same profile. The linear models provide a considerable difference in
the energy demand from the PV compared to MPC. While the reference of the
system of Eq. (32) depends on the closed-loop model, the MPC model does not
depend on the system reference. This is due to the system constraints and
parameters, as detailed in Table 1, where the MPC scheme offers the possibility to
handle different constraints of the system design. The same observation is also
shown in Fig. 6, Fig. 7.

Fig. 10 presents the profiles of the energy opportunity from all scenarios. An
important profile of the opportunity from the MPC scheme was observed
compared to the open and closed-loop model. This profile has a different pattern
from the closed-loop model that is supposed to be the target of the opportunity
system for the MPC scenario. It is important to note that the system reference of
the MPC model does not directly depend on the CVs of the open-loop model.
Although this is computed in the function of the closed-loop scheme, Eq. (30)
provides a brief formulation of reference of the MPC controller which derives from
Egs. (2), (23), (24), (25). In addition, the MPC model uses a computation structure
where the input matrix, B (¢), varies in function of each computation time ¢ as
described in Eq. (28). This variation also affects the computation of the
performance index as formulated in Eq. (31), which has variable output structure
that is detailed in Eq. (32) where ¢ (t) is a function of B (t). This computation
formation is different from the MPS based EMS with a quadratic performance
index as designed in [37].
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Table 3 represents the computational results of all scenarios. This structure gives
the sum of the optimal consumed energy from the utility grid, opportunity energy,
payback value in the energy, non-optimal supply and the consumer gain. The non-
optimal energy supply is the sum of the load demand when it is assumed that
there is no implementation of any control scenario on the system. The payback
energy is the difference between the opportunity and the optimal energy from the
supply [27]. The consumer gain is the percentage of the energy that the end-user
can benefit when the control scenarios are implemented and it is formulated to be
the ratio of payback energy by the non-optimal supply. In terms of reference to
follow the optimal energy from the utility grid, the open-loop and MPC scheme
have roughly the same supplied energy from the main grid. However, the closed-
model offers a value that is different from other optimal control schemes. In
addition, greater value was observed in MPC opportunity energy as compared to
open and closed-loop computation. The MPC also has excellent payback energy
that the system can save. The third scenario (MPC) offers a 28% gain while the
open and closed-loop provide approximately 21% and 5% gain.
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Fig. 10. Opportunity Energy to sell to the utility grid.
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Table 3. System energy analysis based on consumer benefits.

Scenarios Optimal Opportunity Payback Non-optimal Consumer
energy energy energy energy supply energy gain
supply

Open-loop 10.11 25.09 14.98 719 0.21

scheme

Closed-loop 13.53 17.48 3.95 71.9 0.05

scheme

MPC scheme i0.20 30.48 20.28 71.9 0.28

When the energy price is considered as described in Table 2, the system cost
analysis of all scenarios can be presented. Table 4 shows the energy cost analysis
of all methods. This presentation depends on Egs. (5), (14), (18), where the system
is formulated with a real-time electricity pricing that does not vary in function of
time and the time series of the energy are summed, as described in Table 2, Table
3 respectively. The gain value thus decreases when it is considered in cost value
compared to the energy value, as shown in Table 3. The MPC computation still
offers the excellent value of energy cost gain for the consumer, which is 8%. The
open-loop model has 4% while the closed-loop provides -6%. It was observed that
for the closed-loop scheme, the consumer has to pay about 6% of the total cost of
energy demand to the supplier.

Table 4. System cost energy analysis based on consumer benefits.

Scenarios Optimal Opporitunity  Pavback Non-optimal Consumer
supply Cost Cost Cost cost supply cost gain

Open-loop 12.64 16.31 3.67 8q.88 0.04

scheme

Closed-loop 16.91 11.36 -5.55 89.88 -0.06

scheme

MPC scheme 12.75 19.81 7.06 8q.88 0.08

Fig. 11 depicts the dynamic of energy flowing on the battery based on the SOC, as
formulated in Eq. (2) with all system implementation variations of the SOC as
detailed in Eqgs. (3), (4). This outline provides an excellent profile of the energy
flowing on BESS for the closed-loop model compared to open and the MPC
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development structure. It is essential to note that the system implementation of
BESS does not take into consideration the constrained value of Ha, which is set to
5, as shown in Table 2. This computation system uses the hypothesis of
maximising the energy flow on the DES in which the BESS can discharge as much
as the demand needs to be supplied until it reaches the minimum value of the SOC
of battery [44]. A normal BESS that is used in DEG can be continually discharged
for more than 24 h or less than 2 days [9], [45], [46]. This depends on the
operational usage of BESS as the design system used the PV load. This is often
constrained by resource limitation, as shown in Fig. 5. The closed-loop model can
perform better in the context of microgrid goals, as depicted in Fig. 1. The open-
loop and MPC scheme also achieve the microgrid goals from the first predicted
horizon of the computational results. The open-loop also provides the lowest value
at the end of SOC profile that can reach the minimum, as shown in Fig. 11. For the
MPC scheme which provides more opportunity of the energy and cost, as detailed
in Table 3, Table 4, there is an opportunity to increase the system gain. This
problem can be resolved by adjusting the maximum value of the increment of the
input constraint and/or input constraint of the opportunity energy (E;). It was
observed that opting for a battery with the lowest minimum value of SOC can
resolve this problem for both open-loop and MPC scheme.
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Fig. 11. Time series of SOC of battery.
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6. Conclusion

The dynamic modelling of an energy management system has several design
options. These methodologies can improve the power flow of a given electrical
system and offer diverse opportunities to both the supplier and consumer of
electrical power. Intelligent metering allows for the implementation of energy
management strategies. In this paper, three scenarios of the dynamic energy
management system were formulated to coordinate the energy flow of a smart
microgrid for a residential application. The developed approaches use the demand
response based price under the real-time electricity pricing structure to manage
the microgrid. This consists of a grid integrating distributed energy generation and
storage. A smart home energy management model was designed to compute all
optimal control scenarios through system analysis. It was observed that the
formulated strategies provide a better energy gain to the consumer. This gain is a
result of the opportunity energy that the end-user can inject to the primary grid.
This assists the consumer to achieve up to 28% of the total energy consumption.
Through the energy cost analysis, the cost gain on the demand-side could reach
approximately 8%, which is less than the energy gain. This decrease in the value of
energy cost gain is due to the lower amount of price from the distributed energy
generation. The distributed energy storage also played an essential role in energy-
saving for all designed approaches. The closed-loop scheme provided an
outstanding performance of the dynamic model due to the profile of the state of
charge of battery with a negative value of cost gain. The model predictive control
offered an excellent improvement in the context of energy-saving as compared to
both linear strategies with a lower state of charge of the energy storage that can be
fixed by the system constraints. This could also be resolved with the lowest
minimal value of the state of charge and the lower maximal value of the input of
opportunity constraint and/or increment of the opportunity constraints.

Future research works will explore the implementation of the energy policies for
smart home implementation. The research will also be based on developing
approaches in terms of the power quality to be injected into the main grid and the
value of opportunity energy and energy cost gain for the benefit of all energy

stakeholders.
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