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Abstract

Invasive alien plants (IAPs) threaten biodiversity and critical ecosystem services

worldwide. There is, therefore, an urgent need to develop intervention measures to control
the spread of IAPs. Efforts to control and monitor the spread of IAPs would require their
current and detailed distribution over a large geographic area. Recently launched
multispectral instrument on-board Sentinel-2 provides free data with good spatiotemporal
and spectral resolution, compared to Landsat datasets. The Sentinel-2 dataset, therefore,
can be a useful source of the IAPs spatial information required for detection and monitoring
purposes. We combined Sentinel-2 data with a radiative transfer model to discriminate IAPs
(Acacia mearnsii and Acacia dealbata) from surrounding native tree species in Van Reenen,
KwaZulu-Natal, South Africa. The forward mode of combined PROSPECT leaf optical
properties model and SAIL canopy bidirectional reflectance model, also referred to as
PROSAIL was used to simulate reflectance corresponding to bands of Sentinel-MSI, while the
PROSAIL model inversion retrieved leaf area index (LAl) and canopy chlorophyll contents
(CCC) of the IAPs and native species. Both reflectance and retrieved properties were used to
map the distribution of the species within the study area. Our results showed that A.
mearnsii and A. dealbata could be accurately discriminated from the surrounding native
trees using integrated PROSAIL Sentinel-2 based model. We found that CCC— and LAl-based
(% accuracy = 92.8%, 91.4% for CCC and LA, respectively) modelling produced a higher
classification accuracy than field sampling-based modelling (Accuracy = 90.2% (IAP), 82.2%
(NAT) and kappa coefficient = 0.84 (IAP), 0.78 (NAT)). Simulated bands corresponding to
Sentinel-2 data, on the other hand, produced species maps comparable to field sampling-
based maps. Overall, the integrated PROSAIL Sentinel-2 inversion approach proved suitable
for detecting and mapping IAPs over a large area. Due to the high spatiotemporal coverage
of Sentinel-2, satellite images, the model developed showed the potential to contribute to
the IAPs monitoring systems.
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Index; Canopy Chlorophyll Content



1. Introduction

The world is experiencing a loss of biodiversity because of invasive alien plants (IAPs)
(Simberloff et al., 2013). IAPs are destructive because of their ability to compete with native
vegetation for soil nutrients, water and light. It has been argued that the competitiveness of
IAPs is associated with their unique biological traits (Morris et al., 2011, GroRe-Stoltenberg
et al., 2018). For example, Australian native Acacia spp (Maitre et al., 2011), impact native
species by discharging large amounts of nitrogen-rich litter (Makkonen et al., 2012),

thus, changes nutrient chemistry in such a way that it become toxic to native species (Morris
et al., 2011, Rascher et al., 2012, Hellmann et al., 2017). Furthermore, the species have also
been characterised as prolific water, and resource users (Chamier et al., 2012, van Wilgen
and Wilson, 2018) and they can alter carbon cycles (Rascher et al., 2012). These
characteristics enable the Australian Acacia spp. to adapt and establish in non-native
habitats. The distinctive characteristics of Australian Acacias have enabled them to be
spectrally distinguished from non-invasive species using air- or space-borne remote sensing
data (Pandey, Tate and Balzter, 2014).

In remote sensing, traits variations between species are used for their classification (Jiménez
and Diaz-Delgado, 2015). Currently, the most established and frequently used methods to
map species traits are empirical statistical regression approaches (GroRkinsky et al., 2015,
Chance et al., 2016, GroRe-Stoltenberg et al., 2016, Skowronek et al., 2017, GroRRe-
Stoltenberg et al., 2018). Although satisfactory application of statistical models has been
widely demonstrated, the empirical relationships between plant traits and reflectance data
are site-and species-specific (Punalekar et al. 2018). In addition, the techniques are
dependent on site-specific calibrations (Punalekar et al. 2018) and require a considerable
ground-based species database to validate every new situation. Hence, empirical models
lack robust portability and transferability. Furthermore, they are highly accurate when used
on hyperspectral data (Thenkabail, 2015, Thenkabail and Lyon, 2016), and these data are
costly for frequent mapping of IAPs over a larger area (Thenkabail et al., 2019). Recently,
efforts have been undertaken to integrate physically based radiative transfer models (RTMs)
inversion techniques for mapping plant traits and species distribution (Verrelst et al., 2015a,
Verrelst et al., 2015b).

Radiative transfer models adopt the same principles as that of radiative transfer (RT)
processes that take place during the radiation propagation within vegetation canopies
(Goel, 1988, Baret and Guyot, 1991; Dorrigo et al. 2008; Rivera et al., 2014). The models
simulate canopy spectral reflectance based on the pre-identified vegetation architecture
(LAI, Leaf Angle), leaf biochemical parameters (Chlorophyll, Leaf structure), background soil
structure (Soil Brightness, Roughness) and observation geometry of the plant and satellite
(Goel et al., 1988). There are two main categories of RTMs, namely, homogeneous and
heterogeneous models also known as 1-Dimensional and 3-Dimensional RTMs, respectively.
The former is for landscape that is represented by a constant horizontal distribution of
absorbing and scattering elements (Ross 1989). While the latter is used for non-uniform
distribution of features of the landscape (Verrelst et al. 2012). Among all the RTMs, the
Scattering by Arbitrary Inclined Leaves (SAIL) canopy bidirectional reflectance model
(Verhoef 1984) and the PROSPECT leaf optical properties model (Jacquemoud and Baret
1990) are the most popular homogenous (1-Dimensional) models. PROSPECT model is the 1-



D RTM that describe the optical properties of plant leaves from the visible (400 nm) to the
shortwave infrared (2500 nm). Unlike empirical models, RTMs are not site and sensor-
specific; as a result, they are robust and transferable (Baret and Guyot, 1991, Dorigo, 2008,
Rivera-Caicedo et al., 2017).

Until recently, RTMs have been mainly used to quantify physical and biochemical properties
of vegetation (Verrelst et al., 2013, Lazaro-Gredilla et al., 2014, Van Wittenberghe et al.,
2014, Delegido et al., 2015, Verrelst et al., 2015a, Verrelst et al., 2015b, Rivera-Caicedo et
al., 2017). The study by (Goel, 1988) was the first to invert SAIL to retrieve canopy
architecture (Leaf Area Index (LAl), leaf angle distribu- tion) on soybean. Recently, Féret et
al. (2011) optimised vegetation spectral indices and retrieval methods for quantifying leaf
properties using RTMs. Only a few studies have demonstrated interest in developing RTMs
based operational algorithms for species discrimination at a large scale (Féret and Asner,
2011, Verrelst et al., 2012; Rivera et al., 2013; Sun et al. 2018). Sun et al. 2018 retrieved leaf
biochemical properties beased on PROSPECT model inversion and different spectral
information using LOPEX and ANGERS experimental data. Verrelst et al., 2015a, Verrelst et
al., 2015b indicated the capability of Sentinel-2 for LAl retrieval using physical retrieval
methods. Recently Xu et al. (2019) successfully inverted accurate estimates of rice canopy
chlorophyll contents and LAl with coupling of radiative transfer and Bayesian network
models in Rugao, China.

Relevent to this study, is Verrelst et al. (2012) study that quantified vegetation structure in a
complex forest ecosystem based on LAl retrieved using combined 1D and 3D RT model and
land cover map produced from CHRIS/PROBA multi-angular observations. Verrelst et al.
(2012) demonstrated improvements afforded by the three-dimensional RT models
compared to one-dimensional (1D)-Flight RTM version for species distribution at landscape
scale. Although 3D-RT models are adequate for heterogeneous ecosystems requires a
considerable number of parameters when compared to 1D-RT models. Furthermore, the
assumption is difficult to meet, particularly for structurally complex canopies like forest
stands and sparse landscape. As mentioned before, the 1D-RTMs are based on the
assumption that plant canopies are horizontally uniform turbid medium (Ross 1989). As as
results, 1D approaches are usually used for mapping homogeneous grass and ignored for
tree species discrimination.

This highlight the value of the development strategy that use 1D-RT models (Jacquemoud &
Baret 1990) for modelling species distribution. Most IAPs grow in clusters, forming
homogeneous landscape. Therefore, we argue that one-dimensional RTMs can be suitable
in mapping distribution of IAPs. We, therefore, explored the utility of scaling in situ species
leaf reflectance to canopy using 1-D RTM with the objective of discriminating invasive
Acacia mearnsii from native species. Furthermore, we investigated the usefulness of canopy
properties of the species retrieved with RTMs to map the species at the field scale. To
accurately assess the potential of 1D model for species discrimination we also explored 3D
RTmodel.



In a nutshell, this study aimed to:

(i) explore the utility of scaling-up in situ leaf reflectance to canopy reflectance for
distinguishing Acacia species from native species;

(ii) assess the potential of radiative transfer model inversion methodology for
automating mapping distribution of Acacia species based on Sentinel-2 based
retrieved CCC and LAl parameters.

(iii) explore whether generated LAl and CCC maps can be usefully translated to the
spatial distribution of A. mearnsii, A.dealbata and native species from the study
site in Kwa-Zulu Natal, South Africa using multispectral Sentinel-2 image.

In this paper, we propose two successive approaches to assess the effectiveness of RTM for
the discrimination of IAPs from native trees. In the first approach, we explore the ability of
the extended leaf-level reflectance measurements of the species to the canopy scale for the
discrimination of Acacia spp. from native trees. The study combined radiative transfer
modelling with Analytical spectral device (ASD) leaf measurements to seek a way to
overcome the problem of unavailability of the canopy—level hyperspectral data. We used
canopy RT model to up-scale leaf optical properties to generate canopy reflectance for each
IAP and native species. By upscaling measured leaf reflectance, the actual biochemical
properties of the trees are used to constrain the model and makes the resulting canopy
reflectance to mimic the actual canopy reflectance of the trees. The leaf reflectance was
measured from experimental pot plants using a field spectrometer (400-2500 nm, 2100
bands), the ASD. The resulting simulated canopy spectra were then used to train and test a
classifier, and the accuracy of this classifier was compared with that trained with measured
canopy reflectance of the species.

The second approach presents the assessment of the classifier trained with simulations
from 1D and the 3D-RT model and comparing the performance of the classifiers with that
developed with the reflectance of the real Sentinel-2 image of the study area. Furthermore,
we explored the LAl and CCC properties of the species retrieved using 1D and the 3D-RT
model for mapping distribution of IAPs at a landscape scale and discussed the modelling
results. Although simulations are accurate and can dramatically reduce field survey costs
and increase time efficiency, the approach cannot replace experimental data for biodiversity
assessment. The methodology of this paper is divided in two main sections. The first
methods section describes the up scaling of leaf ASD based measured reflectance of the
studied species to canopy reflectance using PROSAIL RT model and compared their
usefulness with the canopy reflectance measured by an ASD for discriminating IAPs from
native species.

2. Material and methods

2.1. Species discrimination based on up-scaling leaf-level reflectance measurements of the
species to the canopy scale using canopy RTM

The leaf spectral were measured from the leaves collected from the canopies of the outdoor
experiment with potted plants (Table 1) located on the campus of the Council for Scientific
and Industrial Research (CSIR) for three months. The selection of the potted native plants



was based on the field observations in the study area. The species mentioned above were
found to be dominant and in the same area as A. mearnsii. The species show differences in
their foliage structures as depicted in Table 2. Approximately 1-metre tall species were
purchased from Nkosi Indigenous Plant Species Nursery based in KwaZulu-Natal, South
Africa. The potted plants were left to grow outdoors on the campus of the CSIR for three
months (1 September 2016 to 22 December 2016) before the start of the spectral data
collection. The trees were randomly placed to allow the same distribution of energy and
other resources. Due to the limited rainfall during this period, we watered the plants once a
week from 1 September to 21 December 2016. The experiment took into consideration the
soil type of study area to be surveyed for mapping species distribution at landscape level.

Table 1. Plant species used to explore spectral separability of Acacia mearnsii from native species.

Species Picture Main characteristics

name

Acacia ; *| Evergreen tree, 6-20m high. Fast growing leguminous (nitrogen fixing)
5

mearnsi i tree. The leaves are dark olive green branchlets with all parts finely hairy.

Leaflets short (1.5—4 mm).Flowering (August-September)

Vachellia A deciduous tree (7—12 m).Leaves (pinnate leaflets). Flowering (November-

karroo April)

Vachellia A deciduous tree (7—12 m).Leaves (pinnate leaflets). Flowering (November-

xanthphloea April)

Euclea crispa Variable short shrub to medium tree (8—20 m).Flowering (December-May)

Dombeya Scrambling shrub tree (10 m). Spiralled, ovate leaves.Flowering March-

tilicea August.

Dombeya A small deciduous tree (5—10 m). Spiralled irregular lobed dark green

rotundifolia leaves.Flowering (July- September)

Olea africana Tree; grow up to 14 m tall in the forest.Opposite, decussate, shiny, leathery
leaves.Flowering (October-January)

Celtis africana A deciduous tree (30 m).Leaves (smooth and slightly leathery).Flowering

(August -October)



Table 2. Parameterisation of the 4SAIL model used for upscaling in situ leaf reflectance and
absorbance.

Canopy optical properties Abbreviation Units Values

Leaf area index LAT 0.1-3

Dry/Wet soil factor psoil measured spectral data
Hotspot parameter H-spot 0.01

Solar zenith angle tts deg 0-90°

Observer zenith angle tto deg 15-75°

Relative azimuth angle psi deg o

Distribution of leaf angles LIDFa, LIDFb 30-90

2.1.1. Canopy level spectra measurements

We conducted nine sets of canopy radiance measurements on a biweekly basis from 23
December 2016 to 31 May 2017. They match the start and the end of the growing seasons
in South Africa. The canopy measurements were carried out between 10:00 and 14:00 on
cloud-free days. During the sampling campaign, we collected both leaf and canopy
reflectance of the selected species between 350 and 2500 nm using an ASD FieldSpec FR 3
Spectroradiometer at one nm bandwidth (Analytical Spectral Devices Inc., Boulder, USA).
We positioned the fibre optic (FOV 25°) at nadir and a height of approximately 30 cm above
the undisturbed individual tree canopy. Fig. 1 summarises the methodology applied in this
work.

Consequently, the field of view at the canopy level was circular, with a radius of 13.3 cm,
and the field of view area was covered entirely by leaves to ensure standardised
measurements. Furthermore, we eliminated the interference of the background (grass and
bare ground) reflectance by placing the pot on a black sheet (board) (Cho et al. 2012). We
used a ladder for the canopy measurements to ensure that the entire canopy was covered
to account for the canopy spectral variability. In order to get the canopy spectral data of
each plant, we randomly took six radiance readings and calculated the average to get one
canopy reflectance. Overall we collected 80 x 6 measurements per survey. To reduce the
effects of changing atmospheric and solar conditions, the reflectance of a Spectralon white
reference panel was recorded every 10—-15 measurements. The reflectance of the individual
tree was converted using a reference measurement for each sample by dividing the
reflected target radiance by the irradiance of the white Spectralon® panel.
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Fig. 1. Schematic illustration of the species discrimination approach using an RTM-based up-scaled
leaf reflectance.

2.1.2. Ledf level spectra measurements

After every canopy measurement, ten leaves per tree were randomly harvested and taken
to a dark laboratory room with the walls and the ceiling coated with the black material. The
darkroom was used to ensure stable atmospheric and uniform illumination conditions (Clark
et al. 2005; Ramoelo et at. 2011) We placed the leaves on a non-reflective black background
surface to avoid the impact of external illumination. However, the leaflets of the pinnate
leaves of A. mearnsii, V. karroo and V. xanthophloea (refer to Table. 1) were smaller than
the sensor FOV, and their reflectance measurements would therefore not be truly
representative of the leaf morphology and biochemistry because the leaf area per unit



surface would also impact the measured reflectance. Consequently, we counteracted this
effect by stacking the leaflets to simulate a continuous layer of leaves (Clark 2005). The fibre
optic with a FOV of 25° was attached to the leaf clip and placed in a nadir position from
approximately 4 cm above the leaves. However, in case of bigger leaves, no stacking of the
leaves was done during spectra data collection. Capturing leaf spectral properties of the
species, five measurements were collected per leaf by repositioning the leaf clip at five
different positions for each scan. The reflectance of the individual plant was obtained by
averaging the collected spectra reflectance per plant. The resultant spectral database
included that of A. mearnsii and seven grown native tree species.

2.1.3. Spectral reflectance pre-processing

The pre-processing of spectral reflectance was conducted using the Field Spectroscopy
Facility (FSF) Post-Processing Toolbox (MATLAB toolbox).

(i) the toolbox allowed for the exclusion of outliers caused by measurement errors
and atmospheric interference;

(ii) the 350-399 nm bands were not included in the analysis, thus limiting the
spectral range to the traditional visible (VIS) to shortwave infrared (SWIR)
(400 nm to 2500 nm);

(iii) in the case of canopy spectral reflectance, we removed SWIR ranges with high
noise that were identified through literature and visual inspection, that is, 1350—
1460 nm and 1790-1960 nm (GroRe-Stoltenberg, 2016).

After applying the pre-processing, 1759 canopy bands were left for analysis. Lastly, we
eliminated sensor noise by using a moving Savitzky-Golay filter (Savitzky and Golay, 1964)
with nine-point window size and second polynomial order. Furthermore, we explored
various spectral transformation algorithms to evaluate the impact of spectral
transformation on species discrimination. We considered the following methods:
multiplicative scatter correction (MSC) standard normal variation (SNV) and first derivatives.
The performance of the transformed data was then compared with that of the
untransformed spectral dataset.

At each site, upper-canopy leaf samples were collected using shotgun, pole-clipping and
tree-climbing techniques as necessary. Species were carefully selected to control for full
sunlight canopies. This process requires that two or more trained workers agree that at least
50% of a selected canopy maintains an unobstructed exposure to the sky. Individual
canopies meeting this criterion were then marked, and a voucher specimen was collected.

2.2. Radiative transfer modelling, up-scaling and forward simulation

Canopy scale radiative transfer models (4SAIL2) was used in this study, describing species at
the canopy scale using measured leaf optical properties. Simulation of canopy characteristic
of each species used the novelty of integrating measured leaf reflectance and variables
mandatory for parameterising 4SAIL2 provided in Table 2. The scaling of the 4SAIL2 was
performed by ranging variables values, which is a way to include variation in canopy
structure and geometry of species canopies (Table 2). By adjusting parameter ranges on



simulations, actual species reflectance can be successfully mimicked from simulated data.
The mean and standard deviation leaf reflectance of each species was used together with
canopy parameters to randomly simulate canopy reflectance. We first performed trial-and-
error experiments to test the effect of suitable parameter ranges for simulating canopy
reflectance from the leaf reflectance data. After the test, we found that an LAl of between
0.1 and 3 was adequate for simulating canopy spectral reflectance that matches that of the
native species. Therefore, LAl values were ranged from one to three; we parameterised the
leaf angle in such a way that accommodates all species leaf types. The hotspot effect in
plants was fixed based on prior knowledge. The diffuse radiation was between 10 and 50
(Table 2), and both dry and wet soil reflectance was collected during spectral data collection
campaigns. Finally, we used solar zenith and observer zenith angles ranging from 0 to 90
and 15-75" respectively. The rest of the parameters were fixed (Table 2). The model was
allowed to run in a forward mode and then in the inverse model using measured canopy
reflectance data. The resulting canopy data was used to train a classifier for discriminating
Acacia mearnsii from native species. The accuracy of the classifier training and tested with
simulated data was then compared with that of classifier trained using measured canopy
data of the species.

2.3. Developing a classifier to perform discrimination of A. Mearnsii from native trees

The tree-based random forest discriminant analysis (RF-DA) methods (Jones 2015;
Lemmond 2008) has been used for species. RF-DA was used because it has been shown
adequately for species discrimination using remote sensing data, particularly forests
landscape. Fig. 1 summarises the methodology applied in this work. The RF-DA used was
adapted from a Matlab Fathom Toolbox code provided by Jones (2015). For comparable
results, the measured and simulated datasets had the same number of samples. Both
simulated and measured data based models used 70% of the simulated canopy reflectance
for training and 30% for validation. The prediction accuracy of the species was assessed
through Multi-Class Confusion Matrix. The matrix provides the prediction statistics
parameters of each class and for the overall classification. The statistical parameters used to
assess accuracy were species-specific accuracy, separability error, sensitivity, specificity,
precision and FalsePositiveRate, F1-score and kappa coefficient. These metrics provided the
detailed performance of the classifier and were recommended for species discrimination
model assessment (Fielding and Bell 1997; Lurz et al. 2001).

3. Application of a radiative transfer model to discriminate IAPs distribution
from sentinel-2 image at field scale

Here we develop a RT model inversion methodology for physically based mapping of A.
mearnsii based on spectral data, LAl and CCC retrieved using Sentinel-2 data (10 bands with
20 m of spatial resolution). Most importantly, we explored the benefit of retrieving tree LAI
and CCC parameters without priori field data. The study explored coupled leaf (PROSPECT-5)
and canopy (4SAIL2) models to map distribution of invasive alien Acacia species.



3.1. Study site

We collected species geographical location of the species in sub-montane forests of
uThukela District Municipality in KwaZulu-Natal Province, South Africa (Fig. 3). To be
specific, the area is near Van Reenen's Pass (Lat-28.488023°and Lon 29.301116°) on the
Great Escarpment of the Drakensberg. The closest villages are Geluksberg, Howe, Nqula and
Wittekop. The closest towns are Bergville and Harrismith.

The primary uses of land are ranching and agriculture. The area is dominated by native tree
species Celtis africana, Dais cotinifolia, Diospyros lycioides, Podocarpus latifolius, Searsia
Rehmannia, Senegalia caffra, Vachellia sieberiana, Peltophorum africanum and Leucosidea
sericea. The invasive species of interest was A. mearnsii. However, during the field survey,
Acacia dealbata (silver wattle) was found to invade the study area. A. dealbata is the second
most aggressive invasive species after A. mearnsii in South Africa. Besides, A. mearnsii is
listed among the 100 most aggressive invaders in the world (Global invasive species
database, “One Hundred of the World's Worst Invasive Alien Species.

Morphologically, A. mearnsii and A. dealbata are similar. They are both fast-growing
evergreen leguminous trees that can grow up to 30 m high. Their leaves are bipinnate, but
with different colour and texture. For example, A. mearnsii has finely hairy dark olive-green
leaves, whereas the leaves of A. dealbata are blue-green to a silvery grey and broad. The
greyish silver leaves of A. dealbata are the main factor that distinguishes it from A. mearnsii.
Other than the leaves, the species are more easily distinguished during the flowering
season. The flowers of A. mearnsii are pale yellow and spherical, whereas A. dealbata has
bright yellow with globe-shaped heads. In the study area, A. dealbata start to bloom from
June to August, while the flowers of A. mearnsii start to appear in August and peak in
September and October (Impson et al., 2008).

3.2. Species sampling

The sampling method adopted in the study was transecting survey. This method was
adopted to detect the invasive plants along elevation gradients. Some transects started
along the rivers and ended on top of the hill far from the wet area. Transects were created
by overlaying Sentinel-2 imagery over the study area on Google Earth. Twenty transects
were created based on the Sentinel-2 MSI 20 m pixel size. The length of the transects was
determined based on density and homogeneity of the tree canopies and varied between
50 m and 200 m in length. Longer transects were created for areas with a sparse and high
variation of vegetation cover, while shorter ones were for dense and homogeneous cover.
Coordinates at the start and end of the transects were uploaded into a handheld Garmin
GPS device, which was used to navigate to the area in the field. In the field, tree species
along the transects were identified with the help of local species expert and coordinates
were recorded using a GPS device.

During data collection, canopies of species that overlapped one another were sampled
separately. Standing dead canopies were not counted but were noted to avoid confusion
during classification. Dense patches of A. mearnsii and A. dealbata scattered throughout the
study area were recorded. A summary of the sampled trees is presented in Table 3. From
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the desktop, GPS points collected from the field were converted to Keyhole Markup
Language (kml) file format and overlaid on Google Earth. This was done to validate that the
GPS points correspond to each sampled tree. Furthermore, we manually polygonised A.
mearnsii, A. dealbata and un-infested (natural forest) clusters in Google Earth.

Table 3. The number and name of the sampled native and invasive alien trees used for training and
validating classification model.

Dominant tree species Number of sampled tree per species
Aecacia gerrardii 180
Acacia dealbata/silver wattle 150
Acacia mearnsii/black wattle 166
Podocarpus latifolius 89
Vachellia sieheriana 101
Diospyros lycioides 23
Senegalia caffra 50
Leucosidea sericea 20
Peltophorum africanum A0
Celtis africana 69
Searsia rehmannia 75

3.3. Acquisition and pre-processing of the Sentinel-2 imagery

The Sentinel-2 Multispectral Instrument (MSI) images (tile number-L1C_T35JQJ) with zero to
less than 10% cloud cover was downloaded from the United States Geological Survey
through the Earth Explorer search interface. The georeferenced images were March 2018,
therefore, covering peal production season in South Africa. We processed reflectance
images from Top-Of-Atmosphere (TOA) level to tree canopy reflectance level using iCOR
(VITO 2017), available as a plug-in on the Sentinel Application Platform (SNAP) v5.0.
According to VITO (2017) iCOR, correct Sentinel-2 MSI data by identifying water and land
pixels using MODTRAN 5 radiative transfer model Look Up Tables (Berk et al., 2006). More
information on the procedure is outlined in VITO (2017). The spectral band's characteristics
of Sentinel-2 MSI images are presented in Table 4. The study site is mountainous; as a result,
Sentinel Topographic Illumination Correction was performed. The correction was executed
based on pixel-based Minnaert Correction Method (Ge et al., 2008), solar angles from
scenes metadata and 10 m Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model downloaded from Google Earth Engine operating system.
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Table 4. Sentinel-2 Multispectral Instrument (MSI) spectral characteristics: band centre and spatial
resolution of the ten bands used for the inversion and discrimination of Acacia mearnsii from native
trees.

Band name Band width(nm) Band centre(nm) Spatial resolution(m)
Blue gb 490 10
Green 45 560 10
Red ag 665 10
Red-edgex 20 704 20
Red-edge= 18 740 20
Red-edgez 28 783 20
Near-Infrared-1 141 B42 10
Near-Infrared-z 22 865 20
Shortwavelnfrared-z 142 1610 20
Shortwavelnfrared-z 240 2190 20

3.4. PROSAIL model inversion to derive LAl and CCC
3.4.1. lll-posed problem of RTM

Retrieval of vegetation parameters from remote sensing observations using inversion of
RTMs is an ill-posed problem. The solution tends to be the same for all situations (Combal et
al., 2002). Regularization of ill-posed problems with ancillary information, spatial data as
well as temporal constraints was shown to be effective (Dorrigo et al., 2008; Lauvernet et
al., 2008). Because the models have not been implemented for distinguishing IAPs from
native species on a landscape, no ancillary information can be confidently used in this study.
This study will adopt retrieval approach proposed by Verrelst et al. (2012). The approach
used classified species maps to retrieve the parameter of the species. The approach has
been providing a good overall estimate of the parameters (Verrelst et al., 2012). However,
the approach is useful when species or land cover is known. Briefly, the approach is another
way of constraining RT models, subsequently solving the ill-posed problem. In this study, we
developed a species distribution map before forward and inversion approaches of one-
dimensional PRO5SAIL4 canopy radiative transfer model. Therefore, the research presented
in this paper took the RTM inversion approach presented in Verrelst et al. (2012) and adopt
it for the discrimination of IAPs (Acacia spp.) from native trees using Sentinel-2 images as
the sole source of information. Fig. 2 outlined the methodology developed for this study.
The approach is based on LUT-species distribution image-based inversion strategies
demonstrated in Verrelst et al. (2012). The strategy is useful in the absence of in situ
parameter estimates, such as in this study.
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3.4.2. Classification

First, we distinguished invasive species from native species using field species data and the
discriminant random forest (DRF) methodology (Lemmond et al., 2008). The DRF is an
ensemble of decision trees that leverages linear discriminant analysis to perform node
splitting and determination of optimal linear decision boundary (Lemmond et al. 2008). Like
conventional random forest (RF), DRF uses bagging and random feature selection
approaches to select essential variables for the classification problem. The model measures
variable importance and feature ranking using a Mean Decrease in accuracy, through
random permutation. The most important aspect about RF is its insensitivity to the number
of input data used. As a result, it has been widely used for vegetation classification using
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satellite data (Naidoo et al., 2012; Lehmann et al., 2016). The robustness could be attributed
to the fact that RF is not affected by distribution (Fu et al., 2012) and redundancy of the
data. However, in cases of unbalanced class samples, RF, like most classifiers, often exhibits
a predictive bias in favour of oversampled class (es). In this study, we circumvented
implementing random oversampling examples (ROSE) (Lunardon et al., 2014) to the
minority class. The advantage of the technique is that no information is lost during
processing while improving prediction accuracy. The function resamples the minority class
until it reaches the number of samples of the majority class. In this study, the number of
trees to be grown was determined using a grid search approach. In this data, we
implemented the model in Python with Scikit-Learn (Pedregosa et al., 2011). During model
building, a subset from the calibration dataset is selected using the bootstrap sampling
approach and a classification tree is built. Each node within the tree is constructed by
selecting a random subset of the predictors (i.e., Sentinel bands) and determining which
predictors provide the most effective split for maximising purity in the resultant groups.
Nodes are continuously added to the tree until the desired number of trees have been built
(ntree). The algorithm performs the prediction accuracy of each forest tree and predictors
with the most votes are selected for tree species prediction.

3.4.3. FLIGHT and PROSAIL model inversion to derive LAl and CCC of the trees

We simulated canopy reflectance corresponding to Sentinel-2 band centres. To investigate
the potential of mapping A. mearnsii at the landscape level using Sentinel-2 MSI data the
respective pre-defined spectral response functions provided incorporated in ARTMO was
used to convert hyperspectral bands into Sentinel-2 MSI bands centres. The resultant centre
wavelengths were: Sentinel-2 (490 nm; 560 nm; 665 nm; 705 nm; 740 nm; 785 nm; 842 nm,
1601 nm and 2190 nm). The simulations were performed using the combined PROSPECT-5
leaf optical properties model (Féret et al. 2008) and SAIL canopy bidirectional reflectance
model (Verhoef et al. 2007). The PROSPECT-5 is an extension of the PROSPECT leaf optical
properties spectra model by Jacquemoud and Baret (1990). PROSPECT-5 simulates
reflectance and transmittance from 400 to 2500 nm spectrum region at a 1-nm spectral
sampling interval. The model simulates the plant leaf reflectance and transmittance using
leaf optical properties such as leaf mesophyll structure index (N), leaf chlorophyll content
(Cab), leaf dry matter content (Cam), leaf water content (Cy) and leaf brown pigment content
(Cobp) (Eq. (1)). On the other hand, 4SAIL canopy bidirectional reflectance simulates top-of-
canopy reflectance using PROSPECT outputs (i.e. leaf reflectance and transmittance) as well
as LAI, the average leaf angle (ALA), hotspot parameter, a wet and dry soil reflectance,
geometrical illumination and view information of the remote sensing image to be used for
inversion of the model (Eq. (2)).

LRT = f(N,Cab, Car, Chrown, Cw, Cm) (1)

PRCJS"‘I ! Lf'f.l'u.f,'r'.wn’,.".'J'r.l'f.J"rH (2)
= f(PROSPECT,LIDFa, LIDFb, LAI, hspot,tts,tto, psi, rsoil)
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Table 5. Range and distribution of input parameters of the PROSPECT-5 and 4SAIL radiative transfer
model used to generate the training database corresponding to Sentinel-2 MSI bands configurations.

Parameter Abbreviation  Unit Ranges

Leaf parameters-PROSPECT-5

Leaf chlorophylla + b LeafChl(aand pug/em® 1-300
conceniration b)

Leaf dry matter content Cm g/cm? 0.01—0.05
Leaf water thickness Cw cm 0—0.005
Leaf mesophyll structural N unitless 1-3
parameter

Carotenoid Car ugfem® 10-50
Brown pigment Chrown Arbitrary 10-50

Canopy structural variables-4SAIL

Leaf area index LAT (m?/m? 1-6

Dry/wet soil soil Soil reflectance from
Sentinel-2

Hot spot Hspot 0.01

VIEW AND ILLUMINATION GEOMETRY

Sun zenith angle, tis deg 15-ga?
Azimuth angle psi deg o
Sensor viewing angle tto deg 15—75

3.4.4. Parameters range and distributions used to create the synthetic top-of-canopy
reflectance database

The minimum and maximum, as well as distributions of the other PRO5SAIL4 parameters,
are shown in Table 5. Parameters constraints were taken from other studies working in the
sites in which evergreen and deciduous trees are mixed. Furthermore, the trial-and-error
approach was used to find parameter bounds that produce simulated spectra with the
smallest RMSE to the measured spectral reflectance. It should be noted that, in this study,
we parameterised species groups separately; that is, for each species class (IAPs and native
plants species). Distribution of the parameter varied, for instance, for LAl and leaf
chlorophyll (Cab), the content Gaussian distribution method was adopted to emphasise
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variability in the biochemical and biophysical properties of the species. Hotspot parameter
was parameterised according to studies conducted on forested areas (e.g.Jacquemoud et
al., 2009). We extracted geometric and viewing information from Sentinel-MSI metadata.
The soil reflectance was also extracted from bare dry and wet areas respectively within the
study area (see Fig. 3).

1-Dimensional Radiative
Transfer Model
(Parametrizations and simulation of

Field data collection Remote sensing data and pre-processing canopy reflectance )
i | Sentinel-2
e MS] image A
o PROSPECT Leaf optical properties
model
i — LRT= f{N,Chl,Cbrowm, Car,Cw,Cm)
l |
) Atmospheric carrection { using Scattering from arbitrarily
Trees GPS pint Image cofrection for atmospheric effects — inclined leaves (SAIL)
(iCOR)
+ Solar zenith
l angle * Leaf Area Index
+ Observer * Hotspot parameter
SENTINEL Topographic llumination zenith angle * Relative azimuth angle
Correction + Dry/Wet soil « Distribution of leaf angles
l reflectance l
Spectral library and Simulated canopy
vegetation indices reflectance
Classisication (Species Species l
distbuition map) using discrimination using Invert RPOSAIL
Iage Waldadigh AEElras Discriminant Random on Sentinel 2
gey 9 Y Forest Model image ( Classified
into species
classes)
+ Leaf Area Index
+ Total Chlorophyll
Extract
species
chlorophyll
and leaf
area index
Comparing RTM ¥
based species map Species
and field based Species distibution discrmination
points species map map using Chi
( Accuarcy and LAI
Assessment)

Fig. 3. Schematic illustrations of the species discrimination approach using a radiative transfer
model.

3.4.5. Simulation of canopy reflectance

The parameter value ranges presented in Table 5 used to simulate Sentinel-2 canopy
reflectance in ten bands. According to Combal et al. (2002), the size of the simulated
reflectance database depends on the complexity of the problem. The study suggested that a
more complex problem requires a large look-up table of simulated reflectance. The less
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complicated problem can be solved with close to 10 000 cases (Combal et al., 2002). In this
study, we have randomly simulated various sizes of LUT (i.e. 10,000, 30,000, 50,000, 70,000,
90,000 and 120,000), but LUT of 50,000 top-of-canopy reflectance cases were found to be
sufficient for this study species distribution modelling problem.

3.4.6. PROSAIL Sentinel-2 MSI-based inversion model for the species CCC and LAl retrieval

In this study, the PROSAIL model inversion was applied according to the method proposed in
Verrelst et al. (2012). The inversion of this model against measured optical information of
vegetation allows retrievals of both CCC and LAI at the sensor pixel scale. The inversion
approach adopted here used class-based inversion approach (Verrelst et al. 2012), in which
species distribution maps developed in 3.5.2 was used as a base map for inverting both 1D-
PROSAIL and 3D Flight models (Verrelst et al. 2012). The base map consisted of two classes,
i.e., native and Acacia tree species, which was used to parameterize and invert the models.
By doing so, each species canopy was converted into LAl and CCC, respectively. The outputs
were LAI, and CCC distribution maps of the species (IAPs and native species) for the study
area showed in Fig. 1. We executed the retrieval of the species parameters into an
Automated Radiative Transfer Models Operator (ARTMO) toolbox (Verrelst et al. 2011). The
toolbox is the Matlab-based graphical user interface (GUI). Subsequently, LAl and CCC
corresponding to the species geographical location were extracted and used to discriminate
IAPs from native plants species using DRF algorithm.

4. Results

4.1. Upscaling leaf-level reflectance to the canopy reflectance using the 4SAIL canopy
radiative transfer model

4.1.1. Parameters sensitivity analysis

Canopy reflectance changes with changing LAI (Fig. 4) and illumination geometry (tts) (Fig.
4). Fig. 4 and Fig. 5 showed that canopy reflectance of the species could be successfully
modelled with parameter LAl and illumination geometry ranging between 1 and 3 and 55 to
85°respectively. However, LAl value showed to produced simulated reflectance similar to
that measured with N ranging between 1 and 2 and planophile leaf type values. Fig. 4 shows
the mean reflectance for the measured and simulated species spectral data.Fig. 6.
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Fig. 6. Comparison between the mean of simulated spectra and measured canopy spectra of A.
mearnsii and seven native species using LAl values ranging from 1 to 3, N ranged from 1 to 2 and
illumination geometry ranged from 55 to 85°. Grey = simulated spectral reflectance;

Black = measured spectral reflectance.

4.1.2. Species discrimination using simulated canopy reflectance

The experimental and simulated reflectance spectral yielded similar discrimination
accuracies for A. mearnsii. The accuracies for A. mearnsii ranged from 79% to 0.92 and 80%,
and 100% for the experimental and simulated data, irrespectively of classifier (iIECV-DA and
DRF) (Table 6).
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Table 6. Classification accuracies of Acacia mearnsii using measured and RTM simulated data.

Statistic accuracy

metrics

Visible region

(400—-650 nm)
Accuracy (%)
Specificity (%)
Prediction power (%)
Kappa

Red-edge region
(651—750 nm)

Accuracy (%)
Specificity (%)
Prediction power (%)
Kappa

Wear-infrared
region(751—1300 nm)
Accuracy (%)
Specificity (%)
Prediction power (%)
Kappa

Early-shortwave region

(1301—1460 nm)
Accuracy (%)

Specificity (%)

iECVA- RF-
DA DA
ASD fieldspec

measured canopy

spectra

Aecacia mearnsii

85.7
94.5
85.7

0.69

g0
95-7

g0

8g.7

971

100
100
100

.96

100
100

100

0.95

100
100

100

100

g8.6

iECVA-
DA

Owerall

accaracy

66.25

g5.2

66.25

0.62

63.75
94.86
63.75

0.59

56.25
93.8
56.25

0.5

58.7

94.2

RF-
DA

60.7

94-3
60.7

0.6

61.5

g7.2

61.5

0.7

66.7

94.4
6o

0.58

55.6

92.9

iECVA- RF- iECVA- RF-

DA DA DA DA

PROSAIL RTM simulated

canopy spectra

Acacia mearnsii  Overall

accaracy

85.7 91.8 66.7 54.6

94.4 98.5 67.5 94.2

85.7 91.8 66.7 54.6

0.6g 084 o0.62 .51

91 o1 63.75 66.67

100 100 64.89 94.4

91 o1 63.75 66.67

0.86 0.8; o0.59 0.58
92.78 100  56.25 57.14
95.8 100  55.61 96.97
92.78 100 g5b.25 57.14
0.7 1 0.5 0.6z
87.7 100 58.7 55.6
95.8 g8.9 5B.2 92.9
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Prediction power (%) 8o.7 100 58.7 5.6  By7 100 58.7 55.6
Kappa 0.82 0.04 0.52 0.46 o7 0.94 0.52 0.46

Mid-shortwave region

(1461—1900 nm)

Accuracy (%) 88.8g9 100 68.75 71.43 8o go 68.7 714
Specificity (%) 97.18 98.59 9554 936 o97.2 98.59 714 93.2
Prediction power (%) 88.8g 100 68.75 71.43 8o g0 68.7 714
Kappa 0.82 0.94 0.65 0.55 0.82 0.94 o0.b5 0.55

Far-shortwave region

(1901—2500 nm)

Accuracy (%) v 75 50 66.67 85 872 5o 63.6
Specificity (%) 95.8 98.53 929 9189 94.44 985 497 95.65
Prediction power (%) 77.9 75 50 40 85 872 5o 635.64
Kappa 0.76 0.79 0.43 0.47 0.63 079  0.43 0.6z
Global model

(400—2500 nm)

Accuracy (%) 95.43 100 57.5 6154 gb 100 57.5 61.54
Specificity (%) 93.15 100 94.02 97.02 Q4.2 100 55 97
Prediction power (%) 05.43 100 57.5 8o 8o 100 57.5 615
Kappa 0.55 1 0.5 0.65 0.65 1 0.5 0.65

4.2. Sentinel-2 MSI image-based species discrimination

4.2.1. Simulation of the canopy reflectance based on Sentinel-2 MSI bands

The following leaf input parameters ranges were used to simulate Sentinel-2 canopy
reflectance using PROSAIL: N = 1.4 (fixed), Cab = 60-100 ug/cm? (ranges increment of 5),

Car = 10, Cprown =0, Cyy = 0.01, and Cm = 0.01. The same canopy parameters used in the
previous section were used for the simulation of Sentinel-2 canopy reflectance (Fig. 7).
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Fig. 7. The effect of varying leaf and canopy parameter of the simulated reflectance spectral data.

4.2.2. PROSAIL Sentinel-2 image discriminatory power for IAPs from native species from
the study area

Our results showed that discrimination of IAPs from native species using simulated Sentinel-
2 MSI reflectance was slightly lower (Accuracy = 82.2% and kappa coefficient = 0.80)
compare to the field based sampling classification approach (Accuracy = 90.2% (IAP), 82.2%
(NAT) and kappa coefficient = 0.84 (IAP), 0.78 (NAT)) (Table 7). On the hand, A. mearnsii was
successfully discriminated from native species using LAl and CCC maps derived created from
the study area using PROSAIL inversion on Sentinel-2 image (Fig. 8). These maps showed
considerable high values of LAl and CCC for the IAPs (A. mearnsii and A. dealbata) compared
to native species. Table 7 also report on the discrimination accuracies of IAPs (A. mearnsii
and A. dealbata) from native species based on retrieved CCC and LAl of the species. A.
mearnsii was successfully discriminated from native species and A. dealbata with accuracies
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(% accuracy = 92.8%, 91.4% for CCC and LAI, respectively) (Table 7). According to our results,

A. dealbata was misclassified as native species for both LAl and

Table 7. Confusion matrix and model assessment metrics for the species classified with discriminant

random forest and different datasets.

Species DRF-Cross Statistic metrics to deseribe model performance

-validation eonfusion
matrix

Discrimination using Sentinel-2 reflectance

AD Nat AM Accuraey Sensitivity Speecificity

(%) (%) (%)
AD B2.2 9.4 8.4 82.2 77.02 gi
Nat 17.8 73.4 8.8 73.4 86.36 38
AM 6.4 3.4 go.2 go.2 84.56 [+ T
Overall accuracy 8o.2 94.56 96

Precision

(%)
82.2
73-4
go.2

Bo.2

Discrimination using forward PROSAIL RTM based simulated reflectance

AD 77 14 9 77 90.02 g1
Nat 19.6 70.2 10.2 70.2 86.36 88
AM g 9 82.2 82.2 95.56 [+ T
Overall acecuracy 78.2 90.26 a5

Discrimination using LAI retrieved using PROSAIL RTM

AD 79.8 10.8 9.4 79.8 [=1s} 38
Nat 20.2 73.2 6.6 72.6 87 73
AM 5.4 2.8 914 9L.4 gb g1
Overall aceuracy 89.3 94 95

Discrimination using LAT retrieved using PROSAIL RTM

AD 82.8 9.4 7.8 82.8 83 86
Nat 5.8 go.6 3.6 go.6 g1 go
AM 6.4 0.8 92.8 92.8 93 88
Overall accuracy 88.2 go Qo

77

70.2
822

78.2

79.8
72.6
91.4

89.3

g1
95
g6

88.2

Kappa
(%)

0.78
0.68
0.84

0.78

0.72
0.75

0.8

0.75

0.76
0.68
0.82

0.8

0.84

0.75

0.85

0.79
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CCC based classification. The accuracy assessment showed acceptable overall accuracy
ranging between 75.6% and 82.36% and a kappa statistic ranging between 0.68 and 0.78

(Table 7). Fig. 9 demonstrated distribution patterns of IAPs and native species based on field

sampling data and class-based inversion of 1D- PRO5SAIL4 RTM as well as LAl and CCC
species parameters. Overall, PRO5SAIL4 RTM based discrimination of A. mearnsii from
native species confirmed acceptable overall accuracy using all datasets and showed
distribution patterns of the species consistent with that observed in the field.
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Fig. 8. Maps of alien invasive species (A. mearnsii and A. dealbata) produced using LAl and
chlorophyll derived from inversion of PROSAIL radiative transfer model on Sentinel-2A MSI image
acquired on 21 July 2018. A. dealbata and A. mearnsii are shown in dark red colour.
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Fig. 9. Comparison between invasive alien plants and native species distribution maps based on field
sampling data and equivalent maps derived from LAl and CCC maps obtained using PROSAIL
inversion on Sentinel-2 MSI image acquired in December 2018. The dark red colour represents IAPs
(A. dealbata and A. mearnsii).

5. Discussion

We have demonstrated that upscaling in situ leaf reflectance to canopy using canopy
radiative transfer models can be used for A. mearnsii from native species at canopy scale.
Furthermore, the study revealed that Sentinel-2 data, when combined with a radiative
transfer model (PRO5SAIL4), has the potential to discriminate IAPs from native species at
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the landscape level and with satisfactory accuracy. Scaling-up leaf reflectance to canopy
reflectance using the RT model produced promising results for the discrimination of A.
mearnsii from native species. The synthetic canopy reflectance discriminated A. mearnsii
with slightly lower accuracy and kappa coefficient when compared to measured canopy
reflectance. In contrast, simulated spectral data showed less overlap between species than
with measured species data (Fig. 4). According to Féret and Asner (2011) and (Clark, Roberts
and Clark, 2005), misclassification of species is usually linked to the number of species. For
example, Féret and Asner (2011) observed about 64% separability error when discriminating
all 188 species. Conversely, when the species number was reduced to five classes, 90%
discrimination accuracy was achieved, and ten categories decreased accuracy to 84%.
However, in this study, we observed decreased spectral overlap between the species with
synthetic data without reducing the number of species. Therefore, we attributed this to the
ability of RTM to eliminate the effect of external atmospheric effects. Overall, these results
supported (Kalacska et al., 2007, Cho et al., 2008, Féret and Asner, 2011) studies that
successfully discriminated tree species by upscaling leaf reflectance to canopy reflectance.

This study showed that Sentinel-2 based PRO5SAIL5 models detected IAPs and native
species with acceptable but slightly lower accuracies than the field sampling approach. The
low performance of Sentinel-2 bands based PRO5SAIL5 model is related to the inability of
the model to predict species in top hill areas. Fig. 9, demonstrate misclassification of species
in some top hill areas. Most pixels were classified as “unclassified” pixels. Even though the
RTM model showed low quantification statistics accuracy compared to the field-based
model, the model still considered as promising because it was independent of field data.
The model is considered promising because species distribution maps produced from
PRO5SAIL4- Sentinel-2 MSI model exhibited similar patterns to that observed during the
field survey. The same species patterns but high detection accuracies were observed with
LAl and CCC retrieved with PRO5SAIL4 -Sentinel retrieval-based maps approach.

Overall, A. mearnsii was successfully discriminated from native species with higher
accuracies when compared to A. dealbata. However, A. mearnsii and A. dealbata
discrimination accuracies were comparable to that of field-based sampling method.
Concerning LAl-based classification, both IAPs and native species indicated lower prediction
accuracies, compared to the CCC-based mapping model.

The decreased accuracy of the LAl model may partly be due to underestimation of IAPs in
mixed pixel situations and spatial resolution of sentinel-2 images. The mixed canopy pixels
have been found to pose a challenge even in field-based mapping, particularly when |APs
canopies interlock with that of native species. We observed high accurate classification of
IAPs and native species in monospecific stands than in mixed canopy stances, possibly due
to inability of Random forest to un-mix the pixel. This proved the assumption that the
PROSAIL model is useful in homogenous canopies (Darvishzadeh et al. 2008). Although
PROSAIL Sentinel-2 MSI based model was adequate, the model depended mostly on the
accurate parameterisation and inversion approach. For example, this study conducted a
trial-and-error and species map based approach in which the range of values was tested
against measured species Sentinel-2 reflectance.
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The high performance of PROSAIL-Sentinel-2 based CCC retrieval model could be expained
by availability of CCC specific bands of the image. The bands, for instance, red-edge bands
have been reported to be highly sesnitive to the leaf chlorophyll concentration (Clevers and
Gitelson, 2013). Furthermore, the red-edge bands are known to also sensitive to leaf
nitrogen concentration (Ramoelo et al., 2015, Ramoelo and Cho, 2018) which is known to be
high in Acacia spp (GrolRe-Stoltenberg et al. 2018). The species have been reported to be
nitrogen fixers, which makes them possess high leaf nitrogen contents when compared to
non-fixing tree species. The importance of red-edge bands has also shown to be beneficial
for PROSAIL Sentinel-2 MSI species mapping. The PRO5SAIL4-Sentinel-2 and DRF based
classification found red-edge bands together with NIR and SWIR1 (1610 nm) and SWIR 2
(2190 nm) to be important predictors of the species. Furthermore, the bands are useful for
distinguishing tree species based on differences in leaf tannin between species (Lehmann et
al., 2015). This reinforces the fact that Australian native Acacia species have high leaf area
and nitrogen/chlorophyll when compared to native species (GroRe-Stoltenberg et al., 2018,
Masemola et al., 2019). GroRe-Stoltenberg et al. (2018) reported spectral dissimilarities
between invasive acacias and indigenous plants in the biochemical space. Also, this validates
Asner and Martin (2011), who demonstrated that biological traits mainly drive spectral
separability of species. In Masemola et al. (under review), most of the spectra derivatives
selected to be optimal for distinguishing A. mearnsii from native species were directly
related to leaf physiology (leaf nitrogen and leaf chlorophyll). Importantly, the results
showed that 20 m resolution Sentinel-2 bands are sufficient for the detection and mapping
of IAPs. Therefore there is no need to resample-which could distort spectral information-
when using simulated S2 configurations data for operational monitoring of investigated
Acacia spp.

Comparing the RTMs (i.e., 1D and 3D RTMs) types of retrieval methods, it can be concluded
that: (1) 1D RTM especially with it independence of field data is the most advantageous for
operational mapping of IAPs. However, in terms of accuracy 1D RTM and field data based
species mapping are comparable in terms of accuracy. However, RTMs seems to misclassify
species at the rugged terrains. On the other hand, the 3D FLIGHT RTM slightly lower
guantification statistics, compared to 1D RTM. This could be attributed to the fact that IAPs
usually grow in clusters and form dense homogeneous canopy which meet simulation
assumptions of 1D RTMs, that assume that everything is in turbid mode. Our results support
that class-based inversion process may an approach of choice that can be used by land
managers for automated monitoring of IAPs distribution. Unlike in Verrelst et al. (2012)
study which used non-operational CHRIS data to explore class-based inversion approach,
our results with Sentinel-2 data which is already being used for operational. This makes this
study to be relevant to the current ecological problems related to biological invasion.

In general, the high performance of the developed PROSAIL-Sentinel-2 based model could
play an essential role in Acacia spp monitoring. This is because, unlike field-based spectral
statistical models, physical-based PROSAIL species modelling does not require larger
calibration datasets before they can be implemented for operation methods. Furthermore,
independence of PROSAIL Sentinel-2 MSI modelling to field species information and the fact
that the models are transferable over a larger area indicate that they are suitable for
operational mapping and monitoring purpose.
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6. Conclusions
We have demonstrated that:

¢ Upscaling in situ leaf reflectance to canopy using canopy radiative transfer models can be
used for A. mearnsii from native species at canopy scale.

¢ Sentinel 2A data, when combined with a radiative transfer model (PROSAIL), have the
potential to discriminate IAPs from native species at the landscape level with satisfactory
accuracy.

¢ Although PROSAIL Sentinel-2 MSI species detection was adequate, the model depended
mostly on the accurate parameterisation.

e Leaf chlorophyll content and LAI derived from canopy radiative transfer models can be
used to discriminate A. mearnsii at the larger scale.

¢ Sentinel-2 MSI bands are useful for mapping A. mearnsii at an ecosystem level.
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