
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 1

SDNMM- A Generic SDN-based Modular
Management System for Wireless Sensor Networks

Musa Ndiaye, Student Member, IEEE, Adnan M. Abu-Mahfouz, Senior Member IEEE,
and Gerhard P. Hancke, Senior Member IEEE

Abstract—Software Defined Networking (SDN) promises a
wide range of application benefits to the Internet of Things (IoT)
including the flexible management of Wireless Sensor Networks
(WSNs). While the integration of SDN techniques in WSNs is
being extensively investigated, there remains a need for a general
SDN-based management system for WSNs. A system that should
provide an opportunity for rapid testing and implementation of
management modules to the IoT developer community working
on taking advantage of the SDN benefits. Therefore, this paper
proposes SDNMM, a generic and modular WSN management
system based on SDN. SDNMM introduces the concept of
management modularity using a Management Service Interface
(MSI) that enables management entities to be added as modules.
The system leverages the use of SDN in WSNs and by being
modular it also allows for rapid development and implementation
of IoT applications. The system has been built on an open source
platform to support its generic aspect and a sample resource
management module implemented and evaluated to support the
proposed modular management approach. Results show how
adding a resource management module via the MSI improved
packet delivery, delay, control traffic and energy consumption
over comparable frameworks.

Index Terms—Wireless Sensor Network, Software Defined
Networking, Management Service Interface, Modularity

I. INTRODUCTION

IN recent years applications of Wireless Sensor Networks
(WSNs) are ever on the rise especially with the boom in

Internet of Things (IoT) technology [1]. This means large-
scale implementations of WSNs resulting in direct complexity
in network management [2]. It is therefore imperative that an
effective Network Management System (NMS) be put in place.
By definition, an NMS should be able to monitor and control
the network in either a centralized, distributed or hierarchical
manner. The system must ideally support the following key
functional areas: network configuration management, network
monitoring, topology management, Quality of Service (QoS)
Management, resource allocation, energy and security manage-
ment [3], [4]. Meeting the above criteria becomes challenging
considering the heterogeneous nature of WSNs made up of
nodes that are resource constrained and susceptible to failure

Corresponding author: M. Ndiaye is with the Department of Electrical,
Electronic and Computer Engineering, University of Pretoria, Pretoria, 0028,
South Africa, e-mail: mndiaye@ieee.org.

A.M. Abu-Mahfouz is with the Electrical, Electronic and Computer Engi-
neering Department, University of Pretoria and the Council for Scientific and
Industrial Research, Pretoria, South Africa, e-mail: a.abumahfouz@ieee.org.

G. P. Hancke is with the Computer Science Department, City University
of Hong Kong, China. He is also with the Electrical, Electronic and Com-
puter Engineering Department, University of Pretoria, South Africa., e-mail:
ghancke@ieee.org.

especially when deployed in harsh environments. To solve this
issue WSN management systems have been proposed in the
past. Several of these contributions solve only portions of
the network management architecture such as RRP, Agilla,
SNMS, SNMP, WinMS [5] while other contributions such
as lightweight [6] and group mobility support [7] focus on
network management protocols. However, there has been
characteristic examples of systems that are based on over-
all traditional management of WSNs such as MANNA [8],
BOSS [9] and DISON [10]. MANNA provides a general
overview of managing a WSN based on multidimensional
planes referred to as abstractions. The abstractions handled
in MANNA provide support for the informational, functional
and physical architectures of the network. It is more of a
policy-based management system that does not have a direct
application to managing critical WSN design criteria such
as energy efficiency, adaptability, scalability, and robustness.
The BOSS architecture is also an overall management system
however it is specific to creating a bridge between resource-
constrained WSN nodes and resource hungry Universal Plug
and Play devices (UPnP). The DISON management framework
is based on a multilevel mechanism where each sensor node
depending on its resources can participate at various levels
in managing the WSN. The sensor nodes are also able to
adapt to various conditions based on a context and policy
model. While these techniques provide some form of overall
traditional WSN management based on context, policies, and
protocols; meeting modern network management that requires
the need for rapid prototyping and implementation of appli-
cation specific services in a resource-constrained and hetero-
geneous environment still remains an open issue. Software-
defined networking (SDN) provides a more promising solution
in providing effective and flexible WSN management. SDN
allows for the separation of the network into three planes
namely the application, control, and data planes [11], [12].
This introduces a logically centralized view to network man-
agement, an aspect that results in efficiency and flexibility in
managing the network [13], [14].

We present SDNMM, a generic SDN-based Modular Man-
agement system for WSNs that is implemented on the IT-SDN
[15] architecture due to its open source availability and generic
nature. However, with SDNMM we make the following novel
contributions:

• We propose for the first time in SDN-based WSN man-
agement, a state machine based management service
interface (MSI) that implements management applica-

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 2

tions as modules existing in each state. We implement
a resource-aware task allocation management module to
evaluate the feasibility of this proposal. The ON/OFF
states of nodes are also considered by introducing an
active-sleep module state in the MSI.

• A system is proposed to make use of a context data
knowledge-base to act as a common reference for inter-
facing of management modules. This technique allows
context data to be provided as input to various man-
agement applications with the output being management
policies based on the input data. To achieve this, a context
collect mechanism is implemented using context data
packets that are stored in the controller via dynamic
linked lists.

• We make performance improvements over baseline IT-
SDN [15] in terms of packet delivery, packet delay,
control overhead and energy consumption for grid topol-
ogy. We also analyze and present the effects of varying
topologies such as mesh and ring on the performance.

This paper is organized as follows: Section II discusses
some related work, Section III introduces the SDNMM archi-
tecture, in Section IV we discuss the functions and features of
the Management Service Interface (MSI). Section V discusses
how the SDNMM system framework has been implemented
and in Section VI we evaluate the performance of the imple-
mented system. In Section VII we discuss the performance
evaluation related to the SDNMM system and in Section VIII
we set our conclusion and discuss future work.

II. RELATED WORK

Several works have been done in enabling SDN for WSNs
to develop Software Defined Wireless Sensor Network (SD-
WSN), notable contributions include Sensor OpenFlow [16],
TinySDN [17], SDN-WISE [18] , Coral-SDN [19] and IT-SDN
[15]. These techniques play an important role in providing an
operating environment for SDN-based management systems.
However, the development of generic SDN-based management
systems for WSNs with high-level abstractions still remains
largely open for research. Smart [20], Soft-WSN [21] and
more recently a 6LowPAN SDN-based IoT framework [22]
have been proposed to provide a more generic management
abstraction.

Smart offers some form of topology management through
localization and tracking algorithms that work in tandem with
the controller. In Smart, a general framework is proposed with
the SDN controller at a base station. Gante et al. argue that
SDN would greatly ease the complexity of sensor network
management and raise important questions regarding the inte-
gration of a distributed controller in terms of general network
performance and energy consumption of the WSN. They also
discuss the effect of the OpenFlow protocol in constrained
sensor networks and also synchronization issues regarding
maintaining the controller global view. However, the authors in
Smart mention that their proposal was a preliminary stage with
no implementation or framework evaluation presented. Their
proposed Smart framework did not address the management
of application-specific requirements or integration of specific

management entities. Furthermore, to allow for a global net-
work view that SDN provides, Smart uses a single base
station controller which has reliability and security challenges
upon failure or compromise of the centralized controller re-
spectively. Another challenge associated with such centralized
management is the accumulation of overhead traffic data to
the controller in an already resource-constrained WSN.

Soft-WSN addresses the challenge of meeting application-
specific needs for IoT by use of SDN. Two management
techniques are developed to meet device and network man-
agement. Bera et al. [21] investigate sensing tasks and delay
including active sleep scheduling to implement device man-
agement. They also modify network policies at run time to
meet topology requirements. Results from a hardware test-bed
show improved packet delivery ratio and energy consumption
compared to an ordinary WSN. However, the discussion and
implementation in Soft-WSN are limited to providing only
device and topology management services. Like Smart, it is
also based on a single global controller resulting in a cen-
tralized management scheme and thus prone to the associated
challenges. Furthermore, both Smart and Soft-WSN also do
not address issues of modularity to allow for widespread WSN
applications or upgrades of management components.

Lasso et al. [22] in an SDN-based IoT framework for 6Low-
PAN focus on SDN-based energy management using a trans-
mit power control mechanism from the controller specifically
for a 6LowPAN. The authors implement the framework on
the open source Contiki [23] cooja platform and results show
improved energy performance in the SDN-enabled nodes.
However, most of the work focuses on improving the energy
consumption, issues related to the management framework
operations including the modular aspect of the effects of
the framework on traffic overhead and packet delay are not
addressed in detail.

Having looked at the related work, there is still a need
for a more open source and general management framework
that allows some form of modularity for easy implementation
of management methods. Another, bottleneck that could be
observed is the increased control traffic coupled with the use
of a centralized controller, an aspect that can be mitigated
by using a distributed controller mechanism [24], [25]. There
is a need for a framework that would allow the management
methods such as that those implemented in [21] and [22] to be
packaged as a module for quick testing and implementation.
The novel SDNMM framework being proposed in this paper
provides a promising solution to addressing the above-named
issues. The finding in SDNMM also answer some of the
questions raised in Smart [20] regarding performance and
energy consumption of an SDN-based WSN management
framework.

III. SDNMM SYSTEM OVERVIEW

A. SDNMM Architecture
The proposed SDNMM management system framework

shown in Fig. 1 is based on a hierarchical SDN distributed
controller architecture efficient in handling scalability and
traffic overhead [24], [25]. The overall SDNMM framework
is subdivided into SDN abstraction planes as follows:

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 3

1) Application Plane: The application plane is composed
of multiple third-party user applications that communicates
with the network using APIs provided by the controller. The
applications can be used to handle the following tasks:

• Monitoring of network state including fault detection or
isolation and energy level monitoring.

• Task configuration of nodes to meet application demand.
• Policy issuance for network and device-specific tasks

based on context.
2) Control Plane: The control plane in the SDNMM

framework is a two-tier configuration of a global controller
and physically distributed local controllers (cluster managers).
Both the global and local controllers are a higher resource
capacity compared to sensor nodes. The Management Service
Interface (MSI) and the various management modules are
contained in the global controller while cluster managers
handling sub-management tasks are in the local controller tier
of the control lane. Each cluster manager is responsible for
events and tasks occurring in the respectively assigned cluster.
Cluster managers are able to communicate with each other via
East-West APIs. Generally, the following functions should be
executed in the control plane:

• Integration of core WSN management modules such as
configuration, topology, energy, security and QoS.

• Provision of APIs to the application and data planes
• Collection of context information and handling of policies

including issuing policies based on context and flow
commands for application requests.

3) Data Plane: The data plane is made up of a network
of sensor nodes configured in clusters to allow for improved
scalability. In each cluster, SDN-enabled nodes which are a
hardware combination of an SDN-enabled switch and an end-
device [17], generate data packets which are sent to the sink
node. The sink node allows for a data link to the neighboring
cluster manager (controller) and cluster. Network APIs are
made available by the controller to allow relaying of sensor
data including context/policy information to and from the
control/ application planes.

B. SDNMM Features and Functions

The generic SDNMM framework introduces the following
features in WSN management:

• Modularity: Allows each management entity to be a
well defined functional component with APIs available
to communicate commands, contexts, and policies via the
Management Service Interface (MSI). The management
components/modules provide a higher level management
abstraction thus introducing flexibility in the use of
existing or new management techniques.

• Generic: The use of modular components allows the use
of the system in various applications and heterogeneous
environments as components can be designed and added
to the system framework to meet the application specific
needs.

• Scalability: The distributed hierarchical architecture on
which the framework is based allows for cluster managers
to be assigned to each node cluster limiting frequency

User Applications (Monitoring,
Control, Task Input)

Configuration

Management
Energy

Management
Topology
Management

Cluster
Manager 1

SDN

Enabled

Node

Cluster
Manager m

Northbound API

Southbound API

Data
Plane

Global
Controller

Local
Controllers

Control
Plane

Application
Plane

East-West API

Sink

Cluster
Manager 2

East-West API

Southbound API

Cluster 1 Cluster 2 Cluster m

Management Modules

QoS

Management
Security
Management

Management Service Interface (MSI)

Fig. 1. SDNMM System Architectural Framework.

of overhead traffic that needs to be sent to the global
controller. This configuration gives room for efficient
network expansion.

• Adaptability: Sensor tasks can be issued on demand
to meet application-specific needs. The possibility of
function alternation upon neighboring node failure is
introduced.

• Robustness: Multiple context-aware cluster managers
working in tandem with the global controller ensures
effective detection and isolation of faults. Functionality
can be introduced for a cluster manager to temporary
manage a neighboring cluster that has a cluster manager
that is down.

• Energy efficiency: Apart from the ability to use energy
management modules for active-sleep management, SD-
NMM leverages SDN to move resource-heavy tasks to
more resource capable hardware in the network such
as the cluster managers and the global controller. This
leaves nodes with the simple task of forwarding event
and context data.

IV. MANAGEMENT SERVICE INTERFACE (MSI)

The Management Service Interface (MSI) provides an inter-
face to enable this novel SDN-based approach of adding man-
agement services as modules or components. The interaction
between the MSI and the modules can be through coupling
APIs or through classification criteria based on management
task type as has been implemented in this paper. The MSI
is generally middle-ware between management services and
user applications/ network infrastructure. Core features and
functions of the MSI include:

• Enabling a modular approach to SDN-based management
for easy and rapid addition or removal of management
services to the WSN necessary for future upgrades or
expansion.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 4

Task arrives at
enabled node

Lookup flow

ID in flow

table

Flow ID

match?

Execute
Action

Generate and

send flow

setup request
to controller

Generate flow

setup packet

MSI
engagement

Send down

generated

flow rules

Yes

No

Update
flow table

entry

Controller
Server

Fig. 2. MSI engagement in SDWSN task sequence

• Provision of loose coupling through APIs or event clas-
sifiers to management modules, application and data
planes enabling the integration and use of third-party
management services in an orderly manner.

• Provide an interface for exchange of context information
between management modules, for example, the energy
management module can give insights on the status of
energy resources in the network to the QoS management
module which can then make decisions based on available
resources.

APIs, contexts, and policies play a crucial role in ensuring
this flexible coupling and feature function between manage-
ment components in the SDNMM framework. In this paper,
the MSI has been built and implemented as a function that can
be called at any stage in the processing of a task in the SDN
architecture. Consider the sequence of processing a task in a
typical software defined wireless sensor network shown in Fig.
2. The MSI can be engaged during the flow setup process in
the controller as part of the data management process which
may include altering task action based on destination node
resource capability or addition of management data to the flow
setup packet. We implement and evaluate a resource allocation
management module in this paper based on this approach.

Northbound API

Southbound API

Coupling API

Application
Plane

Control
Plane

Data

Plane

Policy Flow

Context Flow

User Applications (Monitoring, Policy knowledge base, App. Requests)

Cluster Manager

Network Infrastructure (Sensors/Actuators)

Management Service Interface

Management Module (Security, Energy, etc)

Fig. 3. SDNMM Context and Policy Flow.

A. Context and Policy Handling

Context awareness and the issuance of the corresponding
policies are an important aspect of WSN management. Context
is basically information or an event that often results in an
action policy being issued for reconfiguration purposes. WSN
Context can be classified into three categories [10]:

• Node Resources: Information here mainly includes the
status of node residual energy, memory usage, and
sensing capabilities. In the SDNMM framework, node
resource context information is obtained from the data
plane. Resulting policies can be made from the applica-
tion and control planes.

• Network State: Context in this category provides infor-
mation on the running status of the network in terms of
communication link status, availability of bandwidth and
other network topology related aspects. The source of this
information in SDNMM is both from the data plane and
aggregate data from cluster managers. Aggregate cluster
manager data provides network-wide context information.
User applications and management modules can input
policies to respond to this kind of context.

• Application requirements: Users can set parameters for
a task with certain requirements which provides context
data for the MSI and management modules upon which
policies can be generated. Examples include requests to
change sensing task, add or drop packets and requests
to encrypt data. In the proposed SDNMM system, this
context category originates from the application plane.

Fig. 3 shows the flow of contexts and policies in the
SDNMM system.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 5

B. API Functions

APIs allow the interaction and coupling of the components
in the framework shown in Fig. 1. Northbound APIs allow
the MSI in the control plane to interact with user applications
in the application plane. Information such as task definition
parameters, context, and policy data are transferred via this
API. In the southbound direction, cluster managers interact
with sensor nodes using southbound APIs. Cluster managers
can request for sensor and network running statuses, provided
flow commands, issue required task parameters and other
context-related policies while being coupled by these APIs.
East-West APIs facilitate the interaction of cluster managers.
Information related to scheduling of network-wide tasks or
policies can be exchanged over these APIs. Restful APIs are
necessary to allow interaction of the MSI with management
modules.

V. SDNMM IMPLEMENTATION

Notable platforms that can be used to implement an SDN-
based management system framework include SDN-WISE
[18], Coral-SDN [19] and IT-SDN [15]. All three platforms
provide an environment controller and neighbor discovery
suitable for SDWSNs. However, both SDN-WISE and Coral-
SDN are limited in terms of developer support and source
code availability making it a difficult choice for our generic
framework to be implemented on. On the other hand, IT-
SDN provides the required open source availability and hence
SDNMM is built on it to allow for a more generic use case. IT-
SDN is based on Qt which is available for all major computer
operating systems and the Contiki [23] cooja tool which is
open source and easily accessible. As far as the scope of
this paper, we implement and evaluate SDNMM based on a
single centralized controller with features demonstrating the
integration of a resource allocation management module and
the ability to monitor network parameters and performance
from a graphic user interface in Qt.

A. Monitoring Management

The underlying IT-SDN platform uses the Cooja simulator
GUI to set up and monitor various aspects of the WSN and also
extends monitoring to a computer GUI developed in Qt taking
advantage of a debug window to monitor network messages
and configuration. With SDNMM, we add features to monitor
data on network performance metrics as well as the ability to
visualize these metrics graphically in a Qt-based GUI.

B. Context data approach to Management Modularity: A
resource allocation module use case

1) Context data pooling: We introduce an aspect of man-
agement modularity based on a context data knowledge-base
stored in the controller memory using dynamic linked lists. A
context collect process has been developed to collect and send
context report to the controller on event change and at various
sampling intervals depending on battery level. To integrate
energy efficiency in the SDNMM design, data collection
outside event changes are based on a sampling interval (SI)

Fig. 4. Context Report Packet Format

that is determined from the granularity settings [26]. Equation
(1) shows how this interval is calculated. As a measure, we set
the lower bound (lb) to collect data every 120 seconds and the
upper bound (ub) to collect data every 600 seconds. We also
consider a battery level of 40 percent (%) as the critical battery
threshold (batt crit th), below which the sampling interval
is recalculated at the device level and sent to the SDN-core
which is middleware that manages core events between the
data and control planes of the framework.

SI = ub− battery (
ub− lb

batt crit th
) (1)

where SI is the Sampling Interval, ub is the upper bound,
lb is the lower bound, battery is the percentage of battery
remaining and batt crit th is the critical battery threshold.

Context data collected includes battery remaining in per-
centage, Received Signal Strength Indicator (RSSI) in dBm,
the number of tasks currently being processed by the node
and the number of neighbors the node has in its locality of
reference. We use powertraceK [27] which is an extension of
powertrace in Contiki based on a near realistic kinetic battery
model (KiBam) to monitor the battery usage and related
energy parameters. Fig. 4 shows the structure of the context
report packet.

The context data is stored in a context table in the controller
which forms a unified knowledge-base and is accessible to the
MSI and associated management modules.

2) The MSI function: As a modularity enabler, the MSI
function is shown by the state diagram in Fig. 5 uses clas-
sification criteria to determine which management module
should handle the task. Once the MSI receives the management
task, it goes into the classification state which determines
which module to handle the task. Based on set parameters
the right management module is selected and the task sent to
it otherwise the classification state flags an unknown and exits.
With the case of the resource allocation module implemented
in SDNMM, tasks such as data flow requests which occur
when a node requests action on a received task and source
routed data flow setups flag the resource allocation module in

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 6

Action = Drop

Action = Receive | | Forward

Management
Task

Classification

Alternate

Management
Module

Resource

Allocation

Module

Unknown

Approve

Task

Deny
Task

Active-
Sleep

Module

Further
Module
Specific

Processing

VRes

VRef Context
Data

Table

Error_msg

Capability = 1

Capability = 0

Exit

Fig. 5. MSI state diagram.

the classification state. In both tasks, it is necessary to check
whether the destination node address is capable of handling
the set task based on the available resources. The allocation
module sets a verification reference (Vref) to the context data
knowledge-base and awaits response (Vres) which is used to
determine capability. If the node is capable the task action is
approved otherwise it is denied and the task is dropped. The
active-sleep module state has been included to cater for the
nodes ON and OFF state during sending down of management
policies. This module can further be modified to work with
a sleep-scheduling algorithm. A code snippet of this MSI
function is shown in Table I and the pseudo code for the
resource allocation module function in Table II.

3) Management system implementation: The overall pro-
gram structure of our SDNMM implementation and operation
can be summarized by the block diagram shown in Fig. 6.
The block diagram shows all the core components of the
SDNMM framework namely the SDN-enabled node (also
referred to as an enabled node), SDN-core, the controller node,
and the controller-PC. The enabled nodes and controller node
communicate via a radio link while a serial link maintains data
communication between the controller-PC. The controller-PC
is a Qt-based front end handling application plane protocols
including monitoring, routing, and processing of data and
control flow setup and or request packets. The controller node
handles events between the controller-PC and the data plane,
for instance, the storage of context data upon reception of
a context report packet. The SDN-core plays an important
role in initiating neighbor/ controller discovery and context
collect processes. It also handles events to send neighbor
and context reports whenever an event request is posted to
it. The process of engaging protocols for sending, receiving
and enqueuing of packet data in the southbound region of
the SDN architecture is also handled by the SDN-core. Each

TABLE I
MSI CODE IMPLEMENTATION

uint8_t msi(uint8_t * packet_ptr) {
uint8_t SI;//Collect rate
management_state=0;
nxtstate=0;
exit_flag=0;
mgt_action=0;
management_state = CLASSFICATION;
while(exit_flag == 0){

switch(management_state){
case CLASSFICATION :
nxtstate = classVerify(packet_ptr);
management_state=nxtstate;
break;
case DENY :
mgt_action = drop();
nxtstate = ACTIVE_SLEEP_MODULE;
management_state=nxtstate;
break;
case APPROVAL :
mgt_action = approve();
nxtstate = ACTIVE_SLEEP_MODULE;
management_state=nxtstate;
break;
case RES_MANAGEMENT_MODULE :
printf("resources management state \n");
nxtstate = Res_mgtModule(packet_ptr);
management_state=nxtstate;
break;
case ACTIVE_SLEEP_MODULE:
printf("checking on/off state of dest node");
//refer to on/off state context data
if (state==ON) send_down()
else wake();
exit_flag =1;
break;
case UNKNOWN :
exit_flag = 1;
break;
default:
printf ("Unknown management event.\n");
exit_flag = 1;
break;
} //case

} // while
return mgt_action;

}//msi

SDN-Core

Coordination of
SDWSN functions:
receiving, sending,
enqueuing data.

Context Table.
Neighbour Table.
Resource Allocation

Module.

Controller Node

Context data

Knowledge base.
Management

Service Interface.

SDN-Enabled Node

Context data harvest.
Control and Data flow

requests.
Task Execution.

Controller PC

Application Server

 Monitoring GUI

Routing based on Dijkstra

Algorithm,
Process procedures for:
Data and Control flow

Setups and Requests.

Serial LinkRadio Link

Fig. 6. SDNMM implementation program structure.

enabled node is responsible for the provision of context data
and execution of sensing tasks and handling of messages based
on flow table rules.

VI. SDNMM EVALUATION

We set up a series of simulations to evaluate the perfor-
mance of the resource allocation module on top of the IT-SDN
platform in the SDNMM framework with several iterations to

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 7

TABLE II
RESOURCE MANAGEMENT MODULE PSEUDO CODE

input: pointer to task destination sensor node
output: next state based on capability and

collect rate (SI)
//get destination node address and set as
verification reference (Vref)
When a node is registered on a particular task
in a flow setup configuration, check the node
resource capability by referring to context
table information using node address as
search criteria.

node address = SDN_HEADER(pointer)->source
Vres = context_table_get(node address)
//function to
access context knowledge base.

//retrieve verification response with node
//resource information.
Get the battery level, given the critical
battery threshold, the upper and lower
sampling interval (SI) calculate the
suitable sampling interval using equation (1)
if (battery_level<=crit_batt_thresh)

calculate new SI
//endif
//Calculate node capability based
//on pending tasks and neighbors available.
if (resources >= set requirements)

capability = True else
capability = False

//set management action (Policy) based on node
//capability to handle task
if (capability==True)

next state = approval else if (capability==False)
next state = deny
recalculate capable route.

//endif

TABLE III
SUMMARY OF SIMULATION SETUP SPECIFICATIONS

Parameter Value Specification
Controller Sky mote

SDN-enabled nodes Sky mote
Transceiver CC2420

Transmit power 0 dBm (1 mW)
Node to node distance 25 m
Node transmit range 60 m

Node alignment linear
Cooja simulation speed 200 %

Protocol IEEE 802.15.4 and IEEE 802.11

observe and ensure that outliers contributed to less than 5%
of the results. The first set included three (3) ten (10) minute
simulations running at 200% speed, each with 16, 25 and 36
nodes respectively in a grid topology. In this first setup we
do not compare with SDN-WISE [18] as it exhibits scalability
problems due to the high control traffic associated with it [28].

This first simulation set yielded the results necessary to
evaluate packet delivery rate (PDR), packet delay in millisec-
onds and control traffic while having each node send a test
message to the controller. In IT-SDN this message is sent
periodically every 120 seconds while in SDNMM this message
is sent aperiodically based on the Sampling Interval (SI)
shown in equation (1). Table III shows the overall simulation
specification.

Results were obtained while running baseline IT-SDN (orig-
inal SDWSN platform) firmware and also while running
SDNMM firmware (IT-SDN + SDNMM) then evaluated by
performing a comparison to analyze the effect of building
SDNMM on top of the IT-SDN platform. The results obtained

16 25 36
No. of Nodes

0

20

40

60

80

100

P
D

R
(%

)

Framework
ITSDN
ITSDN+SDNMM

Fig. 7. Packet Delivery Rate

16 25 36
No. of Nodes

0

50

100

150

200

250

300

350

400

450

P
ac

ke
t D

el
ay

 (m
s)

Framework
ITSDN
ITSDN+SDNMM

Fig. 8. Data Packet Delay

are presented in Figs. 7, 8 and 9 respectively.
The second simulation set was used to evaluate the impact

on energy consumption of implementing SDNMM compared
to SDN-WISE and baseline IT-SDN in a 16 nodes grid setup
using powertraceK [27] as an energy measurement tool.

The energy model used is based on four power modes:
transmit (Etx), listen (Erx), CPU (Ecpu) and LPM (Elpm).
Etx represents the energest type time in ticks when the radio
is transmitting, Erx the energest when the radio is listening,
Ecpu represents the active computational power consumption
also in ticks and Elpm represents the energest type time for low
power mode operation. Given the energy mode current values
and voltage rating for the transceiver in the specification sheet,
the individual state energy consumption in Joules is shown in
equations (2), (3), (4) and (5). Dimensional analysis of the
equations results in the unit watt-second which is a derived
unit of energy equivalent to a joule. Equation (6) shows the
resulting total energy consumption.

Wtx =
EtxItxV

RTIMER sec
(2)

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 8

16 25 36
No. of Nodes

0

500

1000

1500

2000

2500
N

o.
 o

f C
on

tro
l P

ac
ke

ts

Framework
ITSDN
ITSDN+SDNMM

Fig. 9. Total control packets generated

Wrx =
ErxIrxV

RTIMER sec
(3)

Wcpu =
EcpuIcpuV

RTIMER sec
(4)

Wlpm =
ElpmIlpmV

RTIMER sec
(5)

Wtotal = Wtx +Wrx +Wcpu +Wlpm (6)

where:
Wtx,Wrx,Wcpu,Wlpm represent energy consumption in

transmit, listen, active cpu and low power mode states in joules
respectively and Wtotal is the total energy in joules
V is the rated voltage of the transceiver in volts.
Itx, Irx, Icpu, Ilpm are the rated currents of the transceiver in
amperes during transmit, listen, active cpu and low power
mode operations respectively.
RTIMER sec is the energest type tick frequency in tick-
s/second.
Fig. 10 shows the plot of energy consumption in that period.

The resulting computational overhead of SDNMM was
evaluated by analyzing the computation cost as a percentage
of the total energy cost in that time period. As depicted in Fig.
11, SDNMM shows a reduced computation cost compared to
both SDN-WISE and IT-SDN furthermore, it also contributes
to less than 1% of the total energy cost which is mostly due
to radio communications.

The last set of simulations were used to perform an analysis
on the effect of varying network topologies on the performance
of SDNMM compared to SDN-WISE and ITSDN. 16 nodes
were placed in a grid, mesh and ring topology in this eval-
uation and the packet delivery, delay and number of control
packets measured in each case. Figs. 12, 13 and 14 show these
results respectively.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Node ID

39400

39500

39600

39700

39800

To
ta

l E
ne

rg
y

(m
J)

Framework
SDN-WISE
ITSDN
ITSDN+SDNMM

Fig. 10. Energy consumption analysis

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Node ID

0.4

0.6

0.8

1.0

1.2

1.4

1.6

%
 C

om
pu

ta
tio

na
l O

ve
rh

ea
d

Framework
SDN-WISE
ITSDN
ITSDN+SDNMM

Fig. 11. Computational overhead analysis

Grid Mesh Ring
Topology

0

20

40

60

80

100

P
D

R
(%

)

Framework
SDN-WISE
ITSDN
ITSDN+SDNMM

Fig. 12. Topology packet delivery rate

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 9

Grid Mesh Ring
Topology

0

500

1000

1500

2000

2500
P

ac
ke

t D
el

ay
 (m

s)

Framework
SDN-WISE
ITSDN
ITSDN+SDNMM

Fig. 13. Topology packet delay

Grid Mesh Ring
Topology

0

200

400

600

800

1000

N
o.

 o
f C

on
tro

l P
ac

ke
ts

Framework
SDN-WISE
ITSDN
ITSDN+SDNMM

Fig. 14. Topology control traffic

VII. DISCUSSION

The results obtained show that implementing SDNMM im-
proves the performance of the IT-SDN platform it is developed
on in several key aspects. We also observe significant perfor-
mance improvement over a comparable SDN-WISE frame-
work setup. The modular management being proposed allows
the implementation of a resource allocation module capable of
adapting the packet rate based on resources available and also
improve task allocation based on node capability. The direct
result of which is reduced congestion which is reflected by
the improvements in delay and control traffic levels. These
ultimately result in improved packet delivery rates. Firstly,
in Fig. 7 SDNMM shows a notable improvement in packet
delivery rate even as nodes are increased from 16 nodes
to 25 nodes and then to 36 nodes mainly due to reduced
traffic congestion hence fewer packet losses due to collisions.
Figs. 8 and 9 respectively show a significant reduction in
packet delay and control traffic compared to IT-SDN in each
case. Predetermined actions based on context in the resource
allocation minimize delay and resulting control overhead. In
comparison to SDN-WISE, the high control traffic associated

with the framework hindered the simulation of 25 and 36
nodes for the set time period as the network activity would
exceed allowed memory usage at those network sizes.

Figs. 10 and 11 depict the energy consumed by each SDN-
enabled node in the 16-node grid setup and the resulting
computational overhead respectively. The graphs show that
SDNMM results in a decreased energy consumption compared
to IT-SDN as all points reflecting SDNMM energy consump-
tion fell below that of IT-SDN only. The data sampling enabled
in the MSI was mainly responsible for this increase in energy
efficiency. We also notice that this is a promising phenomenon
of the resource allocation module considering no dedicated
energy management module was integrated and the extra en-
ergy consumed from context report generation did not impact
the overall energy consumed extensively. Compared to SDN-
WISE in the same 16 node grid setup, SDNMM consumed less
energy in the same time period showing an improvement in
energy efficiency. This improvement is also mainly due to the
decreased traffic generation and transmission rates leading to
a lesser period of active cpu, transmit and receive time which
consume most of the node energy resources.

The SDNMM resource allocation module also showed
improved performance in different topology setups. In Figs.
12, 13 and 14 the adaptive data rate based on battery level
introduced minimized congestion leading to improvement in
packet delivery rate with delay and control traffic being kept at
a minimum. This resulting improvement in delay and control
traffic can also be alluded to the high correlation that exists
between the amount of data traffic to be processed for sending
to the sink or controller and the associated control overhead
and delay.

In Fig. 12 however, SDN-WISE showed around 6% im-
provement in packet delivery over SDNMM in the mesh
topology due to the improved neighbor discovery in SDN-
WISE which comes at the expense of a higher control traffic
and packet delay. SDNMM still showed a considerable 83%
while reducing the delay and control traffic by over 90% in
the same mesh topology.

In terms of other SDN-based management systems, we can
analyze and compare features as shown in Table IV. Usability
as a management system is dependent on features such as the
application use case, modularity, scalability, and availability of
the development platform. Compared to other available SDN-
based management systems, SDNMM has the advantage of
providing a generic management approach based on its modu-
larity feature that is developed on an open-source and widely
available platform. SDNMM also provides an opportunity for
large-scale implementation as the system framework allows
for network scalability.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have discussed in general the benefits
SDN-based management of wireless sensor networks. We
mentioned how SDN can solve inherent WSN management
challenges due to resource constraints and also how the
global network view maintained by SDN can improve net-
work management. In this regard, a novel generic SDN-based

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 10

TABLE IV
FEATURE COMPARISON OF SDN-BASED MANAGEMENT SYSTEMS

System Application Modularity Scalability Platform
Smart [20] Generic NO NO -

Soft-WSN
[21]

Device
and

topology
NO NO Proprietary

6LowPAN
[22] Energy NO NO Open-

source

Shsec [29]
Smart
home

security
YES - Proprietary

SDNMM Generic YES YES Open-
source

modular management system to yield the benefits of SDN
and modularity in managing wireless sensor networks was
presented, implemented and discussed in detail. The benefits
in terms of packet delivery, reduced packet delay, and energy
consumption introduced by a sample resource allocation man-
agement module in the system framework have been shown.

Future work will involve the implementation of SDNMM
on distributed controllers together with the use of information
fusion techniques [30] specifically flow-rule aggregation [31]
in a bid to further reduce the resulting control overhead. We
also intend to add a dedicated energy management module
with power management functions and an energy efficient
routing mechanism to further reduce the energy consumption
from generating context data. In addition, we expect machine
learning methods to be used in the collection of context data
more intelligently and efficiently [32] based on management
module requirement. Context data could take any form beyond
that collected in this paper, for example, a security manage-
ment module could request the encryption status of data in
the data plane as context and make decisions based on it. It is
worthwhile to mention here that with management modularity
in place, concepts based on adjusting transmission power [22]
and transmission ranges to improve network lifetime can be
built as flexible modules based on the context data. As other
SDWSN development platforms become more available, the
SDNMM system framework will be implemented on them and
the resulting effects evaluated. In general, the SDNMM system
has introduced a new niche in IoT management requiring the
development of various modules for security, topology and
QoS management for instance, all with the end goal of im-
proving the efficiency of network performance and reliability.

REFERENCES

[1] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A survey on 5g networks for the internet of things: communication
technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, 2018.

[2] J.-H. Shin and D. Park, “A virtual infrastructure for large-scale wireless
sensor networks,” Computer Communications, vol. 30, no. 14-15, pp.
2853–2866, 2007.

[3] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined network-
ing: a survey and taxonomy,” IEEE Communications Surveys Tutorials,
vol. PP, no. 99, pp. 1–1, 2016.

[4] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software
defined networking for improved wireless sensor network management:
A survey,” Sensors, vol. 17, no. 5, 2017. [Online]. Available:
https://www.mdpi.com/1424-8220/17/5/1031

[5] W. L. Lee, A. Datta, and R. Cardell-Oliver, “Network management in
wireless sensor networks,” Handbook of Mobile Ad Hoc and Pervasive
Communications, pp. 1–20, 2006.

[6] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang, and V. C. Leung,
“Lightweight management of resource-constrained sensor devices in
internet of things,” IEEE internet of things journal, vol. 2, no. 5, pp.
402–411, 2015.

[7] Y. Qiu and M. Ma, “Secure group mobility support for 6lowpan
networks,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1131–
1141, 2018.

[8] L. B. Ruiz, J. M. Nogueira, and A. A. Loureiro, “Manna: A manage-
ment architecture for wireless sensor networks,” IEEE communications
Magazine, vol. 41, no. 2, pp. 116–125, 2003.

[9] H. Song, D. Kim, K. Lee, and J. Sung, “Upnp-based sensor network
management architecture,” in Proc. ICMU Conf, 2005.

[10] T. M. Cao, B. Bellata, and M. Oliver, “Design of a generic management
system for wireless sensor networks,” Ad Hoc Networks, vol. 20, pp.
16–35, 2014.

[11] S. W. Pritchard, G. P. Hancke, and A. M. Abu-Mahfouz, “Security
in software-defined wireless sensor networks: Threats, challenges and
potential solutions,” in 2017 IEEE 15th International Conference on
Industrial Informatics (INDIN). IEEE, 2017, pp. 168–173.

[12] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for internet of things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, 2017.

[13] K. M. Modieginyane, R. Malekian, and B. B. Letswamotse, “Flexible
network management and application service adaptability in software
defined wireless sensor networks,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, no. 4, pp. 1621–1630, 2019.

[14] H. I. Kobo, G. P. Hancke, and A. M. Abu-Mahfouz, “Towards a dis-
tributed control system for software defined wireless sensor networks,”
in Industrial Electronics Society, IECON 2017-43rd Annual Conference
of the IEEE. IEEE, 2017, pp. 6125–6130.

[15] R. Alves, D. Oliveira, G. Nez, and C. B. Margi, “It-sdn: Improved ar-
chitecture for sdwsn,” in Proceedings of the XXXV Brazilian Symposium
on Computer Networks and Distributed Systems, Belem, Brazil, 2017,
pp. 15–19.

[16] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications Let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[17] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “Tinysdn: Enabling
multiple controllers for software-defined wireless sensor networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, 2015.

[18] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise:
Design, prototyping and experimentation of a stateful sdn solution for
wireless sensor networks,” in Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, 2015, pp. 513–521.

[19] T. Theodorou and L. Mamatas, “Coral-sdn: A software-defined net-
working solution for the internet of things,” in Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2017 IEEE
Conference on. IEEE, 2017, pp. 1–2.

[20] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network
management based on software-defined networking,” in Communications
(QBSC), 2014 27th Biennial Symposium on. IEEE, 2014, pp. 71–75.

[21] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-wsn: Software-
defined wsn management system for iot applications,” IEEE Systems
Journal, 2016.

[22] F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined
networking framework for iot based on 6lowpan,” in Wireless Telecom-
munications Symposium (WTS), 2018. IEEE, 2018, pp. 1–7.

[23] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in 29th annual
IEEE international conference on local computer networks. IEEE,
2004, pp. 455–462.

[24] B. T. de Oliveira and C. B. Margi, “Distributed control plane architecture
for software-defined wireless sensor networks,” in Consumer Electronics
(ISCE), 2016 IEEE International Symposium on. IEEE, 2016, pp. 85–
86.

[25] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-
based distributed control system for software defined wireless sensor
networks,” IEEE Transactions on Industrial Informatics, 2018.

[26] N. D. Phung, M. M. Gaber, and U. Rohm, “Resource-aware online data
mining in wireless sensor networks,” in Computational Intelligence and
Data Mining, 2007. CIDM 2007. IEEE Symposium on. IEEE, 2007,
pp. 139–146.

[27] A. Riker, M. Curado, and E. Monteiro, “Neutral operation of the
minimum energy node in energy-harvesting environments,” in 2017

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 2019 11

IEEE Symposium on Computers and Communication (ISCC), July 2017,
pp. 1–6.

[28] N. Q. Hieu, N. H. Thanh, T. T. Huong, N. Q. Thu, and H. Van Quang,
“Integrating trickle timing in software defined wsns for energy effi-
ciency,” in 2018 IEEE Seventh International Conference on Commu-
nications and Electronics (ICCE). IEEE, 2018, pp. 75–80.

[29] P. K. Sharma, J. H. Park, Y.-S. Jeong, and J. H. Park, “Shsec: sdn based
secure smart home network architecture for internet of things,” Mobile
Networks and Applications, vol. 24, no. 3, pp. 913–924, 2019.

[30] A. M. Abu-Mahfouz and G. P. Hancke, “Localised information fusion
techniques for location discovery in wireless sensor networks,” Interna-
tional Journal of Sensor Networks, vol. 26, no. 1, pp. 12–25, 2018.

[31] I. Maity, A. Mondal, S. Misra, and C. Mandal, “Tensor-based rule-space
management system in sdn,” IEEE Systems Journal, 2018.

[32] B. Cheng, J. Zhang, G. P. Hancke, S. Karnouskos, and A. W. Colombo,
“Industrial cyberphysical systems: Realizing cloud-based big data in-
frastructures,” IEEE Industrial Electronics Magazine, vol. 12, no. 1, pp.
25–35, 2018.

Musa Ndiaye (S’17) received his BEng in Elec-
trical/Electronics Engineering from the Copperbelt
University (Zambia) in 2011. He then obtained his
MSc in Microelectronic and Communications Engi-
neering from University of Northumbria at Newcas-
tle (United Kingdom) in 2013. He is currently a PhD
student with the Advanced Sensor Networks group
at the University of Pretoria (South Africa). His
research interests include software defined wireless
sensor networks, network management, sensor node
hardware development and a wide range of Internet

of Things technologies.

Adnan M. Abu-Mahfouz (M’12-SM’17) received
his MEng and PhD degrees in computer engineer-
ing from the University of Pretoria, Pretoria, South
Africa, in 2005 and 2011, respectively.

He is currently a Principal researcher at the Coun-
cil for Scientific and Industrial Research (CSIR),
a Research and Innovation Associate at Tshwane
University of Technology and Extraordinary faculty
member at University of Pretoria. His research in-
terests are wireless sensor and actuator network, low
power wide area networks, software defined wireless

sensor network, cognitive radio, network security, network management,
sensor/actuator node development, smart grid and smart water systems.

Dr Abu-Mahfouz is an associate editor at IEEE ACCESS, IEEE INTERNET
OF THINGS and IEEE TRANSACTION ON INDUSTRIAL INFORMAT-
ICS. He is a member of many IEEE technical communities.

Gerhard P. Hancke (S’99-M’07-SM’11) obtained
B.Eng. and M. Eng. degrees from the University
of Pretoria (South Africa) in 2002 and 2003, and a
PhD in Computer Science with the Security Group
at the University of Cambridge’s Computer Labo-
ratory in 2008. He is an Associate Professor with
the City University of Hong Kong (Hong Kong
SAR). Dr. Hancke’s research interests are system
security, embedded platforms and distributed sensing
applications.

