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Abstract

Finite mixture models have recently been considered for analyzing positive support economical data streams with non-
normal features. In this paper, a new mixture model based on the novel class of generalized Birnbaum-Saunders distri-
butions is proposed to enhance strength and flexibility in modeling heterogeneous lifetime data. Some characteristics
and properties of this mixture model are outlined. By presenting a convenient hierarchical representation, a math-
ematically elegant and computationally tractable EM-type algorithm is adopted for computing maximum likelihood
estimates. Theoretical formulae of well-known risk measures referring to the class of generalized Birnbaum-Saunders
distributions are derived. Finally, the utility of the postulated methodology is illustrated with some real-world data
examples.

Keywords: Birnbaum-Saunders distribution, Finite mixture model, Normal mean-variance model, Risk
measurement, Value-at-risk, Tail-Value-at-risk

1. Introduction

Asymmetric, leptokurtic and multimodal data are often presented in various fields such as insurance, economet-
rics, business, biology, genetics, industry and engineering. For modeling asymmetric and leptokurtic data, skewed
and fat-tail distributions have commonly been used. For instance, [1] and [2] considered the skew-normal (SN)
distribution [3] for evaluating some risk measures of insurance data. Eling [4, 5] exploited the SN and skew-t distri-
butions [6] as promising benchmark models for describing the actuarial loss and asset returns of insurance companies.
Shushi [7] identified the skew-elliptical distributions as alternative models in the context of risk measurement. More-
over, the generalized hyperbolic (GH) family of distributions has recently been considered for adequately modeling
financial data. For example, Prause et al. [8] described the properties of the GH distribution and highlighted its
practical features both through simulated and real datasets. Aas [9] demonstrated the superiority of two special cases
of the GH distribution, namely the normal inverse Gaussian (NIG) and generalized hyperbolic skew-¢ (GHST) distri-
butions, in evaluating Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR) measures. They showed the significance
of the exponential/polynomial tail behavior in practice. More recently, Bee et al. [10] developed three extensions
of the expectation-maximization (EM) algorithm for obtaining maximum likelihood estimate of the parameters of
variance-gamma (VG) distribution. They showed that the VG model is flexible enough to accommodate skewness and
leptokurtosis in order to model log-returns of financial assets.

The main reasons for using the aforementioned families of distributions in financial analyses are (1) the feasibility
and potential for fast calibration of the parameters to data, and (2) the closeness of the family under combinations (the
portfolio property). However, using the asymmetric distributions with R support is inappropriate in principle when
the data are positive. More precisely, if the support is R*, using these distributions might cause boundary bias, that is,
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allocation of probability mass outside of the theoretical support. To overcome this deficiency, there has been a growing
interest in seeking robust, positive and right-skewed distributions. See, for example, the work on the log-skew-normal
[11], gamma [12-15], log-normal [14—16], inverse Gaussian [14, 17] and Weibull [18] distributions.

In recent decades, one of the most valuable lifetime models in applied statistics has been the two-parameter
Birnbaum-Saunders (BS) distribution [19]. Properties and straightforward relationship with the normal distribution
make the BS model a promising tool in engineering [20], medical sciences [21], wind analysis [22], as well as business
and industry [23-26]. The BS distribution could be criticized not only for its lack of robustness against atypical obser-
vations (highly skewed and heavy-tailed data) but also for the fact that it cannot accommodate monotone (increasing
or decreasing) nor bathtub-shaped hazard rate functions [27]. To overcome these deficiencies, some generalizations
of the BS distribution have recently been proposed in [28-33]. Although these generalized models may not have
physical meaning as the BS distribution, they can be used for modeling right-skewed and non-negative datasets with
strong asymmetrical features. An interesting approach to extending the BS distribution, which is discussed in detail
in the next section, is to replace the standard normal variable in the stochastic representation of the BS model with
other random variables followed by highly skewed and heavy-tailed distributions. Based on this idea and exploiting
normal mean-variance mixture (NMV) models, Hashemi et al. [34] introduced the normal mean-variance Lindley
BS (NMVL-BS) distribution. They showed that the NMVL-BS distribution is robust in the presence of outliers and
can model datasets with monotonic or non-monotonic hazard rate functions. Hashemi et al. [34] also concluded that
the main advantage of the NMVL-BS distribution was its application to financial data. This advantage is due to its
feasible fitting, its attractive properties, such as covering outliers, and its relationship with the NMV model.

Even though all the aforementioned distributions assume unimodality, it is generally accepted with the support of
numerous empirical studies that economic and financial data streams often exhibit some heterogeneity, as reflected in
multimodality, which is not compatible with the fitting of a single parametric distribution [35]. Realistic modeling thus
calls for alternative statistical tools. The finite mixture (FM) model is a statistical tool aiming for classification and
density estimation. Due to its flexibility and universal approximation capability with respect to complicated density
functions in the presence of heterogeneity, the FM model has frequently been used in a broad variety of applications
[21, 36-40].

This paper aims to (i) characterize a new generalization of the BS distribution by means of the NMV models, which
we call the normal mean-variance generalized BS (NMV-GBS) distribution, (ii) propose the finite mixture of NM V-
GBS (FM-NMV-GBS) distributions, (iii) illustrate the performance of the proposed model in dealing with financial
datasets, and (iv) study two well-known risk measures, VaR and TVaR, for the proposed model. The remainder of the
paper is therefore divided into five parts. The definition of the new model is presented in Section 2 and its parameter
estimation procedure in Sections 3. In Section 4, we derive theoretical formulae for VaR and TVaR based on the
FM-NMV-BS distributions. The advantages of the proposed model are examined in Section 5 through the analysis of
four real financial datasets. Finally, Section 6 gives some concluding remarks and future considerations. Technical
details and additional information are provided in the Online Supplement.

2. Normal mean-variance generalized Birnbaum-Saunders distribution

In order to introduce notation, we start with the definition of the NMV distribution. An in-depth discussion of the
NMYV model can be found in [41].

2.1. Preliminaries
2.1.1. The NMV model
A random variable X is said to follow the NMV model [42] if it has the stochastic representation

X=p+Wi+ w0z, M

where Z is distributed as a standard normal, N(0, 1), and independently of Z, W is a non-negative random variable
with probability density function (pdf) #(w; 8). One can easily see that the conditional distribution of X given W = w
is N'(u + wd, wa?), and so the pdf of X can be expressed as

1
Sy (5 10 4, a2, 0) {— o2 (x—pu- W/l)z} h(w; 0) dw, x eR.

2

0 1
= exp
jo‘ V2nwo?
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In the rest of the paper, f,,,, (x; 4, 6) will represent the pdf of the NMV distribution with u = 0 and o = 1, denoted by
X~ NMV(Q,0).

Depending on the chosen distribution for W in representation (1), the special cases of the NMV model, such as the
NIG, GHST, VG, and skew-Laplace (SL) distributions, can be obtained. An important sub-class of the NMV model
is the GH distribution. A random variable X is said to follow a GH distribution, denoted by GH (u, o2, Ak, X, W), if
its pdf is

KO.S—K (6()(’/1’ /l’ 0-2’/\/’ l//)) ex {/l(x - ,u)} YeR (2)

(CENTN SR R
where 6(x, 41, 4, 0%, ) = W + A/ + ((x = /o), C = W) W + (A1)’ N2n K, (Vi) is the

normalizing constant and K,(-) denotes the modified Bessel function of the third kind with order a. The notation
Sen (3 A,k x5 ) will be used to denote the pdf of standard GH distribution (1 = 0,0 = 1). McNeil et al. [41] showed
that X with pdf (2) can be generated by the NMV representation (1) when W has a generalized inverse Gaussian (GIG)
[43] distribution, W ~ GI G(«, x,¥), with pdf

ho (W K X ) = (?)K/2 A {—1 (wlx+ ww)}, w> 0. 3)
X 2K (Vi) L2

. 2 —
fGH('x’H’/l’O- ?K7X7W)_C 0_2

2.1.2. The BS distribution

The BS distribution is a positively skewed and unimodal distribution with non-negative support. An important
property of the BS distribution is that it is closely related to the normal distribution by means of a simple stochastic
representation. A random variable T is said to have a BS distribution with the shape and scale parameters « and 3,
respectively, if it can be expressed by

T = g [az + V@22 + 4]2, 4)

where Z ~ N(0, 1). It can easily be shown that the cumulative distribution function (cdf) of T is
F(t;a,B) = O[c(t, @, B)], t>0,a>0,8>0, (5)

where @(:) is the cdf of N(0, 1) and c(¢, @, ) = a! (\/t/,B — B/ t). The cdf of BS distribution can be formulated by
a mixture of two GIG distributions with equal weight, i.e.

11 B 115)

F(t;a,p) = 0.5F (t;i,ﬂ?,g 5,&7,;

) +0.5F (t; -
An in-depth review and discussion of both the univariate and multivariate BS distributions can be found in [44-46],
among others.

An appealing generalization of the BS distribution is obtained by replacing the standard normal variable Z in (4)
with another random variable with a highly skewed and heavy-tailed distribution, or alternatively by replacing ®(-) in
(5) with a cdf of asymmetric distribution. A new extension of the BS model is presented below by combining (1) and

(G2

2.2. Model formulation
Definition 1. Let T be a positive random variable. It follows the NMV-GBS distribution if it is related to the standard
normal model via the following stochastic representation

_B
T4

2
[a(w + W2z + \/ W2+ Wl/ZZ)]2 +4, (6)

T

where Z ~ N(0,1) and W ~ h(w; 0) are independent. Consequently, the pdf of T is given by
fNMV—(}BS(t; CV,B? A, 0) = C(t’ Q',B)fNMV(C(t, a"ﬂ); 4, 0), (7)

where C(t,a,B) = (t + 8)/2a \/B? is the first derivative of c(t, a, 5).
3
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Denote T ~ NMYV — GBS(a, B, 4, ) for short, if T has pdf (7). Note that the parameter o2 of the NMV distribu-
tion is fixed to avoid problem of identifiability. The NM V-GBS quantile function is given by

2

Ou) = g Flou;2,0)+ \/(a'F;h}W(u;/l, 0))2 +4| ., ue(1),

where F_! (-; 1, 0) denotes the quantile function of the N MV(A, §) model.

NMV

Proposition 1. The NMV-GBS distribution is a member of the scale family of distributions and is closed under
reciprocation. ie. if T ~ NMYV -GBS(w,B,4,0), then aT ~ NMYV — GBS(a,aB, A, 0) for any a > 0, and
T '~ NMV - GBS(a, 571, A, 6).

Proof. The proof of proposition can be found in Appendix B of the Online Supplement. O
Proposition 2. Let T ~ NMYV — GBS(a, B, A, 0). Then, the conditional distribution of T given by W = w is

TIW = w ~ EBS(a Vw, 3,2, — Vw4, 0),
where EBS denotes the extended BS distribution [47]. Thus, the pdf of TIW = w is given by

C(t,a,B) ox
V2w

Proof. The proof of proposition can be found in Appendix B of the Online Supplement. O

1
frwv=(t .. ) = p{- 5o (c(t.a.p)—aw)’}

Assume in (6), W ~ GIG(«k, x, ). Then, an interesting sub-class of the NMV-GBS model called the generalized
hyperbolic BS distribution (GH-BS), denoted by GH — BS(«, 8, A, , x, ¥), is obtained. The following propositions
provide limiting and special cases of the GH-BS distribution.

Proposition 3. Let T ~ GH — BS(a, B, A, k, x, ).

i. Ify approaches zero and k = —v/[2,y = v, then T tends to the GHST-BS distribution. Here, Student-t BS (T-BS)
model is also obtained if A tends to zero.

ii. By setting k = 1 and = 0, the hyperbolic BS (H-BS) and variance-gamma BS (VG-BS) distributions follow,
respectively.

iii. When k = —0.5, the GIG model becomes the inverse Gaussian distribution, and its corresponding GH-BS
distribution is the normal inverse Gaussian BS (NIG-BS) model.

iv. If k = 1, = 1,x = 0, the GIG model becomes the exponential distribution and its corresponding GH-BS
distribution is the skew-Laplace BS (SL-BS) model [39]. Here, the Laplace BS (L-BS) distribution can be
obtained if A approaches zero.

v. The GH-BS distribution includes the scale-mixture Birnbaum-Saunders distribution [33] as A tends to zero.

Proof. The proof of proposition can be found in Appendix B of the Online Supplement. O
Proposition 4.

i. The original BS distribution is obtained from (6) when h(-; @) degenerates to 1 and A tends to zero.
ii. Let W in (6) be distributed as BS(t,1). Then, the pdf of random variable T followed by the NMVBS-BS
distribution can be presented by

Funnsss (60 B A, 7) = 0.5C(t, @, B (c(t, . B); 1,05, 772, 772) + £, (c(t, @, f): A, =0.5,772,772)).

Details of the NMVBS distribution can be found in [48, 49].
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Figure 1: Density curves of special cases of the GH-BS distribution for arbitrary parameter choices.

iii. Let W in (6) be distributed as Lindley distribution with shape parameter T, denoted by L(1). Then, the random
variable T follows the NMVL-BS distribution with the following pdf

Faniss (@B A,T) = %(T fon(c(t,@.B): 4,1,0,27) + £, (c(t. . ); 1,2,0,27)).

105 Details of the NMVL and NMVL-BS distributions can be found in [34, 50].

Proof. The proof of proposition can be found in Appendix B of the Online Supplement. O

106
107 The following theorem is crucial for calculating some of the conditional expectations involved in the proposed
EM-type algorithm in the next section.

Theorem 1. Let W ~ GIG(k, x,¢) and T ~ GH — BS(a, B, A, k, x, ¥). Then, the conditional distribution of W given

T=tisGIGk—-0S5x+p, ¥+ A2), where p= A, a,3). Moreover,

EW'T =1] = (;:fz)r/sz)(w/(X +p)(l//+/12)), for r==x1,%2,...,
OE[W?|T =1] ( )(+p) 1 9
EllogW|T =] = —————| =1 + —Ko. + + A2)),
[log WIT = 1] 2o -0 = 1082 N TES ) AN e 05(y/0x +P)W + 22)

where R(K,r)(a) = KK+r(a)/KK(a)‘
Proof. The proof of theorem is provided in Appendix B of the Online Supplement.
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1 Table 1 summarizes the conditional distribution of W given T = ¢ for the limiting and special cases described in

112 Propositions 3 and 4.
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3. Finite mixture of the NMV-GBS distributions

Let Ty,...,T, be n independent random variables taken from a FM-NMV-GBS distributions. The pdf of a g-
component FM-NMV-GBS model is given by

8
F50) = D1 Frons (1 @ B 41, 6), ®)
i=1

where 71; is a mixing proportion of the ith sub-population that is constrained to be ; > 0 with the constraint Zf’zl m=1,
¥ = (@B, 4i,0;)) and @ = (my,...,me_1,¥1,...,¥,). Therefore, the log-likelihood function of ® associated with
the observed data ¢t = (¢1,...,%,)" can be obtained as

n 8
(@It) = " log [Z 7 Fonvans (1 ‘1'») . ©

j=1 i=1

To determine the ML estimate of the parameters in (9), a direct maximization is tortuous. This difficulty in obtaining
parameter estimates is due to the complicated derivatives with respect to the parameters. An alternative framework
for computing the ML estimate is the expectation-maximization (EM) algorithm [51]. The EM algorithm is an it-
erative procedure of parameter estimation, that was originally used with incomplete data. To apply the EM-type
algorithm to finite mixture models, it is convenient to introduce a set of missing component membership labels
Z; = (le,...,Zgj)T, where Z;; = 1 if observation j is in component i and Z;; = 0 otherwise, for j = 1,...,n,
and i = 1,...,g. This implies that Z; independently follows a multinomial distribution with one trial and probabil-
ities (71, ...,mg), denoted by Z; ~ M(1;ny,...,m,). This leads to presenting the hierarchical formulation of (8) by
Proposition 2 as

Ti\(W=w;,Zij=1) ~ &EBS(aiwj.Bi,2,—Aiw)),
WilZij=1 ~ hw;6,),
Z; ~ MQ;my,...,m).

Therefore, the complete-data log-likelihood function of ® given the observed data ¢ and hidden variables w =
Wi,...,wp)" and Z = (Zy,...,Z,)", omitting additive constants, is

wl

;Sj_

n g 2
1
.(Olt,w,Z) = Z Z Zij {log mi + log h(wj; 6;) — log a; — 3 log B; + log(z; + B;) — Y 2’

2 A
W + _a(tja laﬁl)} >
=1 =1
(10
where S ; = (¢;/B; — Bi/t; — 2).

3.1. Parameter estimation via ECME algorithm

In this section, the Expectation Conditional Maximization Either (ECME) algorithm is exploited to compute the
parameters estimate of the FM-NMV-GBS model. The ECME algorithm was originally proposed by [52] as an
extension of the ECM algorithm [53]. The ECME algorithm is implemented by replacing the maximization (M) step
of the EM algorithm with a sequence of computationally simpler conditional maximization (CM) steps in which, as
explained below, the so-called Q-function or the corresponding constrained actual likelihood function is maximized.

The ECME algorithm for obtaining the ML estimate of the FM-NMV-GBS distributions proceeds as follows.

At the iteration k, we compute the so-called Q-function, in the E-step, which is defined as the expected value of
complete-data log-likelihood (10) with @ valued at ©@®

a(k) 2

n g
N 1 ij A A
(k)_§ § 5(k) L - . - AL A VR N (O B oy )
o0|0"™) = % log m; — log «; 5 log B; + log(t; + B3;) 2a.2Sj > Wi+ aia(tj’ LB+

j=1 i=1 i j=1 i=1

=
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(11)
where & = E[W;'lt;,Z; = 1,001, Y = EIW)lt;,Z; = 1,0{°] and T;; = Ellogh(W;; 6)lt;, Z;; = 1,0{] are
calculated by Theorem 1 and 2;j = E[Zijlt;, O] = fu.cms (13 @i Bis Ai» 0/ £ (15 ©).

Letn; = X', lﬁ(k) A= lﬁ(k) 7™ and B; = i lﬁfljm( ), and update @ by maximizing (11) over @. This leads
to the following CM estimators:

CM-step 1. Update the parameters ﬂ(k) A(k) ,B(k), and /Algk) as

n; N
ﬁ§k+l) — _’7 /lf.kH) ZA(k)a(t]’A(k) IB(k))

n

(k) n W(k)

A2(k+1 Alk) A(k ] Ak Ak k
ai(+) — (k)Z()() {Zf/) - _ Z()a(tl’ ﬁ()))

ni; i = J
ﬁ§k+l) argmaxgom(ﬂ” A(k+l) /l(kH))

where
ﬁ(k) A2(k+1) /l(kH)
A(k+1) A(k+1) A(k) i ~ (k)

Cops(Biz @D, 26Dy = Z ——log,B,— 2MS +log(t; + B) = ~5— W) + (kma(tpl B)-

CM-step 2. The update of #% is obtained by maximizing (11), or alternatively % ¥ | Aff)'l’ Table 1

includes some special cases of the FM-NMV-GBS distributions along with the closed form of T;; and their
corresponding update of %

3.2. Computational aspects
To implement the proposed ECME algorithm, we recommend the following initialization, convergence rule and
model selection criteria.

3.2.1. Initialization

Generating admissible starting values is crucial to achieving swift convergence. Moreover, since the EM algorithm
may not give a maximum global solution if the initial value is too far from the real parameter value, the choice of a
good starting point plays an important role in parameter estimation. The adopted strategy for obtaining reasonable
starting values is summarized as follows:

1. Separate the sample into g groups using the k-means cluster algorithm via R function “kmeans()”.
2. Compute the proportion of data points belonging to the same cluster i, and use them as an initial value of ;.

3. For each group, create the initial value al(.o) and ﬁf.o) , for example, by using the modified moment estimates

proposed by [54], and /1[(.0) the skewness of ith group.

4. The initial value of 6; can be obtained as a moment or ML estimate of the baseline distribution on W for each
group.

3.2.2. Stopping rule

To determine convergence of the EM algorithm, we use the Aitken acceleration method [55] in order to evade an
indication of lack of progress of the algorithm [56]. At iteration k + 1, the asymptotic estimate of the log-likelihood
[57]is

A 1 ~
L@ = €O™ ) + s {0@* D) - @),

where the Aitken acceleration factor is calculated as a® = (£@%D) — £(8))/(€(O) — £(@*V)). Therefore, the
algorithm can be considered to have reached convergence if £.,(8**D) — £(8%) < £ [58]. In our study, the tolerance &
is set equal to 107,
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Table 1: Special cases of the FM-NM V-GBS distributions along with their mixing corresponding parameters estimate.

FM-NMV-GBS Mixing Mixing Conditional distribution Tij Estimator of 6;
sub-model parameter (‘¥;) distribution (W) WIT =1;,Z;; = 1) (omitted additive constants)
L-BS (@i, Bi) G1G(1,0,1) G1G(0.5,pi, 1) No parameter to estimate
TBS (@i Vi) GIGvi/2.v,0)  GIG(-(i+ 1)/2,vi +p;j,0) g(log VE —¥ij — i) - log r(g) %5 are obtained numerically
SL-BS (@i, Bi, Ai) GI1G(1,0,1) GIGO0.5,p5, 1+ 2) —_ No parameter to estimate
Yi o .
H-BS (@i, Bi, Ais xis i) GIG(, xi, ¥i) GIG(O0.5,xi + pij» Wi + A7) 0.5log i log Ki(Vxihi) (Xi, Yi)s are obtained
=0.5Cxiftij + Yiwij) numerically
VG-BS (@i, Bis Ais Kis i) GIG (i, 0,¥:) GIG(Ki-0.5,pij i + A2) ki logy; —logI'(k;) — ki log2 (ki, r;)s are obtained
—Wijhi/2 + (k = 1)Lw; numerically
where Lw;; = E[log WIT = t;,6,]*
NIG-BS (@i, Bis Ais Xis i) GIG(-0.5,xi, i) GIG(-1,xi+pij¥i+ A7) 0.5(log x; — fijxi — Wipi) + \xii Xi = viAi/n;, and #’A/A;U,z/kbf
where v; = —(1 — %)’1
nl
GHST-BS (@, Bi, Ai, vi) GIG(-vi/2,v;,0) GIG(-(vi+ 1)/2,vi + pij, /1[2) %(log % = Wjj — @i;j) — log F(%) ;s are obtained numerically
NMVBS-BS (@i, Bis Ais T) BS(t;, 1) Mixture of two GIG distributions:
-2 2, 2 Wij + i =2 A P
GIGO, 7% +pijp 1,7 + A7) —logti + e Ti= 25 SOy + iy = 2)/n;
GIGCL, T +pij, 7% + ) '
with the weights Py;(t;)
NMVL-BS (@, Bis iy ) L(1)) Mixture of two GIG distributions:
72 1—w)+ V(I —wy) + 8w;
GIG(0.5,p;), 27 + A2) log —i— — T = Azm ¥ VU Zw) + 8w

GIG(1.5,p;j,27; + A7)
with the weights Py(t))

2w;
where w; = A;/n;

Notation: p;; = c>(tj, @ B)), Puilt))

Pai(t)) = Tif 5y (0ij: 0, A, 1, 1,0,27) [(Ti £ (023 0, A, 1, 1,0, 27) + £, (013 0, i, 1,2,0, 277)).
* The expectation Lw; j can be obtained by the “Egig( )” function in the R package “ghyp”.

3.2.3. Model selection and performance evaluation
For the sake of comparison, various information criteria that take the form of a penalized log-likelihood mC(n) —

= foni0,21, 1,05, 772, 17D/ £, (013 0, 4, 1,0.5,772,772) + f£5,(01/50, 4;, 1,-0.5,772,772)], and

2{6max were introduced for model selection, where i, is the maximized log-likelihood and m is the number of free
parameters in the considered model. In our data analysis, the Bayesian information criterion (BIC) [59] with the
penalty term C(n) = log n is adopted. Note that the model with the smallest BIC value is selected to fit the data.

Remark 1. If the GH-BS distribution is considered as a mixing component in the FM-NMV-GBS model, an elegant
reparametrization, known as a-parametrization, can be used to reduce the number of free parameters. Let w =
Ruy(Nx¥) \x /. Then, the following formulae can be used to switch between the parameterization (a,, A, K, x, )
and (a,B, A%, k, @):

a = \xy and 1" = wA.

Clearly, in the a-parametrization of GH-BS distribution, the scale parameter of GH model (0> = 1) changes to
02 = w. This condition may leads to the identifiability issue if @-parametrization is used in parameter estimation.
Another drawback of @-parametrization is that it does not exist when & approaches zero. In our data analysis, we use

a-parametrization for the FM-H-BS and FM-NIG-BS distributions since they do not pose identifiability challenges.

4. Risk measure for the FM-NMV-GBS distributions

Risk evaluation is important to investors who hold portfolios of risky assets. Risk measures and associated theories
thus play important roles in estimating financial losses. Among the several purposes of risk measures, the most
important ones in practice are: determination of risk capital and capital adequacy, management tools and insurance
premiums [41]. To attain these purposes, statistical tools play a substantial role since most modern measures of risk
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in a portfolio are statistical quantities. Based on the following proposition, we can calculate different risk measures
on the assumption that the asset features are followed by the NMV-GBS distribution.

Theorem 2. Let W ~ GIG(k, x, ). Then,

lﬂ k/2
(;) Kesr-os (VW + )¢ + 7))
K (\Ngx) V2r

Proof. The proof follows from the pdfs of normal and GIG distributions. Using (3), we have

2 \(tr=05)/2
EW'¢(t; AW, W)) = ( ) expl{ta}, reR. (12)

Y+ 22

K/2 oo k+r—0.5-1 _
W6 (AW, W) = —o 2 (w) Il W—CXP{—I(W‘%YHZ)+w<w+ﬁ>)} dw
0

V2rK () \X 2 2
k/2
(%) Kiro0s ( VW + 2)(x + tz)) 2 \ (k+r—0.5)/2
X X+t
= ( 2) exp{ra}.
K(\gx) N2 Y+

O

Remark 2. Based on Table 1 and Theorem 2, we can obtain a closed form of (12) for the special cases of the
NMV-GBS distribution.

The risk measures considered here are: the target shortfall (TS), VaR, and more importantly, TVaR measure. For
the sake of notation, we define the rth order upper partial moment of the random variable and the probability of
shortfall (PS) and outperformance (PO) as follows:

Let E[T —1,], be the rth order upper partial moment of the random variable 7 with respect to z, € R*. More
specifically,

E[T—fq]r+=f (t — 1) gr(t; w) dt,
Iq

where ¢, is a target separating gains and losses, and f7(-; w) is the pdf of T parameterized with w. The reference point
t, can be specified as a fixed target, e.g. a given income poverty line that applies to all households equally, or as a
moving target, i.e. the target is not fixed but depends on the household-specific distribution of the random variable
[60]. In the following proposition, we provide explicit formulae for evaluating the PS and PO for the NMV-GBS
model.

Proposition 5. Let T ~ NMYV — GBS(a,B, A, 0). The probability of T that falls short or outperforms a target level
ty can be obtained, respectively, by

PS(1y,2,8,4,0) = 1 =E[T —1,]° = F,,,,(c(ty, @, ); 1, 0),
and
PO(t,,@,,2,0) = E[T —1,]) = 1 - F,, (c(t,, @, $); 1,6),
where F,,(-,4,0) = F,,,,(-;0, 4,1, 0) is the standardized cdf of the NMV distribution.

Proof. The proof is trivial and has been omitted. O

Note that there are no closed expressions for the PS and PO of the NM V-GBS random variable. Therefore, the
risks can be evaluated by using the function pghyp( ) in the R package ghyp.

The TS risk measure is defined as the first order upper partial moment with respect to the threshold 7, € R*. The
next theorem provides a means of calculating the TS when T follows a NM V-GBS distribution.

9



191 Theorem 3. Let T ~ NMYV — GBS(a,, A, 0). The TS of random variable T takes the form of

TSr(ty,@,B,4,0) = (t,—BPS(ty, a5, 1,0) — 'ga)l — E[(W + WA D(c(ty, @, B); WA, W)]
—E[(WA* = c(ty, @, ) = 2WD)p(c(ty, @, f); WA, W),

where the last expectation is computed by (12) and
W) = f (xVo2x? +4) £,,,,(x: 1,6) dx.
c(tg,a.8)
Proof. The TS of random variable T is defined as

TS (1, 2.B.1,0) = B[T—1,]" = f (t=1) frmons 15 @ B, A, 0) di = f tfromvans (15 @ B, 4, 0) di =1, PO(ty, @, B, A, 6).
ty t

q

12 Using (4), the above integral can be rearranged as

00 00 2
f [ fosmvons (@ B A, 0) di f( ﬁ)f—i [ox + Va2 + 4] £, (x:,0) dx
ty c(tg.

2 00
BPOGy, . .1,0) + B + 2P Cf (1 A.0) dx.
c(tg,a,B)

113 Using representation (1), the last integral can be rewritten as

f X S (X34, 0) dx f f X2 ¢(x; wAd, wh(w; 0) dx dw
cl 0 c(tg,a.B)

(tg,.,0)
2
00 00 X—W/l) 32 (_X—W/l) 2 2] (x_W/l)
w + 2w P A —— | + WA |¢| —== | h(w: 0) dx dw
fo qu,am( ( Vw W VW

fo (filtg) + faltg) + o)) hws ) i,

where

0 x—wa\?  [x—-wA
fity) = leaﬁ) w( N ) ¢( N ) dx = w((l -0 (c(tq, a, B); wA, w)) + (c(ty, @, B) — wA)d (c(tq, a,fB); wA, w)) s

32 ° x—wai x—w/l) 2 _
oty =2w ﬂj;(tqﬂﬁ)w( N )q)( N dx =2w /lq)(c(tq,a,,B),w/l,w),

and
o x—wAd
f3(t,) = f w2 qﬁ(—) dx = w22 (1 - 0(c(, ,a,B);wad, w)).
q ty ) \/W ( ( q ))

194 Therefore, we have

f N tfomeass 0B, ,0) dt = BPO(ty,a,B,1,0) + 'gwl + Ew[(W + W21 - d(c(ty, @, f); WA, W))]

q

+E[(Welty, a,B) — W2 A% + 2W2D)p(c(ty, @, B); WA, W)).
195 D

10



196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

The VaR is a widely employed measure of downside risk in capital markets. Given a confidence level g € (0, 1),
the VaR is defined as

VaR,(T) = sup{t | Fr(t) < g}. 13)

However, VaR is often criticized for its lack of coherence properties because it is sensitive to the shape of the tail of
the loss distribution. As an alternative, TVaR is a coherent risk measure that fulfills the properties of monotonicity,
sub-additivity, homogeneity, and translational invariance and can be viewed as the expected worst. More precisely,
TVaR gives the expected amount of extreme loss under a given risk. Given a confidence level g € (0, 1), the TVaR is
defined as TVaR(T'; q) = E[T|T > VaR,(T)], where VaR (T is the possible loss obtained by the gth percentile of T as
defined in (13). We characterize the well-known tail conditional expectation, namely the TVaR measure, in Theorem
4.

Theorem 4. Let VaR,(T) = t,. The TVaR measure of the random variable T distributed as NMYV — GBS(a,p, A, 0)
is given by

TVaR(T;q) = ﬁ(ﬁPO(zq, @,B,1,0) + 'gwl + E[(W + W222)(1 = O(c(ty, @, B); WA, W))]

+E[(Welty, @, ) = W2 + 2W2D)(c(ty, . B); WA, W)]).
Proof. By definition of the TVaR, we have

1 00
TV&R(T, q) = E f l‘fNMV’GBS (t; a,ﬁ, /l, 0) dl,
Iq

which completes the proof. O

Corollary 1. Let T be distributed by a mixture of NMV-GBS distributions with pdf (8) and VaR,(T) = t;. Then, the
TVaR measure of T is

1 ¢ i

TGR(T:q) = - > (ﬁ,-PO(rq, @i, B Ais 0) + %wn + E[(W; + W, 2AD)(1 = (g, @i, B); Wid, W)
i=1

1

+E[(Wic(ty, @i, B;) — WEAZ + 2WPA)p(c(ty, @i, B); Widi, W] |-

5. Application

5.1. Data description

In this section, we consider four economic real datasets including film revenues (Film rev.), the Munich rent
(rent99) and the FTSE 100 Index (log-FTSE), which are all available in the R package “gamlss.data”, and the ex-
change rate between US dollars (USD) and British pound sterling (Ex. US. UK), which is available in the R package
“CASdatasets”. The Film rev. data, in USD, was derived from standard industry data sourced by Nielsen EDI for
the North American market for the period 1988 to 1999. The rent99 dataset, collected in the year 1999, contains the
monthly rental price, known as the nett rent, which remains after having subtracted all running costs and incidentals-
per square meter. The third dataset contains the natural logarithm of the daily returns from the international stock
market, the FTSE 100. The Ex. US. UK are the daily buying rates in New York City for cable transfers payable in
foreign currencies between January 4, 1971 and in March 1, 2013. Researchers had analyzed the datasets [61, 62]
concluded that they cover different features such as strong skewness and leptokurtosis, right heavy-tail and bi-, as well
as, multimodality. These characteristics motivate us to apply our proposed methodology to the data for illustrative
purposes.

Table 2 provides summary statistics of the data, including the number of observations (1), mean, standard deviation
(St.Dev), minimum (min), maximum (max), skewness (y,), kurtosis («,) and the Jarque-Bera test statistic [63] along
with its corresponding P-value. The results of the standard deviation reveal that the log-FTSE data is less risky than
the others. The Jarque-Bera statistic and its extremely low P-value demonstrate significantly that the datasets do note
meet normality assumptions. This issue can also be concluded from the normal quantile-quantile (Q-Q) plots given in
Figure 2, depicting a point inflection with different slopes to the left and right.
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Table 2: Descriptive statistics of the rent99, Film rev., Ex. US.UK and log-FTSE datasets.

Measures
Data n mean St.Dev min max YV Ky Jarque-Bera P-value
rent99 3082 7.111 2436 0416 17.722 0.299 -0.127 47.830 <4.109e-11

Film rev. 4031 11.783 3.068 4.212 18.068 0.037 -1.329 297.310 <2.2e-16
Ex. US. UK 10583 1.772 0.313 1.052 2.644 00911 0.136 1473.000 <2.2e-16

log-FTSE 1000 8.760 0.067 8.568 8.868 -0.730 -0.364 94.685 <2.2e-16
Normal Q-Q Plot of rent99 Normal Q-Q Plot of Film rev.
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Figure 2: Normal Q-Q plots for the rent99, Film rev., Ex. US.UK and log-FTSE datasets.

5.2. Model evaluation

The results of the previous section motivate us to consider skew distributions for more accurate analysis. We fit
special cases of the FM-NMV-GBS distributions described in Section 3 and summarized in Table 1 as alternative
benchmark models to these economic datasets. The ECME algorithm for estimating the model parameters is imple-
mented by exploiting computational aspects of initial points, convergence rule, and model selection criterion. We fit
all models for g ranging from 1 to 6 and find the best choice of the mixing components number g based on the BIC
criterion for each dataset.

Table 3 displays the log-likelihood, along with the BIC values (for the best g) obtained by fitting the nine consid-
ered models to each dataset. The results based on the BIC indicate that the finite mixture of strongly skewed and right
heavily-tailed NM V-GBS distributions provide a highly improved fit for the data. The rank of models based on the
BIC from 1 to 9 is presented in Table 3. It can be seen that the FM-H-BS, FM-VG-BS, FM-NIG-BS, FM-GHST-BS
and FM-NMVBS-BS models are almost ranked from 1 to 5.

To get reliable risk measures, it is crucial to verify the validity of a model in terms of goodness-of-fit tests. We
perform the Kolmogorov-Smirnov’s (KS) goodness-of-fit test to check the similarity assessment of the experimental
data against the fitted distributions. Table 3 depicts the resulting KS test. It can be observed that the P-values of the
KS test for the FM-H-BS, FM-VG-BS, FM-NIG-BS, FM-GHST-BS, FM-NMVBS-BS and FM-NMVL-BS models
are greater than the 5% significance level, reflecting that these data strongly follow a FM-NMV-GBS distributions.
Figure 3 shows the histograms of data overlaid with the best fitted curves together with their probability-probability
(P-P) plots. The bimodality of the data and the suitability of the best model to fit the data can be observed.
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Table 3: Model comparison criteria of the fitted models to the considered datasets.

Data g  Criteria L-BS T-BS SL-BS H-BS VG-BS  NIG-BS GHST-BS NMVBS-BS NMVL-BS
m 5 7 7 9 11 9 8 9 9
rent99 2 {C)) -7135.65  -7074.74  -7093.19  -7066.10 -7064.99 -7064.73  -7064.28 -7065.13 -7082.89
BIC 14311.46  14205.71 14242.61 14204.49 1421835 14201.76 14192.82 14202.56 14238.08
KS 0.0244 0.0113 0.0203 0.0056 0.0063 0.0068 0.0072 0.0070 0.0156
P-value  0.1238 0.8146 0.2728 0.9999 0.9994 0.9985 0.9975 0.9982 0.4382
Rank 9 5 8 4 6 2 1 3 7
m 5 7 7 9 11 9 8 9 9
Film rev. 2 0®) -9518.18  -9398.06 -9473.57 -9383.78 -9385.68 -9383.34  -9382.43 -9397.21 -9453.00
BIC 19077.87 18854.24 19005.25 18842.28 18862.68 18841.40 18831.27 18869.13 18980.72
KS 0.0249 0.0084 0.0214 0.0087 0.0091 0.0085 0.0083 0.0096 0.0198
P-value  0.0712 0.9336 0.0814 0.9228 0.8790 0.9282 0.9278 0.8564 0.1823
Rank 9 4 8 3 5 2 1 6 7
m 11 15 15 19 23 19 16 19 19
Ex. US.UK 4 {C)) -537.38 -463.35 -388.27 -342.90 -325.75 -369.12 -382.23 -366.53 -371.64
BIC 1176.69  1065.71 915.55 861.87 864.66 914.32 912.72 909.14 919.35
KS 0.0172 0.0139 0.0153 0.0087 0.0112 0.0091 0.0102 0.0084 0.0122
P-value  0.0042 0.0322 0.0161 0.3926 0.1934 0.3328 0.2225 0.4366 0.1174
Rank 9 8 6 1 2 5 4 3 7
m 8* 7 7 9 11 9 8 9 9
log-FTSE 2 °(6) 1414.56 141847 142342 143648  1436.62  1435.53 1429.51 1436.32 1430.90
BIC -2773.86  -2788.58  -2798.49  -2810.80 -2797.25 -2808.88  -2803.75 -2810.47 -2799.63
KS 0.0234 0.0280 0.0431 0.0193 0.0153 0.0200 0.0189 0.0206 0.0278
P-value  0.6226 0.4132 0.1523 0.8640 0.9746 0.8146 0.8965 0.8058 0.4434
Rank 9 8 6 1 7 3 4 2 5

*: In this case the best number of mixture component is g = 3.

5.3. Application to some risk measures

We utilize the parameter estimates obtained from the previous section to compare the accuracy of predicted VaR
and TVaR values. We generate two millions samples from each model to evaluate VaR and TVaR. Recall that the VaR
is the gth percentile of the simulated loss samples, whereas TVaR is the mean loss and is thus greater than VaR. Table
4 presents the detailed numerical results of the estimated VaR and TVaR based on various models fitted to the four
considered datasets at confidence levels of 99%, 97.5%, and 95%. It can be observed that the skewed and heavy-tailed
sub-models of the FM-NMV-GBS distributions provide closer prediction of the true VaR and TVaR values in most
cases. In order to provide visual comparison, Figure 4 displays the empirical values overlaid with theoretical predicted
VaR and TVaR of the five best fitted models for confidence levels ranging between 90% and 99%. The lines in these
figures highlight that the predicted VaRs and TVaRs are very close to the empirical ones.

To assess relative changes on the theoretical predictions, we also calculate the mean absolute relative error
(MARE) defined as

1 <& M- M,
ARE = — ) |[———!
ARE = 131

where M; and M, are the /th empirical and its corresponding theoretical predicted risk measures, respectively, for
the n, = 30 confidence level chosen from the interval (0.9,1). Table 5 summarizes the results of MARE to assess
relative changes on the theoretical prediction. The results depicted in Table 5 reveal that the FM-H-BS, FM-VG-BS,
FM-NIG-BS, FM-GHST-BS and FM-NMVBS-BS models mostly show a lesser amount of MARE, thus estimating
the VaR and TVaR more accurately.

6. Conclusion and future extensions

Non-normal features, such as asymmetry and heavy tails, are often present in economic and financial data streams.
To analyze these data, the family of NMV distributions can be a good candidate for risk management. The outline
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Figure 3: Histogram overlaid with the best fitted density and P-P plots for the rent99, Film rev., Ex. US.UK, and log-FTSE datasets.

of this paper has been divided into three parts. The first one has dealt with proposing a new generalization of the
BS distribution based on the NMV model and its well-known sub-class, the GH family. In the second part, we have
introduced a promising finite mixture model based on the new extension of BS distribution (8) for analyzing and
clustering positive valued data. Some mathematical, statistical and financial properties of the new model have also
been derived. The feasible ECME algorithm has been developed for calibrating the parameters of the proposed finite
mixture model to the data. Finally, in the last part, the application to real datasets has been presented. The numerical
results obtained by fitting the proposed class of finite mixture models to four real examples suggest that five special
cases of the FM-GH-GBS distribution, especially the FM-GHST-BS and FM-H-BS models, outperform the others.
Moreover, it is shown that the FM-NMV-GBS distributions is well suited for risk measurements.

The methodology presented in this paper could facilitate the development of model-based clustering for the mul-
tivariate [44] as well as matrix variate [64] positive data. Another possible extension of this work is to consider the
developing a time series model similar to that of [65], and the ARMA and GARCH ones as more interesting cases,
based on the NM V-GBS distribution.

All computations were carried out using R 3.4.3 in a Win 64 environment with a 2.50 GHz/Intel Core(TM) i3
3120M CPU Processor and 4.0 GB RAM. The R code is available from the second author upon request.
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Table 4: Comparison of estimated VaR and TVaR for four real economic datasets based on the FM-NM V-GBS sub-models at 99%, 975%, and 95%
confidence levels.

Data Criteria Level Empir. L-BS T-BS SL-BS H-BS VG-BS NIG-BS GHST-BS NMVBS-BS NMVL-BS
rent99 VaR 099 13.077 15.653 13.586 13.885 13.068 13.059  13.070 13.072 13.070 13.626
0975 11947 13.223 12.233 12250 11.991 12.005  12.023 12.007 12.023 12.147
095 11.222 11.675 11.292 11.150 11.170 11.190  11.198 11.187 11.198 11.123
TVaR 099 14305 19.285 17.199 16.100 14.325 14.231 14.240 14.274 14.242 15.540
0975 13.167 16.243 14553 14.196 13.198 13.165 13.178 13.182 13.178 13.874
095 12339 14293 13.130 12912 12367 12360  12.372 12.367 12.373 12.722
Film rev. VaR 099 16920 18.182 17.061 17.114 16.887 16.897  16.883 16.889 17.038 17.106
0975 16.523 17.071 16.603 16.547 16.520 16.522  16.521 16.525 16.594 16.549
095 16210 16376 16220 16.168 16.197 16.198  16.198 16.200 16.216 16.171
TVaR 099 17.172 20.244 17.688 18272 17.273 17.334  17.246 17.243 17.556 18.211
0975 16.902 18.609 17.155 17.377 16917 16.944  16.906 16.904 17.094 17.352
095 16.622 17.643 16.774 16856 16.631 16.645 16.626 16.627 16.741 16.844
Ex. US. UK VaR 099 2583 2573 2553 2550 2549 2.565 2.551 2.496 2.550 2.550
0975 2485 2489 2492 2479 2479 2.474 2.486 2.456 2.483 2.480
095 2419 2432 2433 2428 2427 2.424 2.429 2416 2.428 2.428
TVaR 099 2609 2696 2604 2635 2.631 2.684 2.620 2.532 2.630 2.631
0975 2560 2593 2553 2559 2557 2.580 2.556 2.497 2.557 2.558
095 2504 2524 2507 2505  2.503 2.512 2.506 2.466 2.505 2.505
log-FTSE VaR 099 8860 8877 8.867 8.861 8.859 8.861 8.859 8.859 8.859 8.861
0975 8852 8.858 8854 8.849  8.850 8.850 8.851 8.851 8.851 8.849
095 8.843 8845 8844 8.840 8.843 8.841 8.843 8.843 8.843 8.840
TVaR 099 8864 8899 8878 8.875  8.860 8.872 8.866 8.866 8.865 8.874
0975 8860 8.879 8.867 8863  8.859 8.861 8.859 8.859 8.859 8.862
095 8.854 8865 8.858 8.853  8.852 8.853 8.853 8.853 8.852 8.853

Table 5: Comparison of estimation accuracy of VaR and TVaR in terms of MARE (%).

rent99 Film rev. Ex. US. UK log-FTSE

FM-model VaR TVaR VaR TVaR VaR TVaR VaR TVaR
L-BS 5.5906 16.8302 2.1474  7.8439 0.4187 1.0137 0.0464 0.1530
T-BS 1.2388 7.3574 0.2895 1.2160 0.4040 0.1481 0.0282 0.0613
SL-BS 1.7660 5.0243 0.3134 2.2295 0.3091 0.1028 0.0249 0.0181
H-BS 0.2892 0.1133 0.0793 0.1351 0.2981 0.0794 0.0235 0.0082
VG-BS 0.2550 0.1067 0.0776  0.2638 0.3267 0.0965 0.0204 0.0124
NIG-BS 0.2864 0.1644 0.0777 0.0813 0.3255 0.0840 0.0248 0.0080
GHST-BS 0.2692 0.1079 0.0773  0.0855 0.3307 0.0988 0.0237 0.0075
NMVBS-BS 0.2885 0.1662 0.2599  0.9208 0.3119 0.0706 0.0256 0.0083
NMVL-BS 1.4066 3.3353 0.2983  2.1099 0.2959 0.0898 0.0201 0.0173
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