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Abstract: We propose two new iterative algorithms for solving K-pseudomonotone variational inequality
problems in the framework of real Hilbert spaces. These newly proposed methods are obtained by
combining the viscosity approximation algorithm, the Picard Mann algorithm and the inertial subgradient
extragradient method. We establish some strong convergence theorems for our newly developed
methods under certain restriction. Our results extend and improve several recently announced results.
Furthermore, we give several numerical experiments to show that our proposed algorithms performs
better in comparison with several existing methods.
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1. Introduction

In this paper, the set C denotes a nonempty closed convex subset of a real Hilbert space H. The inner
product of H is denoted by (.,.) and the induced norm by ||.||. Suppose A : H — H is an operator.
The variational inequality problem (VIP) for the operator A on C C H is to find a point x* € C such that

(Ax*,x —x") > 0 foreach x e C. (1)

In this study, we denote the solution set of (VIP) (1) by I'. The theory of variational inequalities was
introduced by Stampacchia [1]. It is known that the (VIP) problem arise in various models involving
problems in many fields of study such as mathematics, physics, sciences, social sciences, management
sciences, engineering and so on. The ideas and methods of the variational inequalities have been highly
applied innovatively in diverse areas of sciences and engineering and have proved very effective in solving
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certain problems. The theory of (VIP) provides a natural, simple and unified setting for a comprehensive
treatment of unrelated problems (see, e.g., [2]). Several authors have developed efficient numerical
methods in solving the (VIP) problem. These methods includes the projection methods and its variants (see,
e.g., [3-13]). The fundamental objective involves extending the well-known projected gradient algorithm,
which is useful in solving the minimization problem f(x) subject to x € C. This method is given as follows:

Xnp1 = Pc(xn —an V f(xn)), n20, (2)

where the real sequence {a;} satisfy certain conditions and Pc is the well-known metric projection onto
C C H. The interested reader may consult [14] for convergence analysis of this algorithm for the special
case in which the mapping f : H — R is convex and differentiable. Equation (2) has been extended to the
(VIP) problem and it is known as the projected gradient method for optimization problems. This is done
by replacing the gradient with the operator A thereby generating a sequence {x,} as follows:

Xn41 = Pc(xp —anAxy), n>0. (3)

However, the major drawback of this method is the restrictive condition that the operator A is strongly
monotone or inverse strongly monotone (see, e.g., [15]) to guarantee the convergence of this method.
In 1976, Korpelevich [16] removed this strong condition by introducing the extragradient method for
solving saddle point problems. The extragradient method was extended to solving variational inequality
problems in both Hilbert and Euclidean spaces. The only required restriction for the extragradient
algorithm to converge is that the operator A is monotone and L-Lipschitz continuous. The extragradient
method is given as follows:

{ Yn = Pc(xy — TAxy) ()
X1 = Pc(xn = TAyn),

where 7 € (0, %) and the metric projection from H onto C is denoted by Pc. If the solution set of the (VIP)
denoted by I' is nonempty, then the sequence {x,} generated by iterative algorithm (4) converges weakly to
an elementinI.

Observe that by using the extragradient method, we need to calculate two projections onto the set
C C H in every iteration. It is known that the projection onto a closed convex set C ¢ H has a close
relationship with the minimun distance problem. Let C be a closed and convex set, this method may
require a prohibitive amount of computation time. In view of this drawback, in 2011 Censor et al. [5]
introduced the subgradient extragradient method by modifying iterative algorithm in Equation (4) above.
They replaced the two projections in the extragradient method in Equation (4) onto the set C by only
one projection onto the set C C H and one onto a half-space. It has been established that the projection
onto a given half-space is easier to calculate. Next, we give the subgradient extragradient method of
Censor et al. [5] as follows:

Yn = Pc(xy — TAxy)
Ty = {x € H xy — TAXp — Y, X — Yn) < 0} (5)
Xnt1 = Pr, (X0 — TAYn),

where 7 € (0, 1). Several authors have studied the subgradient extragradient method and obtained some
interesting and applicable results (see, e.g., [11]) and the references therein.

The theory of pseudomonotone operators is very crucial in studies in nonlinear analysis, variational
inequalities and optimization problems (see, e.g., [17-20]). One important class of pseudomonotone
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operators was introduced in 1976 by Karamardian [21] and have been utilized in solving problems in
variational inequalities, optimization and economics (see, e.g., [17,20]). In this paper, we shall call the class
of pseudomonotone in the sense of Karamardian K-pseudomonotone. Yao [20] utilized K-pseudomonotone
in solving some variational inequalities problems in Banach spaces. He established some new existence
results which extend many known results in infinite-dimensional spaces under some weak assumptions.
He also proved some uniqueness results for the complementarity problem with K-pseudomonotone
operators in Banach spaces. It is our purpose in the present paper to introduce two new inertial subgradient
extragradient iterative algorithms for solving K-pseudomonotone variational inequality problems in the
framework of real Hilbert spaces.

The inertial type iterative algorithms are based on a discrete version of a second order dissipative
dynamical system (see, [22,23]). These kind of algorithms can be seen as a process of accelerating the
convergence properties of a given method (see, e.g., [24-26]). Alvarez and Attouch [24] in 2001 used
the inertial method to derive a proximal algorithm for solving the problem of finding zero of a maximal
monotone operator. Their method is given as follows: given x,_1,x, € H and any two parameters
0, €10,1), A, > 0, obtain x,, 1 € H such that

0€ ApA(Xp11) + X1 — Xn — On (X — Xp-1). (6)
This algorithm can be written equivalently as follows:
Xnl = ]ﬁn (20 + O (X0 = xp—1), (7)

where ]f is the resolvent of the operator A with the given parameter A, and the inertial is induced by the
term 6, (ralcn —Xp—1)-

Several researchers have developed some fast iterative algorithms by using inertial methods. These
methods includes the inertial Douglas—Rachford splitting method (see, e.g., [27]), inertial forward-backward
splitting methods (see, e.g., [28]), inertial ADMM (see, e.g., [29]), inertial proximal-extragradient method
(see, e.g., [30]), inertial forward-backward—forward method (see, e.g., [31]), inertial contraction method
(see, e.g., [32]), inertial Tseng method (see, e.g., [33]) and inertial Mann method (see, e.g., [11]).

Inspired by the results above, we propose two inertial subgradient extragradient methods for finding
a solution of K-pseudomonotone and Lipschitz continuous (VIP). Our first proposed iterative algorithm is
a hybrid of the inertial subgradient extragradient method [11], the viscosity method [34] and the Picard
Mann method [35]. Our second method combines the inertial subgradient extragradient method [11] and
the Picard Mann method [35].

This paper is organized as follows. In Section 2, we give some preliminary definitions of concepts and
results that will be crucial in this study. In Section 3, we present our proposed iterative algorithms and
prove some convergence results for them. In Section 4, we present some numerical experiments to support
the convergence of our proposed iterative algorithms. In Section 5, we give the concluding remarks of
the study.

2. Preliminaries

In this paper, the set C denotes a nonempty closed convex subset of a real Hilbert space H. The inner
product of H is denoted by (., .) and the induced norm by |[|.|.

We denote the weak convergence of the sequence {x,} to x by x, — x as n — oo, we denote the strong
convergence of {x,} to x by x, — xasn — oo.
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For each x, y € H and «a € R, we recall the following inequalities in Hilbert spaces:

lax + (1= a)yl? = allx|* + (1 - a)llyl* — a(1 - a)llx - yI. (8)
Il + I < x4 2¢y, x + ). (9)
llx + > = lIxI* + 2¢x, y) + lIyl*. (10)

A mapping A : H — H is said to be nonexpansive if for each x, y € H, we have
lAx — Ayl < [lx = yl.
For each x € H, we can find a unique nearest point in C C H, denoted by Pcx such that we have
Il = Pexll < llx -yl (11)

for each y € C. Then Pc is known as the metric projection of H onto C C H. It has been proved that the
mapping Pc is nonexpansive.

Lemma 1 ([36]). Suppose that C is a closed convex subset of a real Hilbert space H and for each x € H. Then the
following holds:

(i) |IPcx = Pcyl* < (Pcx—Pcy,x—y) forall y € H.
(ii) ||Pcx — yII2 <|lx- yII2 —|lx - chllzfor all y € H.

(iii)) Given x € H and z € C. Then we have
z=Px = x-z,z-y)>0
forall y € C.

For more of the metric projection Pc, the interested reader should see Section 3 of [36].

The fixed point problem involves finding the fixed point of an operator A : H — H. The set of fixed
point of the operator A is denoted by F(A) and we assume that it is nonempty, that is F(A) # 0. The fixed
point problem (FP) is then formulated as follows:

find x € H such that x = A(x). (12)
In this paper, our problem of interest is to find a point x € H such that
x e T NF(A). (13)
Definition 1. Let A : H — H be a mapping. Then for all x,y € H
(i) A is said to be L-Lipschitz continuous with L > 0 if
lAx = Ayll < Lilx - yll. (14)

IfL €[0,1) then A is called a contraction mapping.

(ii) A is said to be monotone if
(Ax—Ay,x—y) > 0. (15)
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(iii) The mapping A : H — H is said to be pseudomonotone in the sense of Karamardian [21] or K-pseudomonotone
for short, if forall x,y € H
Ay, x—y) >0 = (Ax,x—y) >0. (16)

The following lemmas will be needed in this paper.

Lemma 2. ([37]) Suppose {x,} is a real sequence of nonnegative numbers such that there is a subsequence {x,} of
{x} such that Xnj < Xnj, forany j € N. Then there is a nondecreasing sequence {my} of N such that limy_,q, my = oo
and the following properties are fulfilled: for each (sufficiently large) number k € N,

X < Xyeys Xk < Xy, -
In fact, my. is the largest number n in the set {1,2, - -, k} such that x,, < X,41.
Lemma 3. ([38]) Let {a,} be a sequence of nonnegative real numbers such that
Apt1 < (1= ap)ay + anby

forall n > 0, where {av,} € (0,1) and (b} is a sequence such that

(a) 220:() ap = ©9;
(b) limsup,_, by <0.

Then limy, 00 a; = 0.

3. Main Results

The following condition will be needed in this study.

Condition 3.1

The operator A : H — H is K-pseudomonotone and L-Lipschitz continuous on the real Hilbert space
H, with the solution set of the (VIP) (1.1) I' # 0 and the contraction mapping f : H — H with the contraction
parameter k € [0, 1). The feasible set C C H is non-empty, closed and convex.

3.1. The Viscosity Inertial Subgradient Extragradient Algorithm

We propose the following algorithm
Algorithm 3.1
Step 0: Given 7 € (0, %) {ay} € [0, ) for some a > 0 and {B,} C (0,1) satisfying the following conditions:

Yim =0, ), pr =0 (17)
n=1
Choose initial xp, x1 € C and setn := 1.
Step 1: Compute
Wy = Xp + (X0 — Xp-1), (18)
Yn = Pc(wn — TAwy). (19)

If y, = wy, then stop, y, is a solution to the (VIP) problem . Otherwise, go to Step 2.
Step 2: Construct the half-space

T, := {zeH: (wn—TAwn—yn/Z—yn>§o} (20)
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and compute

zp = Pr, (wy — TAYy). (21)
Step 3: Calculate
hy = (1 _ﬁn)zn + 5nf(zn)r (22)
and compute
Xpy1 = f(hn)- (23)

Let n := n + 1 and return to Step 1.
Next, we prove the following results which will be useful in this study.

Lemma 4. Let {x,} be a sequence generated by Algorithm 3.1. Then

%11 = pIP < 1wy = pI* = (1= L) llyn = xp11l? = (1 = L) llyn — wal ?, (24)
forallp eT.
Proof. Sincep € I' ¢ C C Ty, then by Equation (10) and Lemma 2 (i) we have the following

1 = pIP P, (w, — TAyy) — Pr,pl2

(Xn1 = P, Wn = TAYn = p)
s = pI? + s — Ay, — pI? = 31 — wn + TAYall?

A

25
= 31 —pIP + 3llwn = pI? + 3T NAYWlP = (wn — p, TAYR) — 3lIx0g1 — wall? (25)
_%TznAyn”z —(Xp41 — Wy, TA]/n>
= Llur = pIP + Llwn — pl? = $xnr1 — wal® = (a1 — p, TAY).
Hence, from Equation (25) we obtain
41 = I < llwn = pl* = g1 — wal® = 211 — p, TAYn)- (26)

Using the condition that A is K-pseudomonotone, we have that 2t(Ay,, v, — p) > 0. We now add this to
the right hand side of inequality (25) to obtain the following

ni1 —pIP < llwn = plP? = g1 = wall® = 20041 =, TAYR) + 2T(AYn, Y — p)
= |lw, - P”Z —lxp41 — wn”2 —27(Xp41 — PrAyn> + 2T<yn —-p, A%z)
[lewy, = P”z - ||xn+1 - wnnz - 2T<xn+1 — Yn, Ayn> - 2T<]/n - P/A]/n>+
2t(Yn — p, AYn)
[lew, — P”z —lxp41 — wnnz —27(Xp41 — Yn, Ay — Awy) = 27Xy 41 — Yn, Awy)
llwn = pIP = 1xp1 = Wull? 4+ 2TCYn — X1, AYn — Awy) + 2T(Yn — Xpi1, Awy).

Next, we have the following estimates using the condition that A is L-Lipschitz continuous

2TYn — X1, AYn — Awy) < 27lyn — X1 lllAyn — Awyl|
< 2tLllyn = 241 llllyn — wnll (28)
<

TLIYn — Xpgal? + TLIYn — wnll.
Since y,, = P, (w, — TAy,) and x,11 € Ty, we obtain (wy, — TAwy, — Yu, Xp41 — Yn) < 0. This implies that

2T<yn - xn+11Awn> < 2<yn — Wn, Xp41 — ]/n)

29
11 = Wall® = lyn = wall?® = X1 — yall® (29)
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Using Equations (28) and (29) in Equation (27), we obtain:

A

1 —plIF < llwn = pIP = 11 — wal® + TLIY = X1l + TLIYn = wal® + X1 — wal 2
Ny = Wall® = P11 — yul? (30)
= lwn = plP = (1= L) llyn — X 1l? = (1 = L)y — wnll.

The proof of Lemma 4 is completed. O
Next, we prove the following results for Algorithm 3.1.
Theorem 1. Assume that the sequence {a,} is chosen such that

. Qn _
Jlim ﬁ—nllxn — X1l = 0. (31)

Suppose that {x,} is a sequence generated by our Algorithm 3.1, then {x,} converges strongly to an element p € T,
where we have that p = Pr o f(p).

Proof. Claim I
We need to prove that the sequence {x,} is bounded, for each p = Pr o f(p). By Lemma 4 we have

llzn = pI* < lfwn = pl* = (1 = TL)llyn = xu11l? = (1 = L) llyn — wal . (32)

This implies that
llzn = pll < {lwn = pll. (33)

Using Equation (18), we have
Il + an(xn - xn—l) - P||

<l = pll + anllxn — x| (34)
= lbxw = pll+ u-glxn = Xpal

llzon = pll

Using the condition that lim; g—:llxn — x,-1|l = 0; it follows that there exist a constant ¢; > 0 such that

ﬂllxn —x,_1]| £ €1, foreachn > 0. (35)

Bn
Hence, using Equations (34) and (35) in Equation (33) we obtain
llzn = pll < llwn —pll < llxn = pll + Bt (36)

Using (23) and the condition that f is a contraction mapping, we have

||f(hn =l

If(ha) = f(p) + f(p) =Pl (37)
If (h) = fF(P)I+11f(p) =Pl

Kl = pll + 1If (p) = plI.

llxn 1 = pli

A IA ||

By Equation (22), we have
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1y = pll

A A IA ]

”(1 _,Bn)zn +[3nf(zn) _P”

(1 _ﬁn)”Zn
(1 _ﬁn)llzn

(1= Bn)llzn = pll + Bukllzn —
(1=Bn(1-

pll + Bullf (zn) = pll
pll + Bullf (zn) = f(P)II + Ballf (p) — Pl
pll + Ballf (p) = pli

k)lIzn = pll + Ballf (p) = pll.

Using Equation (38) in Equation (37), we obtain:

llcn 1 = pll

IA ] IA

k[
k(1
k(1
k(

(1=pu(1-

1-Bn(1=k))llzn -

Mzn = pll + Bullf () = pl] + 11 £ (p) — Pl

pll+kBallf(p) — pll +11f(p) =Pl
pll+KIf(p) —pll+1If(p) — Pl
pll+ (1 +K)lIf(p) - pll-

k)

ﬁn(l k))”Zn

= Bu(L=k))llzn —
)

Using Equation (36) in Equation (39), we have

1 = pll

ININIA

A

Claim II

k(1= Bu(1=K))llxs
k(1= Bu(1=k))llxn =

max{|lx, —

= pll+kBuly + (1 +K)IIf (p) = pll
pll+kt + (1 + k)l f(p) - pll
pll, €1 +2lf (p) - pli}

max{|lxo — pll, &1 +2l|f (p) - pll}-
This means that {x,} is bounded. Hence, it follows that {z,}, {f(zx)}, {ha}, {f ()} and {w,} are bounded.

(1 - TL)”yn - wn”Z +

(1= L) llyn = X1l < Il = pIP = 41 = pIP + Buls,

for some {5 > 0. By Equation (23), we have

[l 1 — P||2

A A A IA |l

If (1) — pIP

If (hn) = f(p) + f(p) = plI?

(1f () = FOI+ 1If (p) = pII)
(Kl — pll + 11 (p) - plI)?
s = pIP + 2l — plllLf (p)
[

—pll+1If(p) = pIP?

for some ¢, > 0. From Equation (22), we have

i — pI?

Al A A A A ]

||(1 _ﬁn)zn Jrﬁnf(zn) —P||2

(1 _ﬁn)”Zn _P”z +5n||f(zn) _PHZ

(1= Bu)llzn = pIP + Bulllf (z0) = F(P)II + If () = pII)?
(1= Bu)llzn — pI* + Bu(Kllzn — pll + IIf () — plI)?

(1= Bu)llzn = pI* + 2Bullzn — plllIf (p)
lIzn = pIP + Bu (2llz = plllf (p) = pll + 11f () = pIP)
llzn = pII* + Buts,

= pll + Ballza = pI* + Ball f (p) = pII*

for some ¢3 > 0. Using Equation (32) in Equation (43), we obtain

= pI* < o, = pl* -

- xn+l||2 - (1 - TL)”]/n - wn||2 + Buts.

(1 —7L)llyn

8 of 24

(40)

(41)

(42)
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From Equation (36), we have
llwn = pll < llxn = pll + Bnts.

This implies that

(”xn - P” + ﬁnfl)z

[2y, — P”z + ﬁn(zgl”xn - P” + ‘an%)
llxn = pII* + Bula,

for some ¢4 > 0. Combining Equations (44) and (46), we have

llewn — pII*

Al IA

|1 _P”2 <lxp = P”Z + ,Bn&l - (1 - TL)”]/n - xn+1||2 - (1 - TL)”yn - wn||2 + ﬁng}

Using Equation (47) in Equation (42), we have

1 = pIP < lew = plP + Brs — (1= L)y — X1l = (1 = TL)yn — wall® + Buls + Bula-

This implies that
(1= 2Ly = wall® + (1 = L)y = X1l < v = pIP = 141 =PI + Buls,

where {5 := 0, + {3 + {4.
Claim III

Ins1 = plP < 2k(1=Bu(1=Kk))llxu — plPP+
20 (1= )| B P) =t =)+ 25800 = xacall + L7 ) — pIR),

for some D > 0. Using Equations (10) and (18), we have
||zwy, — P“Z = |lxp+an (xn - xn—l) - P||2

[ty — PHZ + 20, (xy — P, Xn — Xp-1) + arzz”xn - xn—1||2
e = pII? + 2aullxn — pllllxn — Xp-all + a2l — x,-1l.

IAN |

By Equations (10) and (23), we have

||f(hn) - p”2

If (ha) = f(p) + f(p) = pIP

If (hn) = F(DIF 4+ 11f () = pIP +2(f (ha) = £(p), f(p) = p)
Kby = pl> + 1If (p) — pI* + 201 f () = () () — Pl
K2l = pIR + 11f (p) = I + K2l = pI2 + 11 (p) — pIP
2K\ — pI + 21If (p) = pIP-

X1 = pIP

A A IA ||

9 of 24
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Using Equations (9) and (22), we have

iy =pI? = 1Buf(zn) + (1= Bu)zn —pl
= 1Bx(f(zn) = f(p)) + (1 =Bu) (20 = p) + Bu(f(p) = P)IP
< Ba(f(zn) = () + (1= Bu) (zn — P)IP + 2Bulf (p) — P, Xns1 — P)
< Bullf(za) = F(PIP + (1= Bu)llzn =PI +2Bu(f (P) = P, X1 = p) (53)
< BukPllzn = pIP + (1= Bu)llza — pIP +2Bu¢f(p) = p, Xus1 — )
< Bukllzn = plI* + (1= B)llzn = pIP + 2Ba{f (p) — P, Xns1 — P)
= (1 _ﬁn(l - k))”Zn —P||2 =+ 2ﬁn<f(p) — P, Xnt1 —P)
< (1=Bu(1=k)llkwn = pIP + 24 f () =P, Xn 1 = P)-

Using Equation (51) in Equation (53), we have

17, _P”z < (1 _,Bn (1 - k))”xn _P”z =+ 2a|xy, _p””xn — Xyl + a%llxn - xn—lllz + 2,Bn<f(p) —PrXn+1 _P>‘ (54)

Using Equation (54) in Equation (52), we have:

2k(1 = Bu(1 = k))llxn — pIP* + dkevyllxy = plllln — X1l + 2kaiz]lxy — x,-1]
+4kBu(f(p) = p, X1 —p) + 2l f (p) — I

= 2k(1=Bn(1=k))llxn - pI? + 2kallxn — x,- 1||(2||xn pll + anllxn — xp-1ll)+
2(1-k)| 22 (£(p) - p, X1 - )+ Tl f(p) — pIP
2k(1 ~ B (1~ K))lben — IR + 2kanlloen — xu-all(2lbv — pll + s — X l1)+

(p
k)

2(1- )| ZE2( £ (p) - p, Xe1 - p) + Tl (p) — pIP (55)
| ,
(p

IN

1 = plI?

IA

IA

24k(1 = B (1 = k)l = pIP + 6Datnllty = xuall+
2(1-0)[ 3 (p) = p st —p) + 2 F (p) - pIP
2k(1 = Bu(1 = k) llxn — plP+ ’
2ﬁn(1—k)[m<f()—nxn+1 P+ 2581 - xuall + 5 1 (p) - IR,

IA

where D := sup, nillxn —pll, allxy — x,-1ll} > 0

Claim IV

We need to prove that the sequence {||x; — p||2} converges to zero by considering two possible cases.
Casel

There exists a number N € N such that ||x,,1 — }all2 < lxyn — pII2 for each n > N. This implies that
limy, o0 [IXn — pll exists and by Claim II, we have

nlg{;lo”]/n —wy|l =0, 1}1_1)1;10 ||]/n _xn+1“ =0. (56)

The fact that the sequence {x,,} is bounded implies that there exists a subsequence {x;, } of {x; } that converges
weakly to some z € H such that

limsup(f(p) = p,xu =p) = U (f(p) =p,xn, =p) = {f(p) =P,z =P). (57)

n—o00

Using Equation (56) and Lemma 3, we get z € I'. From Equation (57) and the fact that p = Pr o f(p), we get

limsup(f(p) —p,xn —p) = {f(p) —p,z—p) < 0. (58)

n—oo
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Next, we prove that

nh_{l;lo 1141 — xull = 0. (59)
Clearly,
a
l[ewn = Xl = anllxn = X1l = 2= Bulltn = xp-1ll — 0 as n — co. (60)

n

Combining Equations (56) and (60) we have
11 = xull < llxp41 — yn” + ”yn = wyll + |lwy = x4]| — 0 as n — oo. (61)
Using Equations (58) and (59) we have

lim sup(f () =P xns1-p) < lim sup(f () =pxu—py =<{f(p) —p.z—p) <0. (62)
Hence by Lemma 3 and Claim III we have lim;, e |[x; —pll = 0.
Case II
We can find a subsequence {llx; - pli} of {||x, — pl|*} satisfying %, — pl? < [l 41 = pll? for each j € N. Hence,
by Lemma 2 it follows that we can find a nondecreasing real sequence {1} of N satisfying limy_,q, 11y = o0
and we get the following inequalities for every k € N:

= pIP < W1 = pIP, Il = pIP < o, = plP. (63)
By Claim II we get
(1= L)Y, = Wa P + (1 = TL) Yo, = X1 < oy, =PI = i1 = PIP + B bs < B ls. (64)
Hence, we have
Bim [, =l = 0, L [lym, = o ial] = 0. (65)

By similar arguments as in the proof of Case I, we have

%41 = Xyl — 0 as k — oo, (66)
and
lim sup(f(p) — p, Xm+1 —p) < 0. (67)
k—o0
By Claim III we obtain

i 1 —p||2 < 21 _‘Bmk(l _k))”xﬂ’Ik _P||2+ a
28m (1= RN [TZ7 S (P) = P Xt = ) + 72 o = Xl (68)
m=m ()~ pIP).

By Equations (63) and (68) we have:
1 —pIP < 2k(1 = B (1 = k)l — plIP+
3D

2B, (1= k) [125(f () = P X1 — ) + m-%llxmk — Xpll+ (69)
ﬁmk(%—_k)Hf(P) _P||2]~
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Hence, we have

am
IXmes1 —plI> < 22 (P) =P Xes1 —P) + %.ﬁllxmk = Xyl + mllf(p) -plP. (70)
Therefore we obtain:
lim sup [|x,,+1 —pll < 0. (71)

k— oo

Combining Equations (63) and (71) we obtain lim sup,_, , llxx — pll < 0, this means that x; — p. The proof
of Theorem 1 is completed. O

Remark 1. Suantai et al. [39] observed that condition (31) can be easily implemented in numerical results since the
value of ||x, — x,,-1l| is given before choosing av,. We can choose a, as follows:

. £n .
ay = minfa, iy ¥ # X,
a otherwise,

where o > 0 and {e,} is a positive sequence such that €, = o(Bn).

3.2. Picard—Mann Hybrid Type Inertial Subgradient Extragradient Algorithm

We propose the following algorithm
Algorithm 3.2
Step 0: Given 7 € (0, %) {ay} € [0, a) for some a > 0, {A,} € (a,b) € (0,1—-B,) and {B,} € (0, 1) satisfying
the following conditions:

lim B, =0, = oo, 72
lim B, ; B (72)
Choose initial xp, x; € C and setn := 1.
Step 1: Compute
Wy = Xp + an(xn - xn—l)/ (73)
Yn = Pc(w, — tAwy). (74)

If y, = wy, then stop, y, is a solution of the (VIP) problem. Otherwise, go to Step 2.
Step 2: Construct the half-space

Ty i={z € H : @y — TAWy — Y, 2 = Y} < 0} (75)
and compute
20 = Pr, (w, — Ay (76)
Step 3: Calculate
hy = (1= Ap = Bu)xXn + Anzn, (77)
and compute
Xny1 = f(hn). (78)

Let n := n + 1 and return to Step 1.
Next, we prove the following important result for Algorithm 3.2.
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Theorem 2. Suppose that {a,} is a real sequence such that the following condition holds:

. an o
lim. ﬁ_n”x” = xu-1ll = 0. (79)

Then the sequence {x,,} generated by Algorithm 3.2 converges strongly to an element p € I', where ||p|| = min({||z|| :
zeT}.

Proof. We now examine the following claims:
Claim I
We claim that the sequence {x,} is bounded. Using similar arguments as in the proof of Theorem 1, we get

Iz = I < llwn = pl* = (1= TL)llyn = xu11l? = (1= L)y — wall*. (80)
This implies that
llzn = pll < llwn = pll. (81)
Moreover, we have
llzi = pll < llwy = pll < llxn = pll + Bul1, (82)
for some ¢; > 0.
[xns1 = pll < il = pll + 11f (p) = plI. (83)

Using Equation (77) we have

”hn_P” ||(1_/\n_ﬁn)xn+/\nzn_P”
11 = A = ) (Xn = ) + An(zn = p) = Bupll (84)

(1 = An = Bn) (xn = p) + Aulzn = )l + Bullpll-
Using Equations (10) and (82), we have the following estimate:

Al

||(1_An_ﬁn)(xn—P)JrAn(Zn—P)”Z = (1_/\n_ﬁn)2||xn_l7”2+
2(1 - A _ﬁn)/\n<xn —P,Zn _P> + /\%”Zn _Pllz

< (1_/\n_[3n)2”xn_l7”2+
2(1 = Ay = ) Aulltn = pllllzn — pll + A2z — I (85)

< (1 —An —ﬁn)z”xn —P”z + (1 - Ay _ﬁn)/\n”xn _PHZJF
(1= A= Bu) Aullzn = pI? + A2l1zy — plI?

< (1= A= Bu) (1= Bu)llxu = pIR + (1= Bu) Aullzn — pII2

This implies that
(1= An = Bu)(xn—p) + An(za —p)IP < (1= Aw—Ba) (1= Bu)llxn — plP+

(1= Bn)An(llxn = pll + Butr)?

< (1= = Bu) (1= Bu)llen — pIP + (1= Bu) Aullen — pII? (86)
+2(1 _ﬁn)/\nﬁn”xn _Pllfl +ﬁ%€%

< (1= Bu)lxn = pl? +2(1 = Bu)Bullxn — plity + p2L2

= {1~ Bu)lxn = pll + Buls ).

This implies that
”(1 —An— ﬁn)(xn _P) + /\n(zn - P)” < (1 _ﬁn)”xn - P” + ﬁnfl- (87)

Using Equation (87) in Equation (84), we get
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Wy —pll < (1= Bu)llxn = pll + Buls + Bullpll
= (1_ﬁn)||xn_p||+.8n(€1+||p||)'

Using Equation (88) in Equation (83), we have

(L= Bu)llxn = pll + Bu (61 + lipll) + 11 (p) =Pl
max{llxn = pll, &1 + Ipll + 11 f (p) — plI}

Ixp 1 = pll

IN A

A

max{|lxo = pll, &1 + llpll + 1If (p) = plI}-

Therefore, the sequence {x,} is bounded. It follows that {z,}, {w,} and {h,} are all bounded.

Claim II
We want to show that

(1= Bu)An(1 = TL)lyn = X1l + (1= Bu) A (1 = TL)llyn = wal* < lxn = pl* = 41 = pIP + Buls,
for some ¢4 > 0. From Equation (42), we have
lne1 = pIP < il = pI? + €2,
for some ¢, > 0. Using (10) and (77) we get

1, — P“z = “(1 —An— )xn + Anzn — PHZ

”(1_/\71 )( ) "‘/\n(zn ) _ﬁnpllz
”(1_/\71 ,Bn)(xn P) +An(zn )”2_

2B4{(1 = Au = Bn) (Xn = p) + An(z0 = p), p) + BllpII®
< ”(1_/\11 ﬁn)( n— )"’/\n( Zn P)”z"‘ﬁnf\’ir

for some ¢3 > 0. Using Equation (85) in Equation (92), we get
I, — P”Z < (1 - A= ﬁn)(l - ,Bn)Hxn _P”2 + (1 - ﬁn)/\nnzn _P||2 + ,an?r
Using Equation (80) in Equation (93), we get

e — pII*

IA

(1 Ap— ﬁn)(l ﬁn)”xn P”z (1_ﬂn)An[||wn_P”2_

(1= tL)llyn = xp i1l = (1 = L) lyn — wal*) + Buls

(1 Ay — ,Bn)(l ,Bn)”xn P“2 (1_,3n)/\n||wn_p“2_

(1 ﬁ?i)An( _TL)||yn_xn+1||2 (1_ﬁn))\n(l_TL)”yn_wnHZ“"ﬁn[E}-

From Equation (36), we get

llzn = pll < llwn = pll < Iy = pll + Buta.

This implies that
llwn — pl* < llxn = pIF + Bula,

14 of 24
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for some ¢4 > 0. Using Equation (96) in Equation (94), we get

W —pI? <
1=Bu)An(1 = L) llyn = xnp1l? = (1= Bn)
1_571)/\71(1_TL)”yn_wn”Z"‘ﬁn&i
< A= plP = (1= Bu) An(1 = L) llyn = X2 IP—

(1 - ﬁﬂ)/\n(l - TL)”]/n - wn||2 + Buts,

for some ¢5 > 0. Using Equation (97) in Equation (91), we have

lxni1 —pIP <l —pIP = (1= Bu) A (1 = TL)lyn — Xpsall? —

+Puls + 6>

IA

+,3n€6/

for some ¢4 > 0. This implies that

llxn = pIZ = (1 = Bu) An(1 = TL) Iy — Xl —

(1 = Ay _ﬁn)(l _ﬂn)”xn - P”z + (1 _ﬁn)/\n[”xn _P”z + ﬂn&ﬂ_

( /\n(l - TL)”]/n - wnnz + ﬁn€3
(1 - ﬁn)znxn _P”z + ﬁn(l - ﬁn))\n&L - (1 - ,Bn)An(l - TL)”]/n - xn+1||2_
(

(1 —,Bn)/\n(l - TL)”]/n - wn'lz

(1 _,Bn)/‘n(l - TL)”]/n - wn”2

(1 _ﬁn)/\n(l - TL)”]/H - xn+1”2 + (1 _,Bn)An(l - TL)”yn - wn”Z < lxy _P”z - ”xn+1 —P||2 +,3n€6~

Claim III
We want to show that

1 —plP < 2Ky = plI® + 2kBu[2(1 = B)llxy — pll€o+

Al = xu-lllo + gl f(p) = pIP = 2((1 = An = Bu) (xn = p), p) + 365,

for some €9 > 0.

Using Equations (10) and (78), we have

If () = f(p) + f(p) =PI

1 = pIP

Kl = pI* +11f (p
kil = pI® + 11 f (p

INIA A A IA ||

2kllhy = pI* + 21If (p) = pI*.

() = F(P)IP +11f (p) =PI + 2(f () —
K2l = pI? +11f (p) = pIP + 2¢f (ha) = f(p), f(p) =
pI? +2(f () -

flp ),f( ) p)
p). f(p) -

) - £

) = pI? 4+ 211 () = F(P)NIIf (p) - PII
kllb, = pl? + 11f (p) = pIP + 11 £ (ha) = f(p)

(

f@IP+1£(p) - pl?

Next, we have the following estimate, using Equations (10) and (77)

- ﬁn)xn + Anzn — P||2

Il = plI* (1-
”(1 —An _ﬁn)(xn —P) + /\n(zn
Ii¢

1= An=PBn)(xn —p) + An(zn

—p) = Bupll®
-p)lP-

2Bn((1 = Ap = Bn) (Xn —p) + An(zn —p), p) + .3121”17“2-
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Using Equation (86) in Equation (102), we have

{(1 = Bu)llcn = pll + But1)* = 2Bu{(1 = A = Bu) (%n = p) + An(20 = ), p) + Brllpl®
(1 _,Bn)”xn _P”Z +2(1 _,Sn)ﬁn”xn _P||f7 +ﬁn5§_

2B((1 = An = Bn) (Xn = p) + Au(20 = p), p) + BElIPIP

(1= Bu)llxn = pI? +2(1 = Bu)Bullxn = plE7 + B2 = 2Bu((1 = An = Bu) (xu = p), P)
_ZAnﬁn<2n —-p, P) + ﬁ%HPHZ

= (1=Bu)lxn = pl* +2(1 = Bu)Bullxn = plie7 + Bul3 = 2Bu((1 = Au = Bu) (xn = p), )
+2A0Bnlp — zn, p) + ,3;21||P||2

(1= Bl = pI? +2(1 = Ba)Ballxn = plie7 + BulZ = 2B1((1 = An = u) (xn = P), p)
+2ABullp — zullllpll + B2lIpII?

(1= Bu)llxn = pl* +2(1 = Bu)Bullvn = pllE7 + Bul% = 2pu((1 = An — Bn) (xu ~ p), p)
+AnBallzn =PI + AnBullpll® + B2lIpII?

(1= Bu)llxn = pIP + 2(1 = Bu) Bullxn — plI€7 + Bul2 = 2Bn{(1 = A = Bu) (xu — ), P
+AnBullwn = pI2 + AuBullpll® + B2lIpI>-

= plI®

INIA

IN IA

IA

Next, we have

|2y, — P“z = |lxp + an(xn - xn—l) —P||2
= N(xn=p) + an(xn = x0-1)IP
= bxn = pIP + 20(xn — p, X — X4—1) + @2 llxy — 2117
< e = pIP + 2aulixn = plllxn = xp-all + @2lixg — xp-1l?
< len = pIP + anllxn — 21 l121x — pll + aullxn — x-111}
< llen = pIP + anllxn — x,-11s,

for some ¢g > 0. Using Equation (104) in Equation (103) we have

I =Pl < (1= Bu)llxa = pI* 4+ 2(1 = Bu) Bullxn = pli7 + Bul? = 2Bu((1 = Ay = Bu) (xn — p), P
JFAnﬁn”xn - PH2 + /\n,Bnan”xn - Xp-1ll€g + /\nﬁn”P”Z + 5721”}7”2
<l — P”z + 2(1 - ﬁn)ﬁn”xn —P||57 + ﬁngg - 2ﬁn<(1 - A _,Bn)(xn —P),P>

+ AnButnlltn = xu-11l6s + AuBallpl® + BElIpIP.

Using Equation (105) in Equation (101), we have

IN

2kllxn — plI* + 4k(1 = Bu)Bullxn — pll€7 + 2k, La—

4kﬁn<(1 Ay = ﬁn) (xn - P)/ p)+ Zk/\n,Bnan”xn = xy-1ll€s + Zk)\nﬁn”}?”z
+2kB2IIpIP + 21If (p) - pIP

2kllxy = pl? + 4k(1 = ) ullxs = pllt7 + 2B, 2

4kﬁn<(1 —An— ﬁn) (xn - p),P> + 2kAnanllxn — x,-1|l€s + 2k/\nﬁn||p||2
+2kB2IIpIP + 21If (p) - pIP

2kl — pIP + 2kBa [2(1 = Bl — pli7 + 2~

2<(1 - An _,Bn)(xn - P)/P> + An-%”xn = Xp-1ll€s + /\n”p”2+

Bullpl® + g5 11 (p) = pIP]

2k|[xn = pI? + 2kBn[2(1 = B llxn — plilo+

A5 n = Xn-1lllo + g=ILf(p) = pIP = 24(1 = An = Bu) (xn = p), p) + 305,

llx1 = pIP

IA

IA

IA

for some €9 > 0.
Claim IV
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We need to prove that the real sequence {|lx, — pl|*} converges to 0 by considering the following two

cases:
Case I
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There exists a number N € N such that for every n > N, we have ||x, 11 — pll2 < lx, — p||2. Hence,
we have that lim;,, [|x, — pl| exists so that by Claim II, we have

Jim |lyn —wull = 0, lim [lyn — X 42l = 0. (107)

Since the sequence {x,} is bounded, it follows that there exists a subsequence {xy, } of {x,,} such that {x;, }
converges weakly to some z € H such that

limsup(f(p) = p,xn =p) = M (f(p) =p,xn, —p) = {f(p) =P,z =p). (108)

n—oo

Using Equation (107) and Lemma 3, we get z € I'. From Equation (108) and the fact that p = Pr o f(p), we
get

limsup(f(p) —p,xn —p) = {f(p) —p,.z2—p) < 0. (109)
n—0oo
Next, we prove that
nll_r)rgo |Ixp4+1 — xull = 0. (110)
Clearly,
04
llwy — xull = anllx, — x4l = ﬁ—”-ﬁnllxn —Xp-1ll — 0 as n — co. (111)
n

Combining Equations (107) and (111) we have
41 = Xull < M1 = Yull + lyn — wall + llwp — x4ll — 0 as n — eo. (112)
Using Equations (109) and (110) we have

lim sup(f (P) =P xns1=p) < lim sup( f () =p.xu—py =<{f(p) —p.z—p) <0. (113)
Hence by Lemma 3 and Claim III we have lim; . ||x; — pll = 0.
Case II
We can find a subsequence {len], - pllz} of {||x;; — pllz} satisfying IIxni - p||2 < ||xn].+1 - pII2 for each
j € N. Hence, by Lemma 2 it follows that there is a nondecreasing real sequence {my} of N satisfying
limy_, o, my = oo so that we get the following inequalities for every k € N:

e =PI < 1 —pIZ, g = pIP < N, — plI. (114)
By Claim II we get
(1 —,Bmk)Amk(l - TL)H]/mk - xmk+l||2 + (1 - ﬁmk)/\mk(l - TL)”]/mk - wmk||2 < ”xmk —P||2—
[E
115
L (115)
< ‘Bmk[(,
Hence, we have
kh_f?o Yy = W |l = O, klggo Ym = Xm41ll = 0. (116)

By similar arguments as in the proof of Case I, we have

1, +1 = Xyl — 0 as k — oo, (117)
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and
lim sup{f(p) —p, Xm+1 —p) < 0. (118)
k—co
By Claim III we obtain
X1 =pI* < 2K, = pIP + 2kBu, [2(1 = By )P, = pllCo+
m
Ao e, = Xt + =1 (p) = pIP— (119)

2((1 = Ay = Bm) (omy = ), ) + 3],

for some €9 > 0.
By Equations (114) and (119) we have:

o 41 —pIP < Zk”xrgk =PI + 2kBu [2(1 = By )1, — pllbo+
Ao e, = o alllo + =1 (p) = pIP- (120)
2<<1 - /\mk _ﬁmk><xmk - P>/P> + 359}/

Hence, we have

Qm
1 =pIP < 201 = B ), — plido + )\mk-ﬁllxmk = Xmy—1lbo + kﬁl—wllf(i?) - pIP-

(121)
2((1 - Amk - ﬁmk)(xmk —P),P) + 309.

Therefore we obtain:
lim sup [|x;,,+1 —pll < 0. (122)

k— o0

Combining Equations (114) and (122) we obtain lim sup, _, . |lxx — pll < 0, this means that x; — p. The proof
of Theorem 2 is completed. O

4. Numerical Illustrations

In this section, we consider two numerical examples to illustrate the convergence of Algorithms 3.1,
Algorithms 3.2 and compare them with three well-known algorithms. All our numerical illustrations were
executed on a HP laptop with the following specifications: Intel(R) Core(TM)i5-6200U CPU 2.3GHz with 4
GB RAM. All our codes were written in MATLAB 2015a. In reporting our numerical results, the following
tables, ‘Iter.”, ‘Sec.” and Error denote the number of iterations, the CPU time in seconds and ||xjz, — x*||,

1

respectively. We choose 8, = C=S))

2
min{ay, ﬁ—”}, if X, # X1
oy = [l =211l

o, otherwise.
f(x) = 0.5x for Algorithm 3.1, Algorithm 3.2, A, = 1— }1 for Algorithm 3.2.

Example 1. Suppose that H = L*([0, 1]) with the inner product

1
x,y) = f x(t)y(t)dt,¥x,y € H
0
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and the included norm .
Il = (f (t)Pdt)?, Vx € H
0
Let C := {x € H : ||x|| < 1} be the unit ball and define an operator A : C — H by
Ax(t) = max{0, x(¢)}.

and Q :={x € H,{a,x) < b} where0 #a€ Hand b € R,
we can easily see that A is 1-Lipschitz continuous and monotone on C. Considering the condition on C and A,
the set of solutions to the variational inequality problem (VIP) is given by

T = {0} # 0.

It is known that

o il > 1,
Pe(x) = llxll; 2 L
X, ifllxll;2 < 1.
and

b—{a,x) .
a+ x,if{a,x) > b,
Po(x) _{ llal|? @x)

X, if(a, x) < b.

Now, we apply Algorithm 3.1, Algorithm 3.2, Mainge’s algorithm [37] and Kraikaew and Saejung’s
algorithm [40] to solve the variational inequality problem (VIP). We choose a;, = nlﬁ for Mainge’s
algorithm and Kraikaew and Saejung’s algorithm and v = 0.5 for all algorithms. We use stopping rule
llx,, — 0]] < 10~* or Iter <= 3000 for all algorithms. The numerical results of all algorithms with different x

are reported in Table 1 below:

Table 1. Numerical results obtained by other algorithms.

Methods X0 = sm(lgg*t) xo = (sm(—S*t);;)gos(—IO*t))
Sec. Iter. Error. Sec. Iter. Error.
Algorithm 3.1 0.0022 10 1.1891 x 107> 0.0018 9 4.8894 x 10~°
Algorithm 3.2 0.0019 8 47288 x10™°  0.0014 7 5.3503 x 10~
Algorithm of Kraikaew etal.  0.4063 2287 9.9981 x 1075 0.1719 1065 9.9924 x 107>
Algorithm of Mainge 0.1250 2287 9.9981 x 107> 0.0469 1065 9.9924 x 107>

The convergence behaviour of algorithms with different starting point is given in Figures 1 and 2.
In these figures, we represent the value of errors ||x, — 0|| for all algorithms by the y-axis and the number of
iterations by the x-axis.
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Figure 1. Comparison of all algorithms with xg = sin(=3t)
gu . Comparison of all algo S 0= 100

107

—+— Algorithm 3.1
— — — Algorithm 3.2
Algorithm (M)
Algorithm (KM)

1072
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Number of iterations
. . . . in(—3xt —10+t
Figure 2. Comparison of all algorithms with xg = W

Example 2. Assume that A : R™ — R™ is defined by A(x) = Mx + q with M = BBT + S + D, where S is an
m X m skew-symmetric matrix, B is an m X m matrix, D is an m X m diagonal matrix, whose diagonal entries are
positive (so M is positive definite), q is a vector in R™ and

C:={xeR":-5<x;<5,i=1,---,m}.

Clearly, we can see that the operator A is monotone and Lipschitz continuous with a Lipschitz constant L = ||M]|.
Given that q = 0, the unique solution of the corresponding (VIP) is {0}.

We will compare Algorithm 3.1, Algorithm 3.2 with Tseng’s extragradient method (TEGM) [41], Inertial
Tseng extragradient algorithm (ITEGM) of Thong and Hieu [33], subgradient extragradient method (SEGM)

of Censor et al. [5]. We choose T = % for all algorithm, a, = a = 0.99—’1';(816__61)_2€ where € = 111 ﬁ% for

inertial Tseng extragradient algorithm. The starting points are xp = (1,1,..,1)T € R™.
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For experiment, all entries of B, S and D are generated randomly from a normal distribution with
mean zero and unit variance. We use stopping rule |lx, — 0|| < 10~* or Iter <= 1000 for all algorithms.
The results are described in Table 2 and Figures 3 and 4.

Table 2. Numerical results obtained by other algorithms.

m = 50 m =100
Methods
Sec. Iter. Error. Sec. Iter. Error.
Algorithm 3.1 0.08 10 6.9882 x 107>  0.14063 10 6.6947 x 107
Algorithm 3.2 0.078 8  9.0032x107° 0.1 9  9.9385x 107
TEGM 42438 1000 0.0849 9.4531 1000 0.2646
ITEGM 45188 1000 0.0790 9.6875 1000 0.2594
SEGM 43969 1000 0.0850 9.5156 1000 0.2647
10' T T T T T
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Figure 3. Comparison of all algorithms with m = 50.
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Figure 4. Comparison of all algorithms with m = 100.

Tables 1 and 2 and Figures 1-4, give the errors of the Mainge’s algorithm [37] and Kraikaew and
Saejung’s algorithm [40], Tseng’s extragradient method (TEGM) [41], Inertial Tseng extragradient algorithm
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(ITEGM) [33], subgradient extragradient method (SEGM) of Censor et al. [5] and Algorithms 3.1, 3.2 as
well as their execution times. They show that Algorithms 3.1 and 3.2 are less time consuming and more
accurate than those of Mainge [37], Kraikaew and Saejung [40], Tseng [41], Thong and Hieu [33] and
Censor et al. [5].

5. Conclusions

In this study, we developed two new iterative algorithms for solving K-pseudomonotone variational
inequality problems in the framework of real Hilbert spaces. We established some strong convergence
theorems for our proposed algorithms under certain conditions. We proved via several numerical
experiments that our proposed algorithms performs better in comparison than those of Mainge [37],
Kraikaew and Saejung [40], Tseng [41], Thong and Hieu [33] and Censor et al. [5].
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