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ABSTRACT

Sexual reproduction is a highly conserved feature of the eukaryotes, yet sexual compatibility 

is determined by a wide variety of mechanisms. In ascomycete fungi, sexual development is 

controlled by genes at the mating type (MAT) locus that confer either MAT1-1 or MAT1-2 

mating identity. Although the locus harbours, at minimum, a single gene, the individual MAT 

loci of certain species, including Huntiella omanensis, encode for two or more genes. The 

MAT1-2 idiomorph of H. omanensis is made up of MAT1-2-1, a primary MAT gene that is 

highly conserved in the Pezizomycotina and possesses a well-characterized DNA binding 

motif, the HMG-box domain. The idiomorph also harbours a novel secondary MAT gene, 

named MAT1-2-7, with no recognizable functional domains. In this study, we developed a 

transformation and CRISPR-Cas9-based genome editing protocol to characterize the MAT1-

2-7 gene with respect to its function in mating. We have shown that MAT1-2-7 is essential 

for sexual reproduction and that isolates carrying the truncated MAT1-2-7 gene are 

incapable of ascomatal maturation and further sexual development. MAT1-2-7 was also 

shown to influence the vegetative radial growth rate of H. omanensis, illustrating the 

pleiotropic effects often associated with MAT genes.     
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1. INTRODUCTION

Sexual reproduction in ascomycetes is controlled almost entirely by genes present at the 

mating type (MAT) locus. At minimum, this includes the primary MAT genes, MAT1-1-1 and 

MAT1-2-1 (Debuchy et al., 2010; Dyer et al., 2016). However, other secondary genes can 

also be present, often in a lineage-specific manner. As the nomenclature suggests, the 

MAT1-1-1 gene is the defining feature of the MAT1-1 idiomorph, while the same is true of 

the MAT1-2-1 gene at the MAT1-2 idiomorph (Turgeon and Yoder, 2000). In heterothallic, or 

self-sterile, fungi, a single individual can be assigned a mating type based on the genic 

content of its MAT locus, with the MAT1-1 idiomorph conferring the MAT1-1 mating type 

and the MAT1-2 idiomorph conferring the MAT1-2 mating type (Dyer et al., 2016). 

At present, there is no clear definition of a MAT gene. This is in part due to the limited 

number of functional studies on these genes, particularly in non-model species, but also the 

fairly extensive variation in the genic content of the MAT locus (Debuchy et al., 2010). Some 

authors have classified a bona fide MAT protein as one that allows for internuclear 

recognition and that is functional only when expressed from the MAT locus (Arnaise et al., 

1997). This definition is highly restrictive as it relies on the functional characterization of 

these genes as well as the ability to precisely track the expression and location of the 

protein during sexual reproduction. It also does not consider the many other processes 

involved in sexual reproduction that are not linked to recognition but remain essential for 

the production of recombinant offspring. Other authors define the MAT locus simply as a 

location in the genome responsible for mating, and thus a MAT gene is a gene that resides 

within this locus (Turgeon and Yoder, 2000; Wilken et al., 2017). This definition does not rely 

on functional characterization and is thus more relevant in non-model fungi where gene 

characterization has not yet been possible.   

The broader, locus-dependent definition for a mating gene has led to the description of 

many MAT genes (as recently reviewed (Wilken et al., 2017)). Of these, the MAT1-1-1 and 

MAT1-2-1 genes fulfil an essential role in the mating process and are found in almost all 

studied species (Debuchy and Coppin, 1992; Paoletti et al., 2007; Staben and Yanofsky, 

1990). They are thus considered the primary mating genes. In comparison, the secondary 
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MAT genes are not as well-conserved and do not always have recognizable conserved 

domains (Wilken et al., 2017). These genes have been named numerically in the order of 

their discovery in various species (Turgeon and Yoder, 2000). Thus, for example, 

Cryphonectria parasitica harbours the MAT1-1-2 and MAT1-1-3 genes at the MAT1-1 

idiomorph (McGuire et al., 2001); while the MAT1-2-2 and MAT1-2-9 genes are harboured 

in the MAT1-2 idiomorphs of Neurospora crassa (Pöggeler and Kück, 2000) and Fusarium 

fujikuroi (Martin et al., 2011; Wilken et al., 2017), respectively. 

Functional characterization of the MAT genes in diverse fungal species has predominantly 

focused on MAT1-1-1 and MAT1-2-1, and in some cases, has even concentrated specifically 

on their functional domains. These genes have been shown to be essential for sexual 

reproduction in model and non-model species alike (Debuchy and Coppin, 1992; Ferreira et 

al., 1998; Paoletti et al., 2007; Staben and Yanofsky, 1990). The precise functions of MAT1-1-

1 and MAT1-2-1 are also fairly well-conserved, with both primary genes often playing 

important roles during the initiation of sexual reproduction. However, while these genes are 

well-characterized, similar research is lacking with respect to the secondary MAT genes. The 

few examples that do exist include the Fusarium graminearum MAT1-1-2 and the Botrytis 

cinerea MAT1-1-5, both of which are important for the maturation of the ascomata (Kim et 

al., 2012; Rodenburg et al., 2018). In addition to their role in mating, MAT genes can also 

influence other important non-mating factors, such as pathogenicity, growth and vegetative 

incompatibility (Lee et al., 2015; Newmeyer et al., 1973).

Huntiella omanensis, a member of the Ceratocystidaceae (de Beer et al., 2014), has recently 

been the topic of genomic and transcriptomic studies with respect to its sexual 

development (Wilson et al., 2018, 2015). MAT1-1 isolates of this fungus possess the MAT1-

1-1 and MAT1-1-2 genes, while the MAT1-2 isolates harbour the MAT1-2-1 and MAT1-2-7 

genes (Wilson et al., 2015). MAT1-1-1, MAT1-1-2 and MAT1-2-1 all encode proteins that are 

comparable to those encoded by this locus in other species and they each possess the 

expected functional domains associated with these proteins. In contrast, MAT1-2-7 was first 

detected in silico and showed no similarity to any other known genes. It also encoded a 

protein with no recognizable functional domains (Wilson et al., 2015). Later the gene was 

found to be expressed during sexual reproduction despite undetectable expression levels 
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during the vegetative growth phase (Wilson et al., 2018). Its position in the MAT locus 

combined with its expression pattern thus suggested that this gene might have a role in the 

sexual process.

Huntiella moniliformis, a close relative of H. omanensis, possesses a significantly truncated 

and likely non-functional version of the MAT1-2-7 gene (Wilson et al., 2015). Interestingly, 

this species undergoes unisexual reproduction, unlike the many heterothallic species found 

in this genus (Wilson et al., 2015). It has thus been hypothesized that MAT1-2-7 plays a role 

in the regulation of sexual reproduction in these species and that its truncation in H. 

moniliformis leads, at least in part, to the homothallic behaviour observed in this species 

(Wilson et al., 2018). However, H. moniliformis also exhibits an interesting pheromone 

expression pattern, with a single isolate capable of producing both mating pheromones. 

This is unlike H. omanensis, which, similar to many heterothallic species, expresses these 

pheromones in a mating-type dependent manner (Wilson et al., 2018). It is not known 

whether the truncation of the MAT1-2-7 gene, the indiscriminate pheromone expression or 

a combination of both has led to unisexual reproduction.     

The aim of this study was to characterize the H. omanensis MAT1-2-7 gene with respect to 

its involvement in sexual reproduction. Our objective was to mimic the truncation seen in 

the H. moniliformis MAT1-2-7 gene to determine whether MAT1-2-7 disruption can bring 

about unisexual behaviour in H. omanensis. This was achieved by developing a protoplast-

based transformation and CRISPR-Cas9 genome editing protocol for use in the first 

successful genetic modification of any species within the genus Huntiella. The H. omanensis 

MAT1-2-7 gene was confirmed as an essential mating gene that plays an important role in 

ascomatal maturation. 

2. METHODS AND MATERIALS

2.1. Strains and culture conditions

Four wild type isolates of H. omanensis were used in this study, two MAT1 isolates 

(CMW 44436 and CMW 44437) and two MAT2 isolates (CMW 44439 and CMW 

44442). Additionally, two independent MAT1-2-7 mutant strains were derived from 
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the CMW 44442 MAT2 isolate (as detailed below). These isolates have been named 

MAT127-H1 (CMW 54810) and MAT127-H4 (CMW 54811). Unless otherwise stated, 

the isolates were cultured and maintained on 2% malt extract agar, supplemented 

with 100 mg.L-1 thiamine hydrochloride (Sigma, St Louis, USA) and 150 mg.L-1 

streptomycin sulphate salt (Sigma, St Louis, USA) and is referred to as MEA-ST. The 

cultures were maintained at 22 C in a standard light-dark cycle. These cultures have 

been preserved in the culture collection (CMW) of the Forestry and Agricultural 

Biotechnology Institute (FABI) at the University of Pretoria in South Africa.

2.2. sgRNA design, synthesis and transcription

The single guide RNA (sgRNA) is an RNA molecule that allows the Cas9 protein to 

recognize the genomic region of interest and allows for DNA cleavage at a targeted 

region (Jinek et al., 2012). It is comprised of a 20 bp region called the protospacer 

which corresponds to the genomic location to be targeted and a longer scaffold region 

that physically binds to the Cas9 protein. Together, the sgRNA and Cas9 protein form 

the ribonucleoprotein (RNP) which is capable of creating targeted dsDNA breaks 

(Gasiunas et al., 2012). The sgRNA used to target the H. omanensis MAT1-2-7 gene 

(Fig. 1) was designed to adhere to the following parameters, 1) the 20 nt protospacer 

was found directly upstream of a 5’ NGG 3’ protospacer adjacent motif (PAM), a motif 

specifically targeted by the Streptococcus pyogenes Cas9 enzyme used below, 2) the 

sequence of the protospacer together with the PAM sequence showed no significant 

similarity to any other regions of the H. omanensis genome, 3) the sgRNA construct 

passed a number of RNA folding restrictions, 4) the protospacer targeted the 5’ region 

of the gene near the point targeted for the introduction of the in-frame stop codon. 

These parameters were satisfied by annotating each of the 5’ NGG 3’ sequences in the 

MAT1-2-7 gene and filtering through the potential sgRNA constructs. Each of the PAM 

sequences and the adjacent 20 nt, representing the potential protospacer, were used 

in local BLASTn searches against the H. omanensis genome to detect any potential off-

target effects. Those that passed these initial control steps were subjected to RNA 

folding analysis using the RNAfold webserver (Gruber et al., 2008), with default 

settings. In order for sgRNA molecules to efficiently target the correct region of the 
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genome and bind the Cas9 enzyme, constructs needed to have similarly structured 

minimal free energy and centroid secondary structures; each made up of three stem 

loops and five rings. The secondary structures should also have high base pairing 

probabilities throughout the structure, with the exception of the 5’ terminal region 

where the protospacer is located. The sgRNA that passed all of these requirements 

and that targeted the most 5’ region of the gene was selected for use. 

The full-length sgRNA was synthesized by Twist Biosciences (San Francisco, USA) as a 

dsDNA molecule. This construct was then amplified using primers targeting the 

protospacer and scaffold sequence. The forward primer was designed to include a 5’ 

overhang harbouring a T7 promoter (Fig. A.1). The construct was amplified using 

Phusion High-Fidelity DNA polymerase (ThermoFisher Scientific, Waltham, USA) 

following the manufacturer’s instructions (Table B.1). The resulting DNA products 

were visualized on a 2% SeaKem® LE agarose gel (Lonza, Rockland, USA) stained with 

GelRedTM (Biotium, Fremont, USA) and electrophoresed at 100V for 20 min. PCR 

products were purified using a 6.66% G-50 Sephadex solution (Sigma, St Louis, USA) 

and Centri-Sep spin columns (Princeton Separations, Freehold, USA), using the 

manufacturer’s instructions. The cleaned products were cycle-sequenced using a 

BigDye Terminator Cycle Sequencing Kit v3.1 (Life Technologies, Carlsbad, USA) (Table 

B.2). 

The construct was subsequently transcribed using the HiScribeTM T7 Quick High Yield 

RNA synthesis kit (New England Biolabs, Ipswich, USA) in accordance with the 

manufacturer’s instructions. This entailed incubating approximately 1g of target DNA 

together with the T7 RNA polymerase at 37C for 16 hours. The transcribed sgRNA 

was then visualized as above.

2.3. In vitro testing of sgRNA 

The cleavage ability of the designed and synthesized sgRNA was tested in vitro. This 

entailed incubating a PCR product which included the target region together with the 

RNP complex. The PCR product was produced using FastStart Taq DNA Polymerase 

(Roche, Basel, Switzerland) and primers targeting an 872 bp region of the MAT1-2-7 
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gene (Fig. A.2 and Table B.3). Successful and targeted Cas9-mediated cleavage of this 

PCR product would yield two DNA products 737 and 135 bp in length (Fig. A.2). 

The RNP was produced using the sgRNA synthesized and transcribed as described in 

section 2.2. above as well as the EnGen® Spy Cas9 NSL protein (New England Biolabs, 

Ipswich, USA) following the manufacturer’s instructions (Fig. A.1). In short, a solution 

of 30nM sgRNA, 30nM Cas9 protein, 10X NEBuffer 3.1 and ddH2O was prepared and 

incubated at 25C for 10 min. The target DNA was added to a final concentration of 3 

nM and the solution was incubated for a further 15 min at 37C. In order to stop the 

reaction, 3 g of Proteinase K (Sigma, St Louis, USA) and 2 g of RNase A (Roche, 

Basel, Switzerland) were subsequently added. The reaction was incubated at room 

temperature for 10 min. The resulting DNA products were visualized as above.  

2.4. dDNA design 

Upon Cas9-induced cleavage, the cell will attempt to repair the cut, by either using 

non-homologous end joining or homology directed repair (Ran et al., 2013). In the 

latter case, a construct harbouring a sequence of interest can be provided in the form 

of a donor DNA (dDNA). This allows for the introduction of foreign DNA directly into 

the region being cut. The dDNA includes the sequence to be introduced flanked by 

arms that are homologous to the region being targeted by the sgRNA. In this study, 

the dDNA was made up of homologous arms flanking the BclI restriction site (5’ TGA 

TCA 3’) and a hygromycin B resistance cassette (Fig. 2). The dDNA was designed to 

ensure the stop codon encoded by the BclI site (TGA) was in frame with the coding 

region of the MAT1-2-7 gene, thereby introducing a premature stop codon. The 

position of this stop codon was also designed to be at the same position as the 

premature stop codon found in the H. moniliformis MAT1-2-7 and thus allowed the H. 

omanensis MAT1-2-7 to be truncated in a manner similar to that of H. moniliformis. 

The introduction of the hygromycin B resistance cassette allowed for the selection of 

successfully transformed isolates.  

Originally, the dDNA was designed to be inserted into a plasmid harbouring an 

independent hygromycin resistance cassette and thus a dDNA molecule consisting of 
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only the MAT1-2-7-homologous flanking regions and the BclI restriction site was 

synthesized by Twist Biosciences (San Francisco, USA) as a dsDNA molecule. The full 

length dDNA also harbouring the hygromycin B resistance cassette was thus 

assembled using a step-wise, overhang PCR approach (Fig. A.3, Tables B.4 – B.9). This 

entailed amplifying the 5’ and 3’ regions of the synthesized construct using primers 

with overhangs homologous to the sequence of the hygromycin B resistance cassette. 

The entire hygromycin B resistance cassette was amplified in a single reaction from 

the pcb1004 plasmid (Carroll et al., 1994). These resultant PCR products were then 

used in a single amplification reaction to produce the single, full-length dDNA 

construct. Each of the intermediate and final PCR products were visualized, purified 

and sequenced as above. 

2.5. Protoplast extractions

A protoplast extraction protocol was optimized for use in Huntiella species using a 

combination of the Magnaporthe oryzae and other filamentous ascomycete 

protoplast extraction protocols (Chung and Lee, 2015; Leung et al., 1990) with a 

number of species-specific alterations. A mycelial plug was inoculated in 200ml of 2% 

(w/v) malt extract broth and allowed to grow for between 24 and 48 hours with 

shaking at 100 rpm at 25 C. To harvest conidia, the resulting liquid culture was 

filtered through a single layer of Miracloth® (Merck, New Jersey, USA) and centrifuged 

at 4000 rpm for 10 mins at 4 °C in an Eppendorf 5810 R centrifuge. The pellet was 

resuspended in 200ml of 1% (w/v) malt extract broth and allowed to grow for up to 12 

hours as above. The resulting germlings and young mycelial strands were harvested by 

centrifugation at 4000 rpm for 10 mins at 4°C, followed by resuspension in 1M sorbitol 

(Sigma, St Louis, USA). This solution was either used immediately in enzymatic 

degradation reactions or stored at -80°C.

The germlings and young mycelia were subjected to enzymatic degradation by 

Trichoderma harzianum lysing enzymes (Sigma, St Louis, USA). The enzyme 

concentrations, final volumes and incubation times are summarized in Table B.10. In 

general, 1 ml germling/mycelia solution was added to 9 ml enzyme solution and 

incubated at 25 °C with shaking at 80 rpm. The resultant protoplast suspension was 



10

filtered through Miracloth® and then centrifuged at 3000 rpm for 10 mins. The 

protoplast pellet was carefully resuspended in 300ul STC buffer (20% sucrose, 50mM 

Tris-HCl pH 8.00 and 50mM CaCl2). Protoplasts were either used immediately in 

transformation experiments or stored at -80 °C.

2.6. Transformations

A single transformation reaction consisted of protoplasts, sgRNA-Cas9 RNPs and the 

dDNA construct. The RNP was assembled as detailed in section 2.2. above and in 

accordance with manufacturer’s suggestions, using 3 M solutions of each reagent. 

These were combined with the 1X Cas9 reaction buffer to a total volume of 12.5 l. 

This solution was incubated at room temperature for 10 min.   

Approximately 5 x 106 protoplasts, a single volume of the RNP solution and 6 g of the 

dDNA construct were co-incubated on ice for 20 mins. Subsequently, a freshly 

prepared 30% PTC (polyethylene glycol 8000 in STC buffer) solution was slowly 

dripped onto the protoplast solution, creating a hydrophobic layer above the cells. 

This solution was incubated for a further 20 min at room temperature. An osmotic 

control medium (OCM- 0.3% yeast extract, 20% sucrose, 0.3% cas-amino acids) was 

added to the protoplast solution and incubated with shaking at 80 rpm over night at 

room temperature. The solution was divided into five Petri dishes and covered with 

OCMA medium (OCM + 1% agar) supplemented with 30 ug.ml-1 hygromycin B from 

Streptomyces hygroscopicus (Sigma, St Louis, USA). Once set, this medium was 

covered with a layer of OCMA medium supplemented with 40 ug.ml-1 hygromycin B. 

Single isolates that were able to grow through the top layer of medium were 

transferred to MEA supplemented with 50 ug.ml-1 hygromycin B (MEA-50).

2.7. Confirmation of transformants and stability of the insert

Isolates that were capable of growth on MEA-50 were subjected to single hyphal tip 

isolations and transferred to MEA-ST. DNA was extracted from these isolates after five 

days of growth as described in previous studies (Wilson et al., 2015). Extracted DNA 

was subjected to PCR amplification using primers targeting the 5’ and 3’ integration 

regions as well as the entire length of the integrated dDNA construct (Fig. A.4). These 
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reactions were conducted using LongAmp® Taq (New England Biolabs, Ipswich, USA) 

according to the manufacturer’s instructions (Table B.11). PCR products were 

visualized, purified and sequenced as above.

To ensure that the dDNA had integrated only at a single site in the genome, DNA from 

the two mutant isolates was subjected to Southern blot analysis. Genomic DNA (30g 

per isolate per enzyme) was digested using HindIII and EcoRI (ThermoScientific, 

Waltham, USA), in individual reactions and in accordance with the manufacturer’s 

instructions. Digestions were conducted at 37 C for 16 hours and were inactivated by 

incubation at 80 C (HindIII) and 65 C (EcoRI) for 20 mins. The digested gDNA 

fragments were subsequently separated on a 0.75% agarose gel and electrophoresed 

for 90 mins at 80V in 1x TAE buffer. The subsequent DNA transfer from the gel onto a 

nylon membrane was conducted as previously described (Sambrook and Green, 2012). 

The membrane was then subjected to probe hybridization and visualization as per the 

manufacturer’s manual (Eisel et al., 2008). In short, a DIG-labelled probe was 

synthesized using a PCR-approach and DIG-labelled dNTPs (Sigma, St Louis, USA, Table 

B.12). The probe was designed to target a short, 336 bp region of the hygromycin 

resistance cassette. Once the probe was hybridized to the membrane, the membrane 

was treated with a 1:5000 solution of anti-digoxigenin-AP (Sigma, St Louis, USA). This 

was followed by incubation in a 1:5 NBT/BCIP colour substrate solution (Sigma, St 

Louis, USA). The colour precipitation reaction was allowed to develop for 2.5 hrs, 

before the membrane was neutralized and washed with double distilled water.    

In order to test the stability of the integration of the hygromycin cassette, the 

knockout strains were alternatively transferred from media supplemented with 

hygromycin B to media without antibiotic supplementation (Fig. A.5). This was 

conducted three times and each isolate was allowed to grow for three days at 25 C 

before being transferred to fresh media. 

2.8. Phenotypic analysis of the wild type and mutant strains

2.8.1 Mating tests
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The ability of each knockout strain to produce ascomata was assessed and compared 

with that of the wild type isolates. Two media types were used to induce ascomatal 

development: MEA-ST as detailed above as well as 2% potato dextrose agar 

supplemented with 100 mg.L-1 thiamine hydrochloride and 150 mg.L-1 streptomycin 

sulphate salt (PDA-ST). Plates for mating tests were set up by co-incubating two 

isolates on a single plate, approximately 2cm apart. The plates were not wrapped 

closed with parafilm, which is the standard procedure when culturing these fungi. 

Each of the six isolates used in this study were crossed with each other, thereby 

producing a total of 15 potential mating combinations (Table B.13). Additionally, all 

isolates were also cultured in isolation to assess whether they were able to undergo 

unisexual reproduction. The cultures were incubated at 20 C for a total of 21 days 

and were visually inspected for ascomatal production and maturation as well as 

ascospore exudation every 24-36 hours. Where mature ascomata and ascospores 

were produced, single ascospore masses were inoculated onto fresh MEA-ST plates 

and assessed for the production of ascomata, and thus the fertility of these spore 

masses, after seven days.

2.8.2 Growth rate 

The growth rate of each knockout strain and all four wild type strains was assessed to 

determine whether the disruption of the MAT1-2-7 gene had any effect on vegetative 

growth. This was achieved by excising 5 mm diameter mycelium-covered agar plugs 

and inoculating these onto sterile MEA-ST plates. Five plates of each isolate were 

used, and these cultures were grown for three days at 20 C. Two measurements of 

colony diameter were taken perpendicular to each other at 60 hours post inoculation. 

The two measurements were averaged to produce a mean diameter of growth. The 

growth of each of the mutant strains was compared with that of the growth of the 

wild type isolates of both mating type using a two-tailed, independent t-test in Excel 

(v16.29). 

2.9 RNA extraction, cDNA synthesis and RT-PCR

RNA was extracted from five-day-old, vegetatively-growing isolates including the two 

mutant strains as well as a MAT1 isolate (CMW 44436) and a MAT2 isolate (CMW 
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44442). RNA was also extracted from a five-day-old MAT1-1 (CMW 44436) x  

MAT127-H4 cross that produced protoascomata. These cultures were grown on MEA-

ST overlaid with cellophane to allow for easy tissue harvesting. A total of three 

biological and three technical repeats were used, translating to nine MEA-ST plates of 

fungal tissue per isolate type.

Harvested tissue was flash frozen in liquid nitrogen and, using a sterile mortar and 

pestle, was ground into a fine powder. Total RNA was extracted using the RNeasy® 

Mini Kit (Qiagen, Limburg, The Netherlands) following the manufacturer's protocols. 

The RLC extraction buffer was used and the optional on-column DNase1 treatment 

was conducted. Gel electrophoresis (2% agarose gel, 120V, 25 min) was used to assess 

the integrity of the recovered RNA. The concentration of the RNA was estimated using 

an ND 1000 spectrophotometer (ThermoScientific, Waltham, USA).

The RNA was converted to cDNA using the RevertAid H Minus First Strand cDNA 

Synthesis Kit with oligo(dT)18 primers (ThermoScientific, Waltham, USA) to select for 

mRNA transcripts. In this synthesis reaction, 1 µg of total RNA, 0.5 mM primers and 

RNase-free water to a final volume of 5µl were combined and incubated for 5 minutes 

at 70°C, followed by incubation on ice for at least 5 minutes. This 5 µl reaction was 

then added to a solution containing 1X reaction buffer, MgCl2 to a final concentration 

of 8mM, total dNTPs to a final concentration of 1 mM, 160 units of reverse 

transcriptase and RNase-free water to a final volume of 15 µl. The final 20 µl reaction 

was then incubated at 25°C for 5 minutes, 42°C for 1 hour and 70°C for 15 minutes. 

The resulting cDNA was diluted (1:20, 1:50, 1:100, 1:500, 1:1 000, 1:10 000, 1:100 000, 

1:1 000 000 and 1:10 000 000) and subjected to PCR amplification using primers that 

targeted the two pheromone genes, the two pheromone receptors and MAT1-2-1 (Fig. 

A.6, Table B.14). The dilution series of cDNA allowed for a semi-quantitative 

measurement of each of the genes’ expression. RT-PCR amplification was conducted 

using a protocol that included a 5s/cycle extension of the annealing step and a total of 

40 amplification cycles (Table B.14). Where possible, these primers were designed to 

flank introns to ensure that potential gDNA contamination could be identified if 

present. PCR products were visualized and purified as above. The PCR products were 
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also sequenced as described above to precisely confirm the predicted intron/exon 

boundaries and to determine if alternatively spliced transcripts of these genes were 

present. 

3 RESULTS 

3.1. sgRNA_2 successfully cleaves the MAT1-2-7 target sequence in vitro

A total of 13 potential sgRNA molecules were predicted from the H. omanensis MAT1-

2-7 gene (Table B.15). A single construct, sgRNA_7, showed significant similarity to 

another region in the H. omanensis genome and was thus not considered in further 

analyses. Of the remaining 12 potential sgRNA molecules, four passed the RNA folding 

parameters, showing similar minimal free energy and centroid structures, with high 

binding probabilities. Finally, sgRNA_2 was chosen for further in vitro testing given 

that it targeted the most 5’ region of the gene of the remaining sgRNA constructs (Fig. 

A.7). 

The sgRNA_2 could support the efficient cleavage of the PCR product harbouring the 

target sequence. Gel electrophoresis revealed a significant length difference between 

the full-length PCR product (above 800 bp) and the cleaved product (above 700 bp). 

This sgRNA was thus used for the in vivo genome editing experiments.  

3.2. Two knockout strains were isolated, ΔMAT127-H1 and ΔMAT127-H4

A total of 26 isolates were capable of growing through the OCMA medium 

supplemented with 40 ug.ml-1 hygromycin B. After transfer to MEA-50, 17 were 

capable of sustained growth and were thus considered successful transformants. PCR 

amplification and sequencing of the 5’ and 3’ integration sites showed that the dDNA 

had successfully integrated into the target region of two independent strains. Both 

integration events had resulted in the successful truncation of the MAT1-2-7 gene (Fig. 

3). These mutant strains, named ΔMAT127-H1 and ΔMAT127-H4, showed exactly the 

same gene disruption pattern, harbouring the premature stop codon as well as the 

hygromycin resistance cassette at the region expected. In both cases, the stop codon 
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was introduced at nucleotide position 145 of the gene. Thus, if expressed, the gene 

would produce a protein product of only 48 aa, which is likely to be non-functional. 

Both isolates also showed stable integration of the hygromycin resistance cassette, as 

observed by the alternated transfers of these isolates from antibiotic-supplemented 

to unsupplemented media (Fig. A.8). Southern blot analysis confirmed the 

homologous integration of the hygromycin resistance cassette at a single region in the 

genome as well as the absence of heterologous integration of the cassette at other 

locations (Fig. A.8). Phenotypic analyses on both mutant strains showed very similar 

phenotypes.

3.3. MAT1-2-7 disruption does not affect MAT1-2-1 expression in H. omanensis

The MAT locus of many fungal species exhibits significant positional effects (Arnaise et 

al., 1997). Thus, any disruption to the MAT locus may have unexpected effects on the 

other genes present within this region and may lead to unintentional phenotypic 

effects. In an effort to ensure that the disruption of the H. omanensis MAT1-2-7 did 

not affect MAT1-2-1, we assessed the expression of the MAT1-2-1 gene via RT-PCR. 

The expression of MAT1-2-1 was detected in vegetatively growing isolates of both 

mutant isolates as well the wild type MAT1-2 isolate- CMW 44442 (Fig. 4). The MAT1-

2-1 cDNA sequence of the mutant isolates was identical to that of the wild type MAT1-

2 isolate. In all three isolates, the RNA had been fully processed and had undergone 

splicing to remove both introns. This indicated that the MAT1-2-1 gene is expressed 

normally in the mutant strains and that any subsequent phenotypic differences were 

the result of MAT1-2-7 disruption and not generalized MAT locus interference.  

3.4. MAT1-2-7 is essential for ascomatal development and maturation

Ascomatal development in Huntiella species (Fig. A.9) commences with the production 

of small, light-coloured, round protoascomata. This is followed by the emergence of a 

dark, beak-like structure from the young ascomatal base, which develops into an 

extended neck. During this process, the ascomatal base also darkens. Once mature, a 

sticky mass of ascospores is exuded from the tip of the neck. 
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In the crosses between MAT1-1 and MAT1-2 wild type isolates, mature ascomata 

were produced within 66 hours of co-inoculation and incubation at 20C (Fig. 5). The 

ascomata consisted of dark, globose bases with extended necks (Fig. 5). A number of 

protoascomata were also seen at this stage in varying degrees of development; from 

light-coloured ascomatal bases with small beaks to darker bases with more 

pronounced immature necks. However, the majority of the ascomata were mature at 

this point. After approximately 90 hours, the ascomata began to exude ascospore 

masses from the tips of their necks. Ascospore masses that were transferred to sterile 

plates were capable of producing sexually-competent cultures within seven days (Fig. 

5). 

At 66 hours post co-inoculation, matings between a wild type MAT1-1 partner and 

either of the two mutant MAT1-2 partners had produced only immature 

protoascomata (Fig. 5). The majority of the ascomatal bases were light-coloured and 

only a few had begun to produce the dark, beak-like structures (Fig. 5). A similar 

phenotype was observed at 90 hours, with very little maturation of the immature 

ascomata. After 114 hours, the majority of the bases had darkened but the beaks had 

not developed into extended necks. By 21 days post-inoculation, the protoascomata 

had not matured beyond young, beaked structures, with the exception of the 

occasional structure with a short neck. No ascospores were produced by these 

protoascomata. When broken open, even the most mature of the protoascomata 

were devoid of any spore contents (Fig. 5).

We conducted a variety of control crosses between the two MAT1 isolates, the two 

MAT2 isolates and the two mutant isolates. We also paired each of the mutant 

isolates with each of the MAT2 isolates. Additionally, each of the six isolates were 

cultured in isolation. In all of these cases, no sexual development was observed. 

3.5. Pheromone expression is altered in the mutant isolate

In H. omanensis, as is the case with other heterothallic species, MAT1-1 isolates 

almost exclusively express the -pheromone and there is little to no expression of the 

a-pheromone. In contrast, MAT1-2 isolates express the a-pheromone, with little to no 
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expression of the -pheromone (Wilson et al., 2018). The semi-quantitative PCR 

approach used in this study showed that the a-pheromone is expressed at high levels 

in the MAT1-2 wild type isolate, with detection of the a-pheromone mRNA transcript 

possible even in a 1:1 000 000 dilution. In contrast, the a-pheromone was expressed 

at lower levels in both the mutants, where transcripts were not detected at dilutions 

higher than 1:1 000 and 1:100 000 in the ΔMAT127-H1 and ΔMAT127-H4 isolates, 

respectively (Fig. 6). This suggested that the expression of the a-pheromone gene 

product is positively influenced by the MAT1-2-7 protein in H. omanensis. Thus, in the 

absence of a functional MAT1-2-7 gene product, there is less a-pheromone 

expression. 

As expected, expression of the -pheromone was detected in the wild type MAT1-1 

isolate. In contrast, the expression of this gene was undetectable in the wild type 

MAT1-2 isolate (Fig. 7). The expression of this pheromone could also not be detected 

in the ΔMAT127-H4 isolate. It was, however, possible to detect -pheromone 

expression in the ΔMAT127-H1 isolate. This indicated that while the disruption of the 

MAT1-2-7 gene resulted in the negative regulation of the a-pheromone, it also up-

regulated the -pheromone, particularly in the ΔMAT127-H1 isolate.

3.6. The pheromone receptors are alternatively spliced in H. omanensis 

Different splice variants of the - and a-pheromone receptors were expressed by 

isolates of both mating type (Fig. 8). In MAT1 isolates, the -pheromone receptor was 

expressed with its intron unspliced, yielding a protein harbouring a premature stop 

codon and one that encodes only six of the seven transmembrane domains that 

characterize this type of receptor. It is unlikely that this form of the receptor protein 

would be functional, as the even number of transmembrane domains would preclude 

the existence of both intra- and extracellular domains. These MAT1 isolates also 

express the a-pheromone receptor, but in this case, the receptor’s mRNA transcript is 

correctly spliced and thus produces a fully functional, seven-transmembrane domain 

protein. The reciprocal was true for MAT2 isolates, which produced a correctly spliced 

and presumably functional -pheromone receptor with all seven transmembrane 
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domains, while the transcript of the a-pheromone receptor remained unspliced. This 

transcript would be translated into a protein harbouring only five transmembrane 

domains and was probably non-functional. The mutant isolates both expressed the 

pheromone receptors in the same manner as the wild type MAT2 isolate.      

3.7. MAT1-2-7 truncation does not lead to unisexuality in H. omanensis

The in-frame stop codon introduced into the H. omanensis MAT1-2-7 gene closely 

mimicked that of the H. moniliformis MAT1-2-7 gene, where the truncation is thought, 

in part, to be responsible for the unisexual phenotype observed in this species. 

However, MAT1-2-7 disruption in H. omanensis did not result in this phenotype. 

Neither of the two mutant isolates were capable of protoascomatal development 

when cultured in isolation, which is the defining characteristic of unisexual 

reproduction in filamentous ascomycetes. Furthermore, crosses between the mutant 

isolates and the MAT1-2 did not result in the production of either protoascomata or 

ascomata.  

3.8. MAT1-2-7 is involved in vegetative growth

The average radial growth rate of the mutant isolates was significantly slower than 

that of the wild type isolates of both mating types (Fig. 9, Tables B.16 – B.17). By the 

60-hour time point, all four wild type isolates grew to an average diameter of up to 59 

mm, while both mutants strains had average diameters of up to 41 mm in the same 

period. The culture morphology of the mutants was also different to that of the wild 

type. While wild type isolates of both mating types formed aerial hyphae with a 

“fluffy” phenotype, both mutants produced much smoother mycelia that was 

submerged within in the agar (Fig. 9). 

4 DISCUSSION

The development of an efficient and effective transformation and genome editing protocol 

for use in Huntiella species has been a valuable addition to the molecular toolkit available 

for these species. This protocol will finally allow for the functional characterization of genes 

involved in many biological processes, such as sexual reproduction, growth and host-
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specificity. Furthermore, it will likely be possible to extend the methods used here to some 

of the other economically relevant species that reside in the Ceratocystidaceae. In this 

study, this technique was used to functionally characterize the novel H. omanensis mating 

gene, MAT1-2-7, with regards to its role in sexual reproduction. We disrupted the gene by 

introducing an in-frame stop codon at a position that mimicked the truncation seen in the 

H. moniliformis MAT1-2-7 gene. We were thus able to show that MAT1-2-7 is a true mating 

gene that is essential for sexual reproduction. Furthermore, we also showed that it 

exhibited pleiotropic effects by influencing radial growth rate in this fungus.

This study showed that MAT1-2-7 was essential for ascomatal maturation in H. omanensis, a 

process that has been closely linked with the secondary MAT genes of other ascomycete 

species as well (Arnaise et al., 1997; Kim et al., 2012; Yu et al., 2017). Crosses between wild 

type MAT1-1 and MAT1-2 isolates of H. omanensis produced mature, ascospore-exuding 

ascomata within four days of co-incubation (Wilson et al., 2015). Transfer of the ascospore 

masses could produce sexually reproducing cultures within a further seven days. However, 

crosses between a wild type MAT1-1 isolate of H. omanensis and either of the two MAT1-

2-7 mutant isolates produced only protoascomata at the zone of interaction. The 

development of these structures was delayed compared to that of the wild type crosses, 

and they never developed to maturity. Furthermore, no ascospores were produced in these 

sexual structures, suggesting that the production of sexual spores is entirely precluded in 

these mutant isolates, even in the presence of a wild type mating partner.

Given that protoascomatal maturation occurs fairly early during the process of mating, it 

appears that the H. omanensis MAT1-2-7 is important during the initial phases of sexual 

reproduction. Interestingly, the H. omanensis MAT1-2-7 truncation resulted in a phenotype 

comparable to that of other species in which secondary MAT genes have also been 

disturbed. The disruption of the Podospora anserina MAT1-1-2 (Arnaise et al., 2001, 1997), 

the Fusarium graminearum MAT1-1-2 and MAT1-1-3 (Kim et al., 2012), the Sordaria 

macrospora MAT1-1-2 (Klix et al., 2010), the Botrytis MAT1-1-5 and MAT1-2-10 (Rodenburg 

et al., 2018) and Aspergillus fumigatus MAT1-2-4 (Yu et al., 2017), resulted in the production 

of immature protoascomata that never develop or fully mature, but barren, ascomata. 

These results support the notion that a finer control of sexual reproduction has been 
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achieved by the acquisition of secondary MAT genes (Yu et al., 2017). Thus, instead of being 

responsible for sexual initiation, as is the role of the primary MAT genes (Kim et al., 2012; 

Rodenburg et al., 2018), they are instead important for further development.

In ascomycete fungi, one of the direct targets of the MAT transcription factors is the 

pheromone response pathway (Bobrowicz et al., 2002; Shen et al., 1999; Zhang et al., 1998). 

In particular, the pheromone genes are typically transcriptionally controlled by the proteins 

encoded by the MAT locus. It is thus likely that the underlying mechanism by which MAT1-2-

7 disruption affects ascomatal development is via the pheromone response pathway. This is 

supported by the fact that both of the MAT1-2-7 mutants showed a decrease in the 

expression of the a-pheromone, the mating pheromone usually expressed by MAT2 isolates. 

Furthermore, one of the two mutants was able to express the -pheromone, suggesting 

that the normal mating-type dependent regulation of the pheromones in H. omanensis 

(Wilson et al., 2018) has been affected by the MAT1-2-7 knockout. In other filamentous 

ascomycete fungi, such as P. anserina (Coppin et al., 2004) and N. crassa (Kim and 

Borkovich, 2006), the expression of the mating pheromones is closely linked with male 

fertility. In these species, the downregulation or complete knockout of the pheromone-

encoding genes results in isolates that are female fertile, but unable to produce the male 

cells that are capable of fertilizing the female structures of an opposite mating type. Given 

the downregulation of the a-pheromone in the MAT1-2 isolates harbouring the disrupted 

MAT1-2-7 gene, it is possible that the maturation of protoascomata is precluded by an 

inability of the MAT1-2 isolate to fertilize the female structures of the MAT1-1 partner. 

Significant differences are apparent in the phenotypes of the artificially introduced and 

naturally occurring MAT1-2-7 truncations, as seen in H. omanensis and H. moniliformis, 

respectively. In H. moniliforms, sexual reproduction is not precluded, and instead, MAT1-2 

isolates of this species are capable of sexual reproduction even in the absence of a MAT1-1 

mating partner (Wilson et al., 2018, 2015). In contrast, the truncation in H. omanensis leads 

to a complete halt in ascomatal development even in the presence of a wild type mating 

partner. This suggests that while the disruption of the MAT1-2-7 gene in H. moniliformis 

may have played a role in the evolution towards unisexuality, this change alone was not 

sufficient to shift its reproductive strategy. In fact, the indiscriminate expression of both 
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pheromone types in H. moniliformis has also been hypothesized to play a role in the ability 

of this species to unisexually reproduce (Wilson et al., 2018). Interestingly, one of the two H. 

omanensis mutant strains was capable of expressing both the a- and -pheromone types 

and yet was incapable of unisexual reproduction. This suggests that there are other, yet to 

be investigated, genes that are also involved in the unisexual pathway or that the isolate is 

unable to recognize the endogenously produced pheromones.

Despite the fact that the mutant isolates harbour an identical MAT1-2-7 gene disruption, 

there are significant differences between the pheromone expression patterns of the two 

isolates. Most notable is the absence of detectable -pheromone expression in the 

MAT127-H4 mutant, despite the expression of this pheromone in the MAT127-H1 

mutant. One potential explanation for this is sensitivity of the MAT locus to genetic 

manipulation (Arnaise et al., 1997, Yu et al., 2017). Although the final product, in the form of 

MAT1-2-7 truncation, is identical in both isolates, the physical DNA breakage and repair that 

occurred during editing may have been different between the two isolates- perhaps in 

efficiency or accuracy. This could have caused a form of MAT locus disruption that could not 

be detected in this study. Given the importance of the physical location of the MAT genes 

(Arnaise et al., 1997, Yu et al., 2017) and their importance in the regulation of the 

pheromone genes, it is possible that generalized MAT locus disruption could have varying 

effects on the ability of the locus to control mating.  Alternatively, although every effort was 

made to ensure that we limited the potential for off-target effects, it is possible that the 

genome of one of the mutant isolates has been edited in a region outside of the MAT locus. 

Whole genome sequencing will be conducted in the future in order to assess both of these 

possibilities.

A final factor that could contribute to the lack of unisexual reproduction in the two mutant 

H. omanensis isolates is the mating-type specific alternative splicing of the pheromone 

receptor genes. In most ascomycete species, both MAT1-1 and MAT1-2 isolates express 

both pheromone receptors and thus mating specificity is mediated solely by the mating-

type dependent expression of the pheromones (Pöggeler and Kück, 2001). In this study, we 

showed that H. omanensis isolates express both receptors but only produce functional 

versions of the receptor with which they will recognize an opposite mating partner. Thus, 
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MAT2 isolates, which express the a-pheromone and recognize the -pheromone, only 

express a functional -pheromone receptor. This was also true of the two mutant isolates. 

Thus, although the mutants do express the a-pheromone, they are potentially unable to 

produce a functional a-pheromone receptor with which to recognize and respond to the 

pheromone. Of course, one of the mutant isolates was capable of -pheromone expression 

and also a functional version of the -pheromone receptor. It is thus possible that unisexual 

reproduction relies on the expression and recognition of both pheromones. It would be 

interesting to determine whether similar alternative splicing events occur in the pheromone 

receptors of H. moniliformis.  

To the best of our knowledge, this is the first report of alternative splicing being used to 

potentially aid in partner recognition via the pheromone receptors. This may have evolved 

as a mechanism to promote outcrossing in a system where indiscriminate pheromone 

expression was possible and both pheromones are produced by a single individual (Wilson 

et al., 2018). Thus, instead of relying solely on mating type dependent pheromone 

expression as a barrier to inbreeding, mating type specific alternative splicing of the 

pheromone receptors also ensure that only MAT1-1 and MAT1-2 partners can recognize 

each other as suitable partners. 

Despite being primarily involved in mating, certain MAT genes can exhibit pleiotropic 

effects, affecting processes such as growth (Lee et al., 2015), virulence (Lee et al., 2015) and 

vegetative incompatibility (Newmeyer et al., 1973). This is certainly the case for the H. 

omanensis, where vegetative growth was significantly affected in both of the MAT1-2-7 

mutant isolates. While wild type H. omanensis isolates of both mating types grow rapidly 

and produce aerial mycelia, the mutant strains grew submerged within the agar and more 

slowly. A similar phenotype is seen in Ceratocystis albifundus, where deletion of MAT1-2-1 

during mating type switching has a direct effect on the growth of these isolates (Lee et al., 

2015). It may not be surprising that sexual reproduction and vegetative growth were linked, 

as both are intimately linked to secondary metabolism and the regulation of the associated 

biochemical pathways (Calvo et al., 2002). The underlying mechanism of these pleiotropic 

effects remains unknown and will need to be investigated in the future.   
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This study is the first to successfully genetically manipulate any species of Huntiella, 

providing a convenient system with which to functionally characterize the novel MAT1-2-7 

gene. Genetic manipulation was achieved by developing a protoplast-based transformation 

protocol established on those established in other filamentous fungi (Chung and Lee, 2015; 

Leung et al., 1990). This was combined with a fairly novel use of the CRISPR-Cas9 genome 

editing system in fungi, whereby the sgRNA and a purified Cas9 enzyme were combined in 

vitro to form the RNP before being used for transformation in vivo. This method allowed us 

to overcome certain challenges associated with the classical plasmid-based CRISPR-Cas9 

system (Nagy et al., 2017; Wang et al., 2018), such as sufficient Cas9 expression and 

potentially random genomic integration. A similar technique was recently used in F. 

oxysporum (Wang et al., 2018) and ﻿Mucor circinelloides (Nagy et al., 2017) and we thus 

propose that this method will allow for successful gene characterization in other non-model 

species for which the molecular toolkit is still limited.  

5 CONCLUSION 

This study is the first to report the successful genetic manipulation of any species of 

Huntiella. It thus represents a valuable addition to molecular toolkit that is available to 

thoroughly investigate the biology of these species. This study focused on ascertaining the 

function of MAT1-2-7 in the sexual cycle of H. omanensis, but the functions of genes 

involved in other biological processes like asexual reproduction, growth and host-specificity 

can now be better interrogated and underlying genetic mechanisms can be elucidated. 

Furthermore, this protocol can be used as a base from which species-specific protocol 

optimization can be conducted, allowing for the development of a similar protocol in the 

other, economically important species residing in the Ceratocystidaceae.     
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Fig. 1. The design of the sgRNA. The sgRNA was designed in such a way to ensure that the knockout of the H.
omanensis MAT1-2-7 gene resulted in gene truncation similar to that of H. moniliformis. The designed sgRNA
targets the N138 to N158 region of the H. omanensis MAT1-2-7 gene as it is in this region that the premature
stop codon is found in the H. moniliformis MAT1-2-7. (A) The H. moniliformis MAT1-2-7 gene is only 147 nt in
length and thus less than a third of (B) the H. omanensis MAT1-2-7 gene, which is 468 nt in length. (C)
Illustration of the sgRNA target region. The scaffold of the sgRNA is indicated in light green with the
protospacer sequence indicated by the adjacent green nucleotides. The PAM sequence is indicated as white
text on the bottom strand. The predicted Cas9 cut site is indicated by the red arrows.



Fig. 2. Designing the donor DNA. The dDNA, similar to the sgRNA, was designed to ensure that the knockout of
the H. omanensis MAT1-2-7 gene resulted in gene truncation similar to that seen in H. moniliformis. (A) The
premature stop codon (TGA) found in the H. moniliformis MAT1-2-7 gene is at nucleotide positions N145 – N147

and codon position C49. (B) The donor DNA has been designed to including the BSlI restriction enzyme (RE) cut
site (red) and the hygromycin B resistance cassette (purple), flanked by regions of homology (orange and
green) to the genomic region harbouring the MAT1-2-7. The RE site was designed to occur in frame with the
MAT1-2-7 coding sequence and thus introduces the stop codon, TGA, leading to the premature termination of
translation. (C) After Cas9-mediated cutting and homologous recombination of the dDNA, the H. omanensis
MAT1-2-7 gene possessed a premature stop codon which would result in the translation of a 48 aa protein.
The gene models are not drawn to scale.



Fig. 3. The successful integration of the BclI restriction enzyme site, including the TGA stop codon, into the
MAT1-2 idiomorph of H. omanensis. (A) The full-length H. omanensis MAT1-2-7 gene, with the sgRNA target
site indicated by the green arrow between nucleotides 138 and 158. (B) A magnified schematic of the sgRNA
target site within the H. omanensis MAT1-2-7 gene. (C) A magnified schematic of a region of the dDNA
showing the BclI RE site flanked by arms homologous to the MAT1-2 locus of H. omanensis. (D and E) Sanger
sequence chromatogram indicating the successful integration of the BclI RE site into the MAT1-2-7 gene of
isolates MAT127-H1 and MAT127-H4, respectively.



Fig. 4. Expression and splicing of the H. omanensis MAT1-2-1. The MAT1-2-1 gene of H. omanensis has a single
intron of 53 nt which is spliced out after transcription. Lane 1 shows a MAT1-2-1 PCR product derived from the
gDNA of a MAT1-2 wildtype isolate (CMW 44442). Lanes 2 – 4 show the MAT1-2-1 PCR products produced
from the cDNA of a MAT1-2 wild type isolate (CMW 44442), and cDNA from the two mutant isolates,

MAT127-H1 (CMW 54810) and MAT127-H4 (CMW 54811). The mutant isolates express the MAT1-2-1 gene
as expected and also correctly splice out the intron before translation- suggesting that the MAT1-2-1 gene is
unaffected by the disruption of the MAT1-2-7 gene. Lanes M and N show the 100 bp molecular marker and
negative control, respectively.





Fig. 5. Sexual development in matings between wildtype isolates (top panel) and between a MAT1-1 wildtype
isolate and a MAT1-2 mutant isolate (bottom panel). (A) In the wildtype matings, sexual development is
observed as early as 66 hours post co-incubation, where mature ascomata can be observed at the zone of
interaction (indicated in blue). (B) At 90 hours post co-incubation, the wildtype crosses had produced
ascospore masses which had exuded from the tips of the mature ascomatal necks. (C) At this timepoint, the
wildtype crosses produced fully mature, ascospore-bearing ascomata (particularly clear examples indicated by
the blue arrows). (D) A mature ascomata, a dark globose base and an extended neck, characteristics of
Huntiella species. The hat-shaped ascospores, pictured in (E) exuded from the pore found at the top of the
ascomatal neck. (F) The sexually competent cultures produced by transferring ascospore masses from the
wildtype cross onto sterile plates. (G) At 66 hours post co-incubation of the matings including a MAT1-2
mutant isolate, only immature protoascomata had been formed in the zone of interaction (indicated in red).
(H) At 90 hours post co-incubation, these protoascomata had only slightly matured, with most harbouring
small darkened beaks. (I) At this timepoint, the most mature sexual structures observed in these crosses were
dark and slightly beaked protoascomata (particularly clear examples indicated by the red arrows). (J) A young
protoascomata beginning to darken. (K) The most mature sexual structure formed in the mutant cross: a
maturing protoascomata exhibiting the beak-like structure which, in wildtype crosses, would have extended
into the neck.

Fig. 6. Expression of the a-pheromone. Transcripts of the a-pheromone receptor were detectable in MAT1-1
and MAT1-2 wild type isolates as well as the two mutant isolates. The semi-quantitative approach used in this
study shows that the MAT1-1 isolate expresses the a-pheromone at lower level, with transcripts becoming
undetectable at dilutions higher than 1 : 1 000 000, while the pheromone transcript is still detectable at this
dilution in the MAT1-2 isolate. Both mutant isolates, MAT127-H1 and MAT127-H4, express the a-
pheromone at much lower levels than the wild type isolates, with expression becoming undetectable at
dilutions higher than 1 : 10 000 and 1: 1 000 000, respectively. Lanes M and N show the 100 bp molecular
marker and negative control, respectively.



Fig. 7. Expression of the -pheromone. Transcripts of the -pheromone were detectable in the wild type
MAT1-1 isolate but were not detected in the wild type MAT1-2 isolate, as expected. Interestingly, while the

MAT127-H4 mutant showed no evidence of the -pheromone expression, the -pheromone was expressed
at detectable levels in the MAT127-H1 mutant. The larger band in the MAT1-1 lane is the result of non-
specific binding due to the repetitive nature of the -pheromone gene sequence. Lanes M and N show the 100
bp molecular marker and negative control, respectively.



Fig. 8. Mating-type dependant alternative splicing of the pheromone receptors. The two pheromone
receptors are spliced differently in the two mating types. In MAT1-1 isolates, the -pheromone
receptor mRNA transcript remains unspliced and likely results in a non-functional protein that is
incapable of recognizing the -pheromone . In contrast, the MAT1-1 isolates express a splice a-
pheromone receptor transcript which, when translated, will produce a functional, seven
transmembrane domain protein. The opposite is true for the MAT1-2 isolates, where the -
pheromone receptor transcript is correctly spliced, while the a-pheromone receptor remains
unspliced, producing a non-functional receptor protein. In both cases, the two mutant isolates
produce transcripts identical to that of the wild type MAT1-2 isolates, indicating that the MAT1-2-7
disruption does not affect the expression or splicing of the pheromone receptor proteins. Lanes M
and N show the 100 bp molecular marker and negative control, respectively.



Fig. 9. MAT1-2-7 truncation leads to a decrease in growth rate and difference in culture morphology.
(A) The MAT1-1 isolates (indicated in orange) and the MAT1-2 isolates (indicated in blue) grow
significantly faster than the two mutant isolates (indicated in red). (B and C) The two MAT1-2
isolates (CMW 44439 and CMW 44442, respectively) produce aerial mycelia, while (D and E) the
mutant isolates (CMW 54810 and CMW 54811, respectively) both produce much smoother,
submerged mycelia.


