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Abstract

In this paper, we analyze daily data-based price transmission and volatility spillovers

between crude oil and the bond markets of major oil exporters and importers, accounting

for structural shifts as a smooth process in causality and volatility spillover estimations.

In  general,  we  find  that  oil  prices  tend  to  predict  bond  prices  in  the  majority  of  oil

exporting countries and two large oil importers (India and China). The feedback from

bonds to oil prices is weak and detected only for China and the USA. Oil volatility affects

the bond market volatility of some major oil exporters (Kuwait, Norway, and Russia) and

one importer (France). However, the most prominent volatility spillovers are from bonds

to oil,  except for Kuwait and Saudi Arabia. We reveal that taking structural shifts into

account strengthens our findings and is particularly important for volatility spillover

analysis.
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1. Introduction

The existing international literature on the price, returns, and volatility relationship

between oil and equity markets is extensive (for detailed reviews see, for example,

Degiannakis, Filis, & Arora, 2018; Smyth & Narayan, 2018). In comparison, the literature

examining the causal linkage between bond and oil markets is small (see, for example, in

pressKang, Ratti, & Yoon, 2014; Bouri, Shahzad, Raza, & Roubaud, 2018, 2019a, 2019b,

2017, Lee, Lee, & Ning, 2017; Shahzad, Naifar, Hammoudeh, & Roubaud, 2017; Gormus,

Nazlioglu, & Soytas, 2018; Balcilar et al. (in press)). Note that high oil prices increase

inflation expectations and hence increase nominal bond yields, which in turn moves bond

prices or returns in the opposite direction, with this channel being especially important

for oil importers. For oil exporters, higher oil prices generate increased domestic income

and can result in higher demand for investment in the financial asset market (including

bonds), and hence produce higher asset prices or returns. Moreover, given the recent

financialization of the commodity sector, the oil market is now also considered a

profitable alternative investment in portfolio decisions (Bahloul, 2018), and hence

portfolio reallocations are likely to see feedback from bond markets to the oil market in

terms of prices, and bi-directional risk (volatility) spillovers (Tiwari, Cunado, Gupta, &

Wohar, 2018). In other words, bond and oil markets are intertwined in terms of their first

and second moment movements.

The general lack of attention to analyzing the relationship between oil and bond

prices (barring the few studies mentioned above), and concentration on the oil-stock

nexus, is quite baffling, given that stock and bond markets are of comparable size in the

functioning  of  the  global  financial  system.  For  instance,  the  US  stock  market

capitalization in 2017 stood at about $30 trillion, but the corresponding value of the US
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bond market was $40.7 trillion (Securities Industry and Financial Markets Association

(SIFMA),  2018).  Outside  the  US,  debt  market  capitalization  exceeds  equity  market

capitalization by a larger relative amount ($100.1 trillion to $85.3) than in US markets

(SIFMA, 2018). Given that the bond market is often viewed as a safe haven (Habib &

Stracca, 2015; Hager, 2017; Kopyl & Lee, 2016), in this paper we analyze the Granger

causal relationships between the daily price returns and volatility of the bond and oil

markets of major oil exporters (Canada, Kuwait, Mexico, Norway, Russia, Saudi Arabia,

and Venezuela) and importers (China, France, Germany, India, Japan, the United

Kingdom (UK), and the US), with these countries accounting for over 90 percent of the

value of the global bond market (SIFMA, 2018). The presumption is that oil exporters are

likely to see relatively stronger interactions between oil and bond markets than oil

importers, given the importance of oil revenues as a source of income for the former group

of economies. To achieve our objectives, from an econometric modelling perspective, we

first employ the Toda and Yamamoto (1995) approach to Granger causality and the

Hafner  and  Herwartz  (2006)  test  of  causality-in-variance.  We  then  proceed  with  the

Fourier-based  version  of  the  Toda  and  Yamamoto  (1995)  test  of  causality  in  prices

developed by Nazlioglu, Gormus, and Soytas (2016), and the modified Hafner and

Herwartz (2006) test of causality-in-variance with Fourier approximations (Li & Enders,

2018;  Pascalau,  Thomann,  &  Gregoriou,  2011)  to  account  for  structural  shifts,

incorporated as gradual processes, in the relationships involving the first and second

moments of oil and bond market movements. This is very important, given that (high-

frequency)  data  related  to  financial  and  commodity  markets  are  subject  to  structural

changes, and mounting evidence that an inability to model structural breaks results in

incorrect  inferences  (Guidolin,  Hyde,  McMillan,  &  Ono,  2009).  To  the  best  of  our
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knowledge, this is the first attempt to analyze price and volatility spillovers between the

oil and bond markets of major oil exporters and importers based on testing procedures

with structural shifts.

The remainder of the paper is organized as follows: Section 2 reviews the related

literature, Section 3 outlines the methodologies for testing causality in prices and

volatility, Section 4 presents the data and its properties as well as the empirical results,

and Section 5 concludes and draws implications from our results.

2. Literature review

In this segment, we discuss the sparse literature associated with the relationship between

the bond and oil markets, emphasizing the contribution of our work by contextualizing

its position in this literature. In this regard, one of the earliest studies is that of Kang et al.

(2014) who use a structural vector autoregressive model to investigate how the demand

and supply shocks driving the global crude oil market affect the real bond returns of the

US. They find that a positive oil market-specific demand shock is associated with

significant decreases in real returns of an aggregate bond index for 8 months following

the shock. Related to the US bond market, the recent study of Balcilar et al. (forthcoming)

analyzes the role of oil market uncertainty, instead of oil prices or shocks per se, on the

first and second moments of the bond premia of the US Treasury based on a higher order

nonparametric causality-in-quantiles framework to account for misspecification due to

uncaptured nonlinearity and structural breaks. The study finds that oil uncertainty not

only predicts (increases) the US bond premia of various maturities but also its volatility,

with the effect on the latter being stronger.

Recent studies by Bouri, de Boyrie, and Pavlova (2017, 2018, 2019a, 2019b), Lee

et al. (2017), and Shahzad et al. (2017) go beyond the US bond market to concentrate on
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sovereign credit default swap (CDS) of both developed and developing countries. In this

regard, Lee et al. (2017) reveal the impact of oil prices on sovereign credit default swap

(CDS) spreads for large developed countries, while Shahzad et al. (2017) concentrate on

the important role of oil volatility on CDS spreads of GCC and oil-exporting countries.

Shahzad et al. (2017) and Bouri et al. (2017, 2018, 2019a) provide evidence of the impact

of commodity and oil market uncertainty on the volatility of the sovereign risks of a large

number of emerging and frontier countries, primarily using quantile-based approaches

to identify the impact of oil market volatility on various phases of the CDS spreads. More

recently, Bouri, Kachacha, and Roubaud (2019b) extends these works by simultaneously

considering  the  role  of  both  oil  prices  and  volatility  on  the  CDS  spreads  of  MENA  oil

exporters and importers, using a quantile-based (cross-quantilogram) approach and

rolling estimations. The authors show that the impact of oil returns and volatility changes

occur in a very short time span (within one day) and the quantile-specific reactions of

sovereign risk spreads are time-varying.

Finally, Gormus et al. (2018) deal with price transmission tests of the high-yield

bond market, accounting for gradual structural shifts. These authors detect a significant

impact from oil and ethanol prices to high-yield bonds. Furthermore, based on volatility

tests, Gormus et al. (2018) find unidirectional volatility transmission from energy

markets to the high-yield bond market.2

In summary, a few observations that stand out from the review above are that: (a)

the oil market not only affects the first moment, but also the second moment of the bond

market; and (b) both oil and bond markets are characterized by regime changes. Given

these points, our paper adds to this small but burgeoning literature by analyzing, for the

first time, price and volatility spillovers between the oil and bond markets of major oil
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exporters and importers based on tests of Granger causality with structural shifts. From

a methodological perspective, our paper is related to the work of Gormus et al. (2018),

but differs in the fact that we look at government bonds, i.e. safe havens, instead of high-

yield bonds which are considered to behave more like stocks than bonds.

3. Econometric Methodology

3.1. Testing for causality with structural changes

In order to test for causal linkages, Granger (1969) define VAR(p) model as

= + + +        (1)

where  consists of m endogenous variables,  is a vector of intercept terms,  are

coefficient matrices and t are white-noise residuals. Here, consist of oil and bond

prices, and hence the VAR(p) is based on a bivariate estimation.  are assumed not to

have any structural shifts and the intercept terms  are constant over time. Ventosa-

Santaularia and Vera-Valdés (2008) show that the null of non-causality can be rejected

even though there is no causality when data generating process has structural shifts.

Enders and Jones (2016) find out a similar finding by Monte Carlo simulations which

indicate that ignoring structural breaks in a VAR model leads Granger causality test to be

biased towards a false rejection of the true null hypothesis. Authors further reveal that

unless breaks are properly modelled, Granger causality tests also tend to have an over-

rejection of the non-causality null hypothesis. Thereby, inferences from a standard

Granger  causality  analysis  may  be  misleading  when  structural  breaks  are  ignored  or

improperly taken into account. These findings not only indicate the importance of

accounting for any structural shifts but also necessitate a careful treatment of how breaks

are captured (Nazlioglu et al., 2016).
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The traditional approach to modelling breaks is to use dummy variables in which

shifts are assumed to be sharp (for example, Perron, 1989; Zivot & Andrews, 1992; Lee &

Strazicich, 2003). A smooth transition approach is also used for controlling for breaks

since structural changes are gradual in nature (inter alia, Leybourne at al., 1998;

Kapetanios, Shin, & Snell, 2003). Both approaches require knowledge of the functional

form,  number,  and  date  of  breaks.  The  Fourier  approximation,  based  on  a  variant  of

flexible Fourier form by Gallant (1981), is also used for capturing structural shifts (see,

Becker, Enders, & Lee, 2006; Enders & Lee, 2012a, 2012b; Rodrigues & Taylor, 2012).

This  approximation does  not  require  prior  knowledge of  the  form,  number,  or  date  of

breaks and captures structural shifts as a gradual/smooth process.

In  a  VAR  specification,  not  only  controlling  for  structural  breaks  but  also

determining the original source of structural breaks is difficult,  because a break in one

variable  potentially  causes  shifts  in  other  variables  (Enders  &  Jones,  2016;  Ng  &

Vogelsang, 2002). To overcome this difficulty and simplify the determination of the form

of shifts as well  as estimation of the number and dates of breaks in a VAR framework,

Enders and Jones (2016), Nazlioglu et al. (2016, 2019) and Gormus et al. (2018) employ

the Fourier approximation.

Enders and Jones (2016) augments VAR model with Fourier approximation and

then impose restrictions for the Granger causality. It is well known that the Granger

causality analysis necessitates testing for unit root and co-integration properties of the

variables because Wald test not only has a non-standard distribution if the variables in

VAR model are integrated or co-integrated, but also depends on nuisance parameters

(Toda and Yamamoto, 1995; Dolado and Lütkepohl, 1996). The Toda and Yamamoto

approach (TY) overcomes these problems by estimating VAR(p+d) model that employs
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the level form of variables with d (the maximum integration order of variables) additional

lag(s). By extending the TY framework with gradual structural shifts using a Fourier

approximation, Nazlioglu et al. (2016, 2019) and Gormus et al. (2018) propose a simple

approach to take into account breaks (both abrupt and gradual) in Granger causality

analysis and they call this process as the Fourier TY approach to causality.

In order to account for structural shifts, the Fourier TY procedure relaxes the

assumption of that the intercept terms  are constant over time and define VAR(p+d)

model as

= ( ) + + ( ) +                                                                                      (2)

where the intercept terms ( ) are the functions of time and denote any structural shifts

in . In order to capture structural shifts as a gradual process, the Fourier approximation

is defined by:

(t) +
2

+
2

                                                                     (3)

where n is  the  number  of  frequencies, 1k and 2k measures the amplitude and

displacement of the frequency, respectively. By substituting equation (3) in equation (2),

VAR(p+d) model is re-written as

= +
2

+
2

+ + ( ) +        (4)

As discussed in Becker et al. (2006), a large value of n is most likely to be associated

with stochastic parameter variation and decreases degrees of freedom and can also lead

to the over-fitting problem. A single Fourier frequency, on the other hand, mimics a

variety of breaks in deterministic components, hence one can also use a single frequency

component. In the single frequency case, (t) is defined as
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(t) +
2

+
2

                                                                                       (5)

where k denotes the frequency for the approximation. By substituting equation (5) in

equation (2), we obtain

= +
2

+
2

+ + ( ) +                          (6)

The specification problem in both equations (4), (6) requires determining the

number of Fourier frequency components and lag lengths (p).  A common approach to

determining the optimal number of lags in a causality analysis is to benefit from the

Akaike or Schwarz information criterion. This approach can also be used for determining

the number of the Fourier frequency and number of lag lengths, together. Specifically, we

first determine the maximum number of the Fourier frequency and number of lags and

pare down one-by-one up to one. Then we select the optimal frequency and lag

combination which minimizes the information criterion

In the Toda-Yamamoto framework, the null hypothesis of Granger non-causality is based

on zero restriction on first p parameters ( : = = 0) of the mth element of .

Wald statistic for testing the null hypothesis has an asymptotic  distribution with p

degrees of freedom.  The recent works in the Granger causality literature have also relied

on bootstrap distribution in order to increase the power of test statistic in small samples

as  well  as  being  robust  to  the  unit  root  and  co-integration  properties  of  data  (see

Mantalos, 2000; Hatemi-J, 2002; Hacker and Hatemi-J, 2006; Balcilar et al., 2010). In

addition to the asymptotic chi-square distribution, we use the bootstrap distribution of

Wald statistic by employing residual sampling bootstrap approach originally proposed by

Efron (1979)3.
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Gormus et al. (2018) and Nazlioglu, Gormus, and Soytas (2019) compare the size

and power properties of the TY and the Fourier TY approaches based the asymptotic or

bootstrap distributions. They question whether using cumulative frequencies or a single

frequency matters in small samples for the Fourier TY method. In small samples, the

bootstrap distribution seems to show more desirable size and power properties, the TY

test  is  more likely  to  have good size  than the  Fourier  TY test,  and the  Fourier  TY test

appears to be more powerful than the TY test. On the other hand, as the number of

observations grows, while the difference between the asymptotic and bootstrap

distribution disappears, the importance of considering structural shifts in causality

analysis becomes obvious. In large samples, while the TY test has severe size distortion

problems, the Fourier TY test seems to have good size properties.

3.2. Testing for volatility spillover with structural changes

We also conduct a volatility transmission analysis in order identify the existence and the

direction of possible volatility interactions between the oil prices and bonds. Some of the

more common volatility transmission tests (Cheung and Ng, 1996; Hong, 2001) utilize

univariate GARCH4 models and cross-correlation functions of the standard residuals.

This approach not only necessitate a selection of lead and lag orders but also suffers from

significant oversize in the data with leptokurtic volatility processes (Hafner and Herwartz,

2006). Hafner and Herwartz (2006) developed Lagrange multiplier (LM) based volatility

transmission test which does not suffer from those issues and has an increasing power

with larger sample size.
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The LM test for volatility transmission is based on the estimation of GARCH (1,1)

models for series i and j.  Let consider the series i for simplicity, then the GARCH (1,1)

specification is

= + (7)

= + + (8)

where the mean equation in (7) is a function of exogenous variables with an error term,

 denotes the real-valued information.   is the so-called “conditional variance” that is

the one-period ahead forecast variance based on past information. > 0, , 0  in

order to ensure non-negativity of the conditional variance. In addition, + < 1 to

ensure that the variance is finite which means that the process is stable. All things for the

series i are hold for the series j.

After the estimation of the GARCH (1,1) models for the series i and j, Hafner and

Herwartz (2006) define that

= (1 + ), = ,       (9)

where is the standardized residuals the series i.  and   are respectively the squared

disturbance term and the volatility for the series j. The null hypothesis : = 0 of no-

volatility transmission is tested against the alternative hypothesis : 0 of volatility

transmission. The log-likelihood function of  (Gaussian) is used to achieve = (

1)/2  where are the derivatives of the likelihood function. The LM statistic is:

=
1

4
( 1) ( ) ( 1)                                                                  (10)

where
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( ) = 4 , =
1

( 1) .

The asymptotic distribution of the volatility spillover test defined in (10) is depend

on the number of misspecification indicators in  and hence  has an asymptotic chi-

square distribution with two degrees of freedom.

In equation (8), it is assumed that the conditional variance does not have any

structural changes and hence it is only affected from the constant term , the ARCH term

,  and  the  GARCH  term . Nonetheless, an increasing literature on the volatility

modelling clearly indicates that the process of the long-run volatility can also be affected

from structural changes (see among others, Diebold and Inoue, 2001; Mikosh and Starica,

2004; Starica and Granger, 2005). If the volatility process has structural changes, then

the conventional GARCH(1,1) model may not be sufficient to modelling the long-run

volatility which is assumed to be constant over time. In more recent studies, Teterin et al.

(2016),  Li  and  Enders  (2018)  and  Pascalau  et  al.  (2011),  it  has  shown  that  structural

changes in the conditional variance can be well approximated by a Fourier approximation

which does not require a prior information regarding the numbers, dates and form of the

variance of shifts. Moreover, a Fourier approximation may be more suitable for financial

data since quite a few breaks may occur in a long financial series that often times little is

known about structural changes (Li and Enders, 2018).

Pascalau et al. (2011) and Li and Enders (2018) extends the conventional GARCH

model in order to account for the variance breaks. Specifically, the equation (8) is re-

defined to include breaks in intercept of conditional variance:

= ( ) + +      (11)
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where ( ) now depends on time and hence relax the assumption that the conditional

variance is constant over time. To capture any shifts in volatility, ( ) is approximated

by a Fourier approximation and the conditional variance equation for the series i is given

by

= + ,
2

+ ,
2

+ + .                      (12)

Since our interest is to test for the volatility spillover, the test statistic in equation (10) can

be obtained based on the conditional variance equation in (12) and other things in the

estimations are being same. Note that we call the volatility spillover test based on

equation  in  (12)  as  (Fourier ).  Since augmenting the conditional variance

equation with a Fourier approximation does not lead to a change in the number of

misspecification indicators in ,  also has an asymptotic chi-square distribution

with two degrees of freedom.

The equation (12) requires determining the number of Fourier frequency

components.  As  discussed  in  Pascalau  et  al.  (2011),  one  can  benefit  from  Akaike  or

Schwarz information criterion. We first set he number of Fourier frequency to and

then we select the optima frequency number which minimizes information criterion.

4. Data and Empirical Results

Our data set is at the daily frequency. It consists of bond prices of the major oil exporters

(Canada, Kuwait, Mexico, Norway, Russia, Saudi Arabia, and Venezuela) and importers

(China, France, Germany, India, Japan, the UK, and the US) and the price of oil. Note

that, as far as oil exports are concerned, the rankings are as follows: Saudi Arabia comes

1st, followed by Russia, Canada is in the 5th position, while Kuwait, Venezuela, Norway,
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and Mexico are in 7th, 12th, 13th and 14th positions respectively (Central Intelligence

Agency (CIA) World Fact Book, 2019). As far as the oil importers are concerned: China,

US, India, and Japan are ranked 1st, 2nd, 3rd, and 4th respectively, with Germany, the

UK and France in the 6th, 10th, and 12th, positions (CIA World Fact Book, 2019). Note,

even though the US is the 4th largest oil exporter, it is a net importer, and hence is listed

in the group of oil importers. It must be realized that we consider the largest possible oil

exporters and importers which simultaneously have well-functioning government bond

markets. Hence, even though in some instances there are other major oil exporters and

importers, we leave them out of the sample due to the lack of relatively long-span bond

market data required to derive reliable econometric inferences. But, as indicated, these

oil exporters and importers account for over 90 percent of the value of the global bond

market (SIFMA, 2018), and hence are a good representation of the world bond market,

simultaneously accounting for the role these economies play in the oil market. For the

bond prices of the chosen countries, we generally use the 10-year Government Bond Index

derived  from  the  Datastream  database  of  Thomson  Reuters.  But,  where  this  is

unavailable,  as  in  the  case  of  Kuwait,  Russia,  Saudi  Arabia  and Venezuela,  we use  the

comparable government bond index for these countries.

As far as oil price is concerned, we use the daily price of Brent Crude, which serves

as a benchmark price for purchases of oil worldwide, and is used to price two thirds of the

world’s internationally traded crude oil supplies. The data is derived from the FRED

database of the Federal Reserve Bank of St. Louis. The data of both oil and bond indices

are in US dollars to avoid the impact of exchange rate movements on our analysis. The

data  is  plotted in  Figure  A1  and summarized in  Table  A1  in  the  Appendix  to  the  paper.

The coverage of the data samples varies across countries (as detailed in Table A1), with
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Kuwait having the shortest sample (03/14/2017–03/11/2019), and Canada, Germany, the

UK  and  the  US  the  longest  samples  (05/20/1987–03/11/2019).  Besides  the  non-

normality of the oil and bond prices, it is important to observe that these variables go

through multiple regime changes in a consistent manner over the data sample considered,

thus motivating our decision to analyze price and volatility spillovers based on models

that incorporate structural breaks.

The TY approach to Granger causality requires determination of the integration

degree of the variables in order to determine the maximum integration number (d) of the

unit root. To this end, we first employ the conventional augmented Dickey Fuller (ADF)

test of Dickey and Fuller (1979), then conduct the ADF test with one structural break (ZA-

ADF) developed by Zivot and Andrews (1992) and the ADF with a Fourier approximation

(F-ADF) developed by Enders and Lee (2012b) in order to account for structural breaks

in the unit root analysis.5 The results of the unit root tests are reported in Table 1. For the

level of oil prices, none of the tests can reject the null hypothesis of the unit root. For the

first difference of oil prices, the unit root tests strongly support the evidence for

stationarity. Similar findings are made for the bond series. These findings clearly imply

that the maximum integration of the variables (d) is equal to 1 in the estimated VAR(p +

d) models.
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Table 1: Results from unit root tests for oil and bond prices

Level First Difference
ADF ZA-ADF F-ADF ADF ZA-ADF F-ADF

Oil prices (BRENT) -1.519 -3.879 -3.009 -87.126 *** -87.232 *** -87.132 ***
Bond prices
US -1.513 -4.822 ** -2.578 -88.548 *** -88.568 *** -88.548 ***
Germany -0.784 -3.896 -2.353 -89.611 *** -89.642 *** -89.616 ***
UK -1.187 -4.388 -2.572 -89.510 *** -89.527 *** -89.508 ***
France -0.404 -3.363 0.061 -76.782 *** -76.839 *** -76.860 ***
Japan 0.602 -3.565 1.156 -77.334 *** -77.415 *** -77.377 ***
China -1.546 -3.133 -2.051 -17.341 *** -32.026 *** -17.424 ***
Canada -0.468 -4.045 -1.18 -87.124 *** -87.143 *** -87.123 ***
India -2.249 -3.602 -2.421 -52.726 *** -52.784 *** -52.75 ***
Mexico -1.37 -3.33 -2.329 -44.883 *** -44.922 *** -44.922 ***
Norway -0.107 -4.957 ** -1.192 -43.730 *** -43.774 *** -43.751 ***
Russia -1.287 -4.175 -4.146 ** -64.366 *** -64.370 *** -64.397 ***
Venezuela -0.982 -3.23 -1.546 -58.978 *** -59.050 *** -59.032 ***
Kuwait -1.016 -3.045 -2.642 -17.310 *** -27.015 *** -17.706 ***
Saudi Arabia -1.785 -4.306 -1.757 -13.391 *** -17.165 *** -13.443 ***

Notes: ADF: Augmented Dickey and Fuller (1979) unit root test ZA-ADF: Zivot and Andrews (1992) ADF
unit root test with a break.  F-ADF: Enders and Lee (2012b) ADF unit root test with Fourier approximation.
ADF test includes a constant term. ZA-ADF and F-ADF tests include a structural shift in the constant term.
The optimal  lag(s)  were determined by Schwarz information criterion for  augmented ADF and ZA-ADF
tests by setting maximum number of lags to 12. The optimal frequency and lags were determined by Schwarz
information criterion for F-ADF by setting maximum number of lags to 12 and of Fourier frequency to 3.
ADF critical values are -3.433 (1%), -2.862 (5%), -2.567 (10%). ZA-ADF critical values are -5.34 (1%), -4.80
(5%), -4.58 (10%). The critical values for F-ADF test with one frequency are -4.31 (1%), -3.75 (5%), -3.45
(10%). ** and *** indicate statistical significance at 5 and 1 percent, respectively.

The results from the Granger causality analysis are presented in Table 21. The

results  from  the  TY  test  in  panel  A  of  Table  2,  at  a  first  glance,  indicate  that  the  null

hypothesis of no-Granger causality from oil prices to bond cannot be rejected in relatively

most of the countries. In five cases - namely China, Canada, India, Mexico and Venezuela

(Russia)- on the other hand, the null hypothesis of no-causality is rejected, implying an

information transmission from oil prices to bond prices. The evidence on causality

provides a predictive power from oil prices to bond prices in these five countries, with

Russia also included in the list if we consider the 10% significance level.

1 Note that maximum k/n and p are respectively set to 3 and 7, then optimal Frequency and lags are
determined by minimizing Akaike information criterion.
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Table 2: Results from causality tests

Panel A: No-shift Panel B: Smooth shifts
TY FTY with

single frequency (k)
FTY with

cumulative frequency (n)
Oil >Bond p Wald p-vala p-valb p k Wald p-vala p-valb p n Wald p-vala p-valb

US 1 0.015 0.901 0.897 2 1 2.168 0.338 0.330 2 2 2.149 0.341 0.352
Germany 1 2.082 0.149 0.178 2 1 4.142 0.126 0.124 2 3 4.122 0.127 0.105
UK 1 2.230 0.135 0.129 2 1 3.419 0.181 0.177 2 2 3.423 0.181 0.195
France 1 1.809 0.179 0.170 2 1 1.685 0.431 0.391 2 2 1.670 0.434 0.419
Japan 1 0.800 0.371 0.366 2 1 3.295 0.193 0.183 2 2 3.297 0.192 0.207
China 5 12.843 0.025 0.026 6 2 13.858 0.031 0.040 6 3 13.300 0.039 0.047
Canada 2 8.354 0.015 0.014 3 1 9.067 0.028 0.024 3 2 8.962 0.030 0.030
India 2 9.167 0.010 0.008 3 3 12.336 0.006 0.010 3 3 12.494 0.006 0.006
Mexico 1 5.343 0.021 0.022 2 1 6.608 0.037 0.036 2 3 6.379 0.041 0.048
Norway 4 5.479 0.242 0.255 5 1 10.571 0.061 0.054 5 2 10.372 0.065 0.051
Russia 2 4.569 0.102 0.101 1 1 4.247 0.039 0.034 1 3 4.651 0.031 0.032
Venezuela 7 66.588 0.000 0.000 7 2 67.197 0.000 0.000 7 3 65.013 0.000 0.000
Kuwait 4 6.188 0.186 0.188 5 1 5.729 0.334 0.322 5 3 5.650 0.342 0.341
Saudi Arabia 5 5.634 0.343 0.343 6 1 8.895 0.180 0.191 6 2 9.327 0.156 0.183
Bond >Oil p Wald p-vala p-valb p k Wald p-vala p-valb p n Wald p-vala p-valb

US 1 7.423 0.006 0.006 2 1 8.252 0.016 0.009 2 2 8.217 0.016 0.019
Germany 1 0.512 0.474 0.472 2 1 1.790 0.409 0.406 2 3 1.848 0.397 0.393
UK 1 0.734 0.392 0.375 2 1 2.520 0.284 0.260 2 2 2.518 0.284 0.291
France 1 0.064 0.801 0.780 2 1 0.118 0.943 0.938 2 2 0.125 0.939 0.955
Japan 1 2.275 0.131 0.138 2 1 2.062 0.357 0.363 2 2 2.053 0.358 0.370
China 5 20.988 0.001 0.002 6 1 22.905 0.001 0.001 6 3 22.541 0.001 0.002
Canada 2 2.553 0.279 0.244 3 1 4.910 0.178 0.209 3 2 4.869 0.182 0.161
India 2 2.471 0.291 0.295 3 3 5.829 0.120 0.103 3 3 6.284 0.100 0.101
Mexico 1 0.020 0.886 0.897 2 1 0.157 0.924 0.939 2 3 0.189 0.910 0.900
Norway 4 7.010 0.135 0.122 5 1 8.638 0.124 0.131 5 2 8.653 0.124 0.125
Russia 2 1.680 0.432 0.419 1 1 0.510 0.475 0.469 1 3 0.644 0.422 0.440
Venezuela 7 8.501 0.291 0.289 7 2 8.488 0.292 0.285 7 3 8.661 0.278 0.280
Kuwait 4 9.002 0.061 0.069 5 1 8.536 0.129 0.121 5 3 8.566 0.128 0.114
Saudi Arabia 5 3.157 0.676 0.677 6 1 3.458 0.749 0.741 6 2 3.330 0.766 0.769

Notes: > signifies the null hypothesis of no-Granger causality. TY: conventional TY approach which does
not account for structural breaks, FTY(k): Fourier TY approach with single frequency which is based on
equation  (6),  and  FTY(n):  Fourier  TY  approach  with  cumulative  frequencies  is  based  on  equation  (4).
Maximum k/n and p are respectively  set  to  3 and 7,  then optimal k/n and p are determined by Akaike
information criterion. p-vala is the p-value based on the asymptotic chi-square distribution with p degrees
of freedom. p-valb is the p-value based on the bootstrap distribution with 1,000 replications. VAR(p+d)
models are estimated with d equal to 1. Bivariate VAR models include oil prices and bond prices.

As discussed, the results of the TY test do not take into consideration the role of

possible structural shifts in the series. It is well known that both oil and bond prices have

different trends and volatility dynamics after the 2007–2008 financial crisis and the

European sovereign debt crisis starting in 2010, which are included in the samples of the

majority of countries. In order to take into account the role of such structural shifts, it is
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normally required to know the date, number, and form of shifts which is a challenge for

researchers in practice. As previously discussed, the Fourier approximation does not

require any assumptions or a priori knowledge regarding the date, number, or form of

shifts. This approach is able to accommodate structural shifts of any form and number in

addition to having the advantages of the Toda-Yamamoto procedure. The results of the

Fourier TY causality analysis in panel B of Table 2 are, in general, similar to those of the

TY approach with a few exceptions. Specifically, the Fourier TY method provides evidence

of the existence of a Granger causal linkage from oil to bond prices in Norway and Russia

(at the conventional level of significance, i.e. 5%), whereas the TY approach does not show

that causal linkage.

With respect to causality from bond to oil prices, the null hypothesis of no-Granger

causality based on the TY test is rejected for China and the US, and weakly (at the 10%

level) for Kuwait. When we account for the structural shifts in the estimations, while the

causal  linkage in  the  case  of  China and the  US still  holds,  it  disappears  in  the  case  of

Kuwait, with marginal evidence appearing for India. This finding can be interpreted as

that the causal linkages between oil prices and bond prices in China and the US are robust

to structural shifts and thereby are stronger.

Combining the results from the TY and Fourier TY analyses in Table 2, we see that

there is no feedback relationship between oil and bond prices in all cases except China.

There is a unidirectional information flow from oil prices to bond prices in the oil

exporting countries, with the exception of Kuwait and Saudi Arabia, which could be due

to the relatively nascent government bond market in these two economies. Causality from

oil to bond prices also holds true for the two largest oil importers, China and India. Last

but not least, there is only one-way causal flow from bond prices to oil prices in the case
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of the US. Thus, for the US, the portfolio allocation channel is at work, with causality

running from the bond to the oil market, which is not surprising given that US

Government Treasury securities dominate the global bond market, while for China, with

bidirectional causality, both inflation expectations and portfolio allocation channels

operate. The observed lack of impact from oil prices to the bond market in the US could

be due to the fact that the two opposite impacts from the inflation expectations and the

revenue effects nullify each other, given that the US is not only a major importer of oil but

it also exports oil, especially in its refined form.6

When we consider information transmission between markets, in addition to

causality  in  levels  (mean-spillover),  there  is  also  a  risk  transfer  dimension  which  is

referred to as causality in variance (volatility-spillover). The first dimension can be

thought of as a gradual adjustment which is due to long-run portfolio diversification. On

the other hand, hedging strategies require knowledge on volatility spillovers that may be

more relevant in the short run, as risk perceptions may change rapidly (Nazlioglu et al.,

2016). The nature of risk spillover between oil and bond prices are examined next using

the volatility spillover tests.

The volatility spillover LM test by Hafner and Herwartz (2006) is relatively simple

to implement because it is based on estimating a GARCH(1,1) specification. The results

from the volatility spillover analysis are reported in Table 3. Note that  is the volatility

spillover test based on the variance equation (8) which does not account for structural

breaks and  is the volatility spillover Fourier LM test based on the variance equation

(12) which accounts for structural breaks in the conditional variance of the oil and bond

returns.
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Table 3: Results from volatility spillover tests

Oil > Bond Bond > Oil
p-value n p-value p-value n p-value

US 0.542 0.763 1 0.558 0.756 7.118 0.028 3 7.254 0.026
Germany 0.824 0.662 3 0.607 0.738 5.999 0.050 3 5.926 0.051
UK 1.196 0.550 3 1.029 0.597 5.588 0.061 3 5.728 0.057
France 12.203 0.002 2 11.509 0.003 12.541 0.001 3 13.073 0.001
Japan 0.236 0.888 3 2.101 0.349 11.892 0.002 3 15.846 0.000
China 1.633 0.442 2 3.072 0.215 10.423 0.005 3 14.446 0.000
Canada 0.364 0.834 3 0.540 0.762 5.954 0.051 3 6.224 0.044
India 2.097 0.350 2 3.047 0.217 4.041 0.133 3 9.364 0.009
Mexico 1.558 0.459 3 0.866 0.648 4.149 0.126 3 4.887 0.086
Norway 2.636 0.267 3 5.569 0.061 11.987 0.004 3 11.938 0.002
Russia 7.436 0.024 3 8.709 0.012 9.984 0.007 3 12.736 0.001
Venezuela 3.526 0.171 2 3.633 0.162 19.066 0.000 3 17.152 0.000
Kuwait 6.616 0.037 2 10.429 0.005 2.371 0.306 1 2.389 0.302
Saudi Arabia 8.935 0.011 3 4.424 0.119 6.822 0.033 3 2.823 0.243

Notes: > signifies the null hypothesis of no-volatility spillover. : Volatility spillover LM test which does
not account for structural breaks is based on the variance equation (8). : Volatility spillover Fourier
LM test is based on the variance equation (12). Maximum number of Fourier frequency n are set to 3 and
then optimal n is determined by Akaike information criterion. The mean equation is based AR(1) model for
the return of bond and oil prices.

The  test indicates test the null hypothesis of no volatility spillover from oil

prices to bond prices is rejected in the case of France, Russia, Kuwait and Saudi Arabia.

The  test supports the same finding in France, Russia, and Kuwait but it leads to a

change in findings for Norway and Saudi Arabia in which taking into account structural

shifts results in different inferences.  supports  the  evidence  on  the  (weak,  at  10%

level of significance) volatility/risk spillover from oil to bond markets in Norway. In Saudi

Arabia, it appears that the risk spillover from oil prices to bond prices disappears when

the structural shifts are considered the volatility process.

In relation to the risk transmission from bond to oil prices, the  test shows that

the null hypothesis of no volatility spillover cannot be rejected in three cases – India,

Mexico, and Kuwait. When we pay attention to smooth shifts in the volatility process, the

 test  provides  the  evidence  of  a  volatility  spillover  for  all  cases  (with  the  UK  and

Mexico at the 10% level of significance) but only Kuwait and Saudi Arabia. These findings
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hence imply that while there is a limited evidence on the risk spillover from oil to bond

markets, the direction of spillover among these markets appears to be run from bond to

oil markets.  Again the lack of risk spillover in Kuwait and Saudi Arabia from the bonds

to oil is possibly due to their pre-mature government debt market. In sum, there is

stronger evidence of volatility spillover from the bonds to the oil market, rather than the

other way around, highlighting the important role now oil plays in portfolios, following

the financialization process.

5. Conclusion

The international literature on the causal relationship between first and second moment

movements of oil and bond markets is limited to only few studies. Given the importance

of both these markets for investors and policymakers (as well as academics), this is quite

baffling, and in this paper, we make an attempt to address this limitation. We analyze

daily data-based price transmission and volatility spillovers between crude oil and bond

markets of major oil exporters and importers, by accounting for structural breaks - a

historically important feature characterizing both oil and government bond prices.

In general, we find that, especially when structural shifts are accounted for, oil

prices tend to predict bond prices in majority of oil exporting countries, barring Kuwait

and Saudi Arabia, for which the government debt market is still underdeveloped. Similar

impact is also observed for two major oil importers of India and China. The feedback from

bond  to  oil  prices  is  weak,  but  is  detected  for  the  US  and  China,  highlighting  the

importance of crude oil in portfolio decisions of investors in these two countries. In case

of volatility spillovers, while oil volatility affects the bond market volatility of some major

oil  exporters  (Kuwait,  Norway  and  Russia),  and  an  importer  (France),  it  is  in  fact



22

volatility-based causality from the bond to oil that is more prominent, with the exceptions

of Kuwait and Saudi Arabia. Again as with the case of price transmission, accounting for

structural breaks, strengthens our findings.

Our results have important implications for academics, investors and

policymakers. First of all, as far as academic researchers are concerned, we show that to

derive appropriate statistical inferences when analyzing causal relationships between the

first- and second- moments of oil and bond market, it is of paramount importance that

structural changes are incorporated into the modelling frameworks; otherwise,

statistically  weak  results  would  be  derived.  Second,  from  the  perspective  of  bond

investors, they can improve investment strategies by exploiting the predicting role of the

oil prices for the bond prices of US and China. At the same time, investors aiming to

include bonds in a portfolio comprising oil (commodities), should be careful of risk

spillovers  from  the  bond  market  as  well.  In  other  words,  while  government  bond  can

indeed be considered a safe haven, especially in the USA, Japan, and Germany, it can also

transfer its risk to the oil market. Finally, evidence that oil prices tend to move long-term

government bonds, could be an indication, using the idea of the yield curve, that many oil

exporting countries and major oil importers (e.g.,  China and India), in fact are taking into

account oil prices in their interest rate setting behavior. But monetary authorities should

simultaneously be mindful of the fact that frequent interest rate changes to respond to the

oil prices, could lead to a volatile bond market, which in turn will be transmitted to the

volatility of the oil market, and affect economic activity in a negative manner.  This issue

is also relevant to global investors who often see a safe haven role in some of government

bonds, which might affect their investment and asset allocation decisions.
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Realizing the importance of associating oil price movements to different structural

shocks (like, oil-specific supply, demand and inventory shocks, and demand shock due to

changes in global economic activity) (see, among others, Kilian, 2009; Kilian and

Murphy, 2014), it would be interesting to analyze the impact of those various oil shocks,

rather than aggregate oil price, to international bond market movements.
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APPENDIX:
Figure A1. Data Plots
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Table A1. Summary Statistics:

Mean Median Maximum Minimum S.D. Skewness Kurtosis
Jarque-

Bera p-value N Date

BRENT 45,9921 30,38 143,95 9,1 32,8856 0,91186 2,59509 1173,93 0,00 8073
5/20/1987 to

3/11/2019

CANADA 88,3672 80,5195 162,386 46,9591 25,2494 0,84517 2,94991 961,944 0,00 8073
5/20/1987 to

3/11/2019

CHINA 711,278 709,72 803,344 598,367 43,5397 -0,21344 2,21344 98,5779 0,00 2954
6/29/2007 to

3/11/2019

FRANCE 16036,5 15224 25154,7 8446,67 3863,81 0,80461 2,82538 696,826 0,00 6383
12/31/1993 to

3/11/2019

GERMANY 146,431 133,951 215,05 86,7491 35,3401 0,37569 1,76554 702,511 0,00 8073
5/20/1987 to

3/11/2019

INDIA 71,6228 70,5032 91,3475 57,4396 6,70089 0,33891 2,49738 87,6423 0,00 2954
6/29/2007 to

3/11/2019

JAPAN 6970,66 6266,92 12646,6 3083,21 2445,85 0,6404 2,48306 507,364 0,00 6383
12/31/1993 to

3/11/2019

KUWAIT 98,9997 98,7382 101,717 96,836 1,48299 0,15955 1,48185 50,8398 0,00 507
3/14/2017 to

3/11/2019

MEXICO 9427,68 9462,1 11240 7449,88 701,309 -0,43597 3,0073 69,6655 0,00 2199
6/30/2010 to

3/11/2019

NORWAY 1758,79 1550,77 3986,76 327,449 835,244 0,79448 2,91478 673,419 0,00 6383
12/31/1993 to

3/11/2019

RUSSIA 641,213 629,159 827,822 493,272 97,3604 0,23007 1,54875 396,837 0,00 4109
12/31/2002 to

3/11/2019
SAUDI

ARABIA 95,8092 95,6529 100,786 91,5862 2,38372 0,09996 1,77491 38,9699 0,00 607
10/20/2016 to

3/11/2019

UK 170,44 159,255 245,953 104,178 40,7971 0,32659 1,64884 757,616 0,00 8073
5/20/1987 to

3/11/2019

US 124,392 119,913 163,328 94,306 17,0044 0,53442 2,1027 655,113 0,00 8073
5/20/1987 to

3/11/2019

VENEZUELA 74,7479 74,417 129 18,992 26,9059 0,00147 2,28894 90,1895 0,00 4281
4/26/2002 to

3/11/2019
Notes: S.D. is standard deviation; p-value corresponds to the null hypothesis of normality for the Jarque-Bera test; N is number of observations.


