FINITE GROUPS WITH SOME RESTRICTION ON THE VANISHING SET

SESUAI Y. MADANHA AND BERNARDO G. RODRIGUES

Abstract

Let x be an element of a finite group G and denote the order of x by $\operatorname{ord}(x)$. We consider a finite group G such that $\operatorname{gcd}(\operatorname{ord}(x), \operatorname{ord}(y)) \leqslant 2$ for any two vanishing elements x and y contained in distinct conjugacy classes. We show that such a group G is solvable. When G with the property above is supersolvable, we show that G has a normal metabelian 2-complement.

1. Introduction

Let G be a finite group. An element $g \in G$ is a vanishing element if there exists an irreducible character χ of G such that $\chi(g)=0$. The set of all vanishing elements of G is denoted by $\operatorname{Van}(G)$. A classical theorem of Burnside [15, Theorem 3.15] implies that $\operatorname{Van}(G)$ is non-empty when G is non-abelian. Note that

$$
\operatorname{Van}(G)=\bigcup_{i=1}^{r} v \mathcal{C}_{i}
$$

where each $v \mathcal{C}_{i}$ is a vanishing conjugacy class. We denote the order of the elements contained in a vanishing conjugacy class $v \mathcal{C}_{i}$ by $\operatorname{ord}\left(v \mathcal{C}_{i}\right)$. Many authors have studied finite groups G with certain restrictions on the set $\operatorname{Van}(G)$ (see $[9,6,10,11,17,22]$). We shall discuss some of that work here. Let p be a fixed prime. Dolfi, Pacifici, Sanus and Spiga in [9] studied finite groups G such that $\operatorname{ord}\left(v \mathcal{C}_{i}\right) \neq p^{n}$ for some n, for all $i \in\{1,2, \ldots, r\}$. They showed that G has a normal Sylow p-subgroup [9 , Theorem A]. On the other hand, in [6], the authors studied finite groups G such that ord $\left(v \mathcal{C}_{i}\right)=p^{n}$ for some n, for all $i \in\{1,2, \ldots, r\}$, and proved that G is either a p-group or G has a homomorphic image which is a Frobenius group with a complement of p-power order. Robati [22] recently proved that if $\operatorname{Van}(G)$ contains three conjugacy classes of G, then the group G is solvable.

In this article, we investigate finite groups G with the property below:

$$
\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right)=1 \text { for } i \neq j, i, j \in\{1,2, \ldots, r\}
$$

We also investigate finite groups G with a more general property:

$$
\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right) \leqslant 2 \text { for } i \neq j, i, j \in\{1,2, \ldots, r\}
$$

In particular, using the classification of finite simple groups we show that if G has property ((\star)), then G is solvable :

Theorem A. Let G be a finite group. If G satisfies property ($(\star$), then G is solvable.

[^0]Remark. If $\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right) \leqslant 3$, then G is not necessarily solvable for S_{5} satisfies this property. Let $\operatorname{Vo}(G)$ be the set of orders of vanishing elements of G. Then if for every $a, b \in \operatorname{Vo}(G), \operatorname{gcd}(a, b)=1$, then G is also not necessarily solvable: A_{5} is a counterexample.

A theorem of Thompson [15, Corollary 12.2] states that, given a prime number p, if every character degree of a non-linear character of G is a multiple of p, then the group G has a normal p-complement. In [9, Corollary B], it was shown that if G is a finite group and if $p \mid a$ for all $a \in \operatorname{Vo}(G)$ for some fixed prime p, then G has a normal nilpotent p-complement. This does not necessarily hold when G satisfies property ($\star \star$). An example is S_{4}, since $\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right) \leqslant 2$ for all $v \mathcal{C}_{i}, v \mathcal{C}_{j} \subseteq \operatorname{Van}\left(\mathrm{~S}_{4}\right)$, that is, S_{4} satisfies property $(\star \star)$ but S_{4} does not have a normal 2-complement or 3-complement. However, if G is supersolvable or $\mathbf{O}_{2}(G)=1$, then G has a normal 2-complement with one exception: some Frobenius groups with a homomorphic image isomorphic to S_{4}, as the following result states:

Theorem B. Let G be a finite non-abelian group satisfying property ($(\star$).
(a) If G is supersolvable, then G has a normal metabelian 2-complement
(b) If $\boldsymbol{O}_{2}(G)=1$, then either
(i) G has a normal 2-complement of Fitting height at most 3, or
(ii) G is a Frobenius group which has an abelian kernel and a Frobenius complement isomorphic to S_{4}.

In [7, Proposition 2.7], Chillag showed that if G is a non-abelian group, then G is a Frobenius group with an abelian odd order kernel and a complement of order 2 if and only if every irreducible character of G vanishes on at most one conjugacy class. In this article, we prove a new characterisation of these Frobenius groups:

Corollary C. Let G be a finite non-abelian group. Then G has property (\star) if and only if G is a Frobenius group with an abelian kernel and complement of order two.

2. Preliminaries

In this section we shall list some properties of vanishing elements needed to prove our results.

Lemma 2.1. Let G be an finite group and let N be a normal subgroup of G. Then the following statements hold:
(a) If G satisfies property (\star), then G / N satisfies property (\star).
(b) If G satisfies property ($* \star$), then G / N satisfies property ($* *$).

Proof. The result follows by the standard observation that $x N \in \operatorname{Van}(G / N)$ implies that $x N \subseteq \operatorname{Van}(G)$.

Lemma 2.2. [21, Lemma 2] Let G be a finite solvable group. Suppose M, N are normal subgroups of G.
(a) If $M \backslash N$ is a conjugacy class and $\operatorname{gcd}(|M: N|,|N|)=1$, then M is a Frobenius group with kernel N and prime order complement.
(b) If $G \backslash N$ is a conjugacy class, then G is a Frobenius group with an abelian kernel and complement of order two.

For a positive integer m, set $\pi(m):=\{p \mid p$ divides m, where p is prime $\}$.

Corollary 2.3. [10, Corollary 2.6] Let G be a finite group and let K be a nilpotent normal subgroup of G. If $K \cap \operatorname{Van}(G) \neq \emptyset$, then there exists $g \in K \cap \operatorname{Van}(G)$ whose order is divisible by every prime in $\pi(|K|)$.
Lemma 2.4. [16, Theorem D$]$ Let G be a finite solvable group. If x is a non-vanishing element of G, then $x \mathbf{F}(G)$ is a 2-element of $G / \mathbf{F}(G)$. If G is not nilpotent, then x lies in the penultimate term of the Fitting series.

A non-linear irreducible character χ of G is said to be of p-defect zero if p does not divide $|G| / \chi(1)$. By a result of Brauer (see [15, Theorem 8.17]), if χ is an irreducible character of p-defect zero of G, then $\chi(g)=0$ whenever p divides the order of g in G. The existence of p-defect zero characters is guaranteed in finite simple groups G for almost all primes $p \geqslant 5$ dividing $|G|$ as the following result shows:
Lemma 2.5. [14, Corollary 2.2] Let G be a non-abelian finite simple group and p be a prime. If G is a finite group of Lie type, or if $p \geqslant 5$, then there exists $\chi \in \operatorname{Irr}(G)$ of p-defect zero.

Lemma 2.6. [4, Lemma 2.2] Let G be a finite group, N a normal subgroup of G and p be a prime. If N has an irreducible character of p-defect zero, then every element of N of order divisible by p is a vanishing element in G.

Lemma 2.7. [3, Lemma 5] Let G be a finite group, and $N=S_{1} \times \cdots \times S_{k}$ a minimal normal subgroup of G, where every S_{i} is isomorphic to a non-abelian simple group S. If $\theta \in \operatorname{Irr}(S)$ extends to $\operatorname{Aut}(S)$, then $\varphi=\theta \times \cdots \times \theta \in \operatorname{Irr}(N)$ extends to G.

Lemma 2.8. [19, Theorem 1.1] Suppose that N is a minimal normal non-abelian subgroup of a finite group G. Then there exists an irreducible character θ of N such that θ is extendible to G with $\theta(1) \geqslant 5$.

The number theory result below follows easily.
Lemma 2.9. Let p be and f be a positive integer. If $q=p^{f} \geqslant 32$, then $f<(q-2) / 2$.
We end this section by stating a result on groups in which every irreducible character vanishes on at most two conjugacy classes.

Theorem 2.10. [2, Theorem 1] Let G be a non-abelian finite group in which every irreducible character vanishes on at most two conjugacy classes. Then one of the following holds:
(a) $G \cong \mathrm{~A}_{5}$ or $G \cong \mathrm{PSL}_{2}(7)$;
(b) G is solvable and one of the following holds:
(i) G has a subgroup Z with $|Z| \leqslant 2$ such that G / Z is Frobenius group with a Frobenius complement of order 2 and an abelian Frobenius kernel of odd order.
(ii) $G / Z=F A$ is a semidirect product, where $|A| \leqslant 2,|Z| \leqslant 2$ and F is a Frobenius group with a Frobenius complement of order 3 and a nilpotent Frobenius kernel of class at most 2.

3. Theorem A

Proof of Theorem A. We prove the result by induction on $|G|$. Let N be a nontrivial normal subgroup of G. Then G / N satisfies property (**) by Lemma 2.1(b) and hence G / N is a solvable group. If N_{1} and N_{2} are two minimal normal subgroups of
G, then G / N_{1} and G / N_{2} are solvable. Hence G is solvable. We may assume that G has a unique non-abelian minimal normal subgroup N. If $N=S_{1} \times S_{2} \times \cdots \times S_{k}$, where $S_{i} \cong S, S$ is a simple group and $i=1,2, \ldots, k$, then by Lemma 2.8, there exists $\theta \in \operatorname{Irr}(N)$ which is extendible to G. Note that $\theta=\phi_{1} \times \phi_{2} \times \cdots \times \phi_{k}$ with $\phi_{i} \in \operatorname{Irr}\left(S_{i}\right)$ for each $i \in\{1,2, \ldots, k\}$. Suppose that $k \geqslant 2$. Since ϕ_{1} is non-linear, we may assume that ϕ_{1} vanishes on a p-element $x_{1} \in S_{1}$ for some prime p by [20, Theorem B]. Suppose that p is odd. Note that $2\left||N|\right.$ and let $y_{2} \in S_{2}$ be a 2-element. Then $\theta\left(x_{1} y_{2}\right)=\phi_{1}\left(x_{1}\right) \phi_{2}\left(y_{2}\right) \cdots \phi_{k}(1)=0$ and $p \mid \operatorname{gcd}\left(\operatorname{ord}\left(x_{1}\right), \operatorname{ord}\left(x_{1} y_{2}\right)\right)$. Hence G does not satisfy $(\star \star)$. Suppose that p is even. Then there is a prime $q \geqslant 5$ such that $q\left||N|\right.$ since by [15, Theorem 3.10], $\pi(|G|) \geqslant 3$. Let $y_{2} \in S_{2}$ be a q-element. Note that $x_{1} y_{2}$ and y_{2} are vanishing elements of G by Lemma 2.5 and Lemma 2.6. Since $q \mid \operatorname{gcd}\left(\operatorname{ord}\left(y_{2}\right), \operatorname{ord}\left(x_{1} y_{2}\right)\right)$, the result follows.

We may assume that N is a simple group. Since N is the unique minimal normal subgroup of $G, \mathbf{C}_{G}(N)=1$ and so G is almost simple. Let N be a sporadic simple group or ${ }^{2} \mathrm{~F}_{4}(2)$ '. Table 3 below contains an irreducible character θ of N of p-defect zero for some odd prime p and two elements of distinct orders divisible by p. The result that G does not satisfy property ($\star \star$) follows from Lemma 2.6. We shall use the character tables and notation in the Atlas [8].

N	$\theta(1)$	$\operatorname{ord}\left(v \mathcal{C}_{1}\right)$	$\operatorname{ord}\left(v \mathcal{C}_{2}\right)$
M_{11}	$\chi_{9}(1)=45$	$3 A$	$6 A$
M_{12}	$\chi_{8}(1)=55$	$5 A$	$10 A$
M_{22}	$\chi_{3}(1)=45$	$3 A$	$6 A$
M_{23}	$\chi_{3}(1)=45$	$3 A$	$6 A$
M_{24}	$\chi_{3}(1)=45$	$5 A$	$10 A$
J_{2}	$\chi_{18}(1)=225$	$5 A$	$10 A$
$S u z$	$\chi_{10}(1)=10725$	$5 A$	$10 A$
$H S$	$\chi_{19}(1)=1750$	$5 A$	$10 A$
$M^{c} L$	$\chi_{9}(1)=1750$	$5 A$	$10 A$
C_{3}	$\chi_{6}(1)=896$	$7 A$	$14 A$
C_{0}	$\chi_{5}(1)=1771$	$7 A$	$14 A$
$C o_{1}$	$\chi_{4}(1)=1771$	$11 A$	$22 A$
$H e$	$\chi_{9}(1)=1275$	$5 A$	$10 A$
$F i_{22}$	$\chi_{4}(1)=1001$	$7 A$	$14 A$
$F i_{23}$	$\chi_{8}(1)=106743$	$7 A$	$14 A$
$F i_{24}^{\prime}$	$\chi_{4}(1)=249458$	$11 A$	$22 A$
$H N$	$\chi_{2}(1)=133$	$7 A$	$14 A$
$T h$	$\chi_{6}(1)=30628$	$13 A$	$39 A$
B	$\chi_{11}(1)=3214743741$	$11 A$	$22 A$
M	$\chi_{9}(1)=36173193327999$	$17 A$	$34 A$
J_{1}	$\chi_{9}(1)=120$	$3 A$	$6 A$
$O^{\prime} N$	$\chi_{8}(1)=32395$	$5 A$	$10 A$
J_{3}	$\chi_{2}(1)=85$	$5 A$	$10 A$
$L y$	$\chi_{5}(1)=48174$	$7 A$	$14 A$
$R u$	$\chi_{2}(1)=378$	$7 A$	$14 A$
J_{4}	$\chi_{9}(1)=1187145$	$5 A$	$10 A$
${ }^{2} \mathrm{~F}_{4}(2)^{\prime}$	$\chi_{8}(1)=325$	$5 A$	$10 A$

Suppose that N is an alternating group $\mathrm{A}_{n}, n \geqslant 5$. For $N \cong \mathrm{~A}_{5}$ and $N \cong \mathrm{~A}_{7}$, our result follows by consulting the Atlas [8]. Assume that $N \cong \mathrm{~A}_{6} \cong \mathrm{PSL}_{2}(9)$. Then for an almost simple G such that $|G / N| \leqslant 2$, our result follows by consulting the explicit character tables in the Atlas [8]. For the case when $|G / N|=4$, we obtain the character table in GAP [13] and our result follows.

Let $N \cong \mathrm{~A}_{n}, n \geqslant 8$. By Lemma $2.5, N$ has a 5 -defect zero character. Note that N has two elements (12345) and (12345)(678) of orders 5 and 15 , respectively. These two elements are vanishing elements of G by Lemma 2.6 and hence G does not satisfy property ($\star \star$).

Suppose that N has an element of order $2 r, r$ an odd prime. Then N has an irreducible character θ of r-defect zero by Lemma 2.5. Since N has elements of order r and $2 r$, the result follows since these two elements are vanishing elements by Lemma 2.6. We may assume that N has no element of order $2 r, r$ an odd prime. Then the centralizer of each involution contained in N is a 2 -group. It follows from [24, III, Theorem 5] that N is isomorphic to one of the following: $\mathrm{PSL}_{2}(p)$, where p is a Fermat or Mersenne prime; $\operatorname{PSL}_{2}(9) ; N \cong \operatorname{PSL}_{3}(4) ; N \cong{ }^{2} \mathrm{~B}_{2}\left(2^{2 n+1}\right), n \geqslant 1$.

Thus far, we have dealt with the cases when $N \cong \operatorname{PSL}_{2}(5) \cong \mathrm{A}_{5}$ and $N \cong \operatorname{PSL}_{2}(9) \cong$ A_{6}. For $N \cong \mathrm{PSL}_{2}(7)$ the result follows by checking the character tables in the Atlas [8]. Suppose that $N \cong \operatorname{PSL}_{2}(p)$, where $p \geqslant 17$, is a Fermat or Mersenne prime. Then the centralizer of an involution in N is a dihedral group of order $2^{n}, n \geqslant 4$. Hence N contains elements of order 4 and 8. Using Lemmas 2.5 and 2.6 , we conclude that G does not satisfy property ($(\star \star$).

Suppose $N \cong \mathrm{PSL}_{3}(4)$. Then for an almost simple G such that $|G / N| \leqslant 6$, our result follows by checking the explicit character tables in the Atlas [8]. For the case when $|G / N|=12$, we obtain the character table from GAP [13] and by checking the pertinent information, our result follows.

We may assume that $N \cong{ }^{2} \mathrm{~B}_{2}\left(2^{2 n+1}\right)$ with $n \geqslant 1$. The result basically follows from [18, Proposition 3.13] but we shall prove it here for completeness. Now N has two conjugacy classes of elements of order 4 by [25, Proposition 18]. Since the outer automorphism group is cyclic of odd order $2 n+1$, the outer automorphisms cannot fuse these two conjugacy classes to one conjugacy class in G. Hence G has two conjugacy classes of order 4 and so G does not satisfy property ($(\star \star$). This concludes our argument.

4. Normal 2-COMPLEMENTS

Given a finite set of positive integers Y, the prime graph $\Pi(Y)$ is defined as the undirected graph whose vertices are the primes p such that there exists an element of Y divisible by p, and two distinct vertices p, q are adjacent if and only if there exists an element of Y divisible by $p q$. The vanishing prime graph of G, denoted by $\Gamma(G)$, is the prime graph $\Pi(\operatorname{Vo}(G))$. We shall state a result on solvable groups with disconnected vanishing prime graphs. We first recall two definitions:

A group G is said to be a 2-Frobenius group if there exists two normal subgroups F and L of G such that G / F is a Frobenius group with kernel L / F and L is a Frobenius group with kernel F.

A group G is said to be a nearly 2-Frobenius group if there exist two normal subgroups F and L of G with the following properties: $F=F_{1} \times F_{2}$ is nilpotent, where F_{1} and F_{2} are normal subgroups of G. Furthermore, G / F is a Frobenius group with kernel L / F, G / F_{1} is a Frobenius group with kernel L / F_{1}, and G / F_{2} is a 2-Frobenius group.

Theorem 4.1. [11, Theorem A] Let G be a finite solvable group. Then $\Gamma(G)$ has at most two connected components. Moreover, if $\Gamma(G)$ is disconnected, then G is either a Frobenius group or a nearly 2-Frobenius group.

The following is a classification of Frobenius complements.
Theorem 4.2. [5, Theorem 1.4] Let G be a Frobenius group with Frobenius complement M. Then M has a normal subgroup N such that all Sylow subgroups of N are cyclic and one of the following holds:
(a) $M / N \cong 1$;
(b) $M / N \cong \mathrm{~V}_{4}$, the Sylow 2-subgroup of the alternating group A_{4};
(c) $M / N \cong \mathrm{~A}_{4}$;
(d) $M / N \cong \mathrm{~S}_{4}$;
(e) $M / N \cong \mathrm{~A}_{5}$;
(f) $M / N \cong S_{5}$.

Proof Theorem B. We first assume that G satisfies property (\star). Since G is solvable, G contains at most two vanishing conjugacy classes by Theorem 4.1. If G has one vanishing class, then every irreducible character of G vanishes on at most one conjugacy class and by [7, Proposition 2.7], G is a Frobenius group with a Frobenius complement of order 2 and an odd order kernel. Hence G has an abelian normal 2-complement. Suppose that G has exactly two conjugacy classes. Note that $\operatorname{ord}\left(v \mathcal{C}_{1}\right) \neq \operatorname{ord}\left(v \mathcal{C}_{2}\right)$. Then every irreducible character of G vanishes on at most two conjugacy classes. Using Theorem 2.10, we have two cases. Suppose that Theorem 2.10(b)(ii) holds. Then G has at least two vanishing conjugacy classes of order 3, a contradiction. Assume that Theorem 2.10(b)(i) holds. Then G has one vanishing conjugacy class with elements of order 2 contained in the Frobenius complement of G / Z. By Lemma 2.2(b), G is a Frobenius group with an abelian kernel and complement of order two, that is, $Z=1$ and the result follows.

Assume that G satisfies property $(\star \star)$ and suppose $\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right)=2$ for some $i \neq j$. Let G be nilpotent. Then $G=P_{2} \times H$ with P_{2}, the Sylow 2-subgroup of G and H, a nilpotent group of odd order. If H is non-abelian, then H has a vanishing h of G by [16, Theorem B]. This means that $\chi(h)=\theta_{1}(1) \times \theta_{2}(h)=\theta_{2}(h)=0$ for some $\chi=\theta_{1} \times \theta_{2} \in \operatorname{Irr}\left(P_{2} \times H\right)$ with $\theta_{1} \in \operatorname{Irr}\left(P_{2}\right)$ and $\theta_{2} \in \operatorname{Irr}(H)$. It follows that for any $x \in P_{2}, \chi(x h)=\theta_{1}(x) \times \theta_{2}(h)=0$ and so $x h$ and h are vanishing elements of G, a contradiction. Thus H is abelian which implies that G has a normal abelian 2-complement.

Let $2=p_{1}<p_{2}<\cdots<p_{n}$ and let P_{i} be a Sylow p_{i}-subgroup of G for $i \in$ $\{1,2, \ldots, n\}$. Suppose that G is a non-nilpotent supersolvable group and consider $\mathbf{F}(G)$. If $\pi(|\mathbf{F}(G)|)=1$, then by [1, Theorems 6.2.5 and 6.2.2], $\mathbf{F}(G)$ is the p_{n}-subgroup P_{n} of G. Let M be a normal subgroup of G such that $M / \mathbf{Z}(\mathbf{F}(G))$ is a chief factor of G. Then $M \backslash \mathbf{Z}(\mathbf{F}(G))$ is a conjugacy class of G since $M \backslash \mathbf{Z}(\mathbf{F}(G)) \subseteq \operatorname{Van}(G)$ and $\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right) \leqslant 2$. Hence $M / \mathbf{Z}(\mathbf{F}(G))$ is cyclic and so M is abelian. Thus $M=\mathbf{F}(G)=P_{n}$.

Suppose that p_{n-1} is an odd prime. Then $P_{n-1} \mathbf{F}(G) / \mathbf{F}(G)$ is a normal subgroup of $G / \mathbf{F}(G)$. Thus $P_{n-1} \mathbf{F}(G) \backslash \mathbf{F}(G)$ is a conjugacy class since $\operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{i}\right), \operatorname{ord}\left(v \mathcal{C}_{j}\right)\right) \leqslant$ 2. By Lemma 2.2(b), $\mathbf{F}(G) P_{n-1} P_{n-2}$ is a Frobenius group of kernel $\mathbf{F}(G) P_{n-1}$ and complement of order p_{n-2}. This means that the kernel $\mathbf{F}(G) P_{n-1}$ is nilpotent, that is, $\mathbf{F}(G) P_{n-1}=\mathbf{F}(G) \times P_{n-1}$. Since $P_{n-1} P_{n-2} \cdots P_{1}$ is supersolvable and since by [1, Theorems 6.2.5 and 6.2.2], P_{n-1} is normal in $P_{n-1} P_{n-2} \cdots P_{1}$, we obtain that P_{n-1} is
a normal subgroup of G, a contradiction since $\mathbf{F}(G)=P_{n}$. Then $P_{n-2}=P_{1}$ is a Sylow 2-subgroup of G and so $\pi(|G|) \leqslant 3$. Hence $\mathbf{F}(G) P_{n-1}$ is a metabelian normal 2-complement of G.

Suppose that $\pi(|\mathbf{F}(G)|) \geqslant 2$. Let $\mathbf{F}(G)=Q_{1} \times Q_{2} \times \cdots \times Q_{n}$, where $2=q_{1}<$ $q_{2}<\cdots<q_{n}$ and let Q_{i} be the Sylow q_{i}-subgroup of $\mathbf{F}(G)$ for $i \in\{1,2, \ldots, m\}$. Note that $Q_{i} \backslash \mathbf{Z}\left(Q_{i}\right) \subseteq \operatorname{Van}(G)$ by [16, Theorem B] since G is supersolvable and so all the non-vanishing elements of G are contained in $\mathbf{Z}(\mathbf{F}(\mathbf{G}))=\mathbf{Z}\left(Q_{1}\right) \times \mathbf{Z}\left(Q_{2}\right) \times \cdots \times \mathbf{Z}\left(Q_{n}\right)$. If q_{i} is an odd prime and there exists a q_{i}-element m which is a vanishing element, then by Corollary 2.3 , there exists a vanishing element $m n$ whose order is divisible by every prime in $\pi(|\mathbf{F}(G)|)$, a contradiction since $\operatorname{gcd}(\operatorname{ord}(m), \operatorname{ord}(m n))>2$. Hence Q_{i} is abelian for all odd q_{i} 's. Consider Q_{i}, the Sylow 2-subgroup of $\mathbf{F}(G)$. If $Q_{1} \backslash \mathbf{Z}\left(Q_{1}\right)$ has an element of order greater than 2 , then by Corollary 2.3 and the above argument, we obtain a contradiction. Then $Q_{1} \backslash \mathbf{Z}\left(Q_{1}\right)$ consists only of involutions. By $[6$, Theorem $\mathrm{C}], Q_{1}$ is a direct product of an elementary abelian 2-group and a Frobenius group with Frobenius complement of order 2 , a contradiction. Hence Q_{1} is abelian and therefore $\mathbf{F}(G)$ is abelian. Thus G is metabelian.

Finally suppose $2=p_{1}<p_{2}<\cdots<p_{n}$ and let P_{i} be a Sylow p_{i}-subgroup of G for $i \in\{1,2, \ldots, n\}$. By [1, Theorems 6.2.5 and 6.2.2], $H=P_{n} P_{n-1} \ldots P_{2}$ is a normal subgroup of G and therefore H is a metabelian 2-complement as required.

We may now assume that G is not supersolvable and $\mathbf{O}_{2}(G)=1$. Suppose that $\Gamma(G)$ consists of a single vertex of an odd prime. Since G satisfies property ($\star \star$), we have that G has one vanishing conjugacy class. This means that every irreducible character of G vanishes on at most one conjugacy class and by [7, Proposition 2.7], G is a Frobenius group with a Frobenius complement of order 2, a contradiction. So if $\Gamma(G)$ is connected, then property $(\star \star)$ implies that every element of $\operatorname{Vo}(G)$ is divisible by 2 . By $[9$, Corollary B], G has a normal nilpotent 2 -complement as required. We may assume that $\Gamma(G)$ is disconnected. Then by Theorem 4.1, G is either a Frobenius group or a nearly 2 -Frobenius group.

Suppose that G is a Frobenius group. Assume further that the Frobenius complement of G has odd order. Let H be a maximal subgroup of G that contains G^{\prime}. Then $|G / H|=p$ for some odd prime p. Note that $\mathbf{F}(G) \leq H$. Hence $G \backslash H \subseteq \operatorname{Van}(G)$. Since p divides the order of every element in $G \backslash H$. By Lemma 2.2(a), $G \backslash H$ has at least two conjugacy classes, $v \mathcal{C}_{1}$ and $v \mathcal{C}_{2}$ say, and $p \mid \operatorname{gcd}\left(\operatorname{ord}\left(v \mathcal{C}_{1}\right), \operatorname{ord}\left(v \mathcal{C}_{2}\right)\right)$, contradicting our hypothesis. We may assume that the Frobenius complement has even order. Denote it by M. Then the Frobenius kernel K is abelian. Using Theorem 4.2, we have that M has a unique normal subgroup N such that all the Sylow subgroups of N are cyclic and $M / N \in\left\{1, \mathrm{~V}_{4}, \mathrm{~A}_{4}, \mathrm{~S}_{4}, \mathrm{~A}_{5}, \mathrm{~S}_{5}\right\}$. Since G is solvable we need not consider $\mathrm{A}_{5}, \mathrm{~S}_{5}$. Note that N is metacyclic and supersolvable by [23, p. 290]. Suppose that $M / N \in\left\{1, \mathrm{~V}_{4}\right\}$. Then since N is supersolvable, the Hall 2^{\prime}-subgroup R of N is normal in $N=M$. Now $K R$ is a normal 2-complement of G. Also note that $K R$ is of derived length at most 3 and thus of Fitting height at most 3 , as required. Suppose $M / N \cong \mathrm{~A}_{4}$. Then there exists a normal subgroup T of G such that $|G / T|=3$. The result follows using the argument above in the case when the Frobenius complement is of odd order. We now suppose that $M / N \cong \mathrm{~S}_{4}$. Note that $\Gamma(G)$ has two connected components and vertex 3 is isolated. A Sylow 2 -subgroup T of G is a generalized quaternion. This means that $|T|=8$ and $|N|$ is of odd order, otherwise G does not satisfy property ($\star \star$). If there is a prime $r \neq 3$ such that $r||N|$, then using [11, Proposition 3.2], there exists an vanishing element g such that $\operatorname{ord}(g)$ is either divisible by $3 s$ or $r s$ for some prime s such that
$s||M|$, a contradiction. But that means the Frobenius complement has a cyclic Sylow 3 -subgroup of order k greater than 3 . Then G has vanishing elements of orders 3 and k, a contradiction. Hence $N=1$ and therefore $G / K \cong \mathrm{~S}_{4}$. The result follows.

Suppose that G is a nearly 2-Frobenius group. Then there exist two normal subgroups F and L of G with the following properties: $F=F_{1} \times F_{2}$ is nilpotent, where F_{1} and F_{2} are normal subgroups of G. Furthermore, G / F is a Frobenius group with kernel L / F, G / F_{1} is a Frobenius group with kernel L / F_{1}, and G / F_{2} is a 2-Frobenius group. Since G / F_{2} is a 2-Frobenius group and G / F is a Frobenius group with kernel L / F, it follows that L / F_{2} is a Frobenius group with kernel F / F_{2}. By [11, Remark 1.2], G / L is cyclic and L / F is cyclic with $|L / F|$ odd. If $|G / L|$ is odd, then using the argument in the first part of the previous paragraph, we obtain a contradiction. Hence we may assume that $|G / L|$ is even. Since G / F_{1} is a Frobenius group with kernel L / F_{1}, we conclude that L / F_{1} is nilpotent and $\operatorname{gcd}\left(|G / L|,\left|L / F_{1}\right|\right)=1$. Note that $|F|$ is odd since $\mathbf{O}_{2}(G)=1$. We consider G / F, a Frobenius group with a cyclic kernel L / F and a cyclic Frobenius complement G / L. It follows that the Hall 2^{\prime}-subgroup J / L of G / L is cyclic. Hence J / L is cyclic, L / F_{1} is nilpotent and F_{1} is nilpotent, that is J is a normal 2-complement of G with Fitting height at most 3. This concludes our proof.
Proof of Corollary C. If G satisfies property (\star), then G is a Frobenius group with an abelian kernel and complement of order two by the argument in the first paragraph of the proof of Theorem B. The converse holds because if G is a Frobenius group with an abelian kernel and complement of order two, then $\operatorname{Van}(G)$ contains only one conjugacy class of elements of order two.

Acknowledgements

The authors would like to thank the reviewer for the careful reading of this article. Their comments and suggestions improved the presentation of the work.

Funding

Sesuai Y. Madanha acknowledges the postdoctoral scholarship from University of KwaZulu-Natal. Bernardo G. Rodrigues acknowledges support of NRF through Grant Numbers 95725 and 106071.

References

[1] Bechtell H. (1971). The theory of groups. New Hampshire:Addison-Wesley.
[2] Bianchi, M., Chillag, D., Gillio, A. (2000). Finite groups in which every irreducible character vanishes on at most two conjugacy classes. Houston J. Math. 26:451-461.
[3] Bianchi, M., Chillag, D., Lewis, M., Pacifici, E. (2007). Character degree graphs that are complete graphs. Proc. Amer. Math. Soc. 135:671-676.
[4] Brough, J. (2016). On vanishing criteria that control finite group structure. J. Algebra 458:207215.
[5] Brown, R. (2001). Frobenius groups and classical maximal orders. Mem. Amer. Math. Soc. 151(717) viii+110.
[6] Bubboloni, D., Dolfi, S., Spiga, P. (2009). Finite groups whose irreducible characters vanish only on p-elements. J. Pure Appl. Algebra 213:370-376.
[7] Chillag, D. (1999). On zeros of characters of finite groups. Proc. Amer. Math. Soc. 127:977-983.
[8] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. (1985). Atlas of Finite Groups. Oxford:Clarendon Press.
[9] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P. (2009). On the orders of zeros of irreducible characters. J. Algebra 321:345-352.
[10] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P. (2010). On the vanishing prime graph of finite groups. J. London Math. Soc. (2) 82:167-183.
[11] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P. (2010). On the vanishing prime graph of solvable groups. J. Group Theory 13:189-206.
[12] Feit, W. (1993). Extending Steinberg characters. In Linear algebraic groups and their representations (Los Angeles, CA, 1992), Contemp. Math., Vol. 153. American Mathematical Society, pp. 1-9.
[13] The GAP Group. (2016). GAP-Groups, Algorithms and Programming, Version 4.8.4. http://www.gap-system.org
[14] Granville, A., Ono, K. (1996). Defect zero p-blocks for finite simple groups. Trans. Amer. Math. Soc. 348:331-347.
[15] Isaacs, I. M. (2006). Character Theory of Finite Groups. Rhode Island: Amer. Math. Soc..
[16] Isaacs, I. M., Navarro, G., Wolf, T. R. (1999). Finite group elements where no irreducible character vanishes. J. Algebra 222:413-423.
[17] Li, Z., Shao, C., Zhang, J., Li, Z. (2001). Finite groups whose irreducible characters vanish only on elements of prime power order. International Electronic J. Algebra 9:114-123.
[18] Madanha. S.Y. (2020). Zeros of primitive characters of finite groups. J. Group Theory 23:193216.
[19] Magaard, K., Tong-Viet, H. P. (2011). Character degree sums in finite non-solvable groups. J. Group Theory 14:53-57.
[20] Malle, G., Navarro, G., Olsson, J. B. (2000). Zeros of characters of finite groups. J. Group Theory 3:353-368.
[21] Qian, G. (2002). Bounding the Fitting height of a finite solvable group by the number of zeros in a character table. Proc. Amer. Math. Soc. 130:3171-3176.
[22] Robati, S. M. (2019). Groups whose set of vanishing elements is the union of at most three conjugacy classes. Bull. Belg. Math. Soc. Simon Stevin 26:85-89.
[23] Robinson, D. J. S. (1995). A course in the theory of finite groups. Second Edition. New YorkBerlin: Springer Verlag.
[24] Suzuki, M. (1961). Finite groups with nilpotent centralizers. Trans. Amer. Math. Soc. 99:425470.
[25] Suzuki, M. (1962). On a class of double transitive groups. Ann. of Math. 75:105-145.
[26] Williams, J. S. (1981). Prime graph components of finite groups. J. Algebra 69:487-513.
School of Mathematics Statistics and Computer Science, University of KwaZuluNatal, Durban, South Africa

Permanent Address: Department of Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa

Email address: sesuai.madanha@up.ac.za
School of Mathematics Statistics and Computer Science, University of KwaZuluNatal, Durban, South Africa

Permanent Address: Department of Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa

Email address: bernardo.rodrigues@up.ac.za

[^0]: Date: June 30, 2020.
 2010 Mathematics Subject Classification. Primary 20C15.
 Key words and phrases. orders of vanishing elements, solvable groups, supersolvable groups, normal 2-complement.

