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Abstract

We analyze the role of the US-China trade war in predicting, both in- and
out-of-sample, daily realized volatility of Bitcoin returns. We study intraday
data spanning from 1st July 2017 to 30th June 2019. We use the heteroge-
neous autoregressive realized volatility model (HAR-RV) as the benchmark
model to capture stylized facts such as heterogeneity and long-memory. We
then extend the HAR-RV model to include a metric of US-China trade ten-
sions. This is our primary predictor of interest, and it is based on Google
Trends. We also control for jumps, realized skewness, and realized kurtosis.
For our empirical analysis, we use a machine-learning technique which is
known as random forests. Our findings reveal that US-China trade uncer-
tainty does improve forecast accuracy for various configurations of random
forests and forecast horizons.
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1 Introduction

In the wake of the recent United States-China trade war (hereafter, US-China trade
war), and soaring Bitcoin prices, there have been claims made by both financial
practitioners, covered in the financial press, and academics that these two facts
are not necessarily independent, but rather can be considered as an indication of
Bitcoin’s hedging ability. To give an example, in an recent interview in Fortune’s
entitled “Balancing the Ledger", the founder of the Digital Currency Group, Barry
Silbert, claimed that Bitcoin behaves as an asset which seems to be independent
from various uncertainties that exist in the traditional financial system. In other
words, according to Barry Silbert, the digital currency can be considered as a
“flight to safety". Such behavior, however, is not new. Bitcoin acted as a “flight
to safety" quite earlier, for example, during the begging of “Brexit" negotiations
and at the peak of “Grexit” debates in Europe. Not surprisingly, using Google to
search the terms “Bitcoin” and “Trade war” gave 14,000,000 results (Google.com
accessed on December 20, 2019). In this vein, as the trade war intensified, several
market watchers thought that indeed Bitcoin benefited from jitters in international
financial markets, which, in turn, gave rise to a downward pressure on stocks and

China’s currency.

The claims of the hedging and “flight to safety" property of Bitcoin mentioned
in the preceding paragraph are based on anecdotal evidence, while academic re-
search on this matter is relatively scarce. Formal empirical evidence of Bitcoin
acting as a hedge against trade-related uncertainties can be found in the recent
works by Gozgor et al. (2018) and Bouri et al. (2019a). On the one hand, the for-
mer researchers, based on a wavelet analysis, claim that, with some exceptions,
there is a positive correlation between Bitcoin returns and a newspaper-based mea-
sure of trade policy uncertainty. Bouri et al. (2019a), in turn, report that the (re-

alized) correlation between US equities and Bitcoin returns is negatively affected



by the same measure of trade uncertainty.

Taking into account the claims discussed above along with the general importance
of volatility for risk management and portfolio choice, a relevant question to ask
is: “How has the US-China trade war impacted the volatility of Bitcoin returns?",
and, particular, “Does uncertainty caused by the US-China trade add incremental
predictive value useful for forecasting the volatility of Bitcoin returns?". Volatility
is a widely used measure of risk and, therefore, its accurate modeling and fore-
casting play a key role in investment decisions and portfolio choice (Poon and
Granger 2003). In light of this, as pointed out by Baur and Dimfl (2018) for the
cryptocurrency market, positive returns are closely associated with higher levels of
volatility. One explanation of this returns-volatility nexus points to the influence
of uninformed investors’ herding, because such investors buy due to their fear of
missing out on rising cryptocurrency valuations and pump and dump (known also
as P&D) scams. In other words, one can argue that increases in Bitcoin returns as-
sociated with the US-China trade war, and uncertainty in general (see e.g., Bouri
et al. 2017, 2018, Fang et al. 2018, Aysan et al. 2019, Bouri and Gupta 2019,
Wu et al. 2019), are likely to result in heightened volatility. However, Baur and
Dimfl (2018) find this evidence to be (statistically) weak for Bitcoin and Ethereum
among 20 cryptocurrencies considered, which can be interpreted to indicate that

these two cryptocurrencies are possibly dominated by informed investors.

Against this backdrop, we study the role of the US-China trade war in predicting,
both in- and out-of-sample, daily (realized) volatility of Bitcoin returns. To this
end, we use intraday Bitcoin returns as measured in 60 minute-intervals (hourly
basis) covering the period from 1st July 2017 to 30th June 2019. We focus on
realized volatility estimated by non-parametric techniques, which provides an ac-

curate estimator of volatility on the basis of the actual variance if intraday returns.

'In the empirical-finance literature, the term volatility is often used for the for the standard

2



In particular, any non-parametric estimator is based on quadratic variation, which,
in turn, is considered to be the best estimator of (latent) volatility. Moreover,
usage of the realized version of daily volatility, which is basically defined as the
sum of non-overlapping squared intraday returns for a given interval (e.g., within a
day), transforms volatility into an observable process. According to McAleer and
Medeiros (2008), intraday data contain rich information about market conditions
(such as the microstructure of the market), producing more accurate estimates of

daily realized volatility.

As for the econometric framework concerned in this research for forecasting real-
ized volatility, we make use of the heterogeneous autoregressive realized-volatility
model (HAR-RV). This model, as proposed by Corsi (2009), allows stylized facts
(such as multi-scaling behavior and long-memory, as detected for Bitcoin by Bouri
et al. (2019b) and Takaishi (2018) respectively) of the volatility process to be cap-
tured in a straightforward and simple way. We also control for the discontinuity
property of realized volatility, known as jumps, given that jumps are well-known
to improve the overall fit of realized volatility models (see, e.g., Andersen et al.
2007, Bollerslev et al. 2009, Corsi et al. 2010, Neuberger and Payne 2018, Gkil-
las et al. forthcoming), and observed for cryptocurrencies (Bouri et al. 2019c).
In order to capture left-tail events far away from the mean, following Amaya et
al. (2015), we use realized skewness and realized kurtosis (see also Mei et al.
2017, and Gkillas et al. 2019 in particular in relation to the Bitcoin market). Im-
portantly, we include in the HAR-RV model our primary predictor of interest,
namely a metric for the US-China trade tension, for which we rely on Google
Trends (as has been done by studies such as (Kristoufek 2013, Panagiotidis et al.
2018, 2019, Nasir et al. 2019, Subramaniam and Chakraborty 2019) for search-
terms like: “US-China Trade War" (primarily), “US-China Tariffs", “Tariffs War",

deviation of returns. In our research, because there is no risk of confusion, we use the term
volatility to denote the realized variance of Bitcoin returns (as defined in Equation (1) below).
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“Tariffs War US-China", “Trump Trade War", and “New Trade War Tariffs", and
then consider a composite of these terms based on principal component analysis.
As an alternative measure, we also consider the news-based measure of US trade

policy uncertainty as developed by Caldara et al. (2019).

In terms of estimation strategy, we rely on a machine-learning technique that is
known in the statistical-learning literature as random forests. Recent applications
of this technique in the empirical finance literature include Gupta et al. (2019),
Demirer et al. (2019), and Pierdzioch and Risse (forthcoming), among others.
As compared to the ordinary-least squares technique (OLS) commonly applied
in earlier literature to estimate the HAR-RV model and its various extensions,
random forests have several advantages (for a discussion of random forests and
a comparison with other machine-learning techniques, see Hastie et al. 2009).
One advantage is that random forests can be interpreted as a data-driven mod-
eling environment that renders it possible to study, in a unified framework, the
predictive ability of a large number of predictor variables for realized volatil-
ity. Such a modeling environment is ideally suited for our investigation (which
concerns the incremental predictive value of trade-related uncertainty for realized
volatility) due to the fact that we control for the impact of various measures of
jumps (i.e., upside/downside, asymmetric, truncated large/small jumps), higher-
order moments (i.e., realized skewness and realized kurtosis), returns, and a lever-
age effect in addition to the usual components of the benchmark HAR-RV model.
Another advantage of random forests is that this modeling environment makes it
not only possible to capture in a data-driven way the interdependencies between
the predictor variables but also, at the same time, renders it possible to account
for potentially nonlinear links between realized volatility and its predictor vari-
ables. This advantage is particularly important in our study given the extremely
volatile behavior of cryptocurrency returns and their nonlinear dynamics (Gkillas

and Longin 2019). Finally, random forests, by their very construction, guarantee
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that forecasts of realized volatility, even when we study relatively complex models
that include simultaneously several predictor variables, are always nonnegative, a
feature not shared by the ordinary-least squares technique. Yet another advantage
of random forests is that they permit numerous realized volatility out-of-sample
predictions to be computed with ease given that random forests can be efficiently

estimated in terms of computing time.

Finally, it must be noted that a large literature has emerged that has aimed to pre-
dict (in- and out-of sample) daily price movements in the volatility of cryptocur-
rencies and in particular Bitcoin, based on same-frequency or mixed-frequency
variants of the popular Generalized Autoregressive Conditional Heteroskedastic-
ity (GARCH) model, using various types of financial and macroeconomic vari-
ables as predictors (see, e.g., Chu et al. 2017, Conrad et al. 2018, Ardia et al.
2019, and Walther et al. 2019, for detailed reviews of this literature). However,
our study is the first study that uses random forests to analyze the role of US-China
trade war in predicting Bitcoin’s daily realized volatility by accounting for volatil-
ity jumps, realized skewness and realized kurtosis, all constructed from intraday

data.

The remainder of the paper is organized as follows. Section 2 presents the em-
pirical methods used. Section 3 describes the data. Section 4 summarizes the

empirical results. Section 5 concludes.

2 Method and predictors

2.1 Random forests

Following Andersen and Bollerslev (1998), we consider a realized volatility mea-

sure constructed by using realized variance, which we denote by RV;. Realized



variance, RV;, is a benchmark volatility estimator because it is considered as a
consistent estimator of the integrated variance, including the jump contribution
to the latter. In order to put it differently, RV; is a non-parametric estimator of
volatility and, therefore, provides an accurate estimator of volatility on the basis
of the actual variance. As we already mentioned in the introductory section, any
non-parametric estimator is based on quadratic variation, which is considered to
be the best estimator of (latent) volatility. In this research, for each day ¢, we con-
struct a daily point estimate of RV; using intraday Bitcoin returns. A daily point
estimate of (RV;) is constructed by summing up all successive intraday squared

Bitcoin log-returns as follows
u 2
RV:=Y X7, (1)
i=1

where X;; denotes the intraday Bitcoin log-return for hour i within day #, while

i=1,..,N denotes the total number of intraday Bitcoin log-returns within a day.

As noted in the introductory section of this paper, we apply a technique known
in the literature on machine learning and statistical learning as random forests to
model realized volatility of Bitcoin returns. In contrast to the common approach to
estimate the widely-studied HAR-RV model, which is estimated by means of the
OLS technique, random forests are a modeling environment that allows the links
between realized volatility and a large number of predictors, including US-Chine

trade-war related uncertainty, to be modeled in a fully data-driven way.

A random forest consists of several individual regression trees (for an introduc-
tion, we refer to the textbook by Hastie et al. 2009, Chapter 9; our notation follows
the notation they use in their textbook). A regression tree, 7', consists of brances
that recursively partition the space of predictor variables, x = (x1,x3,...), of re-
alized volatility of Bitcoin returns into / non-overlapping regions, R;. The list of
predictor variables we use in this research comprises the usual HAR-RV predic-

tors (i.e., daily RV;, weekly RV, ;, and monthly RV, ;), US-Chine trade-war related
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uncertainty, and several other predictors commonly studied in the literature on re-
alized volatility (see Section 2.2 for details). A simple greedy algorithm governs
the recursive partitioning of the the space of predictor variables in a top-down and
binary way. At the top level of a regression tree, the algorithm selects the first
partition in such a manner that the partitioning predictor variable, s, and the real-
ization of this predictor variable that is selected as a partitioning point, p, define
the half-planes R; (s, p) = {xs|xs < p} and Ry (s, p) = {xs|x; > p} in a way such

that a standard squared-error loss function is minimized:

min < min Z (RV; —R_Vl)2 + min Z (RV; —R_Vz)2 ; (2)
5P RV, XsER1(s,p) RV Xs€R(5,p)

where i stands for the data on realized volatility that belong to the half-planes,
RV = mean{RV; |x; € Ri(s,p)},k = 1,2 stands for the half-plane-specific mean
of realized volatility of Bitcoin returns. Note that the inner minimization is carried
out so as to to minimize the region-specific squared error loss by means of an
optimal choice of the half-plane-specific means.” The outer minimization consists
of a brute-force search over all combinations of s and p. This search is done
so as to identify the first optimal partitioning predictor variable, the first optimal

partitioning point, and the two region-specific means of Bitcoin realized volatility.

Next, the minimization given in Equation (2) is applied to the new regression tree,
which now has two-terminal-nodes. The minimization is applied separately to the
two optimal top-level half-planes, R (s, p) and Ry(s, p), chosen in the first step.
This minimization yields up to two second-level optimal partitioning predictor
variables and optimal partitioning points, and four second-level region-specific

means of realized volatility of Bitcoin returns. We repeat this search-partition

2To be precise, we should use the notation RV, in Equation (2) because we forecast realized
volatility, where 4 is an index for the forecast horizon. For ease of notation, we use a somewhat
simpler but less precise notation in Equation (2).



process until the regression tree has a preset maximum number of terminal nodes
or every terminal node has a minimum number of observations, both of which can

be specified by a researcher as hyperparameters.

When the search-partition process stops, the regression tree sends the predictor
variables in a top-down way along its various optimal nodes (that is, partitioning
points) and branches to its terminal nodes and then predicts the realized volatility

by its region-specific mean. When the tree has L regions, we have

L
T (xi, {Ri}}) = Y RV/1(x; €R)), (3)
=1

where 1 is the indicator function.

Growing a large enough regression tree renders it possible to compute finer and
finer granular predictions of realized volatility via Equation (3). A key problem
of such an approach, however, is that its hierarchical structure makes a complex
regression tree very data-sensitive, typically resulting in poor forecasting perfor-
mance. An efficient way to circumvent this problem is to combine a large number
of individual regression trees to form a random forest (Breiman 2001). To this
end, a large number of bootstrap samples is obtained from the data, and in each
bootstrap sample a random regression tree is estimated. A standard regression tree
is different from a random regression tree in that the latter selects for every parti-
tioning step only a random subset of the predictor variables. This random selec-
tion of predictor variables mitigates the influence of influential predictor variables
on tree building and, thereby, decorrelates the predictions from individual regres-
sion trees. This decorrelation of predictions stabilizes the predictions of realized

volatility of Bitcoin returns.



2.2 Predictor variables

2.2.1 The Core HAR-RV Model

The heterogeneous market hypothesis (Miiller et al. 1997) forms the theoretical
foundation of the HAR-RV model of realized-volatility. The main idea behind this
hypothesis and, thus, the HAR-RV model is to combine volatility measures from
different time resolutions and, thereby, to capture key properties of the volatility
process such as heterogeneity and long memory. The baseline model for realized
volatility forecasting follows the widely-used HAR-RV model developed by Corsi
(2009). This model stipulates that (in addition to a constant intercept term) for A-
days-ahead RV denoted by RV, j, we use as predictors weekly realized volatility,
denoted by RV,,;, and monthly realized volatility, denoted by RV,,,, where h is
the forecast horizon, RV,,; is the average RV from day t —5 to day r — 1, and
RV 1s the average RV from day r — 22 to day ¢ — 1. In this study, following the
earlier literature, we define RV;,;, as mean{RV¢+1,...,RVt+ h} studying three
forecast horizons: the short daily forecasting horizon (where # is equal to 1), the
medium weekly forecasting horizon (where 4 is equal to 5), and the long monthly

forecasting horizon (where 4 is equal to 22).

2.2.2 Detecting total jumps

In addition to the predictor variables employed in the core HAR-RV model, we
make use of several other predictor variables for growing random forests, includ-
ing several measures that disentangle the continuous and jumps components of
realized volatility. In doing so, we detect various types of volatility jumps (here-
after jumps) and signify upside/downside and asymmetric jumps and truncated
large/small jumps. To this end, we apply a benchmark jump-detection scheme

proposed by Huang and Tauchen (2005), Barndorff-Nielsen and Shephard (2006),



and Andersen et al. (2007). In particular, we consider the following general

stochastic volatility jump-diffusion model for the log-price P, of a risky asset:
dP= wdt + o, dW; + kdq,, 0<t<N, “4)

where L, denotes the drift term with a continuous variation sample path, o; dentes
a stochastic volatility process (which is strictly positive), W; denotes a standard

Brownian motion, and k;dq; denotes the random jump size.

For a discrete price process, the volatility at a given day ¢ includes jump variation.
In others words, a daily point estimate of integrated volatility can be derived by the
quadratic variation, denoted by QV;, which is the best estimator of total variation
(that is, of integrated volatility). QV; is given by

oVi— / st Y K (5)

-1 t—l<s<t

where [/ | 62ds is the continuous sample path variation, while ¥, ., k2t de-
notes the discontinuous jump variation. Under weak regularity conditions and
N — oo, RV, can be considered as a consistent estimator of QV;:

RV, *=% QV,= / ol Y, w (6)

-1 t—1<s<t

where QV; is decomposed into its continuous and jump components.

As we already mentioned, the methodology for detecting jumps we use in this
research is based on the decomposition of volatility into a jump and a continuous
component of RV;. Hence, building on our discussion above, we need an estimator
to separate the continuous prices moves, f,ﬂl Gszds, from total variation, that is, we
need an estimator that excludes jumps. Barndorff-Nielsen and Shephard (2006)
propose an accurate estimator of the integrated variance which excludes jumps,
the so-called realized bipower variation (RBV'). RBV is defined as follows:

N

RBV;=pi;* Y Xl |X: i1, (7
i=2

10



where X; ; is the intraday Bitcoin log-return for i hour within day ¢, i = 1,..,N
denotes the total number of intraday Bitcoin log-returns within a day, and p; is
given by E(|Z|%*) for a equal to 1 and Z ~ N(0, 1). In other words, y; is the mean

of a standard Gaussian random variable, Z, in absolute values, while for o equal

to 1, E(|Z|') is equal to \/(2/7).

Like Andersen et al. (2007), we employ the logarithmic version of the Huang and

RBY)

Tauchen (2005) ratio-statistic (also called jump-ratio test), denoted by Jt( , to

detect the discontinuous jump variation. Under the null hypothesis of no jumps,

Jt(RBV) along with its logarithmic version, is a useful pre-test, prior jump detection.

It should be noted that, in line with Andersen et al. (2007), we did not find any sta-

tistically significant difference between the plain jump statistic and its logarithmic

Jt(RBV)

version. More specifically, the logarithmic version is given by:

i -1
;= (RY; — RBV:) RY: SNO,1),  ®)

((ur*+2u7% = 5) max {1,RTQ,RBV,2})'*

where RV, is the realized variance defined in Equation (1) and is an asymptotically
consistent estimator of the integrated variance including also the jump component.
RT Q; is an estimator of integrated quarticity, which is asymptotically unbiased in
the absence of microstructure noise, and converges in probability to integrated

quarticity. The RT Q; is given by:
- 4 4 4
RTQr = N&, 3 Y IXeil*PIXe it [ i, ©)
i=3

where X; ; again denotes the intraday Bitcoin log-return for i hour within day 7 and

i=1,..,N denotes the total number of intraday Bitcoin log-returns within a day.

Applying the J,(RBV) test to a jump-detection scheme, we detect total jumps, de-

noted by RJ;, by the following condition:

RBY)

RI=1(J"") > ®4)|RV; — RBV]|, (10)
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where 1 is the indicator function. A jump is statistically different from zero when
the JI(RBV) test exceeds a critical value of a Gaussian distribution, denoted by @,

for a given level of significance «.

We use this jump-detection scheme to detect upside/downside and asymmetric

Jumps as well as truncated large/small jumps.

2.2.3 More jumps: Upside, downside and asymmetric jumps

Guo et al. (2019), among others, suggest that considering potential asymmetry in
the volatility process can improve the predictability of models for future excess
returns. In this vein, under a realized estimation framework, Barndorff-Nielsen
et al. (2010) proposed upside and downside realized semi-variances, denoted by
(RV™ and RV ™), as realized measures that are based on entirely on upward and

downward intraday price movements. RV and RV~ measures are defined as

N
RV =Y X%1(X,; > 0), (11)
i=1

N
RV, = ZX%,—I(XM <0), (12)
i=1

where 1 is the indicator function. Following Bollerslev et al. (forthcoming), we
consider the realized up term as daily RV (hereafter “good” realized volatility)
constructed using the variability of Bitcoin upside price movements only from
positive intraday returns. We also consider the realized down term as daily RV~
(hereafter “bad” realized volatility) constructed using the variability of Bitcoin
downside price movements only from negative intraday returns. Good and bad
realized volatility can be considered as measures of upside and downside risk,
capturing the sign asymmetry in the volatility process. Several studies have iden-
tified the importance of upside and downside risk in portfolio-risk assessments

and management. Realized volatility, and its downside and upside components,
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as a measures of risk is more accurately estimated with the use of intraday data at
a daily basis (Hansen and Huang 2016). Intraday data reveal various information
about, for example, the microstructure of the market, which are not easily ob-
served at lower frequencies. In light of this, several studies have used HAR-type
models along with RV and RV~ to forecast realized volatility (see, e.g., Patton

and Sheppard 2011, Sévi 2014, Chen et al. 2019).

Building on the concept of RV' and RV, we study an additional list of pre-
dictors to capture the sign asymmetry of the jumpy component of the volatility
process, and therefore, the incremental predictive content of the US-Chine trade
war for forecasting Bitcoin volatility to be isolated. In doing so, by applying the
jump-detection scheme defined in Equation (8), we estimate upside and downside
jumps, denoted by RJ;" and RJ;, receptively. Following the research by Duong

and Swanson (2011, 2015), RJ;" and RJ,” are formulated by power transformation

as follows:
T
RIF=1(") > o) ¥ [X,11(X,: > 0), (13)
i=1
T
RI7=1(") > @4) ¥ [X,411(X,: < 0), (14)

i=1
where again 1 denotes the indicator function. We consider RJ;” and RJ;" as “good”
and “bad” jumps, respectively. RJ;" is constructed using only Bitcoin’s positive
intraday returns, while RJ;” is constructed using only Bitcoin’s negative intraday
returns. The parameter g defines the asymmetry parameter, which ranges from
2 to 6 and effects the limiting behavior of the RJ; estimator. Very low values
(at the lower bound of 2) cannot guarantee finite jump variation. Like Duong
and Swanson (2011), we set g equal to 2.5. From RJ;r and RJ,+ , We estimate

asymmetric jumps (the so-called signed jump), denoted by RJA;Q, as follows:

RIA=1(JF) = @,) RIT —RI". (15)
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The interpretation of RJA; is straightforward. On the one hand, a positive value
means that when a jump occurs at day ¢ it is related with events that mainly impact
upside (good) volatility. On the other hand, a negative sign means that the jump is

related with events that mainly impact downside (bad) volatility.

2.2.4 Truncated large and small jumps

We further estimate another set of jump covariates using decomposition based on
truncation levels instead of power transformation. In particular, following Duong
and Swanson (2011), we estimate the realized measure of truncated large jumps
denoted by(RLJ;), and truncated small jumps, denoted by (RSJ;), via a decom-
position by selecting a suitable threshold (fixed truncation level) that can separate
the (RLJ;) from RSJ;). In the existing literature, HAR-type models including both
RLJ; and RSJ; can provide significantly superior forecasting accuracy at longer
forecasting horizons (such as weekly or monthly) for traditional assets (see e.g.,
Liu et al. 2015). By using the jump detection scheme defined in Equation (8), the
RVLJ; and RV SJ; are estimated by the following:

N
RLI=min{RI 1 (1" > @) (Y X21(|X,i > 7), (16)

i=1
RSJ;=RJ; —RVLJ;, 17

where 1 is the indicator function. RJ; is defined in Equation (10). 7 is the fixed
truncation level which is selected by a data-driven procedure. In line with Duong

and Swanson (2011), the y is selected to be equal to 2.

2.2.5 Realized skewness and kurtosis

As noted before, one of the main advantages of random forests is the flexibility

of using a large number of predictor variables (covariates) for forecasting realized
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volatility. Therefore, we also compute realized skewness (RSK) and realized kur-
tosis (RKU) of Bitcoin returns (see, e.g., Mei et al. 2017). In line with Amaya
et al. (2015), we consider RSK and RKU as realized measures of the higher-
moments of the daily Bitcoin return distribution, and construct them using intra-
day data. RSK is considered as a measure of the asymmetry of the Bitcoin daily
returns distribution (associated with the third moment). For a univariate price
process, the third moment captures the conditional skewness. As in Barndorff-
Nielsen and Shephard (2004), RSK captures the asymmetry risk and can be in-
terpreted as a proxy for crash risk. Its interpretation is as follows: (i) a value
equal to zero implies that the tails of the daily returns distribution on both sides
of the mean balance out overall (i.e., symmetric distribution) (ii) when the left
tail is longer or fatter than the right tail (i.e., left-skewed distribution), a negative
value arises, and, (iii) when the right tail is longer or fatter than the left tail (i.e.,
right-skewed distribution), a positive value arises. RKU, in turn, is defined as a
realized measure that captures extreme occurrences of the daily returns of Bitcoin
returns (associated with the fourth moment). As in Barndorff-Nielsen and Shep-
hard (2004), the fourth moment captures the kurtosis risk of a univariate price
process with tailedness around the mean. We use realized kurtosis, RKU, in order
to take into account whether, and how much, there are extreme deviations in Bit-
coin’s daily return distribution from the Gaussian distribution. The interpretation
of RKU is also straightforward and is given as follows: (1) when extreme devi-
ations of Bitcoin’s daily return distribution are similar to those that would arise
under a Gaussian distribution then kurtosis equals zero (and the distribution is
a mesokurtic distribution), (ii) when there are fewer and less extreme deviations
than under a Gaussian distribution then kurtosis is negative (and the distribution
is a platykurtic distribution), and, (iii) when there are more extreme deviations

than under a Gaussian distribution then kurtosis is positive (and is a leptokurtic
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distribution). RSK; and RKU;, are defined as follows:

VNYN X3
RSK,=(——n—2), (18)
(L, X2)32
NZ{'\Ll r?i
RKU;=——7"——" -3, (19)
( {'V:lth,i)z

where RSK; is standardized by RV, defined in Equation (1), while the scaling of
V/N for RSK; and N for RKU;, ensures that their magnitudes correspond to Bit-
coin’s daily skewness and kurtosis. It should be remembered that X; ; is the intra-
day Bitcoin log-return for i hour within day  and i = 1, .., N is the total number of

intraday Bitcoin log-returns within a day.

2.2.6 Returns and leverage

Finally, we use Bitcoin daily returns denoted by X;, and a leverage term as addi-

tional predictors. We define the leverage term as 1(X; > 0).

3 Data

We use intraday (high-frequency) data for Bitcoin prices covering the period from
1st July 2017 to 30th June 2019 to construct daily measures of realized volatil-
ity, and its various covariates. We select Bitcoin prices every sixty minutes (60-
minutes, hourly basis) and construct 60-minutes log-returns. We select the start-
ing day of the sample period and the 60-minutes frequency of the data because we
also present results, for comparison purposes, for other major cryptocurrencies
in addition to Bitcoin (see Section 4). It should also be noted that a 60-minutes
frequency renders it possible to circumvent liquidity issues (or the lack thereof),
extreme high-frequency noise from no-activity periods observed mainly in very

small-time windows, and zero prices. We define a trading day from Monday

16



to Sunday from 00:00 EST to 23:59 EST, which renders it possible to have a
higher number of observations compared to an 8-hourly and 12-hourly bases. We
also employ intraday (high-frequency) data for EOS, Ethereum (ETH), Litecoin
(LTC) and Ripple (XRP) prices covering the same period for the robustness anal-
ysis. Data for Bitcoin and other cryptocurrencies are from CryptoCompare.com
(https://www.cryptoCompare.com), which provides data on a number of liquid

Bitcoin markets and other major cryptocurrencies.

The entire dataset has been cleaned following the suggestions of Barndorff-Nielsen
et al. (2009). First, we employ the estimators to Bitcoin prices (and for other ma-
jor cryptocurrencies) of mid-quotes after filtering out spread outliers (less than
0.05 percent). Second, we omit days with recorded prices for less than 40 per-
cent of the expected observations on operating time. Third, following Andersen
et al. (2007), in order to take into consideration the existence of small values of
RV; estimates, we employ a double-stabilizing transformation of logarithm and
square root (standard deviation), that is, the logarithmic standard deviation of RV;
estimates. This transformation passes all tests for structural stability. As shown
by the Jarque-Bera test, this transformation follows a close-to Gaussian distri-
bution. The reliability of the asymptotics for kind of transformation is ensured
when twelve or more observations are used to construct a daily one-point estimate
of RV; (see Barndorff-Nielsen and Shephard, 2004a). In this paper, given that
twenty-four observations (trading hours per day) are employed for a daily point
estimate of RV;, this condition is met. Daily RV; in its logarithmic standard devi-
ation form, is log-normally distributed. Finally, as in Diebold et al. (1999) and
Andersen et al. (2001), we construct Bitcoin’s intraday returns on day ¢ for the
i-th intraday observation as the logarithmic difference between two consecutive

observed Bitcoin intraday prices within a day ¢, as follows:

X =log(Pi) —log(Pi-1), (20)
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where P, ; is Bitcoin intraday price, X; ; is its intraday log-return for i hour within
day t, while i = 1,..,N denotes the total number of intraday Bitcoin log-returns

within a day.

To obtain a daily measure for the concern surrounding the US-China trade war, we
rely on Google Trends (https://trends.google.com/trends/) data. While,
the literature (as pointed out in the introduction) has used Google Trends data to
obtain metrics for investor attention associated with Bitcoin, we are not aware of
any study that has used this approach to derive measures of trade-related uncer-
tainty. Specifically, we extract Google search volume intensity associated with the
following items: “US-China Trade War", “US-China Tariffs", “Tariffs War", “Tar-
iffs War US-China", “Trump Trade War", and “New Trade War Tariffs".> While
we primarily base our analysis on the search volume derived under the “US-China
Trade War" term, we also build an indicator which is a composite of these search
terms based on the first principal component of (the standardized values) involving

the search volume associated with these terms.

3Notably, Google Trends provide data for up to 5 years on a weekly basis, whereas daily data
can be download for 90 days only. To address this limitation and overcome the individual scaling
that might prevent us from stringing several 90-day data together (Baur and Dimpfl, 2016), we
follow the procedure described below. We extracted five 90-day periods at once, and fortunately
the search data from these periods will have the same maximum scale of 0-100. Given our sample
period (1st July 2017 to 30th June 2019) includes at least 8 quarters, we repeat this process to
connect the series together while using the overlapping quarters for chaining the series together
(i.e., for 2018, we use each quarter of 2018 and the last quarter of 2017, etc.). Each daily series
is based on a monthly moving window and rescaled with respect to monthly series over the whole
period. Each term has been searched five times with random alphanumerical codes added to them
and averaged over the whole period (we have run 20 repetitions for each term, and our main results
are not be biased by this issue). Data are then converted to a 0-100 scale as they are typically given
by Google Trends.
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4 Empirical Results

We present in Table 1 the results for the Diebold and Mariano (1995) tests in order
to examine whether trade uncertainty helps to improve out-of-sample forecast ac-
curacy. To this end, we exclude trade uncertainty from the vector of predictors and
then compare the results with those from a model that can use trade uncertainty as

a predictor.*
— Please include Table 1 about here. —

The results in Table 1 are based on rolling-window estimates. Every rolling-
estimation window is of length 350 observations, which corresponds roughly to
half of the sample size, to compute out-of-sample forecast errors. We then com-
pute the Diebold-Mariano test for three different forecast horizons (h = 1,5,22
days). We present in Table 1 results for random forests that feature a maximum
number of five and ten terminal nodes, and random forests featuring a minimum
node size of ten. We fix the number of trees at 500 and choose #floor(total number
of covariates/3) random covariates for splitting, a choice which follows standard
practice in the machine-learning literature. We present results for an absolute
(L1) and a quadratic (L2) loss function, and for two types of forecast errors. As
the first type, we consider unscaled standard forecast errors (that is, actuals mi-
nus forecasts) and, given that Bitcoin typically experience recurrent periods of

high volatility. As the second type, we consider scaled forecast errors. We define

4All estimation results documented in this study were computed with the use of the R pro-
gramming environment (R Core Team 2019). In particular, the following R packages were used:
“RandomPForest” for the estimation of random forests (see Liaw and Wiener 2002), the R pack-
age “forecast” (see Hyndman 2017, Hyndman and Khandakar 2008) for the computation of the
Diebold-Mariano test’s p-values (based on the well-known modified Diebold-Mariano test pro-
posed by Harvey et al. 1997).
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scaled forecast errors by dividing the forecast error by the respective actuals so as

to account for heteroskedasticity (see also Bollerslev and Ghysels 1996).

The general picture that emerges is that trade uncertainty does improve forecast
accuracy for various configurations of random forests and forecast horizons. The
results are stronger for L1 loss than for L2 loss, which was to be expected given
that the latter attaches a larger weight to large forecast errors. Large forecast
errors typically occur during volatile periods of market jitters. Results for the
scaled forecast error in case of L2 loss tend to be stronger in several cases than
for unscaled forecast error. Results for the long forecast horizon (h = 22 days) are

significant mainly for the scaled forecast error and when we consider L1 loss.
— Please include Table 2 about here. —

Table 2 depicts a ranking of the various covariates considered in this research
according to their relative importance. Relative importance is measured by in-
specting the increase in node purity (as measured by the residual sum of squares
across all trees) that results from the inclusion of a variable to the list of predictors.
The ranking of the covariates is based on the mean rank of a covariate across all
rolling-estimation windows. As one would have expected, daily realized volatility
and its weekly and monthly counterparts (that is, the standard predictors used for
estimating a HAR-RV model) are among the top-ranked predictors. Trade uncer-
tainty, in turn, has an average rank of about seven for 42 = 1, and of three and four

for the two longer forecast horizons.
— Please include Table 3 about here. —

Table 3 depicts pseudo R-squared statistics for the random forest models. The R-
squared statistics increase in the forecast horizon and, as one would have expected,
when we increase the number of terminal nodes. The largest R-squared statistics

obtain for a model that features a terminal node size of ten observations.
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— Please include Table 4 about here. —

Table 4 shows results for three alternative rolling-estimation windows of length
200, 300, and 400 observations. Again, we find several significant test results.
Results only become insignificant for the unscaled forecast error and L2 loss when
the length of the rolling-estimation window increases, and for the short rolling-
estimation window and the short forecast horizon (A = 1) in case of the scaled

forecast error.

— Please include Table 5 about here. —

Table 5 summarizes the test results for three alternative specifications of the HAR-
RV model. In the first specification, we use “good” realized volatility (that is,
RV;") as predictand. In the second specification, we study the predictive value
of trade uncertainty for “bad” realized volatility (that is, RV,") as predictand. In
the second specification, we keep the standard metric of realized volatility as our
predictand, but add good and bad realized volatility as additional predictors to the
model. The test results show that trade uncertainty significantly improves forecast
accuracy, with the results for the model that features bad realized volatility as a
predictand being the only exception when we study the unscaled forecast error

under a L2 loss function.

— Please include Table 6 about here. —
In Table 6, we present results for the Clark and West (2007) test, where we con-
sider three different specifications of the number of terminal nodes and the size of

the terminal nodes (and a rolling-estimation window of length 350 observations).

The test results are significant for two out of the three specifications for all three
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forecast horizons, and for all three specifications for the long forecast horizon

(h =22 days).

As final extensions, we present results for an alternative measure of trade uncer-
tainty (Table 7) and other cryptocurrencies (Table 8). As for the latter, we use in-
traday (high-frequency) data for EOS, Ethereum (ETH), Litecoin (LTC) and Rip-
ple (XRP) prices covering the period from 1st July 2017 to 30th June 2019. These
cryptocurrencies along with the starting day of the sample and the 60-minutes

frequency employed are strictly selected by the availability of intraday data.
— Please include Table 7 about here. —

The results for an alternative news-based index of trade uncertainty, as created
by Caldara et al. (2019),> are much weaker than for our baseline metric of trade
uncertainty and almost always insignificant. The results for the other cryptocur-
rencies, in contrast, corroborate our findings for Bitcoin realized volatility. Both
the Diebold-Mariano test and the Clark-West test yield, with few exceptions, sig-

nificant results.

5 Concluding Remarks

We study the importance of the US-China trade war in predicting, both in- and
out-of-sample, daily realized volatility of Bitcoin returns. We use intraday data in

5 minute-interval covering the period from 1st July 2017 to 30th June 2019. We

>The index is constructed by counting the frequency of joint occurrences of trade policy (tariff,
import duty, import barrier, and anti-dumping) and uncertainty (uncertainty, risk, or potential)
terms across major newspapers (Boston Globe, Chicago Tribune, Guardian, Los Angeles Times,
New York Times, Wall Street Journal, and Washington Post). The data is downloadable from the
website of Professor Matteo lacoviello at: https://www2.bc.edu/matteo-iacoviello/tpu.
htm.
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focus on realized volatility as it is it provides an accurate estimator of volatility
on the basis of the actual variance. We employ the HAR-RV model proposed by
Corsi (2009) as our benchmark model, and then consider its various extensions
discussed in earlier literature to capture stylized facts of the volatility process,
such as heterogeneity, long-memory and discontinuity. We control realized skew-
ness and realized kurtosis, and for various variants of jumps given that previous
studies (e.g., Chaim and Laurini 2018) have indicated the importance of jumps
in the Bitcoin market. Furthermore, jumps are well known for their ability to
improve the overall fit of realized-volatility models. The primary predictor of in-
terest, however, is a metric for the US-China trade tensions, and it is based on

Google Trends data.

For our empirical analysis, we apply a machine-learning technique known as ran-
dom forests. Random forests are ideally suited for our research due to the fact
that we control for the impact of various measures of jumps, higher-order mo-
ments (i.e., realized skewness and realized kurtosis), returns, and a leverage effect
in addition to the usual terms of the benchmark core HAR-RV model. As exten-
sions, we consider a news-based measure of US trade policy uncertainty, and we
analyze other cryptocurrencies. We document results based on rolling-window
estimates that we use to compute out-of-sample forecast errors. We report results
for an absolute and a quadratic loss function, and for two types of forecast errors
(unscaled and scaled), given that Bitcoin typically experiences recurrent periods

of high volatility.

Our findings show that our main Google-Trends based measure of the US-China
trade war improves forecast accuracy for various configurations of random forests
and forecast horizons. Our findings go beyond results reported in the earlier liter-
ature on Bitcoin and other cryptocurrencies. Specifically, our findings add to the
work of Gozgor et al. (2018) and Bouri et al. (2019a) by showing, for the first

time, the ability of trade uncertainty to predict the realized volatility of Bitcoin
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returns. This is an important finding that is useful to traders and investors in their
quest to predict the volatility of Bitcoin, which continues to puzzle researchers,
crypto-traders, and policy makers. Building on our findings, an interesting avenue
for future research is to consider the effect of trade uncertainty on the relationship

between trading volume and volatility in the cryptocurrency market.

References

Acharya, V.V., Lochstoer, L.A. , and Ramadorai, T. (2013). Limits to arbitrage
and hedging: evidence from commodity markets. Journal of Financial Eco-

nomics, 109: 441—465.

Agnolucci, P. (2009). Volatility in crude oil futures: a comparison of the predic-
tive ability of GARCH and implied volatility models. Energy Economics,
31: 316—321.

Amaya, D., Christoffersen, P., Jacobs, K., and Vasquez, A. (2015). Does realized
skewness predict the cross-section of equity returns? Journal of Financial

Economics, 118: 135—167.

Andersen, T. G., and Bollerslev, T. (1998). Answering the skeptics: Yes, stan-
dard volatility models do provide accurate forecasts. International Eco-

nomic Review, 39(4): 885—905.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001). The distri-
bution of realized exchange rate volatility. Journal of the American Statis-

tical Association, 96: 42—55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling

and forecasting realized volatility. Econometrica, 71: 579—625.

24



Andersen, T. G., Bollerslev, T., and Diebold, F.X. (2007). Roughing it up: In-
cluding jump components in the measurement, modeling, and forecasting

of return volatility. Review of Economics and Statistics, 89: 701—720.

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2010). Parametric and
nonparametric volatility measurement. In L.P. Hansen and Y. Ait-Sahalia
(Eds.), Handbook of Financial Econometrics: Tools and Techniques, 67—137,
Elsevier, North-Holland.

Andersen, T.G., Dobrev, D., and Schaumburg, E. (2012). Jump-robust volatility
estimation using nearest neighbor truncation. Journal of Econometrics, 169:

75-93.

Ardia, D., Bluteau, K., and Rede, M. (2019). Regime changes in bitcoin GARCH

volatility dynamics. Finance Research Letters, 29: 266—271.

Arouri, M. E. H., Lahiani, A., Lévy, A., and Nguyen, D. K. (2012). Forecasting
the conditional volatility of oil spot and futures prices with structural breaks

and long memory models. Energy Economics, 34: 283—293.

Aysan, A.F., Demir, E., Gozgor, G., and Lau, C.K.M. (2019). Effects of the
geopolitical risks on Bitcoin returns and volatility. Research in Interna-

tional Business and Finance, 47: 511—518.

Barndorff-Nielsen, O.E., and Shephard, N. (2006). Econometrics of testing for
Jumps in financial economics using bipower variation. Journal of Financial

Econometrics, 4: 1-30.

Barndorff-Nielsen, O.E., Kinnebrouk, S., and Shephard, N. (2010). Measuring
downside risk: realised semivariance. In T. Bollerslev, J. Russell and M.
Watson (eds.), Volatility and time series econometrics: Essays in honor of

Robert F. Engle, 117-136. Oxford University Press.

25



Baur, D. G., and Dimpfl, T. (2016). Googling gold and mining bad news. Re-
sources Policy, 50, 306—311.

Baur, D.G., and Dimfl, T. (2018). Asymmetric volatility in cryptocurrencies.
Economics Letters, 173: 148—151.

Bollerslev, T., and Ghysels, E. (1996). Periodic autoregressive conditional het-

eroscedasticity. Journal of Business and Economic Statistics, 14: 139—151.

Bollerslev, T., Li, S. Z., and Zhao, B. (forthcoming). Good volatility, bad volatil-
ity and the cross-section of stock returns. Journal of Financial and Quanti-

tative Analysis.

Bouri, E., Gil-Alana, L.A., Gupta, R., and Roubaud, D. (2019b). Modelling
long memory volatility in the Bitcoin market: Evidence of persistence and

structural breaks. [International Journal of Finance and Economics, 24:

412—-426.

Bouri, E., Gkillas, K., and Gupta, R. (2019a). Trade uncertainties and the hedg-
ing abilities of Bitcoin. Department of Economics, University of Pretoria,

Working Paper No. 201948.

Bouri, E., and Gupta, R. (2019). Predicting Bitcoin returns: Comparing the
roles of newspaper- and internet search-based measures of uncertainty. Fi-
nance Research Letters. DOI: https://doi.org/10.1016/j.£fr1.2019.
101398.

Bouri, E., Gupta, R., Lau, C.K.M., Roubaud, D., and Wang, S. (2018). Bitcoin
and global financial stress: A copula-based approach to dependence and

causality in the quantiles. Quarterly Review of Economics and Finance, 69:

297-307.

26


https://doi.org/10.1016/j.frl.2019.101398
https://doi.org/10.1016/j.frl.2019.101398

Bouri, E., Gupta, R., Tiwari, A.K., and Roubaud, D. (2017). Does Bitcoin hedge
global uncertainty? Evidence from wavelet-based quantile-in-quantile re-

gressions. Finance Research Letters, 23: 87—95.

Bouri, E., Roubaud, D., and Shahzad, S.J.H. (2019¢). Do Bitcoin and other cryp-
tocurrencies jump together? Quarterly Review of Economics and Finance.

DOI: https://doi.org/10.1016/j.qref.2019.09.003.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24: 123—140.
Breiman, L. (2001). Random forests. Machine Learning, 45: 5—32.

Caldara, D., Iacoviello, M., Molligo, P., Prestipino, A., Raffo, A. (2019a). The
economic effects of trade policy uncertainty. Journal of Monetary Eco-

nomics. DOL: https://doi.org/10.1016/j. jmoneco.2019.11.002.

Chaim, P., and Laurini, M.P. (2018). Volatility and return jumps in bitcoin. Eco-
nomics Letters, 173: 158—163.

Chen, Y., Ma, F,, and Zhang, Y. (2019). Good, bad cojumps and volatility fore-
casting: new evidence from crude oil and the U.S. stock markets. Energy

Economics, 81: 52—62.

Chu, J., Chan, S., Nadarajah, S., and Osterrieder, J. (2017). GARCH modelling

of cryptocurrencies. Journal of Risk and Financial Management, 10: 17.

Clark, T.D., and West,K.D. (2007). Approximately normal tests for equal predic-

tive accuracy in nested models. Journal of Econometrics, 138: 291 -311.

Conrad, C., Custovic, A., and Ghysels, E. (2018). Long- and short-term cryp-
tocurrency volatility components: A GARCH-MIDAS analysis. Journal of

Risk and Financial Management, 11: 23.

27


https://doi.org/10.1016/j.qref.2019.09.003
https://doi.org/10.1016/j.jmoneco.2019.11.002

Corsi, F. (2009). A simple approximate long-memory model of realized volatil-

ity. Journal of Financial Econometrics, 7: 174—196.

Demirer, R., Gkillas, K. , Gupta, R., and Pierdzioch, C. (2019). Risk aversion
and the predictability of crude oil market volatility: A forecasting experi-
ment with random forests. Department of Economics, University of Preto-

ria, Working Paper No. 201972.

Diebold, F. X., and Mariano, R. S. (1995). Comparing predictive accuracy. Jour-

nal of Business and Economic Statistics, 13: 253—263.

Duong, D., and Swanson, N. R. (2011). Volatility in discrete and continuous-
time models: A survey with new evidence on large and small jumps. Miss-
ing Data Methods: Time-Series Methods and Applications, 179—233. Emer-
ald Group Publishing Limited.

Duong, D., and Swanson, N. R. (2015). Empirical evidence on the importance
of aggregation, asymmetry, and jumps for volatility prediction. Journal of

Econometrics, 187: 606—621.

Fang, L., Bouri, E., Gupta, R., and Roubaud, D. (2019). Does global economic
uncertainty matter for the volatility and hedging effectiveness of Bitcoin?

International Review of Financial Analysis, 61: 29—-36.

Gkillas, K., Gupta, R., and Pierdzioch, C. (2019). Forecasting realized volatility
of bitcoin returns: Tail events and asymmetric loss. Department of Eco-

nomics, University of Pretoria, Working Paper No. 201905.

Gkillas, K., Gupta, R., and Pierdzioch, C. (Forthcoming). Forecasting realized
oil-price volatility: The Role of financial stress and asymmetric loss. Jour-

nal of International Money and Finance.

28



Gkillas, K., and Longin, F. (2019). Is Bitcoin the new digital gold? Evidence
from extreme price movements in financial markets. Available at SSRN:

http://dx.doi.org/10.2139/ssrn.3245571.

Gozgor, G., Tiwari, A.K., Demir, E., and Akron, S. (2019). The relationship
between Bitcoin returns and trade policy uncertainty. Finance Research

Letters, 29: 75—82.

Gupta, Rangan, Pierdzioch, C., Vivian, A. J., Wohar, M. E., (2019). The predic-
tive value of inequality measures for stock returns: An analysis of long-span

UK data using quantile random forests. Finance Research Letters, 29: 315-

322.

Guo, H., Wang, K., and Zhou, H. (2019). Good Jumps, Bad Jumps, and Condi-
tional Equity Premium. Asian Finance Association (AsianFA) 2014 Confer-

ence Paper, PBCSF-NIFR Research Paper No. 14-05.

Harvey, D., Leybourne, S., and Newbold, P. (1997). Testing the equality of
prediction mean squared errors. [International Journal of forecasting, 13:

281-291.

Hyndman, R.J. (2017). forecast: Forecasting functions for time series and linear
models. R package version 8.0, URL: http://github.com/robjhyndman/

forecast.

Hyndman, R.J., and Khandakar, Y (2008). Automatic time series forecasting:

the forecast package for R. Journal of Statistical Software, 26: 1—-22.

Huang, X., and Tauchen, G. (2005). The relative contribution of jumps to total

price variance. Journal of Financial Econometrics, 3: 456—499.

Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quanti-

fying the relationship between phenomena of the Internet era. Scientific

29


http://dx.doi.org/10.2139/ssrn.3245571
http://github.com/robjhyndman/forecast
http://github.com/robjhyndman/forecast

Reports, 3: 3415.

Liaw, A., and Wiener, M. (2002). Classification and regression by random For-
est. R News, 2: 18—22.

Liu, L. Y., Patton, A. J., and Sheppard, K. (2015). Does anything beat 5-minute
RV? A comparison of realized measures across multiple asset classes. Jour-

nal of Econometrics, 187,293—311.

McAleer, M., and Medeiros, M. C. (2008). Realized volatility: a review. Econo-

metric Reviews, 27: 10—45.

Panagiotidis, T., Stengos, T., and Vravosinos, O. (2018). On the determinants
of bitcoin returns: A LASSO approach. Finance Research Letters, 27(C):
235-240.

Panagiotidis, T., Stengos, T., and Vravosinos, O. (2019). The effects of markets,
uncertainty and search intensity on bitcoin returns. International Review of

Financial Analysis, 63: 220—242.

Mei, D., Liu, J., Ma, F,, and Chen, W. (2017). Forecasting stock market volatil-
ity: Do realized skewness and kurtosis help?. Physica A: Statistical Me-

chanics and its Applications, 481: 153—159.

Miiller, U. A., Dacorogna, M. M., Davé, R. D., Olsen, R. B., and Pictet, O. V.
(1997). Volatilities of different time resolutions — Analyzing the dynamics

of market components. Journal of Empirical Finance, 4: 213—239.

Nasir, M.A., Huynh, T.L.D., Nguyen, S.P., and Duong, D. (2019). Forecasting
cryptocurrency returns and volume using search engines. Financial Inno-

vation, 5 (Article No. 2), DOI: 10.1186/s40854-018-0119-8.

30


10.1186/s40854-018-0119-8

Patton, A. J., and Sheppard, K. (2015). Good volatility, bad volatility: Signed
jumps and the persistence of volatility. Review of Economics and Statistics,

97: 683—-697.

Pierdzioch, C., and Risse, M. (forthcoming). Forecasting precious metal returns

with multivariate random forests. Empirical Economics.

Poon, S.-H., and Granger, C.W.J. (2003). Forecasting volatility in financial mar-

kets: A review. Journal of Economic Literature, 41: 478—539.

R Core Team (2019). R: A language and environment for statistical computing,
Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-

project.org/. R version 3.6.0.

Subramaniam, S., and Chakraborty, M. (2020). Investor attention and cryptocur-
rency returns: Evidence from quantile causality approach. Journal of Be-

havioral Finance, 21: 103—115.

Takaishi, T. (2018). Statistical properties and multifractality of Bitcoin. Physica
A: Statistical Mechanics and its Applications, 506: 507—519.

Walther, T., Klein, T., and Bouri, E. (2019). Exogenous drivers of Bitcoin and
cryptocurrency volatility: A mixed data sampling approach to forecast-

ing. Journal of International Financial Markets Institutions and Money,

63: 101-113.

Wu, S., Tong, M., Yang, Z., and Derbali, A. (2019). Does gold or Bitcoin hedge

economic policy uncertainty? Finance Research Letters, 31: 171—178.

31



Table 1: Baseline Results

Panel A: Maximum number of terminal nodes is 5

Loss function h=1 h=5 h=22
Unscaled forecast error

L1 0.0000 0.0112  0.0526
L2 0.2303  0.1542  0.1225

Scaled forecast error
L1 0.0000 0.0046  0.0242
L2 0.0001  0.0685 0.1276

Panel B: Maximum number of terminal nodes is 10

Loss function h=1 h=5 h=22
Unscaled forecast error

L1 0.0072  0.0163  0.0540
L2 0.6930 0.2462  0.1273

Scaled forecast error
L1 0.0001  0.0065  0.0379
L2 0.0009 0.0761  0.1361

Panel C: Minimum node size is 10

Loss function h=1 h=5 h=22
Unscaled forecast error

L1 0.0116  0.0145  0.0012
L2 0.0910 0.1558  0.0462

Scaled forecast error
L1 0.0921  0.0555 0.0318
L2 0.2074  0.0767  0.1396

Note: p-values of Diebold-Mariano tests. Forecasts were derived from a HAR-RV-RF model without trade uncertainty
and a HAR-RV-RF model with trade uncertainty for three different forecast horizons. The scaled forecast error accounts
for heteroscedasticity in the data and was computed as (actual - forecast)/actual. Null hypothesis: the series of forecasts
are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF model that features the trade uncertainty
are more accurate. L1: absolute loss. L2: quadratic loss. The models were estimated using random forests and a rolling-
estimation window (350 observations). The number of trees was set to 500.
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Table 2: Ranking of Covariates

Covariate h=1 h=5 h=22
RV 1.79 2.85 3.67
RV,, 4.05 2.76 2.65
RV, 3.48 1.43 1.25
Asymmetric jumps 9.39 10.21 10.73
Bad jumps 4.99 5.67 5.94
Good jumps 8.92 10.16 8.71
Large jumps 6.93 7.05 5.74
Small jumps 9.11 8.55 7.97
Returns 1.39 5.26 8.24
Realized skewness 10.53  11.26 11.41
Realized kurtosis 10.43 9.42 8.97
Leverage 1223 1243 12.38
US China trade war 7.76 3.94 3.35

Note: The mean rank of a covariate across all rolling-estimation windows (2350 observations) was computed based on its
effect on node purity as measured by the residual sum of squares. The number of trees per random forest was set to 500,
and the maximum number of terminal nodes was set to five.

Table 3: Pseudo R-Squared

Specification h=1 h=5 h=22
Max. no. of terminal nodes =5 0.2708 0.3852  0.5356
Max. no. of terminal nodes = 10 0.2873  0.4205  0.5863
Min. terminal node size = 10 0.2881  0.4531 0.6370

Note: The pseudo R-squared was computed as 1 — MSE,,;/Var, where MSE,,, denotes the mean-squared error that
obtained when the estimated model was used to compute the out-of-bag data (that is, the data not used for tree building
when bootstrapping a random forest) and Var is an estimate of the variance of the dependent variable. The number of trees
was set to 500.
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Table 4: Alternative Rolling-Window Lengths

Window  h=1 h=5 h=22
Unscaled forecast error (L1)

200 0.0267 0.0116  0.0773
300 0.0000 0.0005  0.0630
400 0.0002  0.0389  0.0668
Unscaled forecast error (L2)

200 0.0117  0.0067  0.0949
300 0.1854  0.0094  0.0890
400 0.1976  0.1565 0.1024
Scaled forecast error (L1)

200 0.2746  0.0378  0.0656
300 0.0000 0.0001  0.0095
400 0.0000 0.0034  0.0282
Scaled forecast error (L2)

200 0.5523  0.0406  0.0635
300 0.0001  0.0284  0.0675
400 0.0001  0.0255 0.1233

Note: p-values of Diebold-Mariano tests. Forecasts were derived from a HAR-RV-RF model without trade uncertainty and
a HAR-RV-RF model with trade uncertainty for three different forecast horizons. The scaled forecast error accounts for
heteroscedasticity in the data and was computed as (actual - forecast)/actual. Null hypothesis: the series of forecasts are
equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF model that features the trade uncertainty are
more accurate. L1: absolute loss. L2: quadratic loss. The maximum number of nodes was set to five. The number of trees
was set to 500.

Table 5: Good and Bad Realized Volatility

Loss function h=1 h=5 h=22
RV as dependent variable
Unscaled forecast error (L1)  0.0000  0.001 0.1245
Scaled forecast error (L1) 0.0000  0.0017 0.0312
Unscaled forecast error (L2)  0.023 0.0039  0.0938
Scaled forecast error (L.2) 0.0016  0.0443  0.1193
RV~ as dependent variable
Unscaled forecast error (L1)  0.0000  0.0052  0.0158
Scaled forecast error (L1) 0.0000 0.0015 0.0158
Unscaled forecast error (L2)  0.2861  0.2470  0.1220
Scaled forecast error (L2) 0.0001  0.0191 0.1180
RV* and RV~ as predictors

Unscaled forecast error (L1)  0.0000  0.002 0.035
Scaled forecast error (L1) 0.0000  0.001 0.0192
Unscaled forecast error (L2)  0.0048  0.0574  0.0638
Scaled forecast error (L2) 0.0000 0.0441 0.1210

Note: p-values of Diebold-Mariano tests. Forecasts were derived from a HAR-RV-RF model without trade uncertainty and
a HAR-RV-RF model with trade uncertainty for three different forecast horizons. The scaled forecast error accounts for
heteroscedasticity in the data and was computed as (actual - forecast)/actual. Null hypothesis: the series of forecasts are
equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF model that features the trade uncertainty are
more accurate. L1: absolute loss. L2: quadratic loss. The maximum number of nodes was set to five. The number of trees
was set to 500.
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Table 6: Clark-West-Test

Specification h=1 h=5 h=22
Max. no. of terminal nodes =5 1.8746 2.0555  2.6345
Max. no. of terminal nodes = 10 -0.2220  1.6136  2.8335
Min. terminal node size = 10 2.0200 2.2095  3.0404

Note: t-statistics of the Clark-West tests were computed using Newey-West standard errros. Critical values (one-sided test)
are: 1.282 (10%) and 1.645 (5%). The number of trees was set to 500.

Table 7: Alternative Measure of Trade Uncertainty

Specification h=1 h=S5 h=22
Factor

Max. no. of terminal nodes =5 0.0287  0.2032  0.1342

Max. no. of terminal nodes = 10  0.3243  0.1561  0.1344

in. terminal node size = 10 0.3237  0.0409 0.1441
TPUD

Max. no. of terminal nodes =5 0.9599 0.9713 0.8925

Max. no. of terminal nodes =10  0.9498  0.9479  0.8858

Min. terminal node size = 10 0.6809 0.7478  0.8596

=
=

=

Note: p-values of Diebold-Mariano tests (HAR-RV-RF vs. HAR-RV-RF model cum trade uncertainty) for three different
forecast horizons. The scaled forecast error accounts for heteroscedasticity in the data and was computed as (actual -
forecast)/actual. Null hypothesis: the series of forecasts are equally accurate. Alternative hypothesis: the forecasts from
the HAR-RV-RF model that features the risk aversion are more accurate. Loss function: L2. The number of trees was set
to 500.

Table 8: Other Cryptocurrencies

Specification h=1 h=S5 h=22

EOS
CW test 0.0294  2.7686  2.9992
DM test 0.0844  0.0787  0.0878
ETH
CW test 1.8065  1.5390  2.4044
DM test 0.0161  0.0482  0.1092
LTC
CW test 23241  2.7758  3.2854
DM test 0.005 0.0432  0.0493
XRP
CW test 1.9085 1.1216 1.6148
DM test 0.0846  0.0065 0.0741

Note: p-values of Diebold-Mariano tests (HAR-RV-RF vs. HAR-RV-RF-RA forecasts) for three different forecast hori-
zons. CW = Clark-West test. The Diebold-Mariano (DM) was estimated using the scaled forecast error accounts for
heteroscedasticity in the data computed as (actual - forecast)/actual. Null hypothesis: the series of forecasts are equally
accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF model that features the risk aversion are more accu-
rate. Loss function: L2. The models were estimated using random forests consisting of 500 trees and a maximum of five
terminal nodes.
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