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Artificial intelligence (AI) and machine learning have significantly influenced many facets of the health-
care sector. Advancement in technology has paved the way for analysis of big datasets in a cost- and
time-effective manner. Clinical oncology and research are reaping the benefits of AI. The burden of cancer
is a global phenomenon. Efforts to reduce mortality rates requires early diagnosis for effective therapeutic
interventions. However, metastatic and recurrent cancers evolve and acquire drug resistance. It is imper-
ative to detect novel biomarkers that induce drug resistance and identify therapeutic targets to enhance
treatment regimes. The introduction of the next generation sequencing (NGS) platforms address these
demands, has revolutionised the future of precision oncology. NGS offers several clinical applications that
are important for risk predictor, early detection of disease, diagnosis by sequencing and medical imaging,
accurate prognosis, biomarker identification and identification of therapeutic targets for novel drug dis-
covery. NGS generates large datasets that demand specialised bioinformatics resources to analyse the
data that is relevant and clinically significant. Through these applications of AI, cancer diagnostics and
prognostic prediction are enhanced with NGS and medical imaging that delivers high resolution images.
Regardless of the improvements in technology, AI has some challenges and limitations, and the clinical
application of NGS remains to be validated. By continuing to enhance the progression of innovation
and technology, the future of AI and precision oncology show great promise.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the last decade, artificial intelligence (AI) and machine learn-
ing (ML) has made a huge impact on humanity and has applica-
tions in multiple fields that include engineering,
communications, manufacturing and healthcare (Fig. 1). Although
interchangeably used, AI and ML differ since AI is mimicking or
creating human intelligence in machines and ML, a subset of AI,
is the application of AI that allows machines to automatically learn
from the data provided by recognising patterns with minimal pro-
gramming [1]. ML algorithms, such as the neural networks, are
developed to implement the learning abilities of machines in order
to solve problems and decision making [2–4]. The essential func-
tion of neural networks is to imitate the human brain to recognise
and interpret the input data, such as images, classify it with mini-
mal error and has decision-making capabilities. Deep learning is a
subset of ML that is further improvised to enhance the accuracy of
AI [1,4]. Deep learning has practical and vital applications in
numerous areas that include robotics, language processing, image
and speech recognition, drug discovery, improved disease diagnos-
tics and precision medicine [2,5]. Precision medicine allows the
delivery of correct cancer treatment to patients based on their
genetic variability. By implementing genomic screening interven-
tions, individuals can benefit from effective therapy based on their
genetic factors [4]. The benefits of AI can be reaped in assessing big
datasets arising from genetic screening generated for precision
medicine.

In healthcare, AI is used to improve clinical outcomes using
innovative methods implicated in diagnostics and therapy particu-
larly in oncology. There is mounting interest in the use of AI and
ig. 1. An overview of the applications of artificial intelligence in some major sectors. A
ealthcare and precision oncology. ML is a subset of AI that uses neural networks to so
atient datasets. The accuracy of the data is warranted by implementing deep learning
ML to conduct complex calculation and assessing diagnostic
images with minimal human intervention. This review will focus
on AI and precision oncology in a clinical setting for cancer man-
agement by highlighting various applications of AI in oncology
healthcare such as next generation sequencing (NGS), improve-
ment in medical imaging, digital pathology and drug discovery.

2. Artificial intelligence and precision oncology in healthcare

With the advancement in technology, the future of healthcare
will be transformed due to the generation of big digital datasets
acquired by means of next generation sequencing (NGS), use of
algorithms for image processing, patient-related health records,
data arising from large clinical trials and disease predictions.
Oncology has been in the forefront to reap the benefits of AI for
universal cancer management. This includes early detection, tai-
lored or targeted therapy by obtaining genetic information of the
patient and predictions of future outcomes (Fig. 1). AI’s capabilities
of pattern recognition and complex algorithms can be employed to
gain relevant clinical information that will decrease errors related
to diagnostics and therapy [2]. ML is a valuable tool in oncology
with frequent applications in precision medicine. Diagnostic
images and genetic analysis data are obtained from complex neural
networks and can predict probability of disease and treatment out-
comes [2,5]. Deep learning is the most frequently used AI tool in
radiomics, a field of machines that extracts diagnostic imaging to
identify malignant tumours that fail to be identified by the human
eye. The collective efforts of radiomics and deep learning will deli-
ver increased accuracy in diagnostic image analysis [5]. Combined,
the applications of AI and ML in healthcare are implemented to
rtificial intelligence (AI) and machine learning (ML) have important applications in
lve healthcare problems and predict treatment outcomes by pattern recognition in
of machines [4–10].



Fig. 2. The advancement of DNA sequencing. 1st generation sequencing or Sanger sequencing involves the fragmentation and cloning of the target DNA into plasmid vectors.
The DNA is then sequenced using a cyclic chain termination method with either radio isotopically labelled or fluorescently labelled dNTPs. The 2nd generation sequencing
technologies are all based on sequencing by synthesis. Two common methods used are emulsion PCR and bridge PCR. Following these methods, different platforms make use
of different sequencing technologies. 3rd generation sequencing methods have been developed by many different companies and are based on different technologies. They all
involve more direct examination of the target DNA [19].

Table 1
The top NGS platforms from the three generations of genome sequencing technology.

Sequencing Platform Read length Sequence yield per run Run time Input DNA Error Rate
(%)

Cost of instrument
(USD)

First Generation Sequencing
ABI Sanger 75 bp 1.2–1.4 Gb 14 day 1 lg 0.30 690 000
Second Generation Sequencing
Illumina MiSeq 300 bp 1.5–2 Gb 27 hrs 50–1000 ng 0.80 125 000
Illumina HiSeq 2000 150 bp 600 Gb 11 days 50–1000 ng 0.26 750 000
Ion Torrent PGM 200 bp 20–50 Mb on 314 chip 2 hrs 100–1000 ng 1.71 80 000
Genexus System 400 bp 4.8–6 Gb per lane, or 19.2–24 Gb per chip 30 hrs for a full chip 10 – 20 ng <1.0 ~ 288 000
Third Generation Sequencing
Pac Bio RS 1300 - >10000 bp 100 Mb 2 hrs 1 lg 12.86 750 000
Oxford Nanopore >5000 bp 2 Gb 48 hrs 10–1000 ng 12.0 1000

Table adapted from [11,14–18].
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improve disease management and provide effective medical care.
Improved work in AI permits decision making in a human-like
manner.

2.1. NGS and molecular profiling

Cancer is a multifaceted disease with vast aberrations in the
genome. NGS has paved the way to detect these aberrations and
mutations in cancer-causing genes. By the implementation of
NGS, the field of genomic sequencing is rapidly evolving for clinical
use, genomic profiling is plausible and shows promise in the future
of precision oncology. The first-generation sequencing method was
first introduced in 1977, the Sanger sequencing method, with high
costs low data output. Sequencing by the Sanger method uses
fragment-cloning which is time consuming (Fig. 2). With the rapid
development in NGS technology and bioinformatics, the second-
generation sequencing methods were introduced. The second-
generation NGS technologies are capable of large-scale sequencing
of DNA and RNA with high throughput data at reduced costs (Fig. 2,
Table 1) [11]. NGS has widespread applications in sequencing that
include whole-genome sequencing, whole-exome sequencing, RNA
sequencing, target sequencing, whole transcriptome shotgun
sequencing and methylation sequencing. Sequencing can be
applied in DNA or RNA sample obtained from blood samples,
tumour samples, cell lines, formalin-fixed paraffin-embedded
(FFPE) blocks and liquid biopsies. The first whole-genome sequenc-
ing was conducted as part of the Human Genome Project with high
costs and extended timelines [11]. RNA sequencing is widely used
in cancer research and diagnostics to identify changes in cellular
transcriptome and altered molecular pathways [12]. Clinical trials
that sequence RNA with precision oncology protocols have shown
the benefits of RNA profiling of cancer samples for clinical deci-
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sions. RNA obtained from either blood or tumour samples is sub-
ject to RNA profiling. A study by Vaske et al. (2019) demonstrates
the impact of precision oncology and suggests RNA profiling as a
standard care for oncology patients as it may have potential clini-
cal benefits particularly for difficult to treat cancers in children and
young adults. The study showed that approximately 70% of gene
expression data derived from RNA sequencing has potential clinical
implications [13]. The two most important and common applica-
tions of RNA sequencing are to identify gene expression signatures
to unravel underlying molecular mechanisms of cancer and to
detect mutations in RNA that has implications in alternative splic-
ing [12]. Both these applications of RNA sequencing are widely
used in cancer research and clinical setting.

The second-generation sequencing methods requires library
preparation from the DNA or RNA sample [11]. Library preparation
can be labour intense, introduce errors in sequencing coverage and
can be costly. To address this concern, the third-generation
sequencing was introduced to reduce costs and simplified
sequencing protocols. The Oxford Nanopore Technologies is an
example of the third generation of NGS that sequences DNA and
RNA in a portable handheld device. This device is capable of
single-molecule sequencing minus library preparation at lower
costs and reduced time without compromising quality by generat-
ing longer reads [11,14].

NGS generates large-scale, complex genomic data with capabil-
ities to identify patterns and correlations using AI-enabled toolsets.
Advanced bioinformatics infrastructures assist with decoding
genomic data to unravel clinically relevant information required
in implementing precision medicine. Big data arising from the
NGS is described using 5 important characteristics that are: i) vol-
ume, ii) variety, iii) velocity, iv) verification and v) value [20,21].
NGS produces volumes of data that is translated into gigabytes, ter-
abytes or petabytes. For instance, over 100 gigabytes of data is pro-
duced from sequencing a single genome. The data produced is
diverse and has variety which is typically presented in text form
or images that require decoding, while maintaining authenticity
and reliability.

With further advances in AI and computationalmethods, acquir-
ing relevant information from NGS datasets is becoming more and
more time effective with some platforms allowing real-time view-
ing [20]. NGS uses file formats such as FASTQ (to align reference
sequences), BAM (the binary version of sequence alignment/map)
and VCF (Variant Call Format) to generated large datasets. The size
of the file is dependent on the coverage and read length [21]. The
main challenge with such big datasets is analysing and interpreting
for clinically relevant outcomes in the presence of large sequencing
data. NGS utilises ML-enabled tools to ensure accurate read align-
ment, reliable variant calling and variant annotation [21]. These
ML algorithms are developed to identify useful insights to distin-
guish and classify genotypes based on patterns [22]. Moreover, ML
enhanced bioinformatic tools are proficient in assigning clinical rel-
evance and level of severity in correlated genetic variations. ML uti-
lises two approaches to classify data known as supervised and
unsupervised methods. In the supervised method, the system is
trained to identify known genetic information such as regulatory
regions, promoters, enhancers, active sites and splice sites. In the
unsupervised method, unlabelled sequences are detected [23].
Functional impact of missense variants is predicted by computa-
tional algorithms such as SIFT, PolyPhen2, PROVEAN, AlignGVGD
andMutationTaster [24,25]. Other in silico computational tools such
as SpliceSiteFinder, MaxEntScan, NNSPLICE, GeneSplicer and
Human Splicing Finder function as splice site prediction programs
for intronic and silent variants [26]. This way genetic variants and
mutations are identified by leveraging ML algorithms. Despite
advances in AI andML, human inputwith adequate clinical and ana-
lytical knowledge remains essential.
2.2. Biomarkers for onset of disease, diagnosis and as a prognostic
predictor

Molecular biomarkers are frequently used for cancer prevention
and diagnostics by detecting early disease, recurrent disease and
for prognosis of disease such as circulating cancer antigen 125
for ovarian cancer for early detection [27], carcinoembryonic anti-
gen to monitor recurrence of colorectal cancer [28,29] and muta-
tions in estrogen receptor 1 (ESR1) is used to predict prognosis
and treatment outcomes in breast cancer [30]. Cancer management
can be improved by identifying clinically relevant biomarkers for
early prevention of disease and predicting prognosis for effective
treatment. Novel molecular biomarkers for different cancers can
be deciphered by identifying germline mutations in DNA and
whole transcriptome analysis by RNA sequencing [12]. Large con-
sortia studies such as the Cancer Genome Atlas (TCGA) has shown
the promise of RNA sequencing in biomarker identification for
diagnosis and as a prognostic predictor. TCGA project was estab-
lished to uncover modifications and changes in molecular path-
ways of 33 cancers and its subtypes. The purpose of the TCGA
project was to enhance precision oncology with accurate knowl-
edge about the molecular landscape of these cancers, this included
pathogenesis of cancers, classification of tumour subtypes based
on molecular modifications and identifying therapeutic targets to
drive drug development [31,32]. The data showed that despite dif-
ference in tumour biology, there was an overlap of molecular fea-
tures in some tumour types. Data from the TCGA cancer genomics
program has revealed biomarkers that can predict the overall sur-
vival, disease free survival and progression free survival, which are
essential endpoints in cancer management [31]. These studies also
elucidated predictive biomarkers that drive transformation which
were attributed to transcriptome alterations including pathogenic
mutations and altered expression or activity of factors that regu-
late important cellular complexes [33].

A recent study utilised shallow RNA sequencing for predicting
disease outcome. The authors showed that shallow RNA sequenc-
ing, in comparison to deep sequencing with larger coverage, gener-
ates sufficient patient data to predict outcomes and can be used for
personalised medicine. This approach reduces cost of sequencing
without compromising the biological data obtained for obtaining
accurate clinical insights [34]. Furthermore, shallow sequencing
has also been applied to the whole genome for diagnostics in
breast cancer [35], lung cancer [36] and neuroblastoma [37]. For
detection of copy number variations (CNV) in breast cancer, the
authors implemented shallow whole genome sequencing using
FFPE samples. They were able to identify CNV that are positively
correlated with breast cancer regardless of the quality of DNA used.
Libraries created for shallow whole genome sequencing can also be
used for targeted sequencing and therefore, reduce sequencing
costs [35]. Similarly, the CNV in neuroblastoma is correlated with
prognosis and screening is mandatory upon diagnosis. A study by
Van Roy et al. (2017) utilised circulating cell-free DNA to analyse
CNV and reported that shallow whole genome sequencing is a
‘‘cost-effective, non-invasive, rapid, robust and sensitive alterna-
tive” for predicting the prognosis of neuroblastoma using a
sequencing method [37].

Classification of tumours is essential for treatment and progno-
sis. In some cancers, like lung cancer, it is fundamental to cate-
gorise non-small cell lung cancer from other subtypes such as
small cell lung cancer. The subtyping is imperative as it may affect
treatment strategies [36]. Histological classification of advanced
lung cancers requires invasive and often difficult extraction of
tumour samples. With NGS profiling, the classification can be con-
ducted using circulating tumour DNA and analysing CNV associ-
ated with lung cancer. Raman et al. (2020) suggests shallow
whole genome sequencing for tumour subtyping of advanced lung
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cancer as an alternative to eliminate invasive tumour histology
subtyping. In this study, 86.3% of CNV were detected using NGS
and successfully detected the different subtypes to initiate treat-
ment strategies [36].

3. Artificial intelligence (AI) in cancer medical imaging

Deep learning algorithms have been a powerful tool in health-
care for medical imaging used to monitor the disease, diagnosis,
aid surgical procedures and management of the disease. In most
oncology related diagnosis, the applications of AI are crucial in
radiology for various modalities with improved quality such as
X-rays, ultrasounds, computed tomography (CT/CAT), magnetic
resonance imaging (MRI), positron-emission tomography (PET)
and digital pathology. Images are analysed with highly specialised
algorithms with increased speed and accuracy. Differentiating
between normal and abnormal medical images is a key aspect to
accurate diagnosis. This is especially essential for detecting cancers
early as it will ensure a better prognosis. AI has contributed to
medical imaging by improving the quality of images, computer-
aided image interpretation and radiomics, and the future of AI in
medical imaging will focus on improving speed and cost reduction
[38,39].

3.1. Radiographic imaging

The key developments and enhancements of AI in healthcare
have widely been applied for clinical use in medical imaging. The
extraction of relevant quantitative data, such as size, symmetry,
position, volume and shape, from medical images is essential for
accurate diagnosis and treatment which can be time consuming,
open to human error and variability. With complicated tumours,
this can be a further challenge. There is a great need for medical
imaging analysis using automated methods for standard clinical
care. For accurate analysis of medical images, fulfilment of three
strategies are required such as: i) image segmentation which iden-
tifies the image of interest and defines its boundaries, ii) image reg-
istration defines the spatial relationship between images, and iii)
image visualisation extracts relevant data for accurate interpreta-
tion [38,40]. Despite the developments in medical imaging, there
are challenges involved due to data complexity, object complexity
and issues with validation. With 2D images, the data are typically
processed in a slice by slice form, in contract, the 3D image pro-
cessing has an added spatial dimension and provides more infor-
mation, therefore being more effective than 2D images. Although,
the challenge with the analysis of 3D images are that it requires
high contrast and resolution, blocking out noise and artefacts
may be visible. The surrounding anatomical structures that inter-
fere with the object of interest in medical imaging add more com-
plexity to the analysis. Recent advances in ML and deep learning
address these challenges with enhanced computational strategies
that can conduct analysis for increased image quality and accuracy
to optimise clinical decisions [40].

In many countries, especially first world countries, the pre-
ferred diagnostic and treatment plan involves the use of a Multidis-
ciplinary team (MDT). These teams are cancer site specific and
involves a team of specialists and healthcare professionals to con-
sult together and reach a common decision regarding treatment
[41]. For instance, an MTD for the treatment of thoracic cancer
would ideally include a pulmonologist, a radiologist, a histopathol-
ogist, a clinical nurse, an oncologists specialising in radiotherapy,
an oncologist specialising in chemotherapy, a palliative care physi-
cian and a thoracic surgeon. In addition to these an administrator
would be required for the team [41]. Some of the many advantages
offered by this strategy include the selection of the most appropri-
ate and up-to-date treatment as selected by a team of experienced
experts working together [41].

A recent study by Hwang et al. (2019) outlines the development
and validation of an automated detection system for chest radiog-
raphy with algorithms based on deep learning [42]. The analyses of
chest radiographs for thoracic disease can be challenging and are
error prone, and usually requires highly trained radiographers to
analyse the image. The automated system was developed to distin-
guish between common thoracic disease including pulmonary
malignant neoplasm for diagnosis. The acquired images were anal-
ysed by a multidisciplinary team of physicians, radiologists and
thoracic specialist radiologists. The results arising from this work
showed that the AI-integrated system has superior image recogni-
tion and analysis when compared to human observers. The authors
emphasize the vast potential of AI in medical imaging for improved
quality, accuracy and efficiency for routine clinical practice [42].

In addition to outperforming the team of physicians, the AI and
deep learning algorithms can function in a similar way. The MDT is
able to take multiple pieces of information regarding the diagnosis
and life history of a patient and integrate this into a final treatment
plan. Similarly, AI can integrate data from multiple streams into an
integrated diagnosis and a specific treatment plan [43]. Like the
specialists in an MDT, deep learning algorithms are designed to
learn and improve from previous patterns and images. It does this
by mining data to find links between data. In many ways it does
this in a way that humans cannot [43]. However, there are prob-
lems with MDTs that do not apply to computer algorithms. MDTs
involve communication between people and there are likely to
be disagreements, as well as problems with consultation times
[41]. These are not problems an algorithm will have, even though
it is able to achieve the same results. MDTs have further problems
such as teams of specialists would be expensive. Additionally, the
number of specialists involved and the fact that the same specialist
can serve on multiple MDTs, means that it may not be possible for
all members of the team to attend all the meetings, even if meet-
ings are attended remotely. This also means that since the special-
ists sit on multiple MDTs and work on multiple cases, providing
patient specific personalised treatment may be impossible [41].

Medical imaging is a useful and important modality for cancer
detection, monitoring progression and prediction prognosis of dis-
ease (Fig. 3). For instance, mammography is the first-line image
screening for breast cancer. For younger women with dense breast,
ultrasound is the preferred option. Early detection of disease with
medical imaging is crucial in lowering mortality rates. In low and
middle -income countries, medical imaging is not always feasible
due to the scarcity of well-trained radiologists. In such settings,
computer aided automated systems would revolutionise the
healthcare sector. Rodríguez-Ruiz et al. (2018) demonstrated the
influence of AI in breast imaging [44]. The authors compared the
interpretation of mammography with and without the assistance
of AI. Not surprisingly, radiologists with AI assistance were able
to analyse mammography images quicker and with more accuracy
which is vital for fast detection of cancers. Additionally, AI systems
were able to detect cancers regardless of breast density [44]. More
recently, an AI-based breast cancer detection system was deemed
as a radical revolution for cancer diagnostics. QuantX is the first
computer aided system to be approved by the Food and Drug
Administration (FDA) for breast cancer detection. QuantX offers
increased accuracy of 20% when compared to other imaging sys-
tems and provides radiologists with other clinical patient-related
information necessary for diagnosis [45]. Despite the improve-
ments, some studies reported equivalent concordance or perfor-
mance when comparing AI systems to human interventions in
interpreting imaging data for diagnosis in lung cancer [46] and skin
cancer [47].



Fig. 3. Artificial intelligence (AI) in cancer medical imaging. Deep learning algorithms in healthcare begins with the gathering of large amounts of data. The curation of this
data is then used in the screening of patients to make better data driven diagnosis. Patients can be screened with medical imaging and the presence of biomarkers for disease.
Image analysis involves the identification of image of interest and the areas of the image that are important. The application of information from datasets as well as the results
of patient screening results in automated detection of malignant tumours. Through classification of different tumours, the application of AI algorithm’s will then allow for the
use of specific treatments optimised for each individual patient [48].
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2nd

Revolution 
Whole Slide 

Imaging

3rd Generation of AI
Algorithms in 
pathology and 

precision oncology

Fig. 4. AI algorithms in digital pathology. The 3rd generation AI algorithms are the
latest offerings in improved digital pathology compared to the current 1st and 2nd
generation platforms. Whole slide imaging (WSI) has enhanced the standard glass
slide preparation by producing high resolution scanned images of the entire slide.
WSI is the mainstay of AI algorithms in digital pathology.
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3.2. Digital pathology

AI and medical imaging goes beyond radiology. Pathology labo-
ratories will soon be transformed by the introduction of digital
pathology. Microscopic analysis of stained cells and tissues have
been the standard of pathology for years. The advances with tech-
nology and AI will change pathology by decreasing labour intense
microscopic workloads, increasing efficiency and maintaining the
quality for improved clinical care. Incorporating AI with digital
pathology enhances the workflow and allows physicians to view
images for accurate analysis and reduces subjectivity by standard-
ising protocols. Digital pathology also permits image viewing in
larger scale and colour information with reduced variability. This
way, effectively identifying unique markers associated with
disease-specific biomarkers for diagnosis, prognosis and treatment
is possible [49,50].

Currently there is still a large gap between research studies and
those necessary to deliver safe and reliable AI to the pathology
community. This gap can be narrowed by the synergistic collabora-
tion between all stakeholders which may include scientists/re-
searchers, physicians, industry, regulatory organizations, and
patient advocacy groups [51]. Notably, the majority of deep learn-
ing algorithms are criticized for being unable to explain the ratio-
nale behind their decisions, hence they are labelled as black boxes
[49]. The clinical, legal and regulatory issues of AI algorithms need
to be clarified going forward, despite their rapidly growing bene-
fits. The idea that AI will replace pathologists is farfetched at this
point as the two parties complement instead of compete with each
other. Although AI will continue to make decisions in some fields,
humans are still considered better than machines or systems at
acquiring information to arrive at their decisions by taking several
factors into account.

There is an increasing need for microscopy companies to inno-
vatively develop AI software, particularly through ML that will be
integrated and enhance the capability of currently existing micro-
scope software. The focus is now on developing AI systems that
will be integrated and augment the already existing microscopy
field. For example, ZEISS has recently released machine learning
software, the Zen Intellesis. It uses trained classifier across large,
multi-dimensional datasets while allowing for multiple spatially-
registered datasets that have been received through correlative
microscopy and classical image analysis to be used in classification.
Zeiss Zen Intellesis can also be used with 6D datasets like multi-
channel 3D stacks or tile images, according to the company. Zeiss
Zen Intellesis works with any image format that can be read by
Zeiss Zen software. These formats include CZI, TXM, OME-TIFF,
JPG and PNG [52]. It is therefore paramount to understand that
these ML tools will not replace digital pathology, but augment it
as digital pathology is the mainstay of AI for diagnosis and disease
monitoring. The benefits of AI in the overall healthcare system are
rapidly increasing, and precision oncology is emerging as a centre
of it.

Pathology can be defined as the diagnosis of disease through
study and examination of body tissue, which is usually fixed on
glass slides and viewed under a microscope (Fig. 4) [53]. Diagnos-
ing the disease in this field is usually made by certified patholo-
gists. Traditionally, pathology diagnosis depends mainly on the
glass slides [54]. This method not only time consuming but may
be prone to errors and deny the quality assurance aspect, or a delay
in second opinion, with an overall limited impact on patient care
[53]. As any other aspect of science in healthcare, diagnostic
pathology is adopting the use of digital imaging in pathology.
Whole slide imaging (WSI) in the latest innovation in digital
pathology [55]. This technology allows viewing of the entire slide
as a scanned image with high-resolution images quality and easy
storage solution as compared to storage of glass slides (Fig. 4). This
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is made possible by the microscope which has been fitted with spe-
cial high resolution cameras combined with optics and software to
produce high quality diagnostic images [56,57]. This may even
improve on the identification of specific diagnostic features that
would not usually be easy by the manual method [53,58]. An
added advantage of digital images is that it can be shared widely,
with proper ethical consent, for teleconsultation to obtain precise
diagnosis, especially for remote viewing of an expert pathologist
[49,51,53]. As with microscopic slides, digital images also require
focus points prior to image acquisition. WSI scanners have algo-
rithms to identifying out-of-focus points automatically to acquire
sharper images. The workflow is further automated with image
analysis software to quantify the results [49].

Prior to digital pathology, image analysis was limited because
pathologists had to manually select regions of interest for analysis
on the glass slide. In the WSI era, the whole slide analysis can be
automated along with field selection. Furthermore, nuclear mor-
phometric information is a clinical diagnostic analysis system that
is widely used by pathologists to determine the malignant poten-
tial of cancer cells. WSI enables analysis of high-quality features.
For this reason, the use of AI and ML tools in nuclear morphometric
is rapidly growing [59,60]. Examples of AI-based nuclear morpho-
metric include the identification of tumour nuclei by pathologist’s
lamina propria in T1 bladder cancer. Likewise, in breast and pan-
creatic neuroendocrine tumours, the ratio of Ki67 tumour positive
nuclei to total tumour nuclei within hotspots is of pathologists’
interest [61–63].

Evidence derived from a multi-center blinded randomized
study to evaluate the benefits of WSI compared with conventional
microscopic slides paved the way for the FDA approval for primary
diagnosis using WSI. Surgical pathology samples were obtained
from several cancers like colorectal, liver, brain, kidney, endocrine,
breast, stomach and cervical cancers, and the data was analysed by
16 pathologists. The authors concluded that WSI was equivalent
for primary diagnosis across tissue type due to no difference
observed in the two methods [64]. This was evident in a number
of other studies that validated the use of WSI over conventional
microscope slides in biopsy samples to diagnose lymphoma, pros-
tate, skin, appendix, gallbladder, genitourinary and thyroid cancers
[65–67]. Using WSI can be beneficial for primary cancer diagnosis
with enhanced accuracy, reduced errors, increased speed and to
differentiate between benign and malignant tumours. Digital
pathology will continue to improve by further advances in AI and
ML.

In addition to the WSI technology, AI is emerging as an innova-
tion to ease the burden and improve on the quality of the big data
generated by digital pathology [53]. In a pathology lab, the usual
workflow (that does not involve WSI) involves obtaining of the
body tissue, processing of the tissue and creating of glass slides.
The pathologist is then responsible to interpret the tissue on the
glass slides using a microscope. The glass slides may have to be
viewed and interpreted by various pathologists, already jeopardis-
ing the quality and the loss of slides by many steps of manual han-
dling, leading to delayed or denied patient care [53]. One major
opportunity of AI based DP in tissue diagnostics is the potential
to reduce fragmentation in this process by streamlining the work-
flow [68]. The digitized slides are then converted to pixels, with the
goal of creating a pixel pipeline. This pixel pipeline allows for the
easy identification of keys spots/ features of the tissue, as patholo-
gists can remotely study the images and share them for a digital
consultation [69]. This dismantles the burden of fragmented work-
flow and reduces time spent on each case, thereby enhancing over-
all patient care. This highlights the pivotal role played by digital
pathology in the emergence of AI in pathology and precision oncol-
ogy. In other words, the created pixel pipeline can now become
part of a deep learning algorithm to look for patterns, features
and shapes that use image analysis, deep learning and AI tools [56].

Hegde et al. (2019) described the AI tool developed by GOOGLE
that enables the search for morphologically similar features
regardless of annotation status [70]. This algorithm called SMILY
(Similar image search for histopathology) uses database of unla-
belled images to find similar images [70]. LYmph Node Assistant
(LYNA) is another GOOGLE developed deep learning algorithm that
could successfully detect metastatic breast cancer on slides about
99% of the time. Some pathologists have used LYNA and reported
that this AI tool provided time saving benefits, coupled with its
consistency and accuracy [71]. Furthermore, the FDA has recently
approved use of commercially available scanners for WSI, and this
is paving way for WSI use in primary diagnosis [64,72]. Various
studies have proven that there is no significant difference between
digital pathology diagnosis and diagnosis by traditional micro-
scopy [65,66,73]. Despite minimal differences observed in these
studies, digital pathology can be implemented for primary diag-
noses subsequent to validation with improved scanning times of
slides, advanced imaging software’s to view sections of images
with touchscreen finger movement technology, refining the focus
and clarity of images [65], and enhancing magnification to view
complex diagnostic images from cytopathology, hematopathology,
or lymphoid lesions [73].

Beck et al. (2011) used anatomic glass pathology slides of breast
cancer to train a computer algorithm to predict patient prognosis
[74]. The computer algorithm was trained to record measurements
on digital images of approximately 700 breast cancer patients that
were used to create a predictive model. The predictive measure/
score generated by the developed computer algorithmwas propor-
tional to the patient survival rate. This study successfully illus-
trated that digital images generated from glass slides can be used
to train computer algorithms to predict patient prognosis [74].
Additionally, deep learning systems have recently been developed
to aid pathologists to differentiate between benign and malignant
prostate tumours, and to distinguish between morphological pat-
terns used to grade this cancer. Recently, Nagpal et al. (2019)
developed a deep learning system to perform Gleason scoring
and quantitation on prostatectomy specimens. This deep learning
system trained > 900 pathology glass slides and their findings were
consistent with those provided by the certified pathologists [75].

AI based algorithms in digital pathology can by no means
replace human expertise and ethical-legal factors associated. How-
ever, the benefits of AI that are already being witnessed in digital
pathology and precision oncology are undeniable. Due to the mar-
ginally growing field of pathology and increasing number of diag-
noses, there is no doubt that innovatively developing tools that will
augment human capability in pathology and precision medicine,
with an ultimate goal of improved patient care will be of great ben-
efit. Traditional glass slide diagnosis is being proven to be inade-
quate, and therefore digital pathology supplemented by AI
algorithms is rapidly growing to address this problem. As a result
of these evolving first and second generation approaches in diag-
nostic pathology, a third generation of AI algorithms in digital
pathology and precision oncology is here not only to alleviate the
workload burden on certified pathologists, but also to improve
the overall patient care.
4. Artificial intelligence and translational oncology

4.1. Cancer therapy

Multidrug resistance is a fundamental factor that plays a critical
role in outcome of disease management and poses a major clinical



Fig. 5. Molecular basis of drug resistance in cancer. (A) Estrogen receptor positive breast cancers. Mutated estrogen receptor 1 (ESR1) has altered ligand-binding domains
leading to alterations in PI3K/mTOR signalling pathways. (B) Drug resistance in ovarian cancer results frommutations or modified gene expression in the molecular pathways
responsible for DNA repair process, p53 pathway, the P-glycoprotein and multi drug resistance-associated protein. Image . adapted from [87,88]
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challenge. This can be addressed by identifying novel genes and
molecular pathways that induce drug resistance. Typically, these
genes and pathways will serve as candidates for novel drug design
and discovery. Additionally, drug resistance could also be a result
of several epigenetic modifications. For instance, estrogen receptor
positive breast cancers and ovarian cancers have been shown to
acquire drug resistance. In breast cancer, an estimated 30–55% of
metastatic receptor-positive subtypes acquire secondary resis-
tance to therapy followed by the administration of neoadjuvant
aromatase inhibitor treatment. The drug resistance is attributed
to the presence of mutated ESR1 [76,77]. Mutation analysis and
RNA sequencing data obtained from NGS and bioinformatic analy-
sis has revealed mutations in the ligand-binding domain of ER,
mutated ESR1 in circulating tumour DNA and the activation of
PI3K/mTOR pathways are attributed to ESR1 acquired secondary
resistance (Fig. 5) [78,79]. The ESR1-related tumours are generally
associated with poor prognosis attributed to the aggressive biology
of the tumour, progression and recurrence of disease, and metasta-
sis [80]. Mutations in ESR1 serves as an essential biomarker to pre-
dict prognosis and alter treatment options to manage ER + breast
cancers. Similarly, over 50% of relapsed patients with advanced
ovarian cancer have acquired drug resistance to chemotherapy
associated with mutations or modified gene expressions. Standard
treatment protocol for advance ovarian cancer is surgery followed
by neoadjuvant chemotherapy and most patients relapse within
2 years with acquired drug resistance. Neoadjuvant chemotherapy
is correlated with platinum-based chemotherapy resistance in
patients with advance disease [81]. Drug resistance is caused by
several molecular mechanisms such as apoptosis to evade cytotox-
icity induced by drugs, tumour migration, drug metabolism,
increased DNA repair and activation of molecular pathways that
enhance tumour angiogenesis [82–84]. The suggested molecular
pathways responsible for drug resistance in ovarian cancer are
the mismatched DNA repair process, p53 pathway, the P-
glycoprotein and multi drug resistance-associated protein (Fig. 5)
[84]. A recent study by Meng et al. (2018) revealed the molecular
mechanisms accountable for drug resistance in ovarian cancer.
The study showed that platinum-resistant ovarian cancer cells
overly express the dual oxidase maturation factor 1 (DUOXA1).
This over expression increases the production of reactive oxygen
species (ROS) that sustain the activation of ATR-Chk1 pathway
which induces resistance to platinum-based therapy. ROS inhibi-
tion will impede the ATR-Chk1 pathway and reverse the acquired
drug resistance. On the basis of NGS technology, this data was
obtained by quantitative high throughput combinational screen
(qHTCS) and RNA-sequencing [85]. RNA-sequencing with NGS is
also capable of identifying aberrant RNA splicing signatures. Sev-
eral splice variants promote drug resistance and by targeting these
splice variants, drug resistance can be reversed and serve as novel
therapeutic strategies [86]. Adequate screening to identify essen-
tial candidate biomarkers that can circumvent these molecular
mechanisms will contribute to knowledge about drug resistance
and improve treatment regime for optimal outcomes.

The importance of precision oncology in cancer therapy was
highlighted by Mody et al. (2015) in a study that showed 46% of
patients required modifications to their cancer management. The
NGS platform was utilised to sequence both DNA and RNA from
a cohort that included patients with relapsed and refractory
haematological cancers and patients with solid tumours. The
haematological cancers included leukaemia and lymphoma,
whereas the solid tumour types included in this cohort were brain,
neuroblastoma, sarcoma, renal, liver and ovarian cancers. In this
cohort, 15% of the patients required changes to their cancer ther-
apy and 10% required genetic counselling to evaluate future risk
[89]. Their findings highlighted the necessity of precision oncology
to facilitate clinical decision-making and for improved patient
outcomes.

Metastatic tumours are a major problem in cancer manage-
ment, particularly recurring tumours with acquired resistance to
therapy. Robinson et al. (2017) demonstrated the mutational land-
scape of several metastatic cancers by means of integrative
sequencing of DNA and RNA. By using NGS, they identified key
germline mutations, gene fusions and the complementary RNA
transcriptional signatures of important molecular pathways that
are highly prevalent in several important cancers such as brain,
breast, pancreatic, colorectal, prostate and ovarian cancer. Through
their approach of precision oncology, the study also identified pre-
dictive biomarkers for immune therapy for metastatic cancers [90].
The treatment strategies of the patients were updated following
the outcome of the sequencing results, thereby emphasizing the
importance of precision oncology in cancer management and ther-
apeutics. Profiling cancer genomes by NGS enables the detection of
genetic aberrations and elucidates the molecular pathways associ-
ated with drug resistance. Identifying such biomarkers is useful
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information that will improve the development of novel therapies
that enable successful outcomes of cancer therapy.

Another recent development in AI is the IBM Watson for Oncol-
ogy support system that aids clinical decision-making by using
algorithms for treatment recommendations. The IBM Watson for
Oncology was developed to provide a reliable platform for preci-
sion medicine and personalised patient care. Despite some contra-
dictory reports, the Watson for Oncology platform has been
successfully used to determine treatment regime for breast [91],
gastric [92] and non-small-cell lung cancer [93]. Tian et al.
(2020) demonstrated the reliability of Watson for Oncology system
for treatment recommendations for gastric cancer [92]. The study
showed concordance of recommendations between the Watson
for Oncology system and the medical team. You at al. (2020)
showed similar results for metastatic non-small-cell lung cancers
and reported an 85.16% concordance between the Watson for
Oncology system and the medical team. They emphasised that
the AI system assisted the medical team to determine the treat-
ment decisions quickly, accurately and effectively [93]. Their study
suggests that the AI system can be further improved with regional
based medical programs and can be particularly useful for low
resource settings.

4.2. Drug discovery

Although current NGS technologies in the market have
enhanced healthcare utility, the new advances in AI lead to the
development of new platforms improved cost and time efficiency
and also delivery of high-throughput data. For instance, the laser
capture micro-dissected RNAseq (LCM-RNAseq) is a recent power-
ful NGS tool that identifies differentially expressed genes in histo-
logical samples obtained from tumours. Recently, a study
conducted on human glioblastoma demonstrated that molecular
events are region specific. In this study, an upregulation of growth
factors signalling pathways was observed in the pseudopalisading
cells compared to the tumour. The upregulated genes are associ-
ated with disease progression and hence serves as a potential ther-
apeutic targets for glioblastoma [94]. Despite some promising
results arising from the LCM-RNAseq, its clinical application is lim-
ited and requires further validations.

The largest genomic program, TCGA, contributed in a massive
way to drug development by capitalising on the clinical benefits
of NGS. An outcome of this project was the identification of specific
genomic alterations as targets of therapies that are currently avail-
able in the market, also revealing novel targets for future drug
development. Results arising from this work led to the Lung-MAP
clinical trial conducted by the National Cancer Institute (NCI)-
USA for lung squamous cell carcinoma with modifiable therapy
regime based on genomic alterations of the patient [32].

A major advantage of a clinical utility of NGS is the high
throughput sequencing for drug screening. High throughput
screening allows parallel sequencing of both DNA and RNA concur-
rently in large amounts and generates big datasets. In this way,
pathogenic mutations as well as cancer specific transcriptome
changes, such as alternative splicing, can be detected. Alternative
splicing is a stringent cellular process that is pivotal in regulating
gene expression for multiple proteins with important functions
in DNA repair, angiogenesis, adhesion, invasion and cell prolifera-
tion. These functions are hallmarks of cancer cells. A study by
Eswaran et al. (2013) employed RNA sequencing to identify novel
subtype specific splice variants in crucial genes such as LARP1,
CDK4, ADD3, and PHLPP2 in triple negative, luminal and human
epidermal growth factor receptor 2 (HER2) breast cancer [95].
These cancer specific isoforms serve as targets for therapeutic
approaches for effective clinical outcomes. For instance, increased
levels of CD44v6 is associated with advanced gastric cancer and
lower levels of CD44v6 is correlated with prostate cancer. Simi-
larly, the isoform CD44v10 is associated with pancreatic cancer
and the varying expression levels of the isoform can predict metas-
tasis [96]. Cancer specific splice variants are emerging as targets for
novel drug development and can be identified by RNA sequencing.
5. Clinical benefits of artificial intelligence and precision
oncology

The current healthcare benefits of AI have been well docu-
mented and new developments are rapidly emerging. For success-
ful clinical practice, the implementation of AI has to be equivalent
or substantially better than human intervention with well-
integrated AI systems. NGS in a clinical setting has prolific benefits
to elucidate predictive or prognostic biomarkers. In the past dec-
ade, NGS has evolved drastically with considerable developments
to improve throughput, quality, cost and time of sequencing. NGS
has also integrated platforms for short and long reads. The short
reads are beneficial for precision medicine to identify variants with
clinical benefits and population screening. In contrast, full length
isoform sequencing is achieved through long reads. Advanced algo-
rithms and their ability to analyse highly complex datasets will
elucidate new options for targeting therapies for precision oncol-
ogy (Fig. 6) [14,97]. Moreover, medical imaging and digital pathol-
ogy are powerful tools to deliver precise diagnostic and predictive
results quicker with higher accuracy.

Automation of healthcare systems are particularly important in
resource deprived regions. Shortage of well-trained healthcare
workers and specialists are a major concern in developing nations
which can be mitigated by implementing AI systems that can diag-
nose diseases quicker. Another added advantage of AI is the
reduced burden of health record and eliminating mundane admin-
istrative tasks. With automated systems, AI-enabled systems allow
physicians the documentation support to sort and analyse patient
health records for improved clinical decision making and eases the
documentation workload of physicians. Moreover, patient health
records can be utilised to reliably predict future risk of diseases
[98,99].
6. Challenges and limitations

Data interpretation is a major hurdle in implementing routine
clinical sequencing by NGS for diagnosis and cancer management.
Big data management and interpretation requires large servers and
skilled bioinformaticians. For diagnosis, the generated datasets
include information about variants with classifications such as
benign, likely benign, variant of unknown significance, likely
pathogenic and pathogenic variants. Categorising all variants into
classes and recognizing its clinical significance is imperative. Addi-
tional to diagnosis, data obtained can be useful for cancer manage-
ment [101].

Precision medicine has benefited from targeted sequencing
which is the current standard of sequencing for clinical purposes
where selected candidate genes are highly prevalent for the given
cancer subtype (Fig. 6). Examples of such genes include BRCA1 and
BRCA2 in breast cancer [102], p53 and PTEN in prostate cancer
[103], KRAS in pancreatic cancer [104], BRAF in colorectal cancer
[105,106] and ERBB2 in lung cancer [107,108]. Although targeted
sequencing has higher sensitivity, coverage and lower costs, it does
not identify large genomic rearrangements and will not detect
potential pathogenic mutations in genes that are not covered in
the panel [101]. Whole genome sequencing or whole exome
sequencing can overcome this issue (Fig. 6). For instance, this
method has proven successful in unravelling the pathogenesis of
cervical cancer and identified novel therapeutic targets [100]. The



Fig. 6. The use of sequencing in precision medicine. Targeted sequencing is the current standard of sequencing for clinical purposes. It involves the use of selected candidate
genes, prevalent in specific cancers, such as BRCA1 and BRCA2 in breast cancer, p53 and PTEN in prostate cancer, KRAS in pancreatic cancer, BRAF in colorectal cancer and ERBB2
in lung cancer. Targeted sequencing has the advantage of higher sensitivity, high coverage and lower costs. It has the disadvantages of not identifying large genomic
rearrangements or potential pathogenic mutations in genes that are not targeted. Whole genome sequencing has the advantage of allowing for mutations and changes in the
whole genome [100].
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disadvantage, however, of whole genome and exome sequencing
are associated with high cost and large computational burden with
complicated data analysis [109]. Further enhancement of the NGS
platforms in the next decade may see a decline of costs without the
quality trade off.

Implementing AI in the healthcare sector still has many barriers
irrespective of its benefits. With automated computation, there is a
surge in big data and costs. AI systems can be expensive due to
their dependence on specialised computational requirements for
fast processing of data. These systems also require additional qual-
ity processes [110]. Although AI systems offer accurate data and
image analysis, the generated data is only useful when it is clini-
cally relevant and interpreted correctly. To implement AI-based
systems for routine clinical practice, the intended users require
training and understanding of the system [111]. Rigby (2019) high-
lighted the ethical challenge with AI in healthcare. With the surge
in big data, it is highly imperative to alleviate the ethical issue
related to use of patient data in unwarranted and unconsented cir-
cumstances. Moreover, ethical policies and guidelines are required
to protect patient safety and privacy [112]. AI in healthcare and
precision oncology would significantly benefit from overcoming
these challenges and limitations with advances in AI technology.
7. Summary and Outlook

The combination of NGS with advanced bioinformatics have a
healthcare utility for a number of years. The clinical application
of NGS is evolving with the introduction of precision oncology
and emerging novel biomarkers to improve diagnosis and cancer
therapeutics. With the recent advancement in technology, it is
expected that the NGS platforms will have reduced cost with
increased speed of high throughput data and increased sensitivity
making it widely accessible for research and for clinical applica-
tions. AI has made a significant impact and will continue to revolu-
tionise healthcare and precision oncology. Additionally, NGS will
be a powerful tool in transforming the future of healthcare from
diagnosis to treatment.
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