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• Markov-Switching Time-Varying Copula Model combined with Wavelet MRA was used. 
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Abstract 
This paper examined the dependence structure and dynamics between gold and oil prices. 
Specifically, we examined the hedge and safe haven ability of gold for oil prices using the time-
varying Markov switching copula models and daily gold prices and West Texas Intermediate 
Institute (WTI) crude oil spot prices from 2 January 1985 to 30 November 2017. The heterogeneity 
of market agents is captured by decomposing the raw original series into different multi-resolution 
analysis (MRA) investment horizons (D1-S9). Further, we examined the effect of geopolitical risks 
on the dynamic dependence between gold and oil. We provide evidence of time-varying Markov 
tail dependence structure and dynamics between gold and oil. While our results showed that gold 
is a good hedge for oil returns and for short- and medium-term investors, it cannot protect long-
term investors against losses arising from increasing oil prices. We also provide evidence in support 
of the safe haven ability of gold for oil. Further, we show that the inclusion of geopolitical risks in 
a pure gold and oil asset portfolio provides diversification benefits since the former has mostly 
negative effect on the dependence structure between gold and oil.  
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1. Introduction 
 
Gold and oil are major global commodities whose demand is usually very high given their role in 
both production and consumption. Both are liquid and as such very widely traded.1 Given these 
roles, movements in gold and oil prices are of great concern to economic agents since these have 
implications for both the real economy and financial markets. Whether these two commodities 
move together or not, on average and/or in times of market crisis is a question that needs to be 
answered. This forms the basis of this study. The answer to this question will provide evidence of 
the hedge or safe haven ability of gold respectively against oil price movement. Moreover, of 
interest is whether the relationship varies across different states. Understanding these have 
implications for investors’ diversification portfolio decision and hedging as well as policy design. 
An asset is a hedge if it is uncorrelated or negatively correlated with another asset or portfolio on 
average while it is a safe haven if it is uncorrelated or negatively correlated with another asset or 
portfolio in times of market crisis (Baur and Lucey, 2010; Baur and McDermott, 2010).  
 
The relationship between gold and oil prices can explained implicitly by the studies that examined 
the hedging or safe haven role of gold against inflation, stock or bond markets and the US dollar 
exchange rate. This is because a change in the price of oil leads to changes in these variables, which 
have consequence for gold prices. For example, an increase in oil prices can trigger rising general 
price level thus increasing the price of gold as well, thereby making gold a possible hedge against 
inflation (Chua and Woodward, 1982; Ghosh et al., 2004; Worthington and Pahlavani, 2007; Tully 
and Lucy, 2007; Blose; 2010; Aye et al. 2016, 2017 etc). Also higher oil prices can impact negatively 
on economic growth and asset prices thus causing investors to turn to alternative portfolios such 
as gold (Baur and McDermott, 2010; Baur and Lucey, 2010; Reboredo, 2010). Further, a 
depreciation of the US dollar against major world currencies can result in investors increasing their 
investment in gold as a safe haven, which consequently increases the price of gold. A similar 
behaviour is seen in the oil price when the U.S dollar depreciates (Capie, et al., 2005; Joy, 2011; 
Reboredo, 2012).  
 
Explicitly, there are some empirical studies that have examined the relationship between gold and 
oil prices (Baffes, 2007; Hammoudeh and Yuan, 2008; Soytas et al., 2009; Sari et al., 2010; Narayan 
et al., 2010; Zhang and Wei, 2010; Tiwari and Sahadudheen, 2015). However, these studies did not 
consider the role of gold as a hedge or safe haven against oil prices. Few studies examined the 
hedging or safe haven role of gold against oil prices. For example, the study by Balcilar et al. (2018) 
examined the causal links between oil and gold using time‐varying causality tests and found that 
there is strong time-varying causal links between oil and gold. The study therefore warned that the 
assumption of non-causality between oil and gold might lead to danger in using gold as a hedge 
instrument against the oil price risk. Reboredo (2013) investigated whether gold acts as a hedge 
and safe haven against oil price using copulas approach. The results provide evidence against 
hedging ability of gold for oil but support its safe haven role. Although Reboredo (2013) analysed 
the dependence structure between oil and gold, the study did not give information about the 
existence of regime change in the dependence.  In our paper, we propose a novel regime switching 
copula model that allows for regime change in the copula parameter in order to assess the time-
varying dependence structure between gold and oil prices. The main advantage of this model is 
that it does not require an ad hoc determination of change point in the dependence structure (da 
Silva Filho, et al., 2012; Boubaker and Sghaier, 2016). Moreover, we contribute to the literature on 
oil and gold relationship by not only examining this for the original return series but also for the 
decomposed multi-resolution analysis (MRA) wavelet scales, D1-S9.2 This decomposition is 
                                                            
1 The specific roles of gold can be found in Aye et al. (2016, 2017). 
2 Mensi et al. (2017a, 2017b) used time varying copulas to examine dependence structures for wavelet decomposed 
series. However, their analysis did not account for potential different states. In the current study, this was accounted 
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motivated by the heterogeneous market hypothesis, which categorizes traders in terms of their 
time horizons or level scales. This is important as market participants may differ in terms of 
expectations, risk profiles, beliefs, information sets among others (Mensi et al., 2016). This will 
provide new insight into the reactions of short-, medium- and long-term investors in terms of gold 
and oil dependence.  
 
Further, if gold is a safe-haven for oil prices, one would ideally expect the correlation between gold 
and oil to be negatively impacted by crisis situations. This assumption stems from the fact that 
empirical evidence has shown that economic agents and markets react to exogenous 
anthropogenic, natural and/or political events (Kaplanski and Levi, 2010, Pástor and Veronesi, 
2013). For instance, it has been shown that events such as elections, civil strife, government 
changes, terrorist attacks, geopolitical friction and tension could affect economic performance and 
asset markets directly, but also the cross correlation of assets, investor sentiments, portfolio 
allocation and diversification decisions (Asteriou and Siriopoulos, 2003, Drakos and Kallandranis, 
2015, Omar et al., 2016, Antonakakis et al., 2017). Therefore, this study contributes to the literature 
on the oil-gold dependence dynamics by evaluating the influence of geopolitical risks (GPR) on 
the correlation between gold and oil prices. To this effect, we estimated a regression model using 
dependence parameter estimates from the best copula models for both the return and wavelet 
series. This sort of analysis is particularly important in our context given that oil is a strategic 
commodity that has its large share produced in geopolitically volatile and unstable regions such as 
the Middle East, West and North Africa. The analysis of the influence of geopolitical risks, (i.e., 
non-financial factors) on the dependence structure of oil fills a gap in the growing empirical 
literature on safe haven assets as most studies focus on gold’s safe haven status relative to financial 
variables such as stocks, bonds, currencies and oil as discussed above (Baur and Smales, 2018). 
 
The remainder of the paper is organized as follows: Section 2 outlines the copula models, while 
Section 3 discusses the data, Section 4 presents the results, with Section 4 concluding the paper. 
 
 
2. Methodology 
The role of gold as a hedge or safe haven against oil prices is examined using the dynamic 
dependence structure between oil and gold.  Specifically, the study uses a Markov switching time-
varying copula to measure the dynamic dependence structure between oil and gold.  
 
2.1 Bivariate Copulas 
A copula is a function that allows the joining of several univariate distributions to form a valid 
multivariate distribution with no loss of information from the original multivariate distribution. 
According to Schweizer and Sklar (1983) and da Silva Filho et al. (2012), an n -dimensional copula 

),...,( 1 nuuC  is a multivariate distribution function in n]1 ,0[  whose marginal distributions are 

uniform in the ]1 ,0[  interval. For any joint distribution ),...,( 1 nxxH  with marginals 

)(),...,( 11 nn xFxF , we have )).(),...,((),...,( 111 nnn xFxFCxxH      (1) 

If nFF ,...,1 , are continuous, then the copula C  associated to H  is unique and may be obtained 

by )),(),...,((),...,( )1(
1

)1(
11 nnn uFuFHuuC          (2)  

where ).(),...,( 111 nnn xFuxFu    
 

                                                            
for by using the Markov time varying copulas. The Markov models turned out to fit our wavelet series better than the 
simple time varying copulas. 
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One can easily obtain the density function related to the joint distribution in (1) since nFF ,...,1 and 

C  are n-differentiable. Thus, in a bivariate case, the density function is given by 

),())(),((),(
2

1
221121 i

i
i xfxFxFcxxh 



       (3)  

where h  is the density function associated with H , if  is the density function for each marginal, 
and the copula density c  is obtained by differentiating (1), which can be written as  

.

)((

))(),((
))(),...,((

2

1

)1(

2
)1(

21
)1(

1
11










i
iii

nn

uFf

uFuFh
xFxFc        (4)  

 
The copula functions often used in finance have elliptical forms because they are associated with 
a quadratic form of correlation between the marginal (da Silva Filho et al., 2012). Examples are the 
Gaussian (Normal) and Student-t copulas. The dependence structure related to this copula family 
is the linear correlation coefficient, which belongs to the ]1 ,1[  interval. Indeed, distribution 
functions from this family are symmetric.  
 
The Archimedean and Gumbel (1960) copulas have also been used. Archimedean copula function 
may have a dependence measure belonging to the most diverse ranges of variation, depending on 
the functional form of the generating factor. The Gumbel copula has mostly been used in Extreme 
Value Theory (EVT) and allows only positive (upper tail) dependence structures. Gumbel 
parameter belongs to the interval ]. ,1[   Due to the diversity of copula functions with specific 
dependence structures, it becomes impossible to compare different copula functional forms. 
However, focusing on a dependence measure known as tail dependence makes the comparison 
possible. We provide the definition of tail dependence in what follows.  
 
Definition 1. If the limit D LCUU    /),(lim  ]Pr[U lim]Pr[U  lim 0ε120ε210ε

exists, then copula C  has a lower tail dependence if ]1 ,0[L . Otherwise, C has no lower tail 
dependence.  
If the limit UCUU     )1/)),(  21(lim  ]Pr[U lim]Pr[U  lim 1̀121211  

exists, then copula C has upper tail dependence if ]1 ,0[U ]. Otherwise, C  has no upper tail 
dependence.  
 
Using tail dependence measures allow us to determine the model that best reproduces empirical 
or stylized facts, about commodity markets. Also, the tail dependence measure can be thought of 
as the probability that an extreme event occurs in a market, given that this event is occurring in 
another market. In addition, tail dependence is fully defined by the dependence structure (that is, 
the related copula), and is not affected by marginal distribution variations. Several functional forms 
that can be used as copulas. Nelsen (2006) provided some examples of copula families and a guide 
for their construction. In this study, five copula functions are tested3. Table 1 summarizes the 
characteristics of the copula functions used. These are: 
 
 
Gumbel copula: This has only upper tail dependence and is given as 

      ]. ,1[    , loglogexp),(
/1

2121  
 uuuuCG  

 
                                                            
3 We draw only bivariate copula functions since our work focuses on this dimension.  
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Rotated Gumbel copula: This has only lower tail dependence and is specified as  
]. ,1[    )1,1(1),( 212121   uuCuuuuC GRG  

 
Symmetrized Joe–Clayton copula: This is specified as 

),1),1,1(),,((5.0),,( 21212121  uuuuCuuCuuC LU
JC

LU
JC

LU
SJC   

where JCC  is the Joe–Clayton copula, also called ‘‘ 7BB ’’, given by  

           with,1111111),,(
/1/1

2121









  uuuuC LU

JC  

),2(log/1 2
U   

1). ,0(,  and   ),(log/1 2  LUL   
The SJC has both upper and lower tail dependence parameters. The measures of dependence of 
the upper and lower tail are respectively its own dependence parameters, U and L . Additionally, 

U and L  independent on each other and hence range freely.  
 
Normal copula: There is no tail dependence in this copula. Instead, its dependence parameter is the 
linear correlation coefficient.  

1). ,1(   ,
)1(2

)2(
exp

)1(2

1
),(

2

22)( )(

221

1
1

2
1
















  
 

 








 
drds

srsr
uuC

u u

N  

 
Student-t copula: Similarly, to the Normal copula, the linear correlation coefficient is the measure of 
dependence for the Student-t copula. However, contrarily to the normal copula, it shows some tail 
dependence. Actually, it has symmetric tail dependence.  

𝐶ௌ்ሺ𝑢ଵ, 𝑢ଶ|𝜌, 𝑣ሻ ൌ න න
1

2𝜋ඥሺ1 െ 𝜌ଶሻ

௧ೡ
షభሺ௨మሻ

ି∞

௧ೡ
షభሺ௨భሻ

ି∞
ൈ ቆ1 ൅

𝑟ଶ െ 2𝜌𝑟𝑠 ൅ 𝑠ଶ

𝑣ሺ1 െ 𝜌ଶሻ
ቇ

ି௩ାଶ
ଶ

𝑑𝑟𝑑𝑠.
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Table 1: Characteristics of bivariate copula models  

Copula Name Formula Parameter Tail dependence 
Normal (N) 

 
𝜌 ∈ ሾെ1 1ሿ  Zero tail dependence:  

Student-t (t) 

 

𝜌 ∈ ሾെ1 1ሿ Symmetric tail dependence: 

 

Clayton (CL) 𝐶஼௅ሺ𝑢, 𝑣; 𝛿ሻ ൌ 𝑚𝑎𝑥 ቄ൫𝑢ିఋ ൅ 𝑣ିఋ െ 1൯
ିଵ ఋ⁄

,0ቅ 

 

𝛼 ∈ ሾെ1, ∞ሻ\ሼ0ሽ Asymmetric tail dependence: 𝜆௅ ൌ 2ିଵ ఋ⁄ , 𝜆௎ ൌ 0 

Gumbel (GL) 𝛿 ∈ ሾ1, ∞ሻ Asymmetric tail dependence 𝜆௅ ൌ 0, 𝜆௎ ൌ 2 െ 2ଵ ఋ⁄  

Rotated Gumbel   upper tail independence and lower tail dependence 

Frank (F) 
𝐶ிሺ𝑢, 𝑣; 𝛿ሻ ൌ 𝛿𝑙𝑜𝑔 ቆ

ൣ൫1 െ 𝑒ିఋ൯ െ ൫1 െ 𝑒ିఋ௨൯൫1 െ 𝑒ିఋ௩൯൧
ሺ1 െ 𝑒ିఋሻ

൘ ቇ 

 

0<δ<∞ Zero tail dependence:  

Placket  
𝐶௉ሺ𝑢, 𝑣; 𝜃ሻ ൌ

1
2ሺ𝜃 െ 1ሻ

ሺ1 ൅ ሺ𝜃 െ 1ሻሺ𝑢 ൅ 𝑣ሻሻ െ ට൫1 ൅ ሺ𝜃 െ 1ሻሺ𝑢 ൅ 𝑣ሻ൯
ଶ

െ 4𝜃ሺ𝜃 െ 1ሻ𝑢𝑣 

 

θ Zero tail dependence:  

SJC 
 

  

Joe Clayton  

 

 

 

Notes:  and  denote lower and upper tail dependence, respectively. For Normal copula,  and  are standard normal quantile functions and  is the bivariate standard normal 

cumulative distribution function with correlation . For Student-t copula,  and  are the quantile functions of the univariate Student-t distribution with  as the degree-of-freedom 

parameter and T is the bivariate Student-t cumulative distribution function with  as the degree-of-freedom parameter and as the correlation.  For SJC copula, , 

. 

 1 1
NC (u, v; ) (u), (v)      L U 0   

 
    1 1

STC (u,v; , ) T(t (u), t (v))
 U L t /12 1 1 1 0           

   
             

1

GC (u, v; ) exp log u log v

       R G GC ( u , v ; ) u v 1 C (1 u , 1 v; )

L U 0   

L U 0   

 SJC U L JC U L JC U LC (u,v; , ) . C (u,v; , ) C ( u, v; , ) u v05 1 1 1             L ( , )  0 1 U ( , )  0 1 U L  

    JC U LC (u,v; , ) u v

1
1

1 1 1 1 1 1 1

 


  
 
                  
 

L ( , )  0 1 U ( , )  0 1  qU
t U U t U t j t jq j

u v1
1 1  

      
 qL

t L L t L t j t jq j
u v1

1 1  
      

L U
1(u) 1(v) 

 1t (u)


1t (v)
 

  U/ log ( )   21 2

L/ log ( )   21
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2.2 Copula-GARCH model  
For  ),,( 21 tt xxtX 1,2,...,t   a 2-dimensional time series vector, the copula-GARCH model can 
be specified as  

),,(),,(()( 22221111 tttt hxFhxFCH
ct

tt hμ,X       (5)  

where 
ct

C  is the copula function with time-varying dependence parameter ct  and ),( itiiti hxF 
, 2 ,1i , are the marginal distributions specified as standard univariate GARCH processes.  
 
A GARCH (1,1) model is given by:  

ititiit hx  2/1  
2

11   itiitiiit hh   

where ith is the conditional variance given past information, it , ,...,2 ,1t  are i.i.d. random 

variables, 0 , , i ii   and 1 i   i  assuring 0ith  and covariance stationarity, 

respectively. We also assume that  ),( ~ iiit vskewed-t  implying it has a skewed-t distribution.  
This density is given by  

baz
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where the constants a, b and c are obtained by  















 
















2
)2(

2

1

     ,31         , 
1

2
4 22

v
v

v

cab
v

v
ca


  

v  and   represent the number of degrees of freedom and asymmetry, respectively. Thus, the 
conditional distribution function for each marginal is 

  2/1
,-  ),(  itiitviitiiti hxtskewedhxF

i
  .  

 
As stated earlier, the dependence parameter is allowed to vary over time. Its time evolution follows 
a restricted ARMA(1,10) process, where the intercept term switches according to a first order 
Markov chain, i.e.,  

tctc
S
cSct

t

t
  1, ( ,       (6)  

where Markov(P). ~tS Here tS  may assume two possible states (or regimes), P  is a 2 × 2 

transition matrix for these states and the Markov chain is irreducible and ergodic. t  represents a 

‘‘forcing variable’’, defined as the mean absolute difference between 1u  and 2u  for GR  and JCS  
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copulas, given by ,
10

1 10

1 ,2,1   
j jtjtc uu and the mean of the products between 

)()(
10

1
 and  )()(

10

1
,2
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1 ,1
1

,2
1

,1

10

1

1
jtvj jtvcjtjtjc uTuTuu 


 







    4 for the Normal and 

Student-t copulas across ten previous periods (Patton, 2006). )( is a logistic transformation of 
each copula function to constrain the dependence parameter in a fixed interval. As a measure of 
dependence, ct ,  describes features of its associated copula function. So, we use the tail 
dependence measure calculated as in Definition 1 (except for the Normal copula which has no tail 
dependence) in this case. 
 
2.3 Estimation  
We specify the log-likelihood for the problem as: 


 













T

t i
iititScttt xfxFxFcl

tct
1

2

1
,222111 )()(),((log)(  txθ ,   (7) 

where ,, itii h   2, ,1i  and θ  is a vector with all model parameters. Due to the existence of 

unobserved processes such as th1 , th2  and tS , it may be computationally expensive to evaluate 
the likelihood in (7). However, since (7) is a separable function we can use the maximum likelihood 
estimation procedure in two steps, i.e., we can use the inference function for margins (IFM) 
method proposed by Joe and Xu (1996).  
 
The IFM method comprises of two steps. In the first step, the parameters of the univariate 
marginal distributions is estimated. In the second step, these estimates are used to estimate the 
dependence parameters. Copula-GARCH models became popular because of this procedure. This 
approach is employed in this study. That is, we model the marginal distributions as univariate 
GARCH processes and then specify the dependence parameters by the copula function choice.  
 
It is straightforward to fit marginal distributions since it follows the traditional approach for 
GARCH models. However, the dependence parameter estimation through copulas is not that 
straight forward because ct  depends on a non-observable discrete variable tS  which follows a 
Markov chain. Therefore, this requires additional discussion. We use Kim and Nelson (1999) filter 
for the estimation.  
 
2.3.1 Copula estimation  
Rewriting the log-likelihood in (7) as 


 













T

t i
iitiititScttttt hxfhxFhxFcl

tct
1

2

1
,2222211111 ),,(),,(),,,((log)(  txθ  

 





T

t
tctttttt

T

t
ttt

T

t
ttt Shhuuchxfhxf

1
212121

1
22222

1
11111 ),;,,,,(log);,(log);,(log   

),,()()()( 21 21 tctcff Sl   txθ  

                                                            
4 Where 1 and 1

vT are he inverses of the Normal and Student-t c.d.f, respectively.  
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where 



T

t
tttf hxf

1
111111 );,(log)(

1
 , 




T

t
tttf hxf

1
222222 );,(log)(

2
  and 





T

t
tctttttttctc ShhuucS

1
212121 ),;,,,,(log),(  ; )( 11

f  and )( 22
f are log-likelihood 

functions used to estimate parameters of the marginal distributions in the first step. Thus, we can 
move on to the evaluation of ),( tctc S . Rewriting ),( tctc S taking into account non-observable 

variables and decomposing tc  , we have  

.]Pr[),,(log
1

1

0
1121 

 
 









T

t S
tttttc

t

wSwSuuc      (8)  

 
We need to calculate the weights ]Pr[ 1tt wS for 0tS  and 1tS , in order to evaluate the 

loglikelihood in (8) since the states tS (only two states in our case) are non-observable. Applying 
Kim’s filter, will result in the following algorithm, which should be iterated through the sample 

Tt ,...,1  
(a) Prediction of tS   

)Pr(]Pr[ 11

1

0

1
1 




   tt

k

t
kltt wkSpwlS  

for 1 ,0l and ),Pr( 11
1


  ttt

t
kl wkSlSp , the transition probabilities between the states k

and l .  
(b) Filtering of St  

 








1

0
1121

1121

]Pr[),,(

]Pr[),,(
)Pr(

k
ttttt

ttttt

tt

wkSwkSuuc

wlSwlSuuc
wlS  

where ].,,[ 211 tttt uuww   In 1t , the filter is initialized using stationary probabilities of tS  for 

)Pr( 00 wkS  .  

 
With this filter, we obtain the probability distribution of tS  given the information set by t . It is 

however useful to know the distribution of tS  given the full sample information set, since we are 
dealing with time series. In other words, better estimates can be obtained in the sample by using 
all T  observations (in contrast to a prediction and filtering process). This is because information 
about the past can be extracted from the future in a time series context.  
 

Therefore, the smoothed probabilities regarding tS , ) ,Pr()Pr(
1

0 Ttk tTt wkSlSwlS   
, 

are obtained and ) ,Pr( Ttt wkSlS   can be calculated recursively from the filtered probabilities. 

This smoothing process works like a backward-smoothing algorithm as follows.  
1. Given the filtering process cited above, we obtain )Pr( tt wlS   for 1 ,0l  and Tt ,...,1 .  

2. Then initialize the smoothing algorithm in Tt  and go backwards recursively, with 
)Pr( Tt wlS  being equal to the filtered probability in Tt  .  
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3. For each ...,1, 2,-T ,1T t  the smoothed probability distribution )Pr( Tt wlS  is given by 













1

0
1

0

1

)Pr()(

)Pr()Pr()(
)Pr(

k

j
ttjk

Ttttlk

Tt

wjStp

wkSwlStp
wlS  

where ),Pr()( 1 tttlk wlSkStp    are the transition probabilities between the states l and k.  

 
At 0t the smoothing algorithm gives us )Pr( 0 TwlS  which can be used as the initial value in 

the filtering algorithm. Therefore, the forward-filtering–backward-smoothing algorithm is 
completed and (8) is maximized directly in a numerical fashion in relation to the model. 
 
2.3.2. Computing standard errors by block bootstrap 
We use the block bootstrap approach to calculate standard errors of our model for estimating the 
covariance matrix. We follow Politis and White (2004) and Politis et al. (2007) to calculate the 
optimal block length. That is, we use the following procedure: 
1. Obtain parameter estimates via IFM as described earlier.  
2. Sample ln / sub-samples (with replacement) from the observed data and generate a set of time 
series with size n , where l  is the block size.  
3. Re-estimate parameters using the generated time series.  
4. Repeat steps (2) and (3) R  times.  
5. Calculate the standard errors for the parameters using the covariance matrix 

)ˆ)(ˆ)(ˆ)(ˆ(
1

1  
 rrR

R

r
, where )(ˆ r is the estimated parameter vector for each 

replication r  and ̂  is the parameter vector obtained in (1). 
 
2.3.3 Regression analysis using copula parameter,   
 
To examine the effect of geopolitical risks on the dynamic dependence relationship between oil 
and old, we regress, using linear regressions estimated based on ordinary least squares with 
heteroskedasticity and autocorrelation robust Newey and West (1987) standard errors,   from the 
best copulas on three versions of GPR, namely the overall GPR (GPR), GPR due to threats 
(GPRT) and actual acts (GPRA). 
 
 
3. Data 
We used daily data on gold prices and West Texas Intermediate Institute (WTI) crude oil spot 
prices covering from 2 January 1985 to 30 November 2017. We use gold fixing price at 3:00 P.M. 
(London time) in London Bullion Market, based in U.S. Dollars, and WTI oil prices measured in 
US dollar per barrel. Both data were sourced from the FRED database of the Federal Reserve 
Bank of St. Louis.  

Since we anticipate that geopolitical risks may influence the safe haven ability of gold for oil price, 
we also obtained daily data on GPR covering from the same time period.  The GPR data were 
sourced from Caldara and Iacoviello (2018), which is available for download 
at: https://www2.bc.edu/matteo-iacoviello/gpr.htm. Caldara and Iacoviello (2018) construct the 
GPR index by counting the occurrence of words related to geopolitical tensions, derived from 
automated text-searches in 11 leading national and international newspapers (The Boston Globe, 
Chicago Tribune, The Daily Telegraph, Financial Times, The Globe and Mail, The Guardian, Los 
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Angeles Times, The New York Times, The Times, The Wall Street Journal, and The Washington 
Post). They then calculate an index by counting, in each of the above-mentioned 11 newspapers, 
the number of articles that contain the search terms above for every day starting in 1985. The 
index is then normalized to average a value of 100 in the 2000-2009 decade. The search identifies 
articles containing references to six groups of words: Group 1 includes words associated with 
explicit mentions of geopolitical risk, as well as mentions of military-related tensions involving 
large regions of the world and a U.S. involvement. Group 2 includes words directly related to 
nuclear tensions. Groups 3 and 4 include mentions related to war threats and terrorist threats, 
respectively. Finally, Groups 5 and 6 aim at capturing press coverage of actual adverse geopolitical 
events (as opposed to just risks) which can be reasonably expected to lead to increases in 
geopolitical uncertainty, such as terrorist acts or the beginning of a war. Based on the search groups 
above, Caldara and Iacoviello (2018) further disentangle the direct effect of adverse geopolitical 
events from the effect of pure geopolitical risks by constructing two indexes. The Geopolitical 
Threats (GPRT) index only includes words belonging to Search groups 1 to 4 above. The 
Geopolitical Acts (GPRA) index only includes words belonging to Search groups 5 and 6. The 
GPR indexes are found to be stationary in their raw level-form. Note our sample size is contingent 
upon data availability of the geopolitical risks indices at the time of writing this paper. 

The first panel of Figure 1 presents the time series plots of the raw gold and oil prices. We observe 
a sharp decline in the price of oil around the 2008-2009 global crisis. Although gold prices also 
declined around this period, the fall is not as sharp as that of oil prices. Towards the later end of 
the sample, we can also witness another decline. From 2007 there seems to be a sort of unexpected 
highs and lows in the trend for the two series. Overall, there seem to be visual evidence of 
consistent positive relationship between the two series. However, this will be confirmed using 
Copula models. The gold and oil return series (first logged difference) are presented in the second 
and third panels of Figure 1, respectively. Both return series exhibit volatility clustering with both 
low and high frequency volatility suggesting that some form of GARCH-type modeling may be 
appropriate. The statistical properties of the gold and oil returns are shown in Table 2. Both gold 
and oil have positive returns. Gold has larger average returns than that of oil while oil’s returns 
seem to be relatively more volatile as indicated by the standard deviation. Both are negatively 
skewed (negative asymmetry) which is an indication of greater probability of larger decreases in 
their returns. The kurtosis values are greater than 3 for both series, an indication of fat tails. The 
non-normality of gold and oil return series is further confirmed by the Jarque-Bera results. The 
results suggest the existence of ARCH effects. The two unit-root tests (ADF and PP) and a 
stationarity test (KPSS) indicate that the return series are stationary. There is a positive but weak 
correlation between oil and gold returns suggesting lack of potential diversification benefits.5  

                                                            
5 As an additional check in this regard, across frequency domain, we used the co-spectral analysis of Kim and In 
(2003). As can be seen from Figure A1 in the Appendix A, the two returns are always in-phase across various 
frequencies, with dependence increasing at longer frequencies, suggesting lack of diversification benefits in the long-
run. Further, in Figure A2 in the Appendix A of the paper, we present quantiles-based coherency (as developed by 
Baruník and Kley (2019)) between gold and oil returns across various quantiles. The figures in the left panel correspond 
to Real (Re) and the right panel for imaginary (Im) parts of the quantile coherency estimates for weeks (W), months 
(M) and years (Y), along with the 95 percent confidence intervals. Note, quantiles provide an indirect way of studying 
the time-varying nature of the relationship between the two variables, as they correspond to different states of the 
gold and oil markets. As can be seen, in general, the relationship between these two variables tend to be positive, but 
there is also some evidence of negative coherency, especially at longer frequencies. This result tends to suggest that it 
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Figure 1.  Gold and West Texas Intermediate Crude Oil Prices and Returns 

 
 
 
 
 
 
                                                            
is perhaps important to study the conditional dependence conditional on the regimes of these two markets, which is 
what we aim to do via the regime-switching time-varying copula models. 
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Table 2. Statistical properties 
  

Oil Gold 
 Mean 9.78E-05 0.000177

 Median 0.000478 0.000177

 Maximum 0.275638 0.07006

 Minimum -0.4064 -0.095962

 Std. Dev. 0.025325 0.010177

 Skewness -0.48125 -0.180598

Kurtosis 18.03199 9.253237

 Jarque-Bera  76574.38*** 13241.28***
ADF -26.494*** -19.488***

PP -91.61*** -43.511***
KPSS 0.0575            0.1927 
Q(10) 51.440***                21.653**

Q2(10) 756.84*** 1049.6***

ARCH 72.8523*** 01592199***

Correlation   
Oil 1 
Gold 0.12466 1
Notes: ADF, PP and KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979), and the Phillips-
Perron (1988) unit root tests, and the Kwiatkowski et al. (1992) stationarity test, respectively. ARCH-LM(1) 
test of Engle (1982) is to check the presence of ARCH effects. ***, **, * denote the rejection of the null 
hypotheses of normality, no autocorrelation, unit root, stationarity, and conditional homoscedasticity at the 
1%, 5% and 10% significance levels, respectively. 

 

To model the dependence structure between gold and oil, the analysis was performed using the 
two log-returns. However, to have a richer picture of the degree and structure of dependence in 
the gold and oil markets across various investment horizons, the wavelet decomposition method 
was also considered following Tiwari et al. (2013) and Mensi et al. (2016). To do this, we 
decompose the time series into different scales using the multi-resolution analysis (MRA) design 
method. The MRA interpretation of order up to S9 is presented in Table 3. Scales D1-D3 denote 
a daily scale which can be interpreted as low scales, implying they could be relevant for low scale 
speculative traders. Scales higher than D3 and perhaps until D6 can be interpreted as intermediate 
scales while scales higher than D6 represent high scale data. These wavelet time scales could also 
be considered as short-term, medium-term and long-term investment horizons respectively.  
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Table 3. Scale interpretation of the MRA scale levels. 

Scale daily scale 
D1 2 ~ 4 days 
D2 4 ~ 8 days 
D3 8 ~ 16 days 
D4 16 ~ 32 days 
D5 32 ~ 64 days 
D6 64 ~ 128 days 
D7 128 ~ 256 days 
D8 256 ~ 512 days 
D9 512 ~ 1024 days 
S9 More than 1024 days 
Note: MRA is the multi-resolution analysis. D1-D3 represent a daily scale which 
can then be interpreted as low scales, whereas scales higher than D3 (maybe until 
D6) can be interpreted as intermediate scales. Scales Higher than D6 represent 
high scale data. 

 

4. Results  
 
4.1 Marginal distribution results 
The aim of the study is to examine the hedge and safe haven effectiveness of gold for oil returns. 
As a first step in the analysis, various forms of ARMA-SPLINE-GARCH marginal distribution 
models were fitted considering different combinations of p, q, r and m for the values ranging 
from zero lag to a maximum of 2 lags. The best model is selected using the Akaike Information 
Criterion (AIC). The parameter estimates of the best marginal model, ARMA(1,0)-SPLINE-
GARCH(1,1) model with 5 knots (splines) are presented for each return series in Table 4. The 
estimates of conditional mean (AR 1) are negative and statistically significant for both gold and oil 
returns albeit. The small size of the coefficients depicts some form of very weak dependence on 
the past returns.  
 
From the conditional variance equation, we observe that the ARCH effects (alpha 1) is statistically 
significant and positive as expected. Similarly, the coefficient of the GARCH component (beta 1) 
is positive and statistically significant. The magnitude of the GARCH parameter (less than but 
close to 1) for each return series, indicates high volatility persistence.  The sum of the ARCH and 
GARCH coefficients are less than one (0.9852), showing the stability of our ARMA(1,0)-SPLINE-
GARCH(1,1) model specification. The knot coefficients (Spline_Vi) are also statistically significant 
for the four interior knots for the oil return series and for all five interior knots for the gold return 
series suggesting changes in the curvature of the time trend of these series during some periods. 
These results are consistent with the pattern of volatility witnessed in Figure 1.  
 
There is evidence of significant asymmetry or leverage effects as well as fat tails in the error terms. 
This indicates a heavy tail to the left for the marginal distributions meaning that large negative 
returns in downturn periods are more likely than large positive returns. In other words, the negative 
residuals of oil and gold (bad news) tend to increase the variance (conditional volatility) more than 
positive shocks (good news) of the same magnitude. This leverage effects could be due to 
information asymmetry, arbitrage activities, heterogeneity, and/or contract liquidity within 
particular markets (Raza et al., 2018). These results also indicate the existence of potential 
dependence in the tails of the joint distribution of oil and gold returns.  
 
 
The appropriateness of the selected model could further be judged using the diagnostic statistics. 
The Ljung–Box Q statistics indicate that there is neither autocorrelation nor squared 
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autocorrelation in the residual terms. More so, the McLeod and Li (1983) test results do not reject 
the null of no squared residual autocorrelations or no conditional heteroscedasticity. Therefore, 
one can conclude there are no remaining ARCH effects.  
 
Table 4. Estimates of the marginal distribution models (ARMA(1,0)-SPLINE-GARCH(1,1) 
model)  

 
Oil  Gold  

Mean equation 
 

  
 Coefficient Std.Error p-value Coefficient Std.Error p-value 

Cst(M) 0.000239 0.0002 0.2311 -2.7E-05 7.78E-05 0.7307 

AR(1) -0.02598** 0.011143 0.0197 -0.0417*** 0.010258 0.00000 

Variance equation  
Cst(V) x 104 3.0938*** 0.69119 0.0000 1.7553*** 0.35213 0.0000 

Spline_1 (V) 4.9511*** 1.8181 0.0065 -27.80*** 2.4925 0.0000 

Spline_2 (V) 2.5667 2.935 0.3819 75.889*** 6.2299 0.0000 

Spline_3 (V) -22.84*** 2.2419 0.0000 -52.65*** 7.4745 0.0000 

Spline_4 (V) 1.8008 4.1583 0.665 -20.346*** 6.7678 0.0027 

Spline_5 (V) 52.186*** 4.2159 0.0000 19.57* 10.138 0.0535 

ARCH(1) 0.0706*** 0.007787 0.0000 0.0583*** 0.005975 0.0000 

GARCH(1) 0.9146*** 0.008875 0.0000 0.924*** 0.007572 0.0000 

Asymmetry -0.064*** 0.015306 0.0000 -0.033** 0.013921 0.0183 

Tail 5.733*** 0.36374 0.0000 4.2862*** 0.21518 0.0000 

Diagnostic tests       
Log-Likelihood  19873.585 27136.512   
AIC  -4.8937 -6.6974   
Q(10)  6.985 17.007   

 [0.6386] [0.0486]   
Q2(10)  6.486 11.661   

 [0.593] [0.1669]   
McLeod-Li(10)  1.0633 

 [0.387] 
1.0223 
[0.421] 

  

Notes: The lags p, q, r and m are selected using the AIC for different combinations of values ranging from 0 to 2. 
Q(10) and Q(10)(2) are the Ljung-Box statistics for serial correlation in the model residuals and squared residuals, 
respectively, computed with 10 lags.. The p-values (in square brackets) below 0.05 indicate the rejection of the null 
hypothesis.  ***, **, * denote, respectively, significance at the 1%, 5%, and 10% levels.  
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4.2. Dependence structure (Copula) results 
 
The estimated results of the dependence structure between gold and oil using the time-invariant, 
traditional time-varying and time varying Markov copulas are presented in Table 5. The results are 
presented for the returns and wavelet decomposed series, where wavelet decomposition is applied 
to the standardised residuals extracted from the marginal models. We use the log likelihood to 
select the best copula model. Lower likelihood values indicate better model. Our results provide 
strong evidence that the time-varying Rotated Gumbel Markov copula is the best specification for 
the return series while the time-varying normal Markov copulas provide the best fit for all the 
wavelet series. Therefore, the subsequent discussions will focus on the results from these best 
models.  
 
We observe a substantial change in the intercept term, , in the equation that describes the 
dependence dynamics between the low and high regimes especially for the wavelet series. The low 
and high regimes seem to be moderately persistent as indicated by the values of the probabilities p 
and q. These results indicate that the dependence structure between gold and oil is Markov-
switching time-varying. Therefore, constant and conventional time-varying copula models may not 
be adequate to capture this relationship. The estimates of   for both the raw returns and wavelet 
series are significant, implying that the dependence between gold and oil is time-varying. The 
nature of the dependence can be inferred from the sign of the  estimate. The results as 
summarized in Table 6 indicate a positive dependence structure for the return series. This implies 
that gold returns is not a good hedge for oil and hence does not protect investors against losses 
from rising oil prices since both co-move in the same direction. This is consistent with Reboredo 
(2013) and Balcilar et al. (2018).  
 
 

Table 5. Estimates for the bivariate copula models 

 Returns D1 D2 D3 D4 D5 D6 D7 D8 D9 S9 

Panel A: Parameter estimates for time-invariant copulas.  
Normal copula    

 0.114 0.060 0.156 0.207 0.189 0.157 0.219 0.119 0.160 0.359 0.281 

Log-lik. -52.849 -14.63 -100.2233 -0.1769 -0.1472 -0.1007 -0.1982 -0.0583 -0.1054 -0.5614 -0.3336 

Clayton copula    
𝛼 0.132 0.071 0.165 0.2245 0.2048 0.172 0.2099 0.1331 0.1745 0.461 0.326 

Log-lik. -58.589 -19.101 -84.0575 -0.1467 -0.1242 -0.0868 -0.1235 -0.0584 -0.104 -0.5025 -0.2897 

Rotated Clayton    
𝛼 0.1084 0.0658 0.1667 0.219 0.197 0.1716 0.2449 0.1159 0.1295 0.4264 0.2436 

Log-lik. -39.001 -16.1391 -86.234 -0.139 -0.1154 -0.0837 -0.1692 -0.045 -0.0581 -0.4396 -0.1472 

Plackett copula    
𝛿 1.4057 1.1939 1.579 1.816 1.7369 1.7016 1.8269 1.3824 1.3995 2.4002 2.0801 

Log-lik. -49.072 -13.1273 -88.681 -0.1536 -0.1314 -0.1166 -0.164 -0.0473 -0.051 -0.3503 -0.2684 

Frank copula    
𝛿 0.6581 0.339 0.8865 1.1729 1.0838 1.0152 1.2185 0.6507 0.6750 1.7894 1.583 

Log-lik. -47.126 -12.5471 -85.0439 -0.1481 -0.1271 -0.1099 -0.1625 -0.0474 -0.0508 -0.3435 -0.2766 

Gumbel copula    
𝛿 1.1 1.1 1.1 1.129 1.1145 1.1071 1.1387 1.1 

 

1.1 

 

1.2518 1.1547 
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Log-lik. -46.104 15.1113 -99.5964 -0.163 -0.1341 -0.1056 -0.1845 -0.0535 -0.0314 -0.5195 -0.1664 

Rotated Gumbel copula  
𝛿 1.1 1.1 1.1 1.1303 1.1183 1.1046 1.127 1.1 1.1 1.262 1.1788 

Log-lik. -59.216 8.0071 -98.9218 -0.1629 -0.1338 -0.1104 -0.1393 -0.0671 -0.1027 -0.6055 -0.2587 

Student-t copula    

 0.11267 0.0573 0.1539 0.2026 0.1863 0.1665 0.2184 0.1172 0.1573 0.3287 0.2804 

 11.1639 10.701 11.839 13.455 13.605 8.9937 99.990 14.239 99.993 7.9708 99.999 

Log-lik. -82.289 -47.4133 -126.9136 -0.197 -0.1691 -0.1443 -0.1981 -0.0781 -0.1028 -0.5972 -0.3247 

SJC copula    

 U 
0.0049 0.00023 3.07E-02 5.37E-02 4.04E-02 3.30E-02 8.85E-02 9.10E-03 1.42E-03 1.69E-01 1.06E-02 

L 
0.0220 0.0018 0.028813 0.05864 0.048974 0.033224 0.028741 0.023875 0.054171 0.200488 0.156666 

Log-lik. -71.607 -26.21 -119.2823 -0.1951 -0.163 -0.1187 -0.1961 -0.0783 -0.113 -0.6954 -0.2686 

Panel B: Parameter estimates for time-varying copulas.        

TVP-Normal    
0 0.0205 0.1657 0.249 0.473 0.331 0.346 0.0654 0.0259 -0.0339 0.0083 -0.031 

2 
0.033 0.538 0.256 0.701 0.756 0.677 0.4655 0.2338 0.2176 0.2676 0.1563 

1 
1.782 -1.950 -0.104 -2.024 -1.105 -2.042 0.531 1.7137 1.827 2.1007 2.079 

Log-lik. -64.665 -79.5621 -152.5796 -0.4174 -0.6455 -0.5458 -1.0115 -1.3298 -1.4989 -2.6984 -1.9499 

TVP Rotated Gumbel copula   

U 
-0.54389 2.09419 0.83131 1.57126 0.9317 0.3911 0.5683 0.6324 0.7137 0.9671 0.6258 

U 
0.88161 -1.31685 0.02691 -0.40551 0.094071 0.35579 0.27314 0.27573 0.25830 0.20830 0.28237 

U 
-0.41113 -1.30833 -1.7048 -2.11239 -1.9085 -1.30059 -1.35629 -1.3860 -1.55194 -2.00759 -1.16938 

Log-lik. -77.048 -77.048 -77.048 -77.048 -77.048 -77.048 -77.048 -77.048 -77.048 -77.048 -77.048 

TVP-SJC    

U 
0.38853 3.43496 2.1707 4.87513 5.54071 4.98403 1.78003 3.1307 -7.0605 0.67847 -0.4639 

U 
-17.2823 -24.9999 -18.6329 -24.8694 -24.9996 -24.9999 -24.999 -15.5735 -2.8969 -10.923 -13.809 

U 
0.9773 -7.58821 -0.68675 -4.1352 -4.26013 -4.03413 0.674679 -3.4830 -0.0008 0.7969 3.685949 

L 
-0.1693 3.360509 1.89039 3.8508 4.751629 5.008997 -2.196315 4.784823 2.4505 1.8055 5.502299 

L 
-12.2236 -24.9999 -17.1091 -21.0695 -23.9389 -24.9999 -12.3013 -21.514 -24.999 -10.571 -24.9856 

L 
3.22851 -2.7954 -1.144952 -4.2489 0.453 -4.48690 0.079612 -3.35693 -0.247 0.1045 -4.48359 

Log-lik -84.381 -71.7824 -233.3782 -0.525 -0.8505 -0.9765 -0.8389 -1.555 -1.2992 -2.7964 -2.1935 

TVP Student-t    
0 0.00789 0.15807 0.22620 0.48859 0.03873 0.22141 0.04998 0.01757 -0.00535 -0.00437 -0.02064 

2 
0.010316 0.18319 0.104027 0.29751 0.09967 0.23661 0.1927 0.1269 0.11463 0.1156 0.10068 

1 
1.91151 -1.88824 0.05395 -2.02466 1.6061 0.03026 1.20764 1.82588 1.90231 2.0593 2.0655 

 4.99999 4.99999 4.99999 4.99999 4.99999 4.99999 4.99999 4.99999 4.99999 4.9999 4.99999 

Log-lik. -55.449 -44.1503 -119.139 -0.2961 -0.3897 -0.4453 -0.7242 -0.9834 -1.0962 -2.2236 -1.5334 

TVP Clayton           
0 0.474237 1.038838 1.1136 1.506 1.30831 1.06662 1.02385 1.09679 1.1459 1.4116 1.248 

2 
0.60582 -1.00299 -0.0138 -0.416 0.02137 -1.8882 0.21331 0.2231 0.2158 0.1671 0.207 
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1 
-0.58792 -1.7429 -2.1733 -2.614 -2.3679 -1.1737 -1.6157 -1.6436 -1.7921 -2.3437 -2.118 

Log-lik. -69.472 -58.4388 -185.7037 -0.387 -0.6266 -0.3188 -0.9654 -1.3306 -1.5125 -2.6701 -1.6756 

TVP Rotated Clayton           
0 0.80253 0.60385 1.10922 1.48952 0.53951 1.04957 1.19641 1.16038 1.01106 1.2082 1.18495 

2 
-0.32915 0.50947 0.01292 -0.29143 -0.9312 -1.88246 -1.25014 0.1866 -1.71675 0.20839 0.21746 

1 
-1.30042 -1.14694 -2.18679 -2.71946 -1.00675 -1.26571 -0.9379 -1.68551 -1.14058 -2.01703 -2.00449 

Log-lik. -48.228 -41.7308 -191.6357 -0.4131 -0.1529 -0.3146 -0.3107 -1.2402 -0.3799 -2.2332 -1.7505 

TVP Gumbel          
Ω 0.0121 2.08785 0.81788 1.50287 0.90269 0.38371 0.68649 0.66955 0.35501 0.69389 0.75742 

𝛽 0.43988 -1.31011 0.03978 -0.34177 0.11798 0.35999 0.21705 0.25919 0.3562 0.26307 0.25469 

𝛼 -0.68135 -1.28181 -1.70856 -2.15118 -1.92596 -1.30117 -1.4624 -1.40386 -0.8174 -1.5844 -1.7211 

Log-lik. -66.797 -63.5583 -219.591 -0.4688 -0.7478 -0.7993 -1.2183 -1.5628 -1.4209 -2.8721 -2.078 

Panel C: Parameter estimates for time-varying Markov copula 
Time-varying Normal Markov copula 

𝜔௖,ே
଴  0.0180 -0.22146 -0.11118 -0.4117 -0.27587 -0.62325 -0.27657 -0.20417 -0.10504 -0.0440 -4.2426 

𝜔௖,ே
ଵ  0.29110 3.8718 1.3587 3.40588 2.90707 3.33892 2.8353 2.2301 2.2536 2.06023 0.51006 

𝛽௖, 𝑁 1.7554 -2.00513 0.40552 -1.99523 -0.38227 -0.74270 0.27593 1.06747 1.67759 2.01120 -1.57889 

𝛼௖,ே 0.03015 0.49454 0.05875 0.75654 0.73490 0.50459 0.49408 0.40896 0.22658 0.2319 2.0911 

𝑝 0.38355 0.13546 0.38176 0.38788 0.37972 0.44177 0.41569 0.42918 0.42123 0.4322 0.51333 

𝑞 0.61645 0.86454 0.61823 0.61211 0.62027 0.55823 0.5843 0.57082 0.57877 0.56779 0.48666 

Log-lik. -84.549 -194.822 -331.062 -0.7996 -1.366 -1.9283 -2.3136 -2.8026 -3.1304 -4.2028 -3.7348 

Time-varying Clayton Markov copulas 

𝜔௖,஼
଴  0.3940 -0.63819 0.76445 0.96260 0.65986 0.68605 0.70452 0.34656 0.7204 0.74329 0.72544 

𝜔௖,஼
ଵ  -1.32319 -2.7164 -1.47987 -1.64775 -0.95079 -0.95708 -0.95973 -1.20541 -0.96192 -0.9707 -0.96399 

𝛽௖,஼ 0.5356 0.30639 0.16159 -0.04250 -0.24374 -0.23886 -0.23803 -0.20754 -0.23319 -0.22936 -0.23654 

𝛼௖,஼  -0.36088 1.24173 -1.42736 -1.68524 -0.12858 -0.12357 -0.13107 0.00849 -0.13416 -0.14821 -0.11699 

𝑝 0.36407 0.15019 0.26742 0.19542 0.42856 0.42863 0.42863 0.42899 0.42863 0.42866 0.42865 

𝑞 0.63593 0.8498 0.73257 0.80457 0.57143 0.57137 0.57137 0.57100 0.57136 0.57134 0.57135 

Log-lik -74.861 -86.944 -210.9819 -0.4845 -0.5374 -0.8376 -0.9951 -1.7696 -1.2825 -2.1299 -1.6877 

Time-varying Rotated Gumbel Markov copulas 

𝜔௖,ோீ
଴  -0.45813 0.42463 0.74707 2.48379 1.5673 1.45268 1.51039 1.46272 0.5701 1.63561 0.81961 

𝜔௖,ோீ
ଵ  -0.59799 -0.22286 0.17497 1.05837 0.64438 0.33947 0.57168 0.82352 -0.0339 1.02237 0.46136 

𝛽௖,ோீ  0.80733 0.34371 0.20059 -0.30612 0.08823 0.08881 0.12972 0.15797 0.29075 0.14148 0.24167 

𝛼௖,ோீ  -0.21811 -0.27828 -0.81446 -1.41653 -1.36053 -0.71282 -1.10817 -1.92644 -0.01062 -2.17761 -1.37652 

𝑝 0.54312 0.84951 0.66296 0.72076 0.67996 0.60275 0.63075 0.57005 0.42887 0.60077 0.45481 

𝑞 0.4569 0.15049 0.33704 0.27924 0.32004 0.39725 0.36925 0.42995 0.57113 0.39923 0.54519 

Log-lik -90.127 -130.959 -274.2829 -0.592 -1.0417 -1.5259 -1.8699 -2.3449 -1.8738 -3.7979 -2.5526 
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Time-varying Rotated Clayton Markov copulas 

𝜔௖,ோ஼
଴  -0.5219 -0.5908 0.77397 0.98407 0.68283 0.57599 0.71269 0.71093 0.71469 0.04339 0.71917 

𝜔௖,ோ஼
ଵ  -1.18871 -3.10989 -1.75205 -1.78247 -0.95314 -0.98501 -0.96026 -0.95821 -0.9599 -0.92309 -0.96224 

𝛽௖,ோ஼  1.4059 0.26088 0.18613 -0.02146 -0.24507 -0.25383 -0.23906 -0.23137 -0.23512 -0.23753 -0.23495 

𝛼௖,ோ஼  0.2824 1.04305 -1.46014 -1.8031 -0.11636 0.00055 -0.12444 -0.1434 -0.12635 -0.16050 -0.12807 

𝑝 0.34393 0.0875 0.22669 0.21351 0.42857 0.42854 0.42863 0.42863 0.42863 0.62806 0.42866 

𝑞 0.65607 0.91245 0.77330 0.78649 0.57143 0.57146 0.57137 0.57137 0.57137 0.37194 0.57134 

Log-lik. -48.742 -89.1366 -225.7338 -0.5481 -0.525 -0.9716 -1.1275 -1.0012 -1.1077 -2.0476 -1.3405 

Time-varying Gumbel Markov copulas 

𝜔௖,ீ
଴  1,41543202 1.68459994 0.96039629 2.62150028 1.48629434 1.39873162 1.40343305 0.57430077 0.56918605 1.32108787 0.62158053 

𝜔௖,ீ
ଵ  1.03915 1.37477 0.33312 1.08625 0.60044 0.32277 0.49854 -0.03921 -0.03139 0.82797 -0.0216 

𝛽௖,ீ -0.62472 -0.67536 0.16119 -0.28734 0.0957 0.10106 0.11698 0.28996 0.29095 0.16877 0.27772 

𝛼௖,ீ -0.88607 -1.47510 -1.03554 -1.51446 -1.29717 -0.70503 -0.98136 -0.03036 -0.00882 -1.87394 0.00126 

𝑝 0.52207 0.55461 0.72712 0.73565 0.66226 0.60036 0.59113 0.42896 0.42894 0.53913 0.42884 

𝑞 0.47793 0.44539 0.27288 0.26436 0.33774 0.39964 0.40887 0.57104 0.57107 0.46087 0.57116 

Log-lik. -86.554 -75.8517 -281.3256 -0.6261 -1.0485 -1.5148 -1.8626 -1.7318 -1.8462 -3.6546 -1.8652 

Time-varying SJC Markov copulas 

𝜔௖,௎
଴  0.39186 3.43478 2.17085 5.39895 6.00902 5.25136 -0.3788 1.81118 1.30632 1.36429 -3.37585 

𝜔௖,௎
ଵ  -0.16939 3.35948 1.89029 4.75935 4.86729 5.97559 5.19819 0.08387 1.65165 1.19236 2.9128 

𝛽௖,௎ -22.643 -18.0513 -19.787 -22.4834 -0.11396 -13.876 -3.3968 -3.33759 -1.73658 -0.97139 -3.39259 

𝛼௖,௎ -22.427 -13.3687 -19.803 -22.6742 0.82529 1.71997 0.97065 -3.37451 -1.60179 -1.86035 -3.2770 

𝜔௖,௅
଴  0.95552 -7.58877 -0.68683 -3.58883 -4.12405 -4.72812 1.33478 0.61019 0.39021 0.87017 0.42019 

𝜔௖,௅
ଵ  3.2281 -2.79391 -1.14491 -3.88320 -2.58041 -3.50590 -2.8666 -1.55847 0.66509 0.46244 -0.04512 

𝛽௖,௅ -17.3016 -24.9994 -18.6341 -17.5363 -12.5832 -1.59628 -8.38409 -2.79185 -1.70386 -3.21836 -6.76690 

𝛼௖,௅ -12.222 -24.9997 -17.1084 -14.2343 -11.621 -17.9895 -11.3241 -2.71104 -1.84403 -2.99848 -8.3576 

𝑝 0.59606 0.59918 0.59996 0.54079 0.60244 0.5752 0.38451 0.4933 0.47991 0.5061 0.5120 

𝑞 0.40394 0.40082 0.40004 0.45921 0.39756 0.42478 0.61548 0.50668 0.52009 0.49383 0.4879 

Log-lik. -84.369 -71.7647 -233.3774 -0.5934 -1.0047 -1.4253 -1.6502 -1.8336 -1.8142 -3.0279 -2.4484 

Time-varying T Markov copulas 

Convergence was not achieved in any of the models, hence results are not presented  

Notes: This table reports the ML estimates for the different static and dynamic bivariate copula models for the gold-oil return and each of the time scale indicated in each 

column. All coefficients are significant except the bold once that are insignificant, italic coefficient are significant at 5% level of significance. The minimum loglikelihood value (value on 

bold) indicates the best copula fit.  

 
However, across different time scales (investment horizons), which takes the heterogeneity of 
market agents into account, the dependence structure vary. In the short- and medium-term 
investment horizons, we find mostly a negative dependence between gold and oil except for D2. 
Contrary to this, the dependence structure in the long-term is mostly positive except for S9. This 
implies that gold is a good hedge against oil price in the short- and medium-term, thus highlighting 
the diversification importance of gold for short- and medium-term (traders and speculators) 



20 
 

investors. In this instance, gold is a refuge or protector for market participants who are interested 
in the short- and medium fluctuations. However, gold cannot compensate long- term investors 
(institutional investors and central banks) for losses arising from oil price increases since both 
commodities co-move in the same direction in the long-term. Gold is therefore not a good hedge 
in the long-term.  This further implies that long-term investors may not reap any benefit from 
portfolio diversification regarding risk management. Diversification benefits generated by 
portfolios composed of gold and oil commodity may potentially decrease as gold co-crash with 
oil.  
 
Table 6. Summary of empirical results 

  Oil-Gold  
Scale  Best copula  Dependence structure  
Returns  Time-varying Rotated Gumbel Markov copulas  +  

D1  Time-varying Normal Markov copula  -  

D2  Time-varying Normal Markov copula  +  

D3  Time-varying Normal Markov copula -  

D4  Time-varying Normal Markov copula  -  

D5  Time-varying Normal Markov copula  -  

D6  Time-varying Normal Markov copula  +  

D7  Time-varying Normal Markov copula +  

D8  Time-varying Normal Markov copula  +  

D9  Time-varying Normal Markov copula  +  

S9  Time-varying Normal Markov copula  -  

Note: This table reports the best copula function for oil-gold pairs for raw returns and at each time scale ranging 
from D1 to D9 and S9 as well as their dependence structure. 

 
 
Next, we turn to tail dependence.  The time evolution of the dependence parameter for the low 
and high regimes are shown in Figure 2. Since the returns series is best fitted by the rotated Gumbel 
copula, they exhibit asymmetric time-varying tail dependence. There is greater dependence in the 
negative tail, with the degree of dependence in the positive tail being equal to zero (Shahzad et al., 
2018). Specifically, this implies that the return series have negative tail asymmetric dependence. 
The wavelet series which are captured best by the normal copula exhibit zero upper and lower 
(symmetric) tail dependence and this is evidence in favour of the safe haven ability of gold for oil 
price movement (Reboredo, 2013) albeit in a time-varying fashion. From Figure 2, we observe that 
the tail dependence structure varies over time for both low and high dependence regimes. For the 
raw return series, this is clearly positive in both regimes with higher values in the lower regime 
than the upper regime. For the wavelet series, the dependence parameter is mostly positive for the 
high regime but fluctuates between positive and negative in the low regime. The dependence 
parameters in general seem to be high around 2008/2009 global financial crisis period. Recalling 
that a safe haven is confirmed if an asset is uncorrelated or negatively correlated with another asset 
in times of market crisis, one may conclude that gold is a safe haven for oil.  
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Figure 2. Dependence parameter plots 
 
 
4.3 The effects of geopolitical risks on the dynamic dependence relationship  
To examine the effects of geopolitical risks (GPR) on the correlation between gold and oil prices, 
we estimated a regression model using dependence parameter estimates from the best copula 
models for both the return and wavelet series. We estimated the models for the overall GPR 
(GPR), GPR due to threats (GPRT) and actual acts (GPRA). Table 7 presents the regression based 
on the rotated Gumbel and Normal time-varying Markov copula models. Our findings show that 
there is a statistically significant effect of GPR, GPRT and GPRA on the gold and oil dependence 
dynamics. The results vary depending on the regime and whether we consider the returns or the 
wavelet series. Overall, geopolitical risks tend to have negative effect on the return series and in 
the medium-and long-term investment horizons while it has positive effect in the short-term 
investment horizons. This finding may not be surprising given that much of the geopolitical 
instability with its associated risks historically emanate from the petroleum producing regions of 
the world like Middle East, West and North Africa. This result implies that geopolitical tension 
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may generate diversification benefits between gold and oil assets, especially in medium- to long-
runs, thus justifying the inclusion of geopolitical uncertainty shock in a pure oil asset portfolio.6  

Table 7: Regression results on the effect of geopolitical risks 

Series Dependence GPR GPRA GPRT 

Returns 

theta_s0RGL -5.46E-05*** 
[-6.738]

-6.72E-06 
[-1.261]

-4.67E-05*** 
[-5.851] 

theta_s1RGL -5.90E-06***
[-5.304] 

-7.99E-07
[-1.092] 

-5.02E-06*** 
[-4.589] 

D1 

theta_s0N 3.83E-05*** 
[4.097] 

3.40E-05*** 
[5.548] 

8.81E-06 
[0.961] 

theta_s1N 1.31E-05*** 
[3.002] 

1.19E-05*** 
[4.163] 

2.76E-06 
[0.645] 

D2 

theta_s0N 1.09E-05*** 
[3.907] 

5.05E-06** 
[2.752] 

6.25E-06** 
[2.276] 

theta_s1N 4.50E-06*** 
[2.865] 

1.11E-06 
[1.076] 

3.46E-06** 
[2.236] 

D3 

theta_s0N 3.04E-06 
[0.166] 

4.75E-05** 
[3.961] 

-3.53E-05* 
[-1.966] 

theta_s1N -2.88E-06 
[-0.299]

2.21E-05*** 
[3.480]

-2.03E-05** 
[-2.139] 

D4 

theta_s0N -9.49E-05*** 
[-3.172] 

7.35E-07 
[0.037] 

-9.46E-05*** 
[-3.215] 

theta_s1N -4.11E-05*** 
[-4.249]

-6.23E-06 
[-0.980]

-3.52E-05*** 
[-3.700] 

D5 

theta_s0N -2.52E-06 
[-0.115] 

4.93E-05*** 
[3.415] 

-4.07E-05* 
[-1.886] 

theta_s1N -8.82E-06 
[-1.176]

8.31E-06* 
[1.686]

-1.43E-05* 
[-1.936] 

D6 

theta_s0N -0.000166*** 
[-4.869] 

-4.07E-05 
[-1.816] 

-0.000124*** 
[-3.701] 

theta_s1N -3.75E-05*** 
[-6.747]

-7.61E-06** 
[-2.083]

-2.89E-05 
[-5.291] 

D7 

theta_s0N 4.83E-05 
[1.128] 

-0.000118*** 
[-4.196] 

0.000147*** 
[3.496] 

theta_s1N 1.33E-05* 
[1.785] 

-4.25E-06 
[-0.870] 

1.69E-05** 
[2.311] 

D8 

theta_s0N -0.000536*** 
[-10.903] 

-1.98E-05 
[-0.613] 

-0.000492*** 
[-10.178] 

theta_s1N -1.41E-05*** 
[-7.897] 

-1.41E-06 
[-1.209] 

-1.20E-05*** 
[-6.883] 

D9 

theta_s0N 0.000451*** 
[6.199] 

-0.000105** 
[-2.193] 

0.000509*** 
[7.117] 

theta_s1N 8.26E-06***
[5.747] 

-2.19E-06**
[-2.325] 

9.64E-06*** 
[6.830] 

 
S9 

theta_s0N 0.000507*** 
[10.740]

1.02E-05 
[0.328]

0.000469*** 
[10.105] 

theta_s1N 0.000676*** 
[11.850] 

-5.26E-05 
[-1.405] 

0.000684*** 
[12.202] 

Note: ***, **, * denote, respectively, significance at the 1%, 5%, and 10% levels, with t-statistics in square brackets. 

                                                            
6 Contagion can be defined as a rapid shock spillover that increases cross-market linkages (Forbes and Rigobon, 2002). 
Given this, we conducted additional analysis to deduce whether an increase in geopolitical risks also leads to a 
reduction in the possibility of contagion in the gold and oil markets via a decline in the correlation jumps. To obtain 
estimates of correlation jumps, we use 5-minute intraday log-returns data on gold and oil futures traded in NYMEX 
over a 24 hour trading day (pit and electronic). The futures price data, in continuous format, are obtained from 
www.disktrading.com and www.kibot.com, and covers the daily period of 9th December, 1997 to 26th May, 2017. 
Specifically, we compute three different types of correlation jumps, details of which have been presented in Appendix 
B (see equations A1, A2 and A3). As can be seen from Table B1 reported in the Appendix B of the paper, in general, 
GPR, GPRA and GPRT have a significant negative impact on the three correlation jumps estimates, and hence, tends 
to suggest that higher geopolitical risks reduces the possibility of contagion between these two important commodity 
markets, and in the process increases the possibility of diversification. 
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We conducted a robustness analysis by including economic policy uncertainty (EPU) and VIX as 
control variables: The results are presented in Tables 8 and 9. Table 8 is associated with the effect 
of aggregate geopolitical risks (GPR) while controlling for EPU and VIX while Table 9 is 
associated with the effect of GPR components (GPRA and GPRT) while controlling for same. 
The results are qualitatively similar to those from the bivariate regression models. 

Table 8: Multivariate regression results on the effect of geopolitical risks: Robustness analysis 

Series Dependence CONSTANT GPR EPU VIX 

Returns 

theta_s0RGL 1.194
[863.111] 

‐2.64E‐05 
[‐4.390]  5.05E‐05 [6.489] 

‐0.001
[‐19.990] 

theta_s1RGL 1.028
[1981.413] 

‐1.25E‐05 
[‐5.553]  2.44E‐05 [8.354] 

‐4.43E‐04 
[‐17.757] 

D1 

theta_s0N ‐0.062
[‐27.388]  2.50E‐05 [2.548]  5.76E‐05 [4.541]  3.78E‐04 [3.487] 

theta_s1N 0.809
 [777.255]  9.94E‐06  [2.195]  3.03E‐05  [5.166] 

‐8.58E‐05 
[‐1.714] 

D2 

theta_s0N ‐0.070
[‐103.365] 

6.08E‐06
[2.069] 

6.90E‐06 
[1.813] 

2.65E‐04
[8.138] 

theta_s1N 0.672
[2054.412] 

3.05E‐06
[2.148] 

3.27E‐06 
[1.778] 

1.18E‐04
[7.511] 

D3 

theta_s0N ‐0.127
[‐29.239] 

‐8.44E‐05
[‐4.465] 

5.66E‐05 
[2.313] 

0.004
[16.742] 

theta_s1N 0.739
[318.671] 

‐3.89E‐05
[‐3.859] 

2.12E‐05 
[1.625] 

0.001
[10.701] 

D4 

theta_s0N ‐0.129
[‐17.512] 

‐1.40E‐04
[‐4.370] 

9.30E‐05 
[2.248] 

0.004
[10.354] 

theta_s1N 0.861
[355.930] 

‐3.93E‐05
[‐3.733] 

3.26E‐05 
[2.393] 

‐3.12E‐05
[‐0.268] 

D5 

theta_s0N ‐0.236
[‐43.072] 

‐3.68E‐05
[‐1.545] 

2.76E‐05 
[0.895] 

0.003
[7.943] 

theta_s1N 0.865
[460.363] 

‐1.32E‐05
[‐1.616] 

2.37E‐05 
[2.237] 

2.49E‐04
[2.753] 

D6 

theta_s0N ‐0.100
[‐12.182] 

‐1.67E‐04
[‐4.688] 

‐2.55E‐04 
[‐5.510] 

0.002
[5.154] 

theta_s1N 0.911
[681.390] 

‐4.32E‐05
[‐7.433] 

‐1.77E‐05 
[‐2.345] 

3.33E‐04
[5.177] 

D7 

theta_s0N ‐0.125
[‐11.900] 

‐3.63E‐05
[‐0.796] 

1.44E‐04 
[2.439] 

‐0.001
[‐1.770] 

theta_s1N 0.919
[502.934] 

1.10E‐05
[1.387] 

‐5.88E‐05 
[‐5.718] 

2.25E‐04
[2.556] 

D8 

theta_s0N ‐0.099
[‐8.731] 

‐5.42E‐04
[‐11.004] 

5.21E‐04 
[8.180] 

‐0.005
[‐8.753] 

theta_s1N 0.960
[3189.053] 

‐1.31E‐05
[‐10.002] 

6.63E‐06 
[3.910] 

‐1.06E‐04
[‐7.334] 

D9 

theta_s0N 0.266
[15.573] 

7.74E‐04
[10.404] 

‐9.39E‐04 
[‐9.756] 

‐0.013
[‐16.330] 

theta_s1N 0.969
[3971.363] 

1.20E‐05
[11.338] 

‐1.21E‐0 
5[‐8.786] 

‐1.68E‐04
[‐14.356] 

 
S9 

theta_s0N ‐0.868
[‐89.698] 

6.22E‐04
[14.780] 

5.38E‐04 
[9.868] 

‐2.030E‐05
[‐0.044] 

theta_s1N ‐0.102
[‐7.856] 

7.45E‐04
[13.158] 

4.50E‐04 
[6.137] 

0.010
[15.927] 
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Table 9: Multivariate regression results on the effect of geopolitical risks components: 
Robustness analysis 

Series Dependence CONSTANT GPRA GPRT EPU VIX 

Returns 

theta_s0RGL 1.194 
[860.746] 

‐2.14E‐05 
[‐3.620] 

‐4.69E‐06 
[‐1.001] 

5.05E‐05 
[6.489] 

‐0.001 
[‐19.994] 

theta_s1RGL 1.028 
[1976.131] 

‐9.51E‐06 
[‐4.296] 

‐3.22E‐06 
[‐1.834] 

2.44E‐05 
[8.352] 

‐4.43E‐04 
[‐17.771] 

D1 

theta_s0N ‐0.063 
[‐27.903] 

‐1.03E‐05 
[‐1.071] 

5.01E‐05 
[6.577] 

5.82E‐05 
[4.596] 

3.88E‐04 
[3.590] 

theta_s1N 0.809 
[776.395] 

‐4.44E‐06 
[‐1.003] 

2.03E‐05 
[5.774] 

3.05E‐05 
[5.217] 

‐8.16E‐05 
[‐1.633] 

D2 

theta_s0N ‐0.070 
[‐103.130] 

4.09E‐06 
[1.416] 

2.34E‐06 
[1.023] 

6.91E‐06 
[1.816] 

2.65E‐04 
[8.148] 

theta_s1N 0.672 
[2048.882] 

2.21E‐06 
[1.584] 

9.51E‐07 
[0.858] 

3.28E‐06 
[1.779] 

1.18E‐04 
[7.518] 

D3 

theta_s0N ‐0.128 
[‐29.419] 

‐9.74E‐05 
[‐5.247] 

2.59E‐05 
[1.761] 

5.74E‐05 
[2.345] 

0.004 
[16.791] 

theta_s1N 0.739
[317.740] 

‐4.56E‐05
[‐4.611] 

1.31E‐05
[1.672] 

2.16E‐05 
[1.654] 

0.001
[10.744] 

D4 

theta_s0N ‐0.130 
[‐17.582] 

‐1.36E‐04 
[‐4.353] 

7.16E‐06 
[0.288] 

9.37E‐05 
[2.266] 

0.004 
[10.372] 

theta_s1N 0.861 
[354.931] 

‐3.51E‐05 
[‐3.396] 

‐2.88E‐06 
[‐0.351] 

3.27E‐05 
[2.403] 

‐3.05E‐05 
[‐0.262] 

D5 

theta_s0N ‐0.238 
[‐43.298] 

‐6.93E‐05 
[‐2.967] 

5.49E‐05 
[2.962] 

2.82E‐05 
[0.914] 

0.002 
[7.987] 

theta_s1N 0.865 
[459.032] 

‐1.69E‐05 
[‐2.112] 

8.02E‐06 
[1.261] 

2.37E‐05 
[2.241] 

2.50E‐04 
[2.765] 

D6 

theta_s0N ‐0.099 
[‐12.069] 

‐1.13E‐04 
[‐3.218] 

‐6.28E‐05 
[‐2.259] 

‐2.55E‐04 
[‐5.518] 

0.002 

[5.125] 
theta_s1N 0.911 

[679.696] 
‐3.03E‐05 
[‐5.312] 

‐1.42E‐05 
[‐3.139] 

‐1.78E‐05 
[‐2.358] 

3.30E‐04 
[5.136] 

D7 

theta_s0N ‐0.122 
[‐11.608] 

5.11E‐05 
[1.142] 

‐1.23E‐04 
[‐3.456] 

1.42E‐04 
[2.409] 

‐0.001 
[‐1.827] 

theta_s1N 0.919 
[501.664] 

1.27E‐05 
[1.622] 

‐2.73E‐06 
[‐0.441] 

‐5.90E‐05 
[‐5.731] 

2.23E‐04 
[2.539] 

D8 

theta_s0N ‐0.098 
[‐8.641] 

‐4.11E‐04 
[‐8.503] 

‐1.41E‐04 
[‐3.675] 

5.21E‐04 
[8.179] 

‐0.005 
[‐8.784] 

theta_s1N 0.960 
[3180.058] 

‐1.08E‐05 
[‐8.369] 

‐2.15E‐06 
[‐2.109] 

6.64E‐06 
[3.916] 

‐1.06E‐04 
[‐7.344] 

D9 

theta_s0N 0.269 
[15.706] 

6.94E‐04 
[9.510] 

4.16E‐05 
[0.719] 

‐9.41E‐04 
[‐9.776] 

‐0.013 
[‐16.339] 

theta_s1N 0.969 
[3962.662] 

1.15E‐05 
[11.021] 

‐3.49E‐07 
[‐0.423] 

‐1.21E‐05 
[‐8.822] 

‐1.69E‐04 
[‐14.392] 

 
S9 

theta_s0N ‐0.866 
[‐89.187] 

5.48E‐04 
[13.272] 

4.16E‐05 
[1.268] 

5.36E‐04 
[9.844] 

‐2.11E‐05 
[‐0.045] 

theta_s1N ‐0.096 
[‐7.354] 

7.55E‐04 
[13.605] 

‐9.26E‐05 
[‐2.105] 

4.46E‐04 
[6.097] 

0.010 
[15.891] 
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5. Conclusion 

This paper investigated the time-varying dependence structure between gold and oil prices using 
daily data on gold prices and West Texas Intermediate Institute (WTI) crude oil spot prices 
covering from 2 January 1985 to 30 November 2017. Consequently, we make inference about the 
hedging and safe haven ability of gold for oil based on the results. Aside analysing the raw return 
series, we also capture heterogeneity among market participants by conducting the dependence 
analysis at different wavelet time scales. Further, motivated by extant literature that globalised 
markets respond to major political events, we investigated whether geopolitical risks can influence 
the dynamic dependence between gold and oil. We fitted several time invariant and time-varying 
copula models but conclude based on our results that the Rotated Gumbel and Normal time-
varying Markov switching copula models respectively capture the features of our returns and 
wavelet series best. Our results vary depending on whether we consider the original return series 
or heterogeneous market participants. For example, gold has a good hedging ability for investors 
in the short- and medium-term horizons. However, it failed to compensate long-term investors 
against losses from oil price increase. Similarly, using the original series shows gold as a poor hedge. 
However, we provide evidence of gold’s safe haven ability for oil thus, in extreme market 
conditions, gold represent a good diversification mechanism. On the influence of geopolitical risks, 
we found a statistically significant effect of this on the dynamic dependence between gold and oil 
returns and provide evidence of diversification benefits of geopolitical risks in the pure gold and 
oil asset portfolio.  

The findings have important implications. From an academic perspective, an analysis based on 
time invariant or simple regime switching models will not capture well the best features of the 
gold-oil dependence structure and dynamics relative to the Markov switching copulas. Moreover, 
assuming that market agents are homogenous may be far from the reality. Therefore, any analysis 
of the relationship between oil and gold should consider these. From a practical perspective, these 
findings offer effective ways to help investors to manage their risks and improve their investment 
portfolio performance depending on their unique characteristics and investment time horizons. 
From a policy perspective, the regulation of the gold prices and management of oil prices by both 
the home and OPEC policy makers could be based on prudent discernment of the effects of oil 
price changes on the economy in general and the commodity market in particular. Risk 
management and portfolio diversification can become more effective if policy decisions 
incorporate the information related to the gold market and the heterogeneity of market agents. To 
avoid contagion effect especially in the short and medium term, there may be need for policy 
makers to put in place more effective financial control measures for monitoring cross-market co-
movements.  
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APPENDIX: 

A. Coherency Analysis 

Figure A1. Co-Spectral Analysis between Gold and Oil Log-Returns: 
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Figure A2. Quantile Coherency between Gold and Oil Log-Returns 
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B. Correlation Jumps 

We estimate realized covariance and realized correlation non-parametrically, as introduced by 
Barndorff-Nielsen and Shephard (2004a): 

RCovt  ra,i,t  rb,i,t
i1

n

  

In the absence of market microstructure noise, non-synchronicity of prices effect (Epps, 
1979), and presence of jumps, the realized correlation coefficient adequately estimates correlation 
as follows:  

RCt 
QCov t

QVa,t QVb,t


RCov t

RVa,t RVb,t

 

where i  1, ..., n  intraday high-frequency observations in day t , for the two assets a  and b ; 

while, RVt  stands for realized volatility RVt 
1

n
ri ,t

2

i1

n . 

Following Andersen et al., (2007), and Huang and Tauchen (2005), the correlation jump 
detection is similar to the volatility jump detection scheme, i.e., the difference between the realized 
correlation and the jump-free realized bipower-variation correlation (Barndorff-Nielsen and 
Shephard, 2004b): 

Jt
RC  I max | RCt  RCt

BV |,0  c   RCt  RCt
BV      (A1) 

where RCt
BV 

RCovt

RVa ,t
BV RVb ,t

BV
, RVt

BV  p
2 | ri,t |

i2

n  | ri1,t |  is the realized bipower variation, 

and p  E | Z |p  is the mean of the p-th absolute moment of a standard normal distribution. 

The continuous and jump component of realized correlation is: 

JRCt  RCt max | RCt RCt
BV |,0  and JRCt max | RCt RCt

BV |,0 , respectively. 

   max | |,0RCov BV BV
t t t t tJ I RCov RCov c RCov RCov          (A2) 

where                , , , 1 , 1 , , , 1 , 1
28

n
BV
t k t i q t i k t i q t i k t i q t i k t i q t i

i

RCov r r r r r r r r


   


        and 𝑟ሺ௞ሻ௧,௜  is 

the k-th component of the return vector 𝑟௜,௧. We refer to the study of Barndorff-Nielsen and 

Shephard (2004a) regarding the BV
tRCov . 

   max | |,0MRC MRC MRC
t t t t tJ I RC RC c RC RC           (A3) 

where 
, ,

MRC t
t

a t b t

RCov
RC

MRV MRV
 ,  2

1, , 1,
1

, ,
6 4 3

n

t i t i t i t
i

MRV med r r r


  



 

  is median 

realized variance (Andersen et al., 2012). 
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Table B1. Impact of Geopolitical Risks on Correlation Jumps of Gold and Oil Log-Returns: 

Correlation Jumps  GPR GPRA GPRT 
JRC -9.37E-06 

[-0.539] 
6.99E-06 
[0.439] 

-6.03E-05*** 
[-4.635] 

JRCOV -1.47E-07*** 
[-2.583] 

-1.59E-07*** 
[-3.060] 

2.59E-08 
[0.607] 

JMRC -1.98E-03*** 
[-2.848] 

-1.81E-03*** 
[2.859] 

-3.59E-04 
[0.691] 

Note: ***, **, * denote, respectively, significance at the 1%, 5%, and 10% levels, with t-statistics in square brackets. 

 

 


