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Abstract. We derive a representation for dynamic capital allocation when the underly-
ing asset price process includes extreme random price movements. Moreover, we consider
the representation of dynamic risk measures defined under Backward Stochastic Differen-
tial Equations (BSDE) with generators that grow quadratic-exponentially in the control
variables. Dynamic capital allocation is derived from the differentiability of BSDEs with
jumps. The results are illustrated by deriving a capital allocation representation for dy-
namic entropic risk measure and static coherent risk measure.

1. Introduction

In investment management, risk describes the changes in future value of a position, due
to uncertain events. Moreover, risk measurement is the process of quantifying uncertainty
in the future value of a financial position. Different types of risk measures are proposed
and used in the literature and the finance industry, with Value-at-Risk (VaR) being the
most popular. VaR quantifies the maximum possible financial losses over a given time
horizon and confidence level. However, Artzner et al. (1999) identified the shortcomings
of VaR. It fails to recognise diversification and it is not time consistent. To counter the
weaknesses of VaR, Artzner et al. (1999), proposed coherent risk measure and described
it as a function that satisfies four properties: translation invariance, monotonicity, sub-
additivity and positive homogeneity. (See also Delbaen (2002) for coherent risk measures
in the general probability space). Corehent risk measure promotes diversification because
the risk of holding a portfolio of assets is less than the risk of holding individual assets.
Later, Föllmer and Schied (2002) and independently Frittelli and Rosazza (2002) showed
that the risk of a portfolio increases nonlinearly with the size of the position because of
additional liquidity. As a result, they extended the work of Artzner et al. (1999) by relax-
ing the properties of positive homogeneity and subadditivity to introduce the concept of
convex risk measures. A convex risk measure takes into consideration that the risk of a
position may increase in a nonlinear way as a position multiplies by a large factor.

In the abovementioned papers, the authors consider risk measure in a single-period
setting. The ideal situation is to measure the risk of a financial position continuously
throughout the investment period. Consequently, there is a need for the concept of dynamic
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risk measures. In a dynamic setting, the risk measure is updated over time according to
available information. An important property of dynamic risk measure is time consistency,
which describes how risk quantifications at different times are interrelated. Various authors
have extended the concept of static risk measure to dynamic risk measure. Peng (1997)
introduced g-expectations as nonlinear expectations based on a BSDE

dY (t) = −g(t, Y (t), Z(t))dt+ Z(t)dW (t),

Y (T ) = ξ,(1.1)

where the solution is a pair of Ft-adapted processes (Y (t), Z(t)). Rosazza (2006) showed
that conditional g-expectations represents a dynamic risk measures under the diffusion
BSDE (see also Barrieu and Karoui (2007), Frittelli and Rosazza (2002), Peng (2004)).
Jiang (2008) proved that g-expectation satisfies the translation invariance property if and
only if the generator g(t, y, z) is independent of y and is convex with respect to z for all
t. Quenez and Sulem (2013) studied properties of dynamic risk measures based on BS-
DEs with jumps (see also Øksendal and Sulem (2015) for applications). An extension of
quadratic BSDE to jumps was studied by Karoui, Matoussi, and Armand (2016) and they
includes an application to entropic risk measures. In this paper we will work with dynamic
risk measures that arise as the solution of quadratic BSDE with jumps.

Risk measures are used to determine the amount required to hold as a buffer against
unexpected losses for a portfolio. Risk measures can be further used to measure the risk
contribution of a subportfolio in a overall portfolio (see for example Cherny (2009), Buch
and Dorfleitner (2008), Denault (2001), Kalkbrener (2005) and Tasche (2004)). Capital
allocation is the problem of measuring the risk contribution of sub-portfolio in the overall
portfolio risk. The methods that are mostly used and studied are the full allocation prop-
erty of the Aumann-Shapley and Gradient allocation method. Denault (2001) provided
the properties of coherent capital allocation. These are the “no undercut”, symmetry and
riskless allocation, which together justify the gradient allocation principal. The gradient
allocation is the Gâteaux derivative of the risk measure of a portfolio in the direction of
the subportfolio. Tasche (2004) showed that if the risk measure is smooth, then the partial
derivative of the risk measure with respect to the underlying asset is the unique gradient
allocation principle. As a result, the risk measure needs to be Gâteaux-differentiable for
the gradient allocation to exist. Denault (2001) showed that the Aumman Shapley value
is coherent and a practical approach to capital allocation. Kalkbrener (2005) further pro-
vided the properties for gradient allocation principle, and shows that the properties are
satisfied if and only if the risk measure is positive homogeneous and sub-additive. The
gradient allocation properties provided by Denault (2001) are shown to be equivalent to
the risk measure axioms of positive homogeneity, sub-additivity and translation invariance
respectively (see Buch and Dorfleitner (2008)). For more analysis on the gradient alloca-
tion method, see e.g., Tasche (2007).

This paper is motivated by the representation of BSDE-based dynamic risk measures
and dynamic capital allocation. Kromer and Overbeck (2014) derived and analysed the
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dynamic capital allocation under the diffusion case. They use the results of Ankirchner,
Imkeller, and Reis (2007) for the differentiability of the BSDE to determine the capital
allocation representation under the diffusion case. Our contribution is to extend the dy-
namic capital allocation to include jumps. The jump-diffusion model is essential to capture
the extreme movements in a risky asset, for example, caused by the announcement of an
important decision made by a company or change in economic policy to the financial mar-
ket (Rong (2006)). Dynamic risk measures for BSDE with jumps are studied and analysed
by Quenez and Sulem (2013) and Øksendal and Sulem (2015). However, the authors did
not consider the capital allocation of the risk measure under the jumps framework.

The remainder of the paper is organised as follows. In Section 2, we present the nota-
tions and define concepts that will be used throughout the paper. Section 3, we derive the
representation of dynamic risk capital allocation based on the BSDE with jumps. From
dynamic risk capital allocation results we derive the representation of the BSDE based
dynamic convex and coherent risk measures. We conclude in Section 4 with applications
of our results to the entropic risk measures.

2. Preliminaries

In this section, we introduce the main concepts and notations to be used throughout
the paper. Let our source of randomness be modelled by two independent processes: the
one-dimensional standard Brownian motion, W = {W (t),F(t); 0 ≤ t ≤ T}, defined on a
probability space (ΩW ,FW ,PW ), and the independent compensated Poisson random mea-

sure, Ñ(dt, dζ) := N(dt, dζ)−ν(dζ)dt defined on the probability space (ΩÑ ,F Ñ ,PÑ), with
ν on R0 = R\{0} as the Lévy measure of N(·, ·). If we let B(R0) denote the family of
Borel sets A ⊂ R. Then the Poisson random measure N(A, t), counts the number of jumps
of size ∆X ∈ A that occur on or before time t and its derivative is given by N(dζ, dt)
(Øksendal and Sulem (2005)).

Let (Ω,F ,P) be the product of the canonical filtered probability spaces (ΩW × ΩÑ ,FW⊗

F Ñ ,PW ⊗ PÑ) and the filtration F := (Ft)t∈[0,T ] is the canonical filtration. We introduce
the notation of the following spaces: Let p ≥ 2.

• L2(FT ) is the space of FT -measurable, square integrable random variable ξ.
• Let Lp(Ft) be the space of all real-valued Ft-measurable, p-integrable random vari-
ables.

• Sp(R) is the space of R-valued Y : Ω× [0, T ] càdlàg processes such that

E[ sup
t∈[0,T ]

|Y (t)|p] < ∞.

• S∞(R) is the space of R-valued essentially bounded càdlàg processes Y such that

||Y ||S∞ := || sup
t∈[0,T ]

|Y (t)| ||∞ < ∞.
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• H2
W (R) is the space of predictable processes Z : Ω× [0, T ] → R such that

E[

∫ T

0

|Z(s)|2ds] < ∞.

• H2
N(R) denotes the space of predictable processes Υ : Ω× [0, T ]×R → R, satisfying

E
[

∫ T

0

∫

R0

|Υ(t, ζ)|2ν(dζ)dt
]

< ∞.

• L∞(ν) is the space of measurable R-valued measurable functions v(dζ)-almost ev-
erywhere (a.e.), which is essentially bounded.

We define by X ⊂ L2(FT ) the space of financial positions X and let P denote the F-
predictable σ-algebra on Ω× [0, T ].

We recall the martingale representation property as in Delong (2013). Suppose M(t) is
a Ft-local martingale, then M(t) has the following representation

M(t) = M(0) +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫

R0

Υ(s, z)Ñ(ds, dζ) 0 ≤ t ≤ T,

where Z and Υ are predictable processes, integrable with respect to W and Ñ .

Let X(t) be a Lévy process with a semi-martingale decomposition X(t) = X(0)+M(t)−
V (t), where V is the continuous finite variation drift defined by

V (t) =

∫ t

0

[

µ+
σ2

2
+

∫

|ζ|<1

(eΥ(s,ζ) − 1−Υ(s, ζ))ν(dζ)

]

ds

and M is the local martingale given by

M(t) = M(0) +

∫ t

0

Z(s)dW (s) +

∫ t

0

∫

R0

(eΥ(s,ζ) − 1)Ñ(ds, dζ).

Given a local martingale M(t), M(0) = 0, then an adapted process Γ(t) that has a
stochastic differential equation of the form dΓ(t) = Γ(t)dM(t), Γ(0) = 1 is the stochastic
exponential of M(t), denoted by Γ(t) = E(M)(t) and defined as

E(M(t)) = exp{M(t)−
1

2
〈M c(t)〉} ×

∏

0≤s≤t

(1 + ∆MJ (s))e−∆MJ(s) ,

where 〈M〉 denotes a quadratic variation of a process M and M c, MJ are continuous and
discontinuous part of M , respectively. Moreover, we introduce the notion of martingales
of bounded mean oscillation (BMO-martingales) for jump-diffusion processes as in Morlais
(2009). A local Martingale M is in the class of BMO-martingales if there exists a constant
K, K > 0, such that, for all F -stopping times T ,

ess sup
Ω

E[〈M(T )〉 − 〈M(T )〉 | FT ] ≤ K2 and |∆M(T )|2 ≤ K2 .
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For the diffusion case, the BMO-martingale property follows from the first condition,
whilst in a jump-diffusion case, we need to ensure the boundedness of the jumps of the
local martingale M . Now we recall the Kazamaki’s criterion from Morlais (2009) (also see
Kazamaki (2006) Theorem 2.3 for the continuous case) in the next lemma.

Lemma 2.1. Let δ be such that: 0 < δ < ∞ and M a BMO martingale satisfying ∆M(t) ≥
−1 + δ, P-a.s. and for all t, then E(M) is a true martingale.

Proof. See Kazamaki (1979). �

2.1. Risk Measures and Capital Allocation notation.

Definition 2.1. (see Artzner et al. (1999), Rosazza (2006)) A mapping ρ : X → R is a
static risk measure if, for any X and Y in X , it satisfies the following axioms:

1) Monotonicity: ρ(X) ≤ ρ(Y ), ∀ Y ≤ X ;
2) Translation invariance: ρ(X +m) = ρ(X)−m, m ∈ R;
3) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );
4) Positive homogeneity ρ(kX) = kρ(X), k ≥ 0;
5) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), λ ∈ (0, 1).

The functional ρ(X) quantifies the risk of a financial position X ∈ X . The position X is ac-
ceptable when ρ(X) ≤ 0, and unacceptable otherwise Artzner et al. (1999). The functional
ρ(X) represents the capital amount that an investor can withdraw without changing the ac-
ceptability of X . Monotonicity implies that ρ is nonincreasing with respect to X ∈ X . The
financial meaning is that if a financial position X is always higher than Y , then the capital
required to support X should be less than capital required for Y . Subadditivity allows for
risk to be reduced by diversification since the risk of a portfolio X + Y is bounded by the
sum of individual risk of position X and Y . Translation invariance states that if you add a
certain amount m to the initial investment position, then the risk of that investment will
decrease by that amount m. Note that, if a position X is not acceptable, then adding an
amount ρ(X) to it will make the position acceptable, i.e. ρ(X+ρ(X)) = ρ(X)−ρ(X) = 0.
Positive homogeneity tells us that the capital required to support k identical positions is
equal to k times the capital required for one position. The convexity property illustrates
how the risk of a position might increase in a nonlinear way as the position is multiplied
by a factor, due to liquidity risk of a large financial position.

A convex risk measure ρ whose domain includes X such that ρ(X) < ∞ where X ∈ X ,
satisfies property 5) see Föllmer and Schied (2002) and Frittelli and Rosazza (2002), while
a coherent risk measure satisfies properties 1) to 4) see Artzner et al. (1999) and Delbaen
(2002). We state from (Rosazza (2006)) the following definition of a dynamic risk measure:

Definition 2.2. A mapping (ρt)t∈[0,T ] is a dynamic risk measure for all X, Y ∈ X and
t ∈ [0, T ], if the following properties are satisfied:

(a) ρt : L
2(FT ) → L2(Ft).

(b) ρ0 is a static risk measure.
(c) ρT (X) = −X for all X ∈ X .
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A dynamic risk measure is called coherent if it satisfies, positive homogeneity, mono-
tonicity, translation invariance and subadditivity. A dynamic convex risk measure satisfies
the convexity property and assume ρt(0) = 0 for any t ∈ [0, T ] (Rosazza (2006)).

Let X1, X2, . . . , Xn ∈ X be the financial positions, with the corresponding risk contri-
bution to the overall portfolio denoted by ρ(Xi|X), i = 1, 2, . . . , n. Consider a portfolio
X ∈ X , consisting of Xi, subportfolios, that is

X =
n
∑

i=1

Xi.

The portfolio risk is given by ρ(X). The capital allocation problem is allocating the
overall risk ρ(X) of the portfolio X to the individual subportfolios in the portfolio. That
is, we require a mapping such that

(2.1) ρ(X) =
n
∑

i=1

ρ(Xi|X).

Such a relation is called the full allocation property, since the overall portfolio risk is fully
allocated to the individual subportfolios in the portfolio (Tasche (2007)).

Let ρ be the risk measure that is Gâteaux differentiable atX in its domain, then gradient
allocation ρ(Xi|X) is determined by

ρ(Xi|X) = ∇Xi
ρ(X)

= lim
ǫ→0

ρ(X + ǫXi)− ρ(X)

ǫ

=
d

dǫ
ρ(X + ǫXi)

∣

∣

∣

∣

ǫ=0

.(2.2)

Note that the gradient of a continuous differentiable risk measure ρ(Xi|X) is the unique
allocation principle (see proposition 2.1 in Tasche (2007)). Equation (2.2) defines the static
gradient allocation principle, which is the Gâteaux-derivative of X in the direction of Xi,
for i = 1, 2, . . . , n (see Kromer and Overbeck (2014) and Kromer and Overbeck (2017)).
The static Aumann-Shapley allocation is represented by:

(2.3) ∇Xi
ρ(X) =

∫ 1

0

∇Xi
ρ(βX)dβ, i = 1, 2, . . . , n,

where β ∈ [0, 1] is taken to be portfolio weights. If the risk measure ρ is positive homo-
geneous, then the Aumann-Shapley allocation reduces to the gradient allocation principle
(2.2) (Denault (2001)). For the Aumann-Shapley, we do not require the risk measure to
be positively homogeneous to satisfy full allocation property. However, the gradient allo-
cation does need the risk measure to be positive homogeneous to satisfy the full allocation
property. According to Kromer and Overbeck (2014), the Aumann-Shapley and Gâteaux-
derivative can be jointly used to risk measures that do not satisfy the positive homogeneity
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property. Hence, the combination can be used for convex risk measures that do not satisfy
the positive homogeneity property.

2.2. BSDE and BSDE differentiability. In this work, the dynamic risk measures are
constructed using BSDEs. We consider a quadratic exponential BSDE, (defined as in
Karoui, Matoussi, and Armand (2016)) for t ∈ [0, T ] of the form
(2.4)

Y (t) = ξ +

∫ T

t

g(s, Y (s), Z(s),Υ(s, ζ))ds−

∫ T

t

Z(s)dW (s)−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ),

where ξ : Ω → R and g : Ω × [0, T ] × R × R × R → R. The solution to Equation (2.4)
is given by the triple (Y (t), Z(t),Υ(t)) ∈ S2(R) × H2

W (R) × H2
N (R), where the adapted

process Y (t) is controlled by the control processes Z(t) and Υ(t), such that Y (T ) = ξ. The
following definition from Delong (2013) defines risk measures constructed as a solution of
BSDEs.

Definition 2.3. Let ρgt (ξ) := Y ξ(t), t ∈ [0, T ]. Then ρ is monotone, time-consistent
dynamic risk measure. In addition,

(a) if g is sublinear in (z,Υ) and independent of y, then ρ is a coherent dynamic risk
measure.

(b) If g is convex in (y, z,Υ), then ρ is a convex dynamic risk measure

The component Y ξ is the solution of the BSDE (2.4). The driver g plays an essential role
in the construction of risk measures by BSDE. For the existence and uniqueness of such
BSDEs, the driver and terminal condition are subject to the following assumptions. We
adapt the assumptions from Fujii and Takahashi (2018) (see also Briand and Hu (2006),
Karoui, Matoussi, and Armand (2016), Royer (2006), Delong (2013)).

Assumption 1.

(i) The map (ω, t) 7→ g(ω, t, ·) is F-progressively measurable. For every (y, z,Υ) ∈
R×R×R, there exist two constants ϑ ≥ 0 and γ > 0 and a positive F-progressively
measurable process (ℓt, t ∈ [0, T ]) such that

−ℓt − ϑ|y| −
γ

2
|z|2 −

∫

R0

jγ(−Υ(ζ))ν(dζ) ≤ g(t, y, z, ζ)

≤ ℓt + ϑ|y|+
γ

2
|z|2 +

∫

R0

jγ(Υ(ζ))ν(dζ),(2.5)

dt⊗ dP-a.e. (ω, t) ∈ Ω× [0, T ], where jγ(υ) :=
1
γ
(eγυ − 1− γυ).

(ii) |ξ|, (ℓt, t ∈ [0, T ]) are essentially bounded i.e., ||ξ||∞, ||ℓ||S∞ < ∞.

Assumption 2. For m > 0 and (y, z,Υ), (y′, z′,Υ′) ∈ R× R× R satisfying

|y|, |y′|, ||Υ||L∞(ν), ||Υ
′||L∞(ν) ≤ m,
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there exists some positive constant Km depending on m such that

|g(t, y, z,Υ)− g(t, y′, z′,Υ′)| ≤ Km(|y − y′|+ ||Υ−Υ′||L2)

+Km

(

1 + |z|+ |z′|+ ||Υ||L2(ν) + ||Υ′||L2(ν)

)

|z − z′|(2.6)

dt⊗ dP a.e. (ω, t) ∈ Ω× [0, T ].

Assumption 3. For all t ∈ [0, T ], m > 0 and y ∈ R, z ∈ R,Υ,Υ′ ∈ R with |y|, ||Υ||L∞(ν),

||Υ′||L∞(ν) ≤ m, there exists a P⊗B(R)-measurable process Γy,z,Υ,Υ′

satisfying dt⊗dP-a.e.

g(t, y, z,Υ)− g(t, y′, z′,Υ′) ≤

∫

R0

Γy,z,Υ,Υ′

(t, ζ)[Υ(t, ζ)−Υ′(t, ζ)]ν(dζ)(2.7)

and C1
m(1∧ |ζ |) ≤ Γy,z,Υ,Υ′

t (ζ) ≤ C2
m(1∧ |ζ |). Here C1

m and C2
m are two constants satisfying

the following conditions C1
m > −1 and C2

m > 0 and are dependent on m.

Fujii and Takahashi (2018) (in Theorem 3.1) proved the existence of a unique bounded
solution (Y, Z,Υ) ∈ S2 ×H2

W ×H2
N of the BSDE (2.4). Moreover, Z belongs to the set of

progressively measurable real valued functions denoted by H2
BMO(W ) satisfying

∣

∣

∣

∣

∣

∣

∣

∣

∫ .

0

Z(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

BMO(W )

= ess supE

[
∫ T

τ

|Z(s)|2ds
∣

∣Fτ

]

≤ K2, P− a.s.

and Υ belongs to the set of predictable processes, denoted by H2
BMO(N) satisfying the

following
∣

∣

∣

∣

∣

∣

∣

∣

∫ .

0

∫

R0

Υ(ζ)Ñ(ds, dζ)

∣

∣

∣

∣

∣

∣

∣

∣

2

BMO(N)

= ess supE
[

∫ T

τ

∫

R0

|Υ(s, ζ)|2ν(dζ)ds
∣

∣Ft

]

+|∆M(T )| ≤ K2.

To define the gradient allocation, we need the differentiability for BSDE with jumps. In
the Brownian case, Kromer and Overbeck (2014) used classical differentiability results for
BSDEs adopted from Ankirchner, Imkeller, and Reis (2007). In our case, we use Malliavin’s
differentiability of the quadratic-exponential BSDE with jumps (see Ankirchner, Imkeller,
and Reis (2007), Fujii and Takahashi (2018)).

As in Fujii and Takahashi (2018), we consider the following quadratic-exponential BSDE:

Y (t) = ξ −

∫ T

t

Z(s)dW (s)−

∫ T

t

∫

R0

Υ(s, ζ)Ñ(ds, dζ)

+

∫ T

t

g

(

s, Y (s), Z(s),

∫

R0

p(ζ)G(s,Υ(s, ζ))ν(dζ)

)

ds .(2.8)

for t ∈ [0, T ] where ξ : Ω → R, g : Ω × [0, T ] × R × R × R → R, and pi : R → R, Gi :

[0, T ]×R → R for each i = 1, . . . , k. The driver g

(

t, Y (t), Z(t),
∫

R0

p(ζ)G(t,Υ(t, ζ))ν(dζ)

)

,

satisfies Assumptions (1) and (3), where the last arguments denotes a k-dimensional vector
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whose i-th element is given by
∫

R0

pi(ζ)Gi(s,Υi(s, ζ))νi(dζ). Fujii and Takahashi (2018)

assume that for every i ∈ {1, . . . , k}, the functions pi and Gi(t,Υ) are continuous, with pi

satisfying
∫

R0

|pi(ζ)|2νid(ζ) < ∞. The function Gi(t, v) is continuous in both arguments
and one-time continuously differentiable with respect to v.

Assumption 4. (Fujii and Takahashi (2018)) Let vt =
∫

R0

p(ζ)G(t,Υ(t, ζ))ν(dζ) and

v′t =
∫

R0

p(ζ)G(t,Υ′(t, ζ))ν(dζ).

(i) The terminal value is Malliavin differentiable; ξ ∈ D1,2.
(ii) For each m > 0 and for every (y, z,Υ) ∈ R × R × R satisfying |y|, ||Υ||L∞(ν) ≤ m, the
driver g(t, y, z,Υt), t ∈ [0, T ] belongs to D1,2 and its Malliavin derivatives are denoted by
Dsg(t, y, z, vt) and Ds,ζg(t, y, z, vt). Furthermore, the driver g is continuously differentiable
with respect to its state variables.
(iii) For everym > 0 and (y, z,Υ), (y′, z′,Υ′) ∈ R×R×R, satisfying |y|, |y′|, ||Υ||L∞(ν), ||Υ

′||L∞(ν) ≤
m, the Malliavin derivative of the driver satisfies the following local Lipschitz conditions;

|Di
sg(t, y, z, vt)−Di

sg(t, y
′, z′, v′t)| ≤ Km,i

s (|y−y′|+ |vt−v′t|+(1+ |z|+ |z′|+ |vt|+ |v′t|)|z−z′|)

for ds-a.e. s ∈ [0, T ] with i ∈ 1, . . . , d, and

|Di
s,ζg(t, y, z, vt)−Di

s,ζg(t, y
′, z′, v′t)| ≤ Km,i

s,ζ (|y−y′|+|vt−v′t|+(1+|z|+|z′|+|vt|+|v′t|)|z−z′|)

for ds-a.e. s ∈ [0, T ] with i ∈ 1, . . . , k. For ever m > 0 and (s, ζ), (Km,i
s (t), t ∈ [0, T ])i∈1,...,d

and (Km,i
s,ζ (t), t ∈ [0, T ])i∈1,...,d are R+-valued Ft-progressively measurable processes.

(iv) There exists some positive constant r ≥ 2 such that

∫

[0,T ]×Rk

(

E
[

|Ds,ζξ|
rq +

(

∫ T

0

|Ds,ζg(t, 0)|dt
)rq

+ ||Km||2rq
]

)
1

q

Ñ(dt, dζ) < ∞

hold for ∀q ≥ 1 and ∀m > 0.

Fujii and Takahashi (2018) (in Theorem 5.1), proved that under the above assump-
tions the solution (Y, Z,Υ) ∈ S2 × H2

BMO(W ) × H2
BMO(N) of the BSDE (2.8) is Malliavin

differentiable with respect to W and Ñ . i.e.

(i) There exists a unique solution (DsY,DsZ,DsΥ) ∈ S2 ×H2 ×H2 to the BSDE

DsY (t) = Dsξ −

∫ T

t

DsZ(u)dW (u)−

∫ T

t

∫

R0

DsΥ(u, ζ)Ñ(du, dζ)

+

∫ T

t

[

Dsg(u,Θ) + ∂yg(u,Θ)DsY (u) + ∂zg(u,Θ)DsZ(u)

+∂vg(u,Θ)

∫

R0

p(ζ)∂ΥG(u,Υ(u, ζ))Ds(Υ(u, ζ))ν(dζ)

]

du,(2.9)

for 0 ≤ s ≤ t ≤ T where Θ := (Y (t), Z(t),
∫

R0

p(ζ)G(u,Υ(u, ζ))ν(dζ)). The solution

satisfies
∫ T

0
||DsY,DsZ,Ds,ζΥ||2ds < ∞.
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(ii) There exists a unique solution (Ds,ζY,Ds,ζZ,Ds,ζΥ) ∈ S2 ×H2 ×H2 to the BSDE

Ds,ζY (t) = Ds,ζξ −

∫ T

t

Ds,ζZ(u)dW (u)−

∫ T

t

∫

R0

Ds,ζΥ(u, ζ)Ñ(du, dζ)

+
1

ζ

[
∫ T

t

g

(

u, Y (u) + ζDs,ζY (u), Z(u) + ζDs,ζZ(u),

∫

R0

p(ζ)G
(

u,Υ(u, ζ) + ζDs,ζΥ(u, ζ)
)

ν(dζ)

)

− g(u,Θ)

]

du,(2.10)

where 0 ≤ s ≤ t ≤ T , ζ 6= 0 and for ζ2ν(ζ)ds−a.e. (s, ζ) ∈ [0.T ]×R0. The solution

satisfies
∫ T

0

∫

R0

||DsY,DsZ,Ds,ζΥ||2ζ2ν(ζ)ds < ∞.

2.3. Capital allocation. For this paper, we consider the terminal condition ξ of the form
ξ(ǫ) = ξ+ǫη, where ξ, η ∈ L∞(FT ). We will also focus on Malliavin derivative with respect
to the Brownian motion W , given by Equation (2.9). Hence, there exists a constant c ∈ R

such that

sup
ǫ∈U

||ξ(ǫ)||∞ ≤ ||ξ||∞ + ||η||∞ sup
ǫ∈U

|ǫ| < c,

for every compact set U ⊂ R. In addition, the functional ǫ 7→ ξ(ǫ) is differentiable and the
derivative is given by Dsξ(ǫ) = η. The generator g in Equation (2.4) is defined as follows

(2.11) g(t, z,Υ(t, ζ)) = ℓ(t, z,Υ) +
1

2
γ|z|2 +

1

γ

∫

R0

(eγΥ − 1− γΥ)ν(dz)

and is a special case of the generator in Assumption 1 (i), because it is independent of
the process Y (·). For the risk measure to satisfy the translation invariance property, the
BSDE generator should be independent of Y (·) (Quenez and Sulem (2013)). The BSDE
version of the dynamic gradient allocation is defined as the directional derivative of the
risk measure ρt at the point ξ in the direction of ηi, that is:

(2.12) lim
ǫ→0

ρt(ξ + ǫηi)− ρt(ξ)

ǫ
:= Dηiρt(ξ) i = 1, 2, . . . , n .

and from Definition 2.3 we have that

Dηiρt(ξ) = DηiY
ξ(t) i = 1, 2, . . . , n .

The Malliavin derivative given in Di Nunno, Øksendal, and Proske (2009) (in Definition
A.10, A.16 and Lemma A.18) is as follows

DηiY
ξ(t) = 〈DsY (t), h〉 =

∫ T

0

DsY hi(s)ds

for all

ηi =

∫ t

0

hi(s)ds,
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is a Malliavin directional derivative in the direction of ηi with respect to the Brownian
motion, with hi ∈ D1,2 ⊆ L2([0, T ]), i = 1, . . . , n. See the Appendix Section for the
meaning of D1,2. We observe that the Malliavin directional derivative generalizes the
classical Gâteaux-derivative. The inner product 〈DsY, h〉H

1 is given by

〈DsY (t), h〉 = 〈Dsξ, h〉 −

∫ T

t

〈DsZ(u), h〉dW (u)−

∫ T

t

∫

R0

〈DsΥ(u, ζ), h〉Ñ(du, dζ)

+

∫ T

t

[

∂zg(u, Θ̂)〈DsZ(u), h〉

+∂vg(u, Θ̂)

∫

R0

p(ζ)∂ΥG(u,Υ(u, ζ))〈DsΥ(u, ζ), h〉ν(dζ)

]

du 0 ≤ t ≤ T.(2.13)

where Θ̂ := (Z(t),
∫

R0

p(ζ)G(u,Υ(u, ζ))ν(dζ)). Equation (2.12) is the directional derivative

of the risk measure ρt at the point ξ (the portfolio) in the direction of ηi (subportfolio i). It
generalizes the concept given in (2.2). We also suppose that ξ =

∑n

i=1 ηi, that is the total
sum of the subportfolio should equal to the overall portfolio. Now we are in a position to
provide the main result on the representation of the dynamic risk capital allocations as a
dynamic gradient allocation.

3. Representation of dynamic risk capital allocations

In this section, we derive the dynamic risk capital allocation induced from BSDEs with
jumps. We also obtain the representation of BSDE based dynamic convex and dynamic
coherent risk measures. We follow the approach of Kromer and Overbeck (2014) in deriving
the representation of capital allocation, BSDE based dynamic convex and coherent risk
measures.

Theorem 3.1. Let ξ, ηi ∈ L∞(FT ), such that ξ =
∑n

i=1 ηi for each i = 1, 2, . . . , n and

DηiY (t) exists. Suppose that ∂zg(t, Θ̂) and ∂vg(t, Θ̂)p(ζ)∂ΥG(t,Υ(t, ζ)) belong to BMO(P).
Then the dynamic gradient allocations can be represented by:

DηiY (t) = Dηiρt(ξ) = EQξ

[−ηi | Ft] , n = 1, 2, . . . , n ,

where Qξ is given by

(3.1)
dQξ

dP
:= E

(

∫ t

0

∂zg(u, Θ̂)dW +

∫ t

0

∫

R0

p(ζ)∂vg(u, Θ̂)∂ΥG(u,Υ(u, ζ))Ñ(du, dζ)

)

(t) .

Proof. Since belong to BMO(P), then the stochastic integrals in (3.1) are said to be
BMO(P)-martingales and the stochastic exponential is a true martingale (Morlais (2009)).
From (Di Nunno, Øksendal, and Proske (2009) Theorem 12.21,) a new equivalent proba-
bility measure Qξ is defined by equation (3.1). Furthermore, the processes

dWQξ

(t) = dW (t)− ∂zg(t, Θ̂)dt

1Note that H is the Cameron-Martin space defined in Appendix.
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and

ÑQξ

(dt, dζ) = Ñ(dt, dζ)− p(ζ)∂vg(t, Θ̂)∂ΥG(t,Υ(t, ζ))ν(dζ)dt

are the Qξ-Brownian motion and Qξ-compensated random measure respectively. We define
a function Φi(t) by Φi(t) := EQξ

[−ηi | Ft] for each i = 1, . . . , n and t ∈ [0, T ]. Then from the
martingale representation property there exists predictable processes Zηi(t) and Υηi(t, ζ)

integrable with respect to WQξ

and ÑQξ

respectively such that

Φi(t) = Φi(T )−

∫ T

t

Zηi(u)dW (u)Q
ξ

−

∫ T

t

∫

R0

Υηi(u, ζ)ÑQξ

(du, dζ) 0 ≤ t ≤ T

= −ηi −

∫ T

t

Zηi(u)dW (u) +

∫ T

t

Zηi(u)∂zg(u, Θ̂)du−

∫ T

t

∫

R0

Υηi(u, ζ)Ñ(du, dζ)

+

∫ T

t

∫

R0

p(ζ)∂vg(u, Θ̂)∂ΥG(u,Υ(u, ζ))Υηi(u, ζ)ν(dζ)du 0 ≤ t ≤ T .(3.2)

Comparing the above equation with the BSDE representing the gradient allocation (2.13)
and we know that under the Assumptions 1 to 4 that (2.13) has a unique solution, we can
conclude that the dynamic gradient allocation has the representation

(3.3) DηiY (t) = Dηiρt(ξ) = EQξ

[−ηi | Ft] , i = 1, 2, . . . , n .

�

Remark: This result generalizes Theorem 3.1 in Kromer and Overbeck (2014).

From the above theorem, we can immediately obtain the representation result for BSDE
based dynamic convex and dynamic coherent risk measures. The results of the represen-
tation of BSDE based dynamic convex and coherent risk measures are established from
the full allocation property of the Aumann-Shapley allocation (the static case given in
Equation (2.3)) (Kromer and Overbeck (2014)).

Corollary 3.2. Let ξ ∈ L∞(FT ). Suppose that ℓ is convex in z and Υ and ∂Zβξg(s, Θ̂),

∂vg(t, Θ̂)p(ζ)∂ΥβξG(t,Υβξ(t, ζ)) belong to the class of BMO(P), for any β ∈ [0, 1], where
Zβξ(t), Υβξ(t, ·) are the controls to the quadratic-exponential BSDE (2.8), with terminal

condition ρt,β(ξ) = −βξ. Then, the corresponding quadratic-exponential BSDE-based dy-

namic convex risk measure can be represented by

ρt(ξ) = E[−Λξ(T, t)ξ | Ft] ,

where

(3.4) Λξ(T, t) =

∫ 1

0

E(Mβξ(T ))

E(Mβξ(t))
dβ , ∀t ∈ [0, T ] ,

for Mβξ defined by

Mβξ(t) =

∫ t

0

∂Zβξg(s, Θ̂)dW (s) +

∫ t

0

∫

R0

∂vg(s, Θ̂)p(ζ)∂ΥβξG(s,Υβξ(s, ζ))Ñ(ds, dζ) .
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Proof. Following Kromer and Overbeck (2014), we consider the following

ρt(ξ) = ρt(1ξ)− ρt(0ξ) =

∫ 1

0

d

dβ
ρt(βξ)dβ

=

∫ 1

0

lim
ǫ→0

ρt((β + ǫ)ξ)− ρt(βξ)

ǫ
dβ

=

∫ 1

0

Dξρt(βξ)dβ .

From the previous theorem, we have

(3.5) ρt(ξ) =

∫ 1

0

EQβξ

[−ξ | Ft]dβ .

Then since ξ ∈ L∞(FT ), Q
βξ is an equivalent probability measure, ∀β ∈ [0, 1]. Hence ξ is

Qβξ-a.s. bounded. This implies that
∫ 1

0
EQβξ

[−ξ | Ft]dβ < ∞. Define Λξ(t) = E(Mβξ(t)).
Then, (3.5) can be written by

ρt(ξ) =

∫ 1

0

EQβξ

[−ξ | Ft]dβ =

∫ 1

0

1

Λβξ(t)
EPβξ

[−Λβξ(T )ξ | Ft]dβ

= E

[

−
(

∫ 1

0

Λβξ(T )

Λβξ(t)
dβ
)

ξ | Ft

]

= E[−Λξ(T, t)ξ | Ft],

which completes the proof. �

Corollary 3.3. Let ξ ∈ L∞(FT ). Suppose that g is of the form g(t, z,Υ) = ℓ(t, z,Υ) is con-
vex and positively homogeneous in both z and Υ. Moreover, suppose that ∂zℓ(t, Z

βξ(t),Υβξ(t, ·)),
∂Υℓ(t, Z

βξ(t),Υβξ(t, ·)) belong to the class of BMO(P), for any β ∈ [0, 1], which represent

the portfolio weights. Then, the corresponding BSDE-based dynamic coherent risk measure

can be represented by

ρt(ξ) = EQβξ

[−ξ | Ft] ,

where the Qβξ-measure is given by

dQβξ

dP

∣

∣

∣

∣

Ft

= exp

{

−

∫ t

0

∂zℓ(t, Z
ξ(s),Υξ(s, ζ))dW −

1

2

∫ t

0

∂zℓ(s, Z
ξ(t),Υξ(s, ζ))2ds

+

∫ t

0

∫

R0

(

ln
(

1− ∂Υℓ(s, Z
ξ(s),Υξ(s, ζ))

)

+ ∂Υℓ(s, Z
ξ(s),Υξ(s, ζ))

)

ν(dζ)ds

+

∫ t

0

∫

R0

ln
(

1− ∂Υℓ(s, Z
ξ(t),Υξ(s, ζ))

)

Ñ(ds, dζ)

}

.(3.6)

Proof. From Corollary 3.2, we have the following representation

ρt(ξ) = E[−Λξ(T, t)ξ | Ft],
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with Λ defined in (3.4). Given that g(t, z,Υ) = ℓ(t, z,Υ) and ℓ is convex and positively
homogeneuos, this implies that the corresponding BSDE-based dynamic risk measure ρ(·)
satisfies

Y βξ(t) = ρt(βξ) = βρt(ξ) = βY ξ(t) dt⊗ dP− a.s.

for c > 0 and 0 ≤ t ≤ T . We show this by considering two BSDEs given by

Y βξ(t) = −βξ −

∫ T

t

Zβξ(s)dW (s)−

∫ T

t

∫

R0

Υβξ(s, ζ)Ñ(ds, dζ)

+

∫ T

t

g
(

s, Zβξ(s),Υβξ(s, ζ))
)

ds ,

and

Y ξ(t) = −ξ −

∫ T

t

Zξ(s)dW (s)−

∫ T

t

∫

R0

Υξ(s, ζ)Ñ(ds, dζ)

+

∫ T

t

g
(

s, Zξ(s),Υξ(s, ζ))
)

ds .

Then, from the proof of Proposition 6.2.3(b) in Delong Delong (2013) we conclude that
Y βξ(t) = βY ξ(t), Zβξ(t) = βZξ(t) and Υβξ(t, ζ) = βΥξ(t, ζ).

The above results imply that for the representation of the BSDE coherent risk measure,
the process E(Mβξ(t))(·) appearing in (3.4) becomes

E

(
∫ t

0

∂zg(s, Z
βξ(s),Υβξ(s, ζ))dW (s) +

∫ t

0

∫

R0

∂Υg(s, Z
βξ(s),Υβξ(s, ζ))Ñ(ds, dζ)

)

(t)

= exp

{

−

∫ t

0

∂zg(s, βZ
ξ(t), βΥξ(t, ζ))dW −

1

2

∫ t

0

∂zg(s, βZ
ξ(s), βΥξ(s, ζ))2ds

+

∫ t

0

∫

R0

(

ln
(

1− ∂Υg(s, βZ
ξ(s), βΥξ(s, ζ))

)

+ ∂Υg(s, βZ
ξ(s), βΥξ(s, ζ))

)

ν(dζ)ds

+

∫ t

0

∫

R0

ln
(

1− ∂Υg(s, βZ
ξ(s), βΥξ(s, ζ))

)

Ñ(ds, dζ)

}

,

= exp

{

−

∫ t

0

∂zg(s, Z
ξ(s),Υξ(s, ζ))dW −

1

2

∫ t

0

∂zg(s, Z
ξ(s),Υξ(s, ζ))2ds

+

∫ t

0

∫

R0

(

ln
(

1− ∂Υg(s, Z
ξ(s),Υξ(s, ζ))

)

+ ∂Υg(s, Z
ξ(t),Υξ(s, ζ))

)

ν(dζ)ds

+

∫ t

0

∫

R0

ln
(

1− ∂Υg(s, Z
ξ(t),Υξ(s, ζ))

)

Ñ(ds, dζ)

}

= E

(
∫ t

0

∂zg(s, Z
ξ(s),Υξ(s, ζ))dW (s) +

∫ t

0

∫

R0

∂Υg(s, Z
ξ(s),Υξ(s, ζ))Ñ(ds, dζ)

)

(t)

= E(M ξ(t)) ,
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because of the positive homogeneity of g in z and Υ. In the case of dynamic coherent risk
measure, Λξ(T, t) is given by

(3.7) Λξ(T, t) =

∫ 1

0

E(Mβξ(T ))

E(Mβξ(t))
dβ =

E(M ξ(T ))

E(M ξ(t))
.

Hence, the BSDE-based coherent risk measure is given by

ρt(ξ) = EQβξ

[−ξ | Ft] ,

where the Q-measure is defined in (3.6).
�

We obtain similar results as Kromer and Overbeck (2014) were the exponential martin-
gale of the BSDE based convex risk measure is dependent on all portfolio weights β ∈ [0, 1].
The representation of the coherent risk measure is dependent only on β = 1. The difference
between these two risk representations is emphasized in Equation (3.7).

4. Example

In this section we apply the results presented early to dynamic entropic risk measure
and static coherent entropic risk measures to obtain the gradient capital allocation for each
risk measure under the jump framework.

Example 4.1. We consider the well known dynamic entropic risk measure given by

ρt(ξ) =
1

γ
lnE

[

e−γξ | Ft

]

, γ > 0, t ∈ [0, T ] .

This example was also considered in Kromer and Overbeck (2014). It has been proved
that the above entropic measure is a unique solution of the so called canonical quadratic-
exponential BSDE (g, ξ) of the form (See Karoui, Matoussi, and Armand (2016))

ρt(ξ) = −ξ +

∫ T

t

(γ

2
|Zξ(s)|2 +

1

γ

∫

R0

(

exp(γΥξ(s, ζ))− γΥξ(s, ζ)− 1
)

ν(dζ)
)

ds

−

∫ T

t

Zξ(s)dW (s)−

∫ T

t

∫

R0

Υξ(s, ζ)Ñ(ds, dζ) .(4.1)

Note that the generator is given by

g(t, Z,Υ(ζ)) =
γ

2
|Z|2 +

1

γ

∫

R0

(

exp(γΥ(t, ζ))− γΥ(t, ζ)− 1
)

ν(dζ).

From the partial derivatives
∂zg(t, Z,Υ(ζ)) = γZ

and

∂Υg(t, Z,Υ(t, ζ)) =

∫

R0

(

exp(γΥ(t, ζ))− 1
)

ν(dζ)

.
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Suppose that ξ is from a class of smooth functions such that Di
s(ξ), D

i
s,ζ(ξ), for 0 ≤ s ≤

t ≤ T , belong to BMO(P) and ‖ξ‖1,2 exists and is finite for i = 1, . . . , d and t ∈ [0, T ].
We define a function ϕ(ξ) = e−γξ. Then from the boundedness of ξ and of any β ∈ [0, 1],
we have that ϕ(ξ) is Malliavin differentiable and the generalized Clark-Ocone formula (Di
Nunno, Øksendal, and Proske (2009), Theorem 12.20)

e−γβξ = E[e−γβξ] +

∫ T

0

E[Ds(e
−γβξ) | Ft]dW (t) +

∫ T

0

∫

R0

E[Ds,ζ(e
−γβξ) | Ft]Ñ(dt, dζ) .

Define Γβξ(t) := E[e−γβξ | Ft] is a positive bounded martingale for ξ ∈ FT . Then

Γβξ(t) = Γβξ(0) +

∫ t

0

E[−γβe−γβξDs(ξ) | Fs]dW (s)

+

∫ t

0

∫

R0

E[−γβe−γβξDs,ζ(ξ) | Fs]Ñ(ds, dζ)

= Γβξ(0) + γ

∫ t

0

Γβξ(s)Zβξ(s)dW (s) + γ

∫ t

0

∫

R0

Γβξ(s)Υβξ(s, ζ)Ñ(ds, dζ) ,

where

(4.2) Zβξ(t) =
−βE[e−γβξDs(ξ) | Ft]

E[e−γβξ | Ft]
and Υβξ(s, ζ) =

−βE[e−γβξDs,ζ(ξ) | Ft]

E[e−γβξ | Ft]
,

are the predictable control processes for the entropic risk measure defined by the BSDE
(4.1). Furthermore, Zβξ(·) and Υβξ(·, ζ) belong to the class of BMO(P), hence Γβξ(t)
satisfies the following

Γβξ(t) = Γβξ(0) exp
{

γ

∫ t

0

Zβξ(s)dW (s)−
γ2

2

∫ t

0

|Zβξ(s)|2ds

+

∫ t

0

∫

R0

[ln(1 + γΥβξ(s, ζ))− γΥβξ(s, ζ)]ν(dζ)ds

+

∫ t

0

∫

R0

ln(1 + γΥβξ(s, ζ))Ñ(ds, dζ)
}

.

As a result, the process N (t) := Γβξ(t)/Γβξ(0) corresponds to the stochastic exponential
E to the process Mβξ(t) in (3.1) defined by

Mβξ(t) =

∫ t

0

∂zg(s, Z
βξ(s),Υβξ(s, ζ))dW (s) +

∫ t

0

∫

R0

∂Υg(s, Z
βξ(s),Υβξ(s, ζ))Ñ(ds, dz) ,

for t ∈ [0, T ].

Now we define the equivalent probability measure under Qβξ as

dQβξ

dP

∣

∣

Ft
= N (t).
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Under the new probability measure Qβξ, the processes

dWQβξ

(t) = dW (t)− γZβξ(t)dW (t)

and

ÑQβξ

(dt, dζ) = Ñ(dt, dζ)− γ

∫

R0

Υβξ(t, ζ)ν(dζ)dt

are the Q- Brownian motion and Q-compensated random measure respectively. Define a
function Φi(t) by Φi(t) := EQβξ

[−ηi | Ft] for each i = 1, . . . , n. Let Zηi(t) and Υηi(t, ζ) be
predictable processes, then from the martingale representation theorem we have,

Φi(t) = −ηi −

∫ T

t

Zηi(s)dWQβξ

(s)−

∫ T

t

∫

R0

Υηi(s, ζ)ÑQβξ

(ds, dζ)

= −ηi −

∫ T

t

Zηi(s)dW (s) +

∫ T

t

Zηi(s)γZβξ(s)ds−

∫ T

t

∫

R0

Υηi(s, ζ)Ñ(ds, dζ)

+

∫ T

t

∫

R0

Υηi(s, ζ)γΥβξ(s, ζ)ν(dζ)ds .

Moreover,

Φi(t) = EQβξ

[−ηi | Ft] =
1

N (t)
EP[−ηiN (T ) | Ft]

=
Γ(0)

Γ(t)
EP

[

− ηi
Γ(T )

Γ(0)

∣

∣

∣

∣

Ft

]

=
1

Γ(t)
EP[−ηiΓ(T )|Ft]

=
EP[−ηie

−γβξ|Ft]

EP[e−γβξ|Ft]
.(4.3)

Therefore, the gradient capital allocation of the entropic risk measure under the jump
framework is given by (4.3). If ξ is the portfolio and ηi is the subportfolio. Then Equation
(4.3) describes the dynamic capital risk contribution of the subportfolio ηi to the risk of
portfolio ξ at time t. In addition, we can represent the BSDE-based dynamic entropic risk
measure by

ρt(ξ) = EP

[

−

∫ 1

0

(

e−γβξ

EP[e−γβξ]

)

dβ ηi

∣

∣

∣

∣

Ft

]

.

Example 4.2. In the second example we consider the static entropic coherent risk measure
at level c defined by (Föllmer and Knispel (2011) in Definition 3.1) as follow

(4.4) ρ(ξ) = inf
γ>0

( c

γ
+

1

γ
lnE

[

e−γξ
])
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for c > 0. From Proposition 3.1 by Föllmer and Knispel (2011) there exists a unique γc > 0
such that c = EQ[

∫

dQ
dP

ln(dQ
dP
)] and the infimum of Equation (4.4) is attained, i.e.

ρ(ξ) =
c

γc
+

1

γc
lnE

[

e−γcξ
]

.

The Gâteaux-differentiable of ρ is given by

(4.5) ∇ρ(βξ) = −
e−γcβξ

E[e−γcβξ]
.

Since the entropic coherent risk measure satisfies the property of positively homogeneity
(Föllmer and Knispel (2011)). Then ∇ρ(βξ) = ∇ρ(ξ) and Λβξ for this case will be given
by

Λβξ =

∫ 1

0

∇ρ(ξ)dβ = −

∫ 1

0

e−γcξ

E[e−γcξ]
dβ,

and therefore ρ form Equation (4.4) can be represented by

ρ(ξ) = E

[

−

(
∫ 1

0

e−γcξ

E[e−γcξ]
dβ

)

ξ
]

.

5. Conclusion

We studied the capital allocation of risk measures constructed from solutions of BSDE
with jumps. From the differentiability results of BSDE with jumps and the martingale
representation property we were able to provide the capital allocation representation of
the risk measures. We applied the representation obtained in Theorem 3.1 to entropic risk
measure to achieve the allocation in terms of conditional expectation under the equivalent
Q measure. The current results are based on a fixed time horizon, future work can study
capital allocation representation of maturity independent risk measures.
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Appendix A

In this appendix, we recall from Di Nunno, Øksendal, and Proske (2009) the Clark-
Ocone formula and the chain rule in the Brownian and Poisson probability space (Ω,F ,P).

LetDi
s andDi

s,ζ be the Malliavin derivatives with respect toW and Ñ(dt, dζ) respectively

for i = 1, . . . , d and 0 ≤ s ≤ t ≤ T . We denote by D1,2 the Banach space which is the closure
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of smooth random variables under ‖ · ‖21,2 (Ocone and Karatzas (1991)). A smooth random
variable F is Malliavin differentiable if and only if F ∈ D1,2 ⊂ L2(P). The respective norm
is defined as follows

‖F‖21,2 := E

[

|F |2 +
d
∑

i=1

∫ T

0

|Di
sF |2ds+

k
∑

i=1

∫ T

0

∫

R0

|Di
s,ζF |2ζ2νi(dζ)ds

]

.

Theorem A.1. Let F ∈ D1,2. Then

F = E[F ] +

∫ T

0

E[DsF |Ft]dW (t) +

∫ T

0

∫

R0

E[Ds,ζF |Ft]Ñ(ds, dζ).

Theorem A.2 (Chain Rule). Let F = F1, . . . , Fm ∈ D1,2, and let φ : Rm −→ R be a

bounded continuously differentiable. Then

Ds,ζϕ(F ) = ϕ(F +Ds,ζF )− ϕ(F ).

Dsφ(F ) =
m
∑

j=1

∂

∂x
φ(F1, . . . , Fm)DsFj dt× dP− a.e.

Definition A.1. Let F : Ω → R be a random, choose h ∈ L2([0, T ]), and consider

(A.1) η(t) =

∫ t

0

h(s)ds ∈ Ω.

Then we define the directional derivative of F at the point ω ∈ Ω in direction η ∈ Ω by

DηF (ω) =
d

dǫ
[F (ω + ǫη)]|ǫ=0,

if the derivative exists.

Note that the set of η ∈ Ω formulated in the form (A.1) for some h ∈ L2([0, T ]), is called
the Cameron-Martin space and is denoted by H .
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