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Synopsis 
 

The stress transfer and debonding behaviour of reinforcing fibres embedded in a matrix are 
important properties defining the behaviour of the composite. A typical minimal example of 
the interaction between a fibre and a matrix is a fibre pull-out experiment. In this experiment, 
a partially embedded fibre is extracted from a concentric cylinder of the matrix material. 
Physical, numerical, and analytical investigations have been conducted of such fibre pull-out 
problems. This research is a further numerical investigation of a fibre pull-out problem using 
a Discrete Element Model (DEM). A DEM has advantages over other numerical methods (such 
as Finite Element Models (FEM)) such as easily incorporating fracture formation.  

A DEM code was developed using the interpreted programming language Python and 
employed the parallel computing strengths of a Graphics Processing Unit (GPU) to improve 
the speed of the code. The developed code was found to be two orders of magnitude faster 
than similar code running in serial on a Central Processing Unit (CPU). The chain fountain and 
the interaction of a sphere and plane were modelled to demonstrate its capabilities.  The code 
is best suited for problems with bonded particles and where additional contacts do not occur 
during the simulation. 

 A fibre pull-out problem was modelled, and the results were compared to research 
published by others. Two phases of the fibre pull-out were modelled: stress growth (the 
interface between the fibre and matrix is intact), and debonding (where the interface yields 
and fails).  It was found that the DEM could accurately recover the stresses when compared 
to research undertaken by others.  The load/displacement relationship for the fibre pull-out 
displayed dynamic effects which were eliminated by using an arc-length control method. The 
resulting load/displacement relationship differed from published results. The results differed 
due to the simulations undertaken here being able to eliminate dynamic effects while the 
published results included the dynamic forces which occur in the final stages of fibre 
debonding. 

 The developed code shows utility for future investigations into fibre debonding 
problems. Other problems which can also be investigated using this code include the chain 
fountain, flexible sheets and materials which fail in a brittle manner. 
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1 Introduction 
 

Fibre-reinforced composites are a broad class of modern materials which seek to combine the stiff and 
tensile strength properties of individual fibres with the compressive strength of the binding material 
(henceforth termed the matrix). Examples of such composites are fibre reinforced concrete (FRC), 
fibreglass and carbon fibre composites.  

Load-carrying within a fibre reinforced composite is characterised by the transfer of force between 
the matrix and the embedded fibres. In conventional composites the matrix is less stiff than the fibres 
with lower resistance to tensile forces, under tensile loading that exceeds the matrix tensile resistance, 
the matrix cracks. The load is then transferred through the interface between the fibre and matrix and 
transferred across the crack via axial force in the fibres. The load transfer properties and strength of the 
interface are, together with the strength of the fibre and the matrix, essential properties that define the 
strength of the composite material. 

Modelling (numerical, physical, and analytical) of the interface under load can inform properties 
when designing composite materials. As an example: knowing the maximum force that the interface 
can resist for a particular length fibre also informs the maximum axial force that the fibre would need 
to resist (such that the fibre does not break before the interface fails). 

Physical modelling of the fibre/matrix interface under load has previously been undertaken using a 
pull-out test. For this test, a fibre embedded in a matrix is extracted under a tensile load. The axial 
displacement and force relationship provides information on the shear strength of the interface. The 
stress distribution along the interface can, however, not be recovered from this test. Numerical models 
have been developed using primarily Finite Element Models (FEM) to model pull-out tests. Analytical 
solutions have been developed, which, together with FEM, have provided confidence in our 
understanding of load transfer behaviour for an intact interface. The analytical models have, however, 
not been able to easily incorporate the failure of the interface under the same analytical framework. 
FEM, being developed for continuous materials, does not natively incorporate fracture. In this research, 
we investigate an alternative numerical method to model the load transfer of an intact interface and 
the failure of the interface under increased loading. 

The Discrete Element Method (DEM) is a numerical technique which models force transfer between 
independent particles. Interaction between particles can be via cohesive or non-cohesive contact 
models. Cohesive contact models with strength criteria allow the modelling of stresses and failure of 
materials under loading. This research investigates whether DEM is suitable to successfully model the 
force transfer to and the failure of a fibre-matrix interface during a fibre pull-out test.  

Initially, a commercial DEM package was investigated to be used for this investigation. It was 
however found that the available packages were too inflexible for the intended use, the intended 
modelling being atypical of regular DEM use. A DEM code was therefore developed using the Python 
programming language. The execution speed of the developed code was improved by leveraging the 
parallel computational strengths of Graphics Processing Units (GPU) and exploiting the inherently 
parallel nature of DEM. The developed code is an innovative result, using a high-level language (Python) 
for such numerical modelling exploiting a GPU has not (to the authors’ knowledge) been undertaken 
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before. The performance of the DEM is investigated, and the improvement from GPU parallelization is 
reported.  

Several example problems which are well suited to the developed code are also shortly investigated 
and discussed. Two bond models were employed for the DEM, a moment transferring model (parallel 
bonds) and a basic model which only transfers force between particles (LSDP). Damping is an essential 
component of DEM and can unexpectedly influence behaviour. Different damping methods were also 
investigated, and non-physical behaviour was displayed for local non-viscous damping, a well-known 
damping method, applied under rigid body motion. 

The developed DEM is used to investigate the pull-out of a fibre from a cylindrical matrix for both 
an intact interface and an interface undergoing failure. The accuracy of the numerical model is 
compared to published results. The published results include an analytical model and a numerical (FEM) 
model of the problem. The effect of fibre/matrix stiffness, DEM particle size, fibre length, interfacial 
stiffness and bond model is investigated and compared to the analytical solution. During this 
investigation, it became clear that the failure behaviour reported in the published paper did not agree 
with the behaviour recovered in the DEM modelling. A novel arc-length control method was employed 
to track the failure behaviour for the entire pull-out curve. This final stage of the failure curve has not 
been reported in numerical modelling of fibre pull-out (to the authors’ knowledge). 

 

1.1 Structure of this Dissertation 
 

The research conducted here can be subdivided into two sections: i) the development of the DEM 
code and verification thereof and ii) the investigation of the fibre pull-out problem. The initial 
development and primary investigation in this dissertation are presented as two self-contained 
chapters, namely: 

• Chapter 3 presents the development of the DEM code, code performance and several 
verification example problems. 

• Chapter 4 presents the results of the fibre pull-out test using the developed DEM. Results are 
compared to analytical and numerical results presented by Chen and Yan (2015). 

In the spirit of their self-contained nature, each chapter offers an independent literature review and 
conclusions aligned with the particular investigation under consideration. From chapters 3 and 4, 
two journal papers will be prepared to be submitted for review. 

• Chapter 2 offers a short literature review that combines vital research and background that 
covers Chapter 3 and 4, while 

• Chapter 5 offers concluding remarks, findings and future work that combines Chapter 3 and 4. 
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2 Literature Review 
 

2.1 Stress Transfer of Embedded Fibres 
 

The mechanisms whereby forces are transferred between a fibre embedded in a matrix and the matrix 
are well understood and widely studied (Nairn, 1997, 2000; Nairn et al., 2001; Avery, 2016; Hsueh, 1988; 
Naaman et al., 1989; Chen and Yan, 2015). The design of fibre reinforced concrete, traditional 
reinforcing, soil anchors and foundation piles all benefit from the resolution of the stress transfer 
between the fibre (or linear feature) and the matrix. 

The stress field for the elastic behaviour of a fibre/matrix stress problem can be derived using a 
shear lag approach (Nairn, 1997). The term “shear lag” originates from the study of the design of T, I 
and box beams (Reissner, 1946). The shear lag theory is valid only for an embedded fibre with no 
debonding along the interface. Chen and Yan (2015) made an extension to include the debonding 
method. Building on this, further research was undertaken by Guo and Zhu (2015) and Heidarhaei, 
Shariati and Eipakchi (2019) to investigate debonding in fibre-reinforced composites. 

Fibre pull-out of partially embedded fibres occurs in three phases (Naaman et al., 1989; Chen, 
Beyerlein and Brinson, 2009), stress growth phase, debonding phase, and friction phase (Figure 2-1). 
During the stress growth phase, the interface between the matrix and fibre is intact, and the 
displacement/force relationship is linear. The debonding phase is characterised by the progressive 
failure of the interface and non-linear displacement/force relationship. Once the interface has entirely 
failed, stress transfer is only possible via friction between the fibre and matrix. 
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Figure 2-1: Pull-out behaviour of an embedded fibre in a matrix. Cohesive bonds between the matrix and 
fibre are represented with coloured lines (red = higher shear force). a) Stress growth phase, b) debonding 
phase and c) friction phase. 

 

2.2 Numerical Modelling of Embedded Fibres 
 

The stress growth and debonding phases of fibre pull-out have been modelled using computational 
continuum approaches such as the finite element method (FEM) (Denneman et al., 2011; Jansson, 
2011). FEM can utilize bonding elements to make allowance for fracture (Kang et al., 2014). A discrete 
damage zone model has been used to simulate the formation of fractures in FEM (Liu, Duddu and 
Waisman, 2012). FEM treatments of fracture require either predefined fracture locations or dynamic 
re-meshing (Moës, Dolbow and Belytschko, 1999). Extended FEM or XFEM can resolve discontinuities 
without requiring the mesh to align to the boundaries of discontinuities. XFEM has been used to 
investigate pull-out of rebar and fibre matrix interfaces achieving good agreement with experimental 
results (Bouhala et al., 2013; Orlando and Benvenuti, 2016). 

Discontinuum approaches, such as the Discrete Element Method (DEM), provide another 
possibility to model fibre reinforcing (Yang et al., 2010). DEM is most well-known in modelling the 
behaviour of granular materials (Potyondy and Cundall, 2004) by modelling numerous individual 
particles interacting. It is, however, possible to model a continuum using DEM by applying bonds 
between the individual particles (Leclerc et al., 2017). Fracturing can then be simulated by merely 

a) b) c) 
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applying a failure criterion to these bonds. DEM has proven to be well suited to the modelling of material 
where fracturing has a significant influence on the material strength, e.g. concrete (Monteiro Azevedo, 
2003; Potyondy and Cundall, 2004; Azevedo and Lemos, 2006; Yang et al., 2010). The fracture behaviour 
of composites has been widely investigated using DEM (Yang et al., 2010; Sheng et al., 2010; Potapov, 
Faucher and Daudeville, 2012; Wolff et al., 2013; Koval, Danh and Chazallon, 2014; Sadek et al., 2014; 
Maheo et al., 2015; Ismail, Yang and Ye, 2016; Zhang and Xie, 2017; Leclerc et al., 2017; Marcon et al., 
2017; Wang et al., 2017; Shang et al., 2018). Figure 2-2 depicts the discussed numerical methods 
graphically. 

 

 

Figure 2-2: Example of some numerical methods for simulating the formation of a fracture (red): a) FEM 
with re-meshing, b) XFEM, elements with enriched functionality to take account of discontinuities are 
highlighted and c) DEM, bonds experiencing damage are highlighted. 

 

2.3 Parallelization of DEM on GPUs 
 

General Purpose Graphics Processing Units (GPGPU) are well suited to the parallel nature of DEM 
(Amada et al., 2004; Govender et al., 2015; Qi et al., 2015). Recent advances in the design of computer 
hardware such as GPUs have allowed significant computational power to be leveraged to solve 
computationally difficult problems (Ghorpade, 2012).  

Due to the well-suited nature of GPUs for tackling parallel problems, many studies have been 
undertaken in academia using GPUs for computation. Research has been undertaken in neural network 
machine learning algorithms (Zhang et al., 2017), n-body problems (Elsen et al., 2006) and Finite 
Element Models (Fu et al., 2014). NVIDIA introduced the programming model known as CUDA in 2007 
to simplify the development of programs  on GPUs (Nickolls, Buck and Garland, 2008). 

Python is an interpreted programming language which has increased in popularity in engineering, 
science and data science communities in recent years (Oliphant, 2007; Millman and Aivazis, 2011). For 
various reasons, standard Python programs do not execute quickly when compared to compiled 
languages such as C, C++ and Fortran (Lam, Pitrou and Seibert, 2015). Several modules have been 
developed for Python which are built around compiled and optimized functions written primarily in C. 

a) b) c) 
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Examples of such Python modules are SciPy (written for optimization and image processing tasks), 
Numpy (handling of vast arrays of data) and Numba (van der Walt and Aivazis, 2011; Lam, Pitrou and 
Seibert, 2015; Virtanen et al., 2019). Numba is a high-performance python compiler that provides tools 
to compile functions written in Python and Numpy using the industry-standard LLVM compiler (Lam, 
Pitrou and Seibert, 2015). Numba also supports execution on the parallel architecture of GPUs (Millman 
and Aivazis, 2011; van der Walt and Aivazis, 2011; Lam, Pitrou and Seibert, 2015). In particular, Numba 
supports NVIDIA GPUs through Numba CUDA or AMD GPUs through Numba ROCm, making GPU 
compute readily available. 
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3 A GPU Based Discrete Element Model for Bonded 
Particles – Development and Examples 

 

Discrete element modelling has become an often-employed technique for the simulation of systems 
with many interacting bodies such as granular material. Interaction models between particles can be 
non-cohesive or cohesive. Cohesive interactions between particles can be used to simulate continuous 
material. Discrete element models are well suited to implementation on parallel computational 
architecture. Graphics processing units are inherently designed for parallel computation, and recent 
advances in the architecture and compiler design have allowed general computation to be undertaken 
on GPUs. This study details the implementation of DEM written in Python and leveraging the parallel 
nature of GPUs for computational speed up. The program is written relying heavily on the Numba 
module which allows the compilation of Python syntax for execution on a GPU.  The purpose of the code 
is for the simulation of the pull-out of a fibre embedded in a matrix and other similar problems. The 
problem is simulated with bonds between all interacting particles. Non-reversible bond damage is 
simulated, and each bond must, therefore, be stored and bond damage updated at each time step. The 
paper describes the implementation of collision detection, particle force determination and equation 
of motion integration written for execution on GPU. The data structure and memory use are described. 
The method used to apply boundary conditions is described. The performance of the developed code 
is investigated by comparison with similar codes, using Numpy and Numba Python modules, written for 
serial execution on CPU only. It was found that the developed code was 1000 times faster than the 
Numpy+Python implementation and 4 times faster than the Numba+Python implementation for force 
determination and equation of motion integration. Collision detection was 900 times faster compared 
to Numpy+Python but performed slower compared to Numba+Python.  
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3.1 Introduction 
 

The use of computational parallelization techniques for solving numerical problems has 
become widespread with the advent of improved hardware and systems architecture. Many 
problems in engineering and the sciences are well suited for parallelization. Once such 
problem is the solution of the Discrete Element Method (DEM), a computationally demanding 
technique which the resolves the interaction of a collection of interacting particles (Govender, 
Wilke and Kok, 2015; Qi et al., 2015).  

Graphics Processing Units (GPUs) are a ubiquitous component in modern personal computers, 
used to render 3D graphics efficiently. The GPU architecture is designed to be able to execute 
multiple simultaneous computational threads. Recent advances in the design of computer 
hardware such as GPUs have allowed significant computational power to be leveraged to solve 
computationally difficult problems (Ghorpade, 2012).  

The parallelization of DEM can be undertaken using four primary methods. Which method is 
best suited to the problem to be solved is dependent on the available hardware. The different 
methods used are: 

• Multi-CPU methods, using the Message Passing Interface (MPI) to facilitate 
communication between the processors (Dowding, Dmytryshyn and Belytschko, 1999; 
Maknickas et al., 2006; Shigeto and Sakai, 2011). A possible technique for 
parallelization is to assign a subgroup of elements (usually defined by a region) in the 
simulation to each available CPU. Each CPU then performs the necessary computations 
on the assigned elements in serial. Various methods exist to deal with elements at the 
interface between assigned regions. 

• Multi-thread CPU methods, these methods take advantage of the multicore and 
multithread nature of modern CPUs (Shigeto and Sakai, 2011). Each element in the 
simulation is assessed using a unique thread which executes concurrently with other 
possible threads. 

• GPU methods, these take advantage of modern GPUs which offer a large number of 
simultaneously executable threads and large amounts of fast memory (Amada et al., 
2004; Ma et al., 2011; Xu et al., 2011; Zheng, An and Huang, 2012). 

• CPU-GPU heterogeneous architecture methods seek to combine the strengths of GPU 
and CPU parallelization techniques (Yue et al., 2014).  

It should be noted that only one of the listed papers can handle interactions that are not only 
non-cohesive. This paper presents a code that was developed to run a cohesive bonded DEM 
using the Python programming language and GPU acceleration.  

Writing programs to execute using GPUs was done initially using platforms DirectX and 
OpenGL. This language is difficult to write for non-graphics applications and was an obstacle 
to the widespread use of GPUs within the scientific computing community. NVIDIA introduced 
the programming paradigm known as CUDA in 2007 to simplify the development of programs 
(Nickolls, Buck and Garland, 2008). Python modules have also been developed which allow 
python scripts to be executed using the parallel architecture of GPUs (Millman and Aivazis, 
2011; van der Walt and Aivazis, 2011; Lam, Pitrou and Seibert, 2015). 
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3.1.1 Discrete Element Method 

 

The Discrete Element Method (DEM) was first proposed by Cundall (Cundall, 1971; Cundall 
and Strack, 1979) to investigate the behaviour of granular assemblies. DEM employs discrete 
elements (such as discs, spheres or polyhedra) which interact only at their points of contact. 
The two phases in the application of DEM consist of the application of a force-displacement 
law at contact points and the application of Newton’s second law to the elements themselves. 
Deformation of the particles themselves is assumed to be sufficiently small (compared to the 
deformation of the overall assembly) that they can be assumed to be rigid. Applying Newton’s 
second law to the translational and rotational motion of individual particles results in (Rojek 
et al., 2012): 

𝑚𝑖𝑢�̅�
̈ =  𝐹𝑖 (1) 

𝐽𝑖𝑊𝑖
̇ =  𝑀𝑖

̅̅ ̅ (2) 

Where 𝑚𝑖, 𝑢�̅� and 𝐹𝑖  are the mass, displacement, and resultant particle force of the ith 
element. 𝐽𝑖, 𝑊𝑖

̅̅ ̅ and 𝑀𝑖
̅̅ ̅ are the particle moment of inertia, angular velocity, and resultant 

moment of the ith element. The forces and moments acting on the ith particle can be 
described according to: 

𝐹𝑖 =  𝐹𝑖
𝑒𝑥𝑡 +  ∑ 𝐹𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑛𝑖
𝑐

𝑗=1

+  𝐹𝑖
𝑑𝑎𝑚𝑝 (3) 

𝑀𝑖 =  𝑀𝑖
𝑒𝑥𝑡 +  ∑ 𝑀𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑛𝑖
𝑐

𝑗=1

+  𝑀𝑖
𝑑𝑎𝑚𝑝 (4) 

Where 𝐹𝑖
𝑒𝑥𝑡 and 𝑀𝑖

𝑒𝑥𝑡 are any external forces and moments acting on the particle. 

𝐹𝑖𝑗
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and 𝑀𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 are the force and moment due to interaction between the ith and jth 

element and 𝑛𝑖
𝑐 is the number of particles interacting with the ith particle. 𝐹𝑖

𝑑𝑎𝑚𝑝 and 𝑀𝑖
𝑑𝑎𝑚𝑝 

are damping forces and moments which are applied to reduce spurious oscillations in the 
system. 

Various contact models can be used to calculate forces at the contact points as a function 
of the particle overlap distances and velocities. The calculated forces are accumulated onto 
the individual particles participating in the interaction. Contact models can be tailored to 
represent non-cohesive (no tension forces, such as between individual sand grains) and 
cohesive (such as between particle representing rock) material (Potyondy and Cundall, 2004). 

An explicit numerical scheme is employed to integrate over particle accelerations twice 
in time to recover particle velocities and displacements successively. The integration is 
undertaken over a given timestep which is equal for all particles in the simulation. The explicit 
numerical scheme is conditionally stable with a maximum timestep above which the model 
becomes unstable. Figure 3-1 shows a depiction of the steps inherent in a DEM for 
cohesionless contacts. 
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The DEM formulations used for this study were the parallel bond and linear spring and 
dash pot (LSDP) formulations (Cundall and Strack, 1979; Potyondy and Cundall, 2004; Rojek et 
al., 2012). For each pair of bonded particles, a bond is formed which transmits bending 
moments (for parallel bonds), normal forces (for parallel and LSDP), shear forces (for parallel 
and LSDP) and torsional moments (for parallel bonds) between the particles. Forces are 
calculated according to the inter-particles tangential and normal strains. A damage law can be 
applied to these bonds to simulate bond strengths. An example of the calculation steps for 
DEM for bonded particles is shown in Figure 3-2. 

 

Figure 3-1: Steps in a Discrete Element Model: a) Initial position and velocity of particles, no 
contact. Velocity is used to determine new particle locations, b) Collision detection is run and 
a contact location is identified, overlap between particles is determined, c) forces at the 
contact location are identified and the change in particle velocity is determined, d) particle 
velocities are updated, e) particle positions are updated, no further contact is detected, no 
velocity update, f) particle positions are updated, no further contact is detected, no velocity 
update. 
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Figure 3-2: Example calculation for four bonded particles. 

 

3.1.2 Parallel Computing 

 

Most computers programs are written to use a serial computation method. Steps in the 
algorithm are executed sequentially with each step relying on the previous steps. Specific 
common computing problems such as depth-first-search algorithms are inherently sequential, 
and they cannot be efficiently solved in parallel (Greenlaw, Hoover, and Ruzzo, 1995). Adding 
additional computing pipelines that are executed simultaneously does not increase the speed 
of execution if each pipeline must wait for a previous one to complete. 

Specific problems are well suited to executing in a parallel manner with multiple 
computing pipelines which are executed simultaneously. Problems which lend themselves 
well to such approaches require little interaction between computing pipelines. The individual 
computing pipelines can be set up at the start of the algorithm and executed simultaneously. 
The efficiency of the program is reduced if pipelines need to communicate between 
themselves during the execution of the code. The speed-up of a program written in parallel is 
described by (Greenlaw, Hoover, and Ruzzo, 1995): 

 

𝐵𝑒𝑠𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
≤ 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑇𝑖𝑚𝑒 (5) 

 

Notably, a computing problem to be written in parallel may need to incur an overhead 
to cast the problem to multiple processors. It can be seen from the equation that problems 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12 

 

which are well suited to parallel execution have a small serial start-up cost relative to the 
parallel portion of the execution. DEM lends itself well to execute in parallel. 

 

3.1.3 General-Purpose Computing on Graphics Processing Units 

 

Graphics Processing Units are special-purpose cards that are used in the computing 
environment to handle graphics operation such as image generation, resizing, recolouring and 
3D rendering (Nickolls and Kirk, 2009). The GPU functions as an additional computing unit (the 
device) which runs independently but controlled by the CPU and associated infrastructure (the 
host). A schematic of how the GPU and CPU and interact is shown in Figure 3-3. The GPU has 
on-chip RAM and computational nodes designed primarily for the mostly parallel task of image 
generation. The host sends image data to the GPU which processes the data and returns it to 
the host. The GPU operates under the Single Instruction Multiple Data (SIMD) methodology. 
The GPU can be envisaged as multiple computing pipelines which are executed at once. All 
the threads receive the same instructions, and each thread can be assigned a unique ID which 
is used to access data help in on-chip memory. Thus all threads will execute the same 
instructions but with different data (such as different pixels in an image for image processing 
tasks) (Chen, 2009). 

Image data is often stored with integer data describing the colour of each pixel. For this 
reason, older GPUs did not include architecture to efficiently carry out computation on data 
types stored as larger precision float numbers (such as single or double-precision floating point 
numbers). As the computational abilities of GPUs started being used to tackle non-graphics 
problems higher precisions were required (Owens et al., 2008). Recent graphics cards can 
handle larger data types efficiently (Nickolls and Kirk, 2009) recent trends, however, have been 
to optimize performance for single and half precision floating point numbers due to increasing 
use of GPUs for machine learning where higher precision is not needed (Ho and Wong, 2017). 

Due to the well-suited nature of GPUs for tackling parallel problems many studies have 
been undertaken in academia using GPUs for computation. Research has been undertaken in 
neural network machine learning algorithms (Zhang et al., 2017), n-body problems (Elsen et 
al., 2006)  and Finite Element Models (Fu et al., 2014).    

The cards are designed for rapid uploading and downloading of image data to the host 
system. The smallest computing unit on a GPU is termed a thread. Threads are executed on 
the device according to the Single Instruction Multiple Data (SIMD) architecture. Each thread 
executes a given set of instructions. For simple algorithms that do not include branching of 
the execution instructions all threads on the device execute the same instruction 
simultaneously. For algorithms that include branching code (such as “switch” or “if” 
statements) the diverging instruction sets need to be executed independently and in serial. 
This can lead to a loss in computational efficiency (Nickolls and Kirk, 2009; Ghorpade, 2012). 

Threads are grouped together into “warps” of 32 threads. Access to memory on a GPU 
is organized into requests 32 addresses long. Should the memory requests be coalesced (the 
locations accessed in memory are next to each other), the requested data can be returned in 
a single request cycle. As the individual memory request locations move further apart the 
requests are serialized again, leading to in-efficiencies.   
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Threads are also grouped together into blocks. Threads in a block are assigned a pool of 
memory that they can all access and modify. Each thread is assigned a unique numerical ID 
which can be interpreted as to its location on the device. This ID is used by each thread to 
access memory locations.  

Different types of memory are available on a GPU. They differ according to how much 
space is available, how fast they can be accessed and the availability of the memory to 
different threads. The different memory types are: 

• Global memory describes the memory area that can be accessed from all threads in 
all blocks. It is the slowest memory on the device but has the largest memory space. 
Global memory can be read and written from both the host and the device. 

• Shared memory is available to each block of threads. Threads can access shared 
memory faster than they can access locations in global memory. Should multiple 
threads try to access the same location in shared memory, the accesses are serialized 
which decreases the computational speed. 

• Constant memory is read-only memory available to all threads on the device. It is read-
only memory which can only be written to from the host (the CPU). Access to constant 
memory is fast, but at the cost of reduced storage space. Constant memory reads can 
be broadcast across all reads. Should all threads be attempting to access the same 
location in constant memory, the read requests are broadcast across all requesting 
threads very efficiently. 

• Register memory is memory available to each thread; it is limited in size but is the 
fastest memory available on the device. 

• Texture memory is read-only memory of similar usage as constant memory. 

Memory locations can be written to by many different threads simultaneously, and this 
creates the possibility for race conditions to occur. A race condition occurs when several 
computational threads modify a location in memory without considering the possibility that 
other threads may be trying to modify the same memory location. 

A typical race condition on a GPU may occur when several threads are incrementing a 
counter. Each thread requests the present value of the counter from memory. The thread then 
increments the value and writes it back into the counter’s location in memory. It is possible 
that between the read and write requests, other threads may access the value of the counter 
to increment it, resulting in incorrect values being written into the counter. 

Race conditions can be overcome on a GPU by using atomic functions. An atomic 
function does not allow other threads to access the memory location being written to until 
the read and write operation is completed. The read and write processes are, therefore, 
serialized, this can result in a significant reduction in the speed of the code execution.  

Moving data from normal PC RAM (Host RAM) to device RAM is a slow process which is 
avoided if possible (Govender, Wilke and Kok, 2015). The programming paradigm for running 
DEM on GPU is then to i) load all the data onto the device at the start of the analysis and ii) 
control all the phases of the algorithm on the device. This requires the use of algorithms which 
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lend themselves to the capabilities of the GPU (in particular the broad phase collision 
detection algorithm). 

 

Figure 3-3: GPU processing pipeline.  

 

3.1.4 Python Modules 

 

Python is an interpreted programming language which has increased in popularity in 
engineering, science and data science communities in recent years (Oliphant, 2007; Millman 
and Aivazis, 2011). For various reasons, standard Python programs do not execute quickly 
when compared to compiled languages such as C, C++ and Fortran (Lam, Pitrou and Seibert, 
2015). Several modules have been developed for Python which are built around compiled and 
optimized functions written primarily in C. Examples of such Python modules are SciPy 
(written for optimization and image processing tasks), Numpy (handling of vast arrays of data) 
and Numba (van der Walt and Aivazis, 2011; Lam, Pitrou and Seibert, 2015; Virtanen et al., 
2019). Numba is a high-performance python compiler that provides tools to compile functions 
written in Python and Numpy using the industry-standard LLVM compiler (Lam, Pitrou and 
Seibert, 2015). Numba also supports execution on the parallel architecture of GPUs (Millman 
and Aivazis, 2011; van der Walt and Aivazis, 2011; Lam, Pitrou and Seibert, 2015). In particular, 
Numba supports NVIDIA GPUs through Numba CUDA or AMD GPUs through Numba ROCm, 
making GPU compute readily available. 

The functions to be compiled need to be written using a syntax that is allowed by the 
compilers. Significant speedups have been noted using Numba when compared to pure 
python. As the GPUs have started to be used for solving more general computing problems a 
programming language better suited for researchers was developed. Nvidia has developed the 
CUDA programming framework which allows the rapid development of programs leveraging 
GPU hardware written in C++ or C. 
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Numba has included a compiler which allows specially written Python functions to be 
executed on NVIDIA GPUS using the CUDA programming framework. An example of a Python 
function written for execution on GPU is shown below (Figure 3-4):  

 

 

  

Figure 3-4: Python function written for GPU execution. 
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3.2 Methodology 
 

A program was written using the python programming language to carry out a DEM simulation 
of a collection of bonded particles. Numba was used to optimize the program for execution 
on a GPU. The program and data structure are discussed in further detail below. 

 

3.2.1 General Program Structure 

 

The developed program is comprised of four stages. During the initial stage, the model 
comprising all the interacting particles is generated. The particle and bond property tables are 
generated and sent to the GPU. The next stage is to generate bonds between adjacent 
particles. A collision detection algorithm is employed to populate the list of particle bonds 
with all possible interacting particles. The next two phases calculate the forces in the bonds 
and integrate the equations of motion. The boundary conditions are applied during the 
equation of motion integration. The collision detection phase only needs to be repeated if the 
maximum particle displacement in the system is large enough that new particle interactions 
could occur. At each stage in the program, relevant parameters are updated and stored on the 
GPU so that they can be used for the next phase in the program. Data can be copied onto the 
host (traditional CPU and RAM) for tracking system histories. The overall program structure is 
shown in Figure 3-5. 

 

Figure 3-5: Developed program structure. 
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The main loop in the program consists of the force determination – equation of motion 
integration loop which is executed at each timestep. The detailed pseudocode of these two 
steps is shown in Figure 3-6. 

 
Figure 3-6: Pseudocode of Force Determination and Integration steps. 

 

3.2.2 Data Structure 

 

How data can be stored on a GPU depends on what kind of memory the data is being stored 
in. General global memory on the GPU can store various types of data such as arrays or objects. 
Constant memory, however, cannot store objects but is designed to store arrays only. Particle 
and bond information was stored as a custom Numba datatype, which is similar to the structs 
available in C or C++. Structs can be understood as objects with no associated methods. Storing 
data in this format simplifies code and ensures that information related to a specific particle 
or bond is stored close together. An indication of the data structure is shown in Figure 3-7. 
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Figure 3-7: Two bonded particles, the particles are in grey and the bond is orange. 

 

For the DEM code different arrays were stored on the device. Six arrays storing the forces 
(Fx, Fy, Fz) and moments (Mx, My, Mz) accumulated for each particle for each time step. Each 
array is a vector of floats with the same length as the number of particles. This array is stored 
in global memory. Arrays containing individual particle and bond variables are stored in global 
memory. 

An array (B_prop) containing bond properties for each type of bond is created. This array 
is stored in constant memory. Information stored in the bond property array is listed below: 

• Bond area  

• Bond normal stiffnesses  

• Bond Tangential stiffnesses  

• Bond moment of inertia (for parallel bonds)  

• Bond polar moment of inertia (for parallel bonds)  

• Bond yield slip  

• bond failure slip  

• Additionally, the numerical index in the array serves as the bond type numerical ID 
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An array, (P_prop) that contains particle properties for each type of particle in the 
simulation. This array is stored in constant memory. This array stores the following 
information: 

• Particle radius 

• Particle mass  

• Particle boundary conditions  

• Additionally, the numerical index in the array serves as the particle type numerical ID 
 

The two types of particle in the bond are used to calculate the index in the bond types array. 
The index is calculated from the two particles types as: 

𝑖𝑛𝑑𝑒𝑥 = 10𝑎 + 𝑏 (6) 

where 𝑎 = the smallest of the two types of particles in the bond 

𝑏 = the largest of the two types of particles in the bond 

Therefore, a bond with particle types 1 and 2 has a bond type 12, and a bond between two 
particles with type 1 has bond type 11. 

 

3.2.3 Collision Detection 

 

The identification of interacting particle pairs is the first phase of a discrete element 
simulation. As the number of particles (N) in the simulation increases the number of possible 
interacting particles to be investigated (n) increases according to: 

𝑛 =
𝑁2

2
(7) 

Checking each pair of particles for possible interaction would result in computational 
difficulties as the number of particles increases. Nearest neighbour search is a standard 
problem in computer science with many well-known algorithms. Reducing the number of 
required checks to identify possible collisions is the primary goal of broad phase collision 
detection. During this phase, possible interparticle interactions are determined. This phase 
can represent the largest computational resource of the algorithm. 

The algorithm used for broad phase collision detection is a spatial hashing algorithm. 
This method divides the problem area into a regular grid. Each particle in the problem set is 
within one of the cells in the regular grid. Furthermore, each cell in the regular grid can be 
assigned a unique identifier, a hash. While traditional hash tables can be used a simple hash 
function can be used and is shown below. 

ℎ𝑎𝑠ℎ = 𝑧𝑖 ∗ 𝑤𝑥 ∗ 𝑤𝑦 + 𝑥𝑖 ∗ 𝑤𝑧 + 𝑦𝑖 (8) 

𝑤𝑥 =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑥 −  𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑥

𝐶𝑒𝑙𝑙𝑠𝑖𝑧𝑒
(9) 

𝑤𝑦 =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑦 −  𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑦

𝐶𝑒𝑙𝑙𝑠𝑖𝑧𝑒
(10) 
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𝑤𝑧 =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑧 −  𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑧

𝐶𝑒𝑙𝑙𝑠𝑖𝑧𝑒
(11) 

𝑥𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (
𝑥 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑥

𝐶𝑒𝑙𝑙𝑠𝑖𝑧𝑒
) (12) 

𝑦𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (
𝑦 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑦

𝐶𝑒𝑙𝑙𝑠𝑖𝑧𝑒
) (13) 

𝑧𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (
𝑧 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑧

𝐶𝑒𝑙𝑙𝑠𝑖𝑧𝑒
) (14) 

Using a simplified hash function as described, allows for specific advantages in the 
storage and access of memory locations. The hash is calculated for each particle in the sample 
and stored in the struct of the particle. The IDs of the particles with a particular hash are 
written into a vector. The next step in the algorithm is then, for a given particle, to read the 
hash and compare it to the particles with the same hash as well as those in the surrounding 
cells.  Figure 3-8 illustrates how the model space is divided into cubes, for a particle in the 
green cube it would be compared to particles in the green and orange cubes (not all shown) 
only. 

 

Figure 3-8: Broad phase collision detection. The full modelled area is within the rectangular 
prism. The modelled area is subdivided into cubic subdivisions. Each particle is assigned to one 
of the subdivisions (green cube) and possible collisions are checked with green cube and 
orange cube (not all shown). 
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A significant algorithmic speed-up can be achieved by not running the broad phase 
collision detection algorithm for every time step. The potential detected collisions are stored 
and used for several time steps before they are recalculated. 

If the algorithm is executed as described each pair of interacting particles will result in 
two bonds being stored in the list of bonds. As an example, consider a bond of two particles 
(A and B) with individual IDs (given by their index location in the list of particles) of 12 and 25: 
Two bonds would be identified here, one with particle A = 12 and particle B = 25, and another 
with particle A = 25 and particle B = 12. This can be avoided by ensuring that the target particle 
has a numerical ID higher than the numerical ID of the base particle. The result in the example 
above is that the bond where particle A = 25 and particle B = 12 would not be listed as a bond. 

In this phase, the exact interparticle distances for the pairs of particles identified in the 
broad phase collision detection are determined. The exact interparticle distance is either 
determined using the Euclidean distance between the particles or determined by integrating 
the relative particle velocities. The interparticle distances and relative velocities are used as 
inputs into the constitutive model to determine the forces to be applied to each particle. 

 

3.2.4 Particle Force Determination 

 

The sum of forces for each particle is determined and used together with the particle masses 
to determine particle accelerations. The particle accelerations are then integrated twice over 
a timestep to determine new particle locations and velocities. 

Once the forces in each bond are determined they are added to the accumulated forces 
for the particles in the bond. Since each bond is analysed by a different thread on the GPU a 
possibility exists that different threads could attempt to update the same particles forces at 
the same time. It is, therefore, possible that race condition could occur which results in 
incorrect forces being written into the particle. The possible race condition can be avoided by 
using atomic functions. Atomic functions ensure that only one thread can modify a location in 
global memory at a time. The accesses will be serialized when different threads attempt to 
simultaneously modify the same location in memory. Atomic functions which result in the 
serialization of multiple threads can lead to a slowdown in the code execution. 

Modern compilers optimize the atomic functions by accumulating values in each warp 
in shared memory (memory assigned to each block) and summing the totals to global memory 
after all threads in the warp have finished executing. The result is reduced atomic add 
operations to global memory. 

 

3.2.5 Damping 

 

Physical systems will always include a dissipative component which tends to reduce the kinetic 
energy of the system. If a DEM interaction is simulated with no dissipation the system will not 
reach an equilibrium but will oscillate continuously. If many bonded particles are simulated 
with no damping, the response will be unstable. 
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Dissipation in the system can be introduced in four ways (Cundall and Strack, 1979; 
Potyondy and Cundall, 2004): Friction, local viscous, global viscous and global non-viscous 
damping. Frictional dissipation is introduced as a constant force which acts in the opposite 
direction as the relative motion in the bond. 

Viscous damping applies a force to the particles proportional (𝛼) to the mass (𝑚) and 
relative velocity (V̅) between the interacting particles. 

 

𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −𝛼𝑚�̅� (15) 

 

It can be shown that for a 1-D system of linear springs a critical damping factor exists for 
which the system will converge to equilibrium in minimum time.  Different critical damping 
factors apply to Degrees of Freedom (DOF) about translation and rotation. The critical 
damping factors are given by the equations below: 

 

𝐷𝑡
𝑐𝑟𝑖𝑡 = 2√𝑚𝑝𝑘𝑛 (16) 

𝐷𝑟
𝑐𝑟𝑖𝑡 = 2𝑟2√

2𝑚𝑝𝑘𝑡

5
(17) 

 

𝐷𝑡
𝑐𝑟𝑖𝑡 and 𝐷𝑟

𝑐𝑟𝑖𝑡 are the critical damping factors for translational and rotational DOF’s 
respectively. 𝑘𝑛 and 𝑘𝑡 are the particles’ normal and tangential stiffnesses respectively, and 
𝑚𝑝 is the particle mass. 

Global viscous damping applies a velocity-dependent force to all particle in the system 
irrespective of inter particle interactions. This form of damping acts on rigid body motion. 

Non-viscous damping applies a damping force proportional (𝛽) to the particle 

acceleration and in a direction dependent on the velocity (𝑠𝑔𝑛(𝑉)) of the particle (Azvedo, 

2003; Potyondy and Cundall, 2004). The force aims to increase unbalanced forces (𝐹) that 
decrease particle velocities and decrease unbalanced forces that increase particle velocities. 
An advantage of this method is that rigid body motion is not damped. 

 

𝑑𝐹𝑛𝑜𝑛−𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −𝛽𝑠𝑔𝑛(𝑉)𝐹 (18) 

 

The final force to be applied to the particle is then determined from: 

  

𝐹𝑑𝑎𝑚𝑝𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅� + 𝑑𝐹𝑛𝑜𝑛−𝑣𝑖𝑠𝑐𝑜𝑢𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ (19) 
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3.2.6 Equation of Motion Integration and Boundary Conditions 

 

Boundary conditions are applied by first multiplying the calculated particle velocity with either 
0 (if a boundary condition is to be applied) or 1 (if the particle is free with no boundary 
conditions). The next step is to add the desired velocity in the equation (0 for free particles or 
for fixed particles and non-zero for non-zero boundary velocities). 

The boundary conditions are stored in constant memory on the GPU for maximum 
access speed. An array in constant memory cannot easily be modified from the host while the 
program is running. Some scenarios such as investigations into hysteresis require the 
boundary condition to change during the simulation. Modifying the boundary conditions 
during a simulation was undertaken by launching different kernels with boundary conditions 
hardcoded for different particle types. 

 

3.2.7  Contact Models 

 

Two contact models were implemented in the developed code: A linear spring model with 
simple linear springs transferring normal and tangential forces between spherical particles and 
a parallel bond model which can be viewed as the linear spring model with an additional beam 
element in parallel which can transfer bending moments and torques between two particles. 

The primary difference between the two contact models is that the parallel bond model 
can transfer bending moments (Figure 3-9). This is best illustrated by simulating a simply 
supported horizontal element at equilibrium under a uniformly distributed load. The linear 
spring contact model should result in the element approximating a catenary curve while the 
parallel bond model would result in the deflection expected of a uniformly loaded beam.  

 

 

 

Figure 3-9: Contact models implemented, a) linear spring model with no moment transfer 
between particles, b) parallel bond model with moment transfer. 

 

a) 

b) 
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3.2.8 Beam and Catenary 

 

The difference between the two bond models developed can be well demonstrated by 
simulating a chain of particles hanging under self-weight. A vital aspect of all DEM simulation 
is to ensure that the bond parameters used are calibrated against the physical model to be 
simulated. This section demonstrates an example of such a calibration. 

The hanging beam example demonstrates how a calibration methodology could be 
employed to adjust bond parameters to match analytically predicted values. The simulated 
problem is a string of 50 particles with radius 1m which hangs under an imposed load of 1N/m. 
The particles are bonded via parallel bonds as described in section 2.7. 

The bond parameter of Kn (the normal stiffness) is calibrated such that the chain of 
particles approximates the behaviour of a cylindrical beam with radius of 1m and Youngs 
Modulus of 1e9Pa. Calibration was carried out using a line search algorithm. An initial guess 
of Kn is assumed and the maximum sag of the simulated chain of particles was determined. 
An initial step size was assumed to modify Kn by, at each iteration the maximum sag is 
determined and Kn modified using the bisection method once the correct value of Kn is 
bracketed. 

The final calibrated beam position and the analytical solution are plotted in Figure 3-10. 
The steps in the calibration process are shown in Figure 3-11. The analytical value can be 
rapidly approached, and care needs to be taken that the string of particles has achieved 
equilibrium before the maximum sag is determined.  

 

Figure 3-10: Numerically predicted particle locations compared to an analytical beam. 
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Figure 3-11: Convergence of the maximum deflection to the analytical result during 
calibration. 

 

For comparison of parallel bonds with linear spring dash pot type bonds the same string 
of particles is simulated using LSDP bonds. The result should be particle positions which 
approximate a catenary curve. The final particle positions, as well as the analytical catenary 
curve with the same horizontal tension, are shown in Figure 3-12. 
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Figure 3-12: Numerically predicted particle locations compared the analytical catenary with 
the same horizontal tension. 

 

3.2.9  Bond Breakage 

 

Bonds between particles can be simulated to weaken and break as loads or displacements 
between particles increase. All interactions are modelled as interacting in a linear elastic 
manner while bond loads are below a certain threshold. Once the threshold is exceeded the 
bond could either yield or fail. 

If the bond is modelled to fail once the ultimate load has been reached the bond can 
simply be deleted from the list of bonds to be investigated. No historical information of the 
bond needs to be stored. If the bond is modelled to yield and soften once a threshold load is 
reached the history of the bond needs to be stored.  

To store the history of the bond, it is necessary to create a bond object which contains 
the particles forming the bond, the damage parameter and strain in the bond. This creates a 
new array that needs to be stored on the device. The history of the bond is stored as a damage 
variable between 0 (no damage) and 1 (completely broken). The damage in the bond is applied 
to the bond normal and tangential stiffness.   
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3.3 Results 
 

The developed code is investigated here for performance relative to similar non-GPU based 
code. Some examples of investigations that are well suited to the code’s performance 
characteristics are also presented. 

 

3.3.1   Performance 

 

The developed code was used to simulate the axial loading of a cylinder of particles generated 
with a hexagonal close-packed structure. The improvement in the code execution speed, when 
compared to standard non-optimized Python, was compared. Three different code 
optimization methods were used for the same code and the execution speed for different 
numbers of particles was measured using the “time” Python library. The used optimization 
methods were: 

• No optimization, data is stored in Numpy arrays as custom Numpy data types. This 
code is executed in serial on the CPU. 

• Numba CPU optimization, data is stored in Numpy arrays as custom Numpy data types. 
Numba’s “Autojit” function is used to compile the functions using the LLVM compiler. 
This code is executed in serial on the CPU. 

• Numba GPU optimization, data is stored in Numpy arrays as custom Numpy data types. 
Numba’s “CUDA” compiler is used to compile specially written functions for execution 
on GPU. 

The execution times for two different phases in the program were timed for 100 
iterations and the average reported as the execution speed. The two program phases there 
were timed are: 

• Bond creation and collision detection that includes the creation and storing of bonds 
in the list of bonds as well as identifying interacting particle pairs. 

• Force determination and equation of motion integration. Analysis of the bonds to 
determine the force in the bonds and accumulation of forces to the participating 
particles. Determination of particle locations at the next time step by the integration 
of the equation of motion. 

A cylinder of particles with hexagonal close packing was simulated (Figure 3-13). One 
end of the cylinder was kept fixed while the other end was displaced at a constant velocity. 
Different cylinder radii were used to display the effect of the number of particles in the 
simulation. 
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Figure 3-13: Hexagonal close-packed sample. 

 

The average execution times for the collision detection phase are shown below (Figure 
3-14). It can be seen that the pure Python code with no optimization is significantly slower 
than both Numba optimization methods. It is interesting to note that the sequentially 
executed Numba optimized CPU code is faster than the GPU optimized code. A possible reason 
for this is that the GPU code could lead to multiple global memory collisions (a memory 
collision leads to the memory requests being serialized). The GPU collision detection algorithm 
also includes multiple memory accesses from a single thread which requires multiple clock 
cycles to complete. A future study should seek to improve the collision detection speed on 
GPU. The CPU optimized code executed between 600 and 900 times faster than pure Python 
while the GPU optimized code executed 50 to 60 times faster than pure Python. 

The code developed for this study focused on simulating problems where all particles 
are bonded together, and no new contacts are formed during the simulation. The contact list 
is therefore generated once at the beginning of the simulation. 
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Figure 3-14: Execution times for the collision detection phase of the model. Different code 
optimization methods and the number of particles are compared.  

 

The average execution times for the force determination and integration are shown in 
Figure 3-15. The Numba optimized code executed significantly faster than the non-optimized 
Python code (between 1000 and 1500 times faster for CPU optimized and between 1000 and 
5500 times faster for GPU). It is notable that the CUDA code executes in a fixed amount of 
time independent of the number of particles while the number of particles is less than 6000 
while the serial codes execute slower as the number of particles increases. This behaviour can 
be understood from the way instructions are executed on the GPU. Under the Single 
Instruction Multiple Data (SIMD) paradigm, all threads are executed on the GPU 
simultaneously with instruction broadcast across them. If more threads are required than are 
available on the GPU (or more resources such as memory are required) then the sets of 
threads are executed sequentially. The result is that if for any number of launched threads less 
than the total possible number of threads on the GPU, the execution time is the same. On a 
Nvidia K2200 graphics card, as was used in this study, there is a maximum of 10 240 threads 
available, assuming sufficient resources are available. The number of threads launched for 
each kernel is either equal to the number of particles (collision detection and equation of 
motion integration) or the number of bonds (force determination). It can be seen from Figure 
3-15 that once the number of particles exceeds the available threads, the execution time 
increases as the thread sets are executed sequentially. 
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Figure 3-15: Execution times for the force determination and integration for one iteration of 
the model. Different code optimization methods and the number of particles are compared. 

 

3.3.2 Further Examples 

 

From the performance investigation the code performs best when the broad phase collision 
detection can be minimized. Problems that fit this criterion would exhibit little change in the 
set of particles in contact with each other during the simulation. Barring the trivial example of 
no particle contacts several exciting examples of such situations exist which are presented 
here. 

The use of the developed code is demonstrated in this section by exploring three examples: A 
chain fountain, elastic interaction of a sphere and plane and a fibre pull-out from a matrix. 
These examples seek to explore different components of the developed program. 

• The simulation of the chain fountain problem displays the ability of the model to 
capture the dynamics of a rapidly moving system. The interaction of particles 
with a boundary is also shown. 

• The indentation contact investigation explores the linear elastic behaviour of 
many bonded particles interacting with a surface. This investigation also 
employed the application of body forces to the individual particles. 

• The fibre pull-out model investigates both the application of de-bonding models 
as well as extensive calibration to match analytical predictions. The application 
of complex simulation control to track failure paths is also demonstrated. 
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3.3.2.1 Chain Fountain 
 

The chain fountain or “Mould effect” occurs when a string of metal beads self-siphons via 
gravity (Figure 3-16). The effect can be demonstrated by filling container (such as a beaker) 
with a chain of metal beads, a free end of the chain is then lifted over the edge of the 
container. If the length of the hanging portion of the chain is greater than the effective portion 
within the container the remaining chain will be pulled out of the container by the hanging 
portion.  Several physical experiments have demonstrated that the chain of beads rises higher 
than the edge of the container, seemingly violating the expected behaviour. This effect was 
first noted by Steven Mould (Mould, 2013) and investigated by Biggins and Warner (2014). 
Several explanations have been offered for this behaviour: Biggins explains it as being due to 
the dynamics of a string of flexibly linked rigid elements, while Flekkøy, Moura and Måløy 
(2018) claim that this behaviour is more complex and depends on the properties of both the 
chain and the container. An essential property of the chain of beads used in these 
investigations is that the chain resists being bent into a small radius. Different bond types 
between DEM particles can be used to model a chain of particles with varying amounts of 
bending resistance. 

 

 

Figure 3-16: Schematic representation of the chain fountain effect which occurs during the 
self-siphoning of a chain of beads. 

The chain fountain is explored here by constructing a minimal experiment which should 
produce the expected behaviour. A string of particles resting between two cylinders with one 
end of the string siphoning over one of the cylinders was used as the minimal experiment 
(Figure 3-17). Parallel and LSDP bonded particles were used to simulate the particles. Particles 
with a radius of 1m, Kn of 1e9Pa and density of 1000kg/m3 were used in the simulation. 
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Figure 3-17: 3D models of the minimal experiment used to investigate the chain fountain. 

The behaviour for parallel bonds and LSDP bonds should differ significantly. While LSDP 
bonded elements can be bent to high curvatures due to the lack of bending stiffness between 
elements, parallel bonded elements, however, resist being bent into tight curves. The string 
of beads at different times is shown in Figure 3-18 for parallel bonds and LSDP bonds. The 
vertical reaction force between the cylinders and the string of particles at the location at which 
the string picks up from the cylinders is shown for, parallel bonds in Figure 3-19, and LSDP in 
Figure 3-20. It can be seen that for the LSDP bonded string there is no excess reaction force at 
the pick-up point while for parallel bonds an excessive force is generated at the pick-up point 
due to the string of particles resisting high curvature. It can also be seen that the magnitude 
of the force at the pickup point increases as the time of simulation (and therefore the length 
of the hanging portion of the chain) increases, the research by Biggins and Warner (2014) 
suggests this. 

For the minimal problem investigated in this example no notable elevation of the chain 
of particles over the edge of the cylinder was noted. The difference in the force between the 
chain and the cylinders at the pick-up point for the different bond models does, however, 
suggest that the bending stiffness of the chain strongly influences this force. Further modelling 
using the developed code could be undertaken for varying bending stiffnesses and chain 
lengths to investigate the effect further. The minimal example presented here is a promising 
experimental set-up to isolate the effects resulting in the chain fountain as popularly 
portrayed. 
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Figure 3-18: Chain locations with time for parallel bonded particles (left) and LSDP bonded 
particles (right). 

 

Figure 3-19: Vertical surface reaction force and chain location plotted against distance at the 
point where the chain leaves the surface it is resting upon at 12 second (left) and 21 seconds 
(right), parallel bonded particles. 
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Figure 3-20: Vertical surface reaction force and chain location plotted against distance at the 
point where the chain leaves the surface it is resting upon at 21 seconds, simply bonded 
particles. 

 

3.3.2.2 Indentation Contact 
 

The contact behaviour of a sphere and a plane is a well-studied problem in contact mechanics 
with Hertz providing the first of many treatments of the problem (Hertz, 1881). In this example 
a sphere of elements contacts a plane under its own weight (Figure 3-21). Analytical solutions 
are known which describe the contact area and indentation depth between the plane and the 
sphere (Villaggio, 1996).  

The analytical and numerical results are normalized over an interval by dividing by the 
maximum load and the maximum indentation or contact area. The results are shown in Figure 
3-22. Figure 3-23 depicts the evolution of particles in the sphere which are in contact with the 
plane as the force increases. 

It can be seen from the results that the indentation depth prediction is closer to the 
analytical solution that the contact area prediction. The contact area is determined by fitting 
a convex hull to all the particles in contact with the plane. Due to the discrete nature of the 
contact points, this method of estimating the contact area could be inaccurate. 
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Figure 3-21: Sphere of bonded particles, free (left) and resting on a horizontal plane (right). 

 

 

Figure 3-22: Numerically predicted indentation depth (left) and surface contact area (right) 
compared to the analytical result. 
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Figure 3-23: Particles in contact with the horizontal plane as the load increases, the fitted 
convex hull is shown. 

 

3.3.2.3 Fibre debonding 
 

Thus far all examples have dealt with bonds with no failure behaviour. The addition of bond 
breakage allows problems exhibiting fracture and de-bonding to be explored. The example 
simulated in this paper is the extraction of a stiff fibre from a more pliable matrix. The matrix 
is fixed at one end and the fibre is extracted away from the fixed end (Figure 3-24). The bonds 
at the interface between the fibre and matrix obey a bilinear softening rule which is a function 
of the shear displacement at the interface. 

Calibration of the bond parameters was done in two stages. In the initial stage the matrix 
and fibre bonds were calibrated for Kn and Ks to produce the required Youngs Modulus and 
Poissons ratio using a similar approach to the line search employed for example 1. The next 
phase of the calibration focused on ensuring the fibre embedded in the matrix behaved as 
predicted analytically during the linear elastic phase of the fibre pull-out. The area of the 
interfacial bonds between the fibre and the matrix was scaled such that the total area of the 
interfacial bonds is equal to the expected value for a fibre with equivalent embedded length 
and diameter. The Kn and Ks parameters for the fibre bonds are then further modified such 
that the analytically predicted linear elastic phase of the fibre pull out behaviour is matched. 
The second step is required to account for the large particle size relative to the fibre diameter. 
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Figure 3-24: 3D models (cross section on lower left) of the simulated fibre (orange) 
embedded in a matrix (green), particle diameter = 0.5m. 

The interfacial bond shear force magnitudes during the debonding of the fibre are 
plotted along the length of the fibre for different extents of debonding in Figure 3-25. The 
analytically predicted shear forces are also plotted. There is good agreement between the 
analytical prediction and the numerical result from the DEM model. 

It can be shown that the de-bonding force/displacement behaviour follows a compound 
path and requires an arc-length limiting algorithm to extract the full stress-strain path. Arc-
length limiting algorithms are techniques applicable to numerical methods such as FEM and 
cannot be applied to DEM. To mimic the effect of an arc-length limiting algorithm a 
loading/unloading approach was used. The loading/unloading algorithm employed limited the 
amount of damage that could occur along the interface before the fibre and matrix are 
returned to their starting position before being loaded again. This approach proved to be 
useful in following the full force/displacement curve for this problem (Figure 3-26). 
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Figure 3-25: Bond shear stresses (in the z-direction) plotted against the bond centroid 
location along the interface length for a particle diameter of 0.5m. The bond shears are 
plotted for five points during the pull-out curve. The analytically predicted shear forces are 
also plotted. 

 

Figure 3-26: Full failure surface. The failure surface is defined as the minimum combination of 
interfacial stress slip and fibre stress which results in the remaining bonds accruing damage. 
It is apparent that the previous history of damage to the interface plays a role in the shape of 
the failure surface. Beyond a maximum interfacial slip further damage to the interface occurs 
at reducing load and slip 
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3.4 Conclusion 
 

Graphics Processing Units (GPUs) provide a computational framework to execute 
computations in parallel efficiently. Specific problems such as Discrete Element Models (DEM) 
are well suited to optimization by parallelization. The Python programming language together 
with the Numba module was used to develop a GPU accelerated double-precision DEM code. 
The DEM was developed to investigate systems of bonded particles which undergo little 
relative motion. New collisions are not expected to form during the running of the simulation. 

Collision detection was executed on GPU using a spatial hashing approach for broad 
phase collision detection. Particle force determination and equation of motion integration was 
undertaken on GPU. The performance of the developed code was investigated by comparing 
execution speeds for three different versions of the code: pure Python, Python optimized with 
Numba, and Python optimized for execution on GPU. It was found that Numba optimization 
performed the fastest in the collision detection phase, but the GPU optimized code performed 
the fastest for force determination and integration.  

Example problems that are well suited to the strengths of the developed code were 
modelled. The chain fountain (the self-siphoning effect of a flexible chain) was investigated. A 
minimal experimental setup which should produce similar behaviour to a full-scale physical 
experiment was used. The expected excess reaction force at the chain pick-up point was 
recovered for a chain bonded with a parallel bond model and was absent for the LSDP bonded 
chain. Further investigation is recommended to investigate this effect further. The contact 
force and the area between a sphere composed of bonded particles and a plane was 
simulated. The analytically predicted behaviour compared well with the simulated model. 

The DEM code developed for this study was used to investigate the debonding behaviour 
of an embedded fibre. Some of the results of that investigation are presented here. The 
complete results of that study will be presented in a further paper.  
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4 Investigation into the use of Discrete Element 
Models for simulating uniaxial pull-out of an 
embedded fibre 

 

The combination of brittle material with ductile fibres can produce competent composites. 
The fibres transmit tensile forces across cracks that form in the brittle matrix at relatively low 
tensile strains. The fibre reinforcing, therefore, acts to both increase the maximum stress a 
structural section can support and improve the post maximum stress behaviour from brittle 
to ductile failure. Concrete is the most common construction material but suffers from a low 
tensile strength which necessitates the use of reinforcing. Typical concrete reinforcing consists 
of relatively large diameter steel bars orientated according to the expected loads. Advances in 
fibre production methods and a reduction in cost has led to an increase in the use of smaller, 
thinner fibres in concrete in the form of Fibre Reinforced Concrete (FRC). An essential aspect 
of defining the effectiveness of fibre reinforcing is resolving the behaviour of the interface 
between the fibre and the matrix as the load being transmitted between the matrix and fibre 
increases. Once the behaviour of the interface is well understood the length, diameter and 
shape of the fibres can be optimised to maximize their effectiveness as reinforcing members.  

The interface behaviour for simple fibres is understood analytically, and several models exist 
that can predict the stresses in the interface. Numerical models using finite element methods 
(FEM) have been used to investigate this problem in a more general way. FEM, being inherently 
a description of a continuum, does not elegantly describe the debonding process that occurs 
during the debonding of fibres from the surrounding matrix. Discrete Element Methods (DEM) 
describe continuous and discontinuous materials as the interaction between multiple 
independent particles. Many different models have been developed to describe the force-
displacement relationship between particles within the DEM framework. These models range 
from complex to simple. For this study two different DEM contact models are compared to 
investigate the model complexity that is required to describe fibre/matrix interface stresses 
accurately. A simple model (a linear spring model that only transmits normal and tangential 
forces) and a more complex model (parallel bonds which transmit normal and tangential 
forces, moments, and torsion) were used. Two stages of fibre pull-out were modelled 
independently using a GPU accelerated DEM simulator developed by the author: a fully 
bonded stage and the de-bonding stage. It was found that both models were able to simulate 
all stages when compared to analytical solutions. No improvement to the model behaviour 
was evident from using a complex contact model; for this reason, a simpler, faster contact 
model should be used to analyse this problem. 
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4.1 Introduction 
 

The increased utilization of short-fibre composites in various industries has spurred research 
into the mechanisms of force transfer between fibre and matrix as well as failure in fibre 
reinforced materials. The fibre reinforced composite material can fail in three primary modes: 
i) fibre failure, ii) interface failure, and iii) matrix failure (Naaman et al., 1989). Which of these 
modes is dominant for a given composite is a function of the matrix, fibre, interfacial strength, 
stiffness parameters, fibre geometry and loading.    

To effectively design a fibre reinforced composite, it is necessary to understand which 
failure mode is dominant. An optimal outcome for toughness would be to maximize the energy 
dissipation of the composite. By adding short-fibre load-bearing elements into a cementitious 
matrix, the toughness of the composite is enhanced (Aslani and Nejadi, 2011; Jd, 2014). The 
primary mechanism increasing the toughness of fibre reinforced material is spanning of cracks 
by the fibres. The spanning action increases the energy needed to propagate cracks in the 
material.  

Fibres also modify the pre-cracking behaviour of the matrix by increasing the effective 
Youngs Modulus of the composite. The load transfer characteristics for an individual fibre are 
not symmetric. Maximum transfer of load into the fibre occurs for loading parallel to the long 
axis of the fibre. By increasing the fibre length, the strength of the composite can be improved. 
However, the maximum load to fibre length relation stagnates as the fibre length increases. 
Therefore, by increasing the fibre length beyond a specific length does not improve the 
maximum load of the composite. 

The primary mode of force transfer between a smooth fibre and matrix is through shear 
stresses developed at the interface. The magnitude of the interface shear stress is a function 
of the slip between the fibre and the matrix. Since most composites have significantly different 
stiffnesses between the matrix and fibres, the stress distribution on the interface is non-linear.  

For partially embedded fibres, the stiffness ratio between the fibre and matrix dictates 
whether the maximum interface shear stress occurs at the embedded end of the fibre or the 
entry point of the fibre into the (Chen and Yan, 2015). Fibre pull-out of partially embedded 
fibres occurs in three phases (Naaman et al., 1989; Chen, Beyerlein and Brinson, 2009), as 
shown in Figure 4-1 a) stress growth phase, Figure 1-1 b) debonding phase, and Figure 1-1 c) 
friction phase. During the stress growth phase, the interface between the fibre and matrix is 
entirely intact. Loads are transferred from the fibre to the matrix predominantly in a linear 
elastic manner for brittle matrices. As the interface stress increases, it reaches the debonding 
failure limit, beginning the onset of the debonding phase. The debonding phase is 
characterized by the onset and development of a failure zone from either one of the ends or 
both ends of the fibre. The interface damage is irreversible, and the load-displacement 
relation starts to deviate from the typical linear relationship. Once the failure zone has 
developed over the entire interface, i.e. completely debonded the particle from the matrix, 
forces are only transferred between the matrix and fibre by friction when pulled along the 
fibre direction.  
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Figure 4-1: Pull-out behaviour of an embedded fibre in a matrix. Cohesive bonds between the 
matrix and fibre are represented with coloured lines (red = higher shear force). a) Stress 
growth phase: force between fibre and matrix is only transmitted via bonds. A typical 
scenario is that the maximum interfacial shear force occurs towards the free end of the fibre. 
b) Debonding phase: the maximum shear stress in the vicinity of the interface is exceeded, 
and those bonds break. c) Friction phase: all the bonds on the interface have broken, and 
force is only transmitted via friction between the fibre and matrix along the tensile direction. 

Analytical solutions that describe the stresses in a system of a single embedded fibre 
have been developed (Chen and Yan, 2015). The shear lag approach can be used to describe 
the elastic stresses. Experimental confirmation of the shear lag theory is given by (Nairn, 
2000). The shear lag theory is valid only for an embedded fibre with no debonding along the 
interface. An extension to include the debonding mechanism was made by (Chen and Yan, 
2015). The standard theory was modified by superimposing a stress distribution, defined as a 
function of the slip in the interface, which represented the damage along the interface. This 
method has been used in further research on composite debonding (Guo and Zhu, 2015; 

a) 

b) 

c) 
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Heidarhaei, Shariati and Eipakchi, 2018, 2019; Lau et al., 2018; Arain et al., 2019; Budarapu et 
al., 2019). 

The stress growth and debonding phases of fibre pull-out have been modelled using 
computational continuum approaches such as the finite element method (FEM) (Denneman 
et al., 2011; Jansson, 2011). FEM utilizes bonding elements to make allowance for fracture 
(Kang et al., 2014). A discrete damage zone model can be used to simulate the formation of 
fractures in FEM (Liu, Duddu and Waisman, 2012). In FEM this can be achieved by connecting 
two domains of the finite element mesh using discrete spring elements. The discrete spring 
elements transfer forces between nodes of the mesh. By decomposing the shear and normal 
strains in an element, different modes can be simulated. A fracture occurs in one of three 
modes: Mode 1 (Tension), Mode 2 (Shear) and Mode 3 (Tearing).  The debonding along a fibre 
for pull-out occurs as a mode 2 failure (Chen and Yan, 2015). Most approaches incorporating 
fracture into a FEM model make a priori assumptions concerning the orientation and location 
of the fractures in the material (Zhan Y. und Bui, 2014). Approaches in FEM which explicitly 
model fracture growth resort to computationally expensive remeshing to capture rapidly 
varying stresses at the crack tip and conform the mesh to the crack surface.  Most FEM models 
do not make allowance for a collision between different areas of the meshed area. To 
incorporate the interaction between different areas of the mesh, the interaction is modelled 
using spring elements. Tracking a large number of potential interactions requires a robust 
collision detection method which reduces the computational advantages of FEM. FEM is, 
therefore, less suited to scenarios where evolving contact scenarios are present when 
compared to a method where collision detection is central to the solutions approach.  

Extended FEM or XFEM is a modification to the classical FEM approach which seeks to 
model fracture while eliminating the need for remeshing. XFEM can resolve discontinuities 
without requiring the mesh to align with the boundaries of such discontinuities. XFEM has 
been used to investigate pull-out of rebar and fibre matrix interfaces achieving good 
agreement with experimental results (Bouhala et al., 2013; Orlando and Benvenuti, 2016). 

Discontinuum approaches, such as the discrete element method (DEM), provide another 
possibility to model fibre reinforcing (Yang et al., 2010). DEM is most well-known in modelling 
the behaviour of granular materials (Potyondy and Cundall, 2004) by modelling numerous 
individual particles interacting. It is, however, possible to model a continuum using DEM by 
applying bonds between the individual particles (Leclerc et al., 2017). Fracturing can then be 
simulated by merely applying a failure criterion to these bonds. DEM has proven to be well 
suited to the modelling of material where fracturing has a significant influence on the material 
strength, e.g. concrete (Monteiro Azevedo, 2003; Potyondy and Cundall, 2004; Azevedo and 
Lemos, 2006; Yang et al., 2010). The fracture behaviour of composites has been investigated 
using DEM (Yang et al., 2010; Sheng et al., 2010; Potapov, Faucher and Daudeville, 2012; Wolff 
et al., 2013; Koval, Danh and Chazallon, 2014; Sadek et al., 2014; Maheo et al., 2015; Ismail, 
Yang and Ye, 2016; Zhang and Xie, 2017; Leclerc et al., 2017; Marcon et al., 2017; Wang et al., 
2017; Shang et al., 2018). The stress distribution along the fibre/matrix interface has, however, 
not been investigated, or compared to analytical solutions. Many DEM models of composite 
materials do not accurately resolve the interfaces between materials but seek to reduce the 
number of particles required by averaging material properties.  Research has also been limited 
due to the computational demands of DEM. This study seeks to investigate further the use of 
DEM specifically for the resolution of the debonding behaviour of a single fibre embedded in 
a matrix. The stress distribution along the interface before and during debonding can have 
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important implications for the design of fibre reinforced composites. Confirming that a DEM 
model can recover the expected interfacial stresses would allow more complex embedded 
fibre problems to be investigated. 

Two popular models for the modelling of bonded particles in DEM are the linear-spring 
dash-pot (LSDP) (Monteiro Azevedo, 2003) and parallel bond models (Potyondy and Cundall, 
2004; Herman, 2015) presented in Section 3. This study investigates the sensitivity of the 
modelled debonding behaviour to the chosen contact model in Section 5.3.3. As the size of 
the particles used in DEM decreases the behaviour of the DEM model approaches that of a 
continuum (Cundall, 1984). It is therefore essential to understand the influence of particle size 
on the required accuracy. The effect of particle size is, therefore, investigated in Section 5.2.1 
and Section 5.3.4, and compared to analytical solutions presented in Section 2. The results of 
the simulation for the fully bonded and debonding phase are verified against analytical 
solutions in Section 5. The frictional phase is not considered in this study. For all simulations, 
the same packing is used (hexagonal close packing). The interface is modelled using shear only 
elements obeying a bilinear softening law as described by Liu, Duddu and Waisman, (2012). 
The total area of the bonds on the interface is scaled to match a continuous fibre, as discussed 
in Section 4. The fibre and the matrix are modelled using either LSDP or parallel bond bonded 
elements. DEM allows for the investigation of both the bonded and debonding phases of 
failure without changing the modelling approach. The uniaxial pull-out of a large fictitious fibre 
proposed by Chen and Yan, (2015), is considered as shown in Figure 4-2. 

The compute in this study was accelerated by developing and implementing a GPU 
based DEM framework for bonded particle applications in the Python programming language. 
The code executes on General Purpose Graphics Processing Units (GPGPU) philosophy. GPGPU 
is well suited to the parallel nature of DEM (Amada et al., 2004; Govender, Wilke and Kok, 
2015; Qi et al., 2015).   

 

Figure 4-2: 3D models (cross section on right) of the simulated fibre (orange) embedded in a 
matrix (green), particle diameter = 0.5m. 

The results of the simulation show that the simulation is not sensitive to the choice of 
the contact model used. As LSDP requires the least computational effort it is recommended 
to be used for this sort of simulation. It was also found that the result is sensitive to the size 
of the particles used in the simulation. The size of the particle should be at most 25% of the 
fibre diameter to capture the correct form of the pull-out curve. 

Future study is recommended to investigate the effect that different packings would 
have on the results. Breakage of the matrix and fibre, as well as interaction between multiple 
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fibres, should also be investigated. The Python module used to write the program used in this 
study has limitations; a language such as C++ would be better suited for future work.      

4.2 Analytical Solution 
 

The mechanisms whereby forces are transferred between a fibre embedded in a matrix are 
well understood and widely studied (Nairn, 1997, 2000; Nairn et al., 2001; Avery, 2016; Hsueh, 
1988; Naaman et al., 1989;  Chen and Yan, 2015).  The design of fibre reinforced concrete, 
traditional reinforcing, soil anchors and foundation piles all benefit from the resolution of the 
stress transfer between the fibre (or linear feature) and the matrix. 

The stress field for the elastic behaviour of a fibre/matrix stress problem can be derived 
using a shear lag approach. The term “shear lag” originates from the study of the design of T, 
I and box beams (Reissner, 1946). 

A typical model used when investigating the mechanics of a fibre pull-out problem is 
one of a cylindrical fibre embedded within a cylindrical matrix (Figure 4-3). 

 

 

Figure 4-3: The standard problem assessed of a fibre embedded in a cylindrical matrix 
element. The left end of the matrix is fixed while the right end of the fibre is displaced to the 
right. 

 

The constitutive relationship of a fibre embedded in a matrix can be described with the 
following equations (Chen and Yan, 2015). The fibre and the matrix are assumed to deform 
according to: 
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휀𝑧𝑧 =
𝜎𝑧𝑧

𝐸𝐴
−

𝑣𝑎

𝐸𝐴

(𝜎𝑟𝑟 + 𝜎𝜃𝜃) + 𝛼𝐴𝑇 (20) 

𝛾𝑟𝑧 =
𝜏𝑟𝑧

𝐺𝐴

(21) 

Where 휀𝑧𝑧, 𝜎𝑧𝑧, 𝜎𝑟𝑟 and 𝜎𝜃𝜃  are the strain in the z-direction, the stress in the z-direction, 
stress in the direction normal to the fibre and stress in the radial direction respectively. 𝜏𝑟𝑧 
and 𝛾𝑟𝑧 and the shear stress and shear strain. 𝐸𝐴, 𝐺𝐴, 𝑣𝐴 and 𝛼𝐴 are the fibre or matrix tensile 
modulus, shear modulus, Poissons ratio and thermal expansion coefficient respectively. In 
addition to these constitutive relationships the following axial equilibrium relationships must 
be met: 

𝜕𝜎𝑧𝑧

𝜕𝑧
+

1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑟
= 0 (22) 

It can be shown that the fundamental shear lag assumption assumes the following 
relationships for the z strain and shear strain (Nairn 1996): 

휀𝑧𝑧 =
𝜕𝜔

𝜕𝑧
(23) 

𝛾𝑟𝑧 =
𝜕𝜔

𝜕𝑟
(24) 

Where 𝜔 is the axial displacement of the fibre. To resolve the stresses in the fibre and 
matrix, assumptions need to be made about the form of the functions describing the shear 
stress distribution in the fibre and matrix. 

𝜏𝑟𝑧
𝑓𝑖𝑏𝑒𝑟(𝑟, 𝑧) = 𝜏𝑎(𝑧)𝐼(𝑟) (25) 

𝜏𝑟𝑧
𝑚𝑎𝑡𝑟𝑖𝑥(𝑟, 𝑧) = 𝜏𝑎(𝑧)𝑂(𝑟) (26) 

𝜏𝑎(𝑧) is the axial shear stress at the interface and 𝐼(𝑟) and 𝑂(𝑟) describe the shear 
stresses in the fibre and matrix as a function of r (r is the distance from the centre of the fibre). 
The shear stress at the centre of the fibre and the outer surface of the matrix must be zero. 
Furthermore, the shear stresses at the outer edge of the fibre, and the inner edge of the fibre 
are identical. Different assumptions have been made concerning the form of these 
relationships. Assuming no shear stress in the fibre results in 𝐼(𝑟) = 0. Chen and Yan (2015) 
suggest the following functions for 𝐼(𝑟)and 𝑂(𝑟): 

𝐼(𝑟) =
𝑟

𝑎
(27) 

𝑂(𝑟) = 𝑎𝑏
(

𝑏
𝑟 −

𝑟
𝑏

)

(𝑏2 − 𝑎2)
(28) 

The stress at the interface between the fibre and the matrix is modelled as being a 
function of the slip between the two materials. There is, therefore, a discontinuity at the 
interface described according to the following equation: 

𝑤𝑓𝑖𝑏𝑒𝑟(𝑎, 𝑧) − 𝑤𝑚𝑎𝑡𝑟𝑖𝑥(𝑎, 𝑧) = 𝛿(𝑧) (29) 

It was shown by Chen and Yan (2015) that the governing shear lag equation could be described 
as follows: 
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𝑑2𝜎𝑓(휁)

𝑑휁2
= 𝛼2[𝜎𝑓(휁) − 𝛾𝜎𝑝 − 𝜎𝑇] (30) 

ζ is a scaling factor defined as z/a, 𝛼and 𝛾are constant coefficients of the equation and 
are functions of the material properties and geometry as well as the assumed functions 
describing the radial distribution of shear stress in the fibre and matrix. 𝜎𝑓 , 𝜎𝑝and 𝜎𝑇are the 

stress in the fibre, loading stress at the fibre free end and the stress induced by temperature 
respectively. This second-order differential equation of 휁 can be solved under the following 
boundary conditions: 

𝜎𝑓(휁 = 0) = 𝜖𝜎𝑝 (31) 

𝜎𝑓(휁 = 𝑙) = 𝜎𝑝 (32) 

The first boundary condition describes the stress at the embedded fibre end as a 
function of the stress at the free (loaded) fibre end. The parameter 𝜖 describes how much 
stress is transferred into the matrix at the embedded end. The second boundary condition 
fixes the stress at the free (and loaded) end to be equal to the applied stress. The final 
solutions of the differential equation have the form (Chen and Yan, 2015): 

𝜎𝑓 = 𝜎𝑝𝜑(휁, 𝑙, 𝛼) (33) 

𝜏𝑎 =
𝜎𝑝

2
𝜔(휁, 𝑙, 𝛼) (34) 

𝛿 =
𝜎𝑝

2𝐾0
𝜔(휁, 𝑙, 𝛼) (35) 

 

Where 

𝜑(휁, 𝑙, 𝛼) =
𝑠𝑖𝑛ℎ(𝛼휁)

𝑠𝑖𝑛ℎ(𝛼𝑙)
− 𝜖

𝑠𝑖𝑛ℎ(𝛼(휁 − 𝑙))

𝑠𝑖𝑛ℎ(𝛼𝑙)
+ 𝛾 [1 −

𝑠𝑖𝑛ℎ(𝛼휁) − 𝑠𝑖𝑛ℎ(𝛼(휁 − 𝑙))

𝑠𝑖𝑛ℎ(𝛼𝑙)
] (36) 

 

𝜔(휁, 𝑙, 𝛼) = 𝜑′(𝜁,𝑙,𝛼) = 𝛼 [
𝑐𝑜𝑠ℎ(𝛼휁)

𝑠𝑖𝑛ℎ(𝛼𝑙)
− 𝜖

𝑐𝑜𝑠ℎ(𝛼(휁 − 𝑙))

𝑠𝑖𝑛ℎ(𝛼𝑙)
− 𝛾

𝑐𝑜𝑠ℎ(𝛼휁) − 𝑐𝑜𝑠ℎ(𝛼(휁 − 𝑙))

𝑠𝑖𝑛ℎ(𝛼𝑙)
] (37) 

 

The form of the interfacial shear stresses as described by shear lag theory is a function 
of the fibre/matrix stiffnesses and geometry. The maximum shear stress occurs close to the 
point where the fibre exits the matrix or close to the embedded end depending on these 
parameters. If the fibre is stiffer than the matrix, the maximum interfacial shear will occur at 
the free end with the inverse true if the matrix is stiffer than the fibre. The distribution of 
interfacial shear stresses for different fibre/matrix Youngs Moduli with the free end on the 
right are plotted in Figure 4-4.    
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Figure 4-4: Analytically predicted shear stress for different fibre/matrix Youngs Moduli 
combinations. 

The shear lag theory does not make provision for debonding between the fibre and the 
matrix. Chen and Yan (2015) have incorporated the debonding behaviour by superimposing a 
second stress system in areas where the fibre and matrix are in a debonding stage. The central 
assumption of this approach is that the debonding of the fibre and the matrix does not occur 
suddenly but exhibits a yielding behaviour before complete failure occurs. An example of this 
approach is shown in Figure 4-5. The length of the embedded fibre is 30m and is being 
extracted towards the right. The magnitude of shear at a point in the interface is the product 
of the slip between the matrix and fibre and an interfacial stiffness parameter K (1e9 here). 
The interface begins yielding at a slip value of 0.001m and fails at 0.003m. This results in a 
yield shear stress of 1e6 Pa (0.001x1e9). 
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Figure 4-5: The superposition method to incorporate interfacial damage into the shear lag 
theory description of fibre pull-out.  

 

4.3 Discrete element formulation 
 

The Discrete Element Method (DEM) was first proposed by Cundall (1971 and 1974) to 
investigate the behaviour of granular assemblies. DEM employs discrete elements (such as 
discs, spheres or polyhedra) which interact only at their points of contact. The two phases in 
the application of DEM consist of the application of a force-displacement law at contact points 
and the application of Newton’s second law to the elements themselves. Deformation of the 
particles themselves is assumed to be sufficiently small (compared to the deformation of the 
overall assembly) that they can be assumed to be rigid. Applying Newton’s second law to the 
translational and rotational motion of individual particles results in (Rojek et al., 2012): 

𝑚𝑖𝑢�̅�
̈ =  𝐹𝑖 (38) 

𝐽𝑖𝑊𝑖
̇ =  𝑀𝑖

̅̅ ̅ (39) 

Where 𝑚𝑖, 𝑢�̅� and 𝐹𝑖  are the mass, displacement, and resultant particle force of the ith 
element. 𝐽𝑖, 𝑊𝑖

̅̅ ̅ and 𝑀𝑖
̅̅ ̅ are the particle moment of inertia, angular velocity and resultant 

moment of the ith element. The forces and moments acting on the ith particle can be 
described according to: 

𝐹𝑖 =  𝐹𝑖
𝑒𝑥𝑡 +  ∑ 𝐹𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑛𝑖
𝑐

𝑗=1

+  𝐹𝑖
𝑑𝑎𝑚𝑝 (40) 

𝑀𝑖 =  𝑀𝑖
𝑒𝑥𝑡 +  ∑ 𝑀𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑛𝑖
𝑐

𝑗=1

+  𝑀𝑖
𝑑𝑎𝑚𝑝 (41) 
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Where 𝐹𝑖
𝑒𝑥𝑡 and 𝑀𝑖

𝑒𝑥𝑡 are any external forces and moments acting on the particle. 

𝐹𝑖𝑗
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and 𝑀𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 are the force and moment due to interaction between the ith and jth 

element and 𝑛𝑖
𝑐 is the number of particles interacting with the ith particle. 𝐹𝑖

𝑑𝑎𝑚𝑝 and 𝑀𝑖
𝑑𝑎𝑚𝑝 

are damping forces and moments which are applied to reduce spurious oscillations in the 
system. 

Various contact models can be used to calculate forces at the contact points as a function 
of the particle overlap distances and velocities. The calculated forces are accumulated onto 
the individual particles participating in the interaction. Contact models can be tailored to 
represent non-cohesive (no tension forces, such as between individual sand grains) and 
cohesive (such as between particle representing rock) material (Potyondy and Cundall, 2004). 

An explicit numerical scheme is employed to integrate over particle accelerations twice 
in time to recover particle velocities and displacements successively. The integration is 
undertaken over a given timestep which is equal for all particles in the simulation. The explicit 
numerical scheme is conditionally stable with a maximum timestep above which the model 
becomes unstable. 

The DEM formulations used for this study were the parallel bond and linear spring and 
dash pot (LSDP) formulations (Cundall and Strack, 1979; Potyondy and Cundall, 2004; Rojek et 
al., 2012). For each pair of bonded particles, a bond is formed which transmits bending 
moments (for parallel bonds), normal forces (for parallel and LSDP), shear forces (for parallel 
and LSDP) and torsional moments (for parallel bonds) between the particles. Forces are 
calculated according to the inter-particles tangential and normal strains. 

 

4.3.1 Bond displacement determination 

 
At the beginning of each time-step the displacements between each pair of particles are 
determined by integrating the translational and rotational equations of motion twice. At each 
time step the relative velocity of two contacting particles (Figure 4-6) is determined according 
to (Potyondy and Cundall, 2004): 

𝑉𝑅
𝑎𝑏̅̅ ̅̅ ̅ = 𝑉𝑏̅̅̅̅ + 𝑊𝑏̅̅ ̅̅̅ × (𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅ − 𝑃𝑏̅̅̅̅ ) − (𝑉𝑎̅̅ ̅̅ + 𝑊𝑎̅̅ ̅̅ ̅ × (𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅ − 𝑃𝑎̅̅̅̅ )) (42) 

 

Where: 

𝑉𝑅
𝑎𝑏̅̅ ̅̅ ̅ is the relative velocity between particles a and b. 

𝑉𝑏 ̅̅ ̅̅ is the velocity of particle b. 

𝑊𝑏̅̅ ̅̅̅ is the angular velocity of particle b. 

𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅  is the location of the midpoint of the contact between particles a and b. 

𝑃𝑏̅̅̅̅  is the location of particle b. 
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Figure 4-6: An example of two bonded elements. 

The displacement increment in the last time step is determined according to the integration 
scheme employed (forward Euler method shown here): 

𝑑𝑈𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑉𝑅
𝑎𝑏̅̅ ̅̅ ̅∆𝑡 (43) 

Where: 

𝑑𝑈𝑎𝑏̅̅ ̅̅ ̅̅ ̅is the displacement increment between particles a and b. 

∆𝑡 is the timestep. 

The displacement increment is then partitioned into normal and tangential components. 

𝑑𝑈𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ =  𝑛𝑎𝑏̅̅ ̅̅ ̅(𝑑𝑈𝑎𝑏̅̅ ̅̅ ̅̅ ̅ ∙ 𝑛𝑎𝑏̅̅ ̅̅ ̅) (44) 

Where: 

𝑑𝑈𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ is the normal displacement increment between particles a and b. 

𝑛𝑎𝑏̅̅ ̅̅ ̅ is the normal vector between a and b. 

The tangential displacement increment is given by: 

𝑑𝑈𝑇
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ =  𝑑𝑈𝑎𝑏̅̅ ̅̅ ̅̅ ̅ − 𝑑𝑈𝑁

𝑎𝑏̅̅ ̅̅ ̅̅ ̅ (45) 

In the parallel bond model, it is also possible to transmit relative rotations (as bending 
moments) through the bonds. The relative angular velocity can be calculated from: 

𝑊𝑅
𝑎𝑏̅̅ ̅̅ ̅̅ =  𝑊𝑏̅̅ ̅̅̅ − 𝑊𝑎̅̅ ̅̅ ̅ (46) 

The increment of angular displacement can be calculated from: 

𝑑Ω𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑊𝑅
𝑎𝑏̅̅ ̅̅ ̅̅ 𝑑𝑡 (47) 

The increment of angular displacement can also be decomposed into portions operating 
normal and tangentially to the bond direction: 
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𝑑Ω𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑛𝑎𝑏̅̅ ̅̅ ̅(𝑑Ω𝑎𝑏̅̅ ̅̅ ̅̅ ̅ ∙ 𝑛𝑎𝑏̅̅ ̅̅ ̅) (48) 

𝑑Ω𝑇
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑑Ω𝑎𝑏̅̅ ̅̅ ̅̅ ̅ − 𝑑Ω𝑁

𝑎𝑏̅̅ ̅̅ ̅̅ ̅ (49) 

 

4.3.2 Force determination – parallel bonds 

 

The parallel bond model determines forces between interacting particles as being transmitted 
by a beam element. The bond can transmit normal and shear forces as well as moments and 
torques. Each force and moment can include a velocity-dependent dissipative component that 
can be visualised as a dashpot. The force transfer mechanisms for the parallel bond model is 
shown in Figure 4-7 the dashpots representing damping are not included. 

 

Figure 4-7: Schematic diagram of stress transfer for the parallel bond model. 

The force increments for the normal force vector is given by 

∆𝐹𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑘𝑁

𝑎𝑏𝐴𝑎𝑏𝑑𝑈𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅, (50) 

while the tangential force vector is given by 

∆𝐹𝑇
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = −𝑘𝑇

𝑎𝑏𝐴𝑎𝑏𝑑𝑈𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅. (51) 

The moment vector normal to the bond direction is given by 

∆𝑀𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = −𝑘𝑇

𝑎𝑏𝐽𝑎𝑏𝑑Ω𝑁
𝑎𝑏̅̅ ̅̅ ̅̅ ̅, (52) 

The moment vector tangential to the bond direction is given by: 

∆𝑀𝑇
𝑎𝑏̅̅ ̅̅ ̅̅ ̅ = −𝑘𝑁

𝑎𝑏𝐼𝑎𝑏𝑑Ω𝑇
𝑎𝑏̅̅ ̅̅ ̅̅ ̅. (53) 

The moment generated by the tangential force vector is given by: 

∆𝑀𝐹𝑇
𝑏̅̅ ̅̅ ̅̅ ̅ = ∆𝐹𝑇

𝑎𝑏 × (𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅ − 𝑃𝑏̅̅̅̅ ), (54) 

∆𝑀𝐹𝑇
𝑎̅̅ ̅̅ ̅̅ ̅ = ∆𝐹𝑇

𝑎𝑏 × (𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅ − 𝑃𝑎̅̅̅̅ ), (55) 

𝑘𝑁
𝑎𝑏 and 𝑘𝑇

𝑎𝑏 are the normal and tangential stiffness of the bond.  The area, moment of inertia 
and the polar moment of inertia of the bond are given by, respectively  

𝐴𝑎𝑏 = 𝜋𝑅2𝑚 (56) 

𝐽𝑎𝑏 =
1

2
𝜋𝑅4, (57) 
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𝐼𝑎𝑏 =
1

4
𝜋𝑅4, (58) 

with 𝑅 the average radius of the bond given by 

𝑅 =
𝑅𝑎 + 𝑅𝑏

2
. (59) 

 

4.3.3 Force determination – LSDP 

 

The most straightforward force-displacement law for interacting particles is a linear normal 
and tangential stiffnesses in DEM, represented by linear springs. A linear dashpot models 
dissipation for each transmitted force. Figure 4-8 depicts the force transfer mechanisms for 
the LSDP model (dashpots are omitted).  

 

Figure 4-8: Schematic diagram of stress transfer for the linear spring dash-pot model. 

Normal and tangential strain increments are calculated the same way as for the parallel 
bonds. The normal force increment vector is then given by: 

𝐹𝑁
𝑎𝑏̅̅ ̅̅ ̅ = 𝑘𝑁

𝑎𝑏𝑈𝑁
𝑎𝑏̅̅ ̅̅ ̅ (60) 

The tangential increment force vector is given by: 

𝐹𝑇
𝑎𝑏̅̅ ̅̅ ̅ = −𝑘𝑇

𝑎𝑏𝑈𝑁
𝑎𝑏̅̅ ̅̅ ̅ (61) 

The moments applied to each particle are given by: 

𝑀𝐹𝑇
𝑏̅̅ ̅̅ ̅ = 𝐹𝑇

𝑎𝑏 × (𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅ − 𝑃𝑏̅̅̅̅ ) (62) 

MFT
𝑎̅̅ ̅̅ ̅ = 𝐹𝑇

𝑎𝑏 × (Coab̅̅ ̅̅ ̅̅ − P𝑎̅̅̅̅ ) (63) 

Where: 

𝐶𝑜𝑎𝑏̅̅ ̅̅ ̅̅  is the location of the midpoint of the contact between particles a and b. 

 𝑃𝑏̅̅̅̅  is the location of particle b. 

 

4.3.4 Contact model discussion 

 

The primary difference between the two contact models is that the parallel bond model can 
transfer bending moments. To illustrate the implications of this, consider a simply supported 
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horizontal string of particles at equilibrium under a uniformly distributed load in the vertical 
direction, e.g. gravity. The LSDP contact model results in the string of particles approximating 
a catenary curve, while the parallel bond model results in the deflection expected of a 
uniformly loaded beam, as shown in Figure 4-9. Differences between the DEM and analytical 
solution are due to the finite particle size. 

 

Figure 4-9: Theoretical and simulated equilibrium positions for a simply supported string of 
elements. 

Consider a pair of particles just making contact.  A constant counter clockwise rotation 
of 0.1 radians/s is applied to the first particle on the left located at x=y=0. The behaviour of 
the LSDP and parallel bond models are distinctly different, as shown in Figure 4-10 and Figure 
4-11, respectively. For the LSDP model, the second particle rotates in the opposite direction, 
while for the parallel bonds model, the second particle rotates in the same direction. For both 
models, the rotation of the second particles is shown in Figure 4-12. Both models seek to 
minimize the relative velocity at the interface between the particles. The parallel bond model 
achieves this by moving the centroid of the second particle around the centroid of the first 
particle. The second particle rotates in the same direction as the first particle. The LSDP model 
achieves this by rotating the second particle in the opposite direction of the first particle while 
the centroid position remains unchanged.    
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Figure 4-10: Movement of two particles as one is rotated that are bonded with a parallel 
bond. Rotation direction and movement direction are indicated with blue arrows. 

 

Figure 4-11: Movement of two particles as one is rotated that are bonded with an LSDP 
bond. Rotation direction and movement direction are indicated with blue arrows. 
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Figure 4-12: Rotational velocity for the free particle for LSDP and parallel bonded particle 
pairs. Notably, the rotational velocities are in opposite directions. 

 

4.3.5 Integration 

 

Each particle accumulates forces and torques due to all the contacts involved. The time 
integration scheme used for this study was the velocity Verlet scheme (Hofmann, 2011).  

On time-step accelerations are determined based on the summed particle forces and 
torques according to the following equation. 

�̈̅�𝑡 =
�̅�

𝑚
(64) 

�̅�𝑡+1 = �̅�𝑡 + 𝑑𝑡 (�̇̅�𝑡−
1
2 + �̈̅�𝑡𝑑𝑡) (65) 

�̅�𝑡+1 = �̅�𝑡 + �̇̅�𝑡𝑑𝑡 +
1

2
(�̈̅�𝑡𝑑𝑡2) (66) 

�̇̅�𝑡+1 = �̇̅�𝑡−1 +
1

2
(�̈̅�𝑡 + �̈̅�𝑡−1)𝑑𝑡 (67) 

�̇̅�𝑡+
1
2 = �̇̅�𝑡−

1
2 + �̈̅�𝑡𝑑𝑡 (68) 

 

Angular velocities are determined from the particle total torque and moment of inertia. 

�̇̅�𝑡 =
�̅�

𝐼
(69) 

�̅�𝑡+
1
2 = �̅�𝑡−

1
2 + �̇̅�𝑡𝑑𝑡 (70) 
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In the leapfrog method, the particle locations and accelerations are known on timesteps 
while velocities are known between timesteps.  

 

4.3.6 Critical time-step 

 

DEM simulations are conditionally stable with a maximum stable time step (∆𝑡𝑐𝑟). For a 
bonded particle system, the maximum timestep can be defined from the highest natural 
frequency of the bonded particle system (𝜔𝑚𝑎𝑥). The natural frequency can be defined from 
the highest angular eigenfrequency (Azvedo, 2003): 

∆𝑡𝑐𝑟 =
2

𝜔𝑚𝑎𝑥
(71) 

The maximum stable time step for two particles is a function of the mass of the particles 
and interparticle stiffness according to the following equation: 

∆𝑡𝑐𝑟 =
2

√𝐾
𝑚

(72)
 

In the simulation, the stable timestep might be shorter than the theoretical value due 
to particles being bonded to multiple particles. Šmilauer and Chareyre, (2015) provide a 
methodology to determine the critical time step for multiple bonded particles. The maximum 
natural frequency for a system of bonded particles occurs when two particles move in 
opposite directions and can be given by: 

∆𝑡𝑐𝑟 = √2√
𝑚𝑖

𝐾𝑖

(73) 

The effective stiffness for each particle in the bond can be determined from all the bonds 
the particle is involved in according to:  

𝐾𝑖𝑤 = ∑(𝐾𝑁𝑗 − 𝐾𝑇𝑗)𝑛𝑗𝑤
2 + 𝐾𝑇𝑗

𝑗

(74) 

For:  𝑤 ∈  {𝑥, 𝑦, 𝑧} 

Where: 

𝐾𝑖𝑤 is the effective stiffness in direction w for particle i. 

𝐾𝑁𝑗 is the normal bond stiffness for bond j that the particle is involved in. 

𝑛𝑗𝑤
  is the normal vector of bond j in direction w.   

The timestep for this study was chosen based on the theoretical value. Stability was 
investigated by calculating the kinetic energy of a cylindrical sample of 100 bonded particles 
under a small displacement. For timesteps larger than the stable timestep, the kinetic energy 
of the system can be shown to increase without bounds. 
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4.3.7 Damping 

 

Bonded discrete element models are susceptible to oscillations due to the non-dissipative 
nature of the bonded models, binary contact resolution between particles, and explicit time 
integration. Dissipative elements, such as dampers damp these oscillations. Dampers are 
modelled as additional forces that act on the particles. In DEM, damping can be introduced at 
the bonds acting proportionally to the relative particle velocities (such as viscous damping), 
or local damping proportional to individual particles’ acceleration (such as non-viscous 
damping). 

The final damping force acting on the particle is given by 

 
𝐹𝑑𝑎𝑚𝑝𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅� + 𝑑𝐹𝑛𝑜𝑛−𝑣𝑖𝑠𝑐𝑜𝑢𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ (75) 

Where �̅�  is the sum of forces (body and contact) acting on the particle, 𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 

𝑑𝐹𝑛𝑜𝑛−𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅represent the viscous and non-viscous damping contributions, respectively. In 

the absence of damping, any perturbation introduced into the system would persist 
indefinitely. 

 

4.3.7.1 VISCOUS DAMPING 
 

Viscous damping applies a force to the particles proportional to the relative velocity between 
the interacting particles. 

𝑑𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −𝛼𝑚V̅ (76) 

Critical damping provides the fastest way to achieve zero amplitude for a damped 
oscillator. The critical damping factor for the 1-D linear spring-mass-damped oscillator is given 
by: 

𝐷𝑡
𝑐𝑟𝑖𝑡 = 2√𝑚𝑝𝑘𝑛 (77) 

𝐷𝑟
𝑐𝑟𝑖𝑡 = 2𝑟2√

2𝑚𝑝𝑘𝑡

5
(78) 

𝐷𝑡
𝑐𝑟𝑖𝑡 and 𝐷𝑟

𝑐𝑟𝑖𝑡 are the critical damping factors for translational and rotational DOF’s 
respectively. 𝑘𝑛 and 𝑘𝑡 are the particles’ normal and tangential stiffnesses respectively, and 
𝑚𝑝 is the particles’ mass. 

 

4.3.7.2 NON-VISCOUS DAMPING 
 

Non-viscous damping applies a damping force proportional to the particle acceleration (which 
is analogous to the unbalanced force on the particle) and in a direction dependent on the 

velocity of the particle (Azvedo, 2003). The force aims to increase unbalanced forces (F) that 
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decrease particle velocities (𝑉) and decrease unbalanced forces that increase particle 
velocities as follows: 

𝑑𝐹𝑛𝑜𝑛−𝑣𝑖𝑠𝑐𝑜𝑢𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −𝛽𝑠𝑔𝑛(𝑉)F (79) 

The ratio of the unbalanced force that is applied as damping is 𝛽, 𝑠𝑔𝑛(𝑉) returns the 

sign of the velocity. An advantage of this method is that rigid body motion is not damped. 

 

4.3.7.3 NUMERICAL INVESTIGATION 
 

We investigate the effect of viscous and non-viscous local damping on i) a pair of particles 
released under tension, and ii) a chain of 50 connected particles undergoing rigid body 
movement. 

For two particles under tension, the first particle is fixed in position while the second 
particle is moving away at a constant velocity before being released. The viscous damping 
coefficient is chosen based on the ratio of the critical damping, while the non-viscous damping 
coefficient is chosen based on the ratio of the damping force to the resultant force on the 
particle. A coefficient of 0.7 implies that 70% of the resultant force is applied as the damping 
force.   

The velocity for the second particle is shown in Figure 4-13. Both damping approaches 
rapidly reduce the velocity of the second particle and return the two particles to rest. The 
envelope of the non-viscous damping is larger than the viscous damping, and the velocities 
take slightly longer to get damped. 
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Figure 4-13: Velocity of the free particle for two particles with viscous damping. The free 
particle is displaced at 0.1m/s for 0.02s and then released. Different magnitudes of the 
damping coefficient (as a ratio of the critical damping magnitude) were investigated. 

Consider the second problem, a chain of 50 connected undergoing rigid body motion. 
Constant velocity is applied to one end of an initially at rest particle chain. The total kinetic 
energy all 50 particles, and the unbalanced force in the end particle is reported for various 
damping coefficients. The total kinetic energy of the system and the expected solution is 
shown in Figure 4-14. The kinetic energy of the viscously damped system approaches the 
expected total kinetic energy for all magnitudes damping coefficients. In turn, the kinetic 
energy of the non-viscously damped system tends to overestimate the total kinetic energy. 

The end force for viscous and non-viscous damping is also shown in Figure 4-14. All 
magnitudes of the damping coefficient for viscous damping approach the correct value of 0N. 
Non-viscous damping estimates large opposing end forces that are proportional to the 
unbalanced force each particle is experiencing. 

 Hence, non-viscous damping produces non-physical results for a group of bonded 
particles undergoing rigid body motion. 
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Figure 4-14: Top row: Kinetic energy of a chain of 50 particles where an end particle is 
displaced at a constant velocity with viscous (left) and non-viscous (right) damping 
employed. Bottom row: End force for a chain of 50 particles where an end particle is 
displaced at a constant velocity with viscous (left) and non-viscous (right) damping 
employed. 
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4.4 Methodology 
 
4.4.1 DEM code 

 

A DEM simulation package for bonded particles was developed and implemented using the 
Python 3.7 programming language. This framework takes full advantage of General Purpose 
Computing on Graphics Processing Units (GP-GPU) using the Numba module (Lam, Pitrou and 
Seibert, 2015). All calculations were computed using double precision compute, hence, 
requiring higher-end GPU cards for efficient compute (Nvidia, 2010). 

As the present study does not include the behaviour once the fibre has fully debonded, 
it is not necessary to carry out broad phase collision detection repeatedly during the running 
of the simulation. Hence, additional acceleration was achieved by only determining contacting 
pairs at the beginning of the simulation and stored on the GPU. A regular hash table 
(Govender, Wilke and Kok (2015)) was used to speed-up the broad-phase collision detection 
on the GPU. GPU kernels were developed to apply boundary conditions, estimate contact 
forces, integrating the equations of motion and evolving bond softening and breakage. 

 

4.4.2 Bond Softening 

 

A cohesive damage law as described by Liu, Duddu and Waisman, 2012; Chen and Yan, 
2015; Leclerc et al., 2017 was used in this simulation. This model is shown in (Figure 4-15). 
The model is bilinear and describes the reduction in bond stiffness once the yield slip (δ0) in 
the bond has been reached. The cohesive bonds in this study were only applied to the bonds 
in the interface between the fibre and the matrix. In keeping with the study of Chen and Yan 
(2015) the bonds were only permitted to transfer shear forces and the measure of the shear 
slip in the bond was used in the softening law. The softening law is non-reversible, and the 
degree of damage accrued in each bond, therefore, needs to be recorded at each timestep. 
The shear slip (𝛿(𝑧)) at the interface is calculated as the difference of the matrix and fibre axial 

displacement (𝑤𝑚(𝑎, 𝑧) and 𝑤𝑓(𝑎, 𝑧) respectively) (Equation 80). 𝐾0 is the shear stiffness of 
the bond and describes the shear stress generated by a given slip for the scenario when no 
damage in the bond has occurred (Equation 81). As the bond accrues damage the value of 𝐾0 
is reduced according to the damage evolution relationship (Equation 82).  

𝛿(𝑧) = 𝑤𝑓(𝑎, 𝑧) − 𝑤𝑚(𝑎, 𝑧) (80) 

𝐾0 =
𝜏0

𝛿0
(81) 

𝐷 =  
𝛿1(𝛿𝑚𝑎𝑥 − 𝛿0)

𝛿𝑚𝑎𝑥(𝛿1 − 𝛿0)
(82) 
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Figure 4-15: Bilinear bond softening model employed in this research. 

 

4.4.3 Sample Packing 

 

For this investigation, a single particle packing (of a uniform particle size) was employed. This 
approach has the following weaknesses: 

• All regular packings display biased loading directions, should bond weakening be employed 
preferential crack directions are evident, 

• Regular packings have directional contact preferences, and this may present as isotropic 
stiffness behaviour. This behaviour should be reduced as sample size increases, and 

• size monodispersed packings have a lower maximum density than size polydispersed particle 
packings. 

Regular size monodispersed packings have the following advantages: 

• Packings can very quickly be generated of any dimensions, 

• Calibration results can accurately be interpolated for different values of Youngs 
Modulus and Poissons ratio, and 

• Storing a single particle size has computational advantages in the form of reduced 
storage requirements. 

This investigation is focussed on DEM in general and comparing LSDP and parallel bond 
models used for modelling fibre pull-out. For comparison using regular packings and a single 
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particle size should be sufficient. Examples of the models used in the numerical investigation 
are shown in Figure 4-16 (the dimensions match those used by Chen and Yan (2015)). 

 

Figure 4-16: Cross-sections through the centre of the model for different particle diameters: 
1m  (top), 0.7m (middle), 0.5m (bottom). The fibre (orange) length bonded to the matrix 
(green) is 30m, and the fibre diameter is 2m. Note that the embedded end of the fibre is not 
bonded to the matrix. 

 

4.4.4 Calibration 

 

When starting a simulation, it is necessary to calibrate the inter-particle stiffness parameters 
to recover the macroscopic material behaviour such as the Youngs modulus and Poissons ratio 
(Syed, 2017). The macroscopic properties of an ensemble are a function of the inter-particle 
stiffnesses as well as the particle packing. Calibration of the bond stiffnesses was undertaken 
in two steps: 

1. Determination of the bond stiffnesses such that the elastic behaviour of a cylinder of 
particles (chosen as 6m radius and 30m long to match the matrix geometry used by 
Chen and Yan (2015) matches those of the intended matrix and fibre. 

2. The fibre bond stiffnesses are modified again such that the embedded fibre/matrix 
system displays the expected behaviour in the linear elastic phase. This step 
compensated for the reduced number of particles through the width of the fibre 
compared to the matrix. 

For Step 1 calibration, the microscopic bond parameters are recovered by estimating the 
macroscopic response for a cylinder of particles under tension (an example of the sample used 
is shown in Figure 4-17). A particle packing in equilibrium and under load was constructed by 
displacing one end of the sample while fixing the other end. Once the desired displacement 
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was achieved, both ends of the packing were fixed and iterated until equilibrium (defined here 
as the difference in end forces being smaller than 10 N). 

Once the sample is at equilibrium, the Poissons ratio and sample Young’s modulus can 
be recovered from the sample strain (perpendicular and parallel to the loading direction) and 
the end force, respectively. Bond parameters (specifically the bond normal and tangential 
stiffnesses) can then be chosen to return the required Poissons ratio and Young’s modulus. 
Specifically, the Poissons ratio for a packing depends on the ratio between the normal (Kn) 
and tangential (Kt) stiffnesses, the packing itself and the particle size. For example, 
geometrical properties limit a two-dimensional close-packed lattice of equal spheres to a 
Poisson’s ratio of 0.25. The Poisson ratio was calibrated by modifying the ratio Kt/Kn for each 
bond type (matrix-matrix, fibre-fibre, and matric-fibre). In DEM, the Young’s modulus is 
primarily a function of the normal stiffnesses between particles. For general particle packings, 
the particle size distribution and packing density influence the Young’s modulus of the particle 
ensemble. 

The relationships between Kn and the Young’s modulus and Kt/Kn and the Poissons ratio 
are approximately linear. The relationship Kt/Kn and are Youngs modulus are weakly coupled, 
making independent sequential parameter estimation possible through iteration. The 
calibration procedure is, therefore: 

• Initial guess for Kn and Kt/Kn 

• Using a line search algorithm estimate Kt/Kn such that vmeasured = vrequired 

• Using a line search algorithm estimate Kn such that Emeasured=Erequired 

• Repeat steps 2 and 3 until changes in Kn and Kt/Kn are less than 0.1%. 

 

Figure 4-17: An example of a sample used for calibration. 

The problem under consideration models a thin fibre in a relatively sizeable surrounding 
matrix. The stiffness of the modelled fibre is influenced by the diameter of the fibre relative 
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to the particle size. Step 2 calibration was undertaken on the embedded fibre. The stress in 
the end of the fibre for a certain degree of interfacial slip is known from the analytical solution 
of the system. The fibre normal stiffness (Kn) was modified such that the system behaviour 
exactly matched the analytical solution for the linear elastic phase of the experiment. An 
embedded fibre length of 30m with a radius of 1m in a matrix with a radius of 6m was used. 
The end of the fibre was displaced by 0.001m (a distance which ensured that the system would 
remain in the linear elastic zone). Once the difference in the end forces (at the fibre and matrix 
end) reduced to less than 10N the interfacial slip at the point where the fibre enters the matrix 
was measured. The value of the fibre Kn was modified (and the model rerun) such that the 
difference between the measured and expected slip was less than 0.1%. The value of Kt/Kn 
determined in step 1 was not changed. 

All calibration steps were carried out for the range of particle sizes employed in this 
investigation (0.5m, 1m and 2m diameters). The calibrated bond parameters are shown in 
Table 4-1 for a fibre Youngs Modulus of 50GPa and a matrix Youngs Modulus of 5GPa. It can 
be seen from the calibration results that particle diameters 0.5m and 1.0m have similar bond 
stiffnesses (given by AE/L for normal and tangential stiffnesses). For a particle diameter of 
0.7m, the tangential bond stiffness is significantly less than for the other diameters. This may 
be due to 0.7m not being an even multiple of the fibre diameter of 2m, and this results in a 
significantly narrower fibre than for the other particle diameters.     

It is sometimes necessary to calibrate other parameters for a simulation, such as particle 
mass or bond strength parameters. For this study the particle mass is not important as the 
simulation is undertaken under a quasi-equilibrium state where dynamic forces are not large. 
The bond strength parameters do not need to be calibrated as the bond shear strength 
behaviour has been provided in the analytical model. Should the bond strength parameters 
need to be calibrated the approach would be similar to that carried out here. Once the linear 
elastic parameters are calibrated the strength parameters would be calibrated against known 
behaviour.  
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Table 4-1: Calibrated bond and particle parameters. 

Particle Diameter = 0.5m 

Bond Type 
Bond Normal 

Stiffness (N/m) 
Bond Tangential 
Stiffness (N/m) 

Bond 
Area (m2) 

Particle 
Mass (kg) 

Akn/L Akt/L 

Fibre-Fibre 7.40E+10 7.40E+08 0.196 392.7 1.5E+10 1.5E+08 

Matrix-Matrix 7.40E+09 7.40E+07 0.196 392.7 1.5E+09 1.5E+07 

Fibre-Matrix - 1.00E+09 0.054 392.7 - 5.4E+07 

Particle Diameter = 0.7m 

Bond Type 
Bond Normal 

Stiffness (N/m) 
Bond Tangential 
Stiffness (N/m) 

Bond 
Area (m2) 

Particle 
Mass (kg) 

Akn/L Akt/L 

Fibre-Fibre 6.70E+10 6.70E+07 0.385 1077.6 1.8E+10 1.8E+07 

Matrix-Matrix 6.70E+09 6.70E+06 0.385 1077.6 1.8E+09 1.8E+06 

Fibre-Matrix - 1.00E+09 0.132 1077.6 - 9.4E+07 

Particle Diameter = 1.0m 

Bond Type 
Bond Normal 

Stiffness (N/m) 
Bond Tangential 
Stiffness (N/m) 

Bond 
Area (m2) 

Particle 
Mass (kg) 

Akn/L Akt/L 

Fibre-Fibre 4.17E+10 1.25E+09 0.784 3141.6 1.6E+10 4.9E+08 

Matrix-Matrix 4.17E+09 1.25E+08 0.784 3141.6 1.6E+09 4.9E+07 

Fibre-Matrix - 1.00E+09 0.197 3141.6  9.9E+07 

 

4.4.5 Bond area 

 

In the analytical model and physical experiments, the force between the fibre and the matrix 
is transferred across an interface. The interface area can be calculated by assuming a 
cylindrical fibre. In the considered DEM the interface is modelled as a collection of discrete 
bonds. The individual areas of the DEM bonds in the interface were scaled such that the sum 
of bond areas would equal the expected interfacial area of a cylindrical fibre with the same 
dimensions as the scenario being simulated. 

 

4.4.6 Scale 

 

The purpose of this study is to investigate the applicability of the developed DEM for modelling 
fibre pull out. The published results by Chen and Yan (2015) that were used to judge the 
accuracy of the results were based on a model with dimensions in the meter range. This is 
significantly larger than typical fibre reinforcing, which may have diameters and lengths in the 
millimetre range. Larger scale models allow larger computational timesteps which is better 
suited for this study.  

The scale of the model simulated is significantly larger than realistic physical models. 
The ability of the developed model to simulate realistic scale problems is not investigated as 
part of this study. It is, however, a reasonable assumption that scaling laws could be applied 
to the model as is to recover accurate modelling of smaller-scale problems while using the 
same particle sizes.     
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4.4.7 Experimental Control 

 

Consider the uniaxial pull-out test conducted in this study.  The fibre can be pulled out by 
controlling  

i) the applied force and measuring displacement (load control),  

ii) the applied displacement and measuring the force (displacement control), or 

iii) a combination of the applied force and distance, substantially limiting the allowed 
step on the force-displacement graph per time step (such as arc-length control 
(Leon et al., 2011)). 

Figure 4-17 depicts three force-displacement graphs. Curve A signifies softening 
behaviour, Curve B hardening behaviour and Curve C softening behaviour with some 
displacement instability. Displacement control can be used to estimate Curves A and B. Load 
control can only be used to estimate Curve B, while arc-length control can be used to estimate 
all three curves.  

The investigations undertaken in this study were conducted using displacement control. 
It was, however, found that the load-displacement curve followed a path that would require 
an arc-length limiting control method (such as for curve C). Arc-length limiting control 
methods cannot, however, be applied in DEM. 

For explicit time integration approaches, such as DEM, the estimation of the load-
displacement curve C requires an alternative approach. In this study, the change in damage is 
limited using prescribed displacement control. The increment of damage that is allowed to 
occur along the interface is limited. Once the allowed increment of damage has occurred, the 
system is completely unloaded with no damage allowed before displacement is applied again. 
The system is unloaded to ensure that no elastic energy is stored in the system, which would 
lead to sudden failure of the interface once the system is reloaded and damage allowed to 
accrue. 
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Figure 4-18: Force/displacement curves for different types of experimental control. 

 

4.4.8 Final model parameters 

 

The calibrated bond properties, as given in Table 4-1 were used in the simulation for 
parallel and LSDP type bonds. The damping method used was the viscous damping with a 
damping coefficient of 0.7. The time step varied between 1e-5 and 1e-6 seconds depending 
on the particle size and bond stiffness. All other parameters used in the investigation are given 
in the results section. 
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4.5 Results 
 

4.5.1 Modelled phases 

 

This study focusses on the stress growth phase and debonding phase that occurs during fibre 
pull-out using the LSDP and parallel bonds models. The bond models are compared in Section 
5.3.1. It was noted that there is no significant difference between the two contact models. 
Unless otherwise stated the LSDP model was used to carry out the investigations. 

In the stress growth phase, all bonds between the fibre are intact, and the relationships 
between interface slip and end force are linear. The studies carried out in this phase focusses 
on the interfacial shear forces for different geometric and material parameters. The results for 
the stress growth phase are presented in Section 4.5.2.  

Investigations for the debonding phase focus on the interfacial shear force and interface 
slip - end stress relationship for the entire debonding process. The results for debonding phase 
are presented in Section 4.5.3. 

The accuracy of the numerical results compared to the analytical solution is determined 
by calculating the Normalised Root Mean Square Error (NRMSE), normalised by the range of 
the data.  

 

4.5.2 Stress growth phase 

 

A fibre pull-out was simulated using LSDP and parallel bond models and the results analysed. 
For all simulations, the fibre was extracted to the point at which the first interfacial bond 
begins yielding. The same yield shear slip was used for all simulations: 1e-3m. The results 
presented show the bond shear stresses at the bond centroid locations for the interface 
bonds. The axial stress in the fibre is determined by accumulating the bond shear stresses 
along the fibre length as the interfacial bonds can only transmit shear stresses. The interfacial 
slip is measured at the right-most extent of the interface between the fibre and matrix. 

The geometry of the modelled fibre is shown in Figure 4-3. In all scenarios, the fibre is 
extracted towards the right. Four studies are conducted in which the influence of particle size, 
stiffness ratios, fibre length and interfacial stiffness are investigated. The parameters used in 
the simulations are shown in Table 4-2. 

Table 4-2: Typical problem parameters 

Parameter Magnitude Unit 

Particle Diameter 0.5 (varies) Meter 

Matrix Youngs Modulus 5e9 (varies) Pascal 

Fibre Youngs Modulus 50e9 Pascal 

Matrix Poissons Ratio 0.3 Dimensionless 

Fibre Poissons Ratio 0.2 Dimensionless 

Fibre Length 30 (varies) Meter 

Fibre Radius 1 (varies) Meter 
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Matrix Radius 6 Meter 

Interfacial bond K value 1e9 (varies) Pascal 

Interfacial bond yield slip 1e-3 Meter 

Extraction Speed 0.01 (varies) Meter/Second 

Timestep 1e-5 Second 

 

4.5.2.1 Effect of particle size – stress growth phase 
 

The fibre pull-out is simulated at an extraction speed 0.01m/s using three particle sizes, with 
radii of 1m, 0.7m and 0.5m until the first bond in the interface yields.  

Since each particle size was individually calibrated, it is expected that the different 
particle sizes result in the same stress distribution along the fibre. It is expected that larger 
particle sizes would result in higher interfacial bond stress variance as bonds for larger 
particles represent more substantial areas of the interface. 

The results of the interfacial bond shear stress for each bond between the fibre and the 
matrix are shown in Figure 4-18. The interfacial bond shear stress magnitudes and form along 
the length correspond well with the analytical solution for different particle sizes. Particles 
with radius 0.5m and 1m show the smallest error compared to the analytical solution. The 
0.7m radius particle has the largest error; this may be due to 0.7 not being a multiple of the 
fibre diameter of 2m. This could result in a difference in the modelled fibre diameter and the 
required diameter.  

 

 

Figure 4-19: Comparison of interfacial bond shear stresses for different particle sizes. Radius 
= 0.5m NRMSE = 0.055, Radius = 0.7m NRMSE = 0.0711, Radius = 1m NRMSE = 0.0512. 
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4.5.2.2 EFFECT OF VARYING STIFFNESS RATIOS 
 

The stiffness ratio between the matrix and fibre has a significant effect on the stress 
distribution along the interface. As the difference between the fibre stiffness and matrix 
stiffnesses increases, the slip between them and the change in slip with distance along the 
interface should increase. Particles that form part of the interface form bonds in the direction 
of the embedded and free end of the fibre. As the gradient of interfacial slip increases, a larger 
scatter of bond stresses results, as bonds associated with a single particle span a broader range 
of interfacial slip. The results are presented in Figure 4-19 and Figure 4-20 and are compared 
to the analytical solution.  

Figure 4-19 (a) presents the interfacial bond shear stress when the stiffness of the matrix 
is larger than the fibre (with a matrix to fibre stiffness ratio of 10:1). The DEM solution 
underpredicts the analytical solution at the maximum shear stresses, while the DEM solution 
overpredicts the lower shear stresses in the middle of the fibre. A consequence of the discrete 
nature of the particles. The overall agreement between the DEM and analytical solutions is 
within 0.0048 NRMSE. 

Figure 4-19 (b) presents the interfacial bond shear stress when the stiffness of the matrix 
and the fibre are the same. Good agreement with the analytical solution is achieved. The DEM 
solution, in this case, underpredicts the interfacial shear along the length of the fibre. The 
maximum interface stress occurs at the point where the fibre exits the matrix. The NRMSE 
between the DEM and the analytical solution is 0.047. While the error is more substantial than 
for the case where the fibre is less stiff than the matrix this may be due to higher shear stresses 
over the length of the interface (compare Figure 4-19 where the interfacial shear stress is low 
for most of the interface.).  

Figure 4-19 (d) presents the interfacial bond shear stress when the stiffness of the matrix 
is less than the fibre (with a matrix to fibre stiffness ratio of 1:100). The DEM solution 
underpredicts the analytical solution at the maximum shear stresses, while the DEM solution 
overpredicts the lower shear stresses in the middle of the fibre. This is due to the discrete 
nature of the particles. The maximum interface stress occurs at the embedded end of the 
matrix. The NRMSE between the DEM and the analytical solution is 0.111. While it can be seen 
that the DEM predicts the correct form of the interfacial shear, there is a more extensive 
spread of shear stresses.  

The model parameters that will be used to investigate the debonding phase result in a 
fibre to matrix stiffness ratio of 10:1. From Figure 4-19 (c) it can be seen that the NRMSE for 
this geometry and parameters is 0.049, this is similar to the NRMSE for equal matrix and fibre 
stiffnesses. This gives confidence that the simulation will be accurate over the intended fibre 
to matrix stiffness ratio of 10:1. 

Figure 4-20 compares the estimated fibre axial stress for the fibre-matrix stiffness ratios 
against the analytical and expected result. The axial stress is in general underpredicted along 
the fibre length when the fibre stiffness is greater or equal to the matrix stiffness with the 
inverse true if the matrix is stiffer than the fibre. The best agreement is achieved when the 
fibre stiffness is less or similar to the matrix stiffness, while the worst agreement is obtained 
when the fibre is significantly stiffer than the matrix. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



73 

 

 

     a)           b) 

 

     c)           d) 

Figure 4-20:Bond shear stresses (in the x direction) plotted against the bond centroid location 
along the interface length for four different fibre/matrix stiffness ratios. The analytically 
predicted shear stresses are also plotted. NRMSE for the figures are: a) = 0.0048, b) = 0.047, 
c) = 0.049 and d) = 0.111 
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Figure 4-21: Fibre axial stress plotted against location along the fibre length for different 
values of fibre and matrix Youngs Moduli. The analytically predicted axial stresses are also 
plotted. NRMSE Matrix:Fibre 10:1 - 0.0733, NRMSE Matrix:Fibre  1:1 - 0.0733, NRMSE 
Matrix:Fibre=1:10 - 0.036, NRMSE Matrix:Fibre=1:100 - 0.159. 

 

4.5.2.3 EFFECT OF FIBRE LENGTH 
 

To investigate the influence of embedded fibre length on the stress distribution, we considered 
fibre lengths between 10m and 40m long were modelled using the parameters tabulated in 
Table 4-2. The shape of the stress distribution is not expected to change as the length of the 
fibre increases. For the parameters used here, the maximum shear stress will occur where the 
fibre exits the matrix. 

The results are presented in Figure 4-21 and Figure 4-22. DEM slightly underpredicts the 
bond shear stress and axial fibre stress at the embedded end of the fibre. However, the overall 
agreement with the analytical results is suitable for all investigated fibre lengths (interfacial 
shear stress and axial fibre stress NRMSE between DEM and analytical solution is in the range 
of 0.02 – 0.05). As the length of the fibre increases, the minimum shear stress along the fibre 
length reduces. Low interfacial shear stress indicates low relative slip between the fibre and 
the matrix. This occurs for long fibres where the length is large enough to transfer the load to 
the matrix. 
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Figure 4-22: Bond shear stresses (in the z-direction) plotted against the bond centroid location 
along the interface length for different fibre lengths. The analytically predicted shear stresses 
are also plotted. NRMSE: 15m - 0.05, 20m - 0.05, 25m - 0.045, 30m - 0. 

 

 

Figure 4-23:  Fibre axial stress plotted against location along the fibre length for different 
values of fibre length. The analytically predicted axial stresses are also plotted. NRMSE 15m - 
0.032, 20m - 0.020, 25m - 0.026, 30m - 0.036, 35m - 0.038, 40m - 0.046.  
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4.5.2.4 EFFECT OF INTERFACIAL STIFFNESS 
 

The shear stiffness of the interface between the fibre and the matrix has a significant effect 
on the shape of the interfacial shear stress. The interfacial stiffness relates the magnitude of 
the slip along the interface to the magnitude of the shear stress. The ability of the DEM to 
model the effect of varying the interfacial stiffness is investigated here. 

Two interfacial stiffnesses were investigated, namely 1e7 and 1e10 Pa. The yield slip for 
the bonds was maintained at 1e-3m. The implication is, therefore, that the bonds will yield at 
different stresses. The matrix and fibre stiffnesses are 5 and 50 GPa, respectively. The results 
are presented in Figure 4-23 and Figure 4-24. The maximum bond shear stress for an interfacial 
stiffness of 1e10 Pa (Figure 4-24) is three orders of magnitude greater than for an interfacial 
stiffness of 1e7 Pa (Figure 4-23) as would be expected (since both investigations show results 
at the same maximum interface slip).  

From the results, for the lower interfacial stiffness the range of interfacial bond shear 
stresses is less (less than one order of magnitude) than for the higher interfacial stiffness 
(approximately seven orders of magnitude).  The deviation between the analytical solution for 
the bond shear stress is also larger for the higher interfacial stiffness, which also demonstrates 
larger scatter around the analytical solution. A higher interfacial stiffness implies that smaller 
interparticle displacements across the interface will result in higher forces being transmitted 
between the fibre and the matrix. To produce the same maximum interfacial slip, as was done 
here, the fibre will have to be extracted as a higher axial force for the larger interfacial stiffness. 
The strains within the fibre and matrix will therefore be larger for the higher interfacial 
stiffness as a larger overall force is being carried by the fibre/matrix system. These larger 
strains (within the matrix and fibre) are possible what leads to the larger spread of interfacial 
shear stresses seen in  Figure 4-24. These large strains leading to spurious results may be 
alleviated by using smaller particles, or a range of particle sizes and a random packing (this 
would eliminate directions of preferred force transfer inherent to regular packings). Further 
study is necessary to confirm this. Similarly, the higher interfacial stiffness results in a more 
considerable difference between the analytical and numerically predicted axial fibre stress. 

 

 

Figure 4-24: Interfacial bond shear stress (left) and fibre axial stress (right) for an interfacial 
shear stiffness of 1e7 Pa. NRMSE (shear stress) - 0.003, NRMSE (axial stress) - 0.004 
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Figure 4-25: Interfacial bond shear stress (left) and fibre axial stress (right) for an interfacial 
shear stiffness of 1e10 Pa. NRMSE (shear stress) - 0.108, NRMSE (axial stress) - 0.197  

 

4.5.2.5 DISCUSSION 
 

From the simulated results, the linear elastic stage of fibre debonding can be simulated using 
a DEM model as used in this study. The simulated results closely match the analytical solution. 
Variation in the simulated results from the analytical solution is evident for high interfacial 
stiffnesses and significant differences between the matrix and fibre stiffnesses (specifically 
when the fibre is stiffer than the matrix) which also results in the largest strains in the matrix 
and fibre. It would appear then that large strains in the particle model result in a larger 
deviation from the analytical solution.  

The model shows reduced accuracy for scenarios where the fibres are significantly stiffer 
than the matrix. The combination of stiff fibres and a compliant matrix is a common 
occurrence for typical fibre reinforced materials. The high strains that occur in the matrix when 
the fibre is significantly stiffer may amplify the non-physical preferred force transfer directions 
of the regular packing. Using smaller particles might not mitigate this preferred force transfer 
direction property. Using a range of particle sizes and a dense random packing should mitigate 
this issue and may allow stiff fibres in a compliant matrix to be modelled more effectively.  

4.5.3 De-bonding phase 

 

During the debonding stage, the shear slip at the interface increases until bonds begin to 
soften and ultimately fail. Interaction between the particles is limited to only bonded 
behaviour, and no new particle contact pairs form during the pull-out process. The debonding 
stage experiences more dynamic behaviour than the linear elastic phase due to the breakage 
of bonds. Accurately resolving the forces in the system needs to take into account possible 
dynamic behaviour. To isolate possible inaccuracies in the measurement of forces in the fibre 
two approaches were followed: i) summing the interfacial bond shear forces along the fibre in 
the direction of the fibre and ii) summing the unbalanced forces in the end particles of the 
fibre. 

For all debonding investigations, the fibre and matrix parameters tabulated in Table 4-3, 
are used. A particle diameter of 0.5m is used unless otherwise stated. The LSDP contact model 
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is employed unless otherwise stated. The DEM results are compared to analytical and FEM 
results presented by Chen and Yan (2015).  

As part of the investigation of the debonding behaviour, the effect of the bond model, 
particle size, extraction speed and fibre length are modelled. The fibre end stress and 
interfacial slip relationship are also investigated, the simulations are undertaken using either 
displacement control or a load/unload displacement control method. 

Table 4-3: Parameters used for the debonding simulation. 

Parameter Magnitude Unit 

Particle Diameter 0.5, 0.7, 1.0 Meter 

Matrix Youngs Modulus 5e9 Pascal 

Fibre Youngs Modulus 50e9 Pascal 

Matrix Poissons Ratio 0.3 Dimensionless 

Fibre Poissons Ratio 0.2 Dimensionless 

Fibre Length 30 Meter 

Fibre Radius 1 Meter 

Matrix Radius 6 Meter 

Interfacial bond K value 1e9 Pascal 

Interfacial bond yield slip 1e-3 Meter 

Interfacial bond failure slip 3e-3 Meter 

Extraction Speed 0.01 Meter/Second 

Timestep 1e-5 Second 

 

4.5.3.1 EFFECT OF FIBRE PULL-OUT SPEED 
 

The debonding stage experiences more dynamic behaviour than the linear elastic phase due 
to the breakage of the bonds. The effect of the extraction speed on the pull-out curve was 
investigated by extracting the fibre at different velocities. The pull-out curve and the shear 
stress in the interfacial bonds for different extraction speeds are shown in Figure 4-25 and 
Figure 4-26 (the simulations are undertaken using displacement control only). The fibre end 
stress is calculated here by measuring the force acting on the end particles of the fibre (where 
the boundary condition is applied). From the results, the fibre extraction speed has a 
significant effect on the extraction behaviour. As the extraction speed increases the interfacial 
slip at failure increases (Figure 4-25). From Figure 4-26, it is apparent that for increasing 
extraction velocities, the damage is concentrated closer to the free end of the fibre. This can 
be attributed to dynamic effects within the particle ensemble. The effect of decreasing 
velocities reduces below 0.01m/s. For this system, therefore, the maximum extraction velocity 
before dynamic behaviour begins influencing the results is 0.01m/s. 
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Figure 4-26: Pull out curves for different extraction speeds (0.001m/s to 1m/s) 

 

Figure 4-27: Bond shear stresses (in the x direction) plotted against the bond centroid 
location along the interface length for an extraction velocity of 1m/s (left) and 0.1m/s (right). 
The bond shears are plotted for four points during the pull-out curve. 

 

4.5.3.2 INTERFACIAL SHEAR DURING DEBONDING 
 

The interfacial shear stresses for several levels of total interfacial damage during the 
debonding process are shown in Figure 4-27 (the simulations are undertaken using 
displacement control only). Good agreement to the analytical solution is achieved with an 
NRMSE of between 0.058 and 0.196 (the NRMSE increases as the extent of damage increases). 
The most substantial difference between the analytical and the numerical solution is close to 
the embedded end after debonding has occurred. This suggests that the assumption of the 
analytical model used by Chen and Yan (2015), that the full bonded length that includes the 
damaged area is used to describe the distribution of shear stress at the interface is incomplete.  
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Describing the interfacial shear stress using a fibre length between the length at which 
yield occurs and the length at which failure occurs would reduce the discrepancy but 
extending the Chen and Yan (2015) model does not form part of this study.   

 

 

Figure 4-28: Bond shear stresses (in the z-direction) plotted against the bond centroid 
location along the interface length for a particle diameter of 0.5m. The bond shears are 
plotted for five points during the pull-out curve. The analytically predicted shear forces are 
also plotted. NRMSE 0% damage - 0.058, 10% damage - 0.124, 50% damage - 0.122, 80% 
damage - 0.153, 90% damage - 0.196. 

 

4.5.3.3 COMPARISON BETWEEN PARALLEL BONDS AND LSDP  
 

An embedded fibre with parameters as given in Table 4-2 was modelled using the parallel 
bonds and LSDP models (the simulations are undertaken using displacement control only). The 
difference between the LSDP and parallel bonds models are the most significant when relative 
rotation between particles is large. For primarily normal interaction between particles in the 
absence of relative rotation, the models are indistinguishable. 

For the uniaxial fibre pull-out problem, the relative particle rotation is expected to be 
limited, it is expected to see limited differences between the two models. Figure 4-28 and  
Figure 4-29 present the results of the interface at the point of yield and 80% interfacial 
damage, respectively. As expected, there is no significant difference in the bond shear stresses 
predicted using the parallel bonds and LSDP models.  

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



81 

 

 

Figure 4-29:Comparison in the pull-out behaviour for the DEM model using linear dash pot 
and parallel bond contact models no damage. NRMSE = 0.004 

 

 

Figure 4-30: Comparison in the pull-out behaviour for the DEM model using linear dash pot 
and parallel bond contact models 80% damage. NRMSE = 0.009 

 

Notably, there is no significant difference between parallel bonds and LSDP bonds for 
both the fully bonded scenario (Figure 4-28) as well as the scenario where significant damage 
has occurred (Figure 4-29). Recall the demonstration in Section 4.3.4 that showed significant 
differences when a chain of particles was considered. Difference between the parallel bonded 
and LSDP models are expected when moments need to be transferred, and the number of 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



82 

 

particles through the fibre thickness is reduced. As the number of particles through the fibre 
thickness increases the LSDP resolves the ability to transfer moments. 

 

4.5.3.4 EFFECT OF PARTICLE SIZE – DE-BONDING STAGE 
 

Three particle sizes are used to model the fibre pull-out using the parameters tabulated in 
Table 4-3 (the simulations are undertaken using displacement control only). The bond model 
employed here was the LSDP; it was previously shown that there is no appreciable difference 
between the bond models for this problem. The pull-out curve plots the sum of interfacial 
shear stresses (Figure 4-30) and axial stress measured at the end of the fibre (Figure 4-31) 
against the ratio between the maximum measured interfacial slip (at the point where the fibre 
enters the matrix) and the slip at which bonds failure (1e-3m). The curves are only plotted 
while at least some bonds in the interface are not entirely broken.  

The load-displacement relationship follows an initial linear increase in stress with slip. 
Once the end slip reaches the point at which bond failure begins the load-displacement 
relationship departs from linear. When the maximum slip reaches the point of bond failure, 
the interface begins failing from the end nearest the free end of the fibre. The interfacial 
failure occurs at a constant fibre axial end stress (the horizontal portion of the load-
displacement relationship). Once a certain amount of the interface has failed, the remaining 
portion fails suddenly causing a sudden drop in the fibre axial end stress.  

The pull-out curves compare well with both the analytical and the FEM results. The 
significant deviation is however noted on the descending section of the pull-out curve. The 
differing behaviour is due to the complex dynamic behaviour of the final stages of the fibre 
pull-out which is investigated later. The FEM model that was used by the authors operated 
under displacement control to extract the fibre. It is likely that the stress in the fibre was 
measured at the end of the fibre and that once the interface had failed entirely the dynamic 
behaviour of the now wholly free fibre was erroneously interpreted as the axial stress for a 
fibre still bonded to the matrix. The reason for the deviation of the analytical solution from 
the DEM could not be determined.  
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Figure 4-31: Fibre end stress plotted against the ratio of the slip between the fibre and the 
matrix and the slip at which bond failure occurs. The force is calculated by summing shear in 
the bonds at the interface. Analytical and Finite Element solutions as given by Chen and Yan 
(2015) are also plotted. 

 

 

Figure 4-32: Fibre end stress plotted against the ratio of the slip between the fibre and the 
matrix and the slip at which bond failure occurs. The force is measured at the fibre end. 
Analytical and Finite Element solutions as given in Chen and Yan are also plotted 
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4.5.3.5 EFFECT OF FIBRE LENGTH 
 

An essential aspect of the design of fibre reinforcing is the length of the fibres. Analytical and 
experimental investigations have demonstrated that as the embedded fibre length increases 
the maximum axial stress in the fibre during pull-out asymptotically approaches a limiting 
value. This allows the minimum required fibre strength to be determined such that the fibre 
itself does not fail before the interface. This investigation is to determine whether the DEM 
model can replicate this trend using the parameters tabulated in Table 4-3. The fibre 
embedded lengths range from 5m to 50m. 

The pull-out curves, as well as the relationship between maximum force and fibre 
length, are shown in Figure 4-32 and Figure 4-33 (the simulations are undertaken using 
displacement control only). It can be seen that the maximum fibre axial stress versus fibre 
length closely matches the analytical result as given by Chen and Yan (2015).  

 

 

Figure 4-33: Pull out curves for different fibre lengths 
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Figure 4-34: Relationship between maximum force and fibre length 

 

4.5.3.6 FULL FAILURE SURFACE 
 

From Figure 4-30, Figure 4-31 and Figure 4-32 it can be seen that the final stages of the 
debonding phase occur rapidly. The equilibrium stress condition during this final debonding 
stage cannot be recovered using a displacement-controlled methodology. An investigation was 
carried out using particles bonded using the LSDP contact model to track the failure surface. 
The previous investigations have revealed that for this model, the difference between parallel 
bonds and LSDP is expected to be small. 

The full failure surface was tracked by loading the fibre until an increment of damage 
was accumulated in the interface and then returning the fibre end to the initial position. 
During the process of returning the fibre end to the starting position all further damage 
accumulation in the interface is arrested. The results, as well as the failure surface, are shown 
in Figure 4-34. A point of maximum interfacial slip is reached at approximately 0.0095m. At 
this point, sufficient damage has occurred at the interface that any further damage occurs at 
reducing interfacial slips and forces since the elastic energy in the fibre is sufficient to drive 
damage. Hence, displacement control would result in a fully dynamic debonding of the 
remaining interface driven by the elastic energy in the fibre, similar to what was observed by 
Chen and Yan (2015). However, by employing our load/unload approach, we can trace the 
failure surface to reveal a distinct result from that presented by Chen and Yan (2015).  

The previous history of damage to the interface plays a role in the shape of the failure 
surface. Beyond a specific maximum interfacial slip, further damage to the interface occurs at 
reducing load and slip. The failure curve could be extrapolated both from Figure 4-34 and 
through argumentation to end at zero fibre stress and a maximum interfacial slip of 0.003m 
(the failure slip of the interface bonds). This would match the softening curve employed for 
the contact models which fail at zero stress and a shear displacement of 0.003m. The failure 
of the last bond along the interface necessitates therefore that the point of zero stress and an 
interfacial slip of 0.003m is the final point on the failure surface. This point cannot be 
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recovered numerically due to the very low stiffness of the interface close to the point of 
failure. 

 

Figure 4-35: Full failure surface. The failure surface is defined as the minimum combination of 
interfacial slip and fibre stress which results in the remaining bonds accruing damage.  

 

4.5.3.7 DISCUSSION OF DEBONDING PHASE 
 

The developed DEM was able to simulate the debonding phase of a fibre pull-out. Notably, 
the full pull-out curve displayed a maximum interfacial shear slip. Beyond the maximum 
interfacial slip, the interfacial shear slip needs to reduce. The full pull-out curve cannot be 
recovered using displacement control, which is notably the reason why it has not been 
reported from numerical investigations to the best of the authors' knowledge. The reported 
failure surface presented by Chen and Yan (2015) was most likely obtained using displacement 
control and therefore was unable to isolate the entire failure surface. Displacement control is 
unable to allow for the reduction of strength by reducing the interfacial shear slip, resulting in 
a sudden dynamic debonding of the remaining interface. The full failure surface is recovered 
by intermittently loading and unloading the fibre.  
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4.6 Conclusion 
 

The developed DEM code was used to simulate the stress growth phase and debonding phase 
of a uniaxial fibre pull-out. It was found that both phases could be modelled to a high level of 
accuracy using DEM with appropriate particle size, which has not been replicated elsewhere 
in the literature for this form of problem. The bond softening model was able to replicate the 
softening behaviour and the interfacial shear stress distribution as predicted analytically. The 
fibre pull-out loading-displacement response is sensitive to the size of the particles used in 
the simulation. The size of the particle should be at most 25% of the fibre diameter to capture 
the appropriate form of the pull-out curve.  

The full debonding curve was found to be complex with the final stages showing 
reducing strength with reducing interfacial slip. Tracking this debonding behaviour required a 
load/unload strategy to be used. The full shape of the debonding curve has not been reported 
before.  

There was no difference in the predicted pull-out curves, and interfacial shear stresses 
for both the LSDP and the parallel bond contact models. This is due to the LSDP bonds 
effectively setting up couple moments when sufficient particles are present are therefore 
replicating the behaviour of parallel bonded models. It should be noted though that for a 
single string of particles the parallel bonded models are able to transmit moments and the 
LSDP bonds are not. For the uniaxial pull-out problem, the response is insensitive to the 
contact model used.  

Damping is an essential aspect of maintaining stability for DEM simulations. Two 
different damping methods were investigated: viscous local and non-viscous local damping. It 
was found that for a pair of particles where one has perturbed both damping methods quickly 
return the system to equilibrium. For the string of particles pulled at one end, the effects of 
the two damping methods differ significantly. The viscous damping approach produced the 
expected behaviour while the non-viscous damping approach resulted in non-physical 
behaviour and did not seem to apply to this type of problem. 

Future study is recommended to investigate the minimum number of particles through 
the thickness of the fibre that would be required to model the fibre debonding behaviour 
accurately. Also, to simulate a fibre under various loading and for various geometric shapes 
would induce bending moments and amplify the differences between the two models when 
limiting the number of particles that describe the fibre. Such scenarios with fibres exhibiting 
hooks or waves are common in practice. Future investigations should consider the effect of 
various packings on the predicted response. Breakage of the matrix and fibre, as well as the 
interaction between multiple fibres, should be investigated. 
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5 Conclusion 
The research carried out in this dissertation is composed of two sections: the development of 
a Python-based, GPU accelerated, DEM program, and the investigation of a fibre pull-out using 
the developed program. The DEM program was verified against some example problems, and 
the accuracy of the fibre pull-out simulation was compared against research published by 
Chen and Yan (2015). 

The programming language Python, leveraging modules Numpy and Numba, was used 
to develop a DEM program. The parallel nature of DEM was exploited by writing the DEM code 
to execute on the GPU. The DEM was written to be able to model bonded particles and 
progressive damage of the bonds during loading. The performance of the DEM was 
investigated and found to provide almost 2 orders of magnitude improvement on similar code 
running in serial on CPU. Two examples were investigated using the developed code. 

A minimal physical model of the chain fountain was devised and modelled using two 
different bond models. The bond models differed by whether they transmitted moments 
between particles or not. The excess reaction force, predicted by published investigations into 
the chain fountain, that occurs as the chain is picked up during the siphoning of the chain was 
recovered for moment transmitting bonds only. This suggests that the bending stiffness of the 
chain plays an essential role in the dynamics observed. The minimal physical example devised 
here and the method of investigating the chain fountain itself show promise for further 
investigation. The elastic interaction between a sphere and a plane was also successfully 
demonstrated as further verification of the developed code. 

The developed code was used to replicate the fibre pull-out experiment, as described 
by Chen and Yan (2015). The authors describe the full pull-out curve and interfacial stresses 
for a fictitious embedded fibre using both an analytical and FEM model with good agreement. 
The developed DEM code was used to perform a simulation with the same geometry and 
parameters as used by Chen and Yan in their investigation. Two bond models: Linear Spring 
Dash Pot (LSDP) and Parallel Bond models were individually calibrated and compared.  
Different particle sizes were calibrated for and compared. A single particle packing, hexagonal 
close packing, was used. 

Damping is a necessary component of any DEM simulation. Two methods to apply 
damping were investigated, viscous and non-viscous damping. It was found that both methods 
of damping effectively damped particle motion when particles are at rest. It was, however, 
found that if several particles are experiencing rigid body motion, non-viscous damping results 
in non-physical behaviour. Viscous damping was able to damp excess particle oscillation for 
the same scenario without non-physical behaviour. 

Two phases of the fibre pull-out process were simulated: The stress growth phase 
where the interface between the fibre and the matrix is intact, and the debonding phase 
where the interface accumulates damage and eventually fails in its entirety. The frictional 
phase, where stress transfer between the matrix and fibre is via friction, was not simulated in 
this study.  

For the stress growth phase, the accuracy of the DEM was investigated for various 
combinations of the problem geometry (fibre length) and material parameters (fibre, matrix, 
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and interfacial stiffness). The interfacial shear stresses and fibre axial stress from the 
simulation were found to closely match those predicted by the analytical model for most 
parameters investigated. The most significant deviation from the analytical solution occurred 
when the deformation of the fibre and matrix was high, such as when the fibre is significantly 
stiffer than the matrix and when the interfacial stiffness is high. The interfacial shear stresses 
and axial fibre stress were accurately predicted for all the particle radii investigated. The 
implication, therefore, is that the minimum particle size is dependent on the fibre radius and 
the sample packing used. It was also found that the choice of bond model (LSDP or Parallel) 
did not influence the result. This is due to the small relative rotations and moments between 
particles for the problem geometry here. Further investigations for more complex fibre 
geometries, such as hooked ends, which result in larger moments in the fibre and matrix may 
result in differences between the bond models. 

During the debonding phase, the bonds across the interface yield and fail. The effect 
of fibre extraction speed, fibre length and bond model were investigated for this phase. The 
maximum fibre extraction speed such that the dynamic effect on the interfacial shear stress is 
eliminated was determined to be 0.01m/s. The analytically predicted relationship between 
fibre length and maximum force was recovered. As for the stress growth phase, no difference 
between the bond models was noted. During the debonding investigation, it became apparent 
that dynamic effects dominated the behaviour during the final phases of debonding. To 
eliminate the dynamic effects a method, involving successive loading and unloading, was 
employed to recover the load-displacement relationship. The simulated load/ displacement 
curve matched the analytical and FEM results of Chen and Yan (2015) for the early portion of 
the fibre pull-out where dynamic effects are not present. The last portion of the pull-out curve 
varies from the results presented by Chen and Yan (2015), with a reduction in maximum load 
corresponding to a reduction in displacement. By inspection, it can be demonstrated that the 
final portion of the load/displacement curve recovered here is of the correct form. The 
discrepancy between the research undertaken here and the results presented by Chen and 
Yan (2015) is most likely due to the authors of that paper misinterpreting the dynamic loads 
of a fully debonded fibre/matrix system as static loads of a bonded matrix/fibre system. 

The developed program has proven to be a useful tool for investigating fibre pull-out. 
The program could be modified to account for dynamic effects by implementing an arc-length 
control method, which would have been challenging to do with a commercial DEM package. 
The flexibility of this package could be used to further research into fibre/matrix debonding. 
Some further research possibilities are: 

• Investigate the stresses and debonding for multiple embedded fibres. Interaction 
between individual fibres result in complex stress fields, specifically as debonding 
occurs in some of the embedded fibres. 

• Incorporate fibre/matrix friction and matrix strength into the simulation. This is an 
essential step towards approaching the behaviour of physical models where friction 
and failure of the matrix can influence the macroscopic behaviour of the composite. 

• The final research stage is to demonstrate the modelling of a full fibre-reinforced 
composite material incorporating possible matrix failure, friction and increasing the 
number of particles in the simulation than used in the research presented here.  
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The Python programming language is generally accepted to be easier to learn than 
compiled languages such as C++. Python is also often taught to engineering students. The 
developed code can be used for the teaching of DEM, parallel computing on GPU and general 
programming.   
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