Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste

N. F. Sylla^a, N. M. Ndiaye^a, B. D. Ngom^b, D. Momodu M. J. Madito, B. K. Mutuma^a and N. Manyala^{a*}

^a Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028, South Africa

^b Laboratoire d'Energie, de Photonique et de Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Sénégal

> *Corresponding author email: <u>ncholu.manyala@up.ac.za</u>, Tel: + (27)12 420 3549 Fax: + (27)12 420 2516

Supporting information

Figure S1: (a) The plot of specific surface area and (b) Total pore volume as a function of the APSW at different activated agent for different ratios.

Figure S2. Deconvolution of the Raman spectra showing the integral areas of the D1, D, D2 and G peaks for all the APSW-Yx samples.

CPSW:PEA	SSA (m2 g-1)					
	KHCO ₃	K_2CO_3	KOH			
1:1	787	1002	1235			
1:2	1348	1376	1637			
1:4	1457	1625	2547			
1:6	1219	1401	2306			

Table S1: Specific surface area (SSA) data of different APSW-Yx samples

Table S2: D/G ratio, effective crystallite size L_a and D peak FWHM data of different APSW-Yx samples

CPSW:PEA	D/G			$L_a (nm) = 4,96/(D/G)*$			D peak FWHM (cm ⁻¹)		
	KHCO ₃	K ₂ CO ₃	KOH	KHCO ₃	K_2CO_3	KOH	KHCO ₃	K ₂ CO ₃	KOH
1:1	2.1	2.3	2.4	2.4	2.2	2.1	170.3	183.4	192.7
1:2	2.0	2.2	2.2	2.5	2.3	2.3	160.1	169.3	187.1
1:4	2.3	2.7	2.9	2.2	1.8	1.7	194.6	206.4	225.7
1:6	2.3	2.7	2.6	2.2	1.8	1.9	187.2	201.9	215.7

* Equation adopted from ¹

Table S3: Atomic concentration data of the APSW-KHCO₃, APSW-K₂CO₃ and APSW-KOH at a mass ratio of 1 to 4 samples

	Atomic Conc (%)			
	C1S	O1S	N1S	
APSW-KHCO ₃ 4	85.2	14.2	0.6	
APSW-K ₂ CO ₃ 4	86.9	11.9	1.2	
APSW-KOH4	87.9	11.5	0.6	

Figure S3. (a) D peak FWHM and (b) effective crystallite size L_a as function of APSW-KHCO₃, APSW-K₂CO₃, APSW-KOH at different mass ratios.

Figure S4. SEM images of the raw PSW at: (a) low and (b) high magnification

Figure S5. HRTEM images at low and high magnification (inset) of (a) CPSW; (b) APSW-KHCO₃4; (c) APSW-K₂CO₃4 and (d) APSW-KOH4

Figure S6. Electrochemical measurement of the APSW-KHCO₃ electrodes at different concentrations: (a) CV curves at a scan rates 20 mV s⁻¹, (b) and (c) GCD plots at a specific current of 1 A g⁻¹ in the positive and negative potential windows, respectively and (d) Nyquist plots.

Figure S7. Electrochemical measurement of the APSW-K₂CO₃ electrodes at different concentrations: (a) CV curves at a scan rates 20 mV s⁻¹, (b) and (c) GCD plots at a specific current of 1 A g⁻¹ in the positive and negative potential windows, respectively (d) Nyquist plots.

Figure S8. Electrochemical measurement of the APSW-KOH electrodes at different concentrations: (a) CV curves at a scan rates 20 mV s⁻¹, (b) and (c) GCD plots at a specific current of 1 A g^{-1} in the positive and negative potential windows, respectively (d) Nyquist plots.

Table S4. E	EIS fitting parameter	s obtained from the	he complex no	on-linear leas	t square (CN	LS) method	of
the equivale	ent circuit shown in	the inset to Fig. 6	d				

Electrode	$R_s(\Omega)$	$R_{\rm CT}(\Omega)$	<i>Q2</i> (F)	$R_{\rm L}(\Omega)$		
APSW-KOH4 //APSW-KOH4	1.01	0.79	0.146	7.99×10^{2}		
$X/\sqrt{N} = 0.366, Q2 \equiv leakage \ capacitance,$						

Figure S9. Comparison of the symmetric electrodes APSW-KHCO₃//APSWKHCO₃, APSWK₂CO₃//APSWK₂CO₃, APSW-KOH//APSW-KOH at a mass ratio 1:4: (a) CV curves, (b) specific capacitance as function of the specific current, (c) Nyquist plots and (d) Comparison of the Ragone plot for the three symmetric devices

References

 Endo, M. & Pimenta, M. A. Origin of dispersive effects of the raman d band in carbon materials. *Phys. Rev. B - Condens. Matter Mater. Phys.* 59, R6585–R6588 (1999).