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Invasive fungal infections, such as aspergillosis, candidiasis, and cryptococcosis, have
significantly increased among immunocompromised people. To tackle these infections
the first and most decisive step is the accurate identification of the causal pathogen.
Routine identification of invasive fungal infections has progressed away from culture-
dependent methods toward molecular techniques, including DNA barcoding, a highly
efficient and widely used diagnostic technique. Fungal DNA barcoding previously relied
on a single barcoding region, the internal transcribed spacer (ITS) region. However, this
allowed only for 75% of all fungi to be correctly identified. As such, the translational
elongation factor 1α (TEF1α) was recently introduced as the secondary barcode
region to close the gap. Both loci together form the dual fungal DNA barcoding
scheme. As a result, the ISHAM Barcoding Database has been expanded to include
sequences for both barcoding regions to enable practical implementation of the dual
barcoding scheme into clinical practice. The present study investigates the impact of
the secondary barcode on the identification of clinically important fungal taxa, that
have been demonstrated to cause severe invasive disease. Analysis of the barcoding
regions was performed using barcoding gap analysis based on the genetic distances
generated with the Kimura 2-parameter model. The secondary barcode demonstrated
an improvement in identification for all taxa that were unidentifiable with the primary
barcode, and when combined with the primary barcode ensured accurate identification
for all taxa analyzed, making DNA barcoding an important, efficient and reliable addition
to the diagnostic toolset of invasive fungal infections.

Keywords: identification, fungal DNA barcoding, dual barcoding system, internal transcribed spacer region,
translational elongation factor 1α, ISHAM Barcoding Database, invasive fungal diseases

INTRODUCTION

While AIDS-associated Pneumocystis jirovecii pneumonia (Pjp) and cryptococcosis have declined
in developed countries due to widespread use of highly active antiretroviral treatment (Dromer
et al., 2004; Morris et al., 2004; Rajasingham et al., 2017), the overall burden of invasive
fungal diseases (IFDs), especially candidemia and invasive aspergillosis has increased worldwide
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(Patterson, 2005; Maschmeyer, 2006; Pfaller et al., 2006b;
Warnock, 2007; Pappas et al., 2010; Benedict et al., 2017). IFDs
alone cause about 1.6 million deaths/year (Brown et al., 2012).
The rise in incidence of IFDs is largely due to an increase in
at-risk populations, especially immunocompromised individuals,
such as recipients of solid organs or hematopoietic stem
cell transplants, and patients with underlying chronic diseases
(Kontoyiannis et al., 2010; Brown et al., 2012; Armstrong-James
et al., 2014; Bitar et al., 2014; Schelenz et al., 2015). It is paramount
that the management of invasive mycoses must be improved
through advancements in prevention, diagnosis, treatment and
surveillance (Denning, 2016; Kneale et al., 2016; Cole et al., 2017).

The majority of the current fungal diagnostic techniques are
inadequate for the identification of all pathogenic fungi, which
is a pre-requisite for timely initiation of appropriate antifungal
therapy (Schelenz et al., 2015; Irinyi et al., 2016; Cole et al., 2017).
Culture-based identification techniques rely on morphological
and phenotypic characteristics, are often inaccurate, and lack
in most cases species-specific features. Phenotypic traits also
fail to differentiate between closely related species or species
complexes with near-identical morphological characteristics but
distinguishable genetic traits, such as the casual agents of
many mold infections, including aspergillosis and scedosporiosis
(Tavanti et al., 2005). Further, not all pathogenic fungi grow
under laboratory conditions. Morphology based diagnostics
are also time-consuming (7–14 days), highly laborious, and
heavily dependent on the level of mycological expertise of the
microscopist, making them unsuitable for rapid and reliable
diagnosis (Irinyi et al., 2016).

Serological tests or fungal biomarkers, such as the Aspergillus
antigen test or the Cryptococcus lateral flow assay (CrAg R© LFA,
IMMY, Norman, OK, United States), are available, but they
are designed to identify specific pathogens (Chen et al., 2014;
Schelenz et al., 2015; Cadena et al., 2016).

To overcome the limitations of standard phenotypic diagnosis
and identification methods, culture- and “expert-free” methods
capable of identifying fungi directly from biological specimens
are needed. Sequence-based identification has proven to be
more accurate than conventional methods in diagnostic clinical
mycology (Ciardo et al., 2006; Balajee et al., 2007). Among the
applied molecular techniques, DNA barcoding is one of the most
promising and efficient methods, as it enables rapid identification
of species and recognition of cryptic species across all fungal
genera. As such, DNA barcoding has recently been established
as the gold standard identification technique for fungal species
and has been proven to be more accurate than conventional
identification techniques (Ciardo et al., 2006; Balajee et al.,
2007). Barcodes are standardized, easily amplified, universal
short DNA sequences (500–800 bp), which are divergent at the
species level enabling rapid identification by comparison with a
validated reference sequence collection. To ensure consistency
of identification, barcodes should be unique to a single species,
and stable within each species (Hebert et al., 2003). Additionally,
interspecies variation must exceed the intraspecies variation,
generating a “break” in the distribution of distances, which is
referred to as the “barcoding gap” (Meyer and Paulay, 2005).

DNA barcoding and its associated references databases [BOLD
(Hebert et al., 2003), UNITE (Kõljalg et al., 2013), RefSeq at
Genbank (Schoch et al., 2014), and the “ISHAM Barcoding
Database” (Meyer et al., 2018)], plays a central role in the
identification landscape, as it is the basis for all future methods,
either culture dependent or culture independent (Figure 1).

After numerous candidate genetic loci were evaluated, with
varying success rates, the internal transcribed spacer (ITS) region
was established as the primary fungal DNA barcode by Schoch
et al. (2012). The ITS region is composed of two non-coding and
variable regions, ITS1 and ITS2, flanking the highly conserved
5.8S gene. They are located between the 18S [small subunit (SSU)]
and 28S [large subunit (LSU)] genes in the nrDNA repeat (White
et al., 1990). The advantage of the ITS region is, that it can be
easily amplified from most fungal taxa, using universal primers,
with the most commonly used ones being the ITS1, ITS2, ITS3,
ITS4, and ITS5 (White et al., 1990). Fungal-specific primers
were also designed to avoid cross reactivity with plant or animal
DNA, such as SR6R and LR1 (Vilgalys and Hester, 1990), V9D,
V9G, and LS266 (Gerrits van den Ende and de Hoog, 1999), IT2
(Beguin et al., 2012), ITS1F (Gardes and Bruns, 1993) and NL4b
(O’Donnell, 1993; Figure 2 and Table 1). To provide quality
controlled reference primary fungal DNA barcode sequences
the International Society for Human and Animal Mycology
(ISHAM) “ITS DNA barcode database” was established in 2015
(Irinyi et al., 2015). The primary fungal DNA barcode region
identifies up to 75% of the estimated ∼700 pathogenic fungal
species (de Hoog et al., 2014).

To address the shortcomings of the ITS region and hence
close this identification gap, a secondary barcode was proposed
in 2015 (Stielow et al., 2015). The translational elongation factor
1α (TEF1α) was selected due to its high species discrimination
across fungal taxa and the ability to design universal primers,
such as EF1-1018F (Al33F)/EF1-1620R (Al33R), EF1-1002F
(Al34F)/EF1-1688R (Al34R) (Stielow et al., 2015), or EF1-
983F/EF1-1567R (Rehner and Buckley, 2005; Figure 2 and
Table 1). To accommodate the secondary fungal DNA barcode
a dedicated database that would eventually include all medically
relevant fungal species was established to complement the
ISHAM-ITS database, which contains only quality-controlled
TEF1α sequences obtained from taxonomically verified fungal
cultures (Meyer et al., 2018). Both databases have been combined
within the “ISHAM Barcoding Database”,1 which was launched
in November 2017 at the 7th International DNA barcoding
conference at the Kruger National Park in South Africa. The
combined dual barcode database provides the medical and
veterinary community with quality-controlled primary and
secondary fungal DNA barcodes reference sequences. This
database is publicly available, and its quality-controlled sequences
are shared with other major databases, including RefSeq within
GenBank (Benson et al., 2014) and UNITE (Kõljalg et al., 2013).

To date, the clinical utility and accuracy of the dual
DNA barcoding system for identification of pathogenic
fungi has not been assessed. This study aimed to increase
the number of reference secondary barcode sequences for

1http://its.mycologylab.org/
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FIGURE 1 | Current and potentially available techniques for fungal ID, showing the central role of the reference DNA barcode database and the pros and cons of all
techniques. Crossed boxes indicate missing databases. DNA barcoded reference strains are fundamental to build up a spectral library.

FIGURE 2 | Schematic structure of the primary (ITS) and secondary (TEF1α) fungal DNA barcode regions indicating universal primers for their amplification.

pathogenic fungal species and to compare the accuracy and
resolution of the primary and secondary fungal DNA barcodes
separately or in combination, focusing on fungi causing invasive
fungal infections.

MATERIALS AND METHODS

Cultures
To generate quality controlled TEF1α sequences 270 strains,
representing 90 human/animal pathogenic fungal species, were
used (see Supplementary Table 1).

DNA Extraction
DNA was isolated and purified from cultures using either
previously described manual method (Ferrer et al., 2001) or
the Quick-DNA Fungal/Bacterial Kit (D6007, Zymo Research)
according to the manufacturer’s instructions.

DNA Barcode Generation
The secondary fungal DNA barcoding region (TEF1α)
was amplified using the primers described by Stielow
et al. (2015), including: EF1-1018F (Al33F) (5′
GAYTTCATCAAGAACATGAT 3′) and EF1-1620R (Al33R) (5′
GACGTTGAADCCRACRTTGTC 3′) being used together and
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TABLE 1 | Universal and fungal specific primers for the dual DNA barcoding scheme.

Barcode Primer name Sequence References

Primary barcode ITS1 5′ TCCGTAGGTGAACCTGCGG 3′ White et al., 1990

ITS2 5′ GCTGCGTTCTTCATCGATGC 3′ White et al., 1990

ITS3 5′ GCATCGATGAAGAACGCAGC 3′ White et al., 1990

ITS4 5′ TCCTCCGCTTATTGATATGC 3′ White et al., 1990

ITS5 5′ GGAAGTAAAAGTCGTAACAAGG 3′ White et al., 1990

ITS1F 5′ CTTGGTCATTTAGAGGAAGTAA 3′ Gardes and Bruns, 1993

IT2 5′ CCTCCGCTTATTGATATGCTTAGG 3′ Beguin et al., 2012

SR6R 5′ AAGTATAAGTCGTAACAAGG 3′ Vilgalys and Hester, 1990

LR1 5′ GGTTGGTTTCTTTCCT 3′ Vilgalys and Hester, 1990

V9D 5′ TTAAGTCCCTGCCCTTTGTA 3′ Gerrits van den Ende and de Hoog, 1999

V9G 5′ TACGTCCCTGCCCTTTGTA 3′ Gerrits van den Ende and de Hoog, 1999

LS266 5′ GCATTCCCAAACAACTCGACTC 3′ Gerrits van den Ende and de Hoog, 1999

NL4b 5′ GGATTCTCACCCTCTATGAC 3′ O’Donnell, 1993

Secondary barcode EF1-1002F 5′ TTCATCAAGAACATGAT 3′ Stielow et al., 2015

EF1-1018F 5′ GAYTTCATCAAGAACATGAT 3′ Stielow et al., 2015

EF1-1620R 5′ GACGTTGAADCCRACRTTGTC 3′ Stielow et al., 2015

EF1-1688R 5′ GCTATCATCACAATGGACGTTCTTGGAG 3′ Stielow et al., 2015

EF1-983F 5′ GCYCCYGGHCAYCGTGAYTTYAT 3′ Rehner and Buckley, 2005

EF1-1567R 5′ ACHGTRCCRATACCACCRATCTT 3′ Rehner and Buckley, 2005

EF1-1002F (Al34F) (5′ TTC ATCAAGAACATGAT 3′) and EF1-
1688R (Al34R) (5′ CTATCATCACAATGG ACGTTCTTGGAG
3′) being used together (Stielow et al., 2015). The primer set
Al33F-Al33R was first used to amplify the TEF1α region. If
amplification was unsuccessful then it was repeated using the
second primer set Al34F-Al34R. Both primer pairs used the
following PCR amplification protocol: 5 min initial denaturing
at 94◦C, followed by 40 of 50 s at 94◦C, 50 s annealing at
48◦C, 50 s at 72◦C and 7 min final extension at 72◦C (Stielow
et al., 2015). Amplification success was visualized through
gel electrophoresis in a 1.5% agarose gel containing ethidium
bromide (EtBr) with ultra-violet illumination. Successfully
amplified PCR products were sent for commercial sequencing,
e.g., Macrogen Inc., South Korea in both forward and reverse
directions. Bidirectional sequenced were assembled and edited
using Sequencher R© ver. 5.3. (Gene Codes Corporation, Ann
Arbor, MI, United States). Sequences were manually checked to
resolve ambiguous bases on the forward and reverse trace files
considering the PHRED scores received.

DNA Barcode Analysis
The sequences for each taxon were aligned with the program
CLUSTALW (Thompson et al., 1994) part of the software MEGA
ver. 7 (Larkin et al., 2007). Resulting alignments were checked
visually and edited when needed.

The intraspecies diversity was estimated by calculating the
average nucleotide diversity (π) within species, where there
were sequences available from more than three strains. The
proportion of nucleotide differences in all haplotypes in the
sample was derived using the software DnaSP ver. 5.10.01
(Librado and Rozas, 2009).

Individual analysis of the primary and secondary barcoding
regions was performed through barcoding gap analysis.

Additionally, analysis was performed on the combined
barcoding regions. Taxonomic groups were selected for
analysis if represented by three or more species, and if those
species were represented by three or more strains. Furthermore,
taxonomic groups were required to include at least one species
that has been demonstrated to cause invasive fungal infections.
Only strains with both primary and secondary barcodes in the
database where included in the analysis. When available, more
specific taxonomic groups such as clades were selected over
genera. Sequences for each genus were aligned and cut to equal
length using CLUSTALW as present in MEGA ver. 7 (Larkin
et al., 2007; Kumar et al., 2016). Genetic distances between each
strain were calculated using the Kimura 2-parameter model
(K2P) and the intraspecies and interspecies genetic distances
were compared (Kimura, 1980). Intra- and interspecies genetic
distances were graphed against frequency and analyzed for
barcoding gaps. Barcoding gaps were defined by the presence
of a distinct difference between the largest intraspecies genetic
distance and smallest interspecies genetic distance (Irinyi et al.,
2015), i.e., there was no common x value between the intra- and
interspecies groups.

The introduction of the secondary fungal DNA barcode
was accessed for each genus on the basis that there would be
an improvement in DNA barcoding if the secondary barcode
generated a barcoding gap when the primary barcode did not,
or if the overlap between the intra- and interspecies genetic
distances was reduced.

RESULTS

The study produced 270 new quality controlled secondary
fungal barcode sequences, covering 90 pathogenic fungal species
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FIGURE 3 | Intraspecies variation for species, which are represented by more than three strains, in the internal transcribed spacer (ITS) (blue bars) primary fungal
DNA barcode compared with the translation elongation factor 1α (TEF1α) (gray bars) secondary fungal DNA barcode.

(Supplementary Table 1). Overall, the PCR success rate was
high within the 270 TEF1 sequences. 220 secondary barcodes
were generated using the Al33F–Al33R primer pair and 50 were
amplified with the Al34F–Al34R primer pair. There was no trend
in amplification success in different fungal species. However,
the Al34F–Al34R primer set was required to amplify all strains
of Aspergillus niger, Candida albicans, Candida dubliniensis,
Kluyveromyes marxianus, and Pichia kudriavzevii. There was
unsuccessful amplification with both primer sets for some strains
of Cladosporium spp., Rhodotorula spp., and Trichosporon spp.

All sequences were submitted to the ISHAM Barcoding
Database (see footnote 1). The length of the ITS and partial
TEF1α sequences in the database ranges 285–791 and 534–
1002 bp, respectively.

The analysis of the nucleotide diversity (π) of 43 fungal
species with more than three strains in the ISHAM barcoding
database showed that the TEF1α region is less diverse than the
ITS region in most species (Figure 3). The intraspecies variation
of TEF1α was for most species below 1.5%, confirming the
secondary barcode as a more discriminator marker. According
to the selection criteria four different taxonomic groups were
selected as proof of principle for the dual barcoding system.
These included the two genera, Diutina and Scedosporium, and
the two taxonomic clades, Lodderomyces and Pichia. The Diutina
genus was selected for analysis despite one of the species, Diutina
rugosa, being represented by only two strains as this genus is
newly established that causes rare disease (Table 2). The species
and number of strains included in these analyses are outlined
in Table 2.

Diutina Species
Barcoding gap analysis of the genus Diutina demonstrated
no overlap between the intraspecies and interspecies genetic
distances with either the primary or secondary fungal DNA
barcodes (Figure 4). There was similarly no overlapping region

for the barcoding gap analysis of the combination of the
primary and secondary barcodes (Figure 4). As such, both
fungal barcodes and the combination of the barcodes generated
appropriate barcoding gaps.

The Lodderomyces Clade
For the Lodderomyces clade, the intraspecies and interspecies
genetic distances, generated by the primary fungal barcode
produced an overlapping region thereby indicating that there was
no barcoding gap (Figure 4). The barcoding gap analysis for the
secondary DNA barcode (TEF1α) demonstrated no overlap in the
intraspecies and interspecies genetic distances for Lodderomyces
thus showing a clear barcoding gap (Figure 4). The Lodderomyces
clade analysis using the combination of both the ITS and TEF1α

TABLE 2 | Number of fungal strains with primary and secondary barcodes present
in the ISHAM Barcoding Database analyzed in this study.

Taxonomic group Species/Species complex Number of strains

Diutina Diutina catenulata 11

Diutina mesorugosa 9

Diutina rugosa 2

Lodderomyces clade Candida albicans 13

Candida dubliniensis 12

Candida metapsilosis 7

Candida orthopsilosis 11

Candida parapsilosis 26

Candida tropicalis 16

Pichia clade Candida inconspicua 4

Pichia kudriavzevii 15

Pichia norvegensis 10

Scedosporium Scedosporium apiospermum 6

Scedosporium aurantiacum 13

Scedosporium boydii 4
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FIGURE 4 | Barcoding gap analyses for fungal taxa including causative agents of invasive fungal disease with intraspecies (gray) and interspecies (blue) genetic
distances calculated using the Kimura 2-parameter model. (A) Diutina genus (Diutina catenulata, Diutina mesorugosa, and Diutina rugosa). (B) Lodderomyces-clade
(Candida albicans, Candida dublinsiensis, Candida metapsilosis, Candida orthopsilosis, Candida parapsilosis, and Candida tropicalis). (C) Pichia-clade (Candida
inconspicua, Pichia kudriavzevii, and Pichia norvegensis). (D) Scedosporium genus (Scedosporium apiospermum, Scedosporium aurantiacum, and Scedosporium
boydii).

regions resulted in the generation of a barcoding gap being
generated (Figure 4).

The Pichia Clade
Barcoding gap analysis of the Pichia clade did not reveal any
overlapping regions in the genetic distances for either the ITS or
TEF1α regions (Figure 4). As there were no overlapping regions
this demonstrated that there are barcoding gaps for both the
primary and secondary barcode. These results were similar when

both barcoding regions were combined as there was a barcoding
gap produced (Figure 4).

Scedosporium Species
Barcoding gap analysis of the primary fungal DNA barcode
showed an overlapping region (Figure 4). For the secondary
barcode, the barcoding gap analysis revealed that there
was no overlap between the intraspecies and interspecies
genetic distances and so a barcoding gap was present
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(Figure 4). The barcoding gap analysis of the combination
of both barcodes, produced a barcoding gap as there was
no overlap between the intraspecies and interspecies genetic
distances (Figure 4).

DISCUSSION

ISHAM Barcoding Database Expansion
Accurate and rapid routine diagnostic tools are essential to reduce
the burden of fungal disease. DNA barcoding requires reliable
quality-controlled reference sequences for its implementation.
As such, fungal DNA Barcoding databases need to have high
taxonomic coverage and reliable sequences to ensure users can
accurately match sample sequences to the correct reference
sequences. Additionally, the more sequences from different
strains for each species are represented, the higher is the accuracy
of the identification, as this reflects more realistically the existing
species variation.

In this study, we generated 270 secondary barcodes, which
could be amplified reliably using either the primer set Al33F–
Al33R or the primer set Al34f–A134R (Figure 2), with a few
exceptions where no amplifications where obtained for some
strains of Cladosporium spp., Rhodotorula spp., or Trichosporon
spp. In those cases, modification of the amplification conditions,
such as touchdown PCR, may be appropriate.

As a result of this study the ISHAM Barcoding Database
contains, as of the May 10, 2019, 4091 primary (ITS) and
868 secondary barcode (TEF1α) sequences covering 640 and
129 pathogenic fungal species, respectively. From those 2681
ITS and 613 TEF1α sequences representing 252 species cause
invasive fungal diseases. There are an estimated 700 pathogenic
fungal species, with the majority rarely causing infections.
As such, the taxonomic coverage of ITS sequences within
the “ISHAM Barcoding Database” is close to covering all
pathogenic fungal species, whilst the TEF1α sequences cover
less than one fifth. In addition, 59 species are currently only
represented by one TEF1α sequence, which limits identification
due to underrepresented intraspecies variation. As the “ISHAM
Barcoding Database” has only been recently expanded to
include TEF1α sequences, it is expected that as more TEF1α

sequences are submitted, these issues will be resolved. Currently
the “ISHAM Barcoding Database” has enabled pragmatic
implementation of the dual barcode scheme for the identification
of pathogenic fungi.

Comparison of the Primary and
Secondary Barcodes
Since the establishment of the secondary fungal DNA barcode
the improvement of the identification accuracy for pathogenic
fungi has not been assessed. In this study, we compared for the
first time the primary and secondary fungal DNA barcodes via
barcoding gap analysis based on intraspecies and interspecies
genetic distance values as calculated using the K2P model
(Kimura, 1980). In addition, the combination of both barcodes
was tested and compared to the individual barcodes.

Diutina Species (Previously Belonging to the Genus
Candida)
The genus Diutina was established only recently. This group
of fungal species was previously part of the genus Candida
(Kurtzman et al., 2011; Khunnamwong et al., 2015). Diutina
species are uncommon agents of disease, but are associated with
nosocomial infections, with fatality rates of up to 70% (Padovan
et al., 2013). Diutina catenulata and Diutina rugosa are well
known causes of fungemia in immunocompromised patients
and the seriously ill (Radosavljevic et al., 1999; Minces et al.,
2009; Behera et al., 2010; Ha et al., 2018). D. rugosa is notable
for its increasing resistance against multiple antifungal agents
worldwide, thereby increasing the need for early detection and
identification to enable timely initiation of effective treatment
(Pfaller et al., 2006a).

An exception was made for the genus Diutina to be included
into this analysis, as D. rugosa is only represented by two
strains in the analysis (Table 2). The inclusion of the species
was important as Diutina mesorugosa and D. rugosa have been
proposed as synonyms with the variability of ITS sequences used
as supporting evidence (Ming et al., 2019).

Barcoding gap analysis indicates that these species can
be clearly identified as separate species. The Diutina species
are representative of the 75% of pathogenic fungi that
are accurately identified by the primary barcode (Irinyi
et al., 2016). The secondary barcode and the combination
of both barcodes equally identified these species (Figure 4),
demonstrating the same level of resolution as the primary
barcode (Stielow et al., 2015).

The Lodderomyces Clade
The Lodderomyces clade contains 21 Candida species, including
some of the major pathogenic fungal species (Kurtzman et al.,
2011). This clade contains three of the five most common
pathogenic Candida species: Candida albicans, Candida
dubliniensis, and Candida parapsilosis (Spampinato and
Leonardi, 2013). These species cause a wide spectrum of diseases,
from cutaneous infections to fatal disseminated septicemia
(Tavanti et al., 2005). Candida species are predominantly
commensals in the body and as such these infections largely
target immunocompromised patients and are commonly the
cause of nosocomial outbreaks (Brown et al., 2012).

Candida is a polyphyletic genus with a highly complex
taxonomic history (Kurtzman et al., 2011). In the latest edition
of The Yeasts A Taxonomic Study, 314 different Candida species
were described excluding species with anamorph-teleomorph
linkages (Kurtzman et al., 2011). The genus Candida was
initially intended to include undifferentiated yeasts that cannot
be identified by phenotype (Berkhout, 1923). As such there
is little stability in the genus with some species being linked
to others as anamorphs and the introduction of newly found
species. With the advanced use of genomics in taxonomic studies
the composition of species and the Lodderomyces clade are
expected to change.

The barcoding gap analysis of the primary barcode was
unable to generate a barcoding gap and so was unable
to accurately identify all species of the clade (Figure 4).
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Upon closer inspection, the lack of a barcoding gap was
due to the close relationships between Candida orthopsilosis
and Candida parapsilosis, which form part of the Candida
parapsilosis species complex. This species complex was
previously representing a single species, Candida parapsilosis,
with three subgroups that were then revised to be separate
species based on various molecular techniques, including
sequencing of the ITS region. The barcoding gap analysis
of this study, however, did not reflect this differentiation
and so ITS was unable to identify these different species.
Barcoding gap analysis of the secondary barcode did produce
a barcoding gap and thereby demonstrated that TEF1α

could accurately identify all species of the Lodderomyces
clade (Figure 4). As such, the introduction of the dual
barcoding scheme resulted in an accurate identification of
these pathogenic fungal species.

The Pichia Clade
The Pichia clade is composed of 20 species. In our study, Candida
inconspicua was also included in the analysis, as it is thought to
be the anamorph for Pichia cactophila (Kurtzman and Robnett,
1998; Kurtzman et al., 2008, 2011). Pichia kudriavzevii and Pichia
norvegensis are predominantly linked to nosocomial pathogens
and may cause outbreaks of infections (Nagarathnamma et al.,
2017). Candida inconspicua has also been found in clinical
samples whilst the other species of the Pichia clade have not
yet been found to be medically relevant (Kurtzman et al., 2011;
Guitard et al., 2013). These species also cause invasive infections
in patients with a highly compromised immune systems, and are
often found under previous names in the literature (Kurtzman
et al., 2011; Guitard et al., 2013; Schuster et al., 2013; Sanclemente
et al., 2015; Douglass et al., 2018).

Similarly, to the genus Diutina, barcoding gap analysis of the
Pichia clade revealed barcoding gaps for the primary barcode,
secondary barcode and the combination of both barcodes
(Figure 4), resulting in an accurate identification of all species
of the Pichia clade.

Scedosporium Species
Fungi belonging to the genus Scedosporium cause a wide
variety of diseases from localized infections to invasive
diseases (Cortez et al., 2008). Scedosporium species mainly
cause infections in patients with a compromised immune
systems largely due to underlying illnesses such as solid
organ transplantation, cystic fibrosis, leukemia and bone
marrow transplantation (Tamm et al., 2001; Allen et al.,
2013; Kubisiak-Rzepczyk et al., 2013; Yu et al., 2013; Johnson
et al., 2014). Scedosporium spp. can also cause infection in
immunocompetent patients (Ceccarelli et al., 2012; Agatha et al.,
2014; Cruysmans et al., 2015).

The taxonomy of the genus Scedosporium is complex and
has changed multiple times over the last decade. Previously,
the nomenclature of the genus ruled Scedosporium to be the
anamorph name whilst Pseudallescheria and Petriella were the
teleomorph names (Rainer and de Hoog, 2006; Cortez et al.,
2008; Lu et al., 2011). The two major clinical species were
Scedosporium prolificans and Scedosporium apiospermum and its

teleomorph form, Pseudallescheria boydii (Cortez et al., 2008).
Multilocus sequencing, morphological analysis and physiological
testing later demonstrated that S. apiospermum and P. boydii are
separate species and not anamorphs teleomorph pairs (Gilgado
et al., 2008). In 2011, the new nomenclature rules dictating
“one fugus = one name” led to the fact that Scedosporium
took precedence over Pseudallescheria as the genus name
(Hawksworth, 2011; Lackner et al., 2014). The composition of the
genus was also changed with S. prolificans being removed from
the genus and renamed to Lomentospora prolificans (Lackner
et al., 2014). The separation between S. apiospermum and
S. boydii was reinforced, however, it was noted that there
was no clinical difference between the species, as such all
species are referred to the S. apiospermum species complex
(Lackner et al., 2014).

In this study, there was no barcoding gap present for the
primary barcode indicating that Scedosporium species cannot
be accurately identified using this region alone (Figure 4).
The predominant reason for the overlap in intraspecies and
interspecies genetic distances was the high similarity between
S. apiospermum and S. boydii. This was reflective of the
nomenclature history as these species were previously thought
to be an anamorph – teleomorph pair. Barcoding gap analysis of
the secondary barcoding region introduced a barcoding gap and
hence allowed for the accurate identification of all Scedosporium
species (Figure 4). As the separation of S. apiospermum and
S. boydii was established via multilocus sequence analysis, it is
reassuring that TEF1α can resolve all Scedosporium species to
the same degree (Gilgado et al., 2008). With the introduction of
the dual barcoding scheme, all Scedosporium species can now be
accurately identified.

Assessment of the Dual Barcoding
Scheme
Meaningful implementation of the dual DNA barcoding
scheme depends on demonstration of an improvement in the
identification accuracy of fungal species causing infections when
adding the secondary barcode, TEF1α. To demonstrate this the
two fungal barcodes were analyzed separately and in combination
from selected species, which had sequences from both barcodes
being in the “ISHAM Barcoding Database,” using barcoding gap
analysis through the generation of genetic distances by the K2P
model (Kimura, 1980).

Although K2P has been used in all DNA barcoding
studies since its introduction by Hebert et al. (2003), the
accuracy of this model has been questioned (Kimura, 1980;
Hebert et al., 2003). In the selection of ITS region as the
primary fungal DNA barcode, the uncorrected p-distances
were used for barcoding gap analysis whereas in the case
of the secondary fungal DNA barcode (TEF1α) analysis
the K2P method was applied (Schoch et al., 2012; Stielow
et al., 2015). The K2P region was selected to generate
barcoding gaps over uncorrected p-distances as K2P has
been found to generate larger barcoding gaps for most
data sets (Srivathsan and Meier, 2012). Additionally, in
datasets where uncorrected p-distances were preferred, the
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performance of K2P was found to be similar (Srivathsan and
Meier, 2012). More complicated models have been applied
in some studies in an attempt to improve the accuracy
of the K2P model, however, the differences were minimal,
prompting us to use K2P in our study (Collins et al., 2012;
Barley and Thomson, 2016).

Comparison of the number of pathogenic fungal species
and strains represented in the “ISHAM Barcoding Database”
highlighted the deficit in the number of TEF1α reference
sequences. Therefore, the value of this study is limited as only
strains with both barcodes available were used for the analysis.
More species represented by more sequences would give a more
exact assessment about the value and resolution power of the dual
barcoding concept.

DNA barcode gab analysis showed that two of the groups
(Diutina and Pichia) tested were accurately identified
using the primary barcode and the secondary barcode on
its own, demonstrating that both barcodes had similar
resolution. For the remaining two groups (Lodderomyces
and Scedosporium) the primary barcode was not able
to produce barcoding gaps whilst the secondary did,
demonstrating that the secondary barcode had a higher
resolution power. In addition, the combination of both barcodes
increased the discriminatory power enabling a more accurate

identification. These results indicate, that the application
of the dual barcoding system drastically improves species
identification in cases where a single barcoding system is
unable to do so.

Implementation of the Dual Barcoding
Scheme
We envisage that the proposed dual barcoding scheme
can be applied in the routine diagnostic setting in a
stepwise procedure. After a clinical specimen is obtained,
the unknown fungal isolate is first assessed based on its
morphologic and/or biochemical characteristics. Then those
unknown fungal isolates which lack obvious morphological
characteristics or result in unclear biochemical profiles
should be subjected to DNA isolation and primary fungal
DNA barcoding (ITS1/2 region). If the obtained sequence
shows less than 98.5% identity to a given ITS reference
sequence in the database, the secondary fungal DNA barcode
(TEF1α) should be obtained to achieve a final species
identification (Figure 5).

The dual fungal DNA barcoding scheme is an efficient
diagnostic tool for the identification of agents of invasive
mycoses and can be confidently implemented into routine

FIGURE 5 | Workflow of DNA barcoding based fungal ID (Steps 1 and 2 can be done in parallel to speed up the process).
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diagnostics. Its implementation along with the expansion
of the “ISHAM Barcoding Database” will lead to a
paradigm shift in fungal disease diagnostics, enabling
a highly accurate identification of the agents of fungal
disease. The timely initiation of appropriate therapy
will improve patient outcomes through the reduction in
morbidity and mortality, prevent the use of unnecessary or
inappropriate antifungal drugs, minimizing drug toxicity and
resistance development and greatly reduce the associated
health care cost.

CALL FOR DATA SUBMISSION

To achieve a 100% coverage of all pathogenic fungi and
reflect the intraspecies variation for both the primary and
secondary fungal DNA barcode we call for the submission
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Barcode Database.” Please contact the curators of the
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laszlo.irinyi@sydney.edu.au.
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