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I went into geology because I like being outdoors and because everybody in geology seemed, 

well, they all seemed like free spirits or renegades or something. You know, climbing 

mountains and hiking deserts and stuff. 
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Abstract 

Mineral detection and geological mapping through conventional ground survey methods based 

on field observation and other geological techniques are tedious, time-consuming and 

expensive. Hence, the use of remote sensing in mineral detection and lithological mapping has 

become a generally accepted augmentative tool in exploration. With the advent of multispectral 

sensors (e.g. ASTER, Landsat and PlanetScope) having suitable wavelength coverage and 

bands in the Shortwave Infrared (SWIR) and Thermal Infrared (TIR) regions, multispectral 

sensors, along with common and advanced algorithms, have become efficient tools for routine 

lithological discrimination and mineral potential mapping. It is with this paradigm in mind that 

this project sought to evaluate and discuss the detection and mapping of magnetite on the 

Eastern Limb of the Bushveld Complex, using specialized common traditional and machine 

learning algorithms. Given the wide distribution of magnetite, its economic importance, and 

its potential as an indicator of many important geological processes, the delineation of 

magnetite is warranted. Before this study, few studies had looked at the detection and 

exploration of magnetite using remote sensing, although remote sensing tools have been 

regularly applied to diverse aspects of geosciences. Maximum Likelihood, Minimum Distance 

to Means, Artificial Neural Networks, Support Vector Machine classification algorithms were 

assessed for their respective ability to detect and map magnetite using the PlanetScope Analytic 

Ortho Tiles in ENVI, QGIS, and Python. For each classification algorithm, a thematic 

landcover map was attained and an error matrix, depicting the user's and producer's accuracies, 

as well as kappa statistics, was derived, which was used as a comparative measure of the 

accuracy of the four classification algorithms. The Maximum Likelihood Classifier 

significantly outperformed the other techniques, achieving an overall classification accuracy 

of 84.58% and an overall kappa value of 0.79. Magnetite was accurately discriminated from 

the other thematic landcover classes with a user’s accuracy of 76.41% and a producer’s 

accuracy of 88.66%. Despite the Maximum Likelihood classification algorithm illustrating 

better class categorization, a large proportion of the mining activity pixels were erroneously 

classified as magnetite. However, this observation was not merely limited to the Maximum 

Likelihood classification algorithm, but all image classifications algorithms. The overall results 

of this study illustrated that remote sensing techniques are effective instruments for geological 

mapping and mineral investigation, especially in iron oxide mineralization in the Eastern Limb 

of Bushveld Complex.  
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Chapter 1: Introduction 

1.1. General Introduction  

 

Mineral exploration and geological mapping through conventional ground survey methods based on 

field observation and other geological techniques are tedious, time-consuming and expensive 

(Abrams et al., 1983; Martins & Gadiga, 2015; Gurugnanam et al., 2017). The wide distribution and 

occurrence of some minerals in remote areas with little or no access makes map them difficult using 

conventional mapping and exploration techniques (Zhang et al., 2007). Hence, remote sensing in 

mineral exploration has become a generally accepted practice (Babakan & Oskouei, 2014). With the 

advent of multispectral sensors (e.g. ASTER, Landsat and RapidEye) having suitable wavelength 

coverage and bands in the Shortwave Infrared (SWIR) and Thermal Infrared (TIR) regions, 

multispectral sensors have been considered efficient tools for routine lithological discrimination and 

mineral potential mapping (Yamaguchi & Naito, 2003). 

 

The intended use of multispectral sensors was to explore natural resources, focusing on vegetation 

cover, lithological and mineral exploration. The large synoptic coverage, which gives the spatial and 

integrated outlook of diverse geographical features, make optical remote sensing advantageous in 

detecting potential mineral zones during the reconnaissance stage (Clark & Roush, 1984; Sabins, 

1999; Rokos et al., 2000; Combe et al., 2006; Ciampalini et al., 2013; Gupta, 2017). The high-

resolution multispectral data (spatial and spectral) and digital image processing techniques have 

enhanced the potential of remote sensing in demarcating and discriminating the lithology and 

geological structures with better accuracy and detail. Geologists gain a double benefit from using 

multispectral images because the visible and SWIR bands are sensitive to changes in soil and rock 

content, making it possible to explore and map different rock and mineral types (Gupta, 2017). 

  

The successful application of remote sensing in the exploration and mapping of iron-containing 

minerals has been carried out and reported by many researchers, e.g. Rajendran et al (2007), Raja et 

al (2010),  and Li et al., 2016. A case in point is the detection of the lithological occurrence of iron 

ore in southwestern Algeria using Landsat Enhanced Thematic Mapper Plus (ETM+) data by 

(Ciampalini et al., 2013). Furthermore, the iron ore occurrence in the western part of the Wadi Shatti 

district, in Libya, was successfully discriminated and delineated in the work carried out 

by Abulghasem et al (2011), who used and processed ETM images by using a Maximum Likelihood 

supervised classifier and band rationing. 
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It is with this paradigm in mind that this study discusses and evaluates the detection and mapping of 

magnetite on the Eastern Limb of the Bushveld Complex, using specialized traditional and machine 

learning algorithms. Owing to the wide distribution of magnetite and its potential as an indicator of 

several vital geological processes (Klemm et al., 1985; Rajendran et al., 2007; Izawa et al., 2019), its 

high iron content and significant contribution to the production of steel, the delineation and 

identification of magnetite was warranted. To this end, the aim of this study was to map the 

occurrence of magnetite bodies near the Roossenekal region on the Eastern Limb of the Bushveld 

Complex, based on the identification of the spectral reflectance of the features. The occurrence of 

magnetite was explored using common and advanced classification algorithms on the Upper Zone of 

the Eastern Limb. Thereafter, the performance of common and advanced classification algorithms 

was compared and contrasted. Prior to this study, no study had looked at the detection and exploration 

of magnetite using remote sensing techniques in the Bushveld Complex. 

 

1.2. Geological setting 

The Bushveld Complex is the world’s largest layered intrusion (Von Gruenewaldt, 1971; Klemm et 

al., 1985; Schouwstra, Kinloch, & Lee, 2000; Fischer et al., 2016), and has been extensively studied 

in the last century because of its rich platinum, palladium, rhodium, chromium, and vanadium 

deposits (Willemse & Haughton, 1964; Von Gruenewaldt, 1971; Kinnaird, 2005; Tegner et al., 2006). 

The Bushveld Complex spans an area of approximately 65 000 km2 (Maila, 2015). It has its 

geographical centre north of Pretoria, in South Africa, at 25°S and 29°E (Maila, 2015), situated in the 

northern half of the Kaapvaal craton (SACS, 1980) (as depicted in Figure 1). Harmer & Armstrong 

(2000) and Schouwstra et al. (2000) postulated that approximately 0.7 to 1 million km3 of magma 

was emplaced in a relatively short geological period (c. 1-3 Ma), after which the intrusion cooled to 

below 650℃ in 1.02 ± 0.63 m.y. (Zeh et al., 2015). This equated to approximately 0.3-1x106 km3 of 

magma per Ma, respectively. The magmatic events which induced the creation of the Bushveld 

Complex (2055.91 ± 0.26 Ma) as we know it today began with the extrusion and formation of the 

Rooiberg Group, which unconformably overlie the Transvaal Supergroup, from basic and acidic lavas 

(Cheney & Twist, 1991). The Rashoop Suite granophyre was emplaced coeval to the Rooiberg Group.  

Subsequently, the intrusion of the ultrabasic and basic lavas marked the formation of the Rustenburg 

Layered Suite, which was followed by the Lebowa Granite Suite (Figure 1) (Walraven et al., 1990; 

Walraven, 1993; Schweitzer et al., 1995; Kinnaird, 2005).  
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The Rustenburg Layered Suite (RLS) consists of a c. 7-9 km thick basic and ultrabasic cumulate 

sequence outcropping in three limbs (the Northern, Eastern, and Western Limb) (Eales & Cawthorn, 

1996; Fischer et al., 2016). This thesis focuses on the Eastern Limb. In each limb, these cumulates 

are divided into their corresponding stratigraphic subdivisions, Marginal, Lower, Critical, Main, and 

Upper Zones (depicted in Figure 2) (Von Gruenewaldt, 1971; SACS, 1980; Fischer et al., 2016). The 

Marginal Zone consists of norites with varying proportions of clinopyroxene, quartz, biotite, and 

hornblende. The Marginal Zone is often not present; however, where it does occur, its thickness 

ranges from zero to hundreds of meters along the basal contact of the Eastern Limb of the  Bushveld 

Complex (Kinnaird, 2005).  

 

The Lower Zone is characterized by pyroxenite, dunite, and harzburgite, with minor interstitial 

plagioclase and clinopyroxene. The Lower Zone is most developed in the northern portions of the 

Eastern and Western Limbs and in the southern portions of the Northern Limb, where it has the 

greatest lateral extent (Schouwstra et al., 2000; Kinnaird, 2005).  

 

The Critical Zone is approximately 1.5 km thick and hosts some of the highest concentrations of 

chromitite and platinum deposits in the world in several different layers (Schulte et al., 2010). The 

Critical Zone is further divided into two zones: the Lower Sub-zone and the Upper Sub-zone. The 

Lower Sub-zone is a 500 m thick ultrabasic layer, comprised of a succession of orthopyroxenitic 

cumulates. The 1 km thick Upper Sub-zone layer is comprised primarily of cyclic layers of chromite, 

harzburgite, and norite- which has a gradational contact with anorthosite (Kinnaird, 2005; Schulte et 

al., 2010). Furthermore, the Critical Zone hosts the world-renowned Platinum Group Elements (PGE) 

deposits found in UG2, Merensky Reef and Platreef (Eales & Cawthorn, 1996; Grant 2015; Yuan et 

al., 2017). 

 

Measuring at approximately 3 km in thickness, the Main Zone is almost half the thickness of the RLS 

(Kinnaird, 2005). It has its base on the Merensky Reef, and consists of a succession of gabbronorites 

with infrequent bands of pyroxenite and anorthosite. Olivine and chromite are absent in this layer 

(Chistyakova et al., 2019).  

 

The Upper Zone is the uppermost layer in the RLS. The Upper Zone is predominately composed of 

gabbros and iron-rich cumulates which host the highest concentrations of titanium-magnetite in the 

world (Voordouw et al., 2009; Scoon & Mitchell, 2012; Maila, 2015). Noteworthy features in the 

Upper Zone are the iron-rich cumulates which form 25 magnetitite layers in the Eastern Limb 
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(Molyneux, 1974), and a similar number in the Western and Northern Limbs. The magnetitite layers 

are clustered into four groups of approximately 6 m in thickness, each consisting of seven layers, with 

sharp base contacts and gradational top contacts. The Main Magnetite Layer, which is mined for 

vanadium, is 2 m thick and situated near the base of the Upper Zone (Molyneux, 1974). 

 

 

 

Figure 1: Bushveld Complex geological map and the study area demarcated (in a black rectangle) on 

the Eastern Limb, modified from Cawthorn (2010).  
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Figure 2: A simplified stratigraphic succession of the Eastern Limb of the Bushveld Complex 

(Impala Platinum, 2014). 

  

In the Eastern Limb, the area northeast of Roossenekal (25.1904° S, 29.9249° E) is one of the few 

areas where rocks of the Upper Zone are well exposed (Von Gruenewaldt, 1971). It is comprised 

of c. 2 km thick stratigraphic layers, which hosts the largest vanadium deposit in the world (Willemse, 

1969). Furthermore, the Upper Zone is renowned for the occurrence of numerous layers of magnetite 

and nelsonite (Tegner et al., 2006). Magnetite is a common constituent in virtually all the rock types 

found in the Upper Zone, and constitutes, on average, between 8 to 10 percent by volume of the rocks 

(Grant 2015). The Upper Zone has been divided into subzones, namely A, B, and C.  

 

The base of the Upper Zone (A) has been defined by the South African Committee for Stratigraphy 

(SACS) (SACS, 1980; Grant 2015) as being the level where magnetite makes its appearance in the 

succession. Magnetite-bearing leucogabbronorite, gabbronorite, gabbro and anorthosite dominate this 

subzone. A study conducted by Yuan et al. (2017) indicates that the normative mineralogy of the 

Upper Zone (A) predominately consists of plagioclase (10-78 wt %), high-Ca pyroxene (1–23 wt. %), 

and low-Ca pyroxene (0–32 wt. %), with Fe–Ti oxides ranging from 11 wt. % in most gabbros to 
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approximately 80 wt. % in the Main Magnetitite Layer. Hints of the recrystallized plagioclase laden 

magma are given by the magmatic laminations of the large grains and the small randomly strewn 

plagioclase grains around the cumulus phases or within the Fe-Ti oxide patches (Yuan et al., 2017).  

 

The base of Upper Zone (B) is marked by the appearance of iron-rich olivine (Harne & Von 

Gruenewaldt, 1995). The normative mineralogy in the Upper Zone (B) consists of plagioclase (46–

52 wt .%), high-Ca pyroxene (7–19 wt. %) and low-Ca pyroxene (8–20 wt. %), with some olivine 

(1–2 wt % ) and Fe–Ti oxides (7 wt. %). The plagioclase found in the Upper Zone (B) is akin to that 

found in Upper Zone (A) and has grain sizes ranging from 0.1 to 4 mm. High-Ca pyroxene which 

crystallized as equant to prismatic euhedral grains, which range from 0.2 to 2 mm. In Upper Zone 

(B), olivine has a prismatic shape with large sub-equant large grains (Yuan et al., 2017).  

 

The appearance of cumulus apatite, at a depth of approximately 1000 m, marks the base of subzone 

C, which is dominated by magnetite-bearing gabbro and magnetite-bearing olivine and diorite; 

however, olivine-free rocks are present in the vicinity of magnetitite layers (Gruenewaldt, 1976), as 

conveyed in Figures 2 and 3. Apatite appears cyclically in Upper Zone (C) and has a sub-rounded 

texture, with grain sizes varying from c. 0-2 mm embedded in Fe–Ti oxides. The plagioclase, which 

crystallized as tabular to euhedral grains, has a grain size range of 0.2 to 2 mm, with some planar 

orientation. Unlike in Upper Zone (B), high-Ca pyroxene in Upper Zone (C) has smaller sub-equant 

to subhedral grains orientated along the magma lamination, which is laden with Fe–Ti oxide 

exsolutions. In Upper Zone (C), olivine crystallized as equant to irregular tabular grains with a grain 

size range of 0.3–2 mm. Throughout the Upper Zone, sulphides are sparse but a majority of those 

sulphides occur with magnetitite layers (Von Gruenewaldt, 1976). 
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Figure 3: Detailed stratigraphic sequence of the Upper Zone in the Eastern Limb of the  Bushveld 

Complex (Harne & Von Gruenewaldt, 1995; Maila, 2015). 

The presence of magnetitite layers throughout the entire sequence is a striking feature of the Upper 

Zone. Twenty-five magnetitite layers have been identified in the Eastern Limb, with a combined 

thickness of approximately 20.4 m (Tegner et al., 2006). The individual magnetitite layers range from 

0.1 m to 10 m in thickness (Harne & Von Gruenewaldt, 1995). The lower three magnetitite layers 
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(layers 1-3) are located below the Main Magnetitite Layer, and Magnetite Layers 4-21 are located 

above the Main Magnetitite Layer (Figure 3) (Maila, 2015). The magnetitite layers extend laterally 

approximately 100 km in the Eastern Limb of the Bushveld Complex, illustrating remarkable 

continuity (Cawthorn, 1994). In comparison to the upper contacts of the magnetitite layers, which 

undergo a gradational change to anorthosite, the lower contacts between the magnetitite layers and 

the host rocks and the underlying anorthosite are typically sharp (McCarthy et al., 1985; Reynolds, 

1985). The concentration of chromitite in the Main Magnetitite Layer is indicative of diffusion-

controlled bottom crystallization, due to an upward decrease in concentration. The sharp lower 

contacts of the magnetitite layers could be indicative of the abrupt onset of crystallization of 

magnetite.  
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Chapter 2: Mapping magnetite pipes in the Eastern Limb of the  Bushveld 

Complex using multispectral remote sensing data. 

2.1. Satellite remote sensing as an augmentative tool   

 

Remote sensing is the acquisition of information and the identification of Earth-surface features or 

phenomenon using reflected and emitted electromagnetic radiation (from the surface features), 

assessed and measured by sensors on airborne or spaceborne platforms (Drury, 2001; Agar & Coulter, 

2007; Ngcofe & Van Niekerk, 2016; Joseph & Bamidele, 2018). Optical remote sensing provides 

quantitative observational parameters for large areas and hence, is an essential source of information 

for many geological investigations (Rajendran et al., 2007). In the last century, remote sensing has 

been extensively used in many geological applications (Abrams et al., 1983; Clark & Roush, 1984; 

Chung, & Rencz, 1994; Agar & Coulter, 2007; Rajendran et al., 2007; Li et al., 2016; Manuel et al., 

2017; Joseph & Bamidele, 2018; Izawa et al., 2019). Most notably, it has been extensively applied in 

geological mapping, mineral exploration, and geotechnical investigations, where it saves both time 

and initial investments. In the aforementioned fields, remote sensing  gives a synoptic view of the 

sites of interest, which are challenging to obtain from merely field-based observations (Ngcofe & 

Van Niekerk, 2016; Manuel et al., 2017). 

 

Remote sensing employs spectral reflectivity (the measure of light that is reflected from objects on 

the ground) or the spectral signature of a mineral, which is often the most useful and distinguishing 

diagnostic criterion for lithological delineation (Raja et al., 2010). The spectral reflectance of objects 

is depicted in images by photographic tonality and colour. The photographic tonality and colour is 

influenced by the chemistry, structure, the physical conditions, and the modification of the object by 

the environmental. The spectral reflectance of an object is controlled by the absorption lines, which 

in turn are governed by electronic and or vibrational processes in specific minerals (Richards, 1999; 

Sabins, 1999). Electronic processes involves an electron transitioning from one energy level to 

another in a metal ion, whereas vibrational processes correspond to the stretching and bending of 

bands due to the molecules found within the object. Therefore the lattice environment of the atoms 

concerned modifies the wavelength of these absorption lines (Gupta, 2017). 

 

Optical  remote sensing makes use of the visible and near infrared (VNIR) portions of the 

spectrum, which have wavelengths that range from ca 0.4 and 1 μm, to the shortwave 
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infrared (SWIR) and thermal infrared (TIR), with wavelengths of 10 μm (Gupta, 2017). Generally, 

the VNIR portion of the electromagnetic spectrum is particularly useful for imaging green 

vegetation, owing to the  strongly absorption of the red and blue wavelengths by chlorophyll. 

Minerals, on the other hand, show various absorption features in  the VNIR, SWIR and TIR portion 

of the  electromagnetic spectrum, that relate to certain chemical components such as iron oxides 

(Gupta, 2017; Shirazi et al., 2018). 

 

The advantages and disadvantages of optical remote sensing in mineral exploration have been 

extensively studied (Cloutis, 1996; Metternicht & Zinck, 2003; Agar & Coulter, 2007; Wang & Qu, 

2009; Gupta, 2017). However, for similar reasons to those which encumber field geology, the 

application of remote sensing for mapping geological features is fraught with both practical as well 

as conceptual difficulties such as inadequate sensor spatial resolution, the reliance on exposed 

lithologies for direct sensing or outcrops, and the erroneous detection of spectrally composite spectral 

signatures, normally as a result of the mixing of pure end-member signatures of vegetation, soil, and 

regolith (Kemp et al., 2005; Campbell & Wynne, 2011). Indeed, it is worth noting that satellite remote 

sensing is not a replacement for direct fieldwork and laboratory studies. On the contrary, the best 

analysis of the results is reliably acquired from the amalgamation of diverse data and from analyses 

performed at different scales and perspectives. Hence, although satellite remote sensing is not a 

substitute for direct fieldwork and more traditional methods, it can provide additional and crucial 

information from new perspectives for preliminary geological investigations (Kemp et al., 2005). 

Albeit that remote sensing tools have been to a certain extent frequently utilized in various facets of 

geosciences in South Africa, with the notable exclusion of a handful of publications, there is an 

absence of research regarding its specific use in opaque iron oxide mineral exploration, especially in 

the Bushveld Complex. 

 

2.2. Geochemical and spectral reflectance properties of magnetite  

Magnetite is a crucial tool for paleomagnetism studies, as it carries the dominant magnetic signature 

in most igneous, metamorphic and sedimentary rocks (Wingate, 1998). Additionally, magnetite is 

also mined for its economic importance in the iron and steel industry (Legodi & de Waal, 2007). 

Minerals that do not transmit plane polarised light due to either absorption and or dispersion of light 

are classified as opaque minerals (Gurov et al., 2015; Putra et al., 2018). Sulphides and iron oxides 

(i.e. minerals with a metallic luster) often have an opaque diaphaneity (Putra et al., 2018). Unlike the 

exploration and detection of other iron oxides (Soe et al., 2005; Ciampalini et al., 2013; Li et al., 
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2016; Putra et al., 2018; Shirazi et al., 2018), less than a handful of studies have had some degree of 

success at mapping the lithological occurrence of the opaque mineral magnetite (Rajendran et al., 

2007; Raja et al., 2010; Izawa et al., 2019). These studies predominately made use of various 

computer image enhancement techniques such as colour compositing stretched ratio, thresholding 

statistical approaches, and principal component analysis (PCA).  

 

Magnetite (Fe3O4), is a ubiquitous, opaque, spinel group mineral. Magnetite forms in igneous, 

metamorphic, and sedimentary settings (Rajendran et al., 2007; Raja et al., 2010; Izawa et al., 2019). 

In magmatic deposits, magnetite is generally titaniferous, occurring in close association with 

pyroxene, olivine, and apatite, whereas in contact metamorphism, from rocks derived from 

ferruginous sediments, it occurs with garnet and metallic sulphides such as pyrite and chalcopyrite 

(Wechsler et al., 1984; Waychunas, 1991). Magnetite has the general formula of X2+Y2
3+O4, where 

the X and Y-sites denote divalent and trivalent cations, respectively (Dare et al., 2014). The X-sites 

predominately host Fe2+, Mg2+, Ca2+ and Mn2+, whilst the  Y-sites predominately host Si4+, Al3+, Ti4+, 

Cr3+, V5+, and Fe3+ elements (Dare et al., 2014). Trace elements found in the different sites indicate 

the provenance and conditions in which magnetite was formed (Dare et al., 2014). However, the 

regeneration of minerals during hydrothermal processes may modify magnetite, and hence 

consideration needs to be taken when using magnetite as a proxy for the genesis and formation of 

related deposits. 

 

The spectral reflectance of a rock unit at the visible and near visible wavelength depends on the 

composition of the outermost 100 μm material (Gupta, 2017), and is controlled to a large extent by 

the presence of weathering products which are ubiquitous to the magnetite bodies (which outcrop as  

very hard, generally dark, medium to coarse grains with euhedral to subhedral shapes) of the 

Roossenekaal area. Under reflected light, magnetite is isotropic (Legodi & de Waal, 2007; Rajendran 

et al., 2007). In the presence of water, magnetite weathers along its margins, altering to hematite and 

limonite, which have a low to high order birefringence. Because of the contamination with these 

minerals, the absolute spectral response may be correlated with the absorption bands of hematite and 

limonite. Typically, in weathered iron oxide products the Fe3+ charge transfer in the bond is 

responsible for the absorption at wavelengths shorter than about 0.55 μm. This charge transfer is 

responsible for the visible red colour which is characteristic of ‘iron staining’ (Rajendran et al., 2007; 

Gupta, 2017). Furthermore, ferric irons produce diagnostic spectral absorption near 0.7 μm and 1.0 

μm region of the electromagnetic spectrum due to electronic transitions, which may be of significance 

feature in remote sensing. 
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The spectral reflectance of magnetite has been extensively studied in the visible and near-infrared 

spectral range (Morris et al., 1985; Wagner et al., 1987; Cloutis et al., 2008; Izawa et al., 2019), but 

most studies used too few samples of magnetite to acquire a reliable spectral reflectance of magnetite 

(Morris et al., 1985; Wagner et al., 1987; Cloutis et al., 2008). According to Hunt, (1971) and Izawa 

et al. (2019), the spectral  signature of magnetite in the ultraviolet, visible, and near-infrared is akin 

to that of titanomagnetite and wüstite but distinct from other Fe-Ti oxides such as ilmenite, haematite, 

ulvospinel, maghemite, pseudobrookie, and armalcolite (indicated in Figure 4), suggesting the 

plausibility of the detection and mapping of magnetite using remote sensing techniques. Previous 

work by Hunt, (1971) focusing on the influence of grain size on the spectral signature of two 

magnetite, one titaniferous, and four grain size samples, yielded low spectral reflectances. This was 

an expected result of analysing an opaque mineral. This observed phenomenon was caused by the 

structural absorption of the incident light projected to the sensor by the fine magnetite grains. 

However, an increase in spectral reflectance was directly proportional to the increase in grain size 

(Hunt, 1971). 
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Figure 4: Comparison of magnetite spectral reflectance signature to other Fe-Ti oxides (Izawa et al., 

2019). 

2.3. Remote sensing classification algorithms 

 

The significant progress made in multispectral remote sensing has led to a vast variety of supervised 

and unsupervised classification algorithms evolving, with each algorithm used with the intent of 

accurately and efficiently detecting and classifying lithological features (Schetselaar et al., 2000;  

Inzana et al., 2003; Rowan & Mars, 2003; Kemp et al., 2005; Rowan et al., 2005; Fatima et al., 2013;  
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Babakan & Oskouei, 2014; Shirazi et al., 2018). Supervised classification, which entails the assigning 

of samples of identical pixels to classes that exhibit the same tonality, texture, and shape to each class 

has been met with tremendous success in geological mapping. Traditional supervised methods of 

classifying remote sensing data such as the Maximum Likelihood and Minimum Distance to Mean 

classification algorithm are commonly compared in terms of their predictive accuracies to more 

advanced classification algorithms such as Decision Trees, Fuzzy C-Mean, Support Vector Machines, 

and Artificial Neural Networks. The image classification algorithm Maximum Likelihood has wide-

ranging popularity in its application in remote sensing image classification (Jensen, 2005). The 

classification algorithm is based on a parametric approach that assumes a normal Gaussian 

distribution of the selected classes (Kavzoglu & Reis, 2008; Mondal et al, 2012). The Minimum 

Distance to Means classification algorithm is another common parametric classification algorithm, 

which classifies unknown pixels to the class with the mean arithmetically closest to them (Wacker & 

Landgrebe, 1972). 

  

Decision Trees, Fuzzy C-Mean, Support Vector Machines, and Artificial Neural Networks are just 

some of the few well-known non-parametric classification algorithms. The predominately used non-

parametric algorithms are Artificial Neural Networks and Support Vector Machines. Artificial Neural 

Networks are an artificial intelligence-based classification algorithm that simulates pattern 

recognition, identification, classification, and control system similar to biological neural networks 

(Haykin, 1994; Bachri et al., 2019). Unlike the Maximum Likelihood classification algorithm, 

Artificial Neural Networks can classify multi-modal or landcover types that do not assume a normal 

Gaussian distribution in spectral space. Support Vector Machines are a group of supervised 

classification algorithms that compare favourably with more established common remote sensing 

algorithms. Support Vector Machines are considered to be heuristic algorithms founded on statistical 

theory, used for classification and regression problems (Vapnik, 1999; Vapnik, 2013). The 

classification accuracy of Support Vector Machines may vary contingent on the selected kernel 

function and its parameters (Kavzoglu & Colkesen, 2009; Yu et al., 2012). 
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2.4. Remote sensing sensor properties  

To further increase the landcover discrimination ability of classification algorithms, various high-

resolution satellite sensors have been launched, with some having the capability of generating 

remote sensing imagery with a spatial resolution of 4 m or less in multispectral mode. Table 1 

briefly lists some characteristics of known satellites and sensors predominately used for lithological 

mapping and mineral detection.  

Table 1: Characteristics of satellite and sensors frequently used for lithological mapping and 

mineral detection. 

 

Spatial resolution specifies the dimensions of the satellite image pixels, i.e. the higher or finer the 

spatial resolution, the more detail the sensor is able to provide of the ground cover. The spatial 

resolution is contingent on the desired object of observation. The spectral resolution determines the 

number of spectral bands reflected radiance that can be collected by the sensor or the range of 

wavelengths a single band covers. The more bands a sensor has, the better equipped it is to identify 

and characterise natural materials (Congalton, 2001; Gupta, 2017).  

 

Radiometric resolution refers how fine a sensor divides up the radiance it receives in each band and 

therefore is an indicator of the amount of information is in contained in each pixel. The finer the 

radiometric resolution the greater the sensitivity of radiation the sensor is able to detect (Gupta, 

2017). However, owing to the difficulty and exorbitant costs of obtaining imagery with an extremely 

high resolution, it is often necessary to identify resolutions which are paramount for a project, in a 

process known as “trade-offs”. Either the spatial resolution is high, but the spectral and radiometric 

resolution are low or vice versa. Since the dimensions of the smallest magnetite bodies recorded for 

Satellite Sensor Launch Spectral resolution 
Spatial 

resolution (m) 

Country of 

ownership 

LANDSAT 
TM, 

MSS  
1976 

7 visible and  1 thermal IR band; 0.50-

12.5 µm spectral resolution  
30 - 80 USA 

SPOT HRV  1986 
3 visible and 1 IR band; 0.50-0.73 µm 

spectral resolution  
10 - 20 France 

RapidEye 
Jena-

Optronik 
2008 

 

4 visible and 1 IR band; with 0.44-0.88 

µm spectral resolution  

5 USA 

LANDSAT-7 ETM  1999 

 

8 visible and 1 thermal IR band; 0.45-

12.5 µm spectral resolution  

15 - 60 USA 

LANDSAT-8 
OLI, 

TIRS 
2013 

 

9 visible, 1 and thermal  IR band; 0.433-

12.50 µm spectral resolution  

15, 30, 100 USA 

SPOT-5 
HRS, 

HRG  
2002 

4 visible and 1 IR band; 0.50-0.71 µm 

spectral resolution  
10, 20 France  

TERRA 

(EOS AM-1) 
ASTER 1999 

14 visible and 5 IR bands; 0.53-11.65 

µm spectral resolution  
15 - 90 USA 
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this study were approximately 3 m (7.07 m2), a sensor with spatial resolution of 3 m with a fine 

spectral and radiometric resolution to distinguish and detect the slightest changes in radiance from 

magnetite and other geological material was required. However, as conveyed in Table 1, it is not 

plausible to have a sensor with high spatial, spectral, and radiometric resolution. 

 

However, for this study, offerings from an American based private company provided the some of 

the best trade-offs for the detection of magnetite relative to the sensor in Table 1. Planet Team (2018), 

offers three earth observation products: a Basic Scene product, an Ortho Scene product, and an Ortho 

Tile. Planet Team (2018) has a complete constellation of over 150 satellites imaging the entire surface 

of the earth every day with a spatial resolution of 3 m, a spectral resolution of 4 bands (blue, green, 

red and NIR), and a radiometric resolution of 16-bits, with a position accuracy of less than 10 m 

residual standard error (RSE) and a daily revisit capability. 

 

This study has mainly employed the use of supervised classification algorithms based on awareness 

of previous successes and performances. The remote sensing algorithms that were used in this study 

are Maximum Likelihood, Minimum Distance to Means, Artificial Neural Networks, and Support 

Vector Machines. Along with detecting the lithological occurrence of magnetite on the Eastern Limb 

of the Bushveld Complex, this study has sought to determine the overall efficiency of the different 

classification algorithms with the PlanetScope imagery. The accuracy of each algorithm was assessed 

using the collected reference data. User’s and producer’s accuracy, along with errors of commission 

and omission were used as comparative indices of measure of the efficiencies of each of the different 

supervised classification algorithms.  

 

As advanced data analysis tools, for this particular study we expect advanced classification algorithms 

(Artificial Neural Networks and Support Vector Machines) to be more equipped for the detection and 

mapping of magnetite, able to map the different classes more accurately than common traditional 

classification algorithms (Maximum Likelihood and Minimum Distance to Means), and to depict a 

more realistic representation of the different classes on the ground. Advanced classification 

algorithms have been generally noted to outperform common traditional classification algorithms, 

especially with projects that have a limited number of training samples for each of the input classes 

(Otukei & Blaschke, 2010; Szuster et al., 2011; Mondal et al., 2012; Omeer et al., 2018). This 

expectation is contingent on the high accuracy of advanced classification algorithms when the training 

data is randomly dispersed across the region under investigation (An et al., 1994; Omeer et al., 2018; 

Singer & Kouda, 1996, 1997b).   
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Chapter 3: Data and Methods 

3.1. Study area 

As noted by Molyneux (1974),  Willemse & Haughton (1964), and Scoon & Mitchel (2012), the 

magnetite bodies observed and reported in the Upper Zone of the Eastern Limb of the  Bushveld 

Complex predominately occur in the Roossenekal area. The Roossenekal area is situated at 700 to 

1100 m.a.s.l and is characterised by undulating to flat plains dominated by Bushveld vegetation, an 

intermediate stage vegetation between Shrubveld and Woodland (Van Rooyen & Bredenkamp, 1996; 

Low & Rebelo, 1998; Rutherford et al., 2006). Roossenekal and the surrounding area host a diverse 

amount of plant species over a short distance, which is a trait similar to the Cape Floristic Kingdom 

(Rutherford et al., 2006). The diverse geology of the area could be the contributing factor to the floral 

diversity. Although, the Roossenekal area is situated in close proximity to the north-eastern 

Drakensberg Escarpment, which is cool and characterised by copious amounts of rainfall, the 

Roossenekal lies in a semi-arid savanna within a warm and dry valley. Roossenekal has a mean annual 

rainfall of 400 mm and temperatures ranging from -4℃ to 38℃ (Van Rooyen & Bredenkamp, 1996; 

Siebert et al., 2002a, 2002b). 

 

3.2. Data description and pre-processing 

The PlanetScope Analytic Ortho Tiles used for the creation of the thematic map of the study site and 

for the detection of magnetite were sourced from Planet Explorer (Planet Team, 2018), for the date 

03 December 2018, which had the highest image quality and the lowest land and scene cloud cover 

closest to the date of sampling. Furthermore, the choice of the PlanetScope Analytic Ortho Tiles was 

contingent on the vegetation cover on the chosen magnetite sites (explained in the next section). The 

metadata for the set of PlanetScope Analytic Ortho Tiles is selectively displayed in Table 2, and the 

parameters for the PlanetScope Sensor are given in Table 3. The PlanetScope Analytic Ortho Tiles 

are corrected for geometric-, sensor-, and radiometric interferences and have been aligned to a 

cartographic map projection (UTM WGS 84). Image mosaicking was applied, using the pixel-based 

mosaicking function, for the ortho-tiles covering the area of interest. To better extract the different 

landcover types or classes, the false-colour composition of the mosaicked ortho-tile image was used 

(Gupta, 2017; Omeer et al., 2018).  
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Table 2: Metadata for the PlanetScope images. 

Metadata PlanetScope Analytic Ortho Tiles 

Acquisition date  2018/12/03 

Number of rows 4622 

Number of columns 9070 

Nadir/Off Nadir Nadir 

Day/Night indicator Day 

Land cloud cover 0.0 

Scene cloud cover 0.0 

Image quality 9 

Geodetic datum WGS84 

Projection UTM Zone 35S 

Resampling Kernel  Cubic Convolution 

 

 

Table 3: PlanetScope sensor parameters. 

Parameters Description 

Data type Optical 

Sensor type Multispectral 

Spatial resolution (m) 3 

Number of analytical bands 4-band multispectral image (blue, green, 

red, near-infrared) 

Revisit Time Daily at nadir 

Ground sample distance 3.7 m (average at reference altitude 475 

km) 

Pixel size (m) 3.125 

Bit Depth Analytic (DN): 12-bit Analytic (Radiance 

- W m-2 sr-1 μm-1): 16-bit 

Positional Accuracy Less than 10 m RMSE 

 

3.3. Field sampling 

The regions of interest for the different classes of training and validation data used for this study were 

collected at known or previously visited localities on the 19 March 2019 to 23 March 2019. A variety 

of localities covering the different types of magnetite and landcover types were visited, and those 

which were accessible by road and were well exposed (i.e. not covered by vegetation and or soil- 

especially for magnetite) were chosen. Each region of interest for each class were sampled a minimum 

of 300 m apart, to avoid spatial autocorrelational. Although seasonal vegetation changes may have 
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influenced some activities such as farming in the area, fieldwork was constrained by logistical and 

scheduling constraints. 

 

Global Positioning System (GPS) coordinates covering the circumference of the area of interest were 

collected together with a brief description of the setting that the land-cover type was found in, as well 

as a sample number. The GPS data collected was converted to ground reference areas or polygon 

delineations of the shape of each of the areas of interest, using QGIS 2.18 (QGIS Development Team, 

2015). The ground reference data was used to train the algorithms used in ENVI and Python 

(Continuum Analytics, 2019). Accessibility to certain areas of interest and time were the main 

limitations in attaining a vast array of ground reference data. Hence, auxiliary GPS coordinate data 

was acquired from Google Earth imageries. The 120 areas of interest were combined into seven 

classes (Agricultural land, Grassland and trees, Residential areas, Waterbodies, Mining Activities, 

Regolith, and Magnetite) and divided into training data and validation data (as indicated in Figure 5 

and 6 (for magnetite)). 
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Figure 5: Map of the study area (Roossenekal demarcated in a black rectangle) with the sampled 

landcover types in the Eastern Limb of the Bushveld Complex, with (Planet Team, 2018). 
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3.4. Data analysis  

The data analysis for this study comprised of two parts. To begin, the image was classified using 

supervised classification techniques to produce thematic landcover maps. Thereafter, the results of 

the different supervised classification systems were assessed to determine the accuracy. 

 

3.4.1 Classifications 

Image classification categorizes all the pixels in a remotely sensed image into specific landcover 

classes or areas of interest. Classified data can subsequently be used to produce a thematic map, which 

is considered the most important aspect of digital image analysis. A vast variety of pixel-based 

classification algorithms have been developed and utilized in the last decades for the analysis of 

Figure 6: Sampled magnetite sites around Roossenekal that were sampled. The red dots indicate the magnetite 

sites and the white dots indicate the magnetite that was used for the validation or testing. 
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remotely sensed data (Otukei & Blaschke, 2010). Pixel-based classification approached employ the 

usage of spectral signatures of individual pixels and algorithms to classify each pixel to a thematic 

class (Rawat et al., 2013).  

 

Classification algorithms can be categorized as either common or advanced. The most notable and 

most often used common classification algorithms include the K-means, Iterative Self-Organizing 

Data Analysis (ISODAT), Maximum Likelihood classifier, Minimum Distance to Means (Richards, 

1999; Sabins, 1999; Lillesand & Kiefer, 2000; ERDAS, 2005; Otukei & Blaschke, 2010; Mather & 

Koch, 2011), while advanced algorithms include Support Vector Machines, and Artificial Neural 

Networks classifier (Foody, 1996; Kim & Pang, 2003; Mitra et al., 2004; Verbeke, Vancoillie et al., 

2004). However, it is worth noting that there is no universal classification method that is efficient 

with all regions, therefore choosing the correct method is essential in ensuring better accuracy (Herold 

et al., 2008). Several imperative considerations govern the physiognomy of landcover information, 

which include purpose, thematic content, scale, data, and processing and analysis algorithms (Cihlar, 

2000). 

 

3.4.2 Supervised classification 

Not all supervised image classification algorithms could be evaluated. Some of the common 

traditional and advanced algorithms were used and evaluated, namely: Maximum Likelihood 

classifier, Minimum Distance to Means, and the advanced classification algorithms (Support Vector 

Machines, and Artificial Neural Networks classifier). In the section that follows, a brief explanation 

of the four algorithms will be explained. 

  

The Maximum Likelihood classification algorithm has been the most frequently used data driven 

parametric classifier in remote sensing for data classification (Foody et al. 1992; Kavzoglu & Reis, 

2008; Otukei & Blaschke, 2010; Jia et al., 2011; Mondal et al., 2012). The Maximum Likelihood 

classification algorithm assumes that a hyper-ellipsoid decision volume can be utilized in 

approximating the profile of the data clusters. Additionally, for a given unidentified pixel, the 

likelihood or probability of membership in each class is predetermined using the covariance matrix 

and the prior probability (i.e. the mean feature vectors of the classes (Chien, 1974). For normally 

distributed data, the Maximum Likelihood classification algorithm provides better predictive 

accuracy than the other parametric classifiers; however, for data that is not normally distributed the 

predictive accuracy may be unsatisfactory (ERDAS, 2005; Otukei & Blaschke, 2010). 
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The Minimum Distance to Means classification algorithm classifies a pixel by calculating the 

arithmetic distance between itself and each of the other different landcover categories. The pixel is 

subsequently allocated to the class with the shortest distance to the mean, however, when the relative 

distances between the selected pixels and each of the landcover classes is  higher than the average 

distance determined by the analyst, the pixel is categorized as unidentified (Mather & Tso, 2016). 

Notably, the Minimum Distance to Means classification algorithm does not take into account the 

different degrees of variance within the spectral reflectance data, i.e. the close proximity of spectral 

classes may inadvertently lead to higher variances. Consequently, the Minimum Distance to Means 

classification algorithm has often been observed not to correctly classify the landcover features by 

Al-Ahmadi & Hames (2009), Murtaza & Romshoo (2014), Walton (2015), and Marapareddy et al 

(2017). 

  

An artificial neural network is a biologically inspired and adaptive algorithm that is designed to 

recognise patterns that are numerical, contained in vectors and real-world data (Vapnik, 1999; 

Brown et al., 2000; Nagy et al., 2002; Verbeke et al., 2004; Rodriguez-Galiano et al. 2015). The 

algorithm consists of neurons, the simple processing elements, reciprocally connected by links 

associated with numeric coefficients which indicate the relative strength of each connection (Brown 

et al., 2000). Once the training data has been assigned into the algorithm, the information is 

disseminated throughout the network in the form of numeric coefficients (i.e. the weight values) 

that have been altered as a result of learning. Although artificial neural networks have been used in 

other facets of exploration geology, such as petroleum exploration (Osborne, 1992; Taggart & 

Gedeon, 1996), few studies have described its application in mineral surveys (Gilles et al., 1992; 

Singer & Kouda, 1996, 1997a, 1997b) or geological mapping (An et al., 1994). In this study the 

artificial neural network classification algorithm was run with a training threshold contribution of 

0.5 and 1000 training iterations (to avoid overfitting). The training threshold contribution adjusts 

the weight between nodes and reduces the amount of error from the nodes. A 0.5 training threshold 

contributor lead to a better image classification. 

The Support Vector Machine supervised classification algorithm is a data-driven technique that is 

based on statistical learning theory (Vapnik, 1999), and has been further developed in many other 

classification applications in the past decade. The algorithm aims to determine the location of decision 

boundaries that optimizes the greatest separation between the different landcover classes (Pal & 

Mather, 2005; Vapnik, 1999; 2013). Considering the example of two classes which are linearly 

separated, the Support Vector Machine selects the linear decision boundary that reduces the 
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generalization error and leaves the greatest distance from the hyperplane or margin between the two 

classes (i.e. segregates and leaves the largest distance between the classes and the hyperplane) 

(Vapnik, 1999; 2013). The data points contiguous to the hyperplane that are used to measure the 

distance from the hyperplane or margin are termed ‘support vectors’. The Support Vector Machine 

creates and uses the hyperplane that maximizes the margin, whilst minimizing the generalization error 

or the number of misclassifications (Pal & Mather, 2005). The choice of kernel function of Support 

Vector Machine classification algorithm (linear kernel, polynomial kernel, radial basis function 

kernel, and sigmoid kernel) is integral to its accuracy training and classifying remote sensing imagery. 

In this study, the radial basis function kernel was used because the remote sensing data was not 

linearly distributed. 

 

3.4.3 Algorithm training 

The image processing procedure involves a series of operations to classify the selected satellite 

imagery. QGIS (QGIS Development Team, 2015) was used to manually delineate the landscape into 

polygons of homogenous training sites. ENVI 5.5 software (Exelis Visual Information Solutions, 

2017) and Python (Continuum Analytics, 2019) were used in all the above mentioned pre-processing, 

processing and post-processing steps. 

  

The first phase of processing required the categorization of the different pixels into information 

classes or training sites based on reflectance characterization. Once the statistical characterization or 

signature analysis had been completed for each landcover class, the image was classified by 

inspecting the spectral reflectance of each pixel and determining which of the training sites or sampled 

landcover spectral signatures it resembles most. For each of the 7 different training sites (Agricultural 

land, Grassland and trees, Residential areas, Waterbodies, Mining activities, Regolith, and Magnetite) 

a minimum of six areas of interest (AOI) were generated. For each of the classes, a homogenous 

spectral signature was acquired from different localities on the map depicting the same training site. 

These parameters for training the algorithms were carefully digitized since they are very sensitive 

and strongly influence the algorithms' predictive accuracy (Rodriguez-Galiano et al., 2015). 

  

Training data, as well as validation data, was digitized in QGIS (QGIS Development Team, 2015) 

using a false composite of PlanetScope Analytic Ortho Tile band 1 (red), band 2 (green), band 3 

(blue), and band 4 (near-infrared) using visual inspection, field observations of each site, Google 

Earth imagery from 2018 (Google Earth, 2018), and an ancillary landcover map from ArcGIS Online 
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to assign pixels to each of the six out of seven classes (magnetite not included). The shapefile 

containing the spectral signatures of the training-data and validation-data for all classes was 

subsequently imported to ENVI (Exelis Visual Information Solutions, 2017) to create regions of 

interest (ROIs). The pixel count of each of the ROIs were log transformed (for the data to be normally 

distributed and to meet algorithm assumptions) and used in the Maximum Likelihood, Minimum 

Distance, and Artificial Neural Networks classification algorithms. Untransformed ROIs were used 

for Support Vector Machines classification algorithms to catalogue the range of spectral data in the 

entire satellite image. The classified images were further smoothed using the clump classes function 

with a dilate and erode kernel value of three for both columns and rows to reduce the number of 

misclassified pixels. 

 

3.5. Algorithm evaluation  

The assessment of the accuracy and fitness of image classification algorithms has become a central 

component of studies that have sought to compare the abilities of the different algorithms in 

discriminating different classes (Congalton et al., 1983; Congalton, 2001; Congalton & Green, 2002; 

Mather & Koch, 2011; Mather & Tso, 2016).The aim of performing an accuracy assessment is to 

assess the fitness for use of the classified data. The classified map is compared to reference points 

where the classes of the landcover have been already been determined. The accuracy of the 

classification is then calculated. Most often the error matrix technique is used as a method for 

assessing the accuracy and fitness of the thematic map for a particular purpose. Accuracy assessments 

determines the quality and accuracy of the information consequent from remotely sensed data. The 

accuracy of the thematic map needs to be evaluated so that the ultimate user is made conscious of any 

potential problems that may be associated with the use of the thematic map. The end-product of the 

image classification process is a landcover or thematic map.  

 

As previously introduced, an error matrix is a matrix that depicts the number of pixels or sample units 

that were correctly classified to a particular category in comparison to pixels or sample units 

belonging to another particular category being assigned to a different category or class (Congalton & 

Green, 2002). The columns of the error matrix represent the reference data or validation data 

(normally generated from ground observations and measurements and or ancillary remote imagery), 

and the rows represent the data attained from the classification of the remotely sensed imagery. The 

error matrix not only depicts the map accuracy but the error as well (Congalton, 2001; Congalton & 

Green, 2002). Commission errors (Type II error) occur when pixels or sampling units are included 
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into a category that they do not belong to, and omission errors (Type I error) are the exclusion of 

pixels or sampling units from the correct category (Congalton & Green, 2002). Besides clearly 

depicting the errors of commission and omission and overall accuracy, the error matrix shows both 

the producer’s accuracy (the accuracy of the map relative to the map maker) and the user’s accuracy 

(the accuracy of the map from the user’s point of view) (Story & Congalton, 1986). 

 

To authenticate the landcover classification performance on the PlanetScope Analytic Ortho Tile, the 

classification algorithms were assessed using visual observations (using a reference map) and 

quantitative classification accuracy indicators. The overall classification algorithm accuracy, 

producer’s accuracy, user’s accuracy, and Kappa statistics were calculated in ENVI (Exelis Visual 

Information Solutions, 2017) for quantitative classification performance analysis. The Kappa statistic 

is a discrete multivariate technique (similar in function as the Chi-square analysis), used to evaluate 

the accuracy of a classification by comparing the level of agreement between the training data and 

the reference data (Cohen, 1960). The Kappa coefficient (attained from the Kappa statistic) is a value 

ranging from -1 to 1. A Kappa value 1 implies that there is a perfect agreement between the training 

and the reference or validation data and values less than 1 are indicative of less than perfect agreement 

(Cohen, 1960; Congalton & Green, 2002). The following formula was used to compute the Kappa 

coefficient (k):  
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 denotes the computational formula for the overall 

accuracy between classified remote sensing data and the validation data. 

Sample variance for each classification algorithm was calculated using the delta method as follows:  
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Additionally, the significance of each classification algorithm was tested using the Z statistics denote 

by the following formula: 

 

1

1)(ˆVar


 


          (3) 

Where 1 denotes the estimate of the Kappa coefficient of the chosen algorithm and 1(ˆ )Var   the 

corresponding variance calculated for the algorithm (Ḱ1). The classification error matrices were 

further subjected to a pairwise comparison analysis, to determine if any two error matrices were 

significantly dissimilar from one another using the subsequent formula:  

1 2

1 2
ˆ ˆ) )( (Var Var

 
 

  
                   (4) 

The critical value is 1.96 at a 95% confidence level. Therefore, if the Z-value for error matrix is 

greater than 1.96 the error matrix or matrices are significantly better than a random classification or 

significantly dissimilar from each other, respectively (Congalton & Green, 2002).   
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Chapter 4: Results  

Common and advanced algorithms were used to classify satellite imagery of the Eastern Limb of the 

Bushveld Complex and to detect and map magnetite. Tables 4 to 11 illustrate the confusion matrix of 

common or traditional and advanced classification algorithms and their respective accuracies and 

errors. Figures 7 to 10 convey the landcover classification of the seven classes using the different 

algorithms. Each is depicted in a different colour. Magnetite is depicted in dark shade of blue in all 

the classification algorithms. 

 

4.1 Evaluating the performance of the classification algorithms 

In this section we computed the confusion matrix for all the classification algorithms discussed, using 

a total of 120 AOIs points for the PlanetScope Ortho-tile image. The user’s accuracy is an indicator 

of how well the training data was accurately distinguished. On the other hand, the producer’s accuracy 

is an indicator of the model’s ability to predict itself. In the case of the Maximum Likelihood 

classification algorithm, the algorithm that had the highest accuracy (Table 4 and Figure 7) conveyed 

a clearer distinction between classes compared to the mixture of classes noted in Figures 8, 9 & 10. 

Irrespective of the Maximum Likelihood classification algorithm illustrating better class 

categorization, a large proportion of the mining activity pixels were incorrectly classified as 

agricultural land (Table 4). However, this observation was not merely limited to the Maximum 

Likelihood classification algorithm, but to all image classifications (Minimum Distance to Means, 

Artificial Neural Network, and Support Vector Machine classification algorithms (Table 6, 8 & 10)). 

Statistical analyses revealed that the four classification algorithms performed better than a random 

classification, with each classification attaining a Z-value significantly higher than 1.96 at a 95% 

confidence level. The commission errors for mining activities (Table 5, 7, 9 & 11) were higher in all 

the discussed classified algorithms, indicating misclassifications for the class. This is an indication of 

the similarity in the spectral reflectance of mining activities and agricultural land. Agricultural land, 

water bodies, and grassland and trees were seldom misclassified in the thematic maps. 

 

The pairwise comparison test performed using the error matrices of the classification algorithms 

indicated that the Maximum Likelihood classification algorithm was the most significantly different. 

The Maximum Likelihood classification algorithm’s producer’s accuracy was higher than all the 

other classification algorithms for magnetite, with its prediction percentage of 76.41. Additionally, 

the algorithm was able to accurately distinguish magnetite 88.66% of the time. This indicates that 

magnetite can be identified with a high level of accuracy. Most notably, the Minimum Distance to 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 29 

Means, Artificial Neural Network, and Support Vector Machine classification algorithms had a higher 

commission and omission errors for magnetite (Table 7, 9 & 11), indicating the algorithms’ inability 

to accurately classify magnetite. From the results in Tables 3 and 9, it is understood that the Maximum 

Likelihood and Support Vector Machine- based classification algorithms are the two supervised 

algorithms that give the most accurate overall classification accuracy. In terms, of its ability to predict 

magnetite, the Minimum Distance to Means classification algorithm was ranked as second best with 

prediction accuracy of 42.15% and a low ability to distinguish magnetite (18.20%). 

  

The Minimum Distance to Means and Support Vector classification algorithms were accurate in 

classifying most water bodies, residential areas, and grassland and trees, as is evident from Table 6 

& 10 and Figures 8 & 10. The main difference between the Maximum Likelihood (Figure 7) and 

Minimum Distance to Means (Figure 8) classification landcover map is the large proportion of the 

landscape that is classified as regolith, which almost completely envelops areas that are agricultural 

land, grassland and trees, mining areas, and residential areas, in the Minimum Distance to Means 

classification. The Minimum Distance to Means and Support Vector classification algorithms, on the 

other hand, classified some portions of grassland and trees as mining areas. Subsequently, the 

Minimum Distance to Means and the Support Vector classification algorithms have some more errors 

of commission and errors of omission than the Maximum Likelihood classification algorithm, evident 

from Tables 4, 6 & 10. Similar to both Minimum Distance to Means and the Support Vector 

classification algorithms, the Artificial Neural Network classification algorithm illustrated a 

landscape disproportionally classified by one or two landcover classes, in this case, agriculture and 

grassland and trees. This inadvertently gave the two classes a false high accuracy.  
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Table 4: Confusion matrix for the Maximum Likelihood classification algorithm. The overall accuracy was 84.58%, the Kappa coefficient was 

0.79 and the Z-value was 731.16. 

Ground Truth (Percent) 
      

Class Agricultural 

land 

Grassland and 

trees 

Magnetite Mining activities Regolith Residential 

areas 

Waterbody Total 

Unclassified 0 0 0 0 0 0 0 0 

Agricultural land 93,35 0 0 77,16 0,52 2,99 0 47,08 

Grassland and trees 0 96,2 9,72 0 0,41 0 0 6,24 

Magnetite 0 0 76,41 0 0 0 1,6 2,72 

Mining activities 0 0,19 10,83 8,02 3,56 1,76 0,11 1,92 

Regolith 0,97 0,16 3,04 0,01 92,9 0 0 17,79 

Residential areas 5,68 3,45 0 14,8 2,61 95,25 0 5,27 

Waterbody 0 0 0 0 0 0 98,29 18,98 

Total 100 100 100 99,99 100 100 100 100 

 

 

 

 

Table 5: Summary of commission and omission error and producer's and user's error for the Maximum Likelihood classification algorithm. 

Class Commission (%) Omission (%) Producer's accuracy 

(%) 

User's accuracy 

(%) 

Agricultural land 18,09 6,65 93,35 81,91 

Grassland and trees 6,13 3,8 96,2 93,87 

Magnetite 11,34 23,59 76,41 88,66 

Mining activities 54,54 91,98 8,02 45,46 

Regolith 2,86 7,1 92,9 97,14 

Residential areas 88,28 4,75 95,25 11,72 

Waterbody 0 1,71 98,29 100 
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Figure 7: Land cover classification of study area using the Maximum Likelihood 

classification algorithm. Different colours indicate different land class features. Magnetite is 

shown in dark shade of blue. The R555 is shown as the black line on the map, to allow 

correlation with Figure 5 & 6. 
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Table 6: Confusion matrix for the Minimum Distance to Means classification algorithm. The overall accuracy was 71.82%, the Kappa 

coefficient was 0.62 and the Z-value was 471.40. 

 

 

 

 

 

Table 7: Summary of commission and omission error and producer's and user's error for Minimum Distance to Means classification algorithm. 

Class Commission (%) Omission (%) Producer's accuracy (%) User's accuracy 

(%) 

Agricultural land 24,56 23,53 76,47 75,44 

Grassland and trees 33,89 0,47 99,53 66,11 

Magnetite 81,8 57,85 42,15 18,2 

Mining activities 77,05 87,09 12,91 22,95 

Regolith 23,34 37,78 62,22 76,66 

Residential areas 42,89 0 100 57,11 

Waterbody 0,42 0,49 99,51 99,58 

Ground Truth (Percent) 
      

Class Agricultural land Grassland and trees Magnetite Mining activities Regolith Residential areas Waterbody Total 

Unclassified 0 0 0 0 0 0 0 0 

Agricultural land 76,47 0 11,92 79,47 6,75 0 0 41,88 

Grassland and trees 4,64 99,53 7,94 0 5,02 0 0 9,16 

Magnetite 12,88 0,47 42,15 2,69 1,29 0 0,49 7,31 

Mining activities 0,36 0 0,35 12,91 24,52 0 0 6,13 

Regolith 5,6 0 35,05 0,96 62,22 0 0 15,1 

Residential areas 0,05 0 0 3,96 0,19 100 0 1,14 

Waterbody 0 0 2,6 0 0 0 99,51 18,98 

Total 100 100 100,01 99,99 99,99 100 100 99,7 
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Figure 8: Land cover classification of study area using the Minimum Distance to Means 

classification algorithm. Different colours indicate different land class features. Magnetite is 

shown in dark shade of blue. The R555 is shown as the black line on the map, to allow 

correlation with Figure 5 & 6. 
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Table 8: Confusion matrix for the Artificial Neural Network classification algorithm. The overall accuracy was 62.05%, the Kappa coefficient 

was 0.47 and the Z-value was 345.90. 

 

 

 

 

Table 9: Summary of commission and omission error and producer's and user's error for the Artificial Neural Network classification algorithm. 

Class Commission 

(%) 

Omission (%) Producer's accuracy (%) User's accuracy 

(%) 

Agricultural land 31,83 0,7 99,3 68,17 

Grassland and trees 35,42 0 100 64,58 

Magnetite 95,76 87,17 12,83 4,24 

Mining activities 58,97 59,66 40,34 41,03 

Regolith 0 100 0 0 

Residential areas 0 100 0 0 

Waterbody 0 47,45 52,55 100 

Ground Truth (Percent) 
      

Class Agricultural 

land 

Grassland and 

trees 

Magnetite Mining activities Regolith Residential 

areas 

Waterbody Total 

Unclassified 0 0 0 0 0 0 0 0 

Agricultural land 99,30 0 0,24 59,66 67,38 18,99 0 60,18 

Grassland and trees 0,61 100 53,91 0 7,35 2,99 0 9,42 

Magnetite 0 0 12,83 0 0 0 47,33 9,54 

Mining activities 0,1 0 33,02 40,34 25,28 78,02 0,12 10,7 

Regolith 0 0 0 0 0 0 0 0 

Residential areas 0 0 0 0 0 0 0 0 

Waterbody 0 0 0 0 0 0 52,55 10,15 

Total 100,01 100 100 100 100,01 100 100 99,99 
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Figure 9: Land cover classification of study area using Artificial Neural Network 

classification algorithm. Different colours indicate different land class features. Magnetite is 

shown in dark shade of blue. The R555 is shown as the black line on the map, to allow 

correlation with Figure 5 & 6. 

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 36 

Table 10: Confusion matrix for the Support Vector Machine learning algorithm. The overall accuracy was 80.90%, the Kappa coefficient was 

0.73 and the Z-value was 606.60. 

 

 

 

Table 11: Summary of commission and omission error and producer's and user's error for the Support Vector Machine learning algorithm. 

 

   

                  Ground Truth (Percent)         

Class 

Agricultural 

land Grassland and trees Magnetite 

Mining 

activities Regolith Residential areas Waterbody Total 

Unclassified 0 0 0 0 0 0 0 0 

Agricultural land 97,20 0 0 97,51 12,49 14,7 0 53,19 

Grassland and trees 0 100 12,79 0 2,33 0 0 6,92 

Magnetite 0 0 16,12 0 0 0 1,19 0,74 

Mining activities 0 0 70,41 0,34 6,79 13,09 0,14 3,63 

Regolith 2,8 0 0,68 2,15 78,39 0 0 15,99 

Residential areas 0 0 0 0 0 72,21 0 0,47 

Waterbody 0 0 0 0 0 0 98,67 19,06 

Total 100 100 100 100 100 100 100 100 

Class Commission (%) Omission (%) Producer's accuracy 

(%) 

User's accuracy (%) 

Agricultural land 12,51 2,8 97,2 75,49 

Grassland and trees 12,08 0 100 87,92 

Magnetite 31,09 83,88 16,12 68,91 

Mining activities 98,99 99,66 0,34 1,01 

Regolith 8,84 21,61 78,39 91,16 

Residential areas 0 27,79 72,21 100 

Waterbody 0 1,33 98,67 100 
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Figure 10: Land cover classification of study area using Support Vector Machine learning 

algorithm. Different colours indicate different land class features. Magnetite is shown in dark 

shade of blue. The R555 is shown as the black line on the map, to allow correlation with 

Figure 5 & 6. 
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 Chapter 5: Discussion 

Although multispectral and hyperspectral imagery are two widely used components of remote 

sensing for lithological discrimination and classification, obtaining appropriate hyperspectral 

imagery for mineral and geological mapping is challenging because of the high costs and 

intricacy of the treatment associated with hyperspectral remote sensing (Ge et al., 2018). 

Hence, the amalgamation of high spatial multispectral remote sensing data with reliable 

textural and reference data is very effective in attaining useful results. 

  

This project aimed to map magnetite bodies using common and advanced classification 

algorithms on the Upper Zone of the Eastern Limb of the RLS and to compare and contrast the 

performance of common classification algorithms over the advanced classification algorithms. 

We had expected advanced classification algorithms to be better equipped than common 

traditional classification algorithms for the detection and mapping of magnetite owing to the 

algorithms’ advanced data analysis tools, and to depict a more realistic classification of the 

different classes. 

 

Of the four classification algorithms outputs accuracies evaluated in this study, the Maximum 

Likelihood classification algorithm performed best in the overall prediction accuracy of all 

seven classes (with an overall accuracy of 84.58%) and was the algorithm most fit for the 

detection and mapping of magnetite (with a producer’s accuracy of 76.41% and a user’s 

accuracy of 88.66%) in the Eastern Limb of the Bushveld Complex. The result was not in 

accordance to the expectations of the study; additionally this result was in contrast to other 

studies that had compared the performance of common and advanced classification algorithms 

(Pal & Mather, 2005; Joevivek & Chandrasekar, 2010; Otukei & Blaschke, 2010; Yu et al., 

2012; Omeer et al., 2018). The aforementioned studies found that advanced classification 

algorithms (Support Vector Machines and Artificial Neural Networks) better performed and 

provided higher accuracies than common traditional classification algorithms (Maximum 

Likelihood and Minimum Distance to Means classification algorithm) in terms of classifying 

independent validated classes or landcover categories.  

 

Though the other three algorithms (Minimum Distance to Means, Artificial Neural Networks, 

and Support Vector Machines) did not yield acceptably accurate results for the detection of 

magnetite, their overall accuracies were unexpectedly high. There are two plausible factors that 
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may have accounted for the high overall accuracy levels in all three classification algorithms 

in this study. First, and the most noteworthy, is the prevalence of extensive and easily 

differentiable classes (e.g. grassland trees, agricultural area, and waterbodies), which 

indubitably contributed to the consistently high overall accuracies. The spatial limitation of the 

other classes relative to the aforementioned classes with a greater spatial capacity (i.e. 

grassland and trees, agricultural areas, and waterbodies) contributed to a high overall 

performance values or scores by curbing both the amount and spectral diversity of the pixels 

belonging to the spatially constrained classes (e.g. mining areas, residential areas and 

magnetite). The later mentioned factor likely led to the overfitting of certain other classes noted 

in Figures 8 & 9. Lastly, single developed classes were used in this study, which encompassed 

some landcover pixels being categorized as residential areas, despite including roads and other 

non-residential buildings.  

 

The Maximum Likelihood and the Support Vector Machine classification algorithms were the 

only algorithms with a Kappa value above 70%, with both achieving an overall accuracy of 

over 80%, which is an impressive result according to (Foody, 2008). However, it must be noted 

that the overall accuracy of the Support Vector Machine classification algorithm was relatively 

higher than the other classification algorithms (apart from the Maximum Likelihood 

classification algorithm), owing to the fact that the majority of non-geological classes with the 

highest number of pixels were the pixels that had the highest accuracies (e.g. agricultural land, 

water bodies, regolith, and grassland trees). Since the overall accuracy formula is based on the 

number of pixels of each class, classes with a high pixel count are likely to positively skew the 

overall accuracy. In fact, with the high pixel count classes removed, the Support Vector 

Machine classification algorithm has a comparatively small overall accuracy of 20.95%. In 

comparison, with the removal of the non-geological classes, the Maximum Likelihood 

classification algorithm attained an overall accuracy of 64.35%. Szuster et al. (2011) found the 

Support Vector Machine classification algorithm to be the best classification algorithm for 

separating man-made infrastructures from those of nature, irrespective of the similarity in 

spectral signatures. The simplification of the different validated classes or landcover categories 

in Support Vector Machines classification algorithms, should have made it easier to develop 

hyperplanes and therefore to detect and discriminate the different classes.  
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Despite prior successes in lithological mapping, Support Vector Machine and Artificial Neural 

Network classification algorithms were not able to accurately detect exposed magnetite bodies 

in this study. This may have been in part due to the spectral resolution of the imagery, the 

heterogeneity of the chemical mineralogical composition of the mining areas at the sub-pixel 

level, and algorithm high bias (when algorithms are underfitted, i.e. not having enough features 

for the target outputs). However, high bias algorithms do not benefit from more training data, 

but, they may benefit from more features or training data. The heterogeneity of chemical 

composition may have affected the resultant spectral purity of magnetite through the intimate 

or non-linear spectral combination of the spectra of end-members (Gupta, 2017). Other mineral 

or oxides (such hematite and limonite) found in association with weathered magnetite in 

magnetite bodies, may have contaminated the spectral response of magnetite, causing it to be 

correlated with the absorption bands of hematite and limonite.  

 

As previously found by Hunt (1971), the increase in the size of magnetite grains equates to an 

increase in the reflectance of incident photons of light and absorption features. The different 

spectral signature of magnetite, owing to an increase in spectral reflectance may have led to 

some magnetite bodies being misclassified. Regardless of the rigorous pre-processing, the 

above-mentioned factors could have affected the spectral responses of the magnetite bodies. 

The aforementioned shortcomings are a result of using a sensor with 4-bands, which has broad 

wavelength ranges and therefore makes it difficult to distinguish the finer absorption 

characteristics of magnetite bodies. However, this was due to the trade-offs between spatial, 

spectral, and radiometric resolution of the sensor that was chosen and was a better fit for the 

this undertaking. Hence, a sensor with a high or finer spectral resolution is essential when 

absorption lines of various geological features are located in the same spectral range with other 

geological features that interfere with each other. Using sensors with finer spectral resolutions 

(sensors with narrower band widths) creates the opportunity to identify some materials by 

their absorption-band characteristics (i.e. accurately discriminate some of the features that 

make up the remote sensing signal) and attenuate the interference.  

 

  

The overall high accuracy classification of the Maximum Likelihood classification algorithm 

in this study suggests the classification algorithm may be advantageous in the detection and 

mapping of exposed magnetite bodies and that remote sensing methods are effective tools for 

geological mapping and mineral exploration, especially in iron oxides (despite the other 
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geological features obscuring the spectral reflectance of the focal substrate). Indeed, full 

knowledge of the performance differences of each classification algorithm is crucial for the 

choice of a classification algorithm for a particular scene and application. As with numerous 

remote sensing applications, the greater onus should be placed on the precision and accuracy 

of the dataset than the classification algorithms used for analysis. Although, the choice of 

classification algorithm will undoubtedly influence the success of mineral detection and 

mapping, the accessibility, quality, and processing of geology data will have an even greater 

impact on the results. This includes the size of the study area and the spatial and spectral 

resolution of the data. In essence, the choice of the most appropriate algorithm should be based 

on the characteristics of the data, as well as, the research objectives.  
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Chapter 6: Recommendations and conclusion 

 

The present study focused on the remote sensing capability to map the lithological occurrence 

of magnetite bodies with the help of geographical information system (GIS) on the Eastern 

Limb of the Bushveld Complex. Although numerous studies have detected the lithological 

occurrence of ore oxides using remote sensing, very few studies have detected the lithological 

occurrence of the opaque mineral, magnetite (Rajendran et al., 2007; Raja et al., 2010; Izawa 

et al., 2019), and none have explored the occurrence of magnetite in the Bushveld Complex. 

This study revealed that the lithological occurrence of magnetite could be successfully detected 

with a satisfactory level of success, using the common traditional classification algorithms, 

Maximum Likelihood. The results attained from the Maximum Likelihood classification 

algorithm indicated that the producer’s and user’s accuracies were 76.41% and 88.66%, 

respectively. The computed kappa coefficient was 0.79, illustrating a high categorical and 

overall accuracy. The thematic map derived from the Maximum Likelihood classification 

algorithm had an overall accuracy of 84.58%. 

  

Despite the success of this study, some improvements could be made. Naturally, the type and 

size of data of the training data affect the accuracy of classification algorithms. In particular, 

with the Artificial Neural Network and Support Vector classification algorithms, for better 

performance, a larger data size was required. This lack of a more robust dataset may have 

introduced potential omission and commission errors in the results. Furthermore, to improve 

the accuracy of the classification algorithms, using a fuzzy membership function is 

recommended. Using a fuzzy membership function will objectively classify pixels to their 

correct end-member class (Moore et al., 2001; Malik et al., 2013). 

Spectral mixing was an unavoidable challenge in the lithological discrimination and mapping 

of magnetite. Since magnetite was predominately found in medium to densely vegetated areas 

(dominated by Senecio microglossus), the magnetite spectral signature was often mixed with 

that of vegetation. Since this signature could not be removed from the PlanetScope image, 

Campbell (1996) suggested the exploitation of plants through geobotany. Geobotany rests on 

the absorption of elements, released by geological material in the soil, by the plants. With the 

use of remote sensing, the recorded signatures of the elements within the plants could be used 

to infer the underlying geology. Although feasible, the idea has a few restrictions but is still a 

worthwhile research path. Furthermore, this study mainly investigated the lithological accuracy 
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of detecting magnetite, however it did not consider the underlying stratigraphy of the magnetite 

bodies using geophysics. Therefore, a future line of investigations could assess the underlying 

stratigraphy to determine whether or not magnetite bodies exhibit a similar ‘carrot-shaped’ 

intrusion as kimberlites. 

Although the imagery used for this study had a high spatial resolution, the drawbacks of a four-

band sensor were noted. Spectral information was lost through the bands of the PlanetScope 

product. Hence, there is a great amount of spectral information to be gained from using 220 

bands found in hyperspectral remote sensing, though the products are very expensive and 

obtaining appropriate hyperspectral imagery for mineral and geological mapping is difficult, 

the conceptual performance characteristics over multispectral remote sensing are better. 

For future research, it may be beneficial and of value to perform supplementary analyses on 

the same area over different times using the same data source to confirm the results attained in 

this study. This would, of course, convey whether the findings noted in this study were solely 

a result of the performance of the Maximum Likelihood classification algorithm as opposed to 

either imagery error and or random data noise. 

 

Overall this study suggests the relevance and efficiency of using the common traditional 

classification algorithm – Maximum Likelihood over the advanced classification algorithms – 

Support Vector Machine, especially for studies with relatively small datasets. And despite the 

accuracy of common traditional classification algorithms and advanced classification 

algorithms, it is worth noting that remote sensing and GIS should not solely be used as decision-

making tools or replacements for direct fieldwork but should be amalgamated with different 

datasets and the knowledge of a specialist.  
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