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“I am just going outside and may be some time” [1]

– capt. L. Oates



Abstract

The N = 4 Super Yang-Mills theory in four dimensions admits deformations and the

exactly marginal deformations of its SU(3) R-symmetry sub-sector are known as Leigh-

Strassler. Leigh-Strassler deformations break the N = 4 supersymmetry down to N = 1

while preserving conformal symmetry. With exactly marginal deformations only the

F-terms are deformed thus Leigh-Strassler deformations only affect the superpotential

in the lagrangian. In this thesis we study the symmetry of the marginally deformed

N = 4 SYM and demonstrate that its algebraic structure can be understood in terms

of quasi-Hopf algebras. Quasi-Hopf algebras have a notion of twisting due to Drinfeld

which makes them a natural mathematical language with which to treat deformations.

Furthermore the deformation of the N = 4 SYM superpotential is automated by the

definition of a suitable star product.
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Chapter 1

Introduction

It is a long-term dream of physics research to obtain a model that captures all known

physics phenomena under one umbrella. To this end much attention has been invested

in unifying the already existing descriptions of known phenomena. Such an undertaking

is ambitious but not hopeless because the existing descriptions provide hints on what

ingredients must be included in the unified model. Symmetry is one such hint. One

naturally expects the unified model to reduce to its ingredient models in the appropriate

limits. This reduction should also be consistent at the level of symmetry. If U is a

symmetry group of MU where MU is a model that unifies models MA and MB whose

symmetry groups are A and B then we expect that the group U reduce to A or B in the

respective limits. By this we can test any proposed unified model from the view point

of symmetry. The details of the test would involve a specification of the mechanism by

which the symmetry of the unified model reduces to the ingredient model.

An inefficient way of approaching this search for a unified model is to first propose

a model and then test whether its symmetry group reduces to that of the ingredient

model(s). An alternative approach is to build the symmetry groups of the ingredient

models into the unified model; this ascertains that the unified model will reduce to its

ingredient models. The latter approach has proved successful and testimony to this is

modern physics.

In modern physics we have, on the one hand, Special Relativity [SR] which is a successful

model for the description of physics in inertial frames. Its brilliance is especially real-

ized at speeds comparable to that of light where it serves to preserve causality among

many things. The requirement of SR as far as symmetry is concerned is Lorentz invari-

ance.

On the other hand there is Quantum Mechanics [QM] which also is successful in its

domain, the physics of (small) particles that constitute matter. QM is probabilistic and

1



Chapter 1. Introduction 2

thus the likelihood of any event must at least be 0 and at most 1. This restricts the

allowed transformations in QM to those that preserve probabilities and thus we are led

to the idea of unitarity. In the construct of a model which combines SR and QM, Lorentz

invariance and unitarity become the guideline and out of this came forth Quantum Field

Theory [QFT] with some of the earliest pioneering work found in [2].

The customary way of constructing a QFT is to begin with a Lagrangian formalism

of a classical field theory and then impose a quantization prescription. Our method of

quantization is the Feynman path integral prescription which consists of defining the

generating functional 1 as

Z[φ, g] =

∫
Dφ eiS[φ,g] (1.1)

where g is a (set of) coupling constant(s) in which the ‘strength’ of the interactions is

encoded. φ is a collection of fields, possibly with different spins, in the theory and S is

the action, which in d-dimensions is given by

S[φ, g] =

∫
ddx L(φ, ∂φ) (1.2)

L is the Lagrange density and its variation with respect to a field gives the equations of

motion of that specific field. By using Noether ’s theorem one can obtain the conserved

charges corresponding to the symmetries of the classical theory described by L. At the

quantum level, symmetries are transformations that leave Lagrangian density L and

the measure Dφ unchanged. Some classical symmetries do not survive the quantization

process and as a result quantities/observables/operators of the quantum theory will have

anomalies. n-point functions are central quantities in understanding scattering processes

in QFT and for a field φi ≡ φ(xi), a generic n-point function is defined by

G(n)(x1, x2, . . . , xn) ≡ 〈Ω|T (φ1φ2 . . . φn) |Ω〉 =

∫
DφeiS[φ]φ1φ2 . . . φn∫

DφeiS[φ]
(1.3)

where |Ω〉 represents the vacuum state of the (interacting) theory. Completely solving

a QFT is synonymous with calculating all n-point functions because n-point functions 2

are related to the S-matrix elements of the theory via the LSZ reduction formula [3][4].

However, the computation of n-point functions is a task which involves an infinity of

integrals over momenta whose limits are −∞ and +∞ and often times these integrals

are divergent. The divergences can appear in the large momentum limit and these are

known as Ultra-Violet [UV] divergences. For theories with massless particles divergences

will appear in the low momentum limit; these are known as Infra-Red [IR] divergences.

In order to curb the divergences and obtain finite results one needs to define a cut-off

1or partition function
2(connected and amputated)
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scale, that is, a point (momentum) beyond which we admit ignorance. More formally,

in order to compute scattering amplitudes i.e. elements of the S-matrix, from n-point

functions defined at an energy scale, M , we must introduce a cut-off scale, Λ. If the

fields are normalized at this scale then use the LSZ formula to obtain the scattering

amplitudes. Otherwise one would need to renormalize the fields as

φb(xi) −→ φ(xi) = Z−1/2(M)φb(xi) (1.4)

So then the renormalized n-point functionG(n)(x̄;M, g) is related to the non-renormalized

n-point function G
(n)
b (x̄; Λ, gb) via

G(n)(x̄;M, g(M)) = Z−n/2(M)G
(n)
b (x̄; Λ, gb) (1.5)

where b signifies the non-renormalized quantities, which are usually referred to as bare

quantities and x̄ is a list of the n coordinates of each field in the n-point function. The

bare n-point function depends on bare fields, φb, bare coupling parameters gb and cut-off

scale, Λ. The renormalized n-point function on the other hand depends on renormalized

fields, φ, coupling parameters, g, and the scale of renormalization M . The implications

of this observation means we can write

d

dM
G

(n)
b (x̄; Λ, gb) = 0 (1.6)

The choice of the renormalization scale is arbitrary and thus the same theory could

equally be defined at a different scale. What is of interest is the effect of a shift in this

scale has; an infinitesimal shift M −→M+δM will also have corresponding shifts in the

fields and coupling parameters so that the bare n-point functions G
(n)
b are unchanged

(1.6). The fields correspondingly shift as φ −→ φ+δφ which can be written as (1+δη)φ,

where δη is a dimensionless parameter. The shift in the coupling parameter is g −→
g + δg. Yet the renormalized n-point functions will be shifted as G(n) −→ (1 + nδη)Gn.

The variation of G(n) as a function of the renormalization scale, M , and coupling, g,

is

δG(n) =
∂G(n)

∂M
δM +

∂G(n)

∂g
δg = nδηG(n) (1.7)

which, after multiplying by M/δM, can be manipulated to obtain the Callan-Symanzik

equation [5], [6]: [
M

∂

∂M
+ β

∂

∂g
+ nγ

]
Gn(x̄;M, g(M)) = 0 (1.8)

where β and γ are given by

β =
M

δM
δg and γ = − M

δM
δη (1.9)
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The parameters γ and β(g), respectively known as the anomalous dimension and the β

function, are dimensionless and independent of spacetime x̄ and cut-off scale, Λ. β(g)

shows the dependence of the coupling constant g on the renormalization scale M and

can thus be expressed as

β(g) = M
d

dM
g(M) (1.10)

hence β(g) encodes the renormalization group [RG] flow of the theory. The values of

g for which β(g) = 0 are known as fixed points. Fixed points are a matter of interest

because they indicate scale invariance of theory and in 2 dimensional unitary QFTs

scale invariance has been shown to imply conformal invariance, which is an even richer

symmetry [7], [8]. Although scale invariance does not guarantee conformal symmetry

in dimensions other than 2 ([9], [8],[10]), fixed points have nonetheless been associated

with conformal invariance. In chapter 2 we shall discuss the meaning and usefulness of

conformal symmetry in solving QFTs. Typically the beta function is positive, meaning

the coupling constant grows with increase of the energy scale, strong coupling at short

distances. What is surprising is that there are non-Abelian gauge theories which behave

vice versa. This is seen in the fact that at one-loop the beta function of a non-Abelian

gauge theory with gauge group G is

β(g) = − g3

16π2

(11

3
C2(G)− 4

3
NfC(r)

)
(1.11)

Here C2(G) is a quadratic Casimir of the gauge group G. Nf refers to the number of

fermion species present in the theory and these fermions are assumed to all belong to

a representation r; r is an irreducible representation of the gauge group G and C(r) is

a Casimir of r. Both C(r) and C2(G) are constants which can be determined via the

generators of the group. Note in (1.11) that for small values of Nf the beta function is

negative which suggests that the coupling constant becomes weak with increasing scale.

This is useful because non-Abelian gauge theories are suited for studying Quantum

Chromodynamics [QCD] and the field theories studied in this work are of the same

type.

Having presented a brief overview of QFT, we now can consider the outline of the

document. In chapter 2 we present the symmetries typically encountered in physics

research albeit with a view to build up to N = 4 Super Yang-Mills theory, some of whose

properties are reviewed in chapter 3. In chapter 4 is a mini presentation of aspects of

quasi-Hopf algebra [qHA] structures. Chapter 5 marks the beginning of novel results

which involves uncovering the qHA structure that is associated to the SU(3) sector of

N = 4 SYM. Another novel result is the computation of a Drinfel’d twist that deforms

qHA structure of N = 4 SYM to that of Leigh-Strassler [LS] theories. In Chapter 6

we define a suitable star product which enables the automation and realization of the
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deformation from N = 4 SYM to Leigh-Strassler theories at the level of the Lagrangian.

The results presented in Chapters 5 and 6 are original contributions by the author and

have been published in [11]. Finally in Chapter 7 is a test and discussion of the qHA

symmetry of LS theories which then concludes with an outlook.



Chapter 2

Symmetry in Physics

In this section we review symmetries often encountered in physics and also consider

theories which possess such symmetries.

2.1 Lorentz and Poincaré symmetry

We begin with Lorentz invariance, a symmetry which pertains to space and time. Such

a symmetry is the result of the postulates of Special relativity [SR], namely that

1. physics be equivalent in all inertial frames

2. and that the speed of light be the same for all inertial frames

Due to the second postulate space and time must be unified into spacetime. In SR, time

is allowed to dilate and space to contract so to preserve the constancy of the speed of

light. Thus time need not advance at the same rate in every inertial frame. Observers

in different frames will not necessarily agree on measured lengths. The consequence

of the first postulate is that time and length (space) as measured in one frame need

not be the same as in another inertial frame yet the physics in one frame must be

compatible/consistent with that of the other frame. Since the physics as measured in

frame A with coordinates xµ is to be consistent with physics as measured in frame A′

with coordinates xµ
′

there must be a transformation which relates data in frame A to

data in frame A′, such a transformation is called a Lorentz transformation.

Lorentz symmetry

In order to be concrete we will work in (1 + 3)-dimensional flat Minkowski spacetime

M = R1+3 with metric ηµν = diag(−1, 1, 1, 1). Lorentz transformations are linear

6
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coordinate transformations

xµ −→ x′µ = Λµνx
ν (2.1)

which preserve the metric. The consequence is that (2.1) will also preserve spacetime

“lengths”. The most obvious Lorentz transformation is the trivial transformation where

frames A and A′ are the same, i.e. Λ = 1. Since spacetime lengths are to be invariant

under such transformations we therefore can deduce the properties of Λ by noting that

[12]

xµxµ = x′ρx′ρ

xµηµνx
ν = x′ρηρσx

′σ

xµηµνx
ν = Λρµx

µηρσΛσνx
ν

⇒ ηµν = ηρσΛρµΛσν

(2.2)

For later convenience we write the last equality as

ηµν = ηρσΛρµΛσν = ΛσµΛσν (2.3)

and then raise the index µ to produces the relation

ητµηµν = ητν = δτν = ητµΛσµΛσν = Λ τ
σ Λσν = (Λτσ)T (Λσν) (2.4)

The last equality of (2.2) is the defining relation which the Λ’s must observe in order to

be Lorentz transformations. As matrices, the Λ’s which satisfy this relation define the

non-compact Lie group, O(1, 3;R) which is a subset of GL(4;R), the set of all 4×4 real

invertible matrices. The Lorentz group has four disconnected parts which correspond to

four classification of Lorentz transformations. In order to see these parts we first take

the determinant of the last equality of (2.2) and learn that

det(η)det(ΛT )det(Λ) = det(η)

det(ΛT )det(Λ) = 1

det(Λ)2 = 1

∴ det(Λ) = ±1

(2.5)

Λ is called proper when det(Λ) = +1 and improper when det(Λ) = −1; these are 2 of

the four parts. Note that improper Λ’s cannot contain the identity, as such they do not

define a (sub-)group but proper Λ’s do define a subgroup of the full Lorentz group. We

shall focus on the proper transformations. In order to show the 2 other parts of the

Lorentz group we excerpt the temporal component from the last equality of (2.2) to
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obtain

η00 = ηρσΛρ0Λσ0 (2.6)

−1 = −
(
Λ0

0

)2
+
∑
i

(
Λi0
)2

(2.7)

⇒
(
Λ0

0

)2
= 1 +

∑
i

(
Λi0
)2

(2.8)

According to (2.8) there is a lower bound on the square of the time-component of

Λ, (Λ0
0)2 ≥ 1. This bound means the time-component itself is also constrained to

|Λ0
0| ≥ 1. The Λ’s for which Λ0

0 ≥ 1 correspond to orthochronous transformation while

those for which Λ0
0 ≤ −1 to non-orthochronous transformations. For the present work

we focus our efforts on the proper and orthochronous subgroup1 which is denoted by

SO+(1, 3;R).

From (2.4), we consider the generators of this group by expanding the Λ’s in a small

parameter ε. Doing so gives the infinitesimal form of Lorentz transformations

Λµν = ηµν + εωµν + . . . (2.9)

and substituting this into (2.3). Keeping at most terms linear in the expansion parameter

ε means
ηµν = ΛσµΛσν

= (ησµ + εωσµ + . . . ) (ησν + εωσν + . . . )

= ηµν + ε [ωνµ + ωµν ] + . . .

=⇒ ωµν = −ωνµ

(2.10)

This antisymmetric tensor ωµν corresponds to rotations and boosts which are generated

byMµν = i(xµ∂ν−xν∂µ) with µ, ν = 0, . . . , 3 and these generators obey the commutation

relations

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (2.11)

These relations describe the algebra so(1, 3;R). Define Ji = 1
2 εijkMjk with i, j, k =

1, 2, 3 and Ki = M0i so that the Lorentz generators are divided into spatial rotations,

Ji and boosts, Ki. The commutation relations (2.11) then become

[Ji, Jj ] = εijkJk [Ki,Kj ] = −iεijkJk

[Ji,Kj ] = iεijkKk

(2.12)

In order to recognize Lorentz invariance we have to know the irreducible representations

of so(1, 3;R) and the linear combinations of Ji and Kj are rather useful to uncover

1also known as the restricted Lorentz group.
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some of these representation. Let Ai := 1
2(Ji + iKi) and Bi := 1

2(Ji − iKi). These new

generators satisfy

[Ai, Bj ] = 0 , [Ai, Aj ] = iεijkAk and [Bi, Bj ] = iεijkBk (2.13)

The first commutation relation shows that the Ai’s and Bi’s do not mix and the others

are the su(2) relations. Having begun with elements of so(1, 3;R), after a redefinition

we arrived at two copies of su(2). It is important to note that during the definitions

of Ai and Bi we considered the generators Ji and Kj as elements of a complex vector

space and effectively complexified so(1, 3;R). The honest decomposition is then given

by

so(1, 3;R)C ∼= su(2)C ⊕ su(2)C (2.14)

which tells us that, when complexified, the Lie algebra which underlies the proper and

orthochronous Lorentz group is locally homomorphic to two copies of the complexified

su(2) algebra. From the representation theory of Lie algebra we know that there is

a one-to-one correspondence between the representations of a complexified form of an

algebra to the representations of its real form ([13],[14],[15]). This means we can use the

representations of su(2), which are many, to find those of so(3, 1,R). Since spin is a useful

index to label su(2) representations we can therefore employ it to label representations

of so(1, 3;R); a scalar whose spin is 0 is labeled by the couple (0, 0). A 4-vector having

spin 1 is labeled by (
1

2
,
1

2

)
− vector (2.15)

and Weyl spinors are labeled by the usual(
1

2
, 0

)
− chiral spinor ,

(
0,

1

2

)
− antichiral spinor (2.16)

Besides SU(2), the Lorentz subgroup SO+(1, 3;R) is homeomorphic to SL(2,C), the

Lie group of invertible complex 2×2 matrices with unit determinant. It suffices to show

that for a given Λ in SO+(1, 3;R) there is an element N in SL(2;C). To demonstrate

the connection we first define the set

σµ =

{(
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

0 −1

)}
(2.17)

made up of the identity matrix together with the Pauli matrices. By direct calculation

it is easy to see that
1

2
σµσ̄µ = 12×2 (2.18)

which means any 2 × 2 complex matrix can be written as a linear combination of σ’s.
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Using the set (2.17), any 4-vector xµ = (−x0, x1, x2, x3) can be written as a 2×2 complex

matrix

xµσ
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
=: X (2.19)

Note that the matrix X is hermitian and its determinant is equal to −xµxµ 2. Moreover

the set (2.17) can be used to map a 2× 2 hermitian complex matrix X to a 4-vector xµ

by simply noting that

Tr (Xσ̄ν) = Tr (xµσ
µσ̄ν) = xµTr (σµσ̄ν) = 2xν (2.20)

This is due to the fact that the σ matrices satisfy the relation Tr(σµσ̄ν) = 2ηµν . The

adjoint action of SL(2;C) on X is given by

X −→ X̃ = NXN † N ∈ SL(2;C) (2.21)

and it is clear that this action preserves the hermiticity of X since (NXN †)† = NXN †.

Furthermore the determinants of X̃ and X are equal because det(N) = 1 which means

adjoint action of SL(2;C) leaves the inner product of vectors unchanged:

det(X̃) = det(N)det(X)det(N †) = −xµxµ (2.22)

The lesson from (2.20) is that there is a transformed 4-vector x̃µ which corresponds to

the SL(2,C) transformed matrix X̃ [13] i.e.

2x̃ν = Tr(X̃σ̄ν) (2.23)

The connection between SL(2,C) and SO+(1, 3;R) is established using (2.21) and (2.19)

as follows

2x̃ν = Tr(X̃σ̄ν) (2.24)

= Tr(NXN †σ̄ν) (2.25)

= Tr(Nxµσ
µN †σ̄ν) (2.26)

= Tr(σ̄νNσµN
†)xµ (2.27)

x̃ν =
1

2
Tr(σ̄νNσµN

†)xµ (2.28)

= Λνµx
µ (2.29)

2The ‘−’ is due to the choice of metric (−,+,+,+) and disappears for the mostly minus choice.
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In (2.29), the index structure allows us to make the identification

Λνµ ≡
1

2
[Tr(σ̄νNσµN

†)] (2.30)

and as advertised, for a Lorentz Λ there is a corresponding complex simple linear matrix

N . It must be noted that because both N and −N give rise to the same Λ, so the map

is 2:1. This isomorphism is further reinforced by the fact that the Lie algebra sl(2,C) is

known to be isomorphic to su(2)C ⊕ su(2)C ([13],[16]) hence the spinor representation

of (proper orthochronous) Lorentz transformations has a chiral and antichiral part. The

transformation of fields in the fundamental and anti-fundamental spinor representations

are respectively given by

ψα → N β
α ψβ and χ̄α̇ → (N †) β̇α̇ χ̄β̇ where α, β, α̇, β̇ = {1, 2} (2.31)

where ψα is left-handed Weyl spinor and χ̄α̇ a right-handed Weyl spinor. The indices of

the spinors are raised/lowered using the SU(2) invariant tensor

εαβ = εα̇β̇ =

(
0 −1

1 0

)
= −εαβ = −εα̇β̇ (2.32)

The value of this discussion will soon be realized when we come to supersymmetry where

our representations will contain both spinor and vectors. In anticipation we define the

mixed tensors σµν and σ̄µν in following way

(σµν)αβ =
i

4
(σµσ̄ν − σν σ̄µ)αβ (2.33)

(σ̄µν) β̇α̇ =
i

4
(σ̄µσν − σ̄νσµ) β̇α̇ (2.34)

Poincaré symmetry

A generalization of Lorentz symmetry is achievable by extending (2.1) to include trans-

lations

xµ −→ x′µ = Λµνx
ν + aµ (2.35)

where a is a constant vector and (2.35) is a Poincaré transformation. The effect of this

extension is that there is a new generator, Pµ, which performs infinitesimal translations

and thus in addition to (2.11) there are also the relations

[Pµ, Pν ] = 0 , [Pµ,Mσρ] = i (gµσPρ − gµρPσ) (2.36)

The group generated by Pµ and Mµν is called Poincaré since it arises from (2.35) and a

field theory is Poincare invariant if it remains unchanged under Poincaré transformations.
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For the Poincaré algebra one can define two Casimirs; Casimirs are operators that

commute with every element of the algebra. The first Casimir of the Poincaré algebra

is defined as C1 := PµP
µ and its commutation with Pµ and Mµν is simple to confirm

using (2.36). The eigenvalues of Casimirs provide a means to label representations of a

group. The eigenvalue, t, of C1 on a state |kµ〉 with momentum, kµ, is

t =

m2 for |kµ〉 , a massive state

0 for |kµ〉 , a massless state
(2.37)

The second Casimir is given by C2 = WµW
µ where Wµ is the Pauli-Lubanski spin vector

defined as

Wµ = −1

2
εµνρσP

νMρσ , ε0123 = 1 (2.38)

By expanding C2 one arrives at W 2 = −m2J2, with m2 the mass eigenvalue and J2 =

j(j + 1) is the spin eigenvalue, hence C2 can be used to label massive representations

by their spin j. The case of massless representations require a label since W 2 = 0 = P 2

but from its definition (2.38) it is evident that the spin vector Wµ is parallel to the Pν

[17], that is

Wµ = λPµ (2.39)

where λ is known as helicity defined as

λ =
P · J
|P|

(2.40)

Helicity is a projection of spin J in the direction of motion P, thus a particle of spin s

moving in the z-direction has helicity λ = sz. In general then multiplets of the Poincaré

group will be labelled by mass, spin and helicity, that is in a Poincaré multiplet the

particles have the same mass and same spin. Next we discuss a symmetry even more

general: the conformal symmetry.

2.2 Conformal Symmetry

A theory is said to be conformal if it is invariant under conformal transformations.

Following the exposition of [18], [19] and [20], we devote this section to making the

definition of conformal transformations exact. At heart, a conformal transformation is a

change of coordinates whose effect amounts to a positive re-scaling by an overall factor

of the metric of the manifold. Let M̃ = Rp+q be a manifold with a flat Minkowskian

metric ηµν of signature (p, q) so that p + q = d; apart from the generalized dimension

and metric signature, M̃ is the same as M defined in Section 2.1. A transformation
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xµ → x
′µ is conformal if it gives rise to a metric transformation of the form

ηµν(x)→ η
′
µν(x

′
) = Ω(x)ηµν(x) with Ω(x) > 0 (2.41)

Using continuity and differentiability of M , the condition for a transformation to be

conformal can be written as

η
′
µν(x

′
)
∂x
′µ

∂xσ
∂x
′ν

∂xρ
= Ω(x)ησρ(x) (2.42)

Expressing the relation between x and x
′

to first order in a small parameter ε(x) << 1

gives

x
′µ = xµ + εµ(x) +O(ε2) + . . . (2.43)

This allows for an infinitesimal formulation of the constraint (2.42) and makes it easy

to isolate the generators of the conformal group to which the transformations belong.

Keeping terms that are linear in the parameter ε means (2.42) becomes

Ω(x)ησρ(x) = η
′
µν(x

′
)
∂x
′µ

∂xσ
∂x
′ν

∂xρ
(2.44)

= η
′
µν

[
δµσ + ∂σε

µ + . . .
][
δνρ + ∂ρε

ν + . . .
]

(2.45)

= η
′
µν

[
δµσ δ

ν
ρ + δνρ∂σε

µ + δµσ∂ρε
ν + . . .

]
(2.46)

= η
′
σρ + η

′
µρ∂σε

µ + η
′
σν∂ρε

ν + . . . (2.47)

= η
′
σρ +

(
∂σερ + ∂ρεσ

)
+ . . . (2.48)

The terms in the parentheses of the last equality in (2.44) must be proportional to η
′
µν

in order for (2.43) to satisfy (2.42). This means[
∂σερ + ∂ρεσ

]
= Q(x)η

′
σρ(x) (2.49)

and by tracing this equation we learn that Q(x) is given by

η
′σρ
[
∂σερ + ∂ρεσ

]
= Q(x)η

′σρη
′
σρ = Q(x)d (2.50)

Q(x) =
2

d

[
∂ · ε

]
(2.51)

where d is the dimension of the manifold. The conformal requirement can now be

restated in terms of the function εµ, that is, (2.43) will satisfy (2.48) if the differential

equation [
∂σερ + ∂ρεσ

]
=

2

d

[
∂ · ε

]
η
′
σρ (2.52)
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holds true for εµ. Comparing this to (2.42), we find that the scale factor to first order

in ε is given by

Ω(x) = 1 +
2

d
∂ · ε (2.53)

In order to determine the generators of the conformal group, the dimension d of the

manifold must be specified since the infinitesimal conformal condition (2.52) depends

on it. Although at this point there is no reason to suspect this, it turns out that CFTs

in d = 2 are very special in that their conformal group is generated by the infinite

dimensional algebra known as the Virasoro algebra. This fact has been extremely useful

in string theory because the worldsheet string dynamics are governed by a 2-dimensional

CFT. Two dimensional CFTs have found many uses in the gauge-gravity duality where

they have been shown to be holographically dual to theories of gravity in an AdS3

background [21], [22].

The scope of this work is focused on CFTs in dimensions higher than 2 so then the rest

of the discussion on CFTs is conducted with the assumption that d > 2. Next we apply

two partial derivatives, one contravariant and one covariant, on (2.52) and repackage to

obtain

∂ρ∂σ(∂ · ε) +�∂ρεσ =
2

d
∂ρ∂σ(∂ · ε) (2.54)

and switching the indices ρ↔ σ produces an equally valid equation

∂σ∂ρ(∂ · ε) +�∂σερ =
2

d
∂σ∂ρ(∂ · ε) (2.55)

The sum of (2.54) and (2.55) with the use of (2.52) means ερ must satisfy

2∂ρ∂σ(∂ · ε) +� (∂ρεσ + ∂σερ) =
4

d
∂ρ∂σ(∂ · ε) (2.56)[

(d− 2)∂ρ∂σ + η
′
ρσ�

]
(∂ · ε) = 0 (2.57)

[(d− 1)�] (∂ · ε) = 0 (2.58)

From the last equality we deduce that ε is at most quadratic in xµ. Thus ε is of the

form

ερ = aρ + bρσx
σ + cρστx

σxτ (2.59)

the first term of which corresponds to the familiar translations and these are generated

by the momentum operator Pρ = −i∂ρ. By substituting the second term into (2.52)

one uncovers that the symmetric part of bρσ is proportional to the metric with a fixed

constant of proportionality.

bρσ + bσρ =
2

d
(bλλ)ηρσ := α ηρσ (2.60)
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Thus the symmetric part of bρσ re-scales the metric and thus corresponds to dilations

which are generated by D = −ixρ∂ρ. Hence we can write

bρσ = αηρσ + ωσρ (2.61)

where ωσρ is the antisymmetric part of bρσ. As before tensor ωσρ corresponds to rota-

tions whose generators are Mµν as in the the Lorentz symmetry case. For the quadratic

term a similar analysis can be done in order to determine the cρστ . This terms cor-

responds to novel transformations known as Special Conformal Transformations [SCT]

and these are generated by Kρ = −i [(2xρx
σ∂σ) + (x · x)∂ρ]

3. The finite transformations

are summarized in the table below:

Rotations xµ −→Mµ
νxν

Translations xµ −→ xµ + aµ

Dilation xµ −→ αxµ

SCT xµ −→ xµ−bµx2

1−2bνxν+b2x2

Table 2.1: Finite conformal group transformations

The aforementioned generators define the conformal algebra whose commutation rela-

tions are

[D,Pρ] = iPρ , [D,Kρ] = −iKρ

[Kρ, Pσ] = 2i (ηρσD −Mρσ) , [Kρ,Mστ ] = i (ηρσKτ − ηρτKσ)

[Pρ,Mστ ] = i (ηρσPτ − ηρτPσ) , [Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)

They generate the group SO(p, q) and for our case this group will reduce to SO(2, d)

because we shall work in flat pseudo-Minkowski spacetime. The SO(2, d) structure is

more apparent when the generators are repackaged as follows[18],[19]:

L−1,µ =
1

2
(Pµ −Kµ) , L−1,0 = D

Lµ,ν = Mµν , L0,µ =
1

2
(Pµ +Kµ)

(2.62)

3The SCT generator,Kρ, should not be confused with the generator for boosts,Ki
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The new generators are antisymmetric Lab = −Lba and their commutation relations

assume the form [19]:

[Lab, Lcd] = i(ηadLbc + ηbcLad − ηacLbd − ηbdLac)

with a, b = {−1, 0, 1, 2, . . . , d}
(2.63)

Here ηab is a diagonal metric diag(−1, 1, . . . , 1,−1). The generators (2.62) with com-

mutations (2.63) describe the isometries of a (d + 1)-dimensional AdS space embedded

onto a flat (2, d)-dimensional pseudo-Minkowski space. We shall describe this space

later in section 3.1.1.1. One of the major consequences of conformal symmetry is that it

demands that a theory remain unchanged even though the metric is re-scaled, hence a

conformally symmetric theory will have the same dynamics at short distances as it does

at long distances,i.e. no running of coupling constants. Based on everyday experience,

one might rule out the possibility of finding such a symmetry in nature. However CFTs

play an important role in efforts to describe and understand critical phenomena (i.e.

magnetization, phase transition, etc.) of systems [23], [24]. This is mostly related to

the fact that at critical points, systems tend to be insensitive to scale and correlation

lengths approach infinity. In condensed matter physics, there have been experimental

studies concerned with validating the theoretical results [25].

There is another reason why this symmetry is very attractive to physicists: computabil-

ity. The presence of conformal symmetry in a QFT allows one the ability to compute

2-point and 3-point functions, up to a constant, purely from symmetry, albeit for fields

of the quasi-primary type. Quasi-primary fields are defined by their transformation

properties which are that they transform as

φi(x) −→
∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

φi(x) (2.64)

when xµ −→ x
′µ is a conformal i.e (2.41) is satisfied. ∆ is known as the scaling dimension

of the quasi-primary field φi.

Imposing conformal invariance of the action and integration measure of the theory under

the transformation xµ −→ x
′µ has far-reaching consequences. For instance, a 2-point

function of spinless fields φi with scaling dimension ∆i will be of the form

〈φ1(x1)φ2(x2)〉 =

∣∣∣∣∣∂x
′

∂x

∣∣∣∣∣
∆1
d

x=x1

∣∣∣∣∣∂x
′

∂x

∣∣∣∣∣
∆2
d

x=x2

〈φ1(x
′
1)φ2(x

′
2)〉 (2.65)
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and invariance under re-scaling x
′µ = λxµ would imply the Jacobians are λ imply-

ing

〈φ1(x1)φ2(x2)〉 = λ∆1+∆2〈φ1(λx1)φ2λ(x2)〉 (2.66)

However the requirement of translation and rotation invariance means the 2-point func-

tion depends only on separation of spacetime points which in general will be a function

f(|x1 − x2|) which because of (2.66) must transform as f(x) = λ∆1+∆2f(λx). We con-

clude that in general the 2-point function will be of the form:

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
(2.67)

where C12 is a constant. Similar symmetry arguments are also possible in the case

of 3-point functions [19]. Conformal symmetry has found use in condensed matter

physics for the computation of critical data and in describing critical phenomena in

order to understand the experimental data of condensed matter systems [26], [27]. From

experimental data suggests that at critical points a large variety systems tend to behave

the same, that is they belong to the same universality class. So their critical data does

not depend on the details of the system. CFTs are a suitable framework to recover the

critical data and describe critical phenomena.

2.3 Supersymmetry

Thus far we have reviewed external symmetries that is, those that pertain to space-

time transformations and their generators are either scalars, 4-vectors or 2-tensors. In

this section we shall consider a symmetry which combines both internal4 and external

symmetries. It is a curious fact that in nature particles come with either integer or

half-integer spin. Naturally one may wonder if there is a way to understand this di-

chotomy or to do even better and unify the divide between particle types. The latter

is more in line with the pursuit in physics of obtaining a unified description of nature.

Such a unification would necessitate the combination of groups that describe the inter-

nal features with those that describe external ones. Coleman and Mandula based on

a few assumptions about the S-matrix, were able to argue that such extensions of the

Poincaré algebra could not be done without trivializing the dynamics of the theory. The

Coleman-Mandula theorem assumes that, for a a non-trivial interacting quantum field

theory whose S-matrix has symmetry group G, the following hold [28]:

• the group G has a subgroup which is locally isomorphic to the Poincaré group,

• trivial scattering is forbidden, thus scattering angles are not limited to 0◦ and 180◦,

4Internal symmetries are symmetries of transformations in internal space e.g. charge conjugation
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• all particles transform as positive-energy representations of the Poincaré group,

• elastic scattering amplitudes are assumed to be analytic functions of the Mandel-

stam variables in the neighbourhood of a physical region,

• for a given mass M of a particle type, the set T = {m|m < M} of masses m of the

same particle type is always finite.

Their argument has come to be known as a no-go theorem [29]. Under these assumptions

or constraint on a QFT, the algebra that generates the symmetries of the S-matrix can

at best contain Pµ, Mµν and Lorentz scalars Bl which obey the relations

[Pµ, Bl] = 0 = [Mµν , Bl] and [Bl, Bm] = iClmnBn (2.68)

where Clmn are structure constants of the Lie algebra that generates the compact group

of internal symmetries. So the symmetry group G of the S-matrix would have to be

a direct product of the Poincaré group with the group of internal symmetry, that is,

external and internal symmetries do not affect one another. Note that the generators

Bl are Lorentz scalars. By including generators with a spinor label, the authors of [30]

by-passed the Coleman-Mandula theorem and found a way of extending the Poincaré

algebra to include generators of internal and external symmetry algebras. This exten-

sion comes at a cost because the introduction of spinor generators would require Z2

grading, thus normal Lie algebras are not sufficient. The Z2 grading means the algebra

structure must include both commutators and anticommutators and for generators Ti

we have

TiTj − (−1)xixjTjTi = ifkijTk , here xi =

0 if Ti is a boson

1 if Ti is a fermion
(2.69)

These graded algebras are also known as superalgebras and their spinor generators are

called supercharges Qα. The supercharges are generators of supersymmetry since their

action on bosons gives fermions and vice versa, effectively abolishing the partition be-

tween bosons and fermions. To be sure, supersymmetry is a conjectured symmetry and

at the time of writing had not yet been observed in nature.

2.3.1 Super-Poincaré algebra

A symmetry algebra is generalized to a superalgebra by adding supercharges QAα which

are fermionic, hence anticommute. After adding supercharges, the extended Poincaré
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algebra becomes

[QAα, Pµ] = 0 [Q̄Aα̇, Pµ] = 0

{QAα, Q̄Bβ̇} = 2δAB (σµ)αβ̇ Pµ [Pµ, Pν ] = 0

[QAα,M
µν ] = (σµν) β

α QAβ {QAα, QBβ} = εαβZ
AB

(2.70)

where σµ and σµν are as defined in (2.17) and (2.33) respectively. ZAB = −ZBA is the

central charge of the algebra and here ‘central’ refers to the fact that ZAB commutes

with every generator of the algebra. The uppercase indices A,B = {1, 2, . . . ,N} count

the number of supercharges present while α, α̇, β, β̇ = {1, 2} specify the elements of Q

or Q̄. The object ε is the SU(2) invariant tensor in (2.32). By complex conjugation

one can obtain the relations for Q̄ with dotted indices. Suppose there is an internal

symmetry generated by Ra’s which satisfy the relations [Ra, Rb] = ifabcRc. This internal

symmetry will mix with supersymmetry so that the commutation relations of generators

Ra with supercharges will take the form [QAα , Ra] ∝ QBα . This is made abundantly clear

by recalling that super-Lie algebra needs to be closed and the Jacobi identities for

generators of different gradings, i.e. [odd, even] ∼ odd [31]. Now we can write

[QAα , Ra] = S A
a BQ

B
α , for S A

a B a constant (2.71)

The commutation relations imply that the Ra’s rotate the supercharges into one another.

Such a symmetry is called an R-symmetry and if the supercharges Q are completely

unrelated i.e. the central charge is zero, ZAB = 0, then the R-symmetry is U(N )R for

a model with N supercharges. If the central charges are not zero then the R-symmetry

is a subset of U(N ).

Another interesting observation is that in a supersymmetric theory there are as many

bosonic degrees of freedom as there are fermionic ones. To see this we first define the

fermion number operator (−)NF as

(−)NF |b〉 = +1 |b〉 and (−)NF |f〉 = −1 |f〉 (2.72)

with kets |b〉 and |f〉 representing a boson and a fermion respectively. By applying the

operator (−)NF on the anticommutator {QAα, Q̄Bβ̇} = 2δAB (σµ)αβ̇ Pµ and tracing, one
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is led to conclude that there the number of bosons matches that of fermions

2Tr
(

(−)NF
[
δAB (σµ)αβ̇ Pµ

])
= Tr

[
(−)NF {QAα, Q̄Bβ̇}

]
(2.73)

= Tr
[
(−)NF (QAαQ̄Bβ̇ + Q̄Bβ̇Q

A
α)
]

(2.74)

= Tr
[
(−QAα(−)NF Q̄Bβ̇ +QAα(−)NF Q̄Bβ̇)

]
(2.75)

= 0 (2.76)

where we have used the cyclicity of the trace and the fact the the number operator

anticommutes with the supercharge Q. The last equality must hold for all values of the

indices so that for any state of eigenmomentum pµ expanding the LHS gives

2Tr
(

(−)NF
[
δAB (σµ)αβ̇ Pµ

])
= 2 (σµ)αβ̇ pµTr

[
(−)NF

]
(2.77)

= 0 , ∀ α, β̇, A and B (2.78)

=⇒ Tr
[
(−)NF

]
= 0 (2.79)

From (2.79) we conclude that the total number of bosons minus that of fermions is

zero.

2.3.2 SUSY and its features

We next use the non-trivial supersymmetric part of the algebra above and consider the

multiplets of supersymmetry in 4d while maintaining N unspecified. As in the case

of Poincaré symmetry where we used the eigenvalues of C1 = PµP
µ because it was a

Casimir, so shall we do in case of the super-Poincaré algebra. This is because C1 is still

a Casimir. Thus multiplets will be labeled by their mass as before. The square of the

Pauli-Lubanski vector does not commute with all the generators of the super-Poincaré

algebra thus there is need of a new Casimir. Things are rather more involved because

the Casimirs will be affected by the amount of supersymmetry present. In addition,

the usefulness of a Casimir is related to whether the multiplet is massive or massless.

Since N is kept unspecified we shall define a Casimir for the massless case because of

its relevance to the present work.

2.3.2.1 Massless multiplets

The massless case has a Casimir defined as C2 = CµνC
µν where

Cµν = BµPν −BνPµ, and Bµ = Wµ −
1

4
δ AB Q̄

A
α̇(σ̄µ)α̇βQBβ (2.80)
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Consider a massless particle, |p, λ〉, in a frame where its 4-momentum is pµ = (E, 0, 0, E)

then anticommutator {QAα, Q̄Bβ̇} = 2δAB (σµ)αβ̇ Pµ means

{QAα, Q̄Bβ̇} |p, λ〉 = 2δAB (σµ)αβ̇ Pµ |p, λ〉 (2.81)

= 2δAB
(
σ0p0 + σ3p3

)
αβ̇
|p, λ〉 (2.82)

= 4EδAB

(
1 0

0 0

)
αβ̇

|p, λ〉 (2.83)

∴ {QAα, Q̄Bβ̇} = 4EδAB

(
1 0

0 0

)
αβ̇

=⇒ QA2 = 0 (2.84)

the anticommutation relation is now reduce to

{QA1, Q̄B1̇} = 4EδAB (2.85)

The other non-trivial supersymmetry algebra relation involving the central charges be-

comes trivial, ZAB = 0, thanks to the fact that QA2 = 0. This effect is transpar-

ent from the relation {QA1, QB2} = 0 = ε12Z
AB = −ZAB = ZBA. Thanks to the

re-definitions:

aA :=
QA1

2
√
E

, aA† :=
QA†1

2
√
E

(2.86)

the anticommutator (2.85) takes a form that is useful in building multiplets

{aA, a†B} = δAB , {aA, aB} = 0 = {(aA)†, (aB)†} (2.87)

In this form the a’s and a†’s are reminiscent of ladder operators and in fact they are.

To show this fact consider a specific case of the SUSY algebra relation [QAα,M
µν ] =

(σµν) β
α QAβ, namely: [QAα,M12] = [QAα, J3]. Computing this commutation relation

gives

[QAα , J3] = (σ12) βαQ
A
β =


1
2Q

A
1 for α = 1

0 otherwise
(2.88)

a direct consequence of QA2 = 0. If |p, λ〉 is a state vector representing a particle with

momentum p and helicity λ then the action of a and a† on |p, λ〉 is given by

J3a
A |p, λ〉 = (aAJ3 − [aA, J3]) |p, λ〉 = (aAJ3 −

1

2
aA) |p, λ〉 = (λ− 1

2
)aA |p, λ〉

J3a
B† |p, λ〉 = (aBJ3 + [aB†, J3]) |p, λ〉 = (aB†J3 +

1

2
aB†) |p, λ〉 = (λ+

1

2
)aB† |p, λ〉

(2.89)
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The state aB† |p, λ〉 has helicity larger than |p, λ〉 by a half, thus a† raises the helicity by

a half while a lowers it the same amount. We can now build multiplets.

Let |Ω〉 be a state with momentum p and helicity λ such that aA |Ω〉 = 0 then

• N = 1 chiral multiplet: λ = 0

State Helicity Field

|Ω〉 λ = 0 1 complex scalar

a† |Ω〉 λ = ±1
2 1 Weyl spinor,

• N = 1 vector multiplet: λ = 1
2

State Helicity Field

|Ω〉 λ = ±1
2 1 Weyl spinor

a† |Ω〉 λ = ±1 1 Gauge field

For N = 1 we only have one raising operator, a†, which anticommutes thus it cannot be

used to raise the helicity twice and the tables above exhaust the N = 1 SUSY states.

The states with negative helicities are obtained via CPT5 conjugation. Invariance under

CPT conjugation is a physical requirement we impose on our theory. The case of interest

to us is the vector multiplet for N = 4 with a restriction to helicities no larger than one.

Restricting helicity to one means our theory will not take gravity into account. In this

setting the different states are tabulated below

• N = 4 vector multiplet: λ = 1

State Helicity Field

|Ω〉, a1†a2†a3†a4† |Ω〉 λ = ±1 1 Gauge field

a1†a2† |Ω〉, a3†a4† |Ω〉, etc. λ = 0 3 complex scalars

a1† |Ω〉, a1†a2†a3† |Ω〉, etc. λ = ±1
2 4 Weyl spinors

Note that the N = 4 vector multiplet has the same field content as an N = 1 vector

multiplet combined with 3 N = 1 chiral multiplets, that is:

N = 4 vector multiplet = 1× (N = 1 vector multiplet)⊕ 3× (N = 1 chiral multiplets) (2.90)

This reducibility will be useful later in this work.

5Charge Parity and Time.
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2.3.3 Superspace and superfields

2.3.3.1 N = 1 Superspace

We have seen that the notation of 4-vectors in field theories in (3 + 1)-dimensions makes

Lorentz invariance readily apparent. Here we shall briefly present the notions of su-

perspace and superfields as a formalism which helps manifest supersymmetry in field

theory. A superfield is a function G of variables xµ,θα and θ̄α̇ where xµ are the familiar

spacetime coordinates while θα and θ̄α̇ are Grassmann coordinates which are hermitian

conjugate to one another. xµ is said to be Grassmann even and θ, θ̄ Grassmann odd

because they commute according to the relations:

θαθβ = −1

2
εαβ(θγθγ) ≡ −1

2
εαβ(θθ)

θ̄α̇θ̄β̇ =
1

2
εα̇β̇(θ̄γ̇ θ̄

γ̇) ≡ 1

2
εα̇β̇(θ̄θ̄)

and θαθ̄α̇ =
1

2
θ(σµ)θ̄(σµ)αα̇

(2.91)

The introduction of superspace may seem arbitrary at first but a look at the commutation

relation

{Q α, Q̄β̇} = 2 (σµ)αβ̇ Pµ (2.92)

gives insight and calls for a geometric view. From the anticommutator we note that the

effect of the supercharges (LHS) is equivalent to spacetime translation (RHS) Pµ. First

we convert the anticommutator to a commutator with the help of Grassmann coordinates

to get

[ξαQα, ξ̄β̇Q̄
β̇] = 2(ξσµξ̄)Pµ (2.93)

A super-Poincaré group element that performs finite superspace translations would thus

be given by

T (x, θ, θ̄) = exp
[
i(xµPµ + θQ+ θ̄Q̄)

]
(2.94)

Here it worth point out that superspace can also be viewed as the super-Poincaré group

modulo the homogeneous generators Mµν and a typical element of a such a group will

definitely take the form in (2.94). In order to isolate the effect of the supercharges we

can compute the product T̃ := T (0, ξ, ξ̄) · T (x, θ, θ̄) by expanding, simplifying using the

SUSY algebra and re-summing6 the exponentials to obtain another group element which

depends on the combination of the coordinates T̃ (xµ + iθσµξ̄ − iξσµθ̄, θ+ ξ, θ̄+ ξ̄). The

action of supercharges has induced a shift in both the bosonic and fermionic coordinates,

6using the Baker-Campbell-Hausdorff formula
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thus allowing us to represent the supercharges in this way

Qα :=i

(
− ∂

∂θα
− i(σµ)αα̇θ̄

α̇∂µ

)
(2.95)

Q̄α̇ :=i

(
∂

∂θ̄α̇
− iθα(σµ)αα̇∂µ

)
(2.96)

The fermionic directions are represented by the Grassmann coordinates, θ and θ̄, are

2-component Weyl spinors whose differential and integral properties are

∂

∂θα
(θβ) = δβα ,

∂

∂θα
(θ̄β̇) = 0 and h.c∫

dθ θ = 1 ,

∫
dθ 1 = 0 and h.c

(2.97)

Superspace is effectively an extension of spacetime to include fermionic directions. The

advantage of the superspace formalism is that a power series expansion of superfields

Φ(x, θ, θ̄) eventually truncates because of the Grassmann coordinates.

2.3.4 Superfields

A scalar superfield, with spinor indices suppressed, will generally be of the form

S(x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x)

+ θθθ̄λ̄(x) + θ̄θ̄θη(x) + θθθ̄θ̄d(x)
(2.98)

where {φ(x),m(x), n(x), d(x)}, are complex scalar functions of spacetime while con-

tained in the set {ψ(x), χ(x), λ(x), η(x)} are 2-component spinors and vµ(x) is a com-

plex vector. There are 4× 2 components from the scalars, 8 from the vector, 4× 2 from

the left-handed Weyl spinors and another 4 × 2 from the right-handed Weyl spinors.

This all adds up to a total of 32 components = 16 bosonic + 16 fermionic. The form

in (2.98) is most general and any other possible terms either vanish or can be shown

to be related to the ones contained in (2.98). The superfield has more degrees of free-

dom than what we need to describe the supermultiplets presented above, thus we must

impose appropriate restrictions on it. By appropriate we shall mean that the restric-

tions must first reduce the degrees of freedom to those permissible for SUSY multiplets

and secondly the restrictions must be SUSY covariant. To this end we first note that

while the Lorentz derivative ∂µ is SUSY covariant, since [Pµ, Qα] = 0 = [Pµ, Q̄α̇], the

Grassmann derivative ∂α is not. The effect of a superspace translation by parameter ε
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(x, θ, θ̄) −→ (x̃, θ̃,
¯̃
θ) = (x+ iθσε̄− iεσθ̄, θ+ε, θ̄+ ε̄) on the Grassmann derivative is

∂α =
∂θ̃

∂θα
∂

∂θ̃
+

∂x̃

∂θα
∂

∂x̃
(2.99)

=
∂

∂θ̃α
+ iσµαα̇ε̄

α̇ ∂

∂x̃µ
(2.100)

By direct calculation one can show that the RHS of (2.100) anticommutes with Qα and

Q̄α̇. This observation is an inspiration for a definition of a SUSY covariant derivative,

so then we define the super derivatives in superspace by:

Dα :=
∂

∂θα
+ iσµαα̇θ̄

α̇ ∂

∂xµ
(2.101)

D̄α̇ := − ∂

∂θ̄α̇
− iθασµαα̇

∂

∂xµ
(2.102)

Using these definitions one can show that the super derivatives satisfy the anti-commutation

relations
{Dα, Dβ} = 0 = {D̄α̇, D̄β̇}

{Dα, D̄β̇} = −2iσµ
αβ̇
∂µ

 =⇒ D3 = 0 = D̄3 (2.103)

These super derivatives together with their properties will prove useful in the construc-

tion of SUSY invariant Lagrangians and reducing the extra component fields in order to

match the SUSY multiplets. Now we shall consider two important types of superfields

together with their defining constraints

2.3.4.1 Chiral superfields

A chiral superfield Φ is defined by the constraint

D̄α̇Φ = 0 (2.104)

The Φ that solves this constraint will have a chiral field as its highest spin component

field and on-shell its component field content will match that of the chiral multiplet. In

order to manifest the meaning of constraint on the superfield Φ we shift the coordinates

as follows

(xµ, θ, θ̄) −→ (yµ, θ
′
, θ̄
′
) = (xµ + iθσµθ̄, θ, θ̄) (2.105)

and the effect of such a shift on the covariant derivatives is

Dα =
∂θ
′β

∂θα
∂

∂θ′β
+
∂yµ

∂θα
∂

∂yµ
+ iσµαα̇θ̄

′α̇ ∂

∂yµ

=
∂

∂θ′α
+ 2iσµαα̇θ̄

′α̇ ∂

∂yµ

(2.106)
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and by the exact same treatment for the other derivative we arrive at

D̄α̇ = − ∂

∂θ̄α̇
(2.107)

The chiral superfield constraint is now D̄α̇Φ(yµ, θ, θ̄) = ∂
∂θ̄α̇

Φ(yµ, θ, θ̄). The power series

expansion of a chiral superfield in the y-coordinate is

Φ(yµ, θ, θ̄) = φ(y) +
√

2θψ + θθF (y) (2.108)

where φ and F are scalar component fields and ψ is a fermionic 2-component field. This

expression, however, is in terms of the variable yµ which is a combination of spacetime

and Grassmann coordinates. Returning to the (xµ, θ, θ̄) will produce extra terms so that

general the chiral superfield solution of (2.104) is [17]

Φ(x, θ, θ̄) = φ+
√

2θψ + θθF + iθσθ̄∂µφ−
i√
2
θθσµθ̄∂µψ +

1

4
θθθ̄θ̄∂µ∂

µφ (2.109)

The presence of the scalar field F (x) exceeds the number of allowed bosonic component

fields in an N = 1 chiral multiplet on-shell. This extra degree of freedom can be removed

by requiring that F (x) not be dynamic. We can integrate F (x) out using the equations

of motion to express it in terms of φ and ψ so that on-shell we have the correct bosonic

and fermionic degrees of freedom allowed in the chiral multiplet.

The two useful properties of chiral superfields Φi are that sums and products of chiral

superfields are themselves also chiral superfields

D̄α̇(Φi + Φj) = D̄α̇Φi + D̄α̇Φj = 0 (2.110)

since Φi’s are chiral to begin with. For the case of a product of chiral superfields we

have [32]

D̄α̇(ΦiΦj) =
(
D̄α̇Φi

)
Φj + (−1)[Φi]Φi

(
D̄α̇Φj

)
= 0 (2.111)

where [Φi] is the grading of the chiral superfield Φi. Based on these two facts it is clear

that any holomorphic function, W, of chiral superfields Φ will also be chiral:

D̄α̇W(Φ) = −∂W
∂Φ

∂Φ

∂θα̇
=
∂W
∂Φ

D̄α̇Φ = 0 (2.112)

Holomorphic functions W(Φ) are referred to as the superpotential and they introduce

interactions in supersymmetric field theories, so do their antiholomorphic counterparts

W̄(Φ̄). The defining constraint of an antichiral superfield Φ̄ ≡ Φ† is DαΦ† = 0. The

sums and products of antichiral superfields are also antichiral superfields, thus any an-

tiholomorphic function of antichiral superfields is a chiral superfield. This is not true
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a product of a chiral with antichiral superfields; i.e. ΦΦ̄ is neither chiral nor antichi-

ral. From the definition of the supercharges (2.95) the infinitesimal transformations

Φ −→ Φ+δΦ = Φ+ i(ξQ+ ξ̄Q̄)Φ means the supersymmetric variation of the component

fields is

δξφ =
√

2ξψ (2.113)

δξψ =
√

2(ξF − iσµξ̄∂µφ) (2.114)

δξF =
√

2iψσµξ̄∂µ (2.115)

the field F transforms as a total derivative and can be used to construct Lagrangians

that are invariant under supersymmetric transformations. In fact the terms with highest

allowed degree in the Grassmann coordinates θ will transform as a total derivative. In

the chiral field case this term has auxiliary field F as its coefficient and auxiliary field

D for the vector superfield case. These auxiliary fields are eventually integrated out in

order to obtain the correct on-shell degrees of freedom. Note that the terms∫
dθ2 W(Φ) and

∫
dθ̄2 W̄(Φ̄) (2.116)

are N = 1 SUSY invariant whereW(Φ) and W̄(Φ̄) are chiral and anti-chiral respectively.

The superfield W(Φ) is known as a superpotential of the theory; it is (Grassmann) inte-

grated over half of superspace since the highest non-vanishing degree in the coordinate

θ is 2. If one is interested in constructing a renormalizable theory in 4 spacetime di-

mensions then each term of the Lagrangian density must at most have mass dimension

of 4; the implication is that the most general allowed form of the superpotential as a

polynomial of chiral superfields is given by

W(Φi) = fiΦi +
gij
2

ΦiΦj +
fijk
3!

ΦiΦjΦk (2.117)

The form of the superpotential follows from dimensional analysis arguments. From the

fact that ∫
dθ θ = 1

and [θ] = −1/2 it is clear that [dθ] = 1/2. Thus [dθ2] = 1 and the contribution

of [W(Φ)] = 3. From the chiral superfield term
√

2θψ one can deduce that [Φ] = 1

because [θ] = −1/2 and [ψ] = 3/2 which means the superpotential will be a holomorphic

polynomial of Φ with degree 3 at most [13].
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2.3.4.2 Vector superfields

Another constraint useful in removing the extra component fields from a general super-

field V is the reality condition

V † = V (2.118)

A superfield that satisfies this constraint is known as a vector superfield because its

component field content corresponds to the vector multiplet. Imposing (2.118) on the

superfield (2.98) means

ψ = ξ̄† = ξ , η = λ̄† = λ (2.119)

m = n∗ , d and φ are real functions (2.120)

and vµ is a real vector field which hence lends its name to the full superfield that obeys

the constraint (2.118). Vector superfields have become important as in addition to re-

moving unnecessary component fields they naturally allow for a superspace construction

of supersymmetric gauge field theories. Making the substitutions (2.119) on superfield

(2.98) means a vector superfield V takes the general form [33]

V (x, θ, θ̄) = φ(x) + θψ(x) + θ̄ψ̄(x) + θθm(x) + θ̄θ̄m∗(x) + θσµθ̄vµ(x)

+ θθθ̄η̄(x) + θ̄θ̄θη(x) + θθθ̄θ̄d(x)
(2.121)

It is easy to see that the sums of vector superfields are themselves also vector superfields.

Moreover the sums of chiral with antichiral superfields are also vector superfields, as are

the products: Φ + Φ̄ and ΦΦ̄ are vector superfields. And for renormalization purposes

we shall be interested in vector superfields that are products of chiral and antichiral

superfields i.e. ΦΦ̄. When it comes to the construction of SUSY invariant Lagrangians

we shall turn to the highest Grassmann order term θ2θ̄2, known as the D-term. This

term transforms into a spacetime derivative of d under SUSY transformation ξ, ξ̄:

δξ,ξ̄d(x) =
i

2

[
∂µησ

µξ̄ − ∂µη̄σ̄µξ
]

(2.122)

As in the case of the chiral superfield, the vector superfield also has more degrees of

freedom than allowed in an N = 1 vector multiplet: 8 bosonic + 8 fermionic. We shall

introduce the notion of invariance under gauge transformation for superfields in order to

reduce the extra (redundant) degrees of freedom. At heart, gauge invariance amounts

to appropriate replacements such that certain terms remain unchanged under a given

transformation. In Quantum Electrodynamics, the derivative ∂µ is replaced with Dµ

which contains a gauge field Aµ with appropriate transformation rules so that, under

the transformation ψ −→ eiα(x)ψ, the termDµψ remains unchanged up to a phase, eiα(x).
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The strategy here is the same in that we define a supersymmetric gauge transformation

of a vector superfield V to be

V (x, θ, θ̄) −→ Ṽ (x, θ, θ̄) = V (x, θ, θ̄) + Φ(x, θ, θ̄) + Φ̄(x, θ, θ̄)

= V (x, θ, θ̄) + iΛ(x, θ, θ̄)− iΛ̄(x, θ, θ̄)
(2.123)

where Φ = iΛ is a chiral superfield. Based on the definition of gauge transformation we

replace terms in the vector superfield in order to guarantee that (2.122) is not sacrificed

in the process. The replacement of terms in (2.121) is as follows

η −→ η − i

2
σµ∂µψ̄ , d −→ d− 1

4
�φ (2.124)

with the result that the vector superfield is not given by

V = φ+ θψ + θ̄ψ̄ + θ2m+θ̄2m∗ + θσµθ̄vµ + θ2θ̄(η̄ +
i

2
σ̄µ∂µψ)

+ θ̄2θ(η − i

2
σµ∂µψ̄) + θ2θ̄2(d− 1

4
�φ)

(2.125)

Given that Φ = a +
√

2θξ + θ2F , under gauge transformation (2.123), the component

fields of vector superfield (2.125) transform as

φ→ φ+ a+ a∗ (2.126)

ψ → ψ +
√

2ξ (2.127)

m→ m+ F (2.128)

m∗ → m∗ + F ∗ (2.129)

d→ d (2.130)

η → η (2.131)

As promised, d and η are invariant under gauge transformation and the F-term is still

useful to construct supersymmetric gauge field Lagrangians. The vector field vµ trans-

forms to vµ + i∂µ[a − a∗]. The introduction of gauge transformation provides more

conditions to use in removing the ‘redundant’ fields i.e. the extra component fields of

V can be removed by an appropriate choice of the component fields of Φ in (2.123),

this choice is gauge fixing. A well-known gauge is the Wess-Zumino gauge where the

component fields of Φ are chosen such that ([34],[13]) :

a+ a∗ = −φ (2.132)

F = −m (2.133)

ξ = − 1√
2
ψ (2.134)
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The Wess-Zumino gauge simply removes fields φ, ψ and m so that the vector superfield

now becomes

VWZ = θ2θ̄η̄ + θ̄2θη + θ2θ̄2d+ θσµθ̄
[
vµ + i∂µ(a− a∗)

]
(2.135)

d is an auxiliary field which can be integrated out using the equations of motion. The

convenience of the Wess-Zumino gauge is in the fact that

V 2
WZ =

1

2
θ2θ̄v2 (2.136)

V 3
WZ = 0 (2.137)

so then the exponential of the vector superfield in the Wess-Zumino gauge is exactly

eVWZ = 1 + VWZ +
1

2
V 2
WZ (2.138)

Such an exponential makes appearance when one extends U(1) gauge transformation

to supersymmetric field theories where the transformation of chiral superfields is given

by

Φ −→ e−igΛΦ and Φ̄ −→ eigΛΦ̄ (2.139)

Vector superfields like Φ̄Φ are invariant for as long as gΛ is a constant, which is a case

analogous to abelian gauge transformations in QFT [35]. For the non-abelian case gΛ

is allowed to depend on superspace coordinates and vector superfield Φ̄Φ is modified to

Φ̄egV Φ where V is a vector superfield which, under (2.139), transforms as

V −→ V + ig(Λ− Λ̄) (2.140)

where Λ is a chiral superfield in the sense of Section 2.3.4.1. Note that in QFT the phase

angle α being a constant means D̄β̇α = 0, hence in the language of superspace α is a

chiral superfield 7. The requirement that Λ be a chiral superfield is natural.

The term Φ̄egV Φ is function of chiral and antichiral superfields. It is known as the Kähler

potential, denoted with K(Φ, Φ̄), and serves as the kinetic part of the Lagrangian density.

K is integrated over all of superspace∫
d4xdθ2dθ̄2K(Φ, Φ̄) (2.141)

7and a antichiral superfield since Dβα = 0
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From this we observe that 4-dimensional SUSY invariant actions in N = 1 superspace

will schematically be of the form

S =

∫
d4x
[
d2θd2θ̄ K(Φ, Φ̄) + d2θ W(Φ) + d2θ̄ W̄(Φ̄)

]
(2.142)

Here the volume elements can be written as d8z ≡ d4xd2θd2θ̄, d6z ≡ d4xd2θ and d6z̄ ≡
d4xd2θ̄ and the action becomes

S =

∫
d8z K(Φ, Φ̄) +

∫
d6z W(Φ) +

∫
d6z̄W̄(Φ̄) (2.143)

The Kähler potential is given by K(ΦegV , Φ̄) and in the abelian case the chiral superfields

are vectors and egV a matrix. In the non-abelian case the chiral superfields themselves

become matrices so that the Lagrangian is traced over i.e.

S =

∫
d8z TrK(Φ, Φ̄) +

∫
d6z TrW(Φ) +

∫
d6z̄Tr W̄(Φ̄) (2.144)

2.3.4.3 Spinor superfields

Thus far we have considered chiral and vector superfields and these are without a free

index, making them Lorentz scalar superfields i.e. spin 0. In supersymmetric field

theories it is also possible to construct spinor superfields using the super-derivatives of

a vector superfield:

Wα :=− 1

4
D̄D̄DαV (x, θ, θ̄)

W̄α̇ :=− 1

4
DDD̄α̇V (x, θ, θ̄)

(2.145)

These spinors superfields are the supersymmetry analogue of a gauge field strength in

QFT, Fµν = ∂(µAν) as such they are thought of as fermionic field strengths. Recalling the

definitions (2.101) and anticommutation relations (2.103) of super-covariant derivatives

we conclude that Wα and W̄α̇ are chiral and anti-chiral respectively [36]

D̄β̇Wα = −1

4
D̄β̇D̄D̄DαV (x, θ, θ̄) = 0 (2.146)

DβW̄α̇ = −1

4
DβDDD̄α̇V (x, θ, θ̄) = 0 (2.147)

Under the supersymmetric gauge transformation V −→ V + i(Λ − Λ̄) where Λ and

Λ̄ are chiral and antichiral superfields, the spinor superfield strength, Wα, is invariant
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since

Wα −→W
′
α = −1

4
D̄D̄Dα(V + iΛ− iΛ̄) (2.148)

= −1

4

(
D̄D̄DαV + iD̄D̄DαΛ− iD̄D̄DαΛ̄

)
(2.149)

= −1

4
D̄D̄DαV (2.150)

This is a by-product of

D̄D̄DαΦ = D̄({D̄,Dα}+DαD̄)Λ (2.151)

= D̄({D̄,Dα})Λ (2.152)

= D̄(2iσµ∂µ)Λ (2.153)

= 2iσ∂µD̄Λ (2.154)

= 0 (2.155)

By the same argument one can show that D̄D̄DαΛ̄ = 0, hence Wα is super-gauge

invariant. The solution of the spinor superfield strength in the Wess-Zumino gauge after

changing to the y-coordinate is given by

Wα = −iλα(y) + θθσµαα̇∂µλ̄
α̇(y) + δβαθβD(y)− i

2
(σµσ̄ν) βα θβFµν(y) (2.156)

with Fµν = ∂[µvν] , the abelian gauge field strength. The spinor superfield term in the

action will be ∫
d6zWαWα (2.157)

This term is SUSY invariant since Wα is chiral. By adding (2.157) and its hermitian

conjugate to (2.143) we are guaranteed that the kinetic term of the gauge fields is

complete. For the non-abelian case a super-gauge invariant spinor superfield is defined

as [28]

Wα = −1

4
D̄D̄DαV +

1

8
D̄D̄[V, D̄αV ] (2.158)

which in terms of the y-coordinate in the Wess-Zumino gauge means

Wα = −iλα(y) + θαD(y) + i(σµνθ)αFµν(y) + θθσµαα̇∂µλ̄
α̇ − i

2
θθσµαα̇[vµ, λ

α̇] (2.159)

and the gauge field strength is now given by

Fµν = ∂[µvν] −
i

2
[vµ, vν ] (2.160)

Admittedly our discussion of supersymmetric fields has focus on the chiral relations. The

antichiral relations can be obtained by (hermitian) conjugation. Thus we can conclude
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our discussion of the section of symmetries commonly found in physics.



Chapter 3

N = 4 SYM and Friends

3.1 N = 4 SYM in 4d

The N = 4 SYM theory in 4-dimensions is an example of a model which possesses all the

symmetries discussed in Chapter 2 thus making it rather special. If one is interested in

fields with spin no larger than 1 then the maximum amount of supersymmetry allowed

is 4. N = 4 means the theory has total of 16 real supercharges. So N = 4 SYM is

maximally supersymmetric. Its field content is made of the gauge field, Aµ, 4 Weyl

spinors,ψαa, ψ̄
b
α̇ and 6 real scalar fields, φi all of which are in the adjoint representation

of the gauge group which we take to be SU(N). So under the action of U ∈ SU(N), the

Weyl spinor fields and scalar fields will transform as ψ −→ UψU−1 and φ −→ UφU−1.

The gauge field on the other hand will transform as

Aµ −→ UAµU
−1 − i

g
(∂µU)U−1 (3.1)

because it appears through the covariant derivative, Dµ which is defined as

Dµ := ∂µ − igAµ (3.2)

Since we are in 4-dimensional Minkowski spacetime the index, µ, runs from 1 to 4. So

then SO(1, 3) is the spacetime symmetry enjoyed by the gauge and scalar fields. The

Weyl spinors, whose indices α and α̇ run from 1 to 2, also enjoy the so+(1, 3) symmetry

which is realized as two copies of su(2), one for the chiral Weyl spinors and the other for

the anti-chiral Weyl spinors [See (2.14) and (2.15)]. The Lagrangian of this 4-dimensional

34
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N = 4 super-Poincaré invariant theory is [37][38]:

L = Tr

[
− 1

2g2
FµνF

µν +
θI

16π2
εµνρσFµνFρσ − i(ψ̄α̇)a(σ̄µ)α̇βDµ(ψβ)a −Dµφ

iDµφi

+ gCabi (ψα)a[φi, (ψα)b] + gC̄iab(ψ̄α̇)a[φi, (ψ̄α̇)b] +
g2

2
[φi, φj ][φi, φj ]

]
(3.3)

and it is invariant under N = 4 super-Poincaré transformations. The non-abelian gauge

field strength Fµν is given by Fµν = ∂[µAν] + i[Aµ, Aν ]. εµνρσ is the Levi-Civita symbol

while the constants Cabi and C̄iab are the Clebsch-Gordan coefficients of the SO(6) sector.

To understand how they eventually enter the scene we first note that in the Lagrangian

above the fields are matrix-valued and thus carry symmetry group indices. The group

indices {a, b} which run from 1 to 4 are for the spinors and they are indicative of the

SU(4) internal symmetry that rotates the spinors into another and it is an R-symmetry.

The 6 scalar fields also carry indices for the SO(6) group which pertains to their internal

symmetry; these indices {i, j} run from 1 to 6. At the algebra level so(6) is isomorphic

to su(4) which means the spinors can be written in the same representation as the

scalar fields with help of the Clebsch-Gordan coefficients. So these coefficients allow for

translation between the SO(6) and SU(4) representations.

A dimensional analysis1 of each term of (3.3) shows that the Lagrangian has dimen-

sionless couplings, i.e. [θI ] = 0 = [g]. Thus it follows immediately that this theory is

scale invariant. For the bosonic sub-sector of the theory, scale invariance together with

Poincaré symmetry in (3+1)-dimensions give rise to conformal symmetry described by

so(2, 4) ' su(2, 2) [37]. This symmetry is enhanced by the presence of supersymmetry

because the Special Conformal Transformation [SCT] generators Kµ do not commute

with SUSY generators Qα, meaning special conformal symmetry mixes with supersym-

metry to produce supersymmetric special conformal transformations [SUSY SCT] that

are generated by Sα, S̄α̇. The SUSY SCT generators are fermionic in nature because of

the grading of the supercharges i.e. [Even,Odd] = Odd. The commutation relations of

the SUSY SCT generators with the Lorentz generators are [39]:

[Sα,Kµ] = 0 = [S̄α̇,Kµ], [Sα, D] = − i
2
Sα, and [S̄α̇,Kµ] = − i

2
S̄α̇

[Sα, Pµ] = −i(σµ)αβ̇Q̄
β̇, [S̄α̇, Pµ] = −i(σ̄µ)βα̇ Qβ

[Sα,Mµν ] = − i
2

(σµσ̄ν) βα Sβ, [S̄α̇,Mµν ] = − i
2

(σ̄µσν)α̇
β̇
S̄β̇

(3.4)

The total number of real supercharges thus increased from 16 to 32. The superalgebra

1[Aµ] = 1, [ψ] = 3
2
,[φi] = 1
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corresponding to N = 4 SYM is thus psu(2, 2|4) due to the enhancement by superconfor-

mal symmetry. N = 4 SYM is the unique maximally SUSY field theory in 4d whether

constructed from ground up or from a higher-dimensional theory. When an N = 1

SUSY field theory in 10-dimensions is, by Kaluza-Klein compactification, reduced to

4-dimensions, one obtains N = 4 SYM. Moreover N = 4 SYM, being independent

of a renormalization energy scale, has a vanishing β function and under perturbative

treatment its n-point functions show no signs of UV divergences. These observations

persist even to the quantum level. This makes it a good toy model on which to develop

understanding and tools for solutions.

3.1.1 The role of N= 4 SYM:

3.1.1.1 In AdS/CFT duality

Much time has been spent studying this theory and this effort has proven useful because

N = 4 SYM is linked to many other models. Our knowledge of it has been employed

to understanding these other models. In the AdS/CFT correspondence, N = 4 SYM

is conjectured to be dual to IIB String theory on AdS5×S5 [21]. Inasmuch as the

correspondence is conjectural, there are features that fuel our reasons to believe in it.

One such feature is the global symmetry of either one of the theories. It is useful to

digress a little and first discuss AdS space.

A (d+1)-dimensional AdS space of radius R is defined by the constraint

−X2
0 −X2

d+1 +
d∑
i=1

X2
i = −R2 (3.5)

and this can be embedded in a flat (d+2)-dimensional space with a pseudo-Minkwoski

metric given by

ds2 = −dX2
0 − dX2

d+1 +
d∑
i=1

dX2
i (3.6)

The following definition of the embedding coordinates Xt, t = 0, 1, . . . , d+ 1 gives a

solution to (3.5) [40]

X0 = R sec ρ cos τ ,

Xd+1 = R sec ρ sin τ ,

Xi = R tan ρ ξi , i = 1, . . . , d

(3.7)

where ξ’s satisfy ξiξi = ξiδijξ
j = 1 where i, j = 1, . . . , d . ρ is an AdS radial coordinate

which takes values in [0, π/2 while τ and the ξ’s are angular coordinates which are

restricted to −π < τ ≤ +π and −1 ≤ ξi ≤ +1. In these coordinates, (ρ, τ, ξ) – which
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are usually called global coordinates, the AdS metric is given by

ds2 =
R2

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρ

d∑
i=1

dξ 2
i

)
(3.8)

There is another choice of coordinates in which the metric (3.8) assumes a compact

form, they are called the Poincaré cooridnates (z, x̄, t). We first combine one ‘time-like’

coordinate X0 with one space-like coordinate Xd to define light-cone coordinates u and

v

u :=
X0 −Xd

R2
≡ 1

z

v :=
X0 +Xd

R2

(3.9)

Then we change the other remaining coordinates, (d-1) space-like and 1 time-like coor-

dinates, to

xi :=
Xi

Ru

t :=
Xd+1

Ru

(3.10)

The constraint (3.5) allows us to resolve the light-cone coordinate v in terms of u, the

xi’s and t. At this point, the embedding coordinates can be written as

X0 =
1

2z

(
z2 +R2 + x̄2 − t2

)
Xd =

1

2z

(
z2 −R2 + x̄2 − t2

)
Xd+1 =

Rt

z

Xi =
Rxi

z
, i = 1, . . . , d− 1

(3.11)

where we have defined x̄2 = δijx
ixj with i, j = 1, . . . , d− 1 and used an equality defined

earlier, u = z−1. In these coordinates, the AdS metric is

ds2 =
R2

z2

[
dz2 + dx̄2 − dt2

]
(3.12)

The full isometry group of this (d+1)-dimensional AdS space is SO(2, d) even though

only part of it is apparent in the metric2.

We are now in a position to compare the global symmetries of N = 4 SYM and type

IIB string theory in AdS5× S5. The AdS5 part of the product manifold has an isometry

group SO(2, 4) while the S5 part has isometry group SO(6). Recall that the global

symmetry of SYM is given by the superconformal group SU(2, 2|4).

The isometry group of a 5-sphere is SO(6) which is isomorphic to SU(4).

2SO(1, d− 1)× SO(1, 1) is Poincaré coordinates, SO(d)× SO(2) in global coordinates.
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The isometry group of AdS5 is SO(2, 4) ≡ SU(2, 2) and that of S5 is SU(4) then it

follows that the product space has SU(2, 2|4) as a global symmetry group, matching

N = 4 SYM. The AdS/CFT duality has a strong-weak coupling relation and thus can

be employed to study the strongly coupled regime of one theory in terms of the weakly

coupled regime of its dual theory. Thus our knowledge of N = 4 SYM can be used to

study IIB string theory [41]. In some cases the flow of information is reversed, that is,

the theories to which N = 4 SYM is dual either unveil its properties or supply a novel

platform with tools which can be used to calculate quantities previously impossible to

calculate.

3.1.1.2 In Integrability

Early work [42] and especially the AdS/CFT correspondence [21] have led to the suspi-

cion that gauge theories admit a string description in the planar limit. In the case of

N = 4 SYM being dual to IIB string theory evidence for this suspicion is contained in

their spectra. The spectrum of non-interacting strings in AdS5×S5 matches the spec-

trum of single-trace operators in N = 4 SYM. By considering operators of the form

Tr(ZZ . . . Z) = Tr(ZJ), which have come to be known as BMN operators, the authors

of [41] were able to recover the string spectrum from planar N = 4 SYM for large

J . The insertion of a field φ in Tr(ZJ) is considered as an impurity on the field the-

ory side. This impurity is understood on the string description as an excitation. The

anomalous dimensions of BMN operators can be predicted from string theory. This is

because string theory suggests that the dimension of a BMN operator is equal to the

mass of the corresponding string state [41], [43], [44]. Thus we have an operator/string

correspondence. By playing the ‘same game’ backwards, it is clear that computing the

anomalous dimensions of operators allows the reconstruction of the string spectrum.

From renormalization arguments, the computation of anomalous dimensions of a field

φ is done via field strength renormalization factor Zφ. For composite operators, the

renormalization factor Z is generally a matrix3. So anomalous dimensions can also be

represented/collected into a matrix Γ which is given by

Γ =
dZ
d ln Λ

1

Z
(3.13)

In an attempt to understand operators beyond the BMN type at one-loop, this line

of reasoning was employed in [45]. There it was found that the one-loop matrix of

anomalous dimensions, Γ, is hermitian. Moreover a single-trace operator of length J

made of the scalar fields belonging to the SO(6) sector of N = 4 SYM has J sites and

can be considered an element of a Hilbert space V ⊗J where V = R6. A useful picture

to have in mind is that of a spin chain. If the Hilbert space V ⊗J is thought of as spin

3a mixing matrix
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chain of length J then the single trace operators can be regarded as states of the spin

chain.

As an example, consider a gauge field theory with a sub-sector made of two scalar fields

X and Y . The Hilbert space V ⊗2 associated to this sector will then be a spin chain with

two sites and the operators Tr(XX),Tr(Y Y ),Tr(XY ) and Tr(XY ) would be states of

the spin chain. The following identification can be made

Tr(XX)⇐⇒ |↑↑〉 (3.14)

Tr(XY )⇐⇒ |↑↓〉 (3.15)

Tr(Y X)⇐⇒ |↓↑〉 (3.16)

Tr(Y Y )⇐⇒ |↓↓〉 (3.17)

Either (3.15) or (3.17) can be considered a ground state so that the others are excited

states. The mixing matrix corresponding to this sub-sector of the gauge field theory

will serve as the Hamiltonian of/in the spin chain picture. This mini example serves to

clarify the underlying logic without caring for the details since these vary by sector and

model. For a discussion of in-depth detials can be found in [46][47].

Returning to our specific model, the operator Tr
(
ZJ
)

is was mapped to the ground

state of a spin chain with J sites and Γ, served as the Hamiltonian operator of the spin

system. For the one-loop calculation Γ was found to be [45]

Γ =
λ

16π2

J∑
l=1

[Kl,l+1 + 2(Il,l+1 − Pl,l+1)] (3.18)

where K is a trace operator, I an identity operator and P a permutation operator.

As a Hamiltonian, Γ at one-loop corresponds to a spin chain with nearest-neighbour

interaction. This Hamiltonian is the same as that of a Heisenberg XXX-spin chain model

with J-sites and thus is integrable. This mapping avails the computational resources

used in integrability. This method is made efficient and simple by focusing only on

the dilatation operator of N = 4 SYM because the dilatation computes the scaling

dimensions of operators [38],[48].

3.2 The Friends: Marginal deformations

The N = 4 SYM possesses a large amount of symmetry and it seems expected that it

enjoys all these benefits. The next task would be then to find other theories, with less

symmetry, for which similar analyses are possible. A good starting point in this quest

is to deform N = 4 SYM by introducing or modifying terms in its Lagrangian. We
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shall be interested in marginal deformations, deformations that reduce supersymmetry

but keep conformal symmetry intact. To appreciate this we first re-write the action

corresponding to (3.3) in the language of N = 1 superspace introduced earlier

S =

∫ [
d8z Tr(e−gV Φ̄iegV Φi) +

1

2g2

(
d6z Tr(WαWα) + d6z̄ Tr(W̄α̇W̄

α̇)
)

+

ig
(

d6z Tr(Φ1Φ2Φ3 − Φ1Φ3Φ2) + d6z̄ Tr(Φ̄1Φ̄2Φ̄3 − Φ̄1Φ̄3Φ̄2)
)] (3.19)

where Φi’s are chiral superfields, Wα is the spinor superfield strength and V is a vector

superfield as presented in Chapter 2. The term

WN=4 := gTr(Φ1Φ2Φ3 − Φ1Φ3Φ2) = gTr
(

Φ1[Φ2,Φ3]
)

(3.20)

is the superpotential. In this work we shall focus on Leigh-Strassler deformations which

only deform the superpotential to

WLS = κTr
[
Φ1Φ2Φ3 − qΦ1Φ3Φ2 +

h

3

(
(Φ1)3 + (Φ2)3 + (Φ3)3

)]
(3.21)

where q and h are the deformation parameters. In principle there are more general

deformations that can be done on N = 4 SYM but if we demand that the deformations

be exactly marginal then (3.21) is the most general form that the superpotential assumes

[49]. This class of theories is called Leigh-Strassler [LS] credit to the authors who, by

using the NSVZ beta function [50], demonstrated finiteness provided that there is a

function which γ which relates parameters of the theory [51]. Such a function must

satisfy the condition

γ(g, κ, q, h) = 0 (3.22)

This condition arises because of a distinguishing feature of Leigh-Strassler theories which

we point out. The scale independence of the Leigh-Strassler theory requires that the scal-

ing coefficients of each of the chiral fields that appear in the superpotential must vanish

and so also for that of the gauge coupling. However the chiral fields in Leigh-Strassler

theories possess a Z3 symmetry which mandates that their anomalous dimensions be

the same. This anomalous dimension is proportional to the function γ(g, κ, q, h), thus

the condition (3.22) guarantees a vanishing anomalous dimension. The existence of the

function γ implies that fixed points of Leigh-Strassler theories constitute a manifold. At

one-loop order the condition (3.22) can be solved to obtain [51]:

2g2 = κκ̄
[ 2

N2
(q + 1)(q̄ + 1) +

(
1− 4

N2

)(
qq̄ + hh̄+ 1

)]
(3.23)
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The Leigh-Strassler deformations break the supersymmetry of SYM from N = 4 SYM

to N = 1, while preserving conformal symmetry. This in principle means that Leigh-

Strassler theories can be studied using the same tools used for N = 4 SYM , i.e. Ad-

S/CFT duality. An example of this is the real β-deformed theory which is obtained by

setting q = eiβ, q̄ = e−iβ and h = h̄ = 0 with β ∈ R. In [52] the gravity dual of the real

β deformed theory was obtained. The key ingredient here was that real β deformation

breaks the SU(3) symmetry of the superpotential down to U(1)×U(1) symmetry. This

remnant symmetry which enabled the authors of [52] to obtain the gravity dual to the

β-deformed gauge theory by a procedure now known as a TsT transformation. This

method of obtaining a gravity dual of a deformed field theory is useful ([53], [54])but

it depends on the existence of U(1) × U(1) symmetry which is realized geometrically.

In [52] U(1) × U(1) issued from the SU(3) part of the SU(4) of the R-symmetry. A

general Leigh-Strassler deformation however will break the SU(3) subgroup down to the

discrete ∆27 group [55].

Next we can consider integrability as in [56] where an SU(2) sector of a q-deformed

N = 4 SYM was shown to be integrable at one-loop. The spin chain Hamiltonian of

the sector corresponds to that of a parity violating XXZ Heisenberg spin chain [57]

[58]. Attempts to match the full q-deformed SO(6) sector of N = 4 SYM to the SO(6)

XXZ spin chain were unsuccessful [59]. From (3.19) it is clear that Leigh-Strassler

deformations affect the superpotential, a function of 3 chiral superfields Φi. The Φ’s

constitute an SU(3) sector whose corresponding one-loop spin chain Hamiltonian is

[60]

Hl,l+1 =
1

(qq̄ + hh̄+ 1)



hh̄ 0 0 0 0 h̄ 0 −h̄q 0

0 1 0 −q 0 0 0 0 h

0 0 qq̄ 0 −hq̄ 0 −q̄ 0 0

0 −q̄ 0 qq̄ 0 0 0 0 −hq̄
0 0 −h̄q 0 hh̄ 0 h̄ 0 0

h 0 0 0 0 1 0 −q 0

0 0 −q 0 h 0 1 0 0

−hq̄ 0 0 0 0 −q̄ 0 qq̄ 0

0 h̄ 0 −h̄q 0 0 0 0 hh̄



(3.24)

This Hamiltonian is related to the R-matrix via [57],[60]

H = −iP d

du
R(u)

∣∣∣∣
u=0

(3.25)
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here P is the permutation operator and u is the spectral parameter. The R-matrix of

Leigh-Strassler deformed N = 4 SYM in the quantum limit (u −→∞) is given by

Rqh =
1

2d2



t1 0 0 0 0 −2h̄ 0 2h̄q 0

0 2q̄ 0 t3 0 0 0 0 2hq̄

0 0 2q 0 −2h 0 t2 0 0

0 t2 0 2q 0 0 0 0 −2h

0 0 2h̄q 0 t1 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 t3 0

0 0 t3 0 2hq̄ 0 2q̄ 0 0

−2h 0 0 0 0 t2 0 2q 0

0 −2h̄ 0 2h̄q 0 0 0 0 t1



(3.26)

with d2 = (1 + qq̄ + hh̄)/2, t1 = 1 − hh̄ + qq̄, t2 = −1 + hh̄ + qq̄ and t3 = 1 + hh̄ − qq̄.
4Note that the R-matrix, consequently also the Hamiltonian, acts on a basis in which

rows and columns are labeled by

{|1 1〉 , |1 2〉 , |1 3〉 , |2 1〉 , |2 2〉 , |2 3〉 , |3 1〉 , |3 2〉 , |3 3〉}

The R-matrix is a key component of the puzzle because of its usefulness in character-

izing Hamiltonians of integrable models. To be sure, quantum integrable models are

characterized by their RTT relations, much like classical integrable models could be

characterized by their Poisson-involution relations [61] [62]. These relations have the

form [See Appendix C for further details]

R(u, v)T̂a(u)T̂b(v) = T̂b(v)T̂a(u)R(u, v) (3.27)

where T̂a(u), T̂b(v) are monodromy matrices and R(u, v) is spectral parameter dependent

R-matrix with spectral parameters u and v. Note that the commutation relations of T̂

are defined via R and thus R characterizes the model. The model is said to be integrable

if R satisfies the spectral-parameter-dependent Yang-Baxter equation [YBE]:

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) (3.28)

and its corresponding Hamiltonian, obtained via (3.25), will also be integrable. Taking

the spectral parameter to infinity means (3.28) becomes R12R13R23 = R23R13R12. We

shall encounter these expressions in the following chapters.

The process of actually obtaining the actual conserved charges is carried out by the

algebraic Bethe Ansatz methods, whose details are discussed in [63][64] and references

4The functions ti have been introduced for brevity of the notation
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therein. We now have seen the role of the R-matrix from the physics view point. In the

next chapter we present the mathematics in which it appears and that appearance will

be sufficient ground for us to marry the mathematics to the physics.



Chapter 4

The theory of quasi-Hopf

Algebras

In this section we review the definitions and properties of quasi-Hopf algebras [qHA]. Our

approach is to first present (regular) Hopf algebras and thereafter quasi-Hopf algebras as

generalizations of Hopf algebras [HA]. We first review the structures that are necessary

for the definition of a Hopf algebra. A more detailed and complete exposition of quasi-

Hopf algebras can be found in refs [65][66][67].

4.1 Hopf Algebras

4.1.1 Algebras

To begin let V be an abelian group with an additive composition rule + and k a field with

zero characteristic1 . Then the triple (V,+; k) together with the multiplicative action of

the group (k−{0}) on V define a vector space if they are compatible. Compatibility here

means the multiplicative action (which from here on will be called scalar multiplication2)

of (k − {0}) and the additive composition ‘+’ of V satisfy

α (vi + vj) = αvi + αvj , (4.1)

(α+ β) vi = αvi + βvi (4.2)

for all scalars α, β ∈ k and ‘vectors’ vi, vj ∈ V . A vector space can be endowed with a

multiplicative composition: • in addition to the additive composition +. This enriches

it into an algebra defined over a field k. That is to say the quadruple (V, •,+; k) is called

1For the multiplicative identity 1 of the field there exists no n for which the sum
∑n
i=1 1 vanishes.

2In this notation scalar multiplication is implied hence no symbol is used.

44



Chapter 4. Quasi-Hopf Algebras 45

an algebra if the action of k on V is also compatible with: •. Hence

α(vi • vj) = vi • (αvj), ∀ α ∈ k and vi, vj ∈ V (4.3)

It is important to note that • is a linear map from V ⊗V to V and we shall require that

• be associative which means

(•⊗ id)(vi⊗vj⊗vk) = (vi•vj)⊗vk = vi⊗(vj •vk) = (id⊗•)(vi⊗vj⊗vk) ∈ V ⊗V (4.4)

By 1V we denote the multiplicative identity of V so that (1V • vi) = (vi •1V ) = vi. For

reasons soon to be clear, for any element vi ∈ V we define a linear map ηvi : k −→ V

as follows ηvi(1) := vi. These maps are nothing more than a re-scaling3 of the elements

of V and ηvi(α) = αvi returns the element itself. We employ this fact to represent

1V as a map with a special designation, namely η ≡ η1V (1) = 1V and since η is map

representation of 1V we call it a unit map. Then we note that

(η ⊗ id)(k ⊗ V )

(id⊗ η)(V ⊗ k)

 ∈ V ⊗ V (4.5)

It is customary that the above definition of an algebra be summarized with the help of

commutative diagrams which in turn serve as good mnemonic devices. Figure 4.1 below

shows the commutative diagrams.

V ⊗ V ⊗ V

V ⊗ V V ⊗ V

V

(id⊗•) (•⊗id)

• •

(a) Associativity of product map •

V ⊗ V V ⊗ V

k ⊗ V V V ⊗ k

• •

∼=

η⊗id

∼=

id⊗η

(b) Unit map

Figure 4.1: Algebra properties

4.1.2 Co-algebras

When considering the diagrammatic summary of the maps of an algebra, it is natural

to wonder whether the reversal of arrows defines a meaningful mathematical structure.

3stretching, shrinking and/or reflecting
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Such a definition is possible and the resulting structure is called a co-algebra4 and its

corresponding commutative diagram is:

W ⊗W ⊗W

W ⊗W W ⊗W

W

id⊗∆ ∆⊗id

∆ ∆

(a) Co-associativity of co-product map ∆

W ⊗W W ⊗W

k ⊗W W W ⊗ k

ε⊗id id⊗ε

∼=

∆ ∆

∼=

(b) Co-unit map

Figure 4.2: Co-algebra properties

Formally, a co-algebra over a field k is a quintuple (W,+,∆, ε; k) where the triple

(W,+; k) is a vector space. Here ∆ and ε are linear maps which complement ‘•’ and

η respectively, hence they are fitly named co-multiplication or co-product and co-unit,

ditto. And Figure 4.2 implies that ∆ : W −→ W ⊗W and ε : W −→ k. In general the

action of ∆ on any w ∈ W can be written as

∆(wi) =
∑
jk

αi
jkwj ⊗ wk =:

∑
w(1) ⊗ w(2) (4.6)

hence ∆ shares out w to W ⊗W , a tensor product of two copies of the vector space

W . The rightmost expression, written in what is known as Sweedler notation [68], helps

to keep the expressions clean by suppressing the coefficients with the indices and then

labelling the vector space copies. Any element wi ∈ W on which co-product is of the

form ∆(wi) = wi ⊗ wi, no summation implied, is called group-like.

Just as ‘•’ was required to be associative so also ∆ can be required to be co-associative

which means

(id⊗∆) ◦∆(w) = (∆⊗ id) ◦∆(w) (4.7)

The co-unit ε is such that for any w ∈W

(ε⊗ id) ◦∆(w) = w = (id⊗ ε) ◦∆(w) (4.8)

4.1.3 Bialgebras and Hopf algebras

In the definitions of algebras and co-algebras different base vector spaces were used, V

for the algebra and W for the co-algebra. One can insist that the vector space used to

4‘co-algebra’ because it complements the algebra structure.
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define an algebra also be used to define a co-algebra. Doing so results is an algebraically

symmetric structure known as a bialgebra. Thus a bialgebra is a 6-tuple (H, •, η,∆, ε; k)

where H is a vector space over a field k with maps as defined above. Since the algebra

and co-algebra maps of the vector space that makes up the bialgebra are to co-exist we

require that they be compatible and the compatibility of • with ∆ means

∆(hi • hj) = ∆(hi) •∆(hj), (4.9)

that of • with ε

ε(hi • hj) = ε(hi) • ε(hj) (4.10)

There also exists a subset of bialgebras whose feature of distinction is that they possess

an antipodal map (usually denoted by S and called the antipode); these are known as

Hopf algebras. This in effect implies that by appending S to a bialgebra we obtain a

Hopf algebra, i.e. (H, •, η,∆, ε, S; k). The antipode S is a linear anti-homomorphic map

S : H → H which maps h 7→ h−1, hence its role is to invert elements of H with respect

to the product • so that S(hi • hj) = S(hj) • S(hi). Note that the order of composition

reverses just as, for example, in matrix multiplication (A.B)−1 = (B−1).(A−1) where A

and B are invertible matrices. Furthermore, the antipode must be compatible with the

existing bialgebra maps and thus S must satisfy the relation

• (id⊗ S) ◦∆ = •(S ⊗ id) ◦∆ = η ◦ ε (4.11)

which is a summary of the compatibility of • with S and η with ε. For brevity it is

customary to refer to a HA (H, •, η,∆, ε, S; k) by its underlying vector space H. The

action of coproduct and counit maps on the identity element, 1H , of the Hopf algebra

are defined as:

∆(1H) = 1⊗ 1 and ε(1H) = 1 (4.12)

thus 1H is group-like. Below is the commutative diagram of a Hopf algebra:

H

H ⊗HH ⊗H

k H

H ⊗H H ⊗H

∆

ε

∆

η

id⊗ S

•

S ⊗ id

•

Figure 4.3: Hopf Algebra commutative diagram
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4.1.4 Examples of Hopf algebras

Following the definitions above we construct examples of Hopf algebras [69].

4.1.4.1 The tensor algebra

Let V be a (finite) vector space over C and choose the tensor product ⊗ as the product

map. Then TnV denotes the nth tensor power of V in the sense that

TnV = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n-times

= V ⊗n (4.13)

so that a tensor product of v ∈ TnV and w ∈ TmV is an element z := v ⊗ w belonging

to Tn+mV . It is now clear that the space of all tensor polynomials of vector space V

which we denote by T (V ) possesses an algebra structure, that is the triple (T (V ),⊗;C)

is a tensor algebra.

T (V ) = C⊕
∞⊕
n=1

TnV (4.14)

is the formal definition of the space of tensor polynomials of V . The relations

∆(v) = v ⊗ 1+ 1⊗ v , S(v) = −v

∆(1) = 1⊗ 1 , ε(v) = 0

 ∀ v ∈ V (4.15)

complete the co-algebra structure and thus (T (V ),⊗,1,∆, ε, S;C) together with the

relations in (4.15) is a Hopf algebra.

4.1.4.2 Universal Enveloping Algebra

A useful HA which can be defined using the tensor algebra T (V ) above is the Universal

Enveloping Algebra [UEA]. For this we define IL to be a proper invariant subalgebra of

T (V ) [70][69]. IL known as a left ideal then has a property that it absorbs all elements

of T (V ) when multiplied from the left:

v ⊗ w ∈ IL , ∀ w ∈ IL and v ∈ T (V ) (4.16)

A similar subset can be defined for the case of multiplication from the right, which is

known as a right ideal but the scenario is special when a invariant subalgebra is simul-

taneously a left and a right ideal in which case the it known as a two-sided ideal.

The notion of a two-sided ideal enables us to construct a UEA as follows. Let I be

the smallest possible two-sided ideal of the algebra T (V ) generated by elements of the

form

v ⊗ w − w ⊗ v − [v, w] (4.17)
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then the quotient T (V )/I defines a UEA of V which we denote by U(V ). As in (4.15), we

recognize that the triple (U(V ),⊗;C) as an algebra structure and (U(V ),⊗,1,∆, ε, S;C)

as the co-algebra structure, hence the UEA is HA. The Hopf algebras we shall be con-

cerned with are UEA’s of Lie algebras, i.e. V will be a Lie algebra. UEA’s are useful

because they contain all the representations of their underlying vector space, hence their

‘universal’ designation.

4.1.5 Properties of Hopf Algebras

4.1.5.1 Action of HAs

HAs have a plethora of interesting properties whose full exposition can fill volumes but

we will highlight the ones pertinent to this work. What is worthy of note is that HAs can

act on other mathematical ‘sets’ in the same way that regular groups in group theory

act on others ‘sets’. This means we can use H, a HA whose structure we know, to study

the structure of ‘set’ A (and vice versa). The advantage here is that questions in/about

A can be recast in terms of H and its properties (and vice versa). For this to work we

must ascertain that the action of H on A preserves the structure of A. If ‘set’ A is an

algebra isomorphic to an HA then the HA action (from the left), denoted by ., must

satisfy

h . (ab) =
∑

(h(1) . a)(h(2) . b) and h . 1A = ε(h)1A (4.18)

and if ‘set’ A is a co-algebra then the (left) action of HA H on A must satisfy

ε(h . a) = ε(h)ε(a) and

∆(h . a) =
∑

(h(1) . a(1))⊗ (h(2) . a(2))

 ∀ h ∈ H and ∀ a ∈ A (4.19)

The ‘set’ A is either called a (left) H-module algebra when (4.18) hold and A is an

algebra or a (left) H-module co-algebra when (4.19) hold and A is a co-algebra.

4.1.5.2 Quasitriangularity

A HA H is called co-commutative if any element h ∈ H satisfies

∆op(h) = ∆(h) (4.20)

where ∆op = τ ◦∆ and τ is a transposition map in a sense that τ(u⊗ v) = v⊗ u. Thus

HAs composed of only group-like elements are always co-commutative. What happens

when co-commutativity does not hold, ∆op(h) 6= ∆(h)? One can systematically relax

(4.20) by proposing the existence of an invertible element R ∈ H⊗H which restores the

equality in a sense that

∆op(h) = R[∆(h)]R−1 ∀ h ∈ H (4.21)
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and also obeys the braidings:

(∆⊗ id)R = R13R23 , (id⊗∆)R = R13R12 (4.22)

The subscripts i, j in Rij refer to the non-trivial sites of the vector space chain H⊗n

of length n ∈ Z+. If R does exist and satisfies (4.22) then the HA is said to be quasi-

triangular and R is the quasitriangular structure. It is then clear that co-commutative

HAs are trivially quasitriangular with R = 1 ⊗ 1. The quasitriangular structure, R,

is actually the R-matrix we encountered before in Section 3.2; it solves the (quantum)

Yang-Baxter equation [YBE]

R12R13R23 = R23R13R12 (4.23)

Mathematically the YBE arises from the fact that there are two equally valid ways of

performing the operation (id ⊗ τ) ◦ (id ⊗∆)R and they must produce the same result

([71]) :

(id⊗ τ) ◦ (id⊗∆)R = (id⊗ τ)[(id⊗∆)R] (4.24)

= (id⊗ τ)[R13R12] (4.25)

= R12R13 (4.26)

or

= [(id⊗ τ ◦∆)R] (4.27)

= [(id⊗∆op)R] (4.28)

= R23[(id⊗∆)R]R−1
23 (4.29)

= R23R13R12R
−1
23 (4.30)

The relation (4.23) is used as a first simple test for signs of integrability and/or con-

sistency. For a model whose S-matrix is factorizable5 , the scattering of three particles

is consistent if the S-matrix satisfies the YBE with Rij replaced by Sij the S-matrix

element corresponding to the scattering of the i-th and j-th particles. By a consistent

S-matrix we mean a many-body can reduced into many 2-body problems without the

need to care for how the 2 bodies are chosen. This is usually represented by the YBE

lattice diagram in Figure 4.4 where the intersection point of lines i and j represents Rij .

We have also seen the general form of (4.23), the spectral parameter dependent one,

given by

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) (4.31)

5a scattering process involving N particles can be viewed as a sequence of 2-particle scattering
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3

2

1

2

3

1

Figure 4.4: Diagram representing the Yang-Baxter equation

here u and v are additive spectral parameters. Momentum is an example of an additive

spectral parameter. In this case if a process represented by R occurs so that (4.31) is

satisfied then such a process is both consistent and preserves total momentum. For each

choice of total momentum we obtain a new scenario where the process is consistent. This

little detour is to help highlight the importance of the R-matrix and needless to say we

will extensively use and exploit its connection to HAs and the study of integrability of

models.

4.1.5.3 Twisting

Another property of HAs which will be useful is the notion of twisting HAs to obtain

other HAs. Given a quasitriangular HA (H,R) one can construct a new quasitriangular

HA provided there is an invertible element F ∈ H ⊗H which obeys the relations

(F ⊗ 1) ◦ (∆⊗ id)F = (id⊗∆)F ◦ (1⊗ F ) (4.32)

and (ε⊗ id)F = 1 = (id⊗ ε)F (4.33)

The new quasitriangular HA is (H, •, η,∆F , ε, SF , RF ; k) where H is the underlying

vector space and the co-product, antipode and quasitriangular structure are now defined

as follows

∆F (h) = F
[
∆(h)

]
F−1

SF (h) = F
[
S(h)

]
F−1

 ∀ h ∈ H and RF = F21RF
−1 (4.34)

This method of generating new HAs from known ones is called twisting and the invertible

element F , the Drinfeld twist [72]. Note that the algebra part of the HA is unchanged,

only the co-algebra maps are affected by twisting. Fortunately for our purposes twisting
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preserves quasitriangularity since

τ ◦∆F (h) = τ ◦ (F∆(h)F−1) = F21

[
∆op(h)

]
F−1 = F21

[
R∆(h)R−1

]
F−1

21 (4.35)

=
(
F21RF

−1
)(
F∆(h)F−1

)(
FR−1F−1

21

)
= RF

[
∆F (h)

]
R−1
F (4.36)

Therefore if a quasitriangular Hopf algebra with quasitriangular structure R is Drinfeld

twisted by F then the resulting twisted Hopf algebra will also be quasitriangular and its

quasitriangular structure, RF is

RF = F21RF
−1 (4.37)

This property of HAs is one of the essential ingredients used in this work because the

types of HAs commonly found in physics are of the quasitriangular kind and twisting

preserves this.

4.1.5.4 Quasitriangular HAs observed in Physics

Quasitriangular HAs are the type of HAs that are common in physics, being first ob-

served in the context of quantum inverse scattering methods [QISM] to solve quantum

integrable systems [73]. There they are known as quantum groups, a name whose source

is clear in the light of the canonical quantization prescription. Recall that in classical

mechanics the dynamics of a system can (in principle) be described by a Hamiltonian,

H (q(t), p(t), t), a function of time t and phase space coordinates: canonical positions

q(t) and momenta p(t). This means the state of a system at time t corresponds to a

point (q(t), p(t)) in phase space X. How the system advances from state to state is

governed by Hamilton’s equations quoted below:

q̇ ≡ dq

dt
= ∂pH = {q,H}P.B. (4.38)

ṗ ≡ dp

dt
= −∂qH = {p,H}P.B. . (4.39)

Here {·, ·}P.B is the Poisson bracket. The coordinates of phase space satisfy

{q, p}P.B. = 1 (4.40)
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An observable O(q(t), p(t); t) is a function that belongs to F(X) – a space of functions

that act on phase space X – and evolves with time according to

d

dt
O =

(
∂O
∂q

)(
dq

dt

)
+

(
∂O
∂p

)(
dp

dt

)
+
∂O
∂t

(4.41)

=

(
∂O
∂q

)(
∂H

∂p

)
−
(
∂O
∂p

)(
∂H

∂q

)
+
∂O
∂t

(4.42)

= {O, H}P.B. +
∂O
∂t
. (4.43)

And if the observable O does not explicitly depend on time then (4.43) reduces to

d

dt
O = {O, H}P.B.. (4.44)

Hence {O, H}P.B vanishes iff O(q(t), p(t)) is conserved. The set of all O(q(t), p(t)) that

Poisson commute with the Hamiltonian, together with the Poisson bracket 6 constitute

a Lie Algebra that describes the symmetries of the system. In canonical quantization

the states are represented by vectors that live in a Hilbert space H which replaces phase

space X. Observables O become operators Ô belonging to Op(H) , a space of operators

that act on vectors from H. The Poisson bracket is replaced with a commutator

{·, ·}P.B. → −
i

~
[·, ·] (4.45)

so that (4.40) becomes [q, p] = i~ — the commutation relation for the Heisenberg algebra

— and the quantum analogue of (4.44) is the Heisenberg equation of motion

i~
∂

∂t
Ô = [Ô, Ĥ] (4.46)

The space, Op(H), is made of operators Oi which generally do not commute but instead

their commutativity is controlled by an operator, R ∈ Op(H)⊗2, so that

ÔiÔj = R̂ k l
i j ÔkÔl (4.47)

The relations (4.47) are the starting point for defining a quantum group/algebra [74].

equipped with the commutator is thus expected to defined a quantum version of a Lie

group, hence the name quantum groups. Having discussed HAs, now is most oppor-

tune for the introduction of the notion of quasi-Hopf Algebras [qHAs] since they are

generalizations of HAs.

6{., .}P.B. satisfies all the axioms of a Lie algebra definition
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4.2 quasi-Hopf Algebras

A quasi-Hopf algebra is in essence a Hopf algebra as defined above with the exception

that the co-associativity condition (4.7) is now relaxed to

(
id⊗∆

)
◦∆(h) = φ

[(
∆⊗ id

)
◦∆(h)

]
φ−1 , ∀ h ∈ H (4.48)

and the antipode is defined by the triple (S, α, β) whose details are described below

[72]. Quasi-Hopf algebras are a natural progression from Hopf algebras, being the most

general class of algebras that remain closed under arbitrary twisting [71][72]. Comparing

(4.48) to (4.21) highlights that the role of φ is to control co-associativity just as R did

co-commutativity. The object φ, known as a co-associator, belongs to H ⊗H ⊗H and

obeys

(1⊗ φ)
[
id⊗∆⊗ id)φ

]
(φ⊗ 1) =

[
(id⊗ id⊗∆)φ

][
(∆⊗ id⊗ id)φ

]
(4.49)

an equation known as the pentagon relation. This relation encodes the different place-

ments of brackets on 4 objects, enclosing 2 objects. For instance, there are two possible

pathways one can take when moving a left-justified bracketing of 4 letters to a right-

justified bracketing

[(ab)c]d −→ a[b(cd)] (4.50)

One pathway involves two steps and the other, three. The left and right hand side of

(4.49) are the details of how to step-by-step perform bracketing for each pathway while

exposing the role of the co-associator φ at each step. The diagrammatic representation

of (4.49) is

((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d a⊗ ((b⊗ c)⊗ d)

a⊗ (b⊗ (c⊗ d))

(a⊗ b)⊗ (c⊗ d)

φ
⊗
1

(id⊗∆⊗ id)φ

1⊗
φ

(∆⊗ id⊗ id)φ (id
⊗ id⊗

∆)φ

Figure 4.5: Role of the co-associator in the pentagon relation
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What is worthy of highlight about the antipode of qHA is that it is now a triple (S, α, β)

with α and β elements in H which together must satisfy

•(1⊗ α)(S ⊗ id) ◦∆(h) = ε(h)α and (4.51)

•(β ⊗ 1)(id⊗ S) ◦∆(h) = ε(h)β, ∀ h ∈ H (4.52)

This is nothing more than the generalization of (4.11) implying that the compatibility

of S with • in qHAs would fail unless α and β are supplied. In addition, the antipode

triple must satisfy

• ◦ (• ⊗ id)
[
(1⊗ β ⊗ α)(id⊗ S ⊗ id)φ

]
= 1 (4.53)

• ◦ (• ⊗ id)
[
(1⊗ α⊗ β)(S ⊗ id⊗ S)φ−1

]
= 1 (4.54)

in order to ascertain compatibility with the new object φ. So (H, •, η,∆, ε, φ, S, α, β; k)

is a qHA which is co-commutative defined over a field k. qHAs, being generalizations

of HAs, inherit properties reminiscent of HA and thus can also admit a quasitrian-

gular structure. So we can consider quasitriangular qHAs which have quasitriangular

structures R that satisfy (4.21). In this case the quasitriangular structure R satisfies

generalized braiding condition given by

(∆⊗ id)R = φ312R13φ
−1
132R23φ123 , (id⊗∆)R = φ−1

231R13φ213R12φ
−1
123 (4.55)

which results to a generalized YBE [71][61]

R12φ312R13φ
−1
132R23φ123 = φ321R23φ

−1
231R13φ213R12. (4.56)

For an intuitive feeling of this imagine that the LHS ( or RHS) of (4.56) to be an

“operator” which acts on a left-justified vector (1⊗2)⊗3 from the left then its action is

portrayed in Figure [4.6a] ( or Figure [4.6b]). Figure [4.6] is read from top to bottom and

the fact that R is initially between 1 and 2 indicates their association [left-justification],

hence R acts trivially on 3 because R is a binary operator. The co-associator acts to

change the association to where 2 and 3 are associated. The intersection of diagonal lines

represents the action of R hence the first intersection on LHS is R23 while on the RHS

it is R12. The outcome of the LHS of (4.56) can be represented as an equation:

R12φ312R13φ
−1
132R23φ123 . [(1⊗ 2)⊗ 3] = 3⊗ (2⊗ 1) (4.57)

and the outcome of the RHS is given by:

φ321R23φ
−1
231R13φ213R12 . [(1⊗ 2)⊗ 3] = 3⊗ (2⊗ 1) (4.58)
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Figure 4.6: Graphical representation of the quasi-YBE

qHAs also have the notion of twisting, albeit a generalized form. A given quasitriangular

qHA H defined by the tuple (H,∆, ε, R, φ, S, α, β; k)7 can be twisted to obtain a new

qHA HF given by (H,∆F , ε, RF , φF , SF , αF , βF ; k) provided we can find an invertible

F ∈ H⊗2 for which (ε ⊗ id)F = 1 = (id ⊗ ε)F holds. The twisted structures are given

by

∆F (h) = F
(
∆(h)

)
F−1 , RF = F21RF

−1 (4.59)

αF = •
[
(S ⊗ id)(1⊗ α)F−1

]
, βF = •

[
(id⊗ S)(1⊗ β)F

]
(4.60)

φF = F23

[
(id⊗∆)F

]
φ
[
(∆⊗ id)F−1

]
F−1

12 (4.61)

7For brevity we have suppressed the algebra part of the qHA since it is unaffected by twisting.
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and only they are affected, thus everything else in HF is the same as in the untwisted

H i.e. ε, SF = S. We highlight that the twisted co-associator φF is defined using the

untwisted co-product and also note that in the quasi-Hopf algebra setting the twist F

need not be a 2-cocyle as was the case in the Hopf algebra setting.

We do acknowledge that, on the surface, the objects discussed in this section may seem

to have nothing to do with physics, thus appealing only to mathematicians but the

remaining sections are devoted to establishing their connection to the study of physics.

This much is sufficient HA theory for the reader to appreciate the goal of the present

work.



Chapter 5

The global quasi-Hopf symmetry

in N = 4 SYM

The intention in this chapter is to first associate a quasi-Hopf algebraic structure to

N = 4 SYM and then Drinfeld twist the said structure to arrive at the Leigh-Strassler

deformations which were constructed in [49] and whose planar integrability was studied

in [60]. These marginal deformations only affect the superpotential of N = 4 SYM

which means they will affect the internal SO(6)-symmetry which the 6 real-scalar fields

φi possess with i = 1, . . . , 6 and as we pointed out earlier, SO(6) ' SU(4) [37]. Using

the N = 1 superspace formalism described in Section 2.3.3 we can express the N = 4

supermultiplet in terms of 1 × (N = 1) gauge supermultiplet and 3 × (N = 1) chiral

supermultiplets. The complex scalar component fields, ϕi, of the chiral superfields Φi

corresponding to each of the 3 chiral supermultiplets are obtained by joining the real

scalar fields φi’s by pairs, i.e. ϕj = 1√
2
(φj + iφj+3) for j = 1, 2, 3 [75]. In this formalism

the superpotential takes the form

WN=4 = gTr
(
Φ1[Φ2,Φ3]

)
(5.1)

where g is the coupling constant, the Φi’s are chiral superfields and now only the

SU(3) × U(1)R subgroup of the SU(4) R-symmetry is explicitly manifest. For com-

parison we recall from Section 3.2 that the Leigh-Strassler deformed superpotential in

N = 1 superspace language is given by

WLS = κTr

[
Φ1[Φ2,Φ3]q +

h

3

(
3∑
i=1

(Φi)3

)]
(5.2)

where [X,Y ]q = XY − qY X is a deformed commutator and q and h are deformation

parameters which can be complex. It is easy to see that WLS remains invariant under

58
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U(1) transformations but, in general, not under SU(3) transformations except for some

specific values of q and h.

5.1 quasi-Hopf structure of N = 4 SYM

We shall focus on the SU(3) =: H sector of N = 4 SYM as the vector space that

constitutes the algebra part of the quasi-Hopf algebra structure in the sense of Chapter

4. Matrix multiplication is the group multiplication of SU(3) and here it will serve as

the multiplication map • : H ⊗H → H and C will be the field over which vector space

H is defined. We can also choose the unit map η to be η(1)→ 1H . We know that scalar

multiplication is compatible with matrix multiplication, so the field structure of C is

compatible with the vector space structure of H. Thus half the work is done, all that

remains is to associate an accompanying co-algebra structure to H.

Before we do so it is best to mention that in the literature of quasi-Hopf algebras there is

usually no need to make a clear distinction between group and algebra. Since some maps

are easier defined at the group level while others at the algebra level, we will seek to

make that as clear as possible. Thus SU(3) =: H will refer to the group while su(3) =: h

to the underlying algebra. This will hopefully make clear the level at which each map

is defined. For the co-product we use the symmetric map

∆(a) = a⊗ 1+ 1⊗ a , ∀ a ∈ h and ∆(1) = 1⊗ 1 (5.3)

Here we have defined the co-product at the algebra level hence the exponentiation of

its result at this level elevates to the group level. In order to apply this co-product

on a group element U then U must first be expressed as an exponential of a linear

combination of the generators, λi, of h

U = exp(ciλi) ≡
∑
n=0

1

n!

(
ciλi

)n
(5.4)

with implied summation for some {ci} ⊂ C. By recollecting the result of the action of

∆ at the algebra level, we are then able to see its effect at the group level. There is

no guarantee that this will result in a closed expression. The antipode, being a triple

(S, α, β) is easy to define at either level, but we will prefer to do so at the algebra level.

We define S : h→ h as

S(a) = −a , ∀ a ∈ h (5.5)

so that at the level of the group, the antipode S maps an element ea to its inverse

e−a. To complete the definition of our antipode we set β = 1 = α. This is possible

only because for N = 4 SYM the co-associator is 13. In general we will not be able to
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simultaneously set α and β to 1 because α and β need to also satisfy (4.53) [71]. So in

the general case we will set β = 1 and this will restrict our choice of α to

α = [•(id⊗ S ⊗ id)φ]−1 =
[
φ(1)(S(φ(2))φ(3))

]−1
(5.6)

Next we employ the unit determinant of any element of H to define a co-unit map

ε : H → C as ε(U) := det(U) ,∀ U ∈ H. The R-matrix corresponding to the scalar

sector of N = 4 SYM is a 9× 9 identity matrix, R1, which trivially satisfies the braid-

ing relations (4.22). Putting everything together we conclude that (H,∆, ε, S,R1) is

the quasitriangular Hopf algebra structure associated with N = 4 SYM. Recall that

Hopf algebras are trivially quasi-Hopf with an identity for a co-associator since ∆ is

co-associative.

5.2 Twisting N = 4 SYM

In this section we consider the Leigh-Strassler deformations of N = 4 SYM and find

the twist which performs the deformation. To make our approach as transparent as

possible, we first focus our discussion on a specific deformation and then generalize it

to the full Leigh-Strassler deformations. This is due to the fact that the expressions

are cumbersome and more so for the full Leigh-Strassler deformations. Our treatment

will focus on twisting R-matrices at the quantum limit, so there will be no spectral

parameter. The spectral parameter can easily be restored and in any case the Drinfeld

twist only twist the identity part of the spectral parameter dependent R-matrix. We

shall demonstrate this fact in Chapter 7.

5.2.1 The twist for the real β-deformation

For now we start with the real β-deformation of N = 4 SYM, a model that has been

studied much in the context of the AdS-CFT correspondence. It is among the earliest

tests of the correspondence, being the first example of a field theory not maximally

symmetric to have a known gravity dual which has geometric interpretation [52]. It

is not entirely clear if every deformation has a string theory interpretation under the

AdS-CFT correspondence. It turns out that for deformations which are achievable by

Drinfeld twisting more can be said about the deformed theory. It is known that abelian

Drinfeld twists give rise to deformed gauge theories that have a gravity dual with a

geometric interpretation. A Drinfeld twist F is said to be abelian if it can be expressed

as

F = e−ir where r = αijai ∧ aj (5.7)



Chapter 5. quasi-Hopf symmetry 61

where r is the classical R-matrix and ai’s are Cartan generators of (the sub-sector of) the

theory. The real β-deformation of the scalar sector of N = 4 SYM can be performed by

Drinfeld twisting the R-matrix which corresponds to the SU(3) sector of N = 4 SYM.

The Drinfeld twist suitable to execute the real β-deformation was found to be abelian,

being expressed in terms of the SU(3) Cartan generators [76]. Thus the real β-deformed

N = 4 SYM has a geometric gravity dual. The key to this connection is that abelian

Drinfeld twists are defined in terms of classical r-matrices where classical r-matrices are

solutions to the equation

[r12, r13] + [r12, r23] + [r13, r23] = 0 (5.8)

which is known as the classical Yang-Baxter Equation [CYBE]. In (5.8) a lowercase r

is used to denote the classical R-matrix in order to distinguish it from the quantum

R-matrix. Twists that are defined in terms of classical R-matrices have been shown

to be TsT transformations in disguise [77] [78]. The R-matrix for the real β-deformed

theory is given by

Rβr = diag(1, q−1, q, q, 1, q−1, q−1, q, 1) (5.9)

where q = exp(iβ) with β ∈ R. By Taylor expanding this R-matrix we can isolate

the first-order term. This term is the real β deformed classical R-matrix and it can

used to construct an abelian Drinfeld twist according to (5.7). In [79] an equivalent

theory known as the w-deformed theory was shown to have a gravity dual using the

languages of Hopf algebras and generalized geometry [80]. The algebraic structure of

the w-deformed theory turned out to be a (quasitriangular) Hopf algebra rather than

a (quasitriangular) quasi-Hopf algebra. This is to say the abelian twist produced a

co-associative co-product, hence the co-associator is trivial.

5.2.2 The twist for the imaginary β-deformation

Next we consider the imaginary β-deformation as the pilot model on which we can show

explicit results of qHA treatment since it is not feasible for the full Leigh-Strassler theory.

The R-matrix of the imaginary β-deformed theory is obtained by setting h = 0 = h̄ and
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q̄ = q in (3.26), and the result is

Rβi =



1 0 0 0 0 0 0 0 0

0 2q
q2+1

0 1−q2

q2+1
0 0 0 0 0

0 0 2q
q2+1

0 0 0 q2−1
q2+1

0 0

0 q2−1
q2+1

0 2q
q2+1

0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 2q
q2+1

0 1−q2

q2+1
0

0 0 1−q2

q2+1
0 0 0 2q

q2+1
0 0

0 0 0 0 0 q2−1
q2+1

0 2q
q2+1

0

0 0 0 0 0 0 0 0 1



(5.10)

here q is a number given by q = eiβ and it is real since β is imaginary. By calculation, we

noted that Rβi is a triangular R-matrix because it satisfies the triangular relation:

R21 = τ(R12) = (R12)−1 (5.11)

R1 is triangular and the fact that Rβi is also triangular may serve as evidence to the

existence of a suitable Drinfeld twist because twisting preserves triangularity [71].

The objective is to demonstrate that there is a Drinfeld twist, Fβi , which deforms the

R-matrix of N = 4 SYM into Rβi in accord with the Drinfeld twisting prescription

(4.34). The R-matrix for N = 4 SYM is

R1 = 13 ⊗ 13 (5.12)

and the existence of a twist, Fβi , that performs the imaginary β-deformation amounts

to

Rβi = (Fβi)21R1F
−1
βi

= (Fβi)21F
−1
βi

(5.13)

The features of the twist are encoded onto the R-matrix, Rβi , it being constructed

according to (5.13), thus in order to find the twist we highlight a few properties of

Rβi and then use them as a guide to calculate the twist. Firstly note that Rβi is

orthogonal and has unit determinant. We also shall impose that Fβi also have unit

determinant.
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The fact that Rβi is orthogonal complies with the twist also being orthogonal be-

cause

Rβi .R
T
βi

= 1 (5.14)[
(Fβi)21F

−1
βi

]
.
[
(Fβi)21F

−1
βi

]T
= 1 (5.15)[

(Fβi)21F
−1
βi

]
.
[
(F−1

βi
)T (Fβi)

T
21

]
= 1 (5.16)

The final equality holds if (F−1
βi

)−1 = (F−1
βi

)T . It is not clear if this condition is necessary

but it is sufficient that we impose it as a simplifying condition. We can conclude then

that Fβi can be written as exponential of a skew-symmetric matrix, a fact which will

prove to be useful later.

Another property of interest is that the entries of Rβi are related to one another by

Z3-symmetry. Recall that the R-matrix acts on a basis given by:

{|1 1〉 , |1 2〉 , |1 3〉 , |2 1〉 , |2 2〉 , |2 3〉 , |3 1〉 , |3 2〉 , |3 3〉}

then the Z3-symmetry of the entries of Rβi means [Rβi ]
i j
k l = [Rβi ]

i+1 j+1
k+1 l+1 for i, j, k, l ∈

{1, 2, 3}. After imposing these properties as constraints on the twist we obtained the

following:

Fβi =



1 0 0 0 0 0 0 0 0

0 q+1√
2
√
q2+1

0 q−1√
2
√
q2+1

0 0 0 0 0

0 0 q+1√
2
√
q2+1

0 0 0 − q−1√
2
√
q2+1

0 0

0 − q−1√
2
√
q2+1

0 q+1√
2
√
q2+1

0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 q+1√
2
√
q2+1

0 q−1√
2
√
q2+1

0

0 0 q−1√
2
√
q2+1

0 0 0 q+1√
2
√
q2+1

0 0

0 0 0 0 0 − q−1√
2
√
q2+1

0 q+1√
2
√
q2+1

0

0 0 0 0 0 0 0 0 1



.

(5.17)

This twist is orthogonal and has unit determinant from construction but in addition

the twist is triangular, a property we did not insist on. Its presence means that the

imaginary beta deformed R-matrix can be simplified to Rβi = (F−1
βi

)2. Thus we have

a Drinfeld twist which deforms the N = 4 SYM R-matrix, R1, to the imaginary β-

deformed one Rβi . Furthermore this twist is NOT a 2-cocycle (4.32). In order to prove

this we first must write it as an exponential. In principle one can Taylor expand the
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twist in orders of the q parameter as follows

Fβi = 1+ qf
(1)
βi

+
q2

2
f

(2)
βi

+O(q3) + . . . (5.18)

and use the first-order term, f
(1)
βi

– which we call the classical twist– as an ansatz from

which to construct an exponential form of the twist. We will often use fβi to denote the

classical twist, suppressing the label for the order in expansion. This means the twist

can then be written as

Fβi = eiαβifβi (5.19)

where αβi was a priori an unknown function of q which we later determined to be

αβi = arccos

(
q + 1

√
2
√
q2 + 1

)
(5.20)

The classical twist here is given by

fβi =



0 0 0 0 0 0 0 0 0

0 0 0 −i 0 0 0 0 0

0 0 0 0 0 0 i 0 0

0 i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −i 0

0 0 −i 0 0 0 0 0 0

0 0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 0 0



(5.21)

We can go a step further and express fβi in a more useful form, which form is in terms

of the generators of su(3). The classical twist is now

fβi = −1

2
(λ1 ∧ λ2 + λ5 ∧ λ4 + λ6 ∧ λ7) (5.22)

The generators of su(3) known as the Gell-Mann matrices are :

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0



λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1
√

3


1 0 0

0 1 0

0 0 −2


(5.23)

and in our convention the wedge is understood as A ∧ B = A ⊗ B − B ⊗ A. On this
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form we can apply the co-product on the twist, compute (∆ ⊗ id)Fβi and (id ⊗∆)Fβi

and then confirm that

F12.(∆⊗ id)Fβi 6= (id⊗∆)Fβi .F23 (5.24)

This ascertains that we are indeed in a quasi-Hopf algebra setting rather than the Hopf

algebra one, otherwise there would be no need to compute the co-associator as it would

be trivial. According to Drinfeld [72] the twisted co-associator is given by

φFβi = (Fβi)23 · [(id⊗∆)Fβi ] ·
[
(∆⊗ id)F−1

βi

]
· (F−1

βi
)12 (5.25)

φ−1
Fβi

= (Fβi)12 · [(∆⊗ id)Fβi ] ·
[
(id⊗∆)F−1

βi

]
· (F−1

βi
)23 (5.26)

and functions to re-associate different copies of some module, A, of the qHA, that is,

it maps φFβi : (A ⊗ A) ⊗ A → A ⊗ (A ⊗ A) and its inverse does the opposite map

φ−1
Fβi

: A⊗ (A⊗A)→ (A⊗A)⊗A. As it shall be clear in the subsequent chapters, the

action of qHA on a vector space A will induce non-associativity on the product structure

of A. This is a manifestation of the non-associativity of the qHA.

Unfortunately the co-associator, being a 27 × 27 matrix with cumbersome expressions

for entries, cannot be presented in the usual array notation. So we rather refer the

reader to the Mathematica notebook associated with [11] in which it was calculated and

to Appendix [B.1] where some entries are quoted. See Appendix [A.3] for the details

involved in computing the co-associator. The imaginary β-twisted quasi-Hopf structure

is thus

Hβi :=
(
H,∆Fβi

, ε, Rβi , φFβi , SFβi , αFβi , βFβi ;C
)

(5.27)

with the twisting performed in accord with the prescription in (4.59).

5.2.3 Twist for the general Leigh-Strassler Deformation

In the same fashion as in the imaginary β-deformed case we will compute the twist for

the full Leigh-Strassler deformation. We begin with the R-matrix that corresponds to
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the general Leigh-Strassler deformation of N = 4 SYM which is

Rqh =
1

2d2



t1 0 0 0 0 −2h̄ 0 2h̄q 0

0 2q̄ 0 t3 0 0 0 0 2hq̄

0 0 2q 0 −2h 0 t2 0 0

0 t2 0 2q 0 0 0 0 −2h

0 0 2h̄q 0 t1 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 t3 0

0 0 t3 0 2hq̄ 0 2q̄ 0 0

−2h 0 0 0 0 t2 0 2q 0

0 −2h̄ 0 2h̄q 0 0 0 0 t1



(5.28)

with d2 = (1+qq̄+hh̄)/2, t1 = 1−hh̄+qq̄, t2 = −1+hh̄+qq̄ and t3 = 1+hh̄−qq̄ 1. Rqh

depends on complex deformation parameters (q, h) along with their complex conjugates q̄

and h̄. We will generally treat the deformation parameters and their complex conjugates

as independent. In this case when q = 1 = q̄ and h = 0 = h̄ we recover R1 and Rβi

when h = 0 = h̄ with q = q̄.

To find the twist, Fqh, that performs the deformation

Rqh = (Fqh)21 ·R1 · (Fqh)−1 = (Fqh)21 · F−1
qh (5.29)

we first note that Rqh is unitary with unit determinant, where unitarity means

R−1
qh =

[
(Fqh)21 · F−1

qh

]†
=
[
(F−1

qh )†
]
· [(Fqh)21]† (5.30)

again is imposed at the level of the twist for simplification. As it was in the case of

imaginary β-deformation, so also in the (q, h)-deformation case: the entries of Rqh enjoy

a Z3-symmetry. The twist that solves (5.29) after imposing the above conditions is

Fqh =



a 0 0 0 0 e 0 f 0

0 b 0 c 0 0 0 0 g

0 0 i 0 j 0 d 0 0

0 d 0 i 0 0 0 0 j

0 0 f 0 a 0 e 0 0

g 0 0 0 0 b 0 c 0

0 0 c 0 g 0 b 0 0

j 0 0 0 0 d 0 i 0

0 e 0 f 0 0 0 0 a



(5.31)

1The functions ti have been introduced for brevity of the notation
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The entries of Fqh are functions of q and h (and c.c.) whose explicit forms are supplied in

Appendix [A.2]. Thus far we have two ingredients of a qHA: the quasitriangular structure

Rqh and the invertible twist Fqh. In order to construct the rest we need to apply the

co-product on the twist. The next objective is to write the twist as an exponential of a

combination of algebra generators because the co-product action is defined over algebra

generators. Begin with the ansatz

Fqh = efqh (5.32)

where fqh is a linear combination of generators. The unitarity of Fqh guarantees that such

an expression exists and the matrix function fqh must be anti-hermitian and contains all

the dependence on q and h (and c.c.) . The task at hand is to compute fqh and to do so

it useful to first note that Fqh smoothly reduces to unity when we take the undeformed

limit: q = 1 = q̄ (alternatively β = 0) and h = 0 = h̄. By Taylor expanding Fqh (on the

RHS of (5.32)) around the undeformed limit one can isolate the first-order terms in the

respective deformation parameter limits and use them to reconstruct the appropriate

form of fqh. Since there are 4 deformation parameters – q,q̄,h and h̄– we then expect

that a minimum of four functions is required to recover fqh. And in order to obtain

these functions we use the four different well-defined deformation limits, namely:

1. real β ( βr), q̄ = 1/q

2. imaginary β (βi), q̄ = q

3. real h (hr), h̄ = h and

4. imaginary h (hi) , h̄ = −h.

The outcome of this procedure is that fqh can be written as

fqh = i (αβrfβr + αβifβi + αhrfhr + αhifhi) (5.33)

where the α’s are implicitly functions of q and h (and c.c.) labelled by the limit at which

they were obtained and their forms are presented below:
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αβr =
i
(
b− b̄

)
(−1 + c) r

√
1 + b− c

√
1 + b̄− c

√
−bb̄+ (1− c)(3− b− b̄+ c)

αβi =
(bb̄− (−1 + c)2)r

√
1 + b− c

√
1 + b̄− c

√
−bb̄+ (1− c)(3− b− b̄+ c)

αhr = −
[
(1 + b− c)f + (1 + b̄− c)f̄

]
r

2
√

1 + b− c
√

1 + b̄− c
√
−bb̄+ (1− c)(3− b− b̄+ c)

αhi = −
i
[
(1 + b− c)f − (1 + b̄− c)f̄

]
r

2
√

1 + b− c
√

1 + b̄− c
√
−bb̄+ (1− c)(3− b− b̄+ c)

(5.34)

and r = cos−1

[
1

2

(
b+ b̄+

ff̄

c− 1

)]
.

The f ’s with subscripts are 9 × 9 matrices whose explicit form appears in Appendix

[A.1]. At present we are interested in their decomposition in terms of the Gell-Mann

su(3)× su(3) basis

fβr =

√
3

2
(λ3 ∧ λ8)

fhr =
1

2
(λ1 ∧ λ5 + λ7 ∧ λ1 + λ2 ∧ λ4 + λ2 ∧ λ6 + λ7 ∧ λ4 + λ6 ∧ λ5) (5.35)

fβi = −1

2
(λ1 ∧ λ2 + λ5 ∧ λ4 + λ6 ∧ λ7)

fhi =
1

2
(λ4 ∧ λ1 + λ1 ∧ λ6 + λ2 ∧ λ5 + λ2 ∧ λ7 + λ6 ∧ λ4 + λ5 ∧ λ7) (5.36)

The λ’s are the Gell-Mann 3×3 matrices in (5.23). We are now in the position to discuss

the action of the co-product on Fqh. Recall from (4.9) that one of the implications of

the compatibility of the algebra and co-algebra structures of a qHA H is

∆(a • b) = ∆(a) •∆(b) where a, b ∈ H. (5.37)

Employing this property allows us to compute the action of the co-product on the twist

by first performing a series expansion of the twist

Fqh = efqh =

∞∑
n=0

(fqh)n

n!
(5.38)

and then apply the co-product to each term and finally recollect the outcome into an

exponential form again to obtain

(∆⊗ id)Fqh = (∆⊗ id)(1⊗ 1) + (∆⊗ id)(fqh) +
1

2
(∆⊗ id)(fqh · fqh) + . . . (5.39)

= e[(∆⊗id)fqh]. (5.40)
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By the same argument (id ⊗∆)Fqh = exp [(id⊗∆)fqh] is obtained. To reduce clutter,

we suppress the qh subscript and define f12 := fqh ⊗ 1, f23 := 1 ⊗ fqh and f13 :=

P23 · f12 ·P23 ≡ P12 · f23 ·P12 where Pij ’s are permutation matrices that interchange the

i-th and j-th positions/spaces. In this notation we have

(∆⊗ id)Fqh = e(f23+f13) (id⊗∆)Fqh = e(f13+f12) (5.41)

(∆⊗ id)F−1
qh = e−(f23+f13) (id⊗∆)F−1

qh = e−(f13+f12) (5.42)

which means the co-associator, φ and its inverse, φ−1 are given by

φ123 = F23 ·
[
(id⊗∆)Fqh

]
·
[
(∆⊗ id)F−1

qh

]
· F−1

12 (5.43)

= ef23 ·
[
e(f13+f12)

]
·
[
e−(f13+f23)

]
· e−f12 (5.44)

φ−1
123 = ef12 ·

[
e(f13+f23)

]
·
[
e−(f13+f12)

]
· e−f23 (5.45)

In this form it becomes apparent that a co-associator obtained by Drinfeld twisting will

satisfy the pentagon relation (4.49) (See Appendix [B.2]), braiding conditions (4.55)

and consequently the generalized YBE (4.56). The latter was also verified by explicit

computer calculation [11]. Thus the qHA structure of the qh-deformed theory is

Hqh :=
(
H,∆Fqh , ε, Rqh, S, αFqh , βFqh , φFqh

)
(5.46)

In summary we conclude that Fqh is an appropriate twist that deforms the trivial qHA

structure of N = 4 SYM to the qHA that corresponds to the Leigh-Strassler deformed

field theory.



Chapter 6

The Star product and

deformations

Having uncovered the qHA structure of marginally deformed N = 4 SYM we would like

to realize it at the level of the Lagrangian of the theory and discuss its implications. As

we have discussed in Chapter 4 that the 3 chiral superfields Φi of N = 4 SYM possess

SU(3)-symmetry hence they form a module or representation space of SU(3). Here we

shall be concerned with the fundamental representation of SU(3) which we denote by

A and the chiral fields are vectors. The module A, being a representation space, has

a product map m : A ⊗ A −→ A which we will interchangeably write as · to prevent

clutter. Thus for vectors a, b and c in A we have

m(a⊗ b) ≡ a · b (6.1)

and an important note is that in N = 4 SYM the product m is associative so that

(a · b) · c = a · (b · c). This is closely related to the fact that the algebraic structure

associated with the SU(3) internal symmetry group of N = 4 SYM is a trivially quasi-

Hopf, hence the co-associator φ is 1⊗3. The effect is that an SU(3) transformation U

on a product of vectors is

U [(a · b) · c] = U [m ◦ (m⊗ id)(a⊗ b⊗ c)] (6.2)

= m [(∆⊗ id) ◦∆(U) . (a⊗ b⊗ c)] (6.3)

= m [(id⊗∆) ◦∆(U) . (a⊗ b⊗ c)] (6.4)

= U [m ◦ (id⊗m)(a⊗ b⊗ c)] = U [a · (b · c)] (6.5)

70



Chapter 6. The Star Product 71

The third equality is a result of the co-associativity condition simplifying to

(∆⊗ id) ◦∆(x) = φ [(id⊗∆) ◦∆(x)]φ−1 = (id⊗∆) ◦∆(x) (6.6)

due to the trivial co-associator. We confess the woeful notation used in (6.3) and (6.4)

since three vectors are contracted with only one product map. Strictly speaking it

should be m ◦ (m ⊗ id) and m ◦ (id ⊗m) respectively. This abuse of notation will be

employed from here onward unless the situation calls for clarity or there is potential for

misunderstanding.

6.1 Definition of the star product

There is considerable difference when the qHA structure is not trivial. If the non-trivial

qHA can be arrived at by the Drinfeld twisting of a trivial qHA using a twist F then the

twisted co-product ∆F will in general not be compatible with the module product m

unless it also is twisted [81]. In [82] and [83] the twisted module product on two vectors

is defined as

mF (a⊗ b) := m(F−1 . a⊗ b) ≡ a ? b (6.7)

which they refer to as a star product. According to (6.7) the algorithm of the twisted

module product is to first apply the inverse of the twist on the vectors and then contract

them using the original, untwisted module product m. In the case of three vectors the

?-product can be performed in two ways:

(a ? b) ? c = m
[(

(∆⊗ id)F−1
)
· (F−1 ⊗ 1) . [a⊗ b⊗ c]

]
= m

[
(∆1F

−1) · (F−1
12 ) . [a⊗ b⊗ c]

]
(6.8)

a ? (b ? c) = m
[(

(id⊗∆)F−1) · (1⊗ F−1)
)
. [a⊗ b⊗ c]

]
= m

[
(∆2F

−1) · (F−1
23 ) . [a⊗ b⊗ c]

]
(6.9)

where (∆ ⊗ id) ≡ ∆1 and (id ⊗ ∆) ≡ ∆2. These are generally not equal since the co-

associator of the qHA associated with marginally deformed N = 4 SYM is not trivial.

Moreover, in the context of qHA, the Drinfeld twist Fqh is not required to be a 2-cocyle

(4.32). This is very important since Fqh being 2-cocyle would trivialize the co-associator

thus limiting us to an HA setting.

Note that it is the untwisted co-product that appears in the cubic star product ex-

pressions (6.8, 6.9). For ease of reference we introduce the following shorthand nota-

tion:

(∆1F
−1) · (F−1

12 ) =: [F3,L] and (∆2F
−1) · (F−1

23 ) =: [F3,R] (6.10)
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The unfortunate fact is that the expressions in (6.8) and (6.9) are counter-intuitive. For

example, we usually think of the co-associator φ as a map which when applied from the

left shifts the parentheses to the right in a sense that φ [(a · b) · c] = a ·(b ·c). The inverse

of the co-associator is expected to do the opposite, that is, φ−1 [a · (b · c)] = (a·b)·c. This

intuition is not compatible with (6.8) and (6.9); the following demonstrates this point.

Observe that with φ = F23.[∆2F ].[∆1F
−1].F−1

12 and φ−1 = F12.[∆1F
−1].[∆1F ].F−1

23 we

have

a ? (b ? c) / φ =
[
((∆2F

−1) · (F−1
23 ))(F23.[∆2F ].[∆1F

−1].F−1
12 ) . (a⊗ b⊗ c)

]
= (a ? b) ? c (6.11)

(a ? b) ? c / φ−1 =
[
(∆1F

−1) · (F−1
12 )(F12.[∆1F

−1].[∆1F ].F−1
23 ) . (a⊗ b⊗ c)

]
= a ? (b ? c) (6.12)

thus the co-associator maps the expression with right-justified parentheses to that with

left-justified parentheses from the right and vice versa. There are contexts in which

these expressions are useful: one is in opposite quasi-Hopf algebra structures, denoted

by qHAop and the other is in right modules of the qHA. It is nonetheless true that

qHAop’s are qHA in their own right and there the relations above are not unorthodox.

We intend to work with qHA structures and their left action on modules thus hold to

the convention of the left action.

The predicament can be overcome by viewing the module space as a metric vector space

with an inner product such that 〈ai ⊗ bj |ak ⊗ bl〉 = δikδ
j
l . An example of this is the

n-dimensional Euclidean metric space where the row vectors and column vectors serve

the roles of ai ⊗ bj and ak ⊗ bl respectively. If we declare that (6.7), (6.8) and (6.9) are

expressions that pertain to the module vector space V ⊗ V ⊗ V spanned by the basis

{zi⊗zj⊗zk} then the inner product implies that the ?-product on the dual vector space

V ′⊗V ′⊗V ′ is spanned by the basis {zi⊗ zj ⊗ zk} must act as zi ? zj = m[F . [zi⊗ zj ]],
thus 〈zi ⊗ zj ⊗ zk|zl ⊗ zm ⊗ zn〉 = δilδ

j
mδkn. This amounts to an inversion and such an

inversion on the cubic expressions gives

(zi ? zj) ? zk = m
[
(F ⊗ 1) · (∆⊗ id)F . [zi ⊗ zj ⊗ zk]

]
= m

[
(F12) · (∆1F ) . (zi ⊗ zj ⊗ zk)

]
= m

[
[F−1

3,L] . (zi ⊗ zj ⊗ zk)
]

zi ? (zj ? zk) = m
[
(1⊗ F ) · (id⊗∆)F . [zi ⊗ zj ⊗ zk]

]
= m

[
(F23) · (∆2F ) . (zi ⊗ zj ⊗ zk)

]
= m

[
[F−1

3,R] . (zi ⊗ zj ⊗ zk)
]

(6.13)
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where we have invoked (6.10):

[F−1
3,L] := (F12) · (∆1F ) and [F−1

3,R] := (F23) · (∆2F ) (6.14)

The L (or R) in [F3,L] (or [F3,R]) refers to the parentheses being left-justified (or right-

justified). Now we have restored the intuitive action of the co-associator

φ . (a ? b) ? c = m
[
(F23) · (∆2F ) · (∆1F

−1) · (F−1
12 )((F12) · (∆1F ) . [a⊗ b⊗ c]

]
(6.15)

= m [(F23) · (∆2F ) . [a⊗ b⊗ c]] = a ? (b ? c) (6.16)

thus the co-associator φ moves the brackets to the right and while, as it can now be

easily shown, the inverse φ−1 moves the brackets to the left.

Beyond the conveniences that this view of the ?-product affords is the fact that it is

consistent with the pentagon relation (4.49) which is represented in Figure (4.5) and

it makes the quasi-YBE, as quoted in (4.56), understandable. Taking this as motiva-

tion we resume the ?-product discussion and write (6.7) in index form over coordinates

{zi}
zi ? zj = F i jk l z

kzl (6.17)

Note that the ?-product is generally non-commutative when F is not an identity even

though the coordinates {zi} themselves are commutative. The inverse relation of (6.17)

is given by

zizj = (F−1)i jk l z
k ? zl (6.18)

and the combination of these two relations instills confidence on the definition of the

star product because, with a little “trickery”1, we have that

zi ? zj = F i jk l z
kzl (6.19)

= F i jk l z
lzk (6.20)

= F i jk l(F
−1)l km nz

m ? zn (6.21)

= Ri jm n z
m ? zn (6.22)

where the substitution2 F i jk l(F
−1)l km n = Ri jm n was made in order to obtain the last

equality, a quantum plane relation. The interpretation of the last equality is that the ?

commutativity of the zi’s is controlled by R. This is exactly the starting point of the

Fadeev-Reshetikhin-Takhtajan [FRT] construction of a quantum linear algebra. In this

construction the elements of the algebra are viewed as quantum objects that no longer

commute unless an object R is introduced to mediate the commutativity [84][74]. In

1the commutativity of the coordinate zi
2This is the index form of F21(F12)−1 = R
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(6.19) we have a similar case where the non-commutativity arises from introduction of

a ?-product on commutative coordinates zi. In brief, the ?-product definition (6.17) is

compliant with the RTT relations of the FRT construction.

In this confidence we revisit the cubic ?-product expressions (6.13) and express them in

index form in the {zi} basis:

(zi ? zj) ? zk = [(F12) · (∆1F )]ijklmnz
lzmzn =: [F−1

3,L]ijklmnz
lzmzn

zi ? (zj ? zk) = [(F23) · (∆2F )]ijklmnz
lzmzn =: [F−1

3,R]ijklmnz
lzmzn

(6.23)

With this we have every ingredient necessary to explicitly compute the cubic ?-product

relation. Because these computations produce large expressions, here we shall present

the outcome for the imaginary β case and then give an outline for the general case of

marginal deformations since they are similar in spirit.

6.2 Imaginary β deformed star product

Recall from (5.19) and (5.22) that the imaginary β-deformed twist is given by Fβi =

exp(iαβifβi) where fβi = −1
2 (λ1 ∧ λ2 + λ5 ∧ λ4 + λ6 ∧ λ7). It thus follows that

(Fβi ⊗ 1) ≡ (Fβi)12 = exp[iαβi(fβi)12] with (fβi)12 = fβi ⊗ 1 (6.24)

(1⊗ Fβi) ≡ (Fβi)23 = exp[iαβi(fβi)23] with (fβi)23 = 1⊗ fβi (6.25)

and since the co-product exponentiates, we obtain that

(∆⊗ id)Fβi = exp [iαβi(∆⊗ id)fβi ] and (id⊗∆)Fβi = exp [iαβi(id⊗∆)fβi ] (6.26)

We conclude that for the imaginary β-deformation the cubic product relations are

[F−1
3,L]βi = exp[iαβi(fβi)12] · exp [iαβi(∆⊗ id)fβi ] (6.27)

[F−1
3,R]βi = exp[iαβi(fβi)23] · exp [iαβi(id⊗∆)fβi ] (6.28)

and the explicit forms of the non-zero elements of [F3,L] and [F3,R] are contained in

Appendix [A.4]. It is very easy to confirm that [F−1
3,R] = φ[F−1

3,L]. The details of how the

cubic terms [F3,L] and [F3,R] calculated are in Appendix [A.3].

6.3 General (q, h)-deformed star product

The principle is the same for defining the ?-product for the full (q,h) deformed theory

except the elements [F3,L] and [F3,R] are too large to be written out on a page. Here we

once again refer the reader to the Mathematica notebook associated to [11]. Evidence
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of the ?-product being sensible and compatible with quantum algebra relation is seen in

the fact that

z1 ? z2 − qz2 ? z1 + hz3 ? z3 =

√
q + 1

√
hh̄+ qq̄ + 1√

2
√
q̄ + 1

(
z1z2 − z2z1

)
= 0 , since [z1, z2] = 0

(6.29)

So the quantum plane relations found in [57] are here recovered by the star product

as defined in (6.19). This also holds true for the cyclic permutations of the expression

(6.29).

The field theory version of this expression will have zi replaced by the chiral superfields

Φi. This is made by recalling the AdS-CFT duality conjecture that type IIB String

theory in AdS5× S5 is dual to N = 4 SYM in flat 4-dimensional Minkowski space [21]

[85] [86][87]. The setup for the AdS-CFT conjecture is IIB superstring theory (9+1)-

dimensional flat Minkowski space with a stack made up of N coincident D3-branes. On

one hand D3-branes are viewed as (3+1)-dimensional surfaces on which open strings can

attach and on the other, open strings can be considered as excitations of D3-branes. We

focus on the dynamics of an open string whose ends are attached to different D3-branes

in the stack. For energies much less than the string length, hence only focus on the

massless excitations of the open string, the dynamics of the open string are described

by a theory on the world volume of the D3-brane on which they attach. The string

excitations that are parallel to the D3-brane are described by a gauge field Aµ and the

transverse excitations by 6 real scalar fields φi corresponding to 6 directions transverse

to the D3-brane stack. This field content matches the bosonic part of N = 4 SYM.

And since supersymmetry is present and the strings are to be SUSY invariant, it follows

that the superpartners (Weyl spinors) are also included. Thus at low energies, massless

excitations of open strings are described by N = 4 SYM. The 6 real scalar fields φi can

be used to parameterize the transverse 6-dimensional space. In the language of N = 1

superspace and superfields, these 6 real scalar fields with SO(6) are combined into 3

chiral superfields Φi’s with SU(4). The relations involving zi are to be cast in terms of

Φi. So then we have

Φ1 ? Φ2 − qΦ2 ? Φ1 + hΦ3 ? Φ3 =

√
q + 1

√
hh̄+ qq̄ + 1√

2
√
q̄ + 1

[Φ1,Φ2] (6.30)

The superfields Φi’s are N × N matrices, hence they do not always commute. Simply

replacing z’s with Φ will not give the chiral superfield analogue of (6.29). We must

demand that the RHS of (6.30) vanish. Such a demand on products of chiral superfields

will place constraints on the F-terms of these chiral superfields; so in order to guarantee

the vanishing of RHS of (6.30), the Φi as matrices must be diagonal. So via ?-product
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on Leigh-Strassler relations one obtains constraints on the F-terms of N = 4 SYM [88]

and in [89] [90] these constraints are collected in a non-commutativity matrix Θ.

Introducing the ?-product to the Leigh-Strassler superpotential led to a pleasant surprise.

Naively speaking the superpotential is cubic in the chiral fields thus we expect that

the left-justified superpotential is different from the right-justified superpotential unless

multiplied (from the left) by the (q, h) co-associator. However, from calculation, we

noted that, after writing out the cyclically related terms explicitly, the left-justified

Leigh-Strassler superpotential with the ?-product gives

(Φ1?Φ2)?Φ3+(Φ2?Φ3)?Φ1+(Φ3?Φ1)?Φ2−q((Φ1?Φ3)?Φ2+(Φ2?Φ1)?Φ3+(Φ3?Φ2)?Φ1)+

h((Φ1 ? Φ1) ? Φ1 + (Φ2 ? Φ2) ? Φ2 + (Φ3 ? Φ3) ? Φ3)

=

√
q + 1

√
hh̄+ qq̄ + 1√

2
√
q̄ + 1

(
(Φ1Φ2)Φ3 + (Φ2Φ3)Φ1 − (Φ1Φ3)Φ2 − (Φ2Φ1)Φ3 − (Φ3Φ2)Φ1

)
(6.31)

and so does the right-justified Leigh-Strassler superpotential with the star product. This

means in the superpotential the ?-product is insensitive to the bracketing even though

the ?-product itself is not associative. We attribute this insensitivity to bracketing of

the Leigh-Strassler superpotential to its cyclicity in the chiral fields.

6.4 Inverse star product

We would now like to automate the Leigh-Strassler deformations. More specifically,

given some quantity, OSYM , of N = 4 SYM we would like to compute the Leigh-

Strassler deformed counterpart, OLS , by simply promoting to a ”star“ product every

product involved in the expression that defines OSYM . For this purpose we define an

inverse star product and denote it with an asterisk ∗ and we desire that O∗SYM = OLS .

We then define inverse star product on vectors a and b as follows

a ∗ b = mF−1(a⊗ b) = m[F . (a⊗ b)] (6.32)

and on the dual vector space, the space of our interest, the ∗-product acts as

zi ∗ zj = m[F−1 . (zi ⊗ zj)] ⇒ zi ∗ zj = (F−1)i jk lz
kzl (6.33)

The ∗-product allows us to recover Leigh-Strassler deformed relations from the unde-

formed N = 4 SYM relation. Note how the deformed version of (6.29) is automatically
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obtained by promoting the regular multiplication to ∗-product

z1 ∗ z2 − z2 ∗ z1 =

√
2
√
q̄ + 1

√
q + 1

√
hh̄+ qq̄ + 1

[
z1z2 − qz2z1 + h(z3)2

]
(6.34)

On three coordinates the ∗-product gives the same form as (6.23) and since [F−1
3,L] 6= [F−1

3,R]

it is clear that the ∗-product is not associative. The cubic ∗-product terms are given

by

(zi ∗ zj) ∗ zk = mF

[
(zi ⊗ zj)⊗ zk

]
= m

[
[F−1

3,L] . (zi ⊗ zj ⊗ zk)
]

(6.35)

zi ∗ (zj ∗ zk) = mF

[
zi ⊗ (zj ⊗ zk)

]
= m

[
[F−1

3,R] . (zi ⊗ zj ⊗ zk)
]

(6.36)

6.5 The Leigh-Strassler Superpotential

The ∗-product has so far been successful at automating deformations of quantum algebra

relations when dealing with a product of two fields3. This however is not enough, we must

test it at the cubic level. When three fields are considered the question of associativity

is unavoidable because the product map is binary. So we have to choose which two fields

to multiply first: either the left-justified bracketing or the right-justified bracketing.

However it turns out that in the N = 4 SYM superpotential the fields appear in a cyclic

way making this choice immaterial, that is,

W∗SYML
=W∗SYMR

(6.37)

where W∗SYML
:= Tr

[
(Φ1 ∗ Φ2) ∗ Φ3 − (Φ1 ∗ Φ3) ∗ Φ2

]
is the left-justified superpoten-

tial and the right-justified one is W∗SYMR
:= Tr

[
Φ1 ∗ (Φ2 ∗ Φ3)− Φ1 ∗ (Φ3 ∗ Φ2)

]
. This

is due to fact that the ∗-product is invariant, as far as associativity is concerned, under

cyclic permutation. Explicit computation shows that

(z1∗z2)∗z3+(z3∗z1)∗z2 +(z2∗z3)∗z1 = z1∗(z2∗z3)+z3∗(z1∗z2)+z2∗(z3∗z1) (6.38)

We emphasize that this observation does not mean the ∗-product is associative, rather

it shows that in certain cyclic expressions evidence of non-associativity is absent. This

is to our advantage because we can exploit this property and show that, with a little

3or coordinates, so also throughout
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trick, WSYM can be written in a form that exposes its cyclic property:

WSYM = gTr
(
Φ1Φ2Φ3 − Φ1Φ3Φ2

)
=

3g

3
Tr
(
Φ1Φ2Φ3 − Φ1Φ3Φ2

)
=
g

3
Tr
(
Φ1Φ2Φ3 + Φ1Φ2Φ3 + Φ1Φ2Φ3 − Φ1Φ3Φ2 − Φ1Φ3Φ2 − Φ1Φ3Φ2

)
=
g

3
Tr
(
Φ1Φ2Φ3 + Φ3Φ1Φ2 + Φ2Φ3Φ1 − Φ1Φ3Φ2 − Φ2Φ1Φ3 − Φ3Φ2Φ1

)
(6.39)

Here the cyclicity of the trace is pivotal. If the ∗-product is now introduced in the final

equality of (6.39) then we obtain

W∗SYM =
g

3
Tr
[
Φ1 ∗ Φ2 ∗ Φ3 + Φ3 ∗ Φ1 ∗ Φ2 + Φ2 ∗ Φ3 ∗ Φ1

−Φ1 ∗ Φ3 ∗ Φ2 − Φ2 ∗ Φ1 ∗ Φ3 − Φ3 ∗ Φ2 ∗ Φ1
]

=
κ

3
Tr
[
Φ1Φ2Φ3 + Φ3Φ1Φ2 + Φ2Φ3Φ1 − q(Φ1Φ3Φ2 + Φ2Φ1Φ3 + Φ3Φ2Φ1)

+h(Φ1Φ1Φ1 + Φ2Φ2Φ2 + Φ3Φ3Φ3)
]

= κTr

[
Φ1Φ2Φ3 − q(Φ1Φ3Φ2) +

h

3

(
(Φ1)3 + (Φ2)3 + (Φ3)3

)]
(6.40)

where κ = g
√

2
√

1+q̄
√

1+q
√

1+hh̄+qq̄
. This exactly matches (5.2) and we conclude that W∗SYM =

WLS and in writing W∗SYM we did not have to care about how we associate the fields

except that there be no mixed associations i.e. expressions of the form Φ(i) ∗ (Φ(j) ∗
Φ(k))− (Φ(l) ∗ Φ(m)) ∗ Φ(n) must be forbidden.

In [91] a similar work was done, treating the w-deformed N = 4 SYM which is a theory

unitarily equivalent to the real β-deformed N = 4 SYM [92]. The R-matrix of the real

β-deformed theory is obtained from the general Leigh-Strassler R-matrix in the limit

where q̄ = q−1 , h = 0 = h̄. There is a group of deformations, parameterized by w,

which are related to the real β-deformation via a unitary transformation [93][92]. These

are known as w-deformations and their R-matrix is obtained by the substitutions

q̄ = q , h̄ = h and q → 1 + w , h→ w where w is real (6.41)

The unitary transformation that relates the β-deformed and w-deformed theories is

simplify a redefinition of the fields in the theories. In [79], the Hopf algebraic structure



Chapter 6. The Star Product 79

of the w-deformed theory was studied using a twist given by

Fw =



C
w+1 0 0 0 0 Cw

(w+1)2 0 0 0

0 C
w+1 0 Cw

(w+1)2 0 0 0 0 0

0 0 C
w+1 0 Cw

(w+1)2 0 0 0 0

0 0 0 C
w+1 0 0 0 0 Cw

(w+1)2

0 0 0 0 C
w+1 0 Cw

(w+1)2 0 0

0 0 0 0 0 C
w+1 0 Cw

(w+1)2 0

0 0 Cw
(w+1)2 0 0 0 C

w+1 0 0

Cw
(w+1)2 0 0 0 0 0 0 C

w+1 0

0 Cw
(w+1)2 0 0 0 0 0 0 C

w+1


(6.42)

with C = (1 + w) / 3
√

(1 + 2w)(1 + w + w2). Since Fqh is more general than Fw, it is

natural to expect Fqh to reduce to Fw in the limit (6.41). However an explicit check

shows that Fqh 6= Fw in the limit q → 1 + w , h → w. One way to understand this is

to recall that according to [49] the fixed points of N = 1 superconformal theories which

are marginal deformations of N = 4 SYM can define a manifold. The implication of this

is that the space of Leigh-Strassler deformed theories is parameterized by a function,

γ, with a constraint γ(κ, g, q, h) = 0. By this we see that specifying the parameters q

and h does not define a unique point in the manifold, i.e. κ can still vary 4. We thus

understand the discrepancy Fqh 6= Fw in the above limit to be a manifestation of being

at points which have the same q and h but different κ.

6.6 Mixed plane relations

In the definition of the ?-product (or ∗-product) the focus has been primarily on zi,

the holomorphic coordinates. Now we can extend the discussion to include both the

antiholomorphic and mixed sectors of the theory, thence define the ?-product (or ∗-
product) in that context. The antiholomorphic sector is related to the holomorphic

by hermitian conjugation, making it similar to holomorphic sector. For this reason we

focus our attention more on the mixed sector. To define the ?-product in these sectors

we adopt the Leigh-Strassler deformed quantum relations in [57] and require that our

?-product definition be consistent with those relations. When adapted for our case these

quantum relations take the form:

zi ? zj = Rj ik lz
k ? zl , z̄i ? z̄j = z̄k ? z̄lR

k l
j i

zi ? z̄j = Ri kl j z̄k ? z
l , z̄i ? z

j = R̃j kl iz
l ? z̄k

(6.43)

4g is fixed by the constraint on γ
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R is the R-matrix and R̃ is the so-called second inverse of R whose defining relation

is

Ri kj lR̃
j n
m k = δimδ

n
l = R̃i kj lR

j n
m k (6.44)

It is worth noting that the indices are contracted in a way different to the regular matrix

multiplication. As shown in [71] the second inverse, R̃, can be obtained more directly

from R by a simple algorithm. Recall that R ∈ H ⊗ H and the recipe to compute its

second inverse is by transposing in the second copy of H, inverting the result and then

transposing again we obtain R̃. If Ti is an operator that transposes in the ith space then

in pseudo-Sweedler notation the second inverse of R is given by

R̃ = T2

[
T2

(
R(1) ⊗R(2)

)]−1
. (6.45)

The ?-product consistent with (6.43) at the level of the twist can be defined as

zi ? z̄j = zkF l ij kz̄l , z̄i ? z
j = z̄lG

l i
i kz

k (6.46)

where there has been the introduction of a new object G, which we call a G-tensor. The

second inverse of the G-tensor, denoted by G̃, provides a second factorization of the

R-matrix, that means it satisfies

Ri kj l = G̃k mn jF
n i
l m (6.47)

Explicit calculation shows that just as G̃ provides a second factorization for R so G

provides a second factorization for R̃, that is

R̃i jm n = F̃ j lk mG
k i
n l (6.48)

The mixed ?-product definitions (6.46) imply

zj ? z̄i = zlz̄kF
k j
i l = z̄kz

lF k ji l = z̄m ? znG̃m l
k nF

k j
i l = z̄m ? znRj mn i (6.49)

and these are consistent with (6.43). Drawing inspiration from (6.43) we define the

mixed plane relations for the ∗-product as

zi ∗ z̄j = zkF̃ l ij kz̄l and z̄i ∗ zj = z̄kG̃
k j
i jz

l (6.50)

These relations will be used in 7.1.1 when we consider the effect of the ∗-product on

the kinetic terms of the Lagrangian. As seen in (3.19), the scalar kinetic terms are

essentially Φ̄iΦi. Applying the ∗-product on these terms we found that they are not

deformed. This is in accord with the fact that Leigh-Strassler deformations only affect
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the superpotential. In Appendix [A.47] there are the non-zero entries of the G-tensor

and from these the rest can be recovered by the use of Z3-symmetry that the G-tensor

inherits from its definition.

Having arrived at the correct ∗-product definition to automate marginal deformations

and confirmed the consistency of the definition with known quantum relations we then

conclude this chapter.



Chapter 7

Final Remarks and Conclusions

In this chapter we highlight and make remarks about the qHA structure of marginally

deformed N = 4 SYM and conclude this work with an outlook on future work.

7.1 quasi-Hopf Invariance

We recall that in the undeformed N = 4 SYM in superspace notation, the chiral fields

possessed a SU(3) symmetry which we called H for ease when referencing. From the

discussion in Chapter 4 the Lie group H is trivially qHA. The current claim is that

in the marginally deformed theory this symmetry deformed to Hqh. That is by relax-

ing the requirements of invariance one is able to find traces of SU(3) in the deformed

theory.

Let U = eiT be a member of SU(3) and zi a vector belonging to the vector space A,

hence A is a module of SU(3). For our case A is three dimensional which means zi is

a three-dimensional vector or 3 × 1 matrix and (zi ⊗ zj), a 9 × 1 matrix. Let us first

invoke the notation of maps, making the product map explicit, and write the expression

zizj in the undeformed theory as

zizj = m(zi ⊗ zj) (7.1)

The effect of the SU(3) transformation zi −→ zi
′

= U i
′
jz
j on expressions such as z1z2

is

(z1z2)′ = m[(z1 ⊗ z2)′] = m[∆(U) . z1 ⊗ z2] (7.2)

and since SU(3) (or H) is trivially qHA with a symmetric coproduct ∆ which exponen-

tiates with ease, it follows that

∆(U) = ∆(eiT ) = e∆(iT ) = ei(T⊗1+1⊗T ) = (eiT ⊗ 1)(1⊗ eiT ) = U ⊗ U (7.3)

82
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thus we have (z1z2)′ = m[(U ⊗ U) . z1 ⊗ z2] = (U . z1) · (U . z2) which in component

form is

zi
′
zj
′

= U i
′
i z
iU j

′

j z
j . (7.4)

The extension of this argument to a left-justified1 cubic product gives

((z1z2)z3)′ = m[((z1 ⊗ z2)⊗ z3)′] = m[∆(U) . ((z1z2)⊗ z3)] (7.5)

= m[(∆⊗ id) ◦∆(U) . (z1 ⊗ z2 ⊗ z3)] (7.6)

and applying the co-product leads to

(∆⊗ id) ◦∆(U) = (∆⊗ id) ◦∆(eiT ) (7.7)

= exp[(∆⊗ id) ◦∆(iT )] (7.8)

= exp[(∆⊗ id)(iT ⊗ 1+ 1⊗ iT )] (7.9)

= exp[i(T ⊗ 1⊗ 1+ 1⊗ T ⊗ 1+ 1⊗ 1⊗ T )] (7.10)

= ei(T⊗1⊗1+1) · ei(1⊗T⊗1) · ei(1⊗1⊗T ) (7.11)

= (U ⊗ 1⊗ 1) · (1⊗ U ⊗ 1) · (1⊗ 1⊗ U) (7.12)

thus we conclude that ((z1z2)z3)′ = [(U . z1) · (U . z2)] · (U . z3) is invariant under H.

The general cubic product in index notation is

((z1z2)z3)′ = (U i
′
i z
iU j

′

j z
j)Uk

′
k z

k (7.13)

Admittedly this treatment is a nuclear warhead to a gun fight, not necessary. However it

does help to introduce the reader to the inner workings of the qHA structure on familiar

ground.

We now consider the deformed case where the qHA structure is Hqh and the module A
has ∗-product as its multiplication map. Recall that Hqh and H are related by twisting

then the co-product ofHqh is ∆Fqh(·) = Fqh [∆(·)]F−1
qh . The action of U on the quadratic

1the right-justified case works in a similar way
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term is

(z1 ∗ z2)′ = mF (∆F (U) . [z1 ⊗ z2]) (7.14)

= mF

(
F∆(U)F−1 . [z1 ⊗ z2]

)
(7.15)

= m
(
F−1F∆(U)F−1 . [z1 ⊗ z2]

)
(7.16)

= m
(
∆(U)F−1 . [z1 ⊗ z2]

)
(7.17)

= m
(

∆(U)
(∑

F−1
(1) ⊗ F

−1
(2)

)
. [z1 ⊗ z2]

)
(7.18)

= m
(∑

(U ⊗ U)(F−1
(1) ⊗ F

−1
(2) ) . [z1 ⊗ z2]

)
(7.19)

=
(
UF−1

(1) . z1

)
·
(
UF−1

(2) . z2

)
(7.20)

and we observe that the quadratic term transforms as before; this fact will be useful in

the discussion of kinetic terms of the Lagrangian. The expression (7.20) when written

in component form is

zi
′ ∗ zj′ =

∑
(UF−1

(1) )i
′
iz
i(UF−1

(2) )j
′

jz
j

=
∑

U i
′
i′′ [F

−1
(1) ]i

′′
i z

iU j
′

j′′ [F
−1
(2) ]j

′′

j z
j

= U i
′
i′′U

j′

j′′ [F
−1]i

′′j′′

i j z
izj

= U i
′
iU

j′

j (zi ∗ zj)

(7.21)

Next is the investigation of the cubic terms since the superpotential is cubic in the chiral

scalar fields. The expression considered is ((z1 ∗z2)∗z3) here the left-justified cubic term

was chosen but the same can be said for the right-justified expression. Using (6.10) we

find the action of U on this expression to be

((z1 ∗ z2) ∗ z3)′ = U
(

(z1 ∗ z2) ∗ z3

)
= U

(
mF [(z1 ⊗ z2)⊗ z3]

)
(7.22)

= mF

(
[(∆F ⊗ id) ◦∆F (U) . (z1 ⊗ z2)⊗ z3]

)
(7.23)

= m
( [

∆1F
−1
]
·
[
F−1

12

]
· [(∆F ⊗ id) ◦∆F (U)] . [(z1 ⊗ z2)⊗ z3]

)
(7.24)

= m
(

[F3,L] · [(∆F ⊗ id) ◦∆F (U)] . [(z1 ⊗ z2)⊗ z3]
)

(7.25)
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for clarity we extract, expand and simplify (∆F ⊗ id) ◦∆F (U) to obtain

(∆F ⊗ id) ◦∆F (U) = (∆F ⊗ id)
[
F (U ⊗ U)F−1

]
=
[
(∆F ⊗ id)F

][
(∆F ⊗ id)(U ⊗ U)

][
(∆F ⊗ id)F−1

]
=
[
F12

(
∆1F

)
F−1

12

][
F12

(
∆1(U ⊗ U)

)
F−1

12

][
F12

(
∆1F

−1
)
F−1

12

]
= F12

[
∆1F

][
U ⊗ U ⊗ U

][
∆1F

−1
]
F−1

12

= [F−1
3,L] ·

[
U ⊗ U ⊗ U

]
· [F3,L]

(7.26)

Substituting this back into (7.22) gives

((z1 ∗ z2) ∗ z3)′ = m
(

[F3,L] · [F−1
3,L] ·

[
U ⊗ U ⊗ U

]
· [F3,L] . [(z1 ⊗ z2)⊗ z3]

)
(7.27)

= m
(

[U ⊗ U ⊗ U ] · [F3,L] . [(z1 ⊗ z2)⊗ z3]
)

(7.28)

=
∑(

U [F3,L](1) . z1

)
·
(
U [F3,L](2) . z2

)
·
(
U [F3,L](3) . z3

)
(7.29)

in component form this amounts to

(zi
′ ∗ zj′) ∗ zk′ = U i

′
iU

j′

j U
k′
k ((zi ∗ zj) ∗ zk) (7.30)

So the cubic ∗-product expressions under U ∈ H transform as they did before the

introduction of ∗-product and the importance of this fact is made apparent in the next

section.

7.1.1 Leigh-Strassler Potential and Kinetic terms

Knowing the above, it is straight forward to prove the quasi-Hopf invariance of the

superpotential

W ′LS =
εi′j′k′

3
Tr
[
(Φi ∗ Φj) ∗ Φk

]′
(7.31)

=
εi′j′k′

3
U i
′
iU

j′

j U
k′
k Tr

[
(Φi ∗ Φj) ∗ Φk

]
(7.32)

= det(U)
εijk
3

Tr
[
(Φi ∗ Φj) ∗ Φk

]
=WLS (7.33)
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The kinetic terms are, in an anticlimactic fashion, verified to be invariant under U

because from explicit calculation based on (6.50) we find that

z̄1 ∗ z1 + z̄2 ∗ z2 + z̄3 ∗ z3 = z̄1z
1 + z̄2z

2 + z̄3z
3 (7.34)

z1 ∗ z̄1 + z2 ∗ z̄2 + z3 ∗ z̄3 = z1z̄1 + z2z̄2 + z3z̄3 (7.35)

making the invariance of the deformed Kähler potential, KLS , under U a trivial mat-

ter:

KLS(Φ, Φ̄) = Φ̄i ∗ Φi = Φ̄iΦ
i = KSYM (Φ, Φ̄) (7.36)

The success of the ∗-product is more impressive in the superpotential W∗SYM than in

the Kähler potential. The invariance of KLS is indicative of the fact that Leigh-Strassler

deformation only affect the superpotential. We do not expect this success to persist in

automating the deformation of more complicated operators of N = 4 SYM.

7.1.2 quasi-Yang-Baxter Equation with spectral parameter dependence

We also briefly considered this work in the context of integrability. Here the Yang-Baxter

equation [YBE] is useful as it provides a simple check for early signs of integrability. This

is because integrability is closely related to factorizability of the R-matrix and the YBE

encodes factorizability. It is simple to check that the real β-deformation of N = 4 SYM

(i.e the deformation parameter choice: q = eiβ, q̄ = q−1 and h = 0 = h̄) is integrable;

its R-matrix satisfies the YBE without a spectral parameter. An equivalent integrable

model with deformation parameter choice given by q = 0 h = eiθ was found in [60]. In

general marginal deformations of N = 4 SYM do not satisfy the YBE. It thus would be

interesting to use qHA structure to understand the interplay between deformation and

integrability since with qHAs we have the quasi-Hopf YBE (4.23) an analog of YBE.

From an explicit check we found that all (q, h)-deformations satisfy (4.23). Upon the re-

introduction of the spectral parameter into the Rqh-matrix we learned that the spectral

parameter dependent R-matrix corresponding to undeformed N = 4 SYM is

R(u) =
1

u+ i
(u1⊗ 1+ iP ) with P– a permutation matrix (7.37)

Drinfeld twisting R(u) produces the deformed R-matrix with spectral parameter depen-

dence
Rqh(u) = F21R(u)F−1

= F21

[
1

u+ i
(u1⊗ 1+ iP )

]
F−1

=
1

u+ i

(
uRqh + iF21 · P · F−1

) (7.38)
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Rqh(u) =
1

u+ i

(
uRqh + iP · P · F21 · P · F−1

)
=

1

u+ i

(
uRqh + iP · F12 · F−1

)
=

1

u+ i
(uRqh + iP )

(7.39)

It is evident that twisting by Fqh only affects the identity part of R(u), making it similar

to the work in [94]. Moreover it was found that Rqh(u) also satisfies the quasi-Hopf YBE;

introducing the spectral parameter has not compromised this relation.

7.2 Conclusion and Outlook

In this work we have found a Drinfeld twist Fqh that twists the trivial one-loop R-matrix

corresponding to N = 4 SYM into Rqh, the R-matrix that corresponds to marginally

deformedN = 4 SYM. This was done in the quantum limit, where the spectral parameter

is taken to infinity. From this twist the full co-associator was computed [11] and then

it was checked for consistency via the generalized YBE. The present report however

explicitly only contains results from the imaginary β-deformed case. The analysis of

the general (q, h) deformed case produces cumbersome expressions for the co-associator

which are too large to reasonably contain in a page. The general co-associator has

nonetheless been calculated explicitly and, by series expansion, checked for consistency

numerically. Then contact was made with gauge field theory by the definition of the

star product. The introduction of this star product in the superpotential of N = 4 SYM

was shown to reproduce the Leigh-Strassler superpotential, effectively automating the

process of deforming. Finally we discussed invariance under quasi-Hopf transformation

and demonstrated the quasi-Hopf invariance of the Leigh-Strassler superpotential.

We hope that this approach could shed light concerning the loss of integrability as one

deforms away from points that correspond to integrable models and possibly provide

reasons or argument of the absence of integrability in a spirit similar to that in [95]2.

As the introduction of the spectral parameter was simple and without complications

we think performing a Bethe ansatz procedure will inform as to where the barrier to

constructing an infinity of conserved charges is. Upon reaching this barrier, qHAs can

potentially be useful in defining a generalized/relaxed notion of integrability i.e. ‘quasi-

integrability’. Even further we can use qHAs to learn more about the nature of the

deformation parameter space as a manifold [96]. Then we can begin to understand

why do some points on the space give rise to integrable theories while others do not.

Another possible direction of research is to study how quasi-Hopf symmetry is related

to Yangian symmetry and use their relation to further investigate unknown aspects of

theories [97].

2Our case is concerned with quantum integrability, while [95] focused on classical integrability
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In context of the AdS/CFT correspondence, following [91], we would like to understand

how the star product could manifest itself in the gravity side, thus possibly obtain a

(q, h)-deformed background dual to Leigh-Strassler theory, perhaps obtain more insight

concerning methods on how to generate gravity duals for a given CFT. Our analysis was

focused on Leigh-Strassler theories, thus on the AdS5×S5 / N = 4 SYM version of the

duality. A long term pursuit could be to consider models other than N = 4 SYM, that is

other versions of the AdS/CFT duality and understand what role quasi-Hopf symmetry

plays there. The ABJM model [98] is a possible candidate for the 3-dimensional case and

so is the 2-dimensional in [99]. These are a few examples which can be studied from the

qHA perspective. These are open questions worth further investigating. Whatever the

direction, quasi-Hopf algebras have great potential in their use in physics research.



Appendix A

Details: The Twist

A.1 The classical twist matrices

These are the first-order matrix terms –which we called classical twists– of the (q, h)-

twist, Fqh, in specific limits of the deformation parameters. Included is a table which

summarizes the limits of the deformation parameters at which these classical twists are

recovered.

fβr =



0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0



, fβi =



0 0 0 0 0 0 0 0 0

0 0 0 −i 0 0 0 0 0

0 0 0 0 0 0 i 0 0

0 i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −i 0

0 0 −i 0 0 0 0 0 0

0 0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 0 0



,

fhr =



0 0 0 0 0 −i 0 i 0

0 0 0 0 0 0 0 0 i

0 0 0 0 −i 0 0 0 0

0 0 0 0 0 0 0 0 −i
0 0 i 0 0 0 −i 0 0

i 0 0 0 0 0 0 0 0

0 0 0 0 i 0 0 0 0

−i 0 0 0 0 0 0 0 0

0 −i 0 i 0 0 0 0 0



, fhi =



0 0 0 0 0 −1 0 1 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 −1 0 0

−1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 0


89
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Table A.1: Deformation parameter limits for classical twists

Classical Twist Parameters

fβr q̄ = 1/q, h = 0 = h̄

fβi q̄ = q , h = 0 = h̄

fhr h̄ = h = hr , q̄ = 1 = q

fhi h̄ = −h = ihi , q̄ = 1 = q

A.2 Entries of the general (q, h) twist

Below are the entries of the twist, Fqh in (5.31), corresponding to the full (q, h) deformed

theory. These entries are not entirely independent of one another, they can be expressed

in terms of one another in the sense that

a = 1− d− c e = h̄(b− c) + f (A.1)

e = h̄(b− c) + f j = ē (A.2)

i = b̄ g = f̄ (A.3)

d = c+

√
2(1 + qq̄)√

(1 + q)(1 + q̄)
√

1 + hh̄+ qq̄
b = c+

√
2(1 + q)√

1 + hh̄+ qq̄
(A.4)

From the above one can then choose the set of entries, {b, b̄, c, f, f̄}, and use it as a basis

in terms of which the other entries. It is not altogether clear if this choice is the best for

transparency or the most minimal for computation, nonetheless the entries that form

the basis in terms of the deformation parameters q and h are given by

b =
hh̄qq̄ + 3hh̄q − hh̄q̄ + hh̄+ q2q̄2 + q2q̄ − 2q2 − qq̄2 + q − q̄ + 1
√

2
√
q + 1

√
q̄ + 1

√
hh̄+ qq̄ + 1(2hh̄+ qq̄ − q − q̄ + 1)

+
hh̄

2hh̄+ qq̄ − q − q̄ + 1

(A.5)

c =
hh̄qq̄ − hh̄q − hh̄q̄ − 3hh̄+ q2q̄2 − q2q̄ − qq̄2 + q + q̄ − 1
√

2
√
q + 1

√
q̄ + 1

√
hh̄+ qq̄ + 1(2hh̄+ qq̄ − q − q̄ + 1)

+
hh̄

2hh̄+ qq̄ − q − q̄ + 1

(A.6)

d =
hh̄

2hh̄+ qq̄ − q − q̄ + 1
− 3hh̄qq̄ + hh̄q + hh̄q̄ − hh̄+ q2q̄2 − q2q̄ − qq̄2 + q + q̄ − 1
√

2
√
q + 1

√
q̄ + 1

√
hh̄+ qq̄ + 1(2hh̄+ qq̄ − q − q̄ + 1)

(A.7)

f =
h̄(q − 1)

2hh̄+ qq̄ − q − q̄ + 1
−

√
2h̄
√
q + 1(hh̄+ qq̄ − q̄)

√
q̄ + 1

√
hh̄+ qq̄ + 1(2hh̄+ qq̄ − q − q̄ + 1)

(A.8)

b̄ and f̄ are complex conjugates of b and f respectively.
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A.3 Cubic product: Technical details

In computing the cubic ? and ∗ products, one was unavoidably involved with either

[F3,L] or [F3,R] and their inverses. Recall that

[F3,L] := (∆1F
−1) · (F−1

12 ) [F3,R] := (∆2F
−1) · (F−1

23 )

[F−1
3,L] := (F12) · (∆1F ) [F−1

3,R] := (F23) · (∆2F )
(A.9)

The action of the co-product ∆ was defined at the level of the algebra (See Chapter

4) while the twist is an object that extends over two copies of the group. This has

necessitated that the twist be expressed as an exponential of a linear combination of the

generators of the group. Having exponentiated the twist, one applies the co-product to

obtain for example

∆1F = ∆1e
fqh = e∆1fqh = e(f13+f23) and ∆2F = e∆2fqh = e(f12+f13) (A.10)

This implies that the action of the co-product on the twist is an exponential of a linear

combination of various classical twists which are extended over three copies of the algebra

i.e. these objects ∆1fqh, ∆2fqh are matrices of size 27×27. The exponentiation of these

is computationally expensive. Below is a sketch of the procedure used to overcome/avoid

this. Call to mind that if V is a matrix that diagonalizes another matrix M , that is

V †DV = M then

M = V †DV −→ eM = V †eDV (A.11)

where D is a diagonal matrix. Let ML := ∆1fqh and MR := ∆2fqh then the eigen

equations will be

E
(L)
i ML = λiE

(L)
i and E

(R)
j MR = λjE

(R)
j (A.12)

where ELi is the i-th eigenvector of ML whose corresponding eigenvalue is λi
1,so also for

MR. Thus it follows that

∆1F = e∆1fqh = eML = (V (L))†eDLV (L) (A.13)

∆2F = e∆2fqh = eMR = (V (R))†eDRV (R) (A.14)

where the diagonalizing matrix V (L) is made from the eigenvectors E(L), that is E
(L)
i

is the i-th row of V (L). The diagonal matrices DL and DR are equal because ML =

P13MRP13 which also implies that the eigenvectors are related to one another. Consoli-

dating everything, the conclusion is

1a number, not to be confused with the Gell-Mann matrices
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∆1F = eML = (V (L))†eDLV (L) , ∆2F = eMR = (V (R))†eDRV (R)

∆1F
−1 = e−ML = (V (L))†e−DLV (L) , ∆2F

−1 = e−MR = (V (R))†e−DRV (R)
(A.15)

where the inverse case is also shown as the same arguments hold. The diagonal matrices

have the eigenvalues of either of the M ’s. This is the procedure that was used to compute

the cubic terms [F3,X ], [F−1
3,X ] , X = {L,R} and the co-associator φ.

A.4 Cubic terms: imaginary β case

Contained in this section are the non-zero entries of the cubic relations [F3,L] for the case

where β is imaginary hence q is real and h = 0 = h̄. In order to contain these entries

the substitution ρ = arccos

(
1+q√

2(1+q2)

)
was made. The entries displayed are those with

the first index fixed to 1 and the rest are recoverable via the Z3 symmetry which entries

enjoy

[F3,L]1 1 1
1 1 1 = 1 (A.16)

[F3,L]1 1 2
1 1 2 = cos

(√
2ρ
)

(A.17)

[F3,L]1 1 3
1 1 3 = cos

(√
2ρ
)

(A.18)

[F3,L]1 1 2
1 2 1 = −

q sin
(√

2ρ
)√

q2 + 1
(A.19)

[F3,L]1 1 3
1 3 1 =

sin
(√

2ρ
)√

q2 + 1
(A.20)

[F3,L]1 2 1
1 1 2 =

sin
(√

2ρ
)

√
2

(A.21)

[F3,L]1 2 1
1 2 1 =

q cos
(√

2ρ
)

+ 1
√

2
√
q2 + 1

(A.22)

[F3,L]1 2 2
1 2 2 =

q cos
(√

2ρ
)

+ 1
√

2
√
q2 + 1

(A.23)

[F3,L]1 2 3
1 2 3 =

(q + 1)(2 cos
(√

3ρ
)

+ 1)

3
√

2
√
q2 + 1

(A.24)

[F3,L]1 2 3
1 3 2 =

−
√

3(q + 1) sin
(√

3ρ
)

+ (q − 1) cos
(√

3ρ
)
− q + 1

3
√

2
√
q2 + 1

(A.25)

[F3,L]1 3 1
1 1 3 = −

sin
(√

2ρ
)

√
2

(A.26)
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[F3,L]1 3 2
1 2 3 =

√
3(q + 1) sin

(√
3ρ
)
− (q − 1) cos

(√
3ρ
)

+ q − 1

3
√

2
√
q2 + 1

(A.27)

[F3,L]1 3 1
1 3 1 =

q + cos
(√

2ρ
)

√
2
√
q2 + 1

(A.28)

[F3,L]1 3 2
1 3 2 =

(q + 1)(2 cos
(√

3ρ
)

+ 1)

3
√

2
√
q2 + 1

(A.29)

[F3,L]1 3 3
1 3 3 =

q + cos
(√

2ρ
)

√
2
√
q2 + 1

(A.30)

[F3,L]1 1 2
2 1 1 = −

sin
(√

2ρ
)√

q2 + 1
(A.31)

[F3,L]1 2 1
2 1 1 =

cos
(√

2ρ
)
− q

√
2
√
q2 + 1

(A.32)

[F3,L]1 2 2
2 1 2 =

cos
(√

2ρ
)
− q

√
2
√
q2 + 1

(A.33)

[F3,L]1 2 3
2 1 3 = −

(q − 1)(2 cos
(√

3ρ
)

+ 1)

3
√

2
√
q2 + 1

(A.34)

[F3,L]1 2 2
2 2 1 = −

sin
(√

2ρ
)

√
2

(A.35)

[F3,L]1 2 3
2 3 1 =

√
3(q − 1) sin

(√
3ρ
)
− (q + 1) cos

(√
3ρ
)

+ q + 1

3
√

2
√
q2 + 1

(A.36)

[F3,L]1 3 2
2 1 3 =

−
√

3(q − 1) sin
(√

3ρ
)
− (q + 1) cos

(√
3ρ
)

+ q + 1

3
√

2
√
q2 + 1

(A.37)

[F3,L]1 3 2
2 3 1 =

−
√

3(q + 1) sin
(√

3ρ
)
− (q − 1) cos

(√
3ρ
)

+ q − 1

3
√

2
√
q2 + 1

(A.38)

[F3,L]1 1 3
3 1 1 =

q sin
(√

2ρ
)√

q2 + 1
(A.39)

[F3,L]1 2 3
3 1 2 =

−
√

3(q − 1) sin
(√

3ρ
)
− (q + 1) cos

(√
3ρ
)

+ q + 1

3
√

2
√
q2 + 1

(A.40)

[F3,L]1 2 3
3 2 1 =

√
3(q + 1) sin

(√
3ρ
)

+ (q − 1) cos
(√

3ρ
)
− q + 1

3
√

2
√
q2 + 1

(A.41)

[F3,L]1 3 1
3 1 1 =

q cos
(√

2ρ
)
− 1

√
2
√
q2 + 1

(A.42)

[F3,L]1 3 2
3 1 2 =

(q − 1)(2 cos
(√

3ρ
)

+ 1)

3
√

2
√
q2 + 1

(A.43)

[F3,L]1 3 3
3 1 3 =

q cos
(√

2ρ
)
− 1

√
2
√
q2 + 1

(A.44)

[F3,L]1 3 2
3 2 1 =

√
3(q − 1) sin

(√
3ρ
)
− (q + 1) cos

(√
3ρ
)

+ q + 1

3
√

2
√
q2 + 1

(A.45)

[F3,L]1 3 3
3 3 1 =

sin
(√

2ρ
)

√
2

(A.46)
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A.5 G-tensor

Below is a list of the non-zero entries of G-tensor whose defining relation is in (6.47) and

the rest of the entries are recoverable by the use of the Z3 symmetry which the G-tensor

inherits from the R-matrix.

G1 1
1 1 =

−qq̄(hh̄(a+ d) + c+ d) + q2q̄2(a+ c)− ahh̄+ a+ ch2h̄2 − chh̄+ dh2h̄2 + d

2(h2h̄2 − h(h̄qq̄ + h̄) + qq̄(qq̄ − 1) + 1)

(A.47)

G1 2
1 2 =

(hh̄+ qq̄ + 1)(bhh̄q̄ + bq2 + f(h̄2 − hqq̄) + h2jq̄2 + h̄jq)

2(h3q̄3 + 3hh̄qq̄ − h̄3 + q3)
(A.48)

G1 3
1 3 = −(hh̄+ qq̄ + 1)(h̄q(eh̄q + hi) + ehq̄ + g(h2 − h̄qq̄) + iq̄2)

2(h3 − 3hh̄qq̄ − h̄3q3 − q̄3)
(A.49)

G1 1
2 3 = −(hh̄+ qq̄ + 1)(ehh̄q + eq̄2 + ghq̄ + gh̄2q2 + h2i− h̄iqq̄)

2(h3 − 3hh̄qq̄ − h̄3q3 − q̄3)
(A.50)

G1 2
2 1 =

−qq̄(hh̄(a+ c) + a+ d) + ah2h̄2 + a− hh̄(c+ d) + q2q̄2(c+ d) + c+ dh2h̄2

2(h2h̄2 − h(h̄qq̄ + h̄) + qq̄(qq̄ − 1) + 1)

(A.51)

G1 3
2 2 =

(hh̄+ qq̄ + 1)(b(h̄2 − hqq̄) + fh2q̄2 + fh̄q + hh̄jq̄ + jq2)

2(h3q̄3 + 3hh̄qq̄ − h̄3 + q3)
(A.52)

G1 1
3 2 =

(hh̄+ qq̄ + 1)(h̄(bq + fhq̄) + hq̄(bhq̄ − jq) + fq2 + h̄2j)

2(h3q̄3 + 3hh̄qq̄ − h̄3 + q3)
(A.53)

G1 2
3 3 = −(hh̄+ qq̄ + 1)(e(h2 − h̄qq̄) + h̄q(gh+ h̄iq) + gq̄2 + hiq̄)

2(h3 − 3hh̄qq̄ − h̄3q3 − q̄3)
(A.54)

G1 3
3 1 =

−qq̄(a+ hh̄(c+ d) + c) + q2q̄2(a+ d) + ah2h̄2 − ahh̄+ ch2h̄2 + c− dhh̄+ d

2(h2h̄2 − h(h̄qq̄ + h̄) + qq̄(qq̄ − 1) + 1)

(A.55)

The functions a, d, c, f of q and h are as defined in Appendinx A.2.
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Details: The co-associator

B.1 Co-associator: imaginary β case

As in the previous Appendix, here is a presentation of the non-zero terms of the imagi-

nary β deformed co-associator with the first index fixed to 1.

φ111
111 = 1 (B.1)

φ112
112 =

q(sin
(
2
√

2ρ
)

+ 2
√

2)− 2 sin
(√

2ρ
)

+ 2
√

2 cos
(√

2ρ
)

4
√
q2 + 1

(B.2)

φ113
113 =

2q(sin
(√

2ρ
)

+
√

2 cos
(√

2ρ
)
)− sin

(
2
√

2ρ
)

+ 2
√

2

4
√
q2 + 1

(B.3)

φ112
121 =

q2 cos
(
2
√

2ρ
)

+ q2 − 4
√

2q sin
(√

2ρ
)
− 2

4(q2 + 1)
(B.4)

φ113
131 =

−2q2 + 4
√

2q sin
(√

2ρ
)

+ cos
(
2
√

2ρ
)

+ 1

4q2 + 4
(B.5)

φ121
112 =

2q sin
(√

2ρ
)
− 2
√

2q cos
(√

2ρ
)

+ sin
(
2
√

2ρ
)

+ 2
√

2

4
√
q2 + 1

(B.6)

φ121
121 =

2
√

2(q2 − 1) sin
(√

2ρ
)

+ 2(q2 + 1) cos
(√

2ρ
)

+ q cos
(
2
√

2ρ
)

+ 3q

4(q2 + 1)
(B.7)

φ122
122 =

q(sin
(
2
√

2ρ
)

+ 2
√

2)− 2 sin
(√

2ρ
)

+ 2
√

2 cos
(√

2ρ
)

4
√
q2 + 1

(B.8)

φ123
123 =

√
3(q2 − 1) sin

(
2
√

3ρ
)

+ (q2 + 1) cos
(
2
√

3ρ
)

+ 2q(q + 3) + 2

6(q2 + 1)
(B.9)

φ123
132 =

1

2
−
√

3q sin
(
2
√

3ρ
)

+ 3

3(q2 + 1)
(B.10)
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φ131
113 = −

q(sin
(
2
√

2ρ
)
− 2
√

2) + 2 sin
(√

2ρ
)

+ 2
√

2 cos
(√

2ρ
)

4
√
q2 + 1

(B.11)

φ132
123 =

√
3q sin

(
2
√

3ρ
)

+ 3

3q2 + 3
− 1

2
(B.12)

φ131
131 =

2
√

2(q2 − 1) sin
(√

2ρ
)

+ 2(q2 + 1) cos
(√

2ρ
)

+ q cos
(
2
√

2ρ
)

+ 3q

4(q2 + 1)
(B.13)

φ132
132 =

√
3(q2 − 1) sin

(
2
√

3ρ
)

+ (q2 + 1) cos
(
2
√

3ρ
)

+ 2q(q + 3) + 2

6(q2 + 1)
(B.14)

φ133
133 =

2q(sin
(√

2ρ
)

+
√

2 cos
(√

2ρ
)
)− sin

(
2
√

2ρ
)

+ 2
√

2

4
√
q2 + 1

(B.15)

φ112
211 =

2
√

2(q2 − 1) sin
(√

2ρ
)
− 2(q2 + 1) cos

(√
2ρ
)

+ q cos
(
2
√

2ρ
)

+ 3q

4(q2 + 1)
(B.16)

φ121
211 =

−2q2 + 4
√

2q sin
(√

2ρ
)

+ cos
(
2
√

2ρ
)

+ 1

4q2 + 4
(B.17)

φ122
212 =

2q sin
(√

2ρ
)
− 2
√

2q cos
(√

2ρ
)

+ sin
(
2
√

2ρ
)

+ 2
√

2

4
√
q2 + 1

(B.18)

φ123
213 =

√
3q sin

(
2
√

3ρ
)

+ 3

3q2 + 3
− 1

2
(B.19)

φ122
221 = −1

2
sin2(

√
2ρ) (B.20)

φ123
231 =

2

3
sin2(

√
3ρ) (B.21)

φ132
213 =

−
√

3(q2 − 1) sin
(
2
√

3ρ
)

+ (q2 + 1) cos
(
2
√

3ρ
)

+ 2(q − 3)q + 2

6(q2 + 1)
(B.22)

φ113
311 =

2
√

2(q2 − 1) sin
(√

2ρ
)
− 2(q2 + 1) cos

(√
2ρ
)

+ q cos
(
2
√

2ρ
)

+ 3q

4(q2 + 1)
(B.23)

φ123
312 =

−
√

3(q2 − 1) sin
(
2
√

3ρ
)

+ (q2 + 1) cos
(
2
√

3ρ
)

+ 2(q − 3)q + 2

6(q2 + 1)
(B.24)

φ131
311 =

q2 cos
(
2
√

2ρ
)

+ q2 − 4
√

2q sin
(√

2ρ
)
− 2

4(q2 + 1)
(B.25)

φ132
312 =

1

2
−
√

3q sin
(
2
√

3ρ
)

+ 3

3(q2 + 1)
(B.26)

φ133
313 = −

q(sin
(
2
√

2ρ
)
− 2
√

2) + 2 sin
(√

2ρ
)

+ 2
√

2 cos
(√

2ρ
)

4
√
q2 + 1

(B.27)

φ132
321 =

2

3
sin2(

√
3ρ) (B.28)

φ133
331 = −1

2
sin2(

√
2ρ) (B.29)

As we mentioned in the Chapter 5 that the expressions for the general (q, h) are large

and cumbersome; therefore we refer the reader to the Mathematica file that associated

to [11] for specific details.
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B.2 Pentagon relation

A technical detail which the co-associator must satisfy as part of the qHA definition

is the pentagon relation (4.49). Here we supply a proof of this for the general (q, h)-

deformation qHA. It is useful to note that the trivial co-associator φ = 1⊗ 1⊗ 1 under

the undeformed co-product ∆ satisfies the Pentagon relation. Since ∆(1) = 1⊗ 1 then

it follows that
(1⊗ φ) ·

[
∆2φ

]
· (φ⊗ 1) =

[
∆3φ

]
·
[
∆1φ

]
1⊗ 1⊗ 1⊗ 1 = 1⊗ 1⊗ 1⊗ 1

(B.30)

The twisted qHA has a co-associator φF and co-product ∆F := ∆̃ which are explicitly

given by

φF = F23 ·
[
∆2F

]
·
[
∆1F

−1
]
· F−1

12 , ∆F (·) = F [∆(·)]F−1 = ∆̃(·) (B.31)

Using the expressions in (5.43) we can compute the different parts of the pentagon

relation:

(1⊗ φF ) = ef34 · ef24+f23 · e−f24−f34 · e−f23 (B.32)

(φF ⊗ 1) = ef23 · ef13+f12 · e−f13−f23 · e−f12 (B.33)

These expressions live in the vector space made up of four copies of the algebra i.e. H⊗4,

thus (B.33) is not identical to the second equality of (5.43). The computation of the

remaining parts of the pentagon result in:

∆̃1φF = F12 ·
[
∆1φF

]
F−1

12 (B.34)

= ef12 ·
[
ef34 · e(f13+f23+f14+f24) · e−(f14+f24+f34) · e−(f13+f23)

]
· e−f12 (B.35)

∆̃2φF = F23

[
∆2φF

]
· F−1

23 (B.36)

= ef23 · e(f24+f34) · e(f12+f13+f14) · e−(f14+f24+f34) · e−(f12+f13) · e−f23 (B.37)

∆̃3φF = F34 ·
[
∆3φF

]
· F−1

34 (B.38)

= ef34 ·
[
e(f23+f24) · e(f12+f13+f14) · e−(f13+f14+f23+f24) · e−f12

]
· e−f34 (B.39)

An extra necessary ingredient, noted by explicit calculation, is that [f12, f34] = 0. The

RHS and LHS of (4.49) simplify to

∆̃3φF · ∆̃1φF = ef34 ·
[
e(f23+f24) · e(f12+f13+f14) · e−(f14+f24+f34) · e−(f13+f23)

]
· e−f12

= (1⊗ φF ) · ∆̃2φF · (φF ⊗ 1)

(B.40)



Appendix C

Discussion: Integrability

In this appendix we provide a short discussion, seeking to explain the connection between

the R-matrix introduced in Chapter 3 and integrability.

One of the quantities of interest in QFT is the S-matrix. The elements of the S-matrix

correspond to scattering amplitudes and for multi-particle processes the computation of

these elements is complicated. The ability to view a multi-particle scattering process as

a series of 2-particles scattering processes provides a major simplification. S-matrices

for which this can be done are called factorizable. To uncover the root of this property

we need to consider the S-matrix operator which we designate with S.

The S-matrix operator S is usually split into non-interacting and interacting part, S =

1+ it where t is the transfer matrix which ‘transfers’ a system from an incoming/input

state |ai〉 to an outgoing/output state |ao〉 [100]. Since QFTs generally have an infinite

number of degrees of freedom, computing 〈a0| t |ai〉 is a complicated task. It is useful

to rather carry this out on discretized spacetime, hence a lattice (approximation) of the

continuous QFT [3][101].

At this junction having a spin chain picture according to the discussion in Section 3.1.1.2

in mind. This is helpful because discretizing effectively makes spacetime a lattice and

each point would then be a site of the spin chain. For simplicity, consider a 1-dimensional

periodic spin chain. An interesting object to define is a transition matrix Tmna(u) which

transports us from site n to site m of the lattice for a fixed time and is parameterized

by u, a spectral parameter. The index a of the transition matrix means it acts on both

the site vector space and on an auxiliary vector space as each site has other degrees of

freedom. In order to see the effect of going around the full spin chain one defines the

monodromy matrix T̂ as the product of transition matrices from adjacent sites i.e. for

98
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a spin chain of length L, the monodromy matrix is

T̂ (u) =
L−1∏
n=0

Tn+1
n (u) (C.1)

where the auxiliary index a is suppressed. The trace of the monodromy matrix is equal

to the transfer matrix t. The nature of the theory being quantum means the product of

monodromy matrices do not commute. Here enters the R-matrix to describe/define the

commutation relations of monodromy matrices [102] [103] [104]

R(u, v)T̂a(u)T̂b(v) = T̂b(v)T̂a(u)R(u, v) (C.2)

In this way is a quantum model defined by its RTT relations and thus the R-matrix

becomes the object of study. Moreover if the R-matrix of a (sector of a) given model

satisfies the Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) (C.3)

then that (sector of the) model is integrable. In order to obtain the conserved charges

that commute with the Hamiltonian of the model one can employ algebraic Bethe Ansatz

methods [63] [104].
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