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Abstract

Dynamic optimization problems provide a challenge in that optima have to be tracked

as the environment changes. The complexity of a dynamic optimization problem is

determined by the severity and frequency of changes, as well as the behavior of the

values and trajectory of optima. While many efficient algorithms have been developed

to solve these types of problems, the choice of the best algorithm is highly dependent

on the type of change present in the environment. This thesis analyzes the ability of

popular selection operators used in a hyper-heuristic framework to continuously select

the most appropriate optimization method over time to solve a DOP better than the

individual optimization methods can.

A contradictory situation faced by DOP-focused meta-heuristics is identified from

literature: statically tuning meta-heuristic parameters for DOPs is impossible, yet dy-

namically adapting multiple meta-heuristic parameters in an ad hoc fashion produces

poor results. The no free lunch (NFL) theorems for optimization are discussed, along

with reasoning from literature as to why the conditions that are required for the NFL

theorem to hold are practically impossible to find in real-world continuous-valued op-

timization problems. Hyper-heuristics are positioned as meta-search methods that can

therefor raise performance in practical DOPs.

The heterogeneous meta-hyper-heuristic (HMHH) framework was originally devised

for static environments. This thesis extends the HMHH framework by establishing

the criteria needed to identify appropriate meta-heuristics that enable HMHHs to solve

DOPs, introduces global and island neighborhoods that govern heuristic visibility of the
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population of candidate solutions, and introduces different heuristic selection triggering

mechanisms beyond time-based triggers. The HMHH framework is extended further to

handle a mix of population-based meta-heuristics and single-solution methods under the

same population-based paradigm.

A new performance measure for DOPs, namely the relative error distance, or Pr, is

proposed that does not assume normally distributed performance data across an algo-

rithm run, is resilient against fitness landscape scale changes, better incorporates per-

formance variance across multiple fitness landscape changes, and allows easier algorithm

comparisons using established nonparametric statistical methods. A new measure for

heuristic diversity in population-based meta-heuristics, namely N (t), is introduced that

is derived from Shannon’s normalized entropy measure. Additional measures are pro-

posed that consider the heuristic reassignment frequency, or δ, and heuristic reassignment

volume, or ϕ, of a multi-population-based hyper-heuristic over the entire course of an

algorithm run.

Empirical studies examine the performance and behavioral differences between var-

ious hyper-heuristic selection operators. The proposed experimental procedures for all

algorithm evaluations, comparisons, and parameter sensitivity analysis rely entirely on

nonparametric statistical procedures. Twenty-seven unique environments, based on the

holistic classification of Duhain and Engelbrecht, are systematically created using the

moving peaks benchmark function (MPB) generator. Parameter values are compliant

with the generally accepted scenario 2 settings for the MPB. The results show that

these hyper-heuristic approaches can yield higher performance more consistently across

different types of environments.

Keywords: hyper-heuristics, dynamic environments, swarm intelligence, evolutionary

computation.
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“Know who knows what you know you don’t know.”

– Adrian Ray

“You make decisions, take actions, affect the world, receive feedback from

the world, incorporate it into yourself, then the updated ‘you’ makes more

decisions, and so forth, ‘round and ‘round.”

– Douglas Hofstadter

“It has always seemed to me extreme presumptuousness on the part of

those who want to make human ability the measure of what nature can and

knows how to do, since, when one comes down to it, there is not one effect in

nature, no matter how small, than even the most speculative minds can fully

understand.”

– Galileo Galilei
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Chapter 1

Introduction

“The world as we have created it is a process of our thinking.

It cannot be changed without changing our thinking.”

– Albert Einstein

1.1 Introduction

A dynamic optimization problem (DOP) is a special class of problem where optima

change as time goes by. The complexity of a DOP is determined by the severity and

frequency of changes, as well as the behavior of the values and trajectory of optima. Many

efficient algorithms have been developed to solve these types of problems. Recent surveys

show that a significant amount of Computational Intelligence (CI) research focuses on

the meta-heuristic approaches of evolutionary computation (EC) and swarm intelligence

(SI) to solving DOPs [40][93][119][136].

The surveys echo that different types of algorithms perform better in certain kinds of

DOPs than in others, which is in line with what would be expected from the no free lunch

theorem for optimization [184]. This presents a challenge to practitioners since it takes

time to understand the nature of a given problem, and to identify a suitable algorithm

to solve the problem. The wrong algorithm (or meta-heuristic parameter) choice can

yield detrimental performance. Ideally, practitioners need an immediate “off the peg”

1
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solution to a DOP instead of spending time developing more tailored approaches.

The fields of Operations Research, Computer Science, and Artificial Intelligence have

produced complementary methods called hyper-heuristics that adapt the optimization

process by choosing which low-level heuristic to apply to a problem over time [24]. A

simpler definition is that selection hyper-heuristics are heuristics to choose heuristics [24].

What distinguishes hyper-heuristics from most other control adaptation approaches is

the clear separation between solving a problem and searching for a suitable method (or

heuristic) to solve a problem. Hyper-heuristics treat both the problem and heuristics as

“black boxes” by not having detailed knowledge about the problem space, nor knowing

exactly how heuristics solve a problem.

This thesis analyzes the ability of hyper-heuristic approaches to continuously select

the most appropriate optimization method for a DOP as time goes by. Empirical studies

examine both the performance of hyper-heuristics compared to the individual heuristics,

as well as the behavioral differences between various hyper-heuristic approaches to better

understand their mode of operation. Section 1.2 motivates the reasons for this research.

The exact objectives of the research are provided in section 1.3. Section 1.4 lists the

novel contributions made by this study. The scope of the research is outlined in section

1.5. Finally, section 1.6 gives an outline of the thesis as a whole.

1.2 Motivation

Hyper-heuristics continuously change the optimization algorithm as time goes by to

better solve the problem under consideration. Motivations for hyper-heuristics include

the ability to design a single method to handle classes of problems vs. just specific

instances of problems, increased accuracy, better matching of optimization algorithms to

problems (or problem stages), domain independence of algorithms, and more flexibility

in the application of optimization algorithms to problems. Since DOPs change over

time, a natural question arises whether hyper-heuristics are well-suited to change the

optimization algorithm to better suit the current state of the problem while the algorithm

is solving the problem.

A number of studies investigate the application of hyper-heuristics to dynamic envi-

ronments [99][100][143][171][173][175][174]. Most of these studies focus on hyper-heuristics
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managing simple heuristic operators (eg. Gaussian mutation operators). While these

early studies show promising results, a natural extension to the application of hyper-

heuristics to DOPs is to let hyper-heuristics manage a pool of heuristics that are purpose-

built for DOPs.

This thesis will highlight a contradictory situation faced by DOP-focused meta-

heuristics: static parameter tuning of DOP-specific meta-heuristic parameters is unattain-

able [46][97][103][?], while mixing together multiple self-adaptive parameter control meth-

ods in an ad hoc fashion is typically sub-optimal (the so-called patchwork problem [97]).

A hyper-heuristic framework addresses this conundrum by separating the implementa-

tion of the common “building blocks” for DOP approaches discussed in various reviews

focused on DOPs [40][93][119][136] into a heuristic layer and hyper-heuristic layer. The

heuristic layer is responsible for maintaining / introducing diversity in the problem

space, reacting to change of the environment, and managing memory/state in the prob-

lem space. The hyper-heuristic layer is responsible for managing multiple populations of

candidate solutions that focus on different aspects of the search, maintaining a memory

of correlations between heuristic allocation, feedback values, and resulting performance,

and self-adaptation of search behavior by learning how to best allocate computational

resources to the most promising heuristics at time t.

Birattari et al. [11] assert that meta-heuristics are, essentially, templates for an

operation that only becomes a concrete algorithm once parameter values are selected.

Deliberate parameter value choices generally produce very specific exploration and ex-

ploitation behavior in a meta-heuristic [57][58]. A hyper-heuristic framework encapsu-

lates each heuristic as a distinct collection of low-level operators, design decisions, and

parameter values. The result is a mix of highly varied modes of operation contained in

a pool of heuristics. For example, an SI approach comprising of specific neighborhood

structures, electrostatic charges, position update operators, and velocity update opera-

tors will exhibit completely different behavior than an EC approach with cross-over,

mutation, replacement, and elitism operators.

This thesis investigates how well various hyper-heuristic selection operators can con-

tinually balance computational resources across different population-based meta-heuris-

tics that are specialized to solving DOPs. The goal is to determine if such a hyper-

heuristic system can solve a DOP better than the individual meta-heuristics can. The
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ultimate purpose is not to find the best algorithm to solve DOPs, nor to compare hyper-

heuristics with state-of-the-art DOP algorithms, nor to exhaustively determine the best

factors that characterize a good heuristic pool. The aim is to better understand what

heuristic allocation behavior leads to improved performance.

1.3 Objectives

The main goal of this thesis is to investigate how well various hyper-heuristic selection

operators can continually balance computational resources across different population-

based meta-heuristics in order to solve a DOP better than the individual meta-heuristics

can. Within this broad objective the following sub-objectives will also be investigated:

• Investigate existing hyper-heuristic algorithms, frameworks, and approaches that

aim to solve DOPs, specifically focusing on selection hyper-heuristic and population-

based approaches.

• Define suitable parameters for the well-known moving peaks benchmark [19] that

allow the creation of 27 unique types of DOPs, as defined by the unified DOP

classification of Duhain and Engelbrecht [53], and are compliant with scenario 2 of

the moving peaks benchmark function generator [19][127].

• Investigate the effectiveness of the Heterogeneous Meta-hyper-heuristic (HMHH)

[75][76][74], which was originally intended for static environments, to solve DOPs.

• Extend HMHH with the different neighborhood topologies, and subsequently com-

pare and contrast the performance of various hyper-heuristics when using each

topology.

• Extend HMHH with multiple types of heuristic change triggers that are used to

decide when a new heuristic should be applied to a particular candidate solution,

and investigate the effect different types of triggers have on the performance of

various hyper-heuristics.

• Propose a new performance measure for DOP-focused algorithms that improves

upon existing measures by more faithfully representing the holistic performance of
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an algorithm over time.

• Perform a sensitivity analysis on the shared parameter for heuristic change triggers,

namely k, which controls the frequency of heuristic changes occurring. Compare

and contrast the performance of each hyper-heuristic to determine which combi-

nations of hyper-heuristics and trigger types are more sensitive than others.

• Compare the performance of various well-known hyper-heuristics against each

other, as well as against various control groups.

• Investigate the heuristic space diversity and heuristic reassignment rates of various

hyper-heuristics to better understand their modes of operation.

The purpose is not to find the best algorithm to solve DOPs, nor to compare hyper-

heuristics with state-of-the-art DOP algorithms, nor to exhaustively determine the best

factors that characterize a good heuristic pool.

1.4 Contributions

The following novel contributions are made by this thesis:

1. This is the first study to analyze the performance and behavior of a broad range

of hyper-heuristic selection operators across the full spectrum of real-valued DOP

types. Unique environments are systematically created with parameter values that

are compliant with scenario 2 of the moving peaks benchmark function generator

[19][127], and based on the holistic classification of Duhain and Engelbrecht [53]

(which unites the well-known classifications of Eberhart and Shi [56] and Angeline

[4] together with spatial and temporal change severity classes).

2. A contradictory situation faced by DOP-focused meta-heuristics is identified: stat-

ically tuning meta-heuristic parameters is impossible in DOPs [46][97][103][?], yet

dynamically adapting multiple meta-heuristic parameters in an ad hoc fashion us-

ing state-of-the-art self-adaptive parameter control methods produces poor results

(this has been framed as the so-called ‘patchwork problem’ [97]). This thesis shows
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how selection hyper-heuristics for population-based meta-heuristics can address

this problem practically.

3. The HMHH by Grobler et al. [75][76][74] was originally devised for static envi-

ronments. This thesis extends the HMHH framework by establishing the criteria

needed to identify appropriate meta-heuristics to enable HMHH to solve DOPs,

introduces global and island neighborhoods that govern heuristic visibility of the

population of candidate solutions, and introduces different heuristic selection trig-

gering mechanisms for HMHH beyond relying only on periodic time-based triggers.

4. The HMHH framework is extended to handle a mix of population-based meta-

heuristics and single-solution methods under the same population-based paradigm.

This allows single-point search heuristics, commonly used in the hyper-heuristic

literature, such as a Gaussian mutation operators to be used in conjunction with

complex meta-heuristics from the SI and EC fields.

5. A new performance measure for DOPs, namely the relative error distance (or Pr,

as calculated using equation (4.1)), is proposed that does not assume normally

distributed performance data across an algorithm run, is resilient against fitness

landscape scale changes, better incorporates performance variance across multiple

fitness landscape changes, and allows easier algorithm comparisons using estab-

lished nonparametric statistical methods.

6. Metrics capturing heuristic allocation behavior, heuristic space diversity, and allo-

cation stability are used to understand why and how hyper-heuristic selection op-

erators differ in their behavior. A new measure of heuristic diversity in population-

based meta-heuristics, namely N (t), as calculated using equation (3.2), is intro-

duced that is derived from Shannon’s normalized entropy measure [160].

7. Together with the newly proposed heuristic space diversity measure, N (t) (as cal-

culated using equation (3.2)), guidelines are provided to better understand the

heuristic space diversity behavior of a given hyper-heuristic. New measures are

proposed that consider the heuristic reassignment frequency, or δ (as calculated

using equation (6.2)), and heuristic reassignment volume, or ϕ (as calculated using
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equation (6.3)), of a multi-population-based hyper-heuristic over the entire course

of an algorithm run.

8. The experimental procedures for all algorithm evaluations, comparisons, and sen-

sitivity analysis rely entirely on nonparametric statistical methods. The analysis

method and results in this thesis constitute the first study to apply nonparamet-

ric statistical analysis procedures to analyze the performance of selection hyper-

heuristics for populations-based meta-heuristics. This analysis includes using a

performance measure that itself does not assume a normal distribution of the un-

derlying telemetry data (i.e., the newly proposed Pr measure).

9. The results show that a complex relationship exists between the heuristic selection

logic, the frequency of heuristic changes, the change triggering logic, the HMHH

neighborhood topology, and the exact type of DOP being solved. However, every

combination of these components yields performance that is superior to using any

of the individual DOP-specific heuristics in isolation. A general correlation is

also visible between increased performance and more frequent heuristic selection.

Lastly, even under a random trigger, more frequent heuristic changes across a

portion of the population is frequently the most beneficial approach, implying that

simple algorithmic diversity over time is effective at improving performance in

DOPs.

1.5 Scope

The scope of this thesis is as follows:

• Dynamic environments with dynamically changing dimensions are not in the scope

of this thesis.

• Environment change detection is out of scope to avoid introducing undue bias.

All changes are introduced in the same controlled manner and all algorithms are

informed of all changes in a uniform fashion.

• No equality or inequality constraints are present in any of the testing benchmark

functions. Only standard boundary constraints of the function domain are used.
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• Dynamic multi-objective optimization problems (DMOPS) are out of scope of the

thesis. Only single-objective problems are considered.

• No truly self-adaptive heuristics that employ learning are used. Self-adaptive

heuristics could result in heuristics converging (in heuristic space) on similar types

of behavior. Many heuristics would exhibit no noticeable difference in behavior,

which would impede the ability of the HMHH framework to alter how the search

is conducted. Additionally, many HMHH selection operators employ learning and

memory mechanisms to learn which heuristic’s behavior is appropriate given spe-

cific environmental feedback. Self-adaptive heuristics would continually change

their behavior over time, causing the hyper-heuristic’s knowledge of the workings

of each heuristic to become outdated. Future studies should investigate the trade-

off and synergies between these two levels of self-adaptation, and be mindful of not

exasperating the patchwork problem by carefully managing which parameters are

adapted, and in what manner.

• While HMHH can technically utilize heuristics that manage sub-populations of en-

tities, this study is limited to heuristics with single populations. Multi-population

heuristics would result in a fragmented ‘sub-populations of sub-populations’ situa-

tion, which would increase the number of entities required for HMHH to be effective

(particularly in the island neighborhood topology). The use of sub-populations by

heuristics would greatly diminish any gains in computational efficiency HMHH

would bring. Additionally, heuristic state management is simpler in a single-

population heuristic approach when entity reallocation occurs.

• Nguyen et al. [136] highlight a number of studies that show how the use of envi-

ronment change prediction could negatively impact the optimization method. The

wrong training data, lack of training data, or the very nature of the DOP could

all lead to extremely poor performance by wrongly biasing the search to certain

areas. The goal of this study is to investigate a broadly applicable hyper-heuristic

approach and not to specialize the method to a subset of DOP types that exhibit

predictable behavior. For similar reasons, any explicit memory schemes that track

good solutions and the problem space conditions that led to them are out of scope.
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• All hyper-heuristics share the same pool of heuristics, because testing the effec-

tiveness of each trigger under varying heuristic pool compositions is out of scope

for this thesis, and is left for future studies.

1.6 Thesis Outline

The thesis is structured as follows:

Chapter 2 provides a brief overview of optimization theory and defines DOPs. The

main algorithmic components of successful algorithms for DOPs are reviewed. An

overview of well-known SI and EC meta-heuristics from literature is given. The moving

peaks benchmark function generator is discussed and extended and well-known perfor-

mance and behavior measures for DOPs from literature are presented. Lastly, a dis-

cussion is provided regarding why nonparametric statistical procedures are essential to

correctly compare the performance of CI algorithms, along with an overview of well-

established and recommended methods and procedures.

Chapter 3 discusses the need for adaptation of algorithms when solving DOPs. An

overview is given of the static parameter tuning problem and, its dynamic equivalent, the

parameter control problem. A breakdown is provided of the applicability of both tuning

paradigms to DOPs, and why hyper-heuristics are an important class of adaptive control

methods. The no free lunch (NFL) theorems for optimization are discussed, along with

reasoning from literature as to why the conditions that are required for the NFL theorem

to hold are practically impossible to find in real-world continuous-valued optimization

problems. Hyper-heuristics are positioned as meta-search methods that can therefor raise

performance above that of any of the individual heuristics alone. A full literature review

is provided of hyper-heuristics as a field, along with a classification of hyper-heuristic

approaches and an overview of the notions of problem space versus heuristic space. A

detailed overview of selection hyper-heuristics for population-based meta-heuristics is

given along with overviews of heuristic change trigger types, neighborhood topologies,

and how heuristics managed by a hyper-heuristic need to complement each other. Lastly,

control adaptation approaches that are related to hyper-heuristics are reviewed.

Chapter 4 establishes the performance of various control methods, which grounds

the analysis of all investigated hyper-heuristics against an objective set of baselines. The
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control methods alleviate concerns around whether or not any increased performance

by hyper-heuristics is due to intelligent selection, or simply due the use of multiple

sub-populations, multiple methods, or random heuristic assignments. The approach

described serves as the foundation for all experimental work in the rest of the thesis.

A new performance measure for DOPs is proposed that more faithfully reports the

sustained average performance of an algorithm over time while also better capturing the

variance in performance over time.

Chapter 5 explores the effect that various mechanisms to trigger heuristic change

combined with different neighborhood topologies have on the performance of selection

operators in the HMHH framework. The frequency parameter of each trigger is sys-

tematically varied to ascertain the effect, if any, that each trigger has on performance.

This process is repeated in 27 different types of DOPs across a wide variety of hyper-

heuristics, as detailed in section 5.2.2. The entire procedure is repeated across two

HMHH neighborhood topologies and contrasted against each other.

Chapter 6 compares and analyzes the performance of various HMHH selection oper-

ators against each other and the control group baseline established in chapter 4. The

aims are to determine whether each hyper-heuristic raises performance above that of the

individual heuristics or speciated heuristics, to establish whether each hyper-heuristic

performs better or worse than the fixed or random selection control methods, and to un-

derstand which hyper-heuristics perform better than other hyper-heuristics. The heuris-

tic space diversity and entity reassignment behavior of a variety of exemplary HMHH

selection operators are investigated to characterize their behavior and performance.

Chapter 7 concludes the thesis with a summary of findings and proposed areas of

future research.

A number of appendices are provided. Appendix A provides additional results rel-

evant to chapter 6. Appendix B provides a list of acronyms used in this thesis, while

appendix C contains a list of symbols that are used often. Appendix D provides a list

of accepted and under review publications that resulted from this study.



Chapter 2

Dynamic Optimization

“Yesterday is gone. Tomorrow has not yet come. We have only today.

Let us begin.”

– Mother Theresa

This chapter presents a working definition of a dynamic optimization problem (DOP)

as used in this thesis, along with an overview of different classifications of DOPs. An out-

line of the moving peaks benchmark function generator as a well-known DOP benchmark

function generator from literature is presented, and moving peaks benchmark parameter

settings are provided to simulate specific types of DOPs. The challenges faced by opti-

mization algorithms for DOPs are discussed, followed by an overview of well-known SI

and EC methods to solve DOPs. Various performance measures to evaluate and compare

the performance of optimization algorithms in DOPs are also presented.

2.1 Introduction

DOPs are challenging since the state (or search space) of the optimization problem

changes over time. As time passes, optimal solutions may become sub-optimal while

previously inferior regions of the search space may suddenly yield the best solutions. The

dynamic nature of an ever-changing problem landscape means that most optimization

11
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algorithms focused on solving problems in static environments tend to be ineffective

[40][60][93][119][136]. Section 2.2 provides an overview of optimization problems overall

and how CI optimization algorithms are designed to solve them. Section 2.3 discusses

how DOPs are different than their static counterparts, and provides a classification of

various types of dynamic environments.

Researchers use controlled benchmark functions to simulate dynamic environments

and to measure the effectiveness of new and existing optimization algorithms. Section

2.4 provides an overview of the most well-known and widely used DOP benchmark

function generator called the moving peaks benchmark by Branke [19]. Extensions to the

moving peaks benchmark are discussed that enable a fuller spectrum of different dynamic

environment types. Criticisms of the moving peaks benchmark are also discussed.

Section 2.5 discusses key strategies (or “building blocks” of functionality) that can be

found in the majority of successful algorithms developed for solving DOPs [40][93][119][136].

Section 2.6 gives an overview of a number of well-known DOP-focused population-based

meta-heuristics from the SI and EC fields.

Section 2.7 outlines a number of performance and behavioral measures that are often

used by researchers to characterize how well a DOP-focused algorithm performs and

behaves. A discussion on valid and invalid statistical comparison procedures is provided

pertaining to the comparison of performance between any given pair of algorithms, com-

paring one algorithm to many other algorithms, and comparing all algorithms to each

other. Finally, section 2.8 concludes the chapter.

2.2 Optimization Problems

Mathematical optimization is the process of finding the combination(s) of input value(s)

in a search space of possible input values that yield “optimal” output values of some func-

tion f . Optimality is defined relative to an optimization goal such as either maximizing

or minimizing the output of f . The objective function f coupled with an optimization

goal together constitutes an optimization problem.

Optimization problems can be classified according to the number and type of objec-

tive function input variables, the presence of equality and/or inequality constraints in

the search space of input variables, the degree of linearity of the objective function f , the
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continuity or discontinuity properties of f , the convexity of f , the number of optima in f

and whether they change, and the number of optimization criteria [60]. An optimization

problem with an nx-dimensional real-valued input domain, x ∈ Rnx , can be stated as

maximize f(x), subject to x ∈ Rnx

The goal of an optimization algorithm is to find a global optimum point, x∗ ∈ Rnx , that

satisfies the optimality principle,

f(x∗) ≥ f(x) ∀x ∈ Rnx

for maximization problems. The objective can also be stated as a minimization problem

in which case the optimization criterion becomes

f(x∗) ≤ f(x) ∀x ∈ Rnx

In other words, the point x∗ is that point in the domain Rnx of f that yields the

maximum (or minimum) value of f , where f represents a function to be optimized. The

function f is also called the objective function. Examples of real-world optimization

problems include maximizing profit based on targeted marketing activities, minimizing

the risk of an investment portfolio, or minimizing production costs based on flexible

product design parameters. Figure 2.1 illustrates the search landscape of a 2-dimensional

objective function. Maximizing f entails finding those input values in the two input

dimensions that yield the output point corresponding to the top of the cone.

Most real-world optimization problems have function landscapes that are completely

unknown. The function f is, for intents and purposes, a “black box” with unknown

behavior and characteristics. Practitioners could, potentially, use function sampling

techniques to explore f in an attempt to locate the set(s) of input values that yield

the most optimal output values. Obtaining sufficient samples this way is not always

efficient (i.e. if function evaluation has a high computational or economic cost), and may

be ineffective at finding good optima. The sampling process may even be practically

intractable if, for example, the domain of f has a high number of dimensions or the

function landscape complexity is too high.

Instead of using simpler function sampling techniques, most practitioners rely on

optimization algorithms to locate global optima. Optimization algorithms search for a
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Figure 2.1: Example of a unimodal objective function landscape in two dimensions.

global optimum point x∗ of f by intelligently updating a candidate solution, x ∈ Rnx ,

in an iterative manner. Since the function f is unknown, the optimization algorithm

has to rely on sampled domain knowledge gathered during the optimization process to

intelligently modify x. Over time, the aim of the optimization algorithm is to have x

converge to (or approach) a global optimum point x∗.

Optimization algorithms fall into two broad categories, namely local search algo-

rithms and global search algorithms [60]. Local search algorithms rely only on informa-

tion that is available in the neighborhood (or physical locality) of the candidate solution,

while global search algorithms have the ability to explore the entire function search land-

scape. A general template of a local search algorithm (taken from Engelbrecht [60]) is

outlined in algorithm 1. Different methods of choosing a search direction vector q(t) and

step length scalar l(t) result in different types of local search algorithms.

Global optimization algorithms take a plethora of different forms. The field of CI
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outlines approaches that are inspired by natural systems. The sub-fields of CI are SI,

EC, artificial neural networks, fuzzy systems, and artificial immune systems [60]. SI al-

gorithms mimic the emergent behavior of populations of animals such as fish, ants, birds,

and others to systematically explore the search landscape of an optimization problem.

EC approaches draw inspiration from natural evolutionary processes to systematically

evolve improving solutions to an optimization problem over multiple generations. Al-

gorithm listing 2 shows the general outline of an evolutionary algorithm from the EC

field, and algorithm listing 3 shows the general particle swarm optimization (PSO) from

the SI field (the algorithm outlines are taken from Engelbrecht [60] and Cleghorn and

Engelbrecht [32], respectively).

Algorithm 1 General outline of a local search algorithm [60]

Let t = 0 count the iterations

Let x(0) ∈ Rnx

while a stopping condition is not met do

Evaluate f(x(t))

Determine a search direction, q(t)

Determine a step length, l(t)

x(t+ 1) = x(t) + l(t)q(t)

t = t+ 1

end while

Return x(t) as the most optimal solution

2.3 Optimization in Dynamic Environments

A DOP is a special class of optimization problem where the search landscape of the

objective function f changes as time goes by while the problem is being solved by an

optimization algorithm [136]. DOPs present a challenge to optimization algorithms in

that the optima of f not only have to be located, but also have to be tracked as the

environment changes. The complexity of a DOP is determined by the severity and

frequency of landscape changes, as well as the behavior of the values and trajectory of
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Algorithm 2 General outline of an evolutionary algorithm [60]

Let t = 0 count the generations

Initialize an nx-dimensional population C(0) of ns individuals

while a stopping condition is not met do

Evaluate f(xi(t)) of each individual i in the population C(t)
Perform reproduction between parents to create offspring

Select a new population C(t+ 1)

t = t+ 1

end while

Return the most fit x(t) from C(t) as the optimal solution

optima. Different types of DOPs show unique patterns in optima trajectory, search space

composition (i.e. the presence of a single versus multiple base functions), homogeneity

of optima movement, change pervasiveness among optima, the hardness of the search

space, and even changes in the number of dimensions of f as well as the presence of

dynamically changing constraints [40][53][93][119][136].

In the context of this thesis, a DOP refers to a real-valued optimization problem with

static boundary constraints and a fixed number of dimensions, defined as

maximize f(x,ω(t)), x ∈ Rnx

where f is a time-dependent objective function and ω(t) = (ω1(t), ... , ωnω(t)) are time-

dependent control parameters of f [60]. Solving f(x,ω(t)) means finding a global

optimum point x∗ ∈ Rnx of the search landscape at time t, namely f(x∗,ω(t)) ≥
f(x,ω(t)),∀x ∈ Rnx (for maximization).

This definition of a DOP is general enough to allow this thesis to focus on DOPs

that (as per Nguyen et al. [136] and Cruz et al. [40]): have a single objective, mixes

predictable and unpredictable change patterns, have visible changes, i.e. no detection

strategies are needed, are unconstrained, and do not have explicit time-linkage between

states that depend on algorithm interactions with the environment.
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Algorithm 3 General outline of a gbest particle swarm optimization algorithm [32]

Initialize an nx-dimensional swarm C(0) of ns particles

Let f be the optimization function (maximization here)

Let yi be the personal best position of particle i (initialized to xi(0))

Let ŷi be the neighborhood best position of particle i (initialized to xi(0))

Let vi be the velocity vector of particle i (initialized to 0)

repeat

for each particle i = 1, ... , ns do

//Set the personal best position, yi, of each particle i

if f(xi) > f(yi) then

yi = xi

end if

//Set the neighborhood best position, ŷi, of each particle i

for each particle j containing particle i in their neighborhood do

if f(yi) > f(ŷj) then

ŷj = yi

end if

end for

end for

for each particle i = 1, ... , ns do

Update the velocity of particle i

Update the position of particle i

end for

until a stopping condition is met

Return the global best solution as the most optimal solution

2.3.1 Classifications of Dynamic Optimization Problems

Dynamic environments differ in their frequency and severity of changes, patterns in

optima trajectory, search space composition (i.e. single or multiple base functions),

homogeneity of optima movement, change pervasiveness among optima, and the hardness

of the search space [52][53]. Many classification systems have been devised to categorize
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DOPs. Eberhart et al. [56][84] define three types of dynamic environments based on the

direction of change of the optima:

• Type I environments, where optima locations change but not their values, i.e.

the input variables that constitute the new best optimum of f change but the

magnitude of the output value of f at the new optimum remains unchanged.

• Type II environments, where optima values change but not their positions, i.e. the

input variables of f at the optimum remain unchanged, but the magnitude of the

output of f at the optimum changes.

• Type III environments where both the optima values and positions change, i.e both

the input variables of f at the optimum point as well as the magnitude of the value

of f at the optimum change.

Angeline [4] classifies dynamic environments based on the trajectory of optima over

multiple changes. The three types of dynamic environments include linear, circular, and

random environments. Linear trajectories imply that the input values of the optima

of f change in a linear relationship to each other over time. Visually, the “peaks” of

the search landscape appear to move in a straight line. Similarly, circular and random

trajectories imply that the input variables of the optima of f respectively have a circular

change pattern or uncorrelated change pattern where the peaks appear to move either

circularly or randomly.

Duhain and Engelbrecht [53] consider all dimensions in each of the the classifications

of Angeline, Eberhart et al., Weicker [180][181][182], and De Jong [45]. They argue that

the degree of spatial and temporal severity of environment changes should be considered

together, and propose the following behavioral classes:

• Static and quasi-static environments have spatial and temporal change severities

that are either null or insignificant (relative to the scale of the DOP). The DOP

is, essentially, a static optimization problem.

• Abrupt environments have large landscape changes that do not occur often. The

function landscape tends to be stable for a duration of time, followed by spatial

changes that modify the optima locations and/or values in a significant manner.
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• Progressive environments have very frequent landscape changes, but changes tend

to be small. Over time the function landscape shape can differ significantly, but

the alterations occur gradually over multiple environment change events.

• Chaotic environments have relatively large landscape changes that occur fre-

quently. The function landscape is modified in a significant manner during each

environment change event, and these types of changes occur often.

Duhain and Engelbrecht subsequently combine the classifications of Eberhart et al.

and Angeline with the spatial and temporal change severity behavior classes outlined

above into 27 unique DOP types. Figure 2.2 illustrates the relationships between the

change severity classes.
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Figure 2.2: Spatial vs. temporal severity trade-off [53]

In this thesis, the 3-tuple notation (X, Y, Z) encodes the 27 environment types of

Duhain and Engelbrecht, where X ∈ {A, P, C} indicates if the environment change is

abrupt, progressive or chaotic, Y ∈ {1, 2, 3} indicates Eberhart et al.’s classification

into Type I, II or III, and Z ∈ {L, C, R} indicates Angeline’s classification into linear,

circular or random peak trajectories. Duhain and Engelbrecht [53] provide detailed

parameter selection guidelines to define 27 uniquely different types of DOPs using the

moving peaks benchmark, which will be discussed next.
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2.4 The Moving Peaks Benchmark

The moving peaks benchmark (MPB) by Branke [19] is a function maximization prob-

lem that consists of an nx-dimensional search landscape made up of multiple peaks (or

optima). Each peak has independent height, width, location and movement dynamics.

Over time all peaks move around within the defined boundaries of the search space. The

search landscape of the MPB for two dimensions is illustrated in figure 2.3.

Figure 2.3: Example of the moving peaks benchmark function landscape in two dimensions.

There are six peaks of varying height and width.

The MPB benchmark function generator has the following parameters that can be

set to yield different types of DOPs:

• Dimension of the problem.

• The number of peaks.

• A peak shape function, such as a cone or a spherical shape.
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• The minimum and maximum allowed peak height.

• The minimum and maximum allowed peak width.

• The frequency of changes of peaks (expressed in terms of the number of function

evaluations).

• A change severity factor that stipulates the distance that peaks move during each

change.

• The correlation factor between previous peak movements and new movements.

• The severity by which peak heights and widths are altered between changes.

The function value of the MPB, f , is the maximum value across all of the individual

peak functions fp, i.e.

f(x, t) = max {fb(x), max
p=1, ... ,np

{fp(x, hp(t), wp(t), lp(t))}} (2.1)

where f is the MPB function, fb is the basis function landscape (zero in this thesis), np is

the number of peaks, and fp defines each peak p with height hp, width wp, and location

of the peak top lp ∈ Rnx at time t. In this study fp is a cone function defined as

fp(x, hp(t), wp(t), lp(t)) = hp(t)− wp(t)

√√√√ nx∑
j=1

(lp,j(t)− xj)2 (2.2)

where nx is the dimension of x. Peak heights and widths are modified as follows:

hp(t) = hp(t− 1) + hsσ(t)

wp(t) = wp(t− 1) + wsσ(t)

where σ(t) ∼ N(0, 1), and hs and ws are the height severity and width severity respec-

tively. The MPB shift vector sv(t) is

sv(t) =
s

‖pr + sv(t− 1)‖
((1− λ)pr + λsv(t− 1)) (2.3)

where pr is a random vector normalized to length s (the spatial severity), and λ controls

the correlation of peak directions between changes (0.0 indicates no correlation while 1.0

means the peak moves in a straight line).
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The MPB is still the most often-used benchmark function generator for real-valued

DOPs [40][93][119][127][136]. Moser and Chiong [127] review a wide range of studies that

use the MPB to test the performance of various EC, SI, and hybrid approaches. Moser

and Chiong note that most of the studies in literature use parameter value ranges that

are consistent with the original scenario 2 proposed by Branke due to the appropriateness

of the resulting problem difficulty and solvability [21][127]. The typical settings of the

MPB scenario 2 are listed in table 2.1

Table 2.1: MPB Scenario 2 parameter settings

Parameter Value

Peaks 10

Dimensions (nx) 5

Change period 5000

Height severity (hs) 7.0

Width severity (ws) 1.0

Change severity (s) 1.0

Peak function Cone

Peak height (hp) hp ∈ [30, 70]

Peak width (wp) wp ∈ [1, 12]

Correlation (λ) λ ∈ 0, 1

Peaks 10

Function domain (0, 100)nx ⊂ Rnx

Constraints unconstrained

2.4.1 Extending the Moving Peaks Benchmark

The classification of Duhain and Engelbrecht [53] discussed in section 2.3.1 defines 27

distinctly different types of DOPs. Duhain and Engelbrecht provide parameter consid-

erations to carefully craft each environment using the MPB:

• Type I: hs = 0 and s 6= 0

• Type II: hs 6= 0 and s = 0
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• Type III: hs 6= 0 and s 6= 0

• Linear: λ = 1 and s 6= 0

• Circular: s = 0 and the function is rotated on its center

• Random: λ = 0 and s 6= 0

• Progressive: low hs and ws relative to the domain, very high rate of function

landscape change

• Abrupt: high hs and ws relative to the domain, low rate of function landscape

change

• Chaotic: high hs and ws relative to the domain, high rate of function landscape

change

Combining each of these nine guidelines for each of the three classification components

of the 3-tuple notation (X, Y, Z) from section 2.3.1 yields the 27 different types of envi-

ronments according to the unified classification of Duhain and Engelbrecht [53].

The majority of the resulting environments are relatively straightforward to construct

using the original MPB parameters alone. However, a number of the 27 environment

types require additional parameters and functionality. Table 2.2 shows the MPB pa-

rameter values that yield 27 unique environments using the parameter considerations of

Duhain and Engelbrecht, where hs is the height severity, ws is the width severity, s is

the spatial severity, λ controls the randomness of a peak’s trajectory, Mi is the number

of iterations before a function landscape change, MC is the cycle length of a full function

landscape rotation (discussed below), and Mφ indicates the growing/shrinking behavior

pattern of each peak (as discussed below). hs is zero for Type I environments (where

peak heights remain the same), MC is only defined in circular type I and type III envi-

ronments, and s is zero for Type II environments (where peaks never move). Table 2.2

shows the resulting parameters shared by each environment, namely peak height hp, and

peak width wp, function domain, dimensions, constraints, and number of peaks. The

additional parameters, MC and Mφ, and how to set them to yield the remaining MPB

environments are discussed below.
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For Type I and III circular environments, nx-dimensional function rotation is used to

rotate the peaks in a cyclic fashion. The rotation matrix Rab(θ) rotates axis a, θ degrees

towards axis b as follows:

Rab(θ) =



rii = 1 where i 6= a, i 6= b

raa = cos(θ)

rbb = cos(θ)

rab = − sin(θ)

rba = sin(θ)

rij = 0 otherwise

(2.4)

where rij are the entries in the proper rotation matrix [2]. A single simple rotation around

a hyper-plane is used to ensure that repeated rotations through 2π degrees will again

yield the original landscape. The same hyper-plane is used for all rotations during a single

simulation run, but a new random hyper-plane is selected for different instances of the

problem. Variable rotation cycle lengths are used to control the change severity instead

of using the MPB shift vector or spatial severity s. To ensure that peaks generally move

the same distance in the search landscape as stipulated by s in other corresponding MPB

environments, the cycle length MC can be set to the appropriate magnitude to mimic

the effect of s in the standard MPB landscape. For example, given a function domain of

(0, 100)nx ⊂ Rnx , a rotation cycle length of MC = 314 ensures that points a distance of

r = 50 from the domain center (50, 50) only change position by 2πr/314 ≈ 1, which is close

to s = 1 (i.e. for progressive environments). Similarly, MC = 62 results in 2πr/105 ≈ 3,

which is close to s = 3 (i.e. for abrupt and chaotic environments). These values for MC

mimic the spatial severity change step sizes for each environment to be similar to what

s would have given.

In Type II environments optima maintain their positions in the search space while

optima values change. Angeline’s [4] linear, circular and random dynamics subsequently

need to be expressed in terms of peak height changes. A new MPB parameter φ is

introduced that indicates how peak height values increase or decrease in linear, random,

or circular patterns. The initial direction of peak height changes (up or down) is decided

randomly for each simulation run. Linear peak changes start with peak height values at
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Table 2.2: MPB parameters yielding each environment type defined by Duhain and Engel-

brecht [53].

Env hs ws s λ Mi MC Mφ Env hs ws s λ Mi MC Mφ

A1L 0 1 3 1 100 – R C1L 0 1 3 1 20 – R

A1C 0 1 0 0 100 105 R C1C 0 1 0 0 20 105 R

A1R 0 1 3 0 100 – R C1R 0 1 3 0 20 – R

A2L 7 1 0 0 100 – L C2L 7 1 0 0 20 – L

A2C 7 1 0 0 100 – C C2C 7 1 0 0 20 – C

A2R 7 1 0 0 100 – R C2R 7 1 0 0 20 – R

A3L 7 1 3 1 100 – R C3L 7 1 3 1 20 – R

A3C 7 1 0 0 100 105 R C3C 7 1 0 0 20 105 R

A3R 7 1 3 0 100 – R C3R 7 1 3 0 20 – R

P1L 0 0.05 1 1 20 – R P2R 1 0.05 0 0 20 – R

P1C 0 0.05 0 0 20 314 R P3L 1 0.05 1 1 20 – R

P1R 0 0.05 1 0 20 – R P3C 1 0.05 0 0 20 314 R

P2L 1 0.05 0 0 20 – L P3R 1 0.05 1 0 20 – R

P2C 1 0.05 0 0 20 – C – – – – – – – –

one extreme (top or bottom) and progress values linearly towards the other extreme of

the peak height range hp. The size of height changes is controlled by hs. Circular peak

changes oscillate peak height values across the peak height range hp in a circular fashion.

Peak changes are reflected around the edge of the hp range in the cases where continued

changes in a given direction would break the bounds set by hp. In both linear and

circular cases the peak lengths depend on each particular environment’s height severity

parameter hs. Random peak height changes simply assign random peak height values in

the peak height range hp.

The considerations above together with permissible parameter value ranges of the

original scenario 2 settings [19][64][127] yield 27 unique environments that are comparable

to the majority of the DOP literature.
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2.4.2 Criticism of the Moving Peaks Benchmark

Recent findings by Bond et al. [18] show that the MPB is a problematic benchmark

function generator. Firstly, the MPB landscape is unrepresentative of real-life problems

due to the symmetry of optima. Secondly, the MPB shows a bouncing effect near

dimensional boundaries which causes peak shift to be less than the actual shift parameter.

Lastly, the MPB control parameters lack the capacity to significantly alter landscape

characteristics such as ruggedness, dispersion, gradient, and searchability.

This thesis uses the MPB as the main benchmark function generator for all inves-

tigations for a number of reasons. Firstly, the symmetrical peaks and the bouncing

effect of optima are similar across all environment and algorithm combinations, and do

not affect the goals of the investigation. Secondly, The absence of statistically significant

differences between the ruggedness, dispersion, gradients and searchability of subsequent

search landscapes over time ensures that all algorithms operate on search landscapes of

the same complexity. Differences in algorithm performance will subsequently not be due

to the search landscape’s complexity changing over time. Lastly, Duhain and Engel-

brecht [53] present MPB parameter guidance to rigorously yield each of the 27 types

of DOP. Redefining the classification of Duhain and Engelbrecht for other benchmark

functions is out of scope for this thesis.

2.5 Algorithm Components for Dynamic Environ-

ment Optimization

Recent surveys provide comprehensive overviews of meta-heuristics from the SI and EC

fields that are specialized to solve DOPs [40][93][119][136]. Jin and Branke [93], Cruz et

al. [40], and Nguyen et al. [136] give comprehensive overviews on evolutionary dynamic

optimization (EDO) and swarm intelligence dynamic optimization (SIDO). Mavrovouni-

otis et al. [119] provide in-depth focus on existing and emerging SIDO approaches.

The surveys in [40][93][119][136] discuss key components (or “building blocks”) found

in the majority of DOP-specific meta-heuristic methods, namely introducing/maintaining

diversity, detection of changes, reacting to changes, use of explicit/implicit memory, mul-

tiple populations, predicting changes, and using self-adaptive mechanisms. Any optimiza-
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tion algorithm focused on solving DOPs needs to incorporate these components in some

shape or form. The rest of this section discusses the functionality that each component

provides.

2.5.1 Maintaining/introducing Diversity

Diversity management is critical for tracking the optimum as well as detecting new op-

tima. If the spatial severity of a change to the search landscape is large (potentially

causing new optima to be located outside of the radius of the population), many opti-

mization algorithms will be unable to react to the changed environment. Higher diversity

improves the exploration ability of the population of candidate solutions and allows the

new optima to be located [60].

Diversity can either be introduced after an environment change or be maintained

throughout the search process [93]. Methods that introduce diversity perform well in

environments that have frequent small/medium changes, while methods that maintain

diversity are good for environments with multiple Type II/III heterogeneous peaks, but

are ineffective when changes are small [136]. Diversity maintaining methods have been

shown to perform well in environments with infrequent changes, as well as in DOPs with

severe spatial changes [136]. However, these methods tend to be slower because of the

extra computational overhead to maintain diversity [136][93].

Introducing diversity requires less computational overhead than maintaining diver-

sity, but requires that correct perturbation sizes be established (which may be problem

and domain dependent). In some cases it is possible that too little diversity introduced

too late in the process may not be enough to counteract the effects of an algorithm

that has converged. Care should be taken not to disrupt the operation of an algorithm

through replacing too many candidate solutions that the algorithm relies on to work, or

replacing the best individuals in the population (such as the global best position in a

PSO).

2.5.2 Detecting Changes in the Environment

Detecting change is important for many methods, such as methods that rely on any form

of memory (i.e. the personal best position in PSO), or methods that are designed to
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converge and then diversify again once environment changes occur. Nguyen et al. [136]

outline how detection of change can happen in three main ways, namely using sentinels

as detectors that are re-evaluated to determine if a change has occurred, detecting change

based on algorithm behavior, and that environment changes are simply made known to

the algorithm.

Detecting changes through dedicated detectors is the most commonly found strategy

[136]. Such detectors can form part of the population, or be maintained separately from

the main population. Using detectors can have varying results based on the exact opti-

mization problem at hand. Using too few detectors may result in environment changes

never being discovered, especially in cases where only certain sub-regions of the fitness

landscape changes. Using too many detectors results in unnecessary function evaluation

overhead.

Detecting changes based on algorithm behavior involves looking for certain tell-tale

signs of the algorithm encountering a landscape that is unexpectedly different than the

landscape of the immediate past. Example mechanisms include monitoring the change

in the average of the best solutions over a window of iterations, or monitoring the rela-

tionship between the diversity of fitness values and the rate of change detection, among

many others [136]. Ultimately, an advantage of most approaches that detect changes

by considering algorithm behavioral changes is that no extra function evaluations are

used. The down-side, however, is that these approaches tend to have high false positive

and high false negative rates causing inaccurate change detection events to be triggered.

Many approaches are algorithm specific as well, making them unusable across different

approaches.

Change detection is out of scope for the purpose of this thesis, and all environment

changes are simply made known to the algorithms. This avoids propagating any envi-

ronment change detection errors through to the algorithms being investigated, allowing

a more fair comparison between the methods.

2.5.3 Reacting to Changes

Reacting to environment changes is a critical function of any algorithm solving a DOP.

Once the environment changes, an algorithm might be in a state that makes it hard or
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even impossible to track new optima. Examples of such situations are when all particles

in a PSO or all individuals in a EA have converged on a single point, or when particle

memories still refer to personal and global best positions that do not accurately reflect

the true state of the objective function anymore.

Reactions to change can be tightly linked to detecting change in which case the

algorithm explicitly performs actions to cope with the changes in the fitness landscape.

Actions may include using a refreshing strategy to update outdated memory, triggering

hyper-mutation of individuals to increase diversity, or any other mechanisms set out by

the inventors of the heuristic.

Reactions to change can also simply be pervasive in that no explicit action needs

to be taken when changes occur. Algorithms that employ this strategy essentially aim

to always be in a position to react to a changing landscape. Examples of such strate-

gies include mechanisms such as random immigrants, Brownian individuals, or charged

particles that maintain high diversity throughout the run [60].

2.5.4 Implicit/explicit Memory

Memory-based approaches consist of implicit memory approaches, such as keeping state

in the solution representation of an EA, or explicit memory, such as keeping a list of

good solutions and the cyclic conditions that lead to them [136]. Nguyen et al. [136]

review a number of bespoke EA approaches that exploit diploid and multiploid genomes

as implicit memory. Nguyen et al. also review explicit memory approaches and how such

approaches need to provide strategies to

• decide if direct memory of previous good solutions is useful,

• decide if an associative memory approach is required that tracks environment and

algorithm-specific conditions over time (i.e. environment state transition probabil-

ities, population distribution statistics, probabilities of good solutions in different

parts of the search landscape, among other approaches),

• stipulate how memory is updated or refreshed,

• state when memory is to be updated, and
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• decide how to use any memory as part of the algorithm execution.

Memory-based approaches may be good in situations where cyclical behavior occurs

in the landscape change, yet many memory schemes tend to suffer from outdated and

obsolete information after environment changes [40][93][119][136].

2.5.5 Multiple Populations

The use of multiple populations is a core component to the many CI methods that

focus on DOPs. Nguyen et al. [136], Cruz et al. [40], and Jin and Branke [93] confirm

that the use of a parallel search strategy is one of the most successful approaches to

solve DOPs. The general idea is that each sub-population handles a different task.

Tasks identified by Nguyen et al. [136] that are addressable by multiple sub-populations

include handling different parts of the search space, finding and tracking different peaks,

managing exploration and exploitation activities separately, and separating the search

process from keeping track of feasible regions (when constraints are used). Depending on

the exact tasks handled by sub-populations it may be important to ensure that the sub-

populations do not overlap. The optimal division of the population into sub-populations

may also depend on t as well.

2.5.6 Predicting Changes

Prediction of change, similar to the use of memory, aims to learn and to exploit patterns

in the dynamic environment by trying to predict future environment changes. The types

of prediction that have been applied by various studies range from predicting when

changes would occur and predicting where the location of optima will be after changes

occur [136]. Nguyen et al. [136] highlight a number of studies that show that the

use of prediction could negatively impact the optimization method. Specifically, if the

distribution from which the training data is drawn is not sufficiently representative of

the distribution encountered in practice, then the predictive models are likely to fail.

In this thesis, the conditions after environment changes are not predicted in order not

to bias algorithm results due to inaccurate predictions. Environment changes are simply

made known to the algorithm after which all algorithms have an equal opportunity to

adapt to the new environment.
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2.5.7 Self-adaptation

Self-adaptive and self-reconfiguring methods are identified by Nguyen et al. [136] as an

important focus area for current DOP research efforts. Self-adaptation is loosely related

to change prediction [136], considering that self-adaptation can be seen as a result of

predicting how the algorithm could be improved based on historical data. Examples of

current state of the art methods to solve DOPs that use self-adaptive parameters and

multiple populations include DynDE [122], jDE [22] and CDE [52].

Self-reconfiguring methods and adaptive meta-heuristics are a core focus of this the-

sis. Chapter 3 elaborates in detail how hyper-heuristics can be used to increase the

effectiveness of meta-heuristics compared to running those meta-heuristics in isolation.

2.6 Population-based Meta-heuristics for Dynamic

Optimization

Modern meta-heuristics for DOPs combine the building blocks listed in section 2.5 to

balance the exploration of an ever-changing search landscape against the exploitation

of the search landscape at time t. A number of recent state-of-the-art EA and SI al-

gorithm examples are reviewed in Nguyen et al. [136], Jordehi [95], Das et al. [42],

and Mavrovouniotis et al. [119]. In the discussion in this thesis, the term “entity”

represents an individual candidate solution that forms part of the overall population of

candidate solutions. Entities also track any associated (algorithm-specific) state1 about

the candidate solution such as, for example, particle velocities or global best positions.

The following sections present a number of well-known examples from the EA and

SI fields.

1Entities may be implemented in different ways at the discretion of the implementer. Common

techniques to represent entities include objects in object oriented programming, functions in functional

programming, lookup tables, among other methods.
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2.6.1 Population-based Meta-heuristics in Evolutionary Com-

putation

The field of EC is inspired by the process of natural evolution of organisms in an en-

vironment, and early work dates back to the 1950’s [60]. Over time parents reproduce

to create offspring, of which only the fitter offspring reproduce and/or survive to the

next generation. This process is repeated over multiple generations of reproduction and

survival. By the end of the process the individuals in the population are typically very

good solutions to the optimization problem being solved.

Much work has been done to create EC algorithms that solve DOPs. Nguyen et

al. [136] review the state-of-the-art across the EDO spectrum. The reviews of Das et

al. [42][43] focus on the advances made in applying a particular EC algorithm called

differential evolution (DE) by Storn and Price [166] and how DE has been adapted to

focus on DOPs.

Classic DE has been shown to perform poorly in DOPs, since once DE converges it

becomes impossible for the algorithm to detect new or moved optima [43]. The classic DE

algorithm has been extended with diversity management strategies to cope better with

changing environments. Well-known examples of such strategies are entity reinitializa-

tion where entities are simply recreated randomly in the search space after environment

changes, quantum individuals that are randomly reinitialized within a hypersphere cen-

tered around the best individual in the population, Brownian individuals that take steps

of random size and direction from the position of the best individual, using multiple pop-

ulations of individuals with exclusion rules that prevent all individuals from converging

to the same location, and entropic measures that simply add random noise to individuals

[42][43][60].

Many studies investigate DE with various combinations of diversity management

strategies. DynDE by Mendes and Mohais [122] is a DE variant that combines Brownian

individuals with exclusion criteria to prevent populations converging to the same optima.

Du Plessis and Engelbrecht [51][52] present competing differential evolution (CDE) which

extends DynDE by adopting a multi-population approach called competitive population

evaluation to locate optima faster using competition for function evaluations, reinitial-

ization midpoint check to ensure populations remain on different peaks throughout the
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run, and a third approach that combines both of the previous additions.

DDEBQ by Das et al. [41] uses multiple populations and combines Brownian individ-

uals and adaptive quantum individuals in conjunction with DE individuals to maintain

diversity. The approach applies a neighborhood-based mutation strategy to avoid pre-

mature convergence, an exclusion rule to space out the populations across the search

space, and an aging mechanism that stops stagnation at local optima.

Hui and Suganthan [87] propose a self-adaptive niching DE for DOPs with a multi-

trajectory local search component that exploits different niches. Mukherjee et al. [129]

present a multi-population based clustering DE for DOPs that uses crowding in dynamic

niching to maintain overall diversity, and a crowding based archive. Population-based

incremental learning (PBIL) [120] by Mavrovouniotis and Yang uses a combination of

population-based evolutionary algorithms and incremental learning mechanisms together

with a random immigrants approach to learn and exploit a probability vector of promising

solutions.

Many self-adaptive DE variants have also been developed. While these studies do

not directly target DOPs, the findings are pivotal for any strategy that incorporates

DE as part of the overall solution. Self-adaptive differential evolution (SaDE) by Qin

and Suganthan [150] automatically adapts its learning strategy and parameters during

the search. jDE [22] by Brest et al. encodes the DE control parameters into the

individual to allow self-adaption. Adaptive multi-population framework (AMP) [104]

adaptively adjusts the number of populations based on feedback about the number of

peaks in the search landscape. Segura et al. [158] take a controversial approach to DE

control parameter adaptation schemes that is based on feedback from the environment.

The study shows how state-of-the-art trial vector generation methods are ineffective in

situations where high diversity is needed to maintain good exploration. Drawing the

value for the DE scaling factor from a Cauchy or Gaussian distribution yields superior

results.

The random immigrants genetic algorithm (RIGA) by Grefenstette [72] is a mod-

ification to the standard GA to allow the algorithm to cope better in DOPs. Every

generation a subset of the population is replaced by randomly generated individuals ac-

cording to a replacement rate. To allow RIGA to be applied to real-valued problems,

arithmetic crossover (as described by Michalewicz [124]) can be used instead of uniform
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crossover. Arithmetic crossover requires that two parent entities x1 and x2 create an

offspring entity o as follows: o = (1 − λ)x1 + λx2, where λ ∈ [0, 1]. Grefenstette [72]

proposes a replacement rate of 0.1 and a very low mutation rate of 0.001 to prevent too

much perturbation of solutions. Both Cruz et al. [40] and Nguyen et al. [136] list RIGA

as a good example of a DOP-specific method that maintains diversity throughout the

optimization run.

Multi-phase multi-individual extremal optimization (MMEO) [128] by Moser and

Hendtlass is another EC approach that is aimed at solving the moving peak bench-

mark function as well as possible. In MMEO multiple solutions are repeatedly mutated

using a power-law distribution that attempts to exclude bad solutions rather than to

find good solutions.

2.6.2 Population-based Meta-heuristics in Swarm Intelligence

The field of SI mimics and exploits the collective behavior found in groups of animals

such as schools of fish, flocks of birds, colonies of ants, swarms of bees, and many other

metaphors from the animal kingdom [59]. Arguably the most well-known and widely

used SI algorithm (for continuous optimization) is the family of PSO algorithms. A

common theme across SI approaches is the idea of a swarm of simpler elements which

are guided by a combination of their own experience (a cognitive component) and the

experience of their neighbors (a social component). An example of such simpler elements

are particles in a PSO.

Similar to EC approaches, SI algorithms developed for static environments may find it

difficult to adapt to ever-changing search landscapes in DOPs. Once the swarm converges

to a point in the search space at time t the algorithm may no longer be able to locate

and exploit any new optima after environment changes. Many diversity enhancement

techniques have been introduced to PSO to address this weakness. One of the earliest

techniques by Hu and Eberhart [85] proposes reinitializing part or all of the swarm when

changes occur. Other examples include quantum particles that have a different position

update equation from other particles in the swarm. The positions of quantum particles

are randomly reinitialized within a hypersphere centered around the swarm’s global best

particle. Other examples include charged particles that repel each other based on the
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distance between them, random inertia weights for particles, and simply reinitializing

part or all of the swarm after the environment changes, among many other approaches

[59].

Jordehi [95] and Mavrovouniotis et al. [119] review a number of PSO variants that

are well-suited to solve DOPs. Some well-known state-of-the-art approaches adopt one

or more diversity enhancement techniques and are discussed in the paragraphs below.

Adapting the neighborhood topology of a PSO is a common mechanism to enable PSO

to cope with dynamic environments. Janson and Middendorf [91][92] propose partitioned

hierarchical PSO (PH-PSO) which uses a dynamic neighborhood strategy to cope with

DOPs. PH-PSO splits the swarm into multiple sub-swarms after an environment change,

and each sub-swarm independently searches for the optimum. Sub-swarms are reunited

with the overall neighborhood hierarchy over time. An adaptive version of PH-PSO

adapts the number of iterations before sub-swarms are reunited with the hierarchy.

Using a specialized static topology can also help to preserve diversity in the swarm.

Fine-grained PSO [112] by Li and Dam uses a Von Neumann topology where particles

are connected to only four neighbors, thus resulting in slower information propagation

across the population. Zheng and Liu [189] use two sub-swarms where one swarm uses a

global neighborhood topology to focus on finding the optima and the second swarm uses

a locally connected topology that preserves diversity. Over time each swarm exchanges

information about the search space.

A well-known PSO approach to cope with changing environments is to rely on re-

pulsion or reinitialization of particles. Atomic particle swarm optimization (APSO) and

charged particle swarm optimization (CPSO) by Blackwell and Bentley [13][14] rely on

charged particles that repel each other in a Coulomb force-like manner based on the

magnitude of the distance between them. The resulting ‘suspension of charged particles’

ensures high diversity throughout the search process.

Coulomb-like repulsion occurs between pairs of charged particles in the swarm when

the Euclidean distance between the particles is less than the perception limit. No ac-

celeration occurs if the distance between particles is greater than the perception limit.

Particles that are closer to each other than the core limit have their acceleration capped

to prevent extremely large acceleration terms. An acceleration term is computed for
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each of the ns particles as follows

ai(t) =
ns∑

l=1,l 6=i

ail(t) (2.5)

where the repulsion between particles i and j is defined as

ail =


QiQl(xi(t)−xl(t))
‖xi(t)−xl(t)‖3

if Rc ≤ ‖xi(t)− xl(t)‖ ≤ Rp

QiQl(xi(t)−xl(t))
R2
c‖xi(t)−xl(t)‖

if ‖xi(t)− xl(t)‖ < Rc

0 otherwise

(2.6)

where Qi and Ql are the charges of particles i and l respectively, ‖xi(t) − xl(t)‖ is the

Euclidean distance between particles, and Rc and Rp are respectively the core limit and

perception limit of the particle. The classic PSO velocity equation is modified to include

the acceleration term as follows

vij(t+ 1) = wvij(t) + c1r1j(t)[vij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)] + aij(t) (2.7)

where vij(t) and xij(t) are, respectively, the velocity and position of particle i in dimen-

sion j at time t, c1 and c2 are constants used to scale the influence of the cognitive and

social acceleration components of the particle, and r1j(t) ∼ U(0, 1) and r2j(t) ∼ U(0, 1)

are random variables drawn from a uniform random distribution.

The difference between APSO and CPSO is that all particles in CPSO are charged,

whereas only 50% of particles are charged in APSO. Charged particles have a charge

Q > 0 while neutral particles have Q = 0. CPSO has a stronger focus on exploration

and maintains a higher solution diversity than APSO, resulting in CPSO working well

in environments with severe spatial changes [14]. APSO balances exploration and ex-

ploitation better than CPSO, and works well in environments with high temporal change

severity [12]. The parameters Rc, Rp, and Q are domain dependent. Blackwell and Bent-

ley [14] use a swarm of 20 particles and the values Q = 16, Rc = 1, and Rp =
√

3xmax,

where xmax is the maximum extent of the domain. Blackwell and Bentley [14] clamp par-

ticle velocities to the range [−vmax, vmax] to avoid sudden massive acceleration coefficients

from derailing the search.

Quantum particle swarm optimization (QPSO) by Blackwell and Branke [15][16] is a

computationally simplified model inspired by APSO and CPSO. The swarm consists of
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a mix of charged and neutral particles. Instead of using Coulomb-like repulsion between

charged particles, the charged particles are simply re-initialized randomly inside an nx-

dimensional sphere Bn of radius rcloud centered around the gbest particle at time t, namely

ŷ(t). The PSO position update becomes

x(t+ 1) =

x(t) + v(t) if Qi = 0

Bn(rcloud, ŷ(t)) if Qi 6= 0
(2.8)

where v(t) is the classic PSO velocity update equation [60]. Blackwell et al. [15] comment

that CPSO and APSO can be difficult to control, since the spatial extent of the charged

swarm depends on the Euclidean distance between charged particles. The Bn(rcloud)

operator of QPSO, in contrast to APSO and CPSO, yields sustained and controlled di-

versification behavior. In addition to depending on the magnitude of rcloud, the quantum

position update function Bn can also utilize different types of probability distributions

that govern where a quantum particle will be reinitialized. Harrison et al. [79] inves-

tigate ten different probability distributions ranging from uniform, Gaussian, Cauchy,

beta, Exponential, Weibull, and various triangular distributions. Their investigation

concludes that different types of environment dynamics results in different distributions

being the better choice. The study also found that smaller rcloud values tend to perform

better, which opens the possibility that the role of quantum particles may not be purely

exploratory but that they might actually help in exploitation as well.

Many multi-population PSO variants rely on splitting the swarm into sub-swarms

that independently explore the search space. Many approaches opt for each sub-swarm

to employ different search logic. Examples include multi-swarm quantum/charged PSO

[16][17], clustering PSO [106][188], child and parent PSO [96], fast multi-swarm PSO

[105], forking PSO [178], triggered memory-based PSO [111], collaborative PSO [115],

dynamic niching PSO [138], and unified PSO [145] among many others.

Speciation PSO (SPSO) [110][111][144] dynamically splits the swarm into multiple

species that operate independently. Each species is defined by a species seed that is the

best-fit particle in the species, and a species radius, rs. All particles that fall within the

radius rs from the species seed is considered a part of that species. Species are subtly

different than sub-swarms since, firstly, particle membership in a species is defined by

the radius rs and are adjusted every iteration while sub-swarm particle allocations are
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fixed, and, secondly, the number of species is adjusted dynamically while the number of

sub-swarms is fixed. A recent variant by Luo et al. [116] combines a speciation approach

with memory to cope better in dynamic environments.

2.6.3 Discussion of EC and SI Population-based Approaches

The EA and SI meta-heuristics discussed above all employ one or more of the building

blocks discussed in section 2.5. As discussed in the thesis scope section in chapter 1, the

aim of this study is to explore how well selection hyper-heuristics can continuously select

the most appropriate heuristic to employ at time t. Specifically, the building blocks

discussed in section 2.5 are incorporated as follows:

1. The heuristic layer is responsible for maintaining/introducing diversity in the prob-

lem space, reacting to change of the environment, and managing memory/state in

the problem space. Each heuristic is encapsulated as a distinct collection of low-

level operators, design decisions, and parameter values. The result is a mix of

highly varied modes of operation. For example, an SI approach comprising of spe-

cific neighborhood structures, electrostatic charges, position update operators, and

velocity update operators will exhibit completely different behavior than an EC

approach with crossover, mutation, replacement, and elitism operators. Deliber-

ate parameter values generally produce very specific exploration and exploitation

behavior in each meta-heuristic [57][58].

2. The hyper-heuristic layer is responsible for managing multiple populations of candi-

date solutions that focus on different aspects of the search, maintaining a memory

of correlations between heuristic allocation, feedback values, and resulting perfor-

mance, and self-adaptation of search behavior by learning how to best allocate

computational resources to the most promising heuristics at time t. Different se-

lection hyper-heuristics implement these building blocks in different ways.

Detection of change is out of scope in this study to avoid bias caused by any variance

in change detection strategies. Generally, the pool of heuristics would manage change

detection in practical applications.
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To avoid any bias the pool of heuristics in this study does not contain any self-

adaptive heuristics, heuristics that employ multiple sub-populations, or heuristics that

utilize explicit memory of predictable environment behavior. Inclusion of these types

of heuristics could result in the heuristics “counteracting” the hyper-heuristic in certain

unforeseen circumstances. Specifically, a self-adaptive heuristic could (loosely speaking)

try to “undo” the adaptive actions imposed on by the hyper-heuristic. Such interactions

between the heuristic and hyper-heuristic layers are of great importance and provide an

important avenue of future research. Chapter 3 elaborates more on this dynamic. The

scope of this thesis does not include management of this type of complexity.

These reasons exclude many state-of-the-art self-adaptive and/or multi-population

methods discussed above from the study. However, the overall aim of studying the

performance and behavior of different selection hyper-heuristic mechanisms is not com-

promised. Generally, however, self-adaptive meta-heuristics can and probably should be

utilized as part of any practical selection hyper-heuristic approach.

2.7 Comparing Algorithm Performance in Dynamic

Environments

Comparing the performance and behavior of multiple algorithms solving a DOP is a

daunting task. Dynamic environments continually change over time resulting in ever-

changing optimum values and/or optima locations, varying ranges of possible fitness val-

ues, different numbers of optima appearing and disappearing across environment change

periods, and many other changing facets. As a result, performance measures aimed at

static environments typically fail to correctly quantify the effectiveness of algorithms in

DOPs [40][60][136]. The dynamic properties of DOPs necessitate dedicated methods to

gauge the effectiveness of algorithms that aim to solve a DOP.

Moreover, section 2.5 highlighted a number of “building blocks” and strategies that

specialized algorithms may employ to cope with the constant changes in the problem.

In addition to measuring the performance of an algorithm, researchers ideally want to

be able to directly measure the behavior of various algorithms under different conditions

present in a DOP over time. Beyond measures of algorithm performance and behavior
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lies the challenge of correctly comparing and correlating all measured results to determine

which algorithms (if any) are superior. This is no easy task since a fair apples-to-apples

comparison in DOPs is difficult to conduct correctly for the reasons outlined above.

This section discusses the facets that constitute good performance measures for DOPs

in sub-section 2.7.1. Sub-sections 2.7.2 and 2.7.3, respectively, review various well-known

optimality and behavior measures for DOPs from literature. Lastly, an overview of the

statistical challenges and viable methods for comparing algorithms performance on DOPs

is provided in 2.7.4.

2.7.1 Facets of Performance Measures for Dynamic Environ-

ments

Performance measures, firstly, quantify how effective an optimization algorithm is at

solving a DOP but, secondly, also allows for the comparison of the performance of various

algorithms against each other. Morrison [125] stipulates that any good performance

measure for dynamic environments should

• have intuitive meaning,

• allow for statistical significance testing, and

• have sufficient exposure to environment change dynamics.

Most performance measures for static environments tend to focus on the error near

the end of the optimization search process [60]. The criteria of Morrison imply that

performance measures developed for DOPs should be able to measure the effectiveness

of the algorithm across the entire search process. Specifically, a measure should not only

express how good the algorithm is at finding the optimum solution, but also measure

how well the algorithm can track optima as the search landscape changes.

Nguyen et al. [136] differentiate between optimality-based and behavior -based per-

formance measures. Optimality-based measures focus on evaluating the quality of the

solutions found by the optimization algorithm, while behavior -based measures deter-

mine if the optimization algorithm shows any useful behaviors. Both types of measures

together give a more complete picture of the solution quality of a given optimization

algorithm, as well as why and how the algorithm behaves as it does.
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Performance measures for DOPs should exhibit positive qualities that are deemed

desirable by researchers. Similarly, performance measures for DOPs should not suffer

from any undesirable effects or qualities that could lead to misleading interpretations. In

many cases there is a trade-off between desirable and undesirable qualities for DOP-based

performance measures. Examples include:

• Protection against ill-defined values: Measures with unprotected edge cases

are generally hard to work with. Examples include measures with equations that

contain fractions which could yield zero-valued denominators, measures that rely

on search landscape gradients which are subsequently applied to discontinuous

problems, measures that use the square-root function that may operate on negative

values, or measures with multiplicative terms that could take on zero values (where

such zero values would yield a nonsensical or ill-defined measurement value). Care

should be taken to ensure that such measures are never exposed to any conditions

that could yield undefined results. In many problems it may be hard or even

impossible to foresee if such non-permissible situations could occur. er

• Unified treatment of maximization and minimization problems: Mea-

sures that require no modification to treat function maximization and minimization

problems uniformly are more desirable than measures that require alteration or re-

definition to support either modality. Measures that rely on error values tend to

support both optimization goals while measures that rely on fitness values tend to

require equation modifications that use the reciprocals of fractals and/or the nega-

tion of terms and inequality relationships. Such modifications could inadvertently

result in the measure being implemented or interpreted incorrectly.

An example of this situation is the sampled relative error of Li et al. [108] that

relies on a relative error r(t) = f(x∗(t))/f(xbest(t)) for minimization problems

and r(t) = f(xbest(t))/f(x∗(t)) for maximization problems where f(xbest(t)) is the

fitness value of the best found solution and f(x∗(t)) is the value of the optimum

at time t. Note how r(t) increases hyperbolically for minimization problems and

linearly for maximization problems as f(xbest(t)) tends to f(x∗(t)) [52], which

makes interpretation of the measure different for maximization versus minimization
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problems. The measure is also an example of a method that produces ill-defined

results if either f(x∗(t)) or f(xbest(t)) are zero.

Measures that report aggregations of error values tend to be more intuitive to

understand since any observer inherently knows the best possible performance is

an error of zero. Measures that rely on aggregations of fitness values are less

intuitive, since the observer has no clear reference of what the optimal fitness value

should be, especially since the optimum fitness value tends to change with search

landscape changes. In both cases, however, the optima must be known.

• Inherent knowledge about the problem: Generally, any measure for DOPs

has to consider a trade-off between knowledge about the search landscape and

generalization to previously unseen types of DOPs. Knowledge about a problem

includes, for example, awareness of when landscape changes occur, the number and

locations of optima at every point in time, the range of minimum and maximum

possible fitness values, and domain boundaries.

Access to specific knowledge such as the location of the optima directly determines

whether or not certain measures can be used at all, i.e. measures that rely on

error values cannot be used without knowledge of the location of the optimum.

Any measure that exploits domain knowledge is able to capture the performance

of an algorithm more succinctly and accurately at the expense of the fact that the

measure is only applicable in DOPs where such knowledge is available. This may

make the measure unusable in many real-world problems.

• Reliance on algorithm details: Measures that are dependent on discrete algo-

rithm iterations tend to make it difficult to compare SI or EA algorithms that use

different population sizes. An algorithm with a small population typically has fewer

function evaluations per iteration than an algorithm with a larger population. For

algorithms with very large populations it may happen that environment changes

occur during an iteration. This, in turn, may cause false measurements to occur, or

make commensurate comparisons across algorithms with different population sizes

impossible. Many modern algorithms also have varying population sizes across

different iterations. In situations where the number of function evaluations matter
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(i.e. where there may perhaps be a cost associated with each function call) it may

be preferable to rely on measures that are not influenced by algorithm population

sizes.

• Subjective parameters: Measures that rely on arbitrary parameter values such

as, for example, iteration window sizes, threshold values, and discrete categoriza-

tion strategies tend to be subjective. The choice of parameter values greatly influ-

ences the outcome of the measure. Each parameter in effect becomes a degree of

freedom that requires further analysis, which creates unnecessary complexity.

• Frame of reference: Measures can be either absolute measures or relative mea-

sures. Absolute measures are grounded against a fixed point of reference. For

example, observers know that zero is the best possible value when considering

error values, and that higher error values indicate worse performance. Relative

measures on the other hand express performance as measured against a subjective

point of reference. For example, expressing the performance of an algorithm as a

percentage of the improvement in fitness over time is a relative measure. With a

relative frame of reference, algorithms with sub-optimal solutions that show rel-

atively large gains in fitness may unfairly be regarded as better than algorithms

with superb solutions that show little improvement over the same time period.

Absolute measures tend to be more intuitive to understand than relative measures,

however, the trade-off is that absolute measures require a deeper understanding of

the details of a problem. Absolute measures can exploit domain knowledge about

a problem (such as the value and location of the optimum at time t), and reveal

objective truths about the search process that relative measures simply cannot

capture. Consider, for example, a relative measure that tracks the ratio of the

best and worst fitness in the population of candidate solutions at time t (which

is completely subjective and dependent on the state of the population, not the

problem state). An absolute measure would immediately address the inadequacy

of the relative measure. On the other hand, relative measures can be deployed in a

wider range of situations where domain knowledge may be unavailable (and where

it is impossible to use many absolute measures).
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• Measurement focus level: A good measure for DOPs should refrain from penal-

izing an algorithm for behavior that is deemed desirable. Consider, for example,

a population-based algorithm that uses its population of candidate solutions to,

respectively, explore and exploit the search landscape. A measure that focuses on

the performance of every candidate solution of the population at every iteration

during the search process will unfairly penalize the algorithm for exploring the

search landscape with a subset of the population. On the other hand, a measure

that only reports the best solution found by the algorithm at specific time periods

of importance (i.e. immediately before or after a landscape change) presents a

more focused and fair view of performance.

• Outliers: Measures that are strongly influenced by outlier values are sensitive to

creating false perceptions of performance. Examples include reporting only the

highest/lowest error or fitness values, reporting the greatest/smallest extents of

distance in the search landscape, or reporting the average value of a measure in

situations where many values are clearly considered outliers versus the majority of

the data.

Measures that are susceptible to outliers tend to skew the perceptions of observers

away from the true state of algorithm performance. For example, a diversity mea-

sure that relies on the greatest physical extent between any two candidate solutions

in the population is highly susceptible to falsely reporting a greater diversity than

what is actually present. Algorithms with outliers are given too much sway at

the expense of algorithms that truly have better overall diversity, but with smaller

maximum extents.

A good measure of optimality balances the facets discussed above to yield a holistic

view of algorithm performance.

2.7.2 Optimality-based Measures

Optimality-based measures capture how well an optimization algorithm solves a given

optimization problem. Optimality measures can broadly be split into measures that

report the difference between the best found solution and the global optimum value,
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measures that report only the best found solution, and measures that rely on the distance

between the optimum location and the population of candidate solutions.

Measures in the DOP literature are often expressed in language from fields such as SI,

EA, or others. In this thesis the terms “population” refers to the collection of candidate

solutions that are managed by the optimization algorithm (i.e. swarm), “candidate

solution” refers to a member in the algorithm’s population (i.e. individual or particle),

“iteration” refers to a single application of the algorithm’s logic (i.e. generation), and

“fitness” refers to the value returned by the function to be optimized (i.e. function

evaluation).

A review of the literature found the following optimality measures below to be key

examples for use in DOPs:

1. Best-of-generation fitness [6], PBOG(t), is a series of fitness values over time of the

best candidate solution in each iteration t ∈ {1, ... , T}, defined as

PBOG(t) = F (xtbest, t) (2.9)

where F is the objective function and xtbest is the best candidate solution vector

in the population at iteration t. The PBOG(t) measure is simple to visualize as a

graph of fitness values over time and is intuitive to understand. PBOG(t) does not

require knowledge about environment changes nor is knowledge about the optimum

needed. Outliers are (relatively) easy to spot visually and the presence of an outlier

does not affect further values of PBOG(t).

However, since PBOG(t) is unaware of landscape changes, the measure does not pro-

vide a way to compare algorithm performance across a full range of DOP dynamics

[125]. PBOG(t) is not normalized, making it hard to compare performance values

across DOP landscape changes. Care must be taken when comparing algorithms

of different population sizes: since PBOG(t) is sampled every iteration, algorithms

with larger populations get more fitness evaluations and have a natural advantage

that PBOG(t) is unable to express [52]. PBOG(t) only measures the best candidate

solution per iteration, and does not yield any insight as to how well the rest of

the population is performing. Lastly, the measure makes it hard to compare the

performance of multiple algorithms (visually or statistically) because performance

results are not scalar values [125].
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2. Collective mean fitness [125], PCMF , records the mean fitness of the best solution

over the entire experiment, defined as

PCMF =
1

T

T∑
t=1

F (xtbest, t) (2.10)

where T is the number of iterations. The measure is also known as the mean best-of-

generation fitness. PCMF improves upon PBOG since the output of PCMF is a single

numerical value which makes it easier to statistically compare the performance

of algorithms. The measure does not require direct knowledge of the optimum

nor does it require knowledge about environment change boundaries. Generally,

PCMF is intuitive to understand and the measure cannot produce ill-defined values.

Performance is considered across the entire time horizon of t and not only at certain

periods.

However, PCMF is not normalized across different landscape changes (which might

each have different fitness value ranges) and can cause misleading results. This

makes it hard for observers to judge performance of an algorithm since they have

no objective basis to compare the value of PCMF against. To make matters worse,

PCMF does not treat maximization and minimization problems in the same way,

making interpretation even harder. Similarly, when averaging PCMF across mul-

tiple samples, the measure will be affected by the fact that different problem in-

stances have different fitness scale ranges in each change period, causing misleading

results. Different problem types can also not be compared using this measure. Like

PBOG, PCMF relies on the algorithm’s definition of an iteration, and algorithms with

larger populations have a natural advantage that PCMF will not highlight [52]. Out-

liers will affect PCMF if they occur often enough and at large enough magnitudes,

but generally PCMF is relatively protected from outliers since the average is taken

over T iteration (where T is usually a large value such as 1000).

3. Collective mean error [125], PCME, is related to PCMF but uses the objective

function error value E instead of the fitness value F , and is defined as

PCME =
1

T

T∑
t=1

E(xtbest, t) (2.11)
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PCME improves on PCMF by providing zero as an objective point of reference. The

optimum algorithm will always have a value of PCME = 0, which is more intuitive

for observers to understand. CCME generally does not produce ill-defined values.

Unlike PCMF , the PCME measure allows uniform treatment of maximization and

minimization problems. PCME produces a single numerical value that is easier to

compare than PBOG. Like PCMF , performance is considered across the entire time

horizon of t and not only at certain periods.

However, PCME does require knowledge about the optimum to compute the error.

Similar to PCMF , the PCME measure does not allow reliable comparison of perfor-

mance across environment change boundaries, across samples, or across different

problem types since the error values are not normalized. Like PCMF , the PCME

measure takes an implicit salient parameter, namely that the measure relies on the

algorithm’s definition of an iteration. This results in algorithms with larger popu-

lations having a natural advantage that PCME will not expose. Outliers will have

an effect on PCME if they occur often enough and at large enough magnitudes but,

like PCMF , PCME is generally relatively protected from outliers when the number

of iterations T is a sufficiently large value.

4. On-line performance [20][44], POF , is the average of all fitness function evaluation

values, defined as

POF =
1

nfe

nfe∑
e=1

F (xe, e) (2.12)

where nfe is the total number of fitness function evaluations and xe is the candidate

solution being evaluated at function evaluation e. POF does not require knowledge

of environment changes nor knowledge of the location of the optimum. However,

POF gives little insight into the best performance of an algorithm, since the fitness

of all other candidate solutions in the population are also included in the measure.

This penalizes algorithms that explore sub-optimal areas of the search space, i.e.

algorithms that explore heavily just after landscape changes (that finally yield

improved final solutions before the next landscape change) will, incorrectly, appear

to have a worse POF score than more mediocre algorithms that do not explore as

widely.
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POF does not treat maximization and minimization problems in the same way,

making measured values hard to interpret and compare across problems. POF is

sensitive to outliers, since any significantly deviating values that occur often enough

will bias the result. This is especially true for algorithms that heavily explore

inferior regions of the search space. Similar to PCMF and PCME, POF does not

allow reliable comparison of performance across environment change boundaries,

across samples, or across different problem types since the fitness values are not

normalized. Unlike PCMF and PCME, POF does not take any implicit parameters

such as the algorithm’s notion of iterations. Instead, values are taken after every

fitness evaluation. POF can not produce ill-defined values.

5. Modified off-line error [20][21], PMOE, is the running average of the best error over

the iterations evaluated since the previous environment change occurred, defined

as

PMOE =
1

nfe

nfe∑
e=1

E(xebest, e) (2.13)

where xebest is the best candidate solution found since the last environment change.

PMOE is always greater or equal to zero, with PMOE = 0 indicating perfect perfor-

mance. The measurement level is at every function evaluation which ensures that

algorithms that consistently show good performance are highlighted (in contrast

to measures that take readings at the end of a environment change periods). The

faster an algorithm finds a good solution after an environment change, the lower

the value of the measure. As such PMOE is intuitive to understand and reason

about.

PMOE is resilient to outliers, since only the error of the best candidate solution is

considered. The focus on only the best candidate solution means that algorithms

that explore sub-optimal regions of the search landscape, with a subset of the popu-

lation, are not punished unduly. PMOE provides unified treatment of maximization

and minimization problems. Lastly, PMOE is highly resilient to ill-defined values

since the measure does not rely on any fractions or multiplicative terms, nor any

salient algorithm parameters (such as the notion of iterations or generations).
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However, PMOE requires that the time of environment changes be known as well

as knowledge of the optimum location. A drawback of PMOE measuring perfor-

mance at every function evaluation is that algorithms that rely on synchronous

updates2 will be unable to update xebest until the algorithm iteration is complete.

Care should be taken when comparing synchronous and asynchronous algorithms

using PMOE. PMOE does not normalize error values which means that results can-

not be compared across different change periods in the same problem instance,

across multiple problem instances, or across problem types since the magnitude of

the error depends on the magnitude of the fitness in each specific change period of

each specific problem instance. Direct comparisons or aggregations of PMOE (such

as deviation, mean, minimum, maximum, or median values over change periods,

samples, or problem types) will subsequently create false impressions of perfor-

mance. Nevertheless, PMOE is one of the most commonly reported performance

metrics in DOP literature [136].

6. Modified off-line performance [20][21], PMOF , is similar to PMOE but uses the

optimization function value F instead of the error E, and is defined as

PMOF (t) =
1

nfe

nfe∑
e=1

F (xebest, e) (2.14)

PMOF retains mostly all the characteristics, advantages and disadvantages of PMOE

except that PMOF does not require knowledge of the optimum. This hampers the

intuitive understanding of PMOF since the observer has no clear view of what good

or bad performance values are. PMOF values may also be negative. PMOF thus loses

the ability to treat maximization and minimization problems in a uniform manner.

However, PMOF has the ability to be used in problems where it is impossible to

know what the optimum is.

7. Average best error before change [172], PABEBC , is the average of the error of

the best solution across all time instants immediately preceding an environment

2Algorithms that perform synchronous updates evaluate and update their entire population at once,

as opposed to asynchronous updates where algorithms evaluate and update each candidate solution one

at a time, after which any fitness changes are immediately visible.
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change, defined as

PABEBC =
1

nc

nc∑
c=1

E(xtcbest, tc) (2.15)

where nc is the number of environment changes, tc is the time step just before

the c-th environment change occurs, and xtcbest is the best candidate solution at

time tc. PABEBC is useful in situations where the final algorithm output of each

change period is important, irrespective of how well the algorithm performs during

the rest of the change period. Since the focus is on time step tc and only on the

best solution found in the entire population, the measure is relatively resilient to

outliers caused by algorithm fluctuations (such as a flurry of diversity increasing

behavior immediately after environment changes). PABEBC allows the performance

of different algorithms to be compared more easily since the use of error values

allows maximization and minimization problems to be handled the same way.

However, care should be taken when interpreting results. PABEBC gives no in-

dication about how well any algorithm performed during the entire change pe-

riod, since point-in-time measurements of algorithm performance is taken at time

t = tc,∀c = 1, ... , nc instead of the entire change period. PABEBC is not normal-

ized, biasing the measure towards change periods where the magnitude of the fitness

landscape is large. The measure also requires knowledge of the optimum. Lastly,

PABEBC gives no indication as to the volatility of the algorithm being measured,

since the average over nc change periods gives no indication as to the deviation in

the best error values immediately before changes.

8. Lowest/highest best error before change [108], PLBEBC and PHBEBC , are respec-

tively the average lowest and highest error of the best candidate solution just

before an environment change, measured across all environment change periods,

defined as

PLBEBC = min
c=1, ... ,nc

E(xtcbest, tc) (2.16)

and

PHBEBC = max
c=1, ... ,nc

E(xtcbest, tc) (2.17)

PLBEBC and PHBEBC are counterparts to PABEBC . Very little can be learned

from PLBEBC or PHBEBC due to the sensitivity of these measure to outlier values.
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Any algorithm that achieves a very low or high error at some point during the

optimization process will seem more effective or ineffective than another algorithm

that consistently achieves low or high errors respectively.

9. Optimization accuracy [61][181], PRE(t), is also called the relative error and returns

a score in the range [0, 1], defined as

PRE(t) =
F (xtbest, t)−MinF (t)

MaxF (t)−MinF (t)
(2.18)

where xtbest is the best entity in the population at iteration t, and MaxF (t) and

MinF (t) respectively are the best and worst possible fitness values in the problem

space at time t. PRE values close to 1.0 indicate good performance while values

near 0 indicate poor performance. PRE(t) is less biased towards fitness magnitude

changes between different change periods of different problem instances. PRE values

can more readily be compared between maximization and minimization problems

since it is easy to ensure that PRE = 1 always indicates the best possible per-

formance. Since PRE focuses on xtbest, the measure is relatively shielded against

outlier values, and does not penalize any algorithm for exploratory behavior.

However, PRE(t) requires knowledge of both the best and worst possible fitness

values in the search landscape for each instant of time t. PRE(t) is undefined in

situations where the search space is a plateau at any time t, since the denominator

would become zero. Care should be taken to guard against ill-defined results.

10. Window accuracy [181], PWA(t), is the ratio of the difference between the best and

worst fitness of an iteration compared to the difference between the best and worst

fitness found by the algorithm within a window of iterations, defined as

PWA(t) =
F (xtbest, t)−Wworst(t)

Wbest(t)−Wworst(t)
(2.19)

with

Wbest(t) = max
t′=t−ω+1, ... ,t

{
max

i=1, ... ,P
{F (xt

′

i , t
′)}
}

Wworst(t) = min
t′=t−ω+1, ... ,t

{
min

i=1, ... ,P
{F (xt

′

i , t
′)}
}
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where ω is the number of iterations in the window, and wbest(t) and Wworst(t)

respectively are the best and worst fitness values found by the algorithm in a

running window of ω iterations (assuming a maximization problem). PWA(t) does

not require knowledge of the optimum nor knowledge of when environment changes

occur.

However, since PWA(t) is a relative measure based on the best and worst fitness

values found to date during the search process, the measure can give misleading

results if the difference between the best and worst entities in the population is

low. The measure is also undefined if the population has converged to the same

fitness value during the whole window since the denominator would become zero.

PWA(t) takes a subjective parameter value which greatly affects the values of the

measure, namely the size of the window, ω.

PWA(t) also takes an implicit parameter, namely knowledge about the iteration

length of an algorithm. Algorithms that have different iteration sizes will in effect

have more function evaluations in (seemingly) the same window length ω. Lastly, it

is not immediately intuitive to convert the equations that constitute PWA(t) from

maximization to minimization, which makes the measure harder to use than other

measures that treat both types of optimization objectives uniformly.

11. Mean tracking error [182], PMTE, records the Euclidean distance between the best

candidate solution of each iteration and the global optimum, and is defined as

PMTE =
1

T

T∑
t=1

√√√√ nx∑
j=1

(xtbest,j − xtopt,j)2 (2.20)

where xtbest,j is the j-th dimension of the best candidate solution at iteration t, and

xtopt,j is the j-th dimension of the location of the optimum at iteration t. Small

values of PMTE indicate that the distance from the best candidate solution and the

global optimum is small, while larger values highlight that the best candidate is

physically far away from the optimum (possibly on a local maximum/minimum).

The advantage of using a distance-based measure of optimality is that values are

less affected by fitness rescaling (i.e. between landscape changes or across different

instances of the same problem type). The frame of reference is the best individual
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per iteration and algorithms are not penalized for exploring inferior (or distant)

areas of the search space. PMTE is very intuitive in how minimization and maxi-

mization problems are treated similarly - the distance to the optimum location is

unaffected by the optimization goal itself. Focus on the best candidate solution

also generally dampens the effect of outlier values. PMTE is, however, affected by

domain size changes as well as changes in the number of dimensions, since these

changes will affect the Euclidean distance calculation.

The major disadvantage of PMTE is that fitness information is not directly incorpo-

rated with distance information. This results in situations where good local optima

that are located far away are unduly penalized, and steep gradient drop-offs of fit-

ness values around the global optimum can lead to bad solutions near the optimum

being erroneously viewed as good. The measure requires exact knowledge about

the value of the optimum as well as the physical location of the optimum over time.

The measure is undefined if multiple global optima locations are present, since the

Euclidean distance to a single location is required by the measure. A salient point

about PMTE is that the measure depends on xtbest, which makes algorithm iteration

length an implicit parameter.

12. Average minimum distance of population to optimum [182], PDmin , is the minimum

Euclidean distance between the global optimum location and the closest candidate

solutions in the population, defined as

PDmin =
1

T

T∑
t=1

 min
i∈[1, ... ,P ]

√√√√ nx∑
j=1

(xti,j − xtopt,j)2

 (2.21)

where P is the population size, xti,j is the j-th dimension of the i-th candidate so-

lution at time t. PDmin measures how close any of the member of the population is

to the global optimum location. Since PDmin is a distance-based measure, the mea-

sure shares most of the advantages and disadvantages of PMTE. PDmin , however, is

not implicitly defined in terms of algorithm iterations, though care should still be

taken when comparing population-based and non-population based algorithms.

13. Normalized scores [135], Pnorm, normalizes the errors of optimization algorithms

to the range of possible error values across multiple change periods and multiple
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problem instances, and is defined as

Pnorm =
1

nc

nc∑
c=1

|emax(c)− e(i, c)|
|emax(c)− emin(c)|

, ∀i = 1, ... , nh (2.22)

where e(i, c) is the PMOE (defined in equation (2.13)) of algorithm i in change pe-

riod c, emax(c) and emin(c) are the largest and smallest errors among all algorithms

in solving each landscape c, and nh is the number of algorithms being compared.

Pnorm is seemingly easy to interpret: good performance is always characterized by

values of Pnorm = 1, while poor performance is characterized by values close to

Pnorm = 0. Equation (2.22) focuses on the error (which requires knowledge of the

optimum) which results in minimization and maximization problems being treated

uniformly.

A disadvantage is that Pnorm can only show the relative performance of peer algo-

rithms in the corresponding experiment, since scores are calculated relative to the

other algorithms being measured. Any comparisons with one or more algorithms

that were not part of the experiment would require a new normalization effort

that includes all the new algorithms. This process will almost certainly result in

each existing algorithm receiving new performance values in the range [0, 1], which

may cause confusion among observers. Outlier values affect Pnorm in terms of its

scaling: if at least one algorithm has highly deviating error values in one or more

landscapes it will result in excessively large emax(c) and emin(c) values. This in

turn will cause the non-outlier algorithms with relatively similar behaviors to take

on performance values that are highly similar (and possibly statistically insignifi-

cantly different from one another). This situation is possible if even one algorithm

deviates in even one change period. Pnorm is not guarded against ill-defined results,

since undefined values are possible if emax(j) and emin(j) are equal (for example

if all algorithms have all their entities located on a plateau, which happens quite

frequently in a problem such as the MPB if no candidate solutions are located on

any of the peaks).
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Discussion on Optimality Measures

The optimality measures discussed above tend to be the most commonly reported mea-

sures of optimality for SI algorithms that solve DOPs that can be found in the literature

[40][93][119][136]. Each measure has various strengths and weaknesses, as outlined above,

which makes it hard to decide which measure to use for experimentation.

A summary of the overall challenges faced by existing measures is as follows:

1. Reliance on non-normalized values: In many DOPs the range between the

maximum and minimum possible evaluation function values can differ dramatically

between environment changes. Scale changes like these affect the very meaning of

any fitness or error value. Many measures that rely directly on the raw values

can yield a spurious (i.e. statistically confounded) view of algorithm performance.

Using non-normalized fitness or error values makes it hard to compare performance

across landscape changes, problem instances, or problem types.

For example, consider an environment with an initial MPB landscape that has an

optimum value of 30 followed by another landscape where the optimum value is 60

(where both environments share a base function value of zero). The meaning of an

error value of, say, 3 is 10% and 5% of the range of possible values, respectively.

An error value of 3, therefor, carries twice the weight in the first landscape than

in the second landscape.

2. Reliance on relative normalization: Many methods that apply normalization

tend to produce relative performance scores that are only useful in the experiment

at hand. The normalization process is usually not grounded in an absolute point of

reference. Such measures make it difficult to compare performance directly against

any published results without first re-running the algorithms behind the published

results side by side with the new algorithms. An example is the normalized scores

method, Pnorm, discussed above which normalizes the performance of algorithms

against each other. Another example is window accuracy, PWA(t), which normalizes

performance relative to the largest and smallest fitness values observed during a

subjective window of time.

An example of a measure that normalizes performance against an objective point of
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reference is the relative error, PRE(t), which expresses performance relative to the

scale of the problem and time step t. This objectivity makes performance scores

easier to compare across experiment boundaries.

3. Reliance on parametric statistics: Many measures use simple aggregation

methods and parametric statistical methods (such as the mean or standard devi-

ation) on measurement data that does not necessarily follow a Gaussian distribu-

tion. Applying these methods to results that violate the required data assumptions

yields a warped view of performance. An example is the average best error before

change measure (PABEBC) that reports the mean of all raw error values before each

landscape change. Apart from the dependency on non-normalized error values, the

measure loses all variance information by relying on the statistical mean of a series

of measurement values that are not guaranteed to be normally distributed.

4. Individual consideration of environment changes: Related to the previous

point, many measures do not capture the notion of variance in performance scores

across subsequent search landscapes over time. An algorithm that performs er-

ratically over time may receive the same performance score as another algorithm

that shows little variation in performance over time. Studies that do want to focus

on the volatility of algorithm performance across landscape changes within each

algorithm run tend to use a second measure of variance (such as the standard

deviation, or maximum versus minimum observed values). This complicates the

statistical comparisons of algorithms since practitioners now need to consider two

measures.

5. Penalties for exploratory behavior: Exploration and high population diver-

sity are core tenets of good optimization algorithms aimed at solving DOPs, as

discussed in section 2.5. Yet a surprising number of optimality measures penalize

algorithms that exhibit exploratory behavior. An algorithm with mediocre perfor-

mance that exudes little exploratory behavior can receive a better score than an

algorithm with strong exploratory behavior that actually finds and tracks better

solutions.

6. Support for statistical significance testing: Many measures are time depen-
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dent and yield output values that are difficult to compare statistically. For exam-

ple, measures such as the best-of-generation fitness, PBOG(t), or the relative error,

PRE(t), yield a vector of scores for each time step t. The majority of studies in the

literature subsequently apply simple aggregation methods or parametric statistical

methods (such as the mean or standard deviation) in an effort to transform the

series of values into a scalar value. This can lead to misleading results due to the

reasons stated above.

Chapter 4 investigates the prevalence and applicability of these challenges in context

of actual results generated in experiments. A new measure called the relative error

distance is proposed in section 4.2 that aims to address these shortcomings.

2.7.3 Behavior-based Performance Measures

Behavioral measures are useful to determine how an algorithm operates and possibly

even uncover why an algorithm behaves in a particular manner in certain situations.

Nguyen et al. [136] stipulate that behavioral measures should capture aspects such as

the diversity of the population over time, recovery of performance after environment

changes, and the ease of reacquiring convergent behavior after environment changes. By

recording these key aspects of how different algorithms operate it becomes possible to

statistically analyze and correlate different types of behavior to increased or decreased

algorithm performance.

The following popular behavioral metrics from DOP literature are discussed in more

detail:

1. Population diameter [139], BPD(t), is the maximum Euclidean distance between

any two candidate solutions in the population, defined as

BPD(t) = max
(i 6=l)∈[1, ... ,P ]

√√√√ nx∑
j=1

(xtij − xtlj)2

 (2.23)

where xtij is the j-th dimension of the i-th candidate solution at time step t. The

focus of t can be at any time step of interest (such as the iteration before or

after environment changes occur, all iterations, or other iterations of interest.).
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The average of the series of BPD(t) can be computed if the average population

diameter is needed.

BPD(t) measures the largest extent of distance between any candidate solutions in

the population as a way to gauge the diversity of the population as a whole. BPD(t)

is simple and intuitive to reason about. However, Olorunda and Engelbrecht [139]

show that the measure is extremely sensitive to outliers and may yield an incorrect

picture of the diversity of the population of an algorithm.

2. Population radius [139], BPR(t), is the radius from the center of mass of the pop-

ulation and the candidate solution that is furthest away from the center, defined

as

BPR(t) = max
i∈[1, ... ,P ]

√√√√ nx∑
j=1

(xtij − ctj)2

 (2.24)

where ctj is the j-th dimension of the population center position at time t, calculated

as

ctj =
1

P

P∑
l=1

xtlj (2.25)

The focus of t can be at any time step of interest. As a measure of diversity,

BPR(t) improves upon BPD(t) by taking the center of mass of the entire population

into account. Olorunda and Engelbrecht [139] show that BPR(t) is, however, still

susceptible to outlier candidate solutions, so the measure can give a misleading

representation of diversity.

3. Average distance around swarm center [102], BADSC(t), is the mean distance of

the entire population around the center position of the population, defined as

BADSC(t) =
1

P

P∑
i=1

√√√√ nx∑
j=1

(xtij − ctj)2 (2.26)

where ctj is the j-th dimension of the population center position at time t as cal-

culated in equation (2.25). The focus of t can be at any time steps of interest.
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Olorunda and Engelbrecht [139] show that BADSC(t) is highly correlated with can-

didate solution dispersion in the population, which makes BADSC(t) a good mea-

sure of population diversity. BADSC(t) is relatively robust against outliers since

the measure will only drift if extreme candidate solution positions deviate so far

as to significantly affect the average distance calculation.

4. Mean of the average distance around all population members [139], BADP (t), gener-

alizes the average distance around the population center, BADSC(t), by using each

candidate solution as a center position and calculating the mean of all resulting

average distances to each candidate solution in the population. BADP (t) is defined

as

BADP (t) =
1

P

P∑
i=1

 1

P

P∑
l=1

√√√√ nx∑
j=1

(xtij − xtlj)2

 (2.27)

where the term

1

P

P∑
l=1

√√√√ nx∑
j=1

(xtij − xtlj)2

is the average Euclidean distance of the whole population around candidate solu-

tion xti. Olorunda and Engelbrecht [139] conclude that BADP (t) is a more accurate

measure of population dispersion than BADSC(t), but that BADP (t) is P times

more expensive to calculate, making BADP (t) practically unsuitable for larger pop-

ulations (especially if the focus of t is every iteration).

5. Moment-of-inertia [126], BMI(t), measures how far the mass of the population of

entities is away from the center of the population at time t, defined as

BMI(t) =
P∑
i=1

nx∑
j=1

(xtij − ctj)2 (2.28)

where ctj is the j-th dimension of the population centroid at time t as calculated in

equation (2.25). The computational complexity of BMI(t) scales linearly with P ,

making BMI(t) a very efficient measure compared to other diversity measures that

rely on pair-wise comparisons between candidate solutions. BMI(t) is, however,
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not normalized across different population sizes, since different values of P will

yield different values of BMI(t). BMI(t) is also susceptible to domain scaling, since

large differences between the centroid position ct and a candidate solution xt will

result in extremely large values of the term (xtij − ctj)2 which will be repeated P

times.

6. Stability [181], Bstab(t), measures how strongly environment changes affect the

accuracy of the algorithm, defined as

Bstab(t) = max{0, PRE(t− 1)− PRE(t)} (2.29)

where PRE(t) is the optimization accuracy defined in equation (2.18). An algo-

rithm is considered stable if changes in the environment do not overly affect the

optimization accuracy. Bstab(t) is normalized since it relies on PRE(t), resulting in

Bstab(t) ∈ [0, 1], where values near 0 indicates high stability. Weicker [181] notes

that Bstab(t) should never be used in isolation since the measure does not reflect

accuracy levels.

7. Robustness [151], Brob(t), is the ratio of the fitnesses of the best candidate solutions

in the current and previous iterations, defined as

Brob(t) = min

{
1,

F (xtbest, t)

F (xt−1
best, t− 1)

}
(2.30)

The initial value of Brob(t) = 1. Brob(t) is not normalized since it relies on raw

fitness values. This makes Brob(t) susceptible to incorrect readings in cases where

landscape changes severely affect the maximum and minimum possible fitness val-

ues. Brob(t) is also undefined if F (xt−1
best, t − 1) = 0. Brob(t) does not treat maxi-

mization and minimization problems similarly. Brob(t), however, does not require

knowledge about the optimum nor when changes occur, making the measure widely

applicable.

8. Satisficability (a term coined by Rand and Riolo [151]), Bsat(Θ), measures how

often the algorithm can maintain a specified level of performance without dropping

below a pre-set threshold, defined as (assuming maximization)

Bsat(Θ) =
1

T

T∑
t=1

1 if F (xtbest, t) > (1−Θ)F (xtopt, t)

0 otherwise
(2.31)
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where F (xtopt, t) is the value of the global optimum at iteration t, and Θ ∈ [0, 1]

controls the minimum fitness level the algorithm needs to achieve. Bsat(Θ) is an

intuitive measure that makes it easy to compare algorithms solving the exact same

instance of a problem.

However, it is hard to compare Bsat(Θ) across different problem instances: dif-

ferent DOP instances that have a disproportionate part of their search landscape

values greater than Θ (i.e. large plateaus above the threshold of Θ) will tend to

yield higher Bsat(Θ) values for that problem. Bsat(Θ) requires a domain-specific

parameter, Θ, to define the minimum fitness threshold that the algorithm should

exceed. The arbitrary choice of Θ makes Bsat(Θ) difficult to compare across dif-

ferent experiments without first understanding the domain context.

Bsat(Θ) requires modification between maximization and minimization problems.

The measure, without modification, does not make sense in a maximization prob-

lem where the optimum value is negative, since subtracting Θ × F (xtopt, t) from

the optimum will in fact increase the cut-off to a number between zero and the

optimum (which will be impossible for the algorithm to reach).

9. Reactivity [181], Breact(t, ε), measures an algorithm’s ability to react quickly to

changes. The ε-reactivity of an algorithm is defined as

Breact(t, ε) = min

{
(t′ − t)

∣∣∣∣PRE(t′)

PRE(t)
≥ (1− ε))

}
∪ {T − t}

(2.32)

where t′, t ∈ N, t < t′ < T , PRE(t) is the optimization accuracy defined in equation

(2.18), and the parameter ε sets the required relative accuracy threshold that

must be met in order to consider the algorithm to have reacted to the landscape

change. A lower value imply faster reaction times to changes. If there are no drops

in (relative) performance after changes, the measure does not yield any insights

into the algorithm’s behavior. Breact(t, ε) is undefined in any period where PRE is

zero. Knowledge about the optimum is required, but knowledge about environment

changes is not needed.

10. Absolute recovery rate [137], Barr, measures how long it takes for an algorithm
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to start converging towards to a (possibly new) global optimum before the next

change in the environment, defined as

Barr =
1

nc

nc∑
i=1

∑pi
j=1(f i,jbest − f

i,1
best)

pi(f iopt − f
i,1
best)

(2.33)

where pi is the total number of iterations in change period i, f i,jbest is the fitness of

the best candidate solution found in change period i up until the j-th iteration of

change period i, and f iopt is the global optimum value during change period pi. Barr

is close to 1 if the algorithm is able to recover quickly after changes by immediately

starting to converge on the optimum, and zero if the algorithm cannot recover at

all. Barr requires knowledge of the global optimum at every iteration of the search.

Discussion on Behavior Measures

The measures that characterize diversity through measuring the size of the extent of the

population are deemed the most important in this study, since such measures will be used

to characterize the diversity of various individual heuristics. Olorunda and Engelbrecht

[139] conclude that the population diameter and population radius measures are both

highly sensitive to outlier values that may subsequently misrepresent the true state of

the population. They also conclude that the mean of the average distance around all pop-

ulation members measure is often too computationally expensive to calculate, especially

for a larger population. They recommend the average distance around swarm center

should be used, which balances computational complexity well and is more resilient to

outlier values.

2.7.4 Statistical Comparison of Algorithm Performance

Researchers usually want to compare the performance of N different optimization algo-

rithms that all solve a given set of benchmark problems. Their aim is to draw evidence-

based conclusions about the superiority of one (or more) algorithm over others. Given

the stochastic nature of CI algorithms, these conclusions are usually reached through

statistical inference drawn from the analysis of empirical results. Generally, the hope

is that strong enough statistical evidence can be gathered to make general conclusions
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about the performance of algorithms on unseen problems. Recent literature reviews

and surveys [40][93][119][136] highlight numerous studies that endeavor to evaluate the

effectiveness of CI algorithms in solving DOPs.

Given the reliance on statistical significance testing, many recent studies have eval-

uated the applicability and validity of various statistical procedures in the field of CI

[47][48][68][69][70]. Cruz et al. [40] and Nguyen et al. [136] confirm that nonparametric

statistical significance testing is increasingly being used by more researchers to correctly

compare algorithm performance in DOPs. All the studies above are unanimous in advo-

cating the use of nonparametric statistical procedures to assess algorithm performance.

The authors of the studies strongly recommend to avoid using parametric statistical

procedures to analyze and compare the performance of CI algorithms (in DOPs as well

as static problems). The overwhelming and repeated warning in these studies is that

the conditions needed for parametric statistical methods to be applicable (independence,

normality, and homoscedasticity [162]) are almost certainly violated by most CI algo-

rithms. Nonparametric statistical procedures have less restrictive assumptions than their

parametric counterparts and offer a more resilient analysis capability that avoids false

discoveries.

Derrac et al. [48] provide an extensive overview of nonparametric procedures to cor-

rectly compare and contrast the performance of CI algorithms in various ways, namely:

• Pairwise comparisons between any two given algorithms.

• Multiple comparisons of one algorithm (the control method) against all N−1 other

algorithms (one versus all).

• Multiple comparisons of each algorithm against all the remaining N − 1 other

algorithms (all versus all).

The rest of this section discusses the recommended methods from each of these com-

parison modalities as laid out by the studies above.

Pairwise comparisons between two algorithms

Pairwise comparisons assess whether two algorithms have significant differences between

their respective result sets. This type of analysis is helpful to compare whether algorithm
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a1 is better than a2 across a given set of repeated problem samples, or across different

types of problems altogether. A situation where a pairwise test is especially useful is when

the same algorithm is compared against itself across multiple samples with all things

being equal except for a single algorithm configuration change. Such a test can provide

insight into whether the configuration change consistently results in improved/worsened

performance, along with an associated confidence in the observation (i.e. a statistical

p-value [162]).

The Wilcoxon signed ranks test [183] (or simply the Wilcoxon test) is a pairwise

nonparametric test that detects differences between the sample means of two algorithms.

A requirement for the test is that all pairs of samples are dependent. When comparing

the performance of two algorithms in DOPs, dependence between sample pairs implies

using the exact same DOP search landscape with the same peaks and change dynamics

over time, using the same population sizes, as well as having both algorithms start in the

same starting locations. A related test for independent samples is the Mann-Whitney U

test [117] where pairs of samples are independent from each other.

The Wilcoxon test computes the difference di = mi
a2
−mi

a1
between the measurement

scores mi of the two algorithms a1 and a2 on the ith set of the total number of sample

pairs. Normalized measurements should be used if the absolute differences between

measurement instances are known to be different (which tends to be the case in DOPs).

All differences di are ranked by absolute value with the best measurement receiving the

rank of 1. Ties are broken by assigning the average rank, for example if two values are

tied for rank 2, then both values receive the rank of 1.5.

The total rank of each of the two algorithms is computed by computing the sum of

the ranks over all the samples. The total score R+ is the sum of ranks for those samples

where a2 is better than a1. The rank total R− is the opposite sum over samples where

a1 performs better than a2. Ties are split evenly across R+ and R− as follows:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)

The Wilcoxon test statistic, z, is computed using the lesser of the two rank sums,

T , where T = min{R+, R−}. If the z value is less than the critical value for T for the



Chapter 2. Dynamic Optimization 65

given number of samples, the null hypothesis is rejected with an associated p-value. The

interpretation of the p-value is that the two algorithms a1 and a2 have noticeably different

performance where the p-value is indicative of the probability that this performance

difference is due to random chance (if in fact the null hypothesis holds true).

Pairwise comparisons between algorithms using nonparametric tests such as the

Wilcoxon signed ranks test or Mann-Whitney U test are relatively intuitive for observers

to understand, more appropriate to use in CI tests than the parametric alternative (t-

tests), and outliers do not severely affect the outcome of the tests. However, a distinction

should be made between pairwise tests and multiple comparison tests. When compar-

ing multiple algorithms against each other, it is tempting to simply compute Wilcoxon

signed ranks test outcomes between all possible pairs of algorithms. In such a situation

the family-wise error rate (FWER)[162] is left uncontrolled, resulting in a cumulative

error that dramatically increases the probability of false discoveries (Type 1 errors). Gar-

cia at al.[68] illustrate that a comparison between k methods at a significance level α

has a probability of making a Type 1 error of 1− (1− α)(k−1). For k = 10 and α = 0.05

the probability is 0.37, which is unacceptably high and will lead to false discoveries of

seemingly superior algorithms.

The next sub-sections describe the use of multiple comparison tests and associated

post hoc tests to correctly perform comparisons between multiple algorithms.

Multiple comparison among all algorithms

A frequent analysis performed by researchers is to compare one algorithm of interest

(the control method) against N − 1 other algorithms. The algorithm of interest could be

a newly developed algorithm, a particular parameter or architecture configuration of a

meta-heuristic, or any other criteria that isolates a particular algorithm so that it needs

to be compared against the rest of the algorithms. Such an analysis comprises of two

steps:

• Determine if at least two algorithms in the comparison set have significant differ-

ences in performance, or if the results of all algorithms are indistinguishable from

each other.

• If significant differences are discovered between at least some of the algorithms in
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the comparison set, apply a suitable post hoc test to determine which algorithms

performed significantly better/worse than the control method.

The Friedman two-way analysis of variance test [65][66], or simply the Friedman

test, and the associated Iman-Davenport extension [89] is one of the most well-known

methods to determine if there are differences between the k algorithms being tested across

n problem instances. The measurements of the algorithms are first ranked row-wise per

problem, i.e. for each problem instance i ∈ {1, ... , n}, each algorithm j ∈ {1, ... , k}
is ranked from 1 to k (with 1 representing the best measurement). Ties are broken

using average ranks. The average rank for each algorithm is then computed across all n

problems. The result of the ranking procedure is a table of the ranks of all k algorithms

against each other across all n problem instances, along with the average rank of each

algorithm across all problems.

The average ranks table by itself is useful to gauge the overall relative performance

of algorithms. However, the observer has no way of knowing if these differences are

significant enough to conclude that any method is better/worse than any other method.

The Friedman test proceeds by using the average ranks of all algorithms to compute

the Friedman statistic Ff (or the Iman-Davenport modified statistic FID). The test

statistic is subsequently compared against the relevant critical values for either statistic

respectively to determine if the null hypothesis can be rejected. The result is a p-value

that represents the probability that the observed difference between algorithms is due

to random chance, assuming the null hypothesis in fact holds. Lower p-values indicate

stronger evidence that differences exist.

Once the Friedman test determines that significant differences exist between the

algorithms, the next step is to determine between which algorithms those differences

exist. If the aim is to compare all other algorithms against the control method, any

one of many suitable post hoc tests needs to be applied to obtain a p-value for each

pairwise comparison between the control method and each of the other algorithms. A

z-score is computed using the ranks table above which yields the unadjusted p-value

for each comparison. Similar to the pairwise comparison methods, the FWER needs to

be controlled if the control method has to be compared pairwise against N − 1 other

methods. By adjusting the p-values to take the FWER into account, the resulting

adjusted p-values can be compared against each other at a common significance level
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α. This helps to prevent false discoveries of superiority from being made. The result

of a post hoc test is a table of adjusted p-values of the pairwise comparisons between,

respectively, a control method versus all N − 1 other methods, or all N(N − 1)/2 pairs

of algorithms.

Various post hoc tests exist that differ in the way that the p-values are adjusted for

N − 1 comparisons, including the Bonferroni-Dunn [54], Holm [82], Holland [81], Finner

[62], Hochberg [80], Hommel [83], Rom [155], and Li [109] procedures. Garcia et al.[68]

and Derrac et al.[48] show that the Holm, Hochberg, Hommel, Holland and Rom tests

all exhibit comparable levels of power. The studies advise that the Bonferroni-Dunn test

should never be used, since it generally lacks in power versus the other procedures. The

Finner test is noticeably better than the Holm, Hochberg, Hommel, Holland and Rom

tests and is generally recommended [48][68].

Multiple comparisons among all algorithms

When the aim is to compare all N algorithms against each other instead of against

a control method, an omnibus test such as the Friedman test should still be used to

assess if the various algorithms show significant differences between at least two of the

algorithms. If such differences are found, a suitable post hoc test can be applied to find

the pairwise combinations across all algorithms where noticeable differences exist.

The Holm test discussed for the N − 1 comparisons case above can be applied to

perform N(N − 1)/2 comparisons as well. Other suitable procedures include the Ne-

menyi procedure [131], Shaffer’s static and dynamic procedures [159], as well as the

Bergmann–Hommel procedure [8]. Derrac et al. [48] warn against using the Nemenyi

procedure since it is very conservative and many clearly obvious differences will not be

detected correctly. Derrac et al. comment that Shaffer’s method has similar complexity

to Holm’s procedure, yet offers substantial benefits due to the manner in which the pro-

cedure reasons logically about the relationship between multiple hypothesis. Lastly, the

Bergmann–Hommel procedure is computationally expensive and non-intuitive to explain,

hence it is not recommended for general use unless the situation requires it (specifically,

if the observed differences between algorithms are not very significant).

The result of an omnibus test such as Friedman combined with an N(N − 1)/2 post
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hoc procedure is a table of all pairwise comparisons between all algorithms along with

the adjusted p-values for each comparison (that corrects the FWER as explained above).

A researcher can assess which algorithms are superior/inferior/similar to each other by

examining the adjusted p-values at a chosen level of significance i.e. α = 0.05.

2.8 Summary

DOPs are challenging to solve since their search landscapes constantly change over time.

Many CI algorithms are unable to adapt to such changing conditions, which in turn

can lead to inferior solutions. Specialized CI algorithms solve DOPs by relying on one

or more strategies to cope with the changing problem, namely introducing/maintaining

diversity, detection of environment changes, reacting to environment changes, use of ex-

plicit/implicit memory, multiple populations, predicting changes, and using self-adaptive

mechanisms. The CI sub-fields of SI and EC have developed numerous meta-heuristic

implementations that address DOPs, and many good reviews and surveys summarize

the state of the art [40][53][93][119][136].

The moving peak benchmark is a well-known DOP and is considered the most widely

used benchmark function generator for dynamic environments in the literature. Duhain

and Engelbrecht [53] combine the DOP classifications of Eberhart et al. [56][84] and

Angeline [4] with spatial and temporal change severity classes (quasi-static, abrupt, pro-

gressive, and chaotic) into 27 unique DOP types. Parameter considerations for the

moving peaks benchmark generator allow each of these different types of dynamics to be

faithfully recreated in experimentation.

The comparison of the performance of stochastic CI optimization algorithms is a

complex task which requires careful thought. Simpler measures of performance and be-

havior that work well for static optimization problems do not generally work well in

dynamic environments. Various measures of performance and behavior have been tai-

lored to correctly characterize the workings of algorithms that solve DOPs. Additionally,

the use of parametric statistical tests to compare the performance of algorithms is gen-

erally regarded by experts as an incorrect approach to analyze CI algorithms. The use

of nonparametric procedures is strongly encouraged.

The next chapter discusses hyper-heuristics as an approach to solve optimization
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problems, and explains how selection hyper-heuristics adapt the search in real-time by

selecting the most applicable heuristics to apply at time t.



Chapter 3

Selection Hyper-heuristics

“Everyone thinks of changing the world but no one thinks of changing

himself.”

– Leo Tolstoy

This chapter gives an overview of hyper-heuristics as an approach to solve optimiza-

tion problems. A brief outline and classification of the field of hyper-heuristics is given

along with related research as it pertains to selection hyper-heuristics. Hyper-heuristics

are contrasted against other control adaptation approaches from the fields of SI and EC.

3.1 Introduction

The fields of Operations Research, Computer Science, and Artificial Intelligence have

collectively produced a family of optimization methods called hyper-heuristics [24]. A

hyper-heuristic adapts the optimization process by choosing the sequence in which low-

level heuristics should be applied to a problem over time. Generally, the hope is that

intelligent adaptation of the optimization process will allow superior solutions to be

found for the current problem under consideration. Section 3.2 discusses the need for

control adaptation methods in more detail.

A top-level split in the categorization of hyper-heuristics is the difference between

generative and selection hyper-heuristics: generative methods generate new heuristics

while solving the problem in contrast to selection hyper-heuristics that select the most

70
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suitable heuristic from an pool of existing heuristics. Section 3.3 presents an overview

and classification of the different types of hyper-heuristic approaches and related work

around applying selection hyper-heuristics to solve DOPs.

Section 3.4 focuses on the use of selection hyper-heuristics in a multi-population

setting where multiple candidate solutions are improved concurrently. Related work

is presented along with an outline of the heterogeneous meta-hyper-heuristic (HMHH)

framework for hyper-heuristics by Grobler and Engelbrecht [75][76][74]. The challenges

faced when using hyper-heuristics with a population of multiple candidate solutions are

explored in section 3.4.1. The visibility of information between different heuristics within

the population is discussed in section 3.4.2. The management of heuristic diversity is

explored in section 3.4.3. Strategies to decide when to trigger a change in heuristics for

some/all of the members of the population are discussed in section 3.4.4. Section 3.4.6

discusses the process logic used by selection operators in deciding which heuristics to

apply to candidate solutions. Multiple examples of both common and recently proposed

selection operators are outlined.

Finally, section 3.5 discusses the similarities that hyper-heuristics share with other

control adaptation techniques and positions why hyper-heuristics are different.

3.2 The Need for Adaptation in Optimization

The word “heuristic” is derived from the ancient Greek word “heuriskein” for “to dis-

cover”. At their core, heuristics embody the strategies and techniques to exploit known

information in control problem-solving processes in both machines and humans [146].

Over time researchers have created meta-heuristics as parameterized templates of heuris-

tics in a bid to make heuristics more generally applicable to a larger array of problems.

The definition of parameters for meta-heuristics has inadvertently led to something called

the “tuning problem” [11][57][58][97] which entails finding those parameters that yield

the best performance for any given meta-heuristic.

Section 3.2.1 discusses the static and dynamic versions of the tuning problem and

how the practice of meta-heuristic parameter tuning relates to DOPs. Section 3.2.2

provides an overview of the No Free Lunch theorems for optimization [184] and how

these theorems are practically less of an influential factor in reaching higher levels of
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general performance than many practitioners believe.

3.2.1 Meta-heuristics Parameter Tuning

Sörensen and Glover [164] define a meta-heuristic as a high-level problem-independent set

of guidelines and strategies to design heuristic optimization algorithms. Sörensen [163]

reaffirms that a meta-heuristic is less of an explicit algorithm and more of a consistent

set of complimentary ideas, concepts, and operators. Sörensen [163] argues that different

meta-heuristics are congruent to different styles of cooking, such as French or Chinese

cuisine, and not recipes for specific dishes per se. Asking “are SI approaches better than

EC approaches?” is akin to asking “Is Chinese cooking better than French cooking?”

The answer invariably is “it depends on who is dining” since each meta-heuristic brings

a unique set of operators and design decisions to the table.

Birattari et al. [11] equate meta-heuristics to being templates, and that specific

parameter choices are required to turn a meta-heuristic into a tangible algorithm. Dif-

ferent parameter choices dramatically alter the operation of any meta-heuristic. What

the “best” parameter choice for any meta-heuristic is, can be a difficult question to an-

swer. Karafotias et al. [97] present a survey of adaptive parameter control methods. The

survey distinguishes between the parameter tuning problem, as the upfront, stationary

task of finding appropriate values for meta-heuristic parameters, and the parameter con-

trol problem, as the ongoing, non-stationary task of adapting meta-heuristic parameter

values over the run of the algorithm.

The parameter tuning problem is deemed essential by Karafotias et al. to the suc-

cessful deployment of any meta-heuristic. Eiben and Smit [58] present a taxonomic

breakdown of over 30 different parameter tuning methods, and propose a conceptual

framework of tuning methods and a tuning-aware experimental methodology. However,

meta-heuristic parameter tuning alone will not suffice in DOPs. Leonard and Engelbrecht

[103] show that it is impossible to statically optimize PSO parameters for any given DOP.

Each environment change results in a different optimal PSO parameter configuration.

Intuitively, this finding extends to EC approaches and implies that a differently tuned

method (or even a different method entirely) may be needed in each subsequent environ-

ment landscape [46]. These examples emphasize the importance of adapting algorithm
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behavior over time while the problem is being solved (i.e. addressing the parameter

control problem using a non-stationary tuning approach).

Karafotias et al. [97] note that the parameter control problem has not been ade-

quately solved yet. The authors discuss the “patchwork problem” which describes the

difficulty in creating good parameter combinations when haphazardly combining mul-

tiple individual parameter control methods into a single process. The resulting system

is likely sub-optimal. Karafotias et al. recommend that future research should focus

on reducing the patchwork problem by developing techniques that operate on multi-

ple parameters simultaneously. Instead of (self-)adapting every individual parameter or

component of meta-heuristic algorithms independently at the lowest levels of granularity,

research should focus on swapping out entire components of well-proven units of func-

tionality. Sörensen [163] comes to a similar conclusion, stating that a component-based

view of meta-heuristics (where operators from diverse meta-heuristic frameworks can

be combined into more powerful methods) is key to producing deep insights into why

meta-heuristics work.

3.2.2 The No Free Lunch Theorems for Optimization

Wolpert and Macready [184] published the “No Free Lunch” (NFL) theorems for op-

timization in 1997 which, informally, state that all optimization algorithms have equal

performance when evaluated over all possible problems (for any performance measure).

The implication is clear: no method can be considered “generally better” than any other

method in domains where the NFL theorems hold. Naturally, the NFL theorems cause a

stir among researchers that aim to develop optimization algorithms which try to be “gen-

erally better” than other methods. According to the NFL theorems, even random search

will outperform even the most sophisticated optimization algorithm in some subset of

problems.

Uneasiness around the NFL theorems prompted researchers to further investigate in

exactly which domains the NFL theorems hold. A given set of fitness functions (i.e.

problems) is closed under permutation if, for every function f in the set, all possible

rearrangements of mappings from search space values xi to function values f(xi) are

also contained as another function in the set. Schumacher et al. [157] show that any
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two algorithms will have the same performance over a set of fitness functions (for any

performance measure) if an only if the set of fitness functions is closed under permuta-

tion. However, Igel and Toussaint [88] show that the sets of fitness functions that are

closed under permutation comprise of a small part of the whole. Auger and Teytaud [5]

show that the NFL theorems do not hold generally in continuous domains. Alabert et

al. [3] sharpen the results of Auger and Teytaud by proving that there are indeed no

NFL theorems for functions in continuous domains, except for a few extreme theoretical

edge cases which require additional technical conditions that are simply too restrictive

to be found in practice. In effect, it is practically impossible to find a real-world problem

that meets the necessary conditions for the NFL theorems to hold.

Poli and Graff [149] show that the NFL theorems do not automatically apply to

meta-search methods such as hyper-heuristics. Firstly, Poli and Graff illustrate how

a hyper-heuristic approach makes no sense when the set of problems is closed under

permutation: the heuristic search space landscape is flat if the set of problems under

consideration is closed under permutation. However, given the results in the previous

paragraph, Poli and Graff argue that the odds are exceedingly rare of encountering a

set of problems for which there is no gain in using a hyper-heuristic (i.e. problems that

are closed under permutation). Poli and Graff present a generalized counting argument

that shows that for problems with n distinct fitness values {f1, f2, ... , fn} at points

{x1,x2, ... ,xn} there are n! possible permutations of all fitness assignments across all

points. If the problem set under consideration contains fewer than n! problems, then the

set is not closed under permutation and the NFL theorems do not apply.

The results of Auger and Teytaud, Alabert et al., and Poli and Graff imply the

possibility that, in any practical situation, an intelligent selection hyper-heuristic could

potentially improve performance over using heuristics in isolation. A recent algorithm

selection survey by Kerschke et al. [98] echoes these findings in how the necessary condi-

tions for the NFL theorem to hold are simply not found in problems of interest. Kerschke

et al. remark that increased performance is possible by exploiting the complementary

strengths of a set of algorithms through automatically selecting the most appropriate

algorithm that is expected to perform best. Kerschke et al. list hyper-heuristics as one

such promising field to solve the online per-instance algorithm selection problem and

increase performance. It is this practical perspective on the theoretical underpinnings
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of the discipline of optimization that encourages research into methods such as hyper-

heuristics.

3.3 Overview of Hyper-heuristics

This section discusses the general classification of hyper-heuristics and how selection

hyper-heuristics relate to generative hyper-heuristics, the domain barrier that separates

the problem space (i.e. solution space) from the heuristic space (i.e. space of algorithms

and methods), and the application of selection hyper-heuristics to DOPs.

3.3.1 Classification of Hyper-heuristics

Generally speaking, the field of hyper-heuristics seeks to automate the process of select-

ing, combining, generating and/or adapting a set of multiple simpler heuristics to solve

a given problem in a problem-independent way. A key driver is to combine the strengths

and weaknesses of multiple algorithms as optimally as possible.

The term hyper-heuristic was first used by Cowling et al. [38] in 2000, but early work

in the field dates back to the probabilistic scheduling rules of Fisher and Thompson [63]

in 1961. The roots of hyper-heuristics lie in disciplines such as job scheduling, time

tabling, routing problems, and combinatorial optimization. Early studies employ hand-

crafted operators that manage a pool of highly domain dependent heuristics (usually

also manually created by humans). Recent works have used EC and SI meta-heuristics

both as low-level heuristics and/or hyper-heuristic operators [24].

Burke et al. [26] review hyper-heuristic literature for both combinatorial and contin-

uous optimization and distinguish between selection and generative hyper-heuristics. Se-

lection hyper-heuristics use predefined selection operators inside a hyper-heuristic frame-

work to choose a suitable existing heuristic to apply to a problem at time t. Generative

hyper-heuristics iteratively evolve customized heuristics (mostly via genetic program-

ming) that are tailored to a domain (or even a specific problem instance).

In addition to hyper-heuristics being either selection or generation based, Burke et

al. [26] identify two additional dimensions to hyper-heuristic solutions as shown in figure

3.1, namely:
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Figure 3.1: Hyper-heuristics classification as presented by Burke et al. [26]

1. The nature of how a hyper-heuristic learns from domain feedback is either via on-

line learning, where the hyper-heuristic (self-)adapts while solving the problem,

off-line learning, where the hyper-heuristic has access to training examples from

the domain beforehand, or no learning at all.

2. Whether the heuristics are constructive that grow viable complete solution(s) from

empty solution(s), or perturbative that start with full solution(s) which are incre-

mentally improved.

A wide range of hyper-heuristic approaches are possible that combine different styles

of learning and either heuristic selection or generation methods to manage a set of either

constructive or perturbative heuristics. Various reviews of the state of the art of hyper-

heuristics [24][26][25] provide insights into the most prominent examples in literature.

The focus of this thesis is restricted to the application of selection hyper-heuristics to

meta-heuristics for DOPs, and generative hyper-heuristics are out of scope. Furthermore

this thesis will investigate hyper-heuristic selection methods that are classified by Burke

et al. [26] as employing either on-line learning or no learning. All meta-heuristics in the

heuristic pool will be examples of perturbative heuristics under the same classification.
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3.3.2 Problem Space versus Heuristic Space

A hyper-heuristic is defined by Chakhlevitch and Cowling [30] as a high-level control

mechanism that uses limited problem-level knowledge to search a set of low-level heuris-

tics for good methods and not good solutions. The problem space comprises the domain

of the objective function of the optimization problem. Any point in the problem space

represents a solution to the optimization problem. The search space of all applicable

methods and their associated utility at time t is called the heuristic space. Any point

in the heuristic space represents a proposal of which heuristic(s) should be applied to

improve the problem space solution vectors. The domain of available heuristics is also

referred to as the pool of heuristics. Hyper-heuristics offer an attractive “off-the-peg”

control mechanism that does not directly rely on a full understanding of the problem

space, but instead uses continual performance feedback to search the heuristic space for

the best method to use at time t.

Feedback about the performance of the heuristics currently in use enables the hyper-

heuristic to choose the most appropriate heuristics to apply next. Burke et al. [26]

present a conceptual framework (shown in figure 3.2) of how selection hyper-heuristics

operate in the heuristic space to find the best methods to apply in the problem space.

Hyper-heuristics can employ either single-point search, where a single candidate solution

is improved in an iterative manner, or multi-point search, where a population of multiple

candidate solutions are improved together over time [24][26].

After a heuristic is applied to a problem, the hyper-heuristic can perform a move

acceptance step to decide if the heuristic’s newly proposed solution should be accepted

or rejected. Move acceptance strategies are critical in single-point search to ensure that

the single candidate solution steadily improves over time [24][26]. Move acceptance

can also be applied to multi-point search hyper-heuristics. Different move acceptance

strategies exist, including simple deterministic strategies such as only improving that

only accepts improving changes, improving and equal that accepts moves of the same

or better quality, and all moves that accept any moves [38]. More sophisticated non-

deterministic move acceptance strategies include tabu search [29], simulated annealing

[7], and late acceptance [141], among many other techniques.

Single-point search hyper-heuristics offer the advantage that a single candidate solu-
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Figure 3.2: The conceptual framework for selection hyper-heuristics as presented by Burke

et al. [26].

tion can be extensively explored (using either perturbative or constructive heuristics),

while a move acceptance operator ensures steady progression towards an increasingly

better solution. However, since there is only a single candidate solution being improved,

single-point search hyper-heuristics are unable to simultaneously explore different ar-

eas of the problem space. Any such alternative exploratory complexity would need to

be managed by the move acceptance operator. Multi-point search hyper-heuristics, on

the other hand, solves this problem by maintaining a population of multiple candidate

solutions and allowing meta-heuristics to exploit the information of other candidate solu-

tions. However, move acceptance strategies are harder to manage in multi-point search,

since using move acceptance criteria to revert members of the population back to prior

states may inadvertently affect the operation of meta-heuristics.

Ongoing research into hyper-heuristics continues to refine the working definition,

goals, and constraints of what constitutes a hyper-heuristic approach. A growing num-
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ber of researchers are revisiting the assumption that hyper-heuristics require a strict

separation between the problem space and the heuristic space. Recently, Swan et al.

[168] show that a “maximally restrictive” barrier between the hyper-heuristic and prob-

lem domain is counter-productive. The authors argue that certain types of a priori

problem information (what the authors call “analytic information”) can be exploited

by a hyper-heuristic in a problem-independent manner to aid in the heuristic selection

process. This broader view allows the incorporation of heuristic-to-domain mapping in-

formation, declarative domain descriptions, and constraint languages as data instead of

code changes [168]. A research agenda has been defined to promote this view and gain

consensus across the field as to what such an architectural vision for hyper-heuristics

would look like [167][168].

The next section discusses how selection hyper-heuristics can be applied in continuous

dynamic environments.

3.3.3 Selection Hyper-heuristics for Real-valued Dynamic En-

vironments

DOPs change as time goes by, which makes it hard for non-specialized optimization

algorithms to cope with the changing search environment. Given the ability of selection

hyper-heuristics to continually select the most appropriate low-level heuristic to apply

to a problem, the natural question is if hyper-heuristic approaches could adapt to the

changing DOP and avoid the pitfalls faced by other optimization algorithms.

A number of studies investigate the application of hyper-heuristics to DOPs . Özcan

et al. [143] apply a greedy selection-based hyper-heuristic to manage a mix of simple

mutators and hill climbers. Kiraz et al. [100] investigate the performance of a number

of hyper-heuristics that were proposed by Cowling et al. [38] on DOPs, including basic

methods such as simple random, random descent, random permutation, random permu-

tation descent, and greedy selection. Kiraz et al. also investigate the performance of

more complex hyper-heuristics on DOPs, such as Choice function, where selection of a

heuristic is based on the heuristic’s historical performance, performance as a successor to

other heuristics, and the number of iterations since the heuristic was previously applied

[38]. Kiraz et al. also apply a reinforcement learning hyper-heuristic based on the work
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by Özcan et al. [142], where each heuristic carries as rank value that gets updated based

on the success of the heuristic. Worsening moves are penalized while improving moves

are rewarded using a set rate. Simple Gaussian mutation operators (GMOs), where can-

didate solutions are modified by adding unbiased random noise sampled from a Gaussian

distribution with zero mean and a specified standard deviation value σ, are used as the

low-level heuristics. Multiple implementations are possible, based on the specific choice

of σ, and it is the task of the hyper-heuristic to select the most appropriate operator at

time t.

In a later study, Kiraz et al. [99] investigate an ant-based hyper-heuristic that main-

tains pheromone concentrations between all pairs of low-level heuristics, again managing

Gaussian mutator heuristics. Uludağ et al. [173] present a framework that hybridizes

population based incremental learning (PBIL) algorithms and selection hyper-heuristics.

Topcuoglu et al. [171] combine various hyper-heuristic operators with a memory/search

algorithm to increase the effectiveness of memory/search.

These early studies all rely on relatively simple heuristics such as Gaussian mutation

operators or simple hill-climbers. While the studies show how hyper-heuristics are able

to adapt to the state of the problem space at time t, the studies do not investigate the

use of domain-specific heuristics that are specialized to solve DOPs. Almost all of the

studies listed above also rely on single-point search hyper-heuristic methods. More recent

studies by Van der Stockt and Engelbrecht [175][174][176] investigate the application of

multi-point search hyper-heuristics to manage a pool of DOP-specific meta-heuristics.

Section 2.5 in chapter 2 outlined a number of building blocks that meta-heuristics

focusing on solving DOPs should employ. Section 2.6 presented a number of successful

DOP-specific meta-heuristics that differ in their implementation of each DOP building

block. This thesis shows that selection hyper-heuristics offer a viable method to intelli-

gently combine multiple well-understood meta-heuristics for DOPs to improve the per-

formance of the optimization process beyond what any of the individual meta-heuristics

can manage in isolation.

The next section explores how population-based meta-heuristics for DOPs can be

used in conjunction with a selection hyper-heuristic framework.
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3.4 Selection Hyper-heuristics for Population-based

Algorithms

Section 3.4.1 expands on the notion of multi-point search hyper-heuristics and presents

various multi-point search frameworks. Section 3.4.2 discusses the difference between

global and island neighborhood topologies for a pool of heuristics. Section 3.4.3 outlines

how the spread of heuristics assigned to entities can be measured using heuristic diversity

measures. Section 3.4.4 outlines the considerations to take before triggering a change in

the heuristics assigned to manage the candidate solutions. Section 3.4.5 discusses how

algorithm state information is maintained across heuristics over time. Finally, section

3.4.6 discusses examples of selection operators that perform heuristic selection in different

ways. Lastly, section 3.4.7 provides an overview of how to select a set of complementary

heuristics that maximizes the effectiveness of a hyper-heuristic.

3.4.1 Multi-point Search Hyper-heuristics

Multi-point search hyper-heuristics improve multiple candidate solutions concurrently,

in contrast to single-point search hyper-heuristics that improve a single solution. Burke

et al. [24][26] reveal in their survey that the majority of early selection hyper-heuristics

employ single-point search, while more recent studies tend to use multi-point search. Key

examples of approaches that employ multi-point search are outlined in the paragraphs

below.

A personnel scheduling problem is a combination problem where the aim is to find

the optimal assignment of personnel to shifts, given a set of constraints [24]. Cowling

et al. [37] introduce a system called Hyper-GA to address the personnel scheduling

problem. Hyper-GA uses a genetic algorithm to systematically learn which heuristics

to select next. The practitioner provides a set of low-level problem-specific heuristics

and Hyper-GA will find a solution to the problem by learning the best ordering of the

heuristics. Hyper-GA is extended by Han and Kendall [77] to use guided mutation and

dynamic chromosome lengths which allows the system to make the evolution of heuristic

sequences more effective.

The ant colony algorithm [49] is used as a hyper-heuristic by a number of authors.
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Generally, an ant-based hyper-heuristic finds the best sequence of applying heuristics by

traversing the fully connected graph between all heuristics. The directed edge between

any two heuristics hi and hj represents the suitability of applying hj after hi. Each ant

traversing the graph represents a specific sequence of heuristics. Ants may move from

vertex to vertex in the graph to select and apply a single heuristic at a time, or the entire

sequence of moves made by the ant can be learned.

Burke et al. [27] investigate how ant algorithms can construct the best sequences

of heuristic moves to solve a project presentation scheduling problem. Chen et al. [31]

apply ant-based approaches to solve the traveling tournament problem. Ren et al. [153]

replaces the fully connected graph topology with a bipartite graph structure drawn from

the Cartesian product between two heuristic sets. Ren et al. define one set to be

exploitation heuristics while the other set contains exploration heuristics. This system

is used to solve the p-median problem.

The use of EC methods as hyper-heuristics has also attracted attention. Vrugt and

Robinson [177] propose an evolutionary optimization-based method called AMALGAM.

The focus of AMALGAM is to manage a pool of multi-objective-specific population-

based heuristics to solve multi-objective real-valued optimization problems. AMALGAM

combines multi-method search and self-adaptive offspring creation techniques where the

framework manages the proportion of new solutions that are retained from each managed

heuristic. Cobos et al. [36] employ a mix of evolutionary approaches to cluster documents

together with multiple types of selection and move acceptance strategies.

Certain hyper-heuristic frameworks endeavor to run the managed algorithms in true

parallel mode across multiple worker nodes. Crainic and Toulouse [39] present a par-

allel hyper-heuristic that uses multiple threads to allow several heuristics to guide the

search using information sharing. Biazzini et al. [10] propose a distributed island model

framework that can combine multiple real-valued optimization algorithms running on

different nodes. Meignan et al. [121] propose an agent-based hyper-heuristic for vehicle

routing that is both distributed and self-adaptive. Multiple agents explore the search

space jointly using a set of operators.
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Heterogeneous Meta-Hyper-Heuristics

Grobler et al. [75][76][74] present the heterogeneous meta-hyper-heuristic (HMHH) as

a selection hyper-heuristic framework that manages a pool of population-based meta-

heuristics. Each heuristic is a meta-heuristic algorithm configuration comprising of spe-

cific logic, parameter values, operator functionality, and other design decisions. HMHH

treats each heuristic as a “sealed unit” and never adapts any of the aforementioned

components. This approach is analogous to practitioners providing manually crafted

domain-specific low-level heuristics, except that the heuristics in HMHH are specifc in-

stances of meta-heuristics that are suitable in the problem domain. The intention is

to have a pool of several different (yet specific) algorithm configurations with known

behaviors.

Adaptation in HMHH occurs by assigning a specific heuristic to manage and modify

each candidate solution (or entity) in the population. Different heuristics, in essence,

become distinct behaviors that yield different outcomes when applied to any given can-

didate solution. Generally, the position and fitness of a entity is noticeably altered in

different ways depending on which heuristic acts upon the entity. For example, an entity

modified for one iteration by a DE algorithm variant will generally have a noticeably dif-

ferent output candidate solution compared to if the entity was instead modified by a PSO

or GA variant. HMHH strives to give the most promising heuristics every opportunity

to succeed by letting more entities be updated by the most suitable heuristics.

HMHH is shown in algorithm 4 with parts of the original notation adapted to align

with section 3.4.6. Every k iterations HMHH employs a selection operator, ς, to assign

entities in the parent population E to heuristics. The performance feedback of each

heuristic hm, namely Qδm , may be used by ς as part of the deliberation of determining

entity-to-heuristic allocations.

The selection operator of the HMHH framework determines which entity-to-heuristic

mapping is expected to yield the best performance. Different types of selection operators

implement unique ways of allocating heuristics to entities that

1. may or may not rely on performance feedback from entities to influence the selection

process,

2. may or may not employ learning or memory mechanisms to adapt selection sensi-
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Algorithm 4 Heterogeneous Meta-Hyper-Heuristic [76]

E ← Initialize parent population of ns solution entities.

hj(t)← the heuristic algorithm applied to entity ej at iteration t.

k ← the number of algorithm iterations between entity-to-heuristic assignments.1

for all entities ej ∈ E do

hj(1)← choose random initial heuristic algorithm for ej .

end for

t = 1.

while a stopping condition is not met do

for all entities ej ∈ E do

Apply hj(t) to entity j for k iterations.2

Qδm(t)← total improvement of entities assigned to hm for the last k iterations.3

end for

for all entities ej ∈ E do

hj(t+ k)← Select next heuristic for entity ej using selection operator ς(ej , Qδm(t)).4

end for

t = t+ k.

end while

Notes:

1. k = 5 is used in [76].

2. In the island neighborhood topology, all the entities assigned to hm collectively form a distinct

sub-population sm ⊂ E that hm operates on exclusively for k iterations. In the original global topology,

hm has read-only access to all entities ej ∈ E, but can only alter the entities assigned the hm, namely

sm ⊂ E. Neighborhood topologies are an extension to HMHH made in this thesis, and is not part of

the original algorithm listing in [76].

3. In [76], ς(ej , Qδm(t)) is rank-based tabu search [28]. This thesis expands HMHH with many other

hyper-heuristic selection operators.

4. Entities may require additional heuristic-specific state information to operate as part of specific

types of meta-heuristics (see section 3.4.5).

tivity to the problem under consideration, and

3. may apply deterministic or stochastic selection schemes to allocate heuristics to

entities.

The choice of selection operator allows HMHH to exhibit radically different heuristic
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allocation behavior.

Extending HMHH for Dynamic Environments

This thesis uses the HMHH framework by Grobler et al. [75][76][74] as the base to

explore the effectiveness and behavior of various different hyper-heuristic selection op-

erators. HMHH was originally devised for static environments. Van der Stockt and

Engelbrecht [174][175][176] investigate the effectiveness of various HMHH selection op-

erators to manage a pool of DOP-specific meta-heuristics across 27 different types of

DOPs (as discussed in section 2.3.1 in chapter 2). Van der Stockt and Engelbrecht [176]

show that using HMHH to manage DOP-specific meta-heuristics generally increases per-

formance over using any of the individual meta-heuristics in isolation. Additionally, Van

der Stockt and Engelbrecht [176] show that different selection operators for HMHH have

dramatically varied performance outcomes.

Van der Stockt and Engelbrecht [175] extend HMHH to support two types of neigh-

borhood topologies, namely a global topology where all heuristics always have access to

the information of all entities across the entire HMHH parent population, and an island

topology where entities have limited visibility of only the information of other entities

that share the same assigned heuristic. Section 3.4.2 expands on the notion of neighbor-

hood topologies in HMHH.

The differences in heuristic space diversity and heuristic-to-entity allocation rates

across different HMHH selection operators are also explored by Van der Stockt and

Engelbrecht [176]. Many of the best performing selection operators show strikingly

different behavior profiles: certain methods frequently assign new heuristics to a small

to moderate percentage of the parent population, while other methods infrequently assign

almost all entities a single heuristic. Behavior in the study is based on aggregate values

of measures. This thesis investigates the behavior of HMHH selection operators over

time. Section 3.4.3 discusses heuristic space diversity and heuristic allocation rates in

more detail.

The original HMHH algorithm selects new heuristics for all entities every k iterations.

The HMHH parameter k needs to be explicitly set by practitioners, and Grobler et al.

[75][76][74] typically use values of k ∈ {5, 10} iterations. Nepomuceno and Engelbrecht
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[133] propose a number of behavior changing schedules for PSO algorithms that stipulate

when each particle is allocated different position or velocity update equations. Inspired

by their approach, this thesis extends HMHH by supporting different types of heuristic

change triggering functionality, namely the original periodic trigger that changes heuris-

tic allocations every k iterations for all entities, a stagnation trigger that changes an

entity’s assigned heuristic if the performance of that individual entity has not improved

over the last k iterations, and a random trigger that randomly triggers a heuristic change

for any individual based on a probability parameter. Section 3.4.4 explores each type of

trigger in more detail.

3.4.2 Neighborhood Topologies for Population-based Hyper-

heuristics

HMHH assigns each entity in the parent population to a single heuristic to be modified.

Heuristics may be population-based meta-heuristics that require a population of entities

and (potentially) entity state information to operate as designed. Examples include a DE

that needs other individuals to calculate a difference vector, or a PSO that requires social

information from other particles to update an entity’s velocity and position information.

HMHH may assign any combination of entities to be operated upon by any combination

of heuristics. The question arises whether all entities in the HMHH parent population

should be accessible to all heuristics all the time (in a read-only fashion), or if each

heuristic should only be allowed to access the information of those entities that are

assigned to the heuristic.

The neighborhood topology of entities in the population of the HMHH framework

defines the purview that each entity has of other entities in the HMHH parent population.

Two possible neighborhood topologies arise naturally, namely a global and an island

topology. The two topologies have noticeably different modes of operation:

• In the global topology, the population size of every heuristic appears to be the

entire population of entities in the HMHH parent population. A heuristic can

access the entity candidate solution and state information of the entire population

of entities. However, a heuristic only updates the entities that HMHH assigns to

the heuristic. Every heuristic is fully informed.
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Allocation of different heuristics to any of the entities in the population does not

alter the population size of any heuristic. The population of each heuristic appears

to be constant even though each heuristic only modifies certain entities. This

is an important property for some meta-heuristics such as DE and PSO where

population size is an important factor to ensure good exploratory and exploiting

capabilities.

• In contrast, the island topology effectively runs every heuristic in isolation. Entities

assigned to each heuristic form individual sub-populations that each heuristic op-

erates on independently. Information is only visible between members in the same

sub-population, and information is only shared between heuristics when entities

are reassigned to other heuristics. Any new entity-to-heuristic assignments may

appear identical to moving entities between the sub-populations of the individual

heuristics.

Heuristic population sizes constantly fluctuate, which may impact the operation

of heuristics. Certain heuristics such as DE require a minimum population size

[60]. Such constraints need to be managed by setting the minimum allowed popu-

lation size that HMHH must ensure is never violated when heuristic allocation is

performed.

Distributed evolutionary algorithms (dEAs) bear some resemblance to the island

neighborhood topology of the HMHH framework, particularly population-based dEAs

based on the heterogeneous island model [71]. HMHH is different in that entities do

not migrate between heuristic populations (“islands”) in the dEA sense. Each heuristic

in HMHH operates exclusively on its own disjoint sub-population of dedicated entities

for k iterations. The collective performance of all entities assigned to each heuristic m

over the previous k iterations is used to calculate the performance feedback Qδm for

that heuristic hm. Every k iterations, all heuristic populations are “evacuated” and new

populations are chosen from a common parent entity population E. Depending on the

selection operator used by HMHH, the new sub-population associated with each heuris-

tic may be drastically different compared to a steady island-style model with migration

between islands.
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3.4.3 Heuristic Space Diversity

Good HMHH selection operators prevent a downward spiral called heuristic space con-

vergence where one heuristic “takes over” by holding on to all assigned entities forever.

If this happens the optimization process devolves to using only that one dominating

heuristic. Grobler and Engelbrecht [76] show that heuristic space diversity (HSD) plays

an important role in hyper-heuristic performance in static environments. The HSD met-

ric, H(t), as proposed by Grobler and Engelbrecht measures the spread of the population

of entities across heuristics in the heuristic space as

H(t) = α

(
1−

∑nh
m=1 |T − nm(t)|

1.5ns

)
(3.1)

where ns is the total number of entities, nh is the number of managed heuristics, nm

is the number of entities assigned to heuristic m, α is a scaling factor (here α = 100),

and T = ns/nh. Values of H(t) ≈ 1 indicate that entities are balanced equally across

all heuristics while H(t) ≈ 0 show that a few heuristics are controlling almost all of the

entities. H(t) does not give any indication as to which heuristic has the greatest number

of entities assigned, only that an imbalance is present.

Note that equation (3.1) has a drawback in that H(t) can become less than zero if

there are more than four heuristics and all ns entities are assigned to a single heuristic,

since equation (3.1) would then simplify to α(1 − 2(nh − 1)/1.5nh). To avoid this situ-

ation any hyper-heuristic must maintain nm > 1 at all times to ensure that H(t) > 0.

Another option is to use a different method to calculate the disparity between the entity

assignments of different heuristics. Budescu and Budescu [23] discuss a measure called

normalized entropy which is based on a measure of diversity of populations of people

by Teachman [170] which uses Shannon’s entropy theory [160]. Normalized entropy is

extended below as a measure called N (t) that can be used as an alternative to H(t),

where N (t) is defined as

N (t) = −
nh∑
m=1

p(t) log2(p(t))

log2(nh)
(3.2)

where

p(t) =


nm(t)

ns
if nm(t) > 0

ε otherwise
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where ε is a very small positive constant. Similar to H(t), values of N (t) ≈ 1 when

heuristic space diversity is high and N (t) ≈ 0 if one heuristic dominates. The N (t)

measure improves upon H(t) since N (t) can never be negative, and N (t) is resilient in

cases where a heuristic has zero entities assigned (i.e. nm(t) = 0).

3.4.4 Triggering Heuristic Allocation Changes

A heuristic change trigger comprises of the logic to determine when a new heuristic

change should be considered, and at which point heuristic selection logic selects which

heuristic to apply. Early single-point search hyper-heuristic approaches embedded the

heuristic change triggering decision logic implicitly in the heuristic selection logic it-

self. Examples include the random gradient hyper-heuristic and choice function hyper-

heuristic by Cowling et al. [38]. The random gradient hyper-heuristic repeatedly applies

the same heuristic until no improvement occurs, at which point a new heuristic is chosen

randomly. The choice function hyper-heuristic uses a more elaborate selection mecha-

nism that is based on the heuristic’s performance, performance as a successor to other

heuristics, and the number of iterations since the heuristic was previously applied. Both

methods trigger the heuristic selection process to be performed every algorithm iteration.

Multi-point search hyper-heuristics are more complex in that the performance of each

heuristic depends on the joint interactions between entities in a population. Every entity

requires individual consideration about when and how a new heuristic should be used.

Arguably, the simplest approach is to trigger heuristic selection after every application

of the heuristic to the entity (i.e. after every algorithm iteration), or perhaps after every

k algorithm iterations. The original HMHH definition by Grobler et al. [75][76][74]

reassigns all entities to new heuristics every k algorithm iterations where common choices

are k ∈ {5, 10}. The heuristic selection logic of which heuristic to use is decoupled from

the triggering logic of when a new heuristic should be assigned.

In the SI literature, Nepomuceno and Engelbrecht [133] present a number of behavior

changing schedules for heterogeneous PSO that select the most appropriate behavior (i.e.

position and velocity update equations) for each particle. Every iteration, zero or more

particles are triggered by a behavior changing schedule and are subsequently assigned

new particle behaviors. Possible scheduling strategies include:
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• Periodic behavior selection, where a new particle behavior is assigned to a particle

every k iterations.

• Randomized behavior selection, where a new particle behavior is chosen randomly

from a particle behavior pool based on a probability. The probability loosely

corresponds to k iterations. For example a probability of p = 0.1 implies that

behavior changes occur, in expectation, every 1
p

= 10 iterations. The parameter

k represents the approximate number of iterations before a behavior change is

desired, which is used to set the probability, i.e. p = 1
k
.

• Stagnation-based behavior trigger, where a new particle behavior is selected if

the fitness (or personal best fitness) of a particle does not improve over k iterations.

This thesis extends HMHH with more elaborate heuristic allocation triggering mech-

anisms. The behavior changing schedules approach of Nepomuceno and Engelbrecht

[133] is adapted to allow HMHH to trigger heuristic selection for each individual entity

in combination with any suitable heuristic selection operator.

3.4.5 Managing Heuristic State Information

Management of heuristic state information is an important function that HMHH must

address. State information consists of any meta-data associated with a candidate solution

such as, for example, PSO memory of personal best positions, particle velocities, and

any other state needed by any heuristics. Entities contain both a candidate solution

vector together with all of the associated state-based information required by heuristics.

Different types of entity state exists:

• Candidate solution vectors: The candidate solution vector is arguably the

most important state carried by an entity, because it represents a solution to the

optimization problem. Consequently, only the heuristic assigned to an entity is

allowed to alter the entity’s candidate solution vector. This is true in both the

island as well as global topologies, although each topology differs in how heuristics

may view candidate solution vector information across the entire population E.
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• Static heuristic algorithm state: Some heuristics may assign permanent state

values to entities that are used as part of the heuristic’s operation. Examples in-

clude the charge coefficients of an atomic PSO algorithm or the standard deviation

values of Brownian individuals in DE [60]. Many other heuristics may have similar

fixed configuration values for entities that never change over the course of the op-

timization run. These types of state values are simply associated with each entity

and are made available to any heuristic in a read-only fashion.

• Dynamic heuristic algorithm state: Certain heuristics may maintain dynam-

ically changing state information such as, for example, a PSO that maintains a

personal best position and velocity information. Such heuristics depend on the

state associated with each entity to allow normal heuristic operation. Some dy-

namic state may be located centrally (i.e. apart from the entities), for example,

the hall of fame of a GA [60]. Generally, each heuristic is responsible for updating

the dynamic state of their assigned entities as well as any central state.

A pressing question is how each heuristic’s state variables should be updated in

external entities that are not assigned to the heuristic. For example, consider

a global topology where a PSO heuristic refers to the (outdated) personal best

positions of external entities managed by other heuristics such as DE or a GA.

The PSO’s velocity and subsequent position updates will be negatively affected

by referring to global best information that is out of date. Another example is

in an island topology where the personal best and velocity state of an external

entity that is reassigned to a PSO heuristic still refers to outdated values from the

previous period when the entity was last modified by a PSO.

The following strategies are possible options to manage state across the heuristic

pool:

– Share state: In many cases heuristics are able to use and update shared

state variables that carry the same meaning across any heuristic. Shared

state variables allow heuristics configured in either a global or island topology

to always have access to the latest state information. Shared state variables

require that the semantic meaning of the variable is identical across heuristics



Chapter 3. Selection Hyper-heuristics 92

and that all heuristics manage the state variable similarly. For example, the

personal best positions found by entities can generally be shared between all

PSOs under HMHH.

Certain heuristics may need (non-logic altering) implementation modifications

to cater for state updates that (technically) are not part of normal operation

of the heuristics1. For example, a DE or GA may be required to update the

personal best position of their assigned entities. This kind of modification

does not affect the operation of the DE or GA, but is critical to the operation

of any PSO algorithms that access the entities later.

– Re-initialize state: Some state variables may not be shareable between

heuristics (practically or semantically), because the state is too algorithm-

specific or complex to manage. A good example is particle velocity in a

CPSO that computes a computationally complex acceleration coefficient as

explained in section 2.6.2 in chapter 2. Requiring the HMHH framework or

another heuristic such as DE or GA to maintain such complex state as an

extra step is not practical. The simplest strategy to cope with such complex

state is to reinitialize the state variable of an entity when it is reassigned to

a new heuristic (the candidate solution vector is, however, not re-initialized).

An example would be setting the PSO velocity to zero when an entity is

reassigned to a PSO.

Resetting state information is not ideal since it prevents any learned insights

from being exploited by the heuristic. However, state reinitialization prevents

any bias that may be introduced by other more deterministic methods and is

simple to perform for most heuristics (the mechanism is usually provided as

part of the heuristic’ original algorithm listing).

1This mechanism is more of an implementation concern than a modification of any heuristic’s logic. A

logical architectural choice is to implement such updates as part of the HMHH implementation. Various

object-oriented design patterns [67] could be utilized to enable such a system, including template method,

strategy, and listener. Swan et al. [168] and Woodward et al. [185] show that the composite design

pattern can also be used to implement selection hyper-heuristics.
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3.4.6 Selection Operators for HMHH

The HMHH framework requires that the selection hyper-heuristic logic be supplied as a

configurable component called a selection operator. Different kinds of selection operators

change how heuristics are assigned to entities. Each selection operator may use different

types of feedback, may employ a mix of deterministic or non-deterministic selection mech-

anisms, may possibly utilize internal memory to keep track of good entity-to-heuristic

assignments, and may even apply learning mechanisms to predict good assignments.

This section outlines a number of selection operators for HMHH that have been adapted

from the hyper-heuristic, SI, and EC literature. The following definitions are used:

• The set E contains the parent population of all entities in HMHH. Every entity

ej ∈ E is a candidate solution along with any associated heuristic-specific state.

• ns = |E| is the total number of entities in E.

• The fitness of any entity ej at time t is denoted as fj(t).

• The set H contains one or more heuristics hm ∈ H.

• nh = |H| is the total number of heuristics in H.

• The set sm(t) ⊆ E contains the subset of entities in E that have been uniquely

assigned to heuristic hm at time t. There are nh of these disjoint subsets of E. The

union of all the disjoint sets is equal to E, i.e. ∪nhi=1si(t) = E.

• Qδm(t) is a problem space measure that serves as feedback for the selection operator

to determine the quality of solutions produced by heuristic hm at time t. Qδm(t)

is calculated in different ways by each selection operator.

• nm(t) = |sm(t)| is the number of entities assigned to heuristic hm at time t. The

minimum size of nm(t) at any time t is kept at one, so as to avoid the situation

where Qδm(t) cannot be calculated for heuristic hm because sm is empty.

• E∗(t) ⊆ E is the subset of entities in E that are to be assigned new heuristics

at time t. Membership in E∗(t) is determined by a heuristic selection trigger

mechanism as discussed is section 3.4.4. The size of E∗(t) is in the range {0, ns}
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depending on the trigger type. Entities ej ∈ E∗(t) may have a diverse mix of

existing heuristic assignments, i.e. each ej may form part of any sub-set sm(t).

• The selection operator ς(ej, Qδm(t)) assigns entity ej ∈ E∗(t) to a heuristic hi ∈ H
at time t. The implication is that ς(ej, Qδm(t)) is a set membership function that

may make use of Qδm(t) to assign entity ej to set si.

• Θ(t) = (P1, P2, ... , Pnh) is a list of probabilities of assigning a given entity to each

of the nh heuristics at time t. Selection operators may explicitly calculate and use

Θ(t) as part of the logic of the operator. If Θ(t) is not directly calculated, the

probabilities are implied by the logic of the selection operator.

In the original HMHH algorithm the selection operator is triggered every k iterations.

This thesis extends HMHH to support periodic, stagnation and random triggers as out-

lined in section 3.4.4. The type of trigger that is used determines which subset of entities

E∗(t) ⊆ E will be considered for reassigned by the selection operator. The selection oper-

ator, in turn, assigns all triggered entities to heuristic and could, depending on the exact

selection logic that is employed, assign an entity to the same heuristic that operated

on the entity previously. Periodic triggers place all ns entities in E into the set E∗(t)

to simultaneously be assigned a new heuristic every kth iteration (and leaves heuristic

assignments untouched for the k − 1 iterations between selection periods). Stagnation

and random triggers apply membership functions every iteration to determine which

entities in E should form part of the subset E∗(t) to be assigned new heuristics. The set

E∗(t) may be empty some iterations, indicating that no entities require new heuristic

assignments during those iterations. The type of trigger and the value of the parameter

k for every trigger become configuration parameters for HMHH.

Additionally, this thesis extends HMHH to allow the use of either a global or island

neighborhood topology as discussed in section 3.4.2. In the global topology each heuristic

hm only modifies entities in sm(t), but hm has access to all entities in E. This full

visibility model results in hm immediately observing the effects of all other heuristics in

every algorithm iteration. In the island topology each heuristic hm only modifies entities

in sm(t), but hm only has visibility of entities in sm(t). Changes made by other heuristics

will not be usable by hm until those other entities are assigned to sm(t).
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Heuristic space convergence occurs when all entities are allocated to a single heuristic,

hc ∈ H. Other heuristics hm ∈ H where m 6= c will subsequently have zero assigned

entities. Heuristics with zero entities are unable to ever improve any entities or produce

valid performance scores Qδm(t). Certain selection operators may subsequently be unable

to ever assign any entities to any of the heuristics hm ∈ H where m 6= c. To avoid this

situation, each heuristic maintains a minimum entity count of at least one entity to ensure

that each heuristic always produces a valid performance score, Qδm(t). The minimum

entity count may be higher in the island topology if certain heuristics require a minimum

population size (such as DE [60]).

Heuristic selection operators for HMHH

The following heuristic selection operators for HMHH are examined in this thesis:

1. Fixed selection never changes the original entity allocations, i.e. sm remains con-

stant for each heuristic hm. Probabilities of selection Pm in the list Θ(t) are initially

set to Pm = 1
nh

for t = 0 , which is used to allocate all entities randomly across

heuristics, where-after all Pm in the list Θ(t) are ignored for other iterations.

2. Simple random selection assigns each entity ej ∈ E∗(t) to heuristic hm with

equal probability. The probabilities of selection of every heuristic remain constant,

where each Pm in the list Θ(t) is set to Pm = 1
nh

.

3. Permutation selection is inspired by random permutation descent selection of

Cowling et al. [38]. A randomized bipartite graph is generated that maps every

heuristic hm ∈ H back onto the set of heuristics H, creating nh one-to-one map-

pings between heuristics hi and hj where i, j ∈ {1, ... , nh}. All triggered entities

ei ∈ E∗(t) that are currently assigned to heuristic hi are reassigned to heuristic hj,

as directed by the bipartite graph. Reassigned entities that previously shared a

heuristic hi will share the same new heuristic hj. Isomorphic mappings are allowed

(i.e. where hi is the same as hj) which effectively results in no entity changes oc-

curring for any entities assigned to heuristic hi. Each triggered entity ei currently

assigned to heuristic hi has a probability of Pj = 1 for the bipartite graph-mapped

heuristic hj, while Pm = 0 for m 6= j.
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4. Roulette wheel selection assigns each entity ej ∈ E∗(t) to heuristic hm with a

probability based on the performance of all entities in sm relative to the perfor-

mance of all entities in all other heuristics. The aggregated performance of each

sj, where j = {1, ... , nh}, can be computed in two ways:

• The mean fitness of all entities in the subset sm is

µm(t) =

∑nm
j=1 fj(t)

nm
(3.3)

• The maximum fitness of all entities in the subset sm is used (assuming maxi-

mization), i.e.

Υm(t) = max
j=1, ... ,nm

{fj(t)} (3.4)

The probability of selection of each heuristic hm, namely Pm in the list Θ(t), is

respectively set to either Pm = µm(t)∑nh
l=1 µl(t)

or Pm = Υm(t)∑nh
l=1 Υm(t)

. A new heuristic is

randomly selected for each triggered entity relative to the probabilities of selecting

each heuristic.

Roulette wheel selection using the µm(t) term rewards heuristics that yield good

fitness values for the majority of entities, and punishes heuristics that explore

inferior parts of the search space. Heuristics with smaller and more uniform pop-

ulations where most entities have relatively good fitness have a high probability of

being assigned more entities. Conversely, heuristics with large and diverse popula-

tions tend to have a lower probability of being assigned more entities. The Υm(t)

term rewards heuristics with the best exploitation behavior and does not penalize

exploratory behavior nor large populations.

5. Heuristic tournament selection is inspired by tournament selection in evolution-

ary algorithms [60]. Heuristic selection holds tournaments to select a new heuristic

for each entity ej ∈ E∗(t). The contestants in each tournament is a subset of

heuristics from the heuristic pool H. A tournament set of heuristics, Tj ⊂ H, is

randomly selected for each entity ej ∈ E∗(t). The size of Tj affects the behavior of

tournament selection: a size of one is the same as random selection while a size of

nh is the same as elitist selection. The performance score of each heuristic in the

tournament set, hm ∈ Tj, is computed using either equation (3.3) or (3.4). The
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winner of the tournament for entity ej is that heuristic, hw ∈ Tj, that has the best

µm(t) or Υm(t) score, respectively.

The probabilities of selection, Pm in the list Θ(t), varies per entity and are set to

Pm = 1 for m = w and Pm = 0 for m 6= w. Different tournament sizes in the range

{2, ... , nh} are possible.

6. Entity tournament selection is inspired by tournament selection in EAs [60].

Tournaments are conducted between the entities themselves. For every entity,

ej ∈ E∗(t), a tournament set of entities, Tj ∈ E, is randomly drawn from the

overall population of entities. The entity ew ∈ Tj with the best fitness score fw(t)

is considered the winner. The triggered entity ej under consideration is assigned

the same heuristic as ew, and ew remains unchanged. The probabilities of selection

Pm in the list Θ(t) are set to Pm = 1 for m = w and Pm = 0 for m 6= w and

Θ(t) may vary per entity. Different tournament sizes in the range {2, ... , ns} are

possible.

Entity tournament does not rely on aggregate fitness information of heuristics as

heuristic tournament does. Entities directly mimic the heuristic assignments of

other successful entities via direct peer-to-peer comparison of fitness scores.

7. Ant-inspired rank-based selection [132] is inspired by the fundamental version

of the ant colony optimization meta-heuristic (ACO-MH) [49][50]. Each heuristic

hm is assigned a pheromone concentration ρm(t) as a relevancy score that is used

to calculate Pm in the list Θ(t) using

Pm(t) =
ρm(t)∑nh
l=1 ρl(t)

(3.5)

Roulette wheel selection assigns each entity ej ∈ E∗(t) to a heuristic relative to

the probabilities Pm in the list Θ(t). Initially, each heuristic hm has a pheromone

concentration ρm(1) = 1
nh

. Pheromone levels are updated based on whether the

fitness of each entity ej ∈ sm increased, decreased, or stagnated, i.e.

ρm(t) = ρm(t− 1) +
nm∑
j=1


1.0 if fj(t) improved

0.5 if fj(t) remained the same

0.0 if fj(t) worsened

(3.6)
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Pheromone concentrations are partially evaporated every k iterations to avoid the

build-up of extremely large scores, i.e.

ρm(t)←
∑nh

l=1,l 6=m ρl(t)∑nh
l=1 ρl(t)

× ρm(t) (3.7)

8. Normalized ant-inspired rank-based selection, proposed in this thesis, extends

ant-inspired rank-based by normalizing the rank scores relative to the number of

entities assigned to each heuristic before updating the pheromone, i.e.

ρm(t) = ρm(t− 1) +
1

nm
×

nm∑
j=1


1.0 if fj(t) improved

0.5 if fj(t) remained the same

0.0 if fj(t) worsened

(3.8)

The rest of the selection operator is identical to ant-inspired rank-based selection.

Normalization aims to prevent heuristics with large populations from overpowering

heuristics with fewer entities, especially in situations where heuristics with smaller

populations have a higher concentration of well-performing entities compared to

heuristics with larger relatively poor-performing populations.

9. Ant-inspired fitness proportional selection [132] is identical to ant-inspired

rank-based selection, but ρm(t) is updated using the fitness improvement of entities

ej ∈ sm. For function maximization ρm(t) is updated as

ρm(t) = ρm(t− 1) +
nm∑
j=1

max{0, fj(t)− fj(t− 1)} (3.9)

Ant-inspired fitness proportional selection emphasizes the magnitude of the raw fit-

ness value improvements, while ant-inspired rank-based selection assigns the same

rank value to any fitness improvement regardless of magnitude.

10. Normalized ant-inspired fitness proportional selection, proposed in this the-

sis, extends ant-inspired fitness proportional selection by normalizing the improve-

ment scores relative to the number of entities assigned to the heuristic before

updating the pheromone, i.e.

ρm(t) = ρm(t− 1) +
1

nm
×

nm∑
j=1

max{0, fj(t)− fj(t− 1)} (3.10)
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The rest of the selection operator is identical to ant-inspired fitness proportional

selection. Normalization helps to avoid heuristics with large populations from

overpowering heuristics with fewer entities, especially in situations where the larger

population has a disproportionate number of very poor entities that improve greatly

(as is frequently the case with randomly reinitialized entities that start to converge

on the optimum).

11. Frequency improvement selection is based on Nepomuceno and Engelbrecht’s

frequency-based heterogeneous PSO behavior selection scheme (FB-HPSO) [134].

FB-HPSO selects new particle behaviors based on the frequency with which each

behavior improves the fitness of particles over the previous k iterations. FB-HPSO

is adapted here to select the best heuristic for each entity ej ∈ E∗(t). A frequency

score, χm(t), is calculated for each heuristic hm based on the number of times each

entity ej ∈ sm improved its fitness since the current heuristic was assigned, i.e.

χm(t) =
k∑
i=1

nm∑
j=1

+1 if fj(t− i) improved

0 otherwise
(3.11)

A maximum of k prior iterations are considered to prevent historical feedback

values from overshadowing more recent feedback. A value of k = 10 is used as per

the guidance of Nepomuceno and Engelbrecht [134]. A heuristic’s frequency score,

χm(t), is calculated using only those historical fitness that were produced while the

entity was assigned to the heuristic. Entities ej ∈ E∗(t) are assigned a heuristic

via heuristic tournament selection using χm(t) to determine the winning heuristic.

12. Frequency improvement reinforcement learning selection applies a reinforce-

ment learning approach similar to Narayek [130] and Burke et al. [28]. A rank score

rm is maintained for each heuristic. Heuristics are rewarded or punished based on

the frequency with which entity fitness values improve. Initially, each heuristic hm

has a rank rm(1) = 0. The change in rank, ∆rm(t), is defined as the net count

of how many times entities ej ∈ sm improved compared to remaining the same or

stagnating, i.e.

∆rm(t) =
nm∑
j=1

+1 if fj(t) improved

−1 if fj(t) remained the same or worsened
(3.12)
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Ranks are updated as rm(t) = rm(t−1)+∆rm(t). The maximum rank is rmax = ns

and the minimum rank is rmin = −ns. Every entity ej ∈ E∗(t) is assigned to the

highest ranked heuristic (essentially all other heuristics are on the tabu list as per

Burke’s approach [28]). The probability values of Pm in the list Θ(t) are set to

Pm = 1 for m = r for the highest ranked heuristic, hr ∈ H, while Pm = 0 for m 6=
r. Rank ties are broken randomly. Equation (3.12) is subtly different than equation

(3.11) in that the same or worse performance is punished with a negative score to

avoid monotonically increasing rank values.

13. Fitness proportional reinforcement learning selection is based on a similar

mechanism as frequency improvement reinforcement learning, but uses the mean

change in fitness of entities ej ∈ sm, namely φm(t), to reinforce ranks. For function

maximization, φm(t) is defined as

φm(t) =

∑nm
j=1(fj(t)− fj(t− 1))

nm
(3.13)

and the change in rank, ∆rm(t), for each heuristic hm is

∆rm(t) =

+1 if φm(t) > 0

−1 if φm(t) ≤ 0
(3.14)

yielding a maximum change in rank per iteration for any heuristic of ∆rm(t) = ±1.

Each heuristic’s rank is updated as rm(t) = rm(t−1)+∆rm(t). The maximum rank

is rmax = nh while the minimum rank is rmax = −nh. The rest of fitness propor-

tional reinforcement learning is identical to frequency improvement reinforcement

learning.

Fitness proportional reinforcement learning ranks heuristics relative to the mag-

nitude of entity fitness changes (regardless of the number of improving moves),

while frequency improvement reinforcement learning ranks heuristics relative to

the frequency with which entity fitness values improve (regardless of fitness change

magnitudes).

14. Difference proportional selection [165] by Spanevello and Montes de Oca prob-

abilistically assigns each entity ej ∈ E∗(t) to that heuristic hb that contains the
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fittest entity eb ∈ E, where the probability of reassignment is relative to the perfor-

mance of ej and eb. The probability Pb(t) of reassigning entity ej from the entity’s

currently assigned heuristic hj to the heuristic of the best entity hb at time t is

Pb(t) =
1

1 + exp
(
−β fb(t)−fj(t)|fb(t)|

) (3.15)

where β = 5 as recommended by Spanevello and Montes de Oca. The function Pb(t)

has a sigmoidal shape that enables difference proportional selection to increase the

probability of assigning poor performing entities to hb, and lower the probability

of reassigning well-performing entities to different heuristics. The probabilities of

selection Pm in the list Θ(t) are Pm = Pb(t) for m = b, 1 − Pb(t) for m = j, and

Pm = 0 otherwise. Θ(t) is recomputed for every entity.

15. Competitive population selection is inspired by the Competitive Population

Evaluation (CPE) algorithm for DE by Du Plessis and Engelbrecht [51]. CPE is

adapted here to alter the probability of selecting each heuristic hm based on two

factors: the performance of the best entity assigned to hm, namely eb,m ∈ sm(t),

and the magnitude of the fitness improvement of eb,m. The performance Pm(t) of

hm at time t is defined as

Pm(t) = (∆fb,m(t) + 1)× (RM(t) + 1) (3.16)

where

∆fb,m(t) = |fb,m(t)− fb,m(t− 1)| (3.17)

and

Rm(t) = |fb,m(t)− min
q=1,..,nh

{fb,q(t)}| (3.18)

Higher values for Pm(t) indicate that hm is better suited to receive more func-

tion evaluations at time t than other heuristics with lower values for P(t). The

probabilities of selection Pm in the list Θ(t) is maintained as follows

Pm(t) =
Pm(t)∑nh
q=1Pq(t)

(3.19)

where-after Roulette wheel selection is employed to assign all entities, ej ∈ E∗(t),
new heuristics using Pm(t).
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16. Soft-max selection is based on the soft-max choice rule attributed to Luce [114].

A Gibbs-Boltzmann distribution is used to assign a new heuristic to every entity

ej ∈ E∗(t). Each heuristic hm ∈ H is assigned a performance score of the best

fitness managed by hm, namely Υm(t) as calculated using equation (3.4). All

performance scores across all heuristics are normalized to sum to one to yield

Υnorm
m (t), where

∑nh
i=1 Υnorm

i (t) = 1. The soft-max choice function is applied to the

normalized scores to yield the probability Pm(t) of reassigning entity ej to hm as

follows:

Pm(t) =
eΥnorm

m (t)/τ∑m
i=1 e

Υnorm
m (t)/τ

(3.20)

where the temperature parameter is τ = 1, because all scores are normalized

already. Roulette wheel selection assigns every entity ej ∈ E∗(t) to a heuristic

using Pm(t).

3.4.7 Complementary Heuristics

The facets that impact what are deemed good candidate heuristics to include in the

pool of heuristics are critical to the success of hyper-heuristic approaches. Informally,

heuristics are complementary to each other if each method “covers the weak spots of

the other heuristics”. Grobler [73] discusses how a complementary set of heuristics

under HMHH (for static environments) should compensate for each other’s strengths

and weaknesses.

Peng et al. [147] propose a metric (for static environments) to compare the risk

associated with any two heuristics on a set of problems. Considering a set of problems,

F = {fk|k = 1, 2, ... , n}, and a set of heuristics, H = {hi|i = 1, 2, ... ,m}, the risk

associated with hi on F indicates the likelihood of hi failing on one or more problems fk ∈
F . Assuming equal prior probability P (fk) for all fk ∈ F , the probability, P (hi fails), of

hi failing to solve a problem in F is

P (hi fails on F ) =
1

n

n∑
k=1

P (hi fails to solve fk|fk), fk ∈ F (3.21)

In practice, however, it is non-trivial to define what the “failure” of a heuristic looks

like. Peng et al. propose to compare the risk of heuristics using their solution quality on
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previous representative problem instances. Let qi,k denote the quality of heuristic hi on

problem fk ∈ F . Given two heuristics hi and hj, then hi is less risky than hj if and only if

the conditional probability of hi outperforming hj on F , namely P (qi > qj|F ), is greater

than the conditional probability of hj outperforming hi on F , namely P (qi < qj|F ),

which gives

P (qi > qj|F ) =
1

n

n∑
k=1

P (qi,k > qj,k|fk),∀fk ∈ F (3.22)

and

P (qi < qj|F ) =
1

n

n∑
k=1

P (qi,k < qj,k|fk),∀fk ∈ F (3.23)

with

P (qi > qj|F ) + P (qi < qj|F ) + P (qi = qj|F ) = 1.0 (3.24)

P (qi,k > qj,k|fk) for any two heuristics hi, hj ∈ H can be estimated by running both

hi and hj on some fk ∈ F for si and sj times respectively. This gives si × sj pairs

of solutions, allowing the probability that hi outperforms hj on fk to be estimated by

counting the number of times a solution of hi beats a solution of hj and dividing by

si × sj. This procedure can be repeated for multiple fk ∈ F to yield P (qi > qj|F ).

Peng et al. note that the estimation of P (qi,k > qj,k) is closely related to the statistical

test U in the Wilcoxon rank-sum test [117], which means equations (3.22) and (3.23)

“normalize” the average performance of hi and hj on F without bias to any specific fk.

This allows fair comparisons between algorithms on a class of problems.

Given this reasoning about algorithm risk, Peng et al. [147] elaborate on what a

complementary set of heuristics means (again, for static environments). How can two

constituent heuristics h1 and h2 be chosen for a heuristic pool such that a hyper-heuristic

using both h1 and h2 together yields better performance than any other heuristic h3 ∈ H?

The optimal pool of heuristics can be found by minimizing the probability Pworse that

the hyper-heuristic obtains worse results than h3. If P1,k and P2,k are the probabilities of

h1 and h2 respectively performing better than h3 on problem fk, then this minimization
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becomes

min{Pworse} =
1

n

n∑
k=1

(1− P1,k)(1− P2,k)

= (1− P̄1)(1− P̄2) +
1

n

n∑
k=1

(P1,k − P̄1)(P2,k − P̄2)

(3.25)

where P̄1 = 1
n

∑n
k=1 P1,k and P̄1 = 1

n

∑n
k=1 P2,k. Equation (3.25) shows that larger P1,k

and P2,k imply that h1 and h2 should perform well on the problem set F . Similarly, the

ideal situation would be if (P1,k − P̄1) > 0 when (P2,k − P̄2) < 0 and vice versa. In other

words, for any set of problems F , two heuristics h1 and h2 are complementary on a given

problem fk ∈ F if the performance of h1 on fk is above the “typical” average of h1 on F

when the performance of h2 on fk is below the “typical” average of h2 on F .

Peng et al. [147] show how the above analysis can be extrapolated to finding m

complementary heuristics to include in a hyper-heuristic’s heuristic pool. For any m

candidate heuristics, a pair of heuristics h1 and h2 are established as a basis. Any

subsequent candidate heuristic hc should be complementary to the heuristics already

selected as well as the resulting hyper-heuristic as a whole. The performance of the

hyper-heuristic improves so long as additional complementary heuristics can be identified

and added to the heuristic pool. Tang et al. [169] provide an approach (for static

environments) that extends equation (3.25) to automatically select the optimal pool of

complementary heuristics from a candidate set of m heuristics. The approach employs

as estimated performance matrix (EPM) to construct the optimal pool of heuristics for

a given set of problems F and not a single instance of a problem.

All of the above studies focused on static environments. DOPs are more nuanced

in that the characteristics of the problem may change over time. Consequently, the

complementary nature of the pool of heuristics may also change over time. Further

research should be performed to formally define what a set of “complementary” heuristics

looks like for hyper-heuristics that solve DOPs, and ways to automatically (or at least

through a rigorous manual process) find the right number and set of complementary

heuristics to include in the heuristic pool of a hyper-heuristic.
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3.5 Related Approaches

A core function of selection hyper-heuristics is to continuously adapt the optimization

algorithm while it is running to yield increased performance over using any of the heuris-

tics in isolation. The goal of dynamically modifying the algorithm at run-time places

selection hyper-heuristics in the category of parameter control methods. In the recent

survey by Karafotias et al. [97], a number of parameter control adaptation approaches

are reviewed. Burke et al. [24] also review a variety of parameter control adaptation

methods that have similar aims to selection hyper-heuristics.

Burke et al. [24] consider hyper-heuristics to be different than other control adapta-

tion mechanisms. Hyper-heuristics unify the most promising ideas in the CI field (such

as machine learning and meta-heuristic-based optimization methods) with the wealth of

human-created insights that have been gathered across various problem domains over

decades. Hyper-heuristics have the goal of solving complex real-world problems in a

more general fashion, to produce reusable technologies easier and, importantly, to incor-

porate as much human insight as possible without resorting to “reinventing the wheel

with machine learning” in cases where prior domain knowledge exists.

The selection hyper-heuristics employed in this thesis manage a pool of heterogeneous,

independent, and self-contained heuristics that are treated as separate “black-box” opti-

mization methods. A heuristic may be as simple as a Gaussian mutation operator, or be a

complex meta-heuristic implementation that employs state-of-the-art optimization tech-

niques that contain bespoke algorithm parameters, design decisions, and self-adaptation

mechanisms. Each heuristic comprises of various components that have been proven to

work well together, either from empirical performance studies and/or human curation.

The complexity inherent to each heuristic is fully encapsulated inside the heuristic, i.e.

a hyper-heuristic has no knowledge of the low-level details of any heuristic. Instead, a

hyper-heuristic relies solely on performance feedback from heuristics operating on the

problem domain to decide which heuristics to apply next. The hyper-heuristic can focus

on giving the most promising heuristics every opportunity to succeed, while reducing the

computational effort wasted on inferior heuristics. In a DOP, the combination of which

heuristics are deemed “most promising” is dependent on time t.

The paragraphs below briefly outline some of the main approaches in the SI and EA
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fields that have similar goals to selection hyper-heuristics.

Parameter control (PC) for EAs [57][113] optimize various EA parameters at run-

time. Karafotias et al. [97] classify PC mechanisms into three categories:

1. Parameter specific methods that adapt specific EA parameters such as population

size, variation, selection, fitness function modification, or parallel EA parameters.

2. Multiple parameter ensembles that combine multiple heterogeneous control mech-

anisms into either a) variation and population, or b) variation and selection com-

binations.

3. Parameter independent methods applicable to any (numeric) EA parameter.

Adaptive operator selection (AOS) [118], a specific type of PC, continuously selects the

most appropriate EA variation operator to use at time t. A credit assignment mechanism

rewards different EA variation operators based on observed quality. Sources of feedback

can include individuals’ fitness or fitness improvement, diversity measures, or EA-specific

measures such as offspring survival and population tenure of individuals [97].

Adaptive memetic algorithms (MA) [101] is a hybrid EA approach that self-adaptively

combines population-based global search methods together with individual local learning

approaches. Ong et al. [140] provide a classification of adaptation mechanisms for MAs.

Self-learning PSO [107][179] and heterogeneous PSO [132][134] are examples of tech-

niques that adapt the search behaviors of individual particles in a PSO scheme based on

performance feedback received during the search.

Algorithm portfolios, first proposed by Huberman [86], run different algorithms con-

currently. A time-sharing mechanism determines how much computation time each algo-

rithm should receive. Peng et al. [147] observe that the performance of various heuristics

may vary greatly between different problems, implying a risk in selecting any particu-

lar algorithm. Peng et al. developed a population based algorithm portfolio (PAP)

that offsets the risk of spending too much computational budget on inferior methods

by diversifying the optimization process across multiple SI and EC approaches. Con-

stituent algorithms in PAP interact on a regular basis by migrating entities between

sub-populations. For each constituent algorithm Ai, the sub-populations of all other

remaining constituent algorithms are combined and the best e entities are copied into
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the population of Ai. The worst e entities of the population of Ai are subsequently

discarded.

Ensemble methods diversify the optimization process by utilizing multiple search

strategies and/or parameters. Wu et al. [187] present a high-level ensemble of DE

variants (EDEV) that divides a population of individuals into smaller indicator sub-

populations and a larger reward sub-population. Each DE variant manages an indicator

sub-population. The DE variants compete against each other using performance on

their respective indicator sub-populations. After a set number of generations, the best

performing DE variant is assigned the reward population, thereby allowing the best DE

variant to command the most computational resources until the next selection phase.

EDEV is inspired by multi-population ensemble DE (MPEDE) [186] that uses a similar

approach on low-level DE mutation strategies.

3.6 Summary

Hyper-heuristics as a field offers a promising control adaptation approach that combines

prior human domain understanding together with machine learning techniques to yield

more generally applicable optimization methods. Hyper-heuristics are classified broadly

into selection hyper-heuristics that continually select the next best heuristic to apply

to a problem, and generative hyper-heuristics that evolve reusable heuristics that are

tailored for either a single problem instance or a class of problems.

Heuristic performance feedback may be used by hyper-heuristic approaches to learn

the most appropriate combination and/or sequence of heuristics to apply at time t.

Learning can occur in three major ways: off-line if a sufficient number of example prob-

lem instances and associated feedback are available; on-line while the hyper-heuristic is

solving the problem through (self-)adaptation based on feedback received; or no learning

is performed by the hyper-heuristic which instead relies on fixed internal selection logic

to assign heuristics based on the received feedback.

A hyper-heuristic never operates directly on the candidate solutions in the problem

space, but instead searches for the most suitable method to apply to the problem next.

Candidate solutions can be modified by either constructive heuristics that build up a final

solution from an empty state, or perturbative heuristics that mutate existing candidate
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solutions in the hopes of improving those solutions.

The remainder of this thesis focuses on the HMHH by Grobler et al., as outlined in

section 3.4.1, as an example of a multi-point search selection hyper-heuristic with on-line

learning and perturbative heuristics. HMHH is extended with the notions of neighbor-

hood topologies as well as heuristic selection triggers. The island topology restricts each

heuristic to operate completely independently, only allowing information to be shared

between entities if they are operated on by the same heuristic and form part of the same

sub-population. The global topology allows information of all entities to be visible to

all heuristics at all times, even though each heuristic still only modifies the entities that

have been assigned to the heuristic. The original HMHH algorithm supports a periodic

trigger which performs heuristic selection for all entities every k iterations. This thesis

extends HMHH with a stagnation trigger that changes an individual entity’s heuristic

if the entity’s performance does not improve over k iterations. A random trigger is

also introduced that probabilistically changes an entity’s heuristic approximately every

k iterations.

The next chapter defines various control methods and establishes the baseline perfor-

mance of each control group to ground the analysis of all investigated hyper-heuristics

against.



Chapter 4

Estimation of Performance Baselines

for Control Groups

“A goal properly set is halfway reached.”

– Abraham Lincoln

This chapter establishes the performance of various control methods, which grounds

the analysis of all investigated hyper-heuristics against an objective set of baselines. The

control methods alleviate concerns around whether or not any increased performance

by hyper-heuristics is due to intelligent selection, or simply due to the use of multiple

sub-populations, multiple methods, or random heuristic assignments. The approach

described below serves as the foundation for all experimental work in the rest of the

thesis.

4.1 Introduction

To objectively measure whether any hyper-heuristic improves performance significantly,

the baseline performance and behavior profiles of various control methods need to be

established first. Section 4.2 proposes a new performance measure for algorithms aimed

at solving DOPs. The proposed measure does not assume normally distributed perfor-

mance data across an algorithm run, is resilient against fitness landscape scale changes,

better incorporates performance variance across multiple fitness landscape changes, and

109
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allows easier algorithm comparisons using established nonparametric statistical methods.

Section 4.3 outlines the experimental procedure used to establish all performance

baselines in detail, including the definition of control groups, how the DOP algorithm

building blocks that were outlined in section 2.5 are incorporated into the approach, the

exact parameter values and settings of the heuristic algorithm implementations used in

experiments, the moving peaks benchmark implementation details, and the considera-

tions around assessing algorithm performance.

Section 4.4 presents the results of experimentation as a series of three distinct re-

search questions that, respectively, characterize the newly proposed error measure, and

establishes the performance baselines of the individual heuristics and speciated versions

of the heuristics using the new measure. Section 4.5 concludes the chapter.

4.2 Measuring and Comparing DOP Performance

Section 2.7.2 discussed the most widely used performance measures for DOPs, along with

their relative strengths and weaknesses, as reviewed in literature [40][119][125][136][151].

A summary of the shortcomings of the most commonly reported measures in literature

is that, generally, most existing measures

• rely on non-normalized fitness or error values that make it hard to compare methods

across landscape changes, problem instances, or problem types due to possible

fitness scale changes,

• depend on simple aggregations and parametric statistical methods (such as the

mean or standard deviation) on measurement data that does not necessarily follow

a Gaussian distribution,

• do not consider the variance of measured performance values over time for an

algorithm run,

• do not allow for simple statistical significance testing using established methods

such as the nonparametric tests outlined in section 2.7.4, and

• penalize algorithms that show more exploratory behavior.
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This thesis proposes a new performance measure called relative error distance, or

Pr, that helps to address the short-comings of existing performance measures. Relative

error distance shows how close to perfect an algorithm performs across all nc performance

values being measured, where nc is the total number of environment change events that

occur over time in an algorithm run. Pr is defined as

Pr(b) =

√√√√ nc∑
i=1

(1− bi)2

|d|
(4.1)

=

√√√√ nc∑
i=1

(1− bi)2

√
nc

where the vector b = (b1, b2, ... , bnc) represents all measured performance values of a

single execution (or run) of an algorithm. The components of b, namely bi, consist of

the nc different relative error values, PRE(t) (as defined in equation (2.18)), obtained just

before the end of each change period. The nc-dimensional vector d = (1, ... , 1) represents

the best possible performance for each search landscape, i.e., where the PRE(t) = 1, ∀t =

1, ... , nc. Since all nc components of d are equal to one, the magnitude of d is |d| = √nc.
The Pr measure considers the distance between the vector b and the vector d. The

definition of Pr in equation (4.1) relies on the L2 norm (Euclidean distance). Beyer et

al. [9] show that the concept of distance in high dimensional spaces may not even be

meaningful. Specifically, they show that the ratio between the nearest and the farthest

elements approaches one in higher dimensional spaces for most distance measures and

reasonable data distributions. Aggarwal et al. [1] demonstrate that the meaningfulness of

the Lk norm is sensitive to larger values of k, and conclude that the L1 norm (Manhattan

distance) or even fractional Lk norms (where k ∼ [0, 1]) may be preferable for very

large dimensions. The experiments in this thesis use the L2 norm, since the number

of dimensions of Pr is relatively low (i.e., only the PRE(t) value of the final iteration of

each search landscape resulting from environment changes are considered). In situations

where a large number of comparison points are used, it may be preferable to redefine the
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relative error distance in terms of the L1 norm as follows:

Pr,L1(b) =

nc∑
i=1

(|1− bi|+ |ri|)

nc
(4.2)

where the vector r = (r1, ... , rnc) is the rejection vector that results when b is projected

onto d. If d∗ is the projection vector of b onto d, then the rejection vector, r, is the

orthogonal vector that satisfies r = b - d∗ [148].

Figure 4.1 illustrates how Pr works in a two-dimensional space. Sub-figures 4.1a and

4.1b show the operation of the Pr measure using the L2 and L1 norm, respectively. Each

axis represents the measured PRE(t) value for every landscape resulting from environ-

ment changes, as measured at the iteration just before an environment change occurs.

The label D in the figure shows point d = (1, 1), which is the best possible point of

performance of all PRE(t) scores across all periods of interest.

In sub-figure 4.1a, the points representing two algorithm runs are represented by

labels A and B for points a = (ai, aj) and b = (bi, bj), respectively. An algorithm’s

performance may be inconsistent across different environment changes. One algorithm

might perform well in certain search landscapes and badly in others, while another

algorithm might show little variation in performance over time (regardless of whether

performance is good or bad). Algorithm A clearly performed very well in period i, but

performed poorly in period j. Algorithm B did relatively well in period i (although

worse than A), and very well in period j. The dashed line segments AD and BD show

the Euclidean distance to point d that Pr relies on. The shorter line segment BD shows

that, across both periods i and j, algorithm B performed better than A. A geometric

interpretation of the performance variance of algorithms is possible:

• High variance in PRE(t) values across dimensions results in the nc dimensional

point of the algorithm’s performance lying further away from the diagonal line. As

an example, point A in figure 4.1a shows good performance in dimension i and bad

performance in dimension j. Consequently, the line segment AC is relatively long.

• Low variance in PRE(t) values across dimensions leads to the nc dimensional point

of the algorithm’s performance lying near the diagonal line. For example, point B
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(a) Pr defined in terms of the L2 norm.

(b) Pr defined in terms of the L1 norm.

Figure 4.1: Illustration of how Pr works on two hypothetical algorithm runs A and B over

two landscape change periods i and j using, respectively, the L1 and L2 norms.
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in figure 4.1a has relatively similar values for dimensions i and j and, consequently,

the line BE is relatively short.

The Pr measure captures the variance in the performance of an algorithm across different

change landscapes better than simple statistical aggregations such as the mean.

In sub-figure 4.1b, the Pr,L1 value for algorithm A at point a = (ai, aj) consists of

the average of the absolute differences between the components of a and the components

of d, added to the average of the components of the rejection vector of a, namely

ra = (ra,i, ra,j). The Pr,L1 value for algorithm B at point b = (bi, bj) is calculated in a

similar way using the rejection vector for b, namely rb = (rb,i, rb,j). The rejection vector

for algorithm A is much larger than the rejection vector for algorithm B, which results

in A having a larger Pr,L1 value than B.

Pr has the following characteristics that make it a desirable measure for comparing

DOP-focused algorithms:

1. Normally distributed data values are not assumed: The Pr measure does

not assume that the measured performance data has a Gaussian distribution (or

any other specific distribution), building on the findings of many recent studies that

indicate how parametric statistical procedures are frequently the wrong choice to

evaluate the performance of CI algorithms [47][48][68][69][70]. Instead, Pr relies on

the nc-dimensional distance of all measured points to a common, objective point of

reference. Using a norm such as the Euclidean distance metric results in a scalar

value that produces an aggregating effect, without the disadvantage of skewing

results by assuming normally distributed data.

2. Normalize errors with varying scales: The PRE(t) measure transforms the

raw error value at time t to fall in the range [0, 1] relative to the minimum and

maximum possible fitness values at time t. The value PRE(t) = 1 always represents

perfect performance and PRE(t) = 0 indicates the worst possible performance,

regardless of the value of the global optimum at time t. The Pr measure shares in

the benefits of using PRE(t) (as discussed in section 2.7.2), namely that PRE(t) is

resilient to fitness magnitude differences across different landscapes, PRE(t) allows

for easier comparison between maximization and minimization problems, and that

PRE(t) is unbiased towards algorithms that show more exploratory behavior. The
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sequence of PRE(t) values resulting from each subsequent search landscape between

environment changes can be compared against each other more objectively.

3. Better representation of performance variance over time: Each run of a CI

algorithm on a DOP yields a sequence of interrelated search landscapes. An algo-

rithm might do relatively well in certain landscapes, but perform poorly in a subset

of landscapes in a run. Existing measures that rely on simple aggregations, such

as the mean over all considered points, may lose important variance information

across landscape changes. Considering variance using methods such as the standard

deviation, results in a second scalar value to report. For Pr, the nc distinct PRE(t)

measurements are not simply averaged to yield an average performance score. In-

stead, the joint impact of all nc of the PRE(t) values are considered individually

by examining the nc-dimensional distance between the vector of PRE(t) values and

the point of best possible performance. Any volatility/variance in PRE(t) values is

better captured by Pr as a single scalar value.

For example, consider three algorithm runs with PRE(t) values of a1 = [0.8, 0.8],

a2 = [0.9, 0.7], and a3 = [1, 0.6], where each run has two distinct PRE(t) values for

each of two environment landscapes. All three runs have the same arithmetic mean

value of 0.8, but the Euclidean distances to the point (1, 1) are 0.2828, 0.3162, and

0.4, respectively. Consequently, the Pr scores, as calculated using equation (4.1),

are 0.2, 0.2236, and 0.2828 for a1, a2, and a3, respectively. The Pr measure better

captures the variance of the PRE(t) samples over time, whereas the arithmetic

mean loses all variance information. Figure 4.2 illustrates the outlined example.

4. Sound comparisons using proven statistical procedures: Pr allows multiple

relative error values to be combined into a single value that allows for easy compar-

ison and significance testing. The point d represents perfect performance across

all nc periods being considered. The Pr measure transforms all nc dimensions of

b into a single scalar number that represents the “distance that b is from perfect

performance” as measured in absolute terms. Multiple Pr values can be compared

directly, and the scalar nature of Pr allows for statistical significance testing using

tried and true procedures such as the methods described in section 2.7.4.
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Figure 4.2: Illustration of how Pr works in two dimensions, i.e., over two landscape change

periods i and j.

Considering the facets that are deemed to be desirable in DOP performance mea-

sures (as discussed in section 2.7.1), the Pr measure is intuitive, gives equal consideration

to all nc search landscapes, treats maximization and minimization problems uniformly,

contains no subjective parameters, is protected against ill-defined results, does not as-

sume normally distributed measurement data, is robust against fitness scale changes,

incorporates variance of performance over time, does not penalize exploration, and re-

ports performance as a scalar value that can more readily be compared to Pr scores of

other algorithms outside of a study. Section 4.4.2 empirically validates whether the data

assumptions for Pr do, in fact, hold for actual algorithm performance data.

The proposed measure does not assume normally distributed performance data across

an algorithm run, is resilient against fitness landscape scale changes, better incorporates

performance variance across multiple fitness landscape changes, and allows easier algo-

rithm comparisons using established nonparametric statistical methods.
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4.3 Experimental Procedure

The goal of this thesis is to investigate how and why certain HMHH selection operators

are able to outperform the low-level heuristics they manage. The term hyper-heuristic

is used interchangeably with “HMHH selection operator” in this chapter. This section

outlines the overall experimental approach used in this thesis to evaluate the performance

and behavior of an assortment of heuristic and hyper-heuristic algorithms.

Section 4.3.1 discusses how the DOP algorithm building blocks outlined in section

2.5 are incorporated into the considered hyper-heuristic approach. Section 4.3.2 outlines

a selection of representative meta-heuristics from the SI and EC fields that make up

a pool of nine heuristics. Suitable parameter choices are motivated for each heuristic.

Considerations for the benchmark function generator and performance measures are

discussed in sections 4.3.3 and 4.3.4, respectively. Section 4.3.5 provides an overview of

the control methods used in experiments in this thesis. Finally, section 4.3.6 explains the

experimental method that is used in the empirical analysis of algorithm performance,

and includes a motivation around what sampling sizes to employ based on the use of

specific statistical methods and procedures.

4.3.1 Incorporation of DOP Algorithm Building Blocks

Section 2.5 presents the building blocks used by successful optimization algorithms to

better solve DOPs. The following design decisions are made around support for each of

the building blocks in all experiments in this thesis:

• Detection of environment changes is out of scope in this thesis to avoid any biased

interpretation of performance results due to inaccurate change detection strategies.

In this thesis, changes occur periodically at regular known intervals, as stipulated

in section 2.4. All algorithms are notified when environment changes occur.

• Each heuristic can react to change using any suitable refreshing strategy as set out

by the inventors of each given heuristic. For example, the PSO implementations

in this thesis rely on the gbest topology [59] which connects all particles using a

star topology. The gbest topology allows all particles to access information about

the overall global best particle. Consequently, the gbest position memory of each
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entity needs to be re-evaluated after environment changes to refresh any outdated

information. Furthermore, static configuration information about entities is shared

between heuristics, and any dynamic state is reinitialized when an entity is assigned

a new heuristic, as discussed in section 3.4.5.

The HMHH framework’s reaction to change is simply to carry on evaluating feed-

back from heuristics at time t and to allocate entities accordingly using the config-

ured selection operator. In this thesis, the hyper-heuristics are problem-agnostic

and subsequently carry no problem-specific knowledge (strictly speaking, the hyper-

heuristic layer is not even aware that the underlying problem is dynamic).

Recent trends identified by Swan et al. [168] reveal that an increasing number of

hyper-heuristic practitioners consider the use of environment change information as

viable knowledge that may be made known to the hyper-heuristic layer, as discussed

in section 3.3.2. Access to such types of insights would allow hyper-heuristics that

rely on memory and learning mechanisms to react to changes. Informing the hyper-

heuristic about environment changes is, however, out of scope in this thesis.

• Memory management is handled at both the problem space and the heuristic space

levels. In the problem space, methods used in this thesis rely on the implicit

memory that inherently forms part of population-based methods, such as those

found in EC and SI approaches. The use of explicit memory schemes (such as

maintaining a look-up table of previous good solutions and the problem space

conditions that led to them) would produce biased performance in highly cyclical

environments, since performance would be a function of memory size, memory

update strategy, and problem dynamics. Consequently, explicit memory schemes

are out of scope in this thesis.

Similarly, heuristics that rely on the prediction of environment changes are not

used to avoid any biased interpretation of performance results. Nguyen et al.

[136] highlight a number of studies that show how the wrong training data, lack

of training data, or the very nature of the DOP could all lead to extremely poor

performance by wrongly biasing the search to certain areas. The goal of this study

is to investigate a broadly applicable hyper-heuristic approach, and not to specialize

the method to a subset of DOP types that exhibit predictable behavior.
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At the heuristic space level, many of the HMHH selection operators in this thesis

maintain implicit memories of learned behavior, for example pheromone concen-

trations or rank values. This implicit memory is critical to the success of intelligent

hyper-heuristics.

• Multiple sub-populations : Heuristics in HMHH could potentially be meta-heuristics

that each maintain their own sub-populations. In the global topology such sub-

population assignment information is managed as state variables, as discussed in

section 3.4.5. Heuristics that manage multiple sub-populations face challenges in

the island topology. The heuristic’s designers may not have provided a mechanism

to alter the heuristic’s sub-populations apart from the normal operation of the

heuristic. HMHH could assign entities to such a heuristic without the heuristic

being able to correctly associate the new entities to any heuristic-specific sub-

populations. For certain heuristics it may be tedious or even impossible to add or

remove entities at will. A simple example is the Von Neumann particle neighbor-

hood structure in PSO [59] that is very specific in how entities are related.

To prevent bias in comparing the island and global neighborhood topologies, only

single-population heuristics are used in the heuristic pool in this thesis. While this

excludes current state of the art multi-population methods presented in section

2.6, it does allow a more fair performance and behavior comparison between the

island and global topologies.

• Self-adaptive heuristics use feedback to dynamically adapt their strategies through-

out the search to, for example, adopt a more exploratory or exploitative behavior.

Section 2.6 provides many examples of SI and EC methods that alter their be-

havior based on feedback received from the problem space. Self-adaptive methods

such as these are not used as part of the heuristic pool in this thesis to prevent the

self-adaptive mechanisms of the heuristics from “competing with” or counteracting

the operation of the hyper-heuristic.

The use of self-adaptation in the heuristic pool together with the adaptation at

the hyper-heuristic level has intuitive potential, and methods that optimally com-

bine both adaptation approaches encompass a promising area of research. Future
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studies should investigate the trade-off and synergies between the two levels of

self-adaptation, especially in the management of which parameters are adapted,

and in what manner.

The reasons above exclude many state-of-the-art self-adaptive and/or multi-population

methods discussed in section 2.6. However, the main goal of this thesis is to investigate

how well various hyper-heuristic selection operators can continually balance computa-

tional resources across different population-based meta-heuristics in order to solve a

DOP better than the individual meta-heuristics can. The exact makeup of a comple-

mentary heuristic pool is complex, as discussed in section 3.4.7, and the overall aim of

studying the performance and behavior of different heuristic selection mechanisms is not

compromised by excluding (self-)adaptive heuristics.

4.3.2 Heuristic Pool Algorithms

Section 3.2.1 discussed why static parameter tuning is generally not effective for algo-

rithms that solve DOPs. Care should be taken not to exacerbate the patchwork problem

when dynamically altering the optimization algorithm over time. HMHH is an exam-

ple of an approach that directly addresses the patchwork problem by grouping together

well-proven “units of functionality” (i.e. heuristics) into a coherent system that dynam-

ically adapts the optimization process based on continual feedback from the problem

environment.

As outlined in section 3.4.7, it is a non-trivial task to construct a pool of heuristics

that are complementary to each other when the aim is solve DOPs. The heuristic pool

in this thesis consists of nine meta-heuristics which, together, comprise of diverse meth-

ods that approach exploration and exploitation in different ways. No static parameter

tuning is performed on any heuristic for any of the 27 MPB environments or any hyper-

heuristic for the reasons outlined above. Parameter values for each meta-heuristic are

instead chosen based on studies found in literature for each method, as explained below.

Setting of parameter values relies on a priori knowledge about the domain, such as the

dimensions, search bounds, constraints, and any other information that practitioners

realistically have access to. This is consistent with the recent views surrounding the role

of hyper-heuristics as stated by Swan et al. [168].
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The heuristics outlined below are configured in the same way across all control groups

and the heuristic pools of all hyper-heuristics in all experiments in this thesis.

Charged PSO and Atomic PSO

Section 2.6.2 provided an overview of charged particle swarm optimization (CPSO) and

atomic particle swarm optimization (APSO). Both algorithms use charged particles with

modified PSO velocity equations that rely on Coulomb force-like repulsion to maintain

diversity throughout the run. The major difference between APSO and CPSO is that

100% of the CPSO swarm contains charged particles while only 50% of the APSO swarm

is charged. CPSO has a greater focus on exploration and is stronger in environments

with severe spatial changes, while APSO balances exploration and exploitation and is

better in environments with severe temporal changes [12][14]. Both variants are included

in the heuristic pool to establish how different hyper-heuristics make use of the different

behaviors at time t.

The CPSO and APSO heuristics generally follow the standard PSO algorithm shown

in algorithm listing 3 in chapter 2 with the appropriate modifications to particle velocity

updates. Algorithm listing 5 shows the APSO and CPSO algorithms with the required

velocity update modifications for easy reference. The following specific implementation

choices are made:

• The standard PSO parameters are set to the generally acceptable values of c1 =

1.496180, c2 = 1.496180, and w = 0.729844 as recommended in [55][59]. These

values are known to be stable configurations [34]. The gbest neighborhood topology

is used, which ensures that all entities are always visible to each other.

• Both the CPSO and APSO heuristic implementations use modified PSO veloc-

ity updates that include an acceleration term calculated using equation (2.6), as

outlined in section 2.6.2.

• Blackwell and Branke [16] explain that extremely large acceleration terms (i.e.

equation (2.5)) are possible if two charged particles get too close to each other.

They propose clamping the acceleration term as a solution. Both the CPSO and

APSO implementations clamp the acceleration term components (in each dimen-
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sion) of equation (2.5) to the range [−100, 100]. This limits the maximum acceler-

ation in any dimension to the extent of the domain’s magnitude.

• In addition to the standard PSO parameters, CPSO and APSO have parameters

for the charge value, Q, the core limit, Rc, and the perception limit, Rp, of each

particle. These parameters are domain dependent. Through inspection of equation

(2.6) in the context of the domain size of (0, 100)nx ⊂ Rnx , the values of Rc =

1, Rp = 10, and Q = 5 are reasonable choices for this problem domain. With

these values, any two charged entities separated by distances in the range [Rc, Rp]

will have matching acceleration values (per dimension) in the range [0.025, 25],

while any two charged entities separated by a distance less than Rc will have an

acceleration value capped at 25 per dimension.

The value of 25 is chosen arbitrarily as a measurement one quarter the size of

the domain. Ultimately, the PSO parameters are problem dependent and careful

consideration should be given to each domain.

• The standard PSO approach of using an inertia weight is used in velocity updates,

as shown in equation (2.7).

The stand-alone version of APSO and CPSO are respectively labeled as APSO and

CPSO in experiments. Additionally, S APSO and S CPSO represent the speciated

versions of APSO and CPSO, respectively, as discussed above.

Quantum PSO

Quantum particle swarm optimization (QPSO) is described in section 2.6.2, and relies

on quantum individuals that are randomly reinitialized inside a hyper-sphere of radius

rcloud. Setting the quantum radius to rcloud = 25 results in quantum particle displacement

behavior that is comparable to the acceleration experienced between charged particles

that are a distance of Rc apart in APSO and CPSO. Recently, Harrison et al. [79]

found that relatively small values of rcloud ≈ 1 help QPSO exploit the problem better,

which opens new possibilities for QPSO beyond the classic envisioned usage as a mostly

exploratory heuristic.
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Algorithm 5 Charged particle swarm optimization algorithm.

Initialize an nx-dimensional swarm C(0) of ns particles

Let f be the optimization function (assume maximization)

Let yi be the personal best position of particle i (initialized to xi(0))

Let ŷi be the neighborhood best position of particle i (initialized to xi(0))

Let vi be the velocity vector of particle i (initialized to 0)

repeat

for each particle i = 1, ... , ns do

//Set the personal best position, yi, of each particle i

if f(xi) > f(yi) then

yi = xi

end if

for each particle j containing particle i in their neighborhood do

//Set the neighborhood best position, ŷi, of each particle i

if f(yi) > f(ŷj) then

ŷj = yi

end if

end for

end for

for each particle i = 1, ... , ns do

Calculate the acceleration, ai, of particle i using equation (2.6)

Update the velocity, vi, of particle i using equation (2.7)

Update the position, xi, of particle i

end for

until a stopping condition is met

Return the global best solution as the most optimal solution

For the experiments, the labels QPSO1 and QPSO25 represent QPSO configured

with rcloud = 1 and rcloud = 25, respectively. The intention is that QPSO1 serves as

a local exploiter while QPSO25 is set to approximately match the exploitation capa-

bilities of CPSO and APSO. The speciated versions are denoted as S QPSO1 and

S QPSO25, respectively. The standard PSO parameters values are used in all QPSO

variations, namely c1 = 1.496180, c2 = 1.496180, and w = 0.729844 as recommended in



Chapter 4. Estimation of Performance Baselines for Control Groups 124

Algorithm 6 Quantum particle swarm optimization algorithm,

Initialize an nx-dimensional swarm C(0) of ns particles

Let f be the optimization function (assume maximization)

Let yi be the personal best position of particle i (initialized to xi(0))

Let ŷi be the neighborhood best position of particle i (initialized to xi(0))

Let vi be the velocity vector of particle i (initialized to 0)

repeat

for each particle i = 1, ... , ns do

//Set the personal best position, yi, of each particle i

if f(xi) > f(yi) then

yi = xi

end if

for each particle j containing particle i in their neighborhood do

//Set the neighborhood best position, ŷi, of each particle i

if f(yi) > f(ŷj) then

ŷj = yi

end if

end for

end for

for each particle i = 1, ... , ns do

Update the velocity, vi, of neutral particle i using equation (2.7)

Update the position, xi, of particle i using equation (2.8)

end for

until a stopping condition is met

Return the global best solution as the most optimal solution

[55][59]. The QPSO algorithm is outlined in algorithm listing 6.

Random Immigrant Genetic Algorithm

The random immigrant genetic algorithm (RIGA), discussed in section 2.6.1, is a method

that constantly introduces new genetic material in an effort to maintain higher diversity.

RIGA represents a different type of diversification operator that uses hereditary informa-

tion instead of relying on trajectory information as DE or the various PSO variants do.
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The key parameter is the replacement rate, Rr, of existing entities with randomly reini-

tialized entities. The recommendations of Grefenstette [72] and Cobb and Grefenstette

[35] are to use a replacement rate of Rr = 0.1, a very low mutation rate of Mr = 0.001

to prevent too much perturbation of solutions, and a crossover rate of Cr = 0.6.

Algorithm listing 7 gives the outline of the variant of RIGA used in the experiments

of this thesis. A number of design decisions are made to allow RIGA to operate in

HMHH, namely:

• The envisioned role of RIGA is to continually enhance diversity of the HMHH

framework as a whole. Consequently, it is important that RIGA not jeopardize

the existing best solution at time t. Elitism is used to promote the top solution

managed by RIGA to the new generation without any modification.

• Two-point arithmetic crossover, as proposed by Michalewicz [124], is used to allow

RIGA to work with real-valued candidate solution vectors. Each entity in the

RIGA population is considered as a main parent. A crossover rate of Cr = 0.6 is

used to decide if a parent will engage in reproduction. If crossover is triggered,

the other parent is selected randomly from the population and a single offspring is

created.

• Two different replacement strategies are used to decide if an offspring should replace

the main parent in the population. Fittest replacement selects the fitter of the main

parent or the offspring to add to the next generation. Proportional replacement

uses roulette wheel selection to decide whether the main parent or the offspring

survives based on probabilities proportional to each entity’s fitness.

Two versions of RIGA are included in the heuristic pool using the notation RIGA B

and RIGA P to denote RIGA with fittest replacement and proportional replacement,

respectively. The labels of the corresponding speciated versions are S RIGA B and

S RIGA P, respectively.

Differential Evolution

Although classic differential evolution (DE) has been shown to perform poorly in DOPs,

numerous extensions have made it possible to use DE on DOPs. Many of the approaches
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Algorithm 7 Random Immigrant GA heuristic

Let t = 0 count the generations

Let Rr = 0.1 be the replacement rate

Let Mr = 0.001 be the mutation rate

Let Cr = 0.6 be the crossover rate

Initialize an nx-dimensional population C(0) of ns individuals

while a stopping condition is not met do

Evaluate f(xi(t)) of any unevaluated individual i in C(t)
Use elitism to promote the top individual in C(t) to C(t+ 1)

Randomly replace a Rr proportion of C(t) with reinitialized individuals

Determine if each individual will reproduce using a crossover rate of Cr

Perform reproduction using two-point arithmetic crossover to create offspring oi(t)

Mutate the offspring oi(t) using a mutation rate of Mr

Evaluate the fitness f(oi(t)) of the offspring

Select a new population C(t+ 1) using either fittest or proportionate replacement

t = t+ 1

end while

Return the most fit individual xi(t) from C(t) as the optimal solution

were discussed in section 2.6.1. DE is included in the heuristic pool with the intention

that DE will act as a focused exploiter heuristic. The expectation is that the inclusion

of DE would foster much faster convergence after environment changes.

The algorithm for the adaptive DE heuristic is outlined in algorithm listing 8. The

following design decisions are taken for DE:

• Scaling factor β: Segura et al. [158] show how state-of-the-art trial vector genera-

tion methods are ineffective in situations where high diversity is needed to maintain

good exploration. They show that drawing the value for the DE mutation scal-

ing factor, β, from a Cauchy or Gaussian distribution frequently yields superior

results to setting the value based on feedback from the search. Consequently, the

DE implementation in this thesis uses a dynamic scaling factor, β, that is drawn

from a Cauchy distribution, C(0.5, 0.1), with a location factor of 0.5 and a scale

parameter of 0.1 as recommended by Segura et al. [158].
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• Probability of Crossover Cr: A low Cr value generally decreases convergence

speed yet increases robustness, while a larger Cr value often results in faster con-

vergence [60]. Islam et al. [90] propose a crossover probability adaptation scheme

that continually draws the crossover rate from a Gaussian distribution. Islam et

al. show that repeatedly sampling Cr values in this manner yields superior results

compared to using static values or using many well-known self-adaptive schemes.

The DE implementation in experiments in this thesis uses an adaptive crossover

rate sampled from a Gaussian distribution, where Cr ∼ N(0.6, 0.1) as proposed by

Islam et al. In addition, Islam et al. [90] also propose a self-adaptive scheme where

the mean of the Gaussian distribution is updated based on the number of success-

ful crossover operations achieved each generation. This self-adaptive mechanism is

not used in the experiments of this thesis as explained in section 4.3.6.

• Mutation strategy: Mezura-Montes et al. [123] show that best/1/bin is generally

a very competitive mutation strategy regardless of the characteristics of the prob-

lem being solved, and generally yields robust and high quality results. The recent

DE survey by Das et al. [42] highlights numerous studies that adaptively incor-

porate best/1/bin as the preferred mutation strategy. Consequently, the heuristic

pool in the experiments in this thesis also uses a DE variant based on best/1/bin.

The label DE Best1Bin refers to a DE heuristic configured using best/1/bin and

S DE Best1Bin is the speciated counterpart.

DE requires that ns > 2nv + 1, where ns is the population size and nv is the number

of difference vectors (nv = 1 for best/1/bin) [60]. A HMHH instance configured with a

global topology allows any DE heuristic to have visibility across the entire population

regardless of how many entities are assigned to DE, so the minimum entities for DE is

set to one. In contrast, a DE heuristic requires a minimum of four assigned entities at

any time t in an island topology to avoid the DE population size from ever falling below

2nv + 1.

Gaussian Mutation Operators

Simple Gaussian mutation operators (GMOs) are primarily used as heuristics in early

studies that apply hyper-heuristic to solve DOPs [99][100][143][171]. GMOs offer an
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Algorithm 8 Differential Evolution with adaptive scaling factor and crossover rate

Let t = 0 count the generations

Let β ∼ C(0.5, 0.1) be the adaptive scaling factor, continually resampled before each use

Let Cr ∼ N(0.6, 0.1) be the adaptive crossover rate, continually resampled before each use

Let M be the best/1/bin DE scheme

Initialize an nx-dimensional population C(0) of ns individuals

while a stopping condition is not met do

Evaluate f(xi(t)) of each unevaluated individual xi in C(t)
Create the trial vector using the mutation strategy M
For each xi, generate an offspring x′i(t) using crossover probability of Cr

if f(x′i(t)) > f(xi(t)) then

Add x′i(t) to C(t+ 1)

else

Add xi(t) to C(t+ 1)

end if

t = t+ 1

end while

Return the most fit individual xi(t) from C(t) as the optimal solution

unbiased method of modifying a candidate solution vector in a predictable manner.

Each GMO is configured with a zero mean and a specific standard deviation value σ.

Different values of σ result in a priori knowledge of the statistical probabilities that any

mutated candidate solution moves, on average, a distance of 1σ, 2σ, or 3σ away from

the current position of the entity [162]. Two GMO instances are used in the heuristic

pool, namely Gauss1 and Gauss10 with σ = 1 and σ = 10, respectively.

When an entity is mutated, the new candidate solution (i.e. position) may or may not

be superior to the entity’s current position. The new position may not even be located

within the search space bounds. The approach taken in this thesis is to check if a new

position falls within the search space bounds. Any dimensions of the position that lie

outside the search space are clamped (i.e. are assigned the value 0 or 100, respectively,

if the mutated dimension lies either below or above the domain of [0, 100]). A mutated

position is only accepted if the fitness of the new candidate solution is equal to or better

than the fitness of the entity’s current position. If the new position is not deemed an
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Algorithm 9 Gaussian mutation-based heuristic

Let t = 0 count the generations

Let the standard deviation be either σ = 1 or σ = 10, respectively

Initialize an nx-dimensional population C(0) of ns entities

while a stopping condition is not met do

Evaluate f(xi(t)) of each unevaluated entity xi in C(t)
Create offspring x′i(t) from xi(t) using Gaussian mutation with distribution N(0, σ)

if x′i(t) falls outside the domain boundary constraints then

Clamp each dimension of x′i(t) to the domain

end if

if f(x′i(t)) > f(xi(t)) then

Add x′i(t) to C(t+ 1)

else

Add xi(t) to C(t+ 1)

end if

t = t+ 1

end while

Return the most fit entity xi(t) from C(t) as the optimal solution

improvement, then the current entity position is left unmodified. The algorithm outline

for the Gaussian mutation operator heuristic is given in algorithm 9.

Strictly speaking, a GMO is not a population-based search algorithm: each entity is

mutated and updated in isolation without relying on any information shared by other

members of the population. Instead, the GMO update logic is simply applied individually

to every assigned entity in a sequential manner. In that sense, even a single-point search

heuristic such as a GMO can operate within the multi-point search HMHH framework

as a population-based heuristic.

4.3.3 Benchmark Function Generator

The MPB is used to create representative instances of the 27 different types of DOPs as

presented in section 2.4.1. The MPB parameters for all 27 environments are set to the

values presented in tables 2.1 and 2.2.
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Each heuristic and hyper-heuristic algorithm configuration is run on multiple ran-

domized instances for each of the 27 DOP types. While each problem instance is created

randomly, every problem instance is recreated identically for each algorithm. Every algo-

rithm has to solve the same initial search landscape with the same exact peaks which all

change in the exact same way over time. The implementation relies on a Scala monadic

construct defined in the CIlib library1 that allows algorithms and problem landscapes

to utilize completely independent streams of randomness (or entropy). The exact same

problem landscape and subsequent changes can be recreated for every algorithm, regard-

less of any stochastic algorithm behavior.

Starting positions are randomized across the instances and across the 27 different

problem types. Entity positions are initialized within the search space bounds in a

uniform random manner. Moreover, each algorithm solving the same problem instance

always shares the exact same starting location for all entities.

4.3.4 Performance Measures

The global optimum value of each MPB instance is known at each point in time t. The

exact time steps where environment changes occur are also known in every problem

instance. Consequently, the fitness and error values of the best entity in every iteration

are recorded for every algorithm in each problem instance. For each run, the nc best

fitness values in the iteration just before environment changes occur are extracted as

a vector of nc fitness values. The relative error measure, PRE(t), is used to normalize

each of the nc fitness values of a run using equation (2.18). This results in each run are

represented as an ordered vector with nc components consisting of the PRE(t) values just

before environment changes occur.

The relative error distance measure, Pr, is used to compute the nc-dimensional dis-

tance of the sequence of PRE(t) values to the theoretical perfect performance score using

equation (4.1), as proposed in section 4.2.

1See https://cilib.net.
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4.3.5 Control Methods

It is vital to determine if any increased performance of any hyper-heuristic is simply

due to random chance, speciation across multiple instances of the same heuristic, or a

result of using an intelligent selection operator and/or architecture. As recommended

by Karafotias et al. [97], multiple control groups are used in this thesis:

1. Single-population stand-alone configurations of the nine individual heuristics that

are used to determine what the baseline performance of individual heuristics are

without any hyper-heuristic interference. A comparison of the results of the hyper-

heuristics against the baseline results of the individual heuristics tests whether

hyper-heuristic selection yields any benefit over simply using the individual heuris-

tics in isolation.

2. Homogeneous speciation configurations where the same heuristic algorithm is used

to manage nine independent, fixed sub-populations of entities. Speciation baseline

results are used to test whether any increased performance of a hyper-heuristic is

due to speciation alone, or if intelligent heuristic selection increases performance

beyond simply using multiple independent sub-populations. The population of

entities is divided into nine disjoint sub-populations. Each sub-population is inde-

pendently managed by the same heuristic. Entity allocations remain fixed, and no

entities are ever reassigned between the sub-populations.

3. Fixed heuristic allocation methods, denoted in experiments by the labels IFix

and GFix, assign entities uniformly across the nine heuristics at the start of the

algorithm run, and then never change heuristic allocations. IFix uses the island

neighborhood topology while GFix uses the global topology. IFix and GFix test

whether intelligent hyper-heuristic selection yields any benefit over not taking any

action at all by simply spreading entities allocations out equally over multiple

different heuristics.

4. Random heuristic selection, denoted as Rand in experiments, acts as a randomized

control strategy to test whether intelligent heuristic selection raises performance

above randomly assigning heuristics to entities.
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The same number of entities is always used in the overall entity population of each

configuration, namely 50.

As an important point to reiterate: the precise composition of the heuristic pool is

out of scope in this study. Section 3.4.7 elaborated on the importance of selecting a pool

of complementary heuristics for each hyper-heuristic. While numerous methods exist to

assess how well heuristics complement each other to solve static optimization problems,

such methods are largely still lacing for DOPs. Since the characteristics of a DOP may

change over time, the complementary nature of the pool of heuristics may also change

over time. Heuristics that worked well together in certain types of landscapes and/or

dynamics at some point in time may not work well in subsequent landscapes.

To avoid making the investigation intractable, no separate control group is defined

to account for different heuristic pool configurations. The same fixed pool of heuristics

is used by all hyper-heuristics at all times. Qualitative assessment of the domain and

heuristic algorithms was used to select a pool of heuristics that complement each other

with diverse types of behavior. Since each algorithm in this thesis operates the exact

same, reproducible problem instances (as explained in section 4.3.3), no algorithm is ad-

vantaged or disadvantaged by having a different set of heuristics than another algorithm.

4.3.6 Experimental Method

The overall experimental approach in this thesis generally relies on an empirical analysis

of algorithm performance and behavior. Algorithms comprise of the control group con-

figurations that are described in section 4.3.5, namely stand-alone heuristics, speciated

heuristics, or configurations of the HMHH framework with different selection operators.

Altogether the thesis investigates nine stand-alone heuristics, nine speciated heuristics,

two configurations where heuristic allocation is fixed across all heuristics, and 21 trig-

gered hyper-heuristic configurations where HMHH is configured with different heuristics

selection operators.

The empirical analysis in chapters 4, 5, and 6 is arranged as a series of focused

research questions. Each research question presents self-contained results that answer

specific inquiries. The results of research questions may build on previously answered

research questions, and results may be referred to in future chapters. The analysis
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generally relies on the nonparametric statistical tests as outlined in section section 2.7.4.

Each research question may also describe a bespoke method of analysis that is used only

in that specific research question. All nonparametric statistics are computed using the

STAC platform [154] and the SciPy platform [94].

A common type of analysis employed in many of the research questions is to com-

pare the performance of all algorithms in a group against each other. The Friedman

nonparametric test and Shaffer post hoc test, presented in section 2.7.4, is used to assess

if significant performance differences are present between algorithms. Derrac et al. [48]

and Garcia et al. [68] recommend that the number of samples, s, used for any Friedman

nonparametric test-based analysis must satisfy 2a ≤ s ≤ 8a, where a is the number of

algorithms being compared. Consequently, the choice of s = 71 algorithm run samples

per environment type simultaneously satisfies the requirements for the analysis of the

nine stand-alone heuristics (i.e. a = 9 satisfies s ≤ 8 × 9), the analysis of 21 hyper-

heuristics (i.e. a = 21 yields s ≥ 2 × 21), as well as any joint analysis of all heuristics

and hyper-heuristics (i.e. a = 32 results in s ≥ 2×32). Figure 4.3 illustrates the different

algorithm groups and the number of run samples resulting from the above process.

Research questions that rely on the Friedman and Shaffer tests report performance

using the following types of tables and graphs:

1. Average Friedman ranks: The output of a Friedman test is the average rank

for each algorithm and a statistical p-value. The p-value indicates the propensity

that the differences observed in the group of algorithms is coincidental (i.e. that

the algorithms are different while the null hypothesis holds true). Smaller p-values

are indicative that the algorithms are truly significantly different from one another.

An example of Friedman ranks can be seen in table 4.3.

2. Wins-draws-losses tables: The Friedman test only shows whether significant

differences are present in the group of algorithms. For each possible pair of algo-

rithms, the Shaffer post hoc test determines whether one algorithm is significantly

better than the other or not. A win and a loss is allocated accordingly. If any com-

parison shows that there is no significant difference between the two algorithms,

then both algorithms receive a draw.

Each algorithm’s wins, draws, and losses against all other algorithms in the group
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Figure 4.3: Outline of the different algorithm groups and the number of executions performed

for each group.

can be expressed as a 3-tuple. The wins-draws-losses tuple for each algorithm in

each environment can be succinctly shown in a single table. An example can be

seen in table 4.4.

3. Sankey diagrams: Sankey diagrams [156] offer an intuitive visual overview of the

Shaffer post hoc test results. For each algorithm, the proportion of comparisons

that yield either wins, draws, or losses across all 27 environments are shown as

stream flows from left to right. Thicker lines indicate that a higher proportion of

the comparisons follow a particular path. An example of a Sankey diagram can be

seen in figure 4.12.

4. Box whisker plots: A box whisker plot shows the distribution of a set of values

as vertical bars, where the upper and lower ends of each bar correspond to the

75th and 25th percentiles of the distribution, respectively. The median value is

represented as a horizontal line inside each bar. The upper and lower whisker lines,
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respectively, represent the values that fall within 1.5 interquartile range (IQR)2

from the median. Box whisker plots are used extensively in chapters 4, 5, and 6

to show value distributions for performance scores, diversity measures, Friedman

ranks, and wins in Shaffer post hoc tests. An example of a box whisker plot can

be seen in figure 4.6.

Each research question in chapters 4, 5, and 6 may employ one or more of the types

of tables and graphs outlined above, along with bespoke graphs that are introduced as

appropriated.

4.4 Experimental Results

The results of all experiments are organized into the distinct research questions listed

in section 4.4.1. All stand-alone heuristics and speciated heuristics were configured and

executed using the parameters, benchmark functions, and algorithm choices outlined in

section 4.3.

4.4.1 Research Questions

The following research questions drive the experimental analysis:

1. Do the characteristics of the observed error values in experiments warrant the need

for the proposed relative error distance performance measure (Pr)? Do problem

fitness scale changes warrant the need to normalize error values? Do the measured

error values of each individual algorithm run follow a normal distribution or not?

Does the resulting collection of Pr values across all samples of each algorithm

follow a normal distribution? How do Pr values relate to statistical aggregation

methods of the underlying error values such as the mean, standard deviation, or

(nonparametric) measures such as interquartile range (IQR) or range [162]?

2. What is the performance of each stand-alone heuristic? How well does each heuris-

tic solve a DOP when applied individually without any hyper-heuristic adaptation?

2The IQR is the range between the 25th and 75th percentiles [162].
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Which heuristics have significantly different performance scores than other heuris-

tics across the different types of DOPs? Which heuristics do not show any signifi-

cant differences in performance? Do the heuristics achieve their envisioned goals?

3. What is the performance of each speciated heuristic? How well do the speciated

versions of each heuristic perform in the same analysis described in the previous

research question above?

4.4.2 Research Question 1

Do the characteristics of the observed error values in experiments warrant

the need for the proposed relative error distance performance measure (Pr)?

The relative error distance, Pr (proposed in section 4.2), offers significant benefits

over existing performance measures, such as using normalized error values to provide

isolation from fitness scale fluctuations between environment changes, not assuming nor-

mal distributions in the underlying performance data, incorporating the variance across

performance values in a run, and yielding a representative scalar value that allows for

easy significance testing using established statistical procedures.

This research question investigates whether the error data generated using the exper-

imental approach proposed in section 4.3 displays characteristics that justify the need

for using Pr instead of existing performance measures. Specifically, the analysis con-

siders the sequence of error values consisting of those iterations just before environment

changes occur. In order for the new Pr measure to provide additional value, the following

circumstances and/or conditions need to be validated in the data:

1. Are fitness scale changes actually present in the data to such an extent so as to

warrant the normalization of error values?

2. Do the underlying set of PRE(t) performance values for individual algorithm runs

follow a normal distribution?

3. Does the resulting collection of Pr values across all samples of any particular algo-

rithm follow a normal distribution?
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4. How do Pr values relate to values generated by statistical aggregations of the

underlying error values, such as the mean, standard deviation, or (nonparametric)

measures such as interquartile range (IQR) or range [162]?

To answer the questions above, the analysis considers the output of each run of each

algorithm in every environment in this thesis. This amounts to 1 246 050 individual

algorithm runs, as outlined in section 4.3.6 and illustrated in figure 4.3. The exact

settings for the hyper-heuristics are only provided in section 5.2.2. However, the samples

can be considered here simply for the purposes of illustrating the working of the Pr

measure.

Confirming the severity of fitness scale changes across DOP types

The MPB dynamics produced a global optimum fitness value for each search landscape

between environment changes. Over time, each instance contained up to nc unique

global optimum values. The global optimum value in any given MPB instance could

differ dramatically in the range [30, 70], as shown in table 2.1. The minimum fitness

value that any algorithm could produce was zero (the base landscape function value),

which would have happened if an algorithm did not manage to locate any of the MPB

peaks. Therefore, for any given algorithm run, the subsequent range of possible fitness

values could have been as low as [0, 30] and as high as [0, 70].

The ratio between the maximum and minimum fitness scale range that was observed

in any given problem instance characterizes the severity of scale changes. A low ratio that

was approximately equal to 1.0 implies that the fitness scale did not change dramatically

over time in the problem instance. A larger ratio means that the fitness scale did change

dramatically over time. In such cases, any direct comparisons of error or fitness values

would result in a skewed view of performance. For example, if the ratio between the

maximum and minimum fitness scale range was 1.4, then any direct examination of (or

measure that depends on) a raw error value could be misinterpreted by a factor of up to

1.4.

Figure 4.4 shows the distribution of fitness scale ratios across the 71 sample instances

of each of the 27 environment types (as defined in table 2.2). Bear in mind that there

were 71 samples and that each sample’s random number generator was linked across the
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27 environments (as explained in section 4.3.6). This ensured the exact same stream of

entropy was used to create each sample across the 27 environment variations. The only

difference (per sample) across the 27 environments was the dynamics that governed peak

movements.

The following points are noteworthy pertaining to the observed fitness scale ratios:

1. The 27 environment types showed varied fitness scale ratios which ranged from 1.0

to as high as approximately 1.6. The bulk of observed fitness scale ratios were

located roughly in the interval [1.1, 1.3] for the majority of environment types.

2. All nine environments that comprised of Type I dynamics according to the classi-

fication of Eberhart et al. [56][84] showed no fitness scale changes (i.e. all ratios

were equal to 1.0), since no peak height changes occurred.

Figure 4.4: Observed fitness scale ratios for each environment type. Each environment had

71 different environment samples.

3. All Type II environments (where only peak heights changed) showed different fit-

ness scale ratio distributions. Those Type II environments that had linear peak

height change dynamics showed noticeably lower ratios. This makes sense, given

that peak heights either increased or decreased asymptotically towards either an

upper or lower bound, which resulted in more uniform peak heights compared to
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random or circular change patterns. Fitness scale changes were small accordingly,

which yielded low ratios with a tighter distribution.

4. All Type III environments showed exactly the same fitness scale distributions across

circular, linear, and random environment types (within abrupt, chaotic, and pro-

gressive environments, respectively). This observation is expected, since all three

variations in each group shared the same height severity settings and had the same

stream of randomness. The only difference between the circular, linear, and ran-

dom environment types consisted in how peak locations moved around across the

search space.

5. Abrupt, chaotic, and progressive environments showed distinct differences in the

distributions of fitness scale ratios. The reason for this is that the number of

environment changes differed between the three types of dynamics, which yielded

a different number of peaks for abrupt, chaotic, and progressive environments,

respectively. This yielded more opportunity to create fitness scale changes, which

is reflected in the plot.

6. Progressive environments had smaller height severity parameter values, which re-

sulted in narrower distributions of fitness scale ratios. Abrupt environments had

the same number of environment changes as progressive environments, but the

much larger height severity parameter setting for abrupt environments resulted in

a large difference in fitness scale ratios between the two types of environments.

It is clear that fitness scale normalization was required for the observed data due to

fitness scale ratio differences of up to 1.6. Simpler measures that rely on non-normalized

raw error or fitness values may have misreported performance by a factor of up to 1.6.

The Pr measure relies on the relative error PRE(t), as calculated using equation (2.18),

and is resilient against such types of fitness scale changes.

Testing the normality of PRE(t) values for each individual algorithm run

Collections of values that do not follow a typical Gaussian “bell curve” distribution tend

to give spurious results when parametric statistical measures, such as a mean or standard



Chapter 4. Estimation of Performance Baselines for Control Groups 140

Table 4.1: Percentages of individual algorithm runs (at various significance levels) that showed

non-normal distributions of PRE(t) error values across all DOP change periods.

Group Runs p < 0.05 p < 0.01 p < 0.001 p < 0.0001

Stand-alone heuristics 17 253 12 289 (71%) 10 780 (62%) 9 115 (53%) 7 795 (45%)

Speciated heuristics 21 087 16 133 (77%) 14 498 (69%) 12 582 (60%) 10 878 (52%)

Global hyper-heuristics 603 855 503 429 (83%) 460 854 (76%) 405 277 (67%) 346 838 (57%)

Island hyper-heuristics 603 855 510 559 (85%) 469 085 (78%) 414 362 (69%) 362 579 (60%)

deviation, are used to aggregate, describe, or summarize the data [162]. The Shapiro-

Wilk normality test [161] assesses whether a set of values is drawn from a normally

distributed population. The null hypothesis of the test is that the data is normally

distributed. The output of the test is a p-value that represents the propensity that a

distribution appears non-normal but is, in fact, drawn from a normal distribution. In

other words lower p-values indicate a higher degree of certainty that the data sample is

drawn from a non-normal distribution. Razali and Wah [152] show that the Shapiro-Wilk

test has high statistical power compared to other prominent normality tests.

An individual Shapiro-Wilk normality test was conducted for each of the 1 246 050

algorithm runs. The test was applied to the sequence of PRE(t) values generated in the

iterations just before environment changes occurred. Table 4.1 shows the number of tests

performed and the proportion of tests that resulted in p-values less than a significance

level of α ∈ [0.05, 0.01, 0.001, 0.0001]. The results in table 4.1 confirm that the majority

of measured PRE(t) values were not normally distributed. Even at a significance level of

α = 0.0001 roughly half of all samples failed the normality test.

The implication is that any performance measures that rely on parametric statistical

descriptions of error values (such as the mean or the standard deviation) are almost

certainly invalid and/or unreliable approximately half of the time (if not more often).

The Pr measure is an appropriate measure to characterize the sequence of PRE(t) values

of an algorithm run, since the measure does not require or assume normality in the

underlying error values.
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Table 4.2: Percentages of algorithm run samples (at various significance levels) that showed

non-normal distributions of Pr values across the 71 algorithm runs in each sample. Runs were

made up using 9 stand-alone heuristics, 11 speciated heuristics, and 21 hyper-heuristics using,

respectively, three different triggers together with the global and island topology (refer to figure

4.3). The exact parameters are not important here, only the number of algorithm sample sets.

Group Sample sets p < 0.05 p < 0.01 p < 0.001 p < 0.0001

Stand-alone heuristics 243 211 (87%) 193 (79%) 165 (68%) 144 (59%)

Speciated heuristics 297 270 (91%) 256 (86%) 228 (77%) 182 (61%)

Global hyper-heuristics 8 505 7 654 (90%) 7 028 (83%) 5 848 (69%) 4 062 (48%)

Island hyper-heuristics 8 505 8 023 (94%) 7 547 (89%) 6 712 (79%) 5 418 (64%)

Testing the normality of Pr values of all algorithm samples

The normality of the resulting set of Pr scores of all 71 runs of each algorithm also had

to be determined. A separate Shapiro-Wilk test was conducted on each distribution of

resulting Pr values from the 71 sample runs of each algorithm for each environment.

Table 4.2 confirms that the resulting distribution of Pr scores of repeated algorithm

executions followed non-normal distributions more often than not. The nonparametric

statistical analysis methods and procedures outlined in section 2.7.4 are a better choice

to analyze the performance of the data, given the strong tendencies of the data to be

non-normally distributed.

Relationship between Pr and common statistical measures of the error

The proposed Pr measure promises to produce a single, yet representative, scalar value

that better reflects the nature of the sequence of error values. To be representative,

the notions of density and variance of the sequence of PRE(t) values must be faithfully

characterized by Pr. Specifically, an inverse correlation should be evident between Pr

and the mean of the sequence of PRE(t) values: higher mean PRE(t) values should be

correlated with lower Pr distances to the theoretical point of perfect performance. There

should also be a positive correlation between Pr and the standard deviation, interquartile

range (IQR), and range (max - min) of PRE(t) values, since the distance to perfect

performance should increase the more volatile the sequence of PRE(t) values is.
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Sub-figure 4.5a shows the relationship between the proposed Pr measure (y-axis) and

the mean of the sequence of PRE(t) values (x-axis). Every dot in the graph represents

a single algorithm run, and all 1 246 050 algorithm runs are represented. The standard

deviation, σ, of each sequence of PRE(t) values is represented by a color spectrum: dark

blue indicates σ ≈ 0 and red indicates σ ≈ 0.5. Sub-figures 4.5b, 4.5c, and 4.5d show

the same graphs, but with color representing the IQR, statistical skew, and range of the

distribution, respectively.

The following observations are drawn from the charts in sub-figures 4.5a, 4.5b, 4.5c,

and 4.5d:

1. A striking feature that is present in all sub-figures is the “halved teardrop” shape

of the relationship between Pr values and mean PRE(t) values. The teardrop shape

is split in half by the perfect linear relationship that is observable between Pr

and mean PRE(t) values (i.e. the diagonal line in each sub-figure). Points near

the diagonals showed approximately zero values for standard deviation, IQR, and

range sizes. These runs corresponded to points near the diagonal in figure 4.1,

which resulted in the Pr and mean of the PRE(t) being nearly equal.

2. Higher volatility in any given sequence of PRE(t) values of a single algorithm run

was characterized by higher standard deviation, IQR, and range size values. The

sub-figures show that runs with higher volatility (i.e. points that lie near the outer

edge of the teardrop) showed Pr values that were up to 0.25 higher than runs

with lower volatility (i.e. points that lie near the diagonal). In other words, the

Pr measure proportionately penalized runs that showed higher variance in their

underlying PRE(t) values.

3. A notable exception to the previous point can be observed in sub-figure 4.5b where

mean PRE(t) values lie in the approximate range of [0.75, 0.95]: for any given mean

PRE(t) value, the associated Pr values showed monotonically increasing IQR val-

ues at first, but eventually showed a trend reversal where IQR values decreased

to nearly zero again as Pr values increased. This produced a distinct visual ef-

fect of “blue points curling around the green and yellow points” in the lower-right

quadrant of sub-figure 4.5b. The same trend is not visible in the standard devia-

tion values in sub-figure 4.5a, where corresponding standard deviation values for
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(a) Standard deviation (b) IQR

(c) Skewness (d) Range

Figure 4.5: Relationship between Pr and the mean relative error, PRE(t), for all algorithm

runs. Colors in sub-figures reflect various statistical measures applied to each individual PRE(t)

sequence.

the anomalous IQR values were nearer to the high end of the standard deviation

spectrum (yellows and greens).

The explanation lies in the non-normal distribution of values in each sequence of

PRE(t) values, as illustrated earlier in this section. A given algorithm run could
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have had high mean and standard deviation values for PRE(t), yet still have had

a low IQR value for PRE(t). Sub-figure 4.5d validates this conclusion by showing

how all the points in question had overall PRE(t) value ranges close to 1.0, but also

maintained very high mean PRE(t) values. Sub-figure 4.5c further corroborates

this conclusion by showing increasingly negative skewness values (green and blue

hues) for the points in question, which reveals that a disproportionate number of

high PRE(t) values were present in the distribution of each algorithm run.

The proposed relative error distance performance measure, Pr, offers a distance-based

alternative calculation method that is unaffected by the lack of normally distributed data.

The new measure better incorporates the variance of the underlying PRE(t) values by

increasing the distance to the theoretical optimal point as variance increases. In cases

with low variance across the PRE(t) distribution, the Pr measure returns values that are

inversely correlated to the mean of the PRE(t) sequence.

4.4.3 Research Question 2

What is the performance of each stand-alone heuristic?

This research question assesses the performance of all individual heuristics running

in a stand-alone fashion without any hyper-heuristic managing entity allocations. The

goals are to determine the performance of every individual heuristic in each type of

DOP as a baseline control group, and to establish if any heuristics have statistically

significantly better performance than others for each of the DOPs. The analysis follows

the experimental method presented in section 4.3.6. The nine heuristics are compared

against each other, both in terms of Pr performance values as well as the average distance

around swarm center (ADSC), as calculated using equation (2.26).

Figures 4.6, 4.7, and 4.8 show box whisker plots of the distribution of Pr values

obtained by each heuristic for each environment. Each box whisker bar of Pr values

shows the combined distribution over all 71 problem instances. Figures 4.9, 4.10, and

4.11 show the corresponding box whisker plots of the distributions of average distance to

swarm center (ADSC) values of each heuristic for each environment. Each box whisker

bar of ADSC values shows the combined distribution of the 1000 individual ADSC
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values computed at each algorithm iteration t using equation (2.26) over all 71 problem

instances.

Table 4.3 shows the average Friedman ranks obtained by each heuristic in each en-

vironment. Table 4.4 shows the number of wins, draws, and losses for each heuristic

which resulted from a pairwise comparison of all nine heuristics using the Shaffer post

hoc test. The significance level was set at α = 0.05 for all tests. Figure 4.12 illustrates

the resulting wins, draws, and losses of every heuristic across all DOPs as a Sankey

diagram. Since there were nine heuristics and 27 DOPs, there was a combined total of

216 pairwise comparisons across all 27 of the Shaffer post hoc tests, as can be seen in

figure 4.12.

A number of notable observations, pertaining to the research question at hand, can

be made from the figures and tables referred to above:

• The small p-values in table 4.3 strongly suggest that different heuristics displayed

significantly varied performance in each environment type. A visual inspection of

figures 4.6, 4.7, and 4.8 confirms this to be the case. A glance at the figures reveals

that different environments yielded varied performance across the heuristics. For

example, APSO yielded better Pr distributions than Gauss10 for most Type I

environments, but the two methods performed relatively on par with each other

for a number of environments, such as A2C or C3R.

Table 4.4 shows that no single heuristic was always the best performer across all

environment types (i.e. had the most wins and fewest losses). This is corroborated

by the ranks in table 4.3, where the best ranks and most wins were distributed

across multiple heuristics across different environments.

• Each heuristic clearly had a different average diversity profile, as expressed by the

spread of the ADSC values in figures 4.9, 4.10, and 4.11. The shape of the diversity

spread pattern across heuristics is strikingly similar across all 27 environment types.

• The heuristic DEBest1Bin had notably worse performance than any of the other

heuristics in all environments. This makes sense and was expected, since DE is

known to perform badly in dynamic environments. The extremely low value and

low spread of ADSC values associated with DEBest1Bin confirms that the heuris-
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Figure 4.6: Pr values achieved by stand-alone heuristics in all abrupt environments over 71

repeat runs.
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Figure 4.7: Pr values achieved by stand-alone heuristics in all chaotic environments over 71

repeat runs.
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Figure 4.8: Pr values achieved by stand-alone heuristics in all progressive environments over

71 repeat runs.
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Figure 4.9: ADSC values of stand-alone heuristics in each abrupt environment.
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Figure 4.10: ADSC values of stand-alone heuristics in each chaotic environment.
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Figure 4.11: ADSC values of stand-alone heuristics in each progressive environment.
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Table 4.3: Average ranks per environment for each heuristic using the Friedman test, as well

as the resulting p-values. Bold values indicate the best performers.

Environment A
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A1C 2.80 5.00 7.10 3.20 3.68 5.94 4.18 6.23 6.86 1.11e-16

A1L 2.72 4.14 8.46 3.04 3.44 6.55 4.86 5.25 6.55 1.11e-16

A1R 2.89 3.94 8.75 3.13 3.17 6.54 4.86 5.44 6.28 1.11e-16

A2C 5.01 4.96 6.77 5.27 4.62 5.18 2.96 4.45 5.77 3.44e-15

A2L 3.39 4.93 5.25 4.24 4.38 6.07 4.07 5.65 7.01 1.11e-16

A2R 4.11 4.73 5.95 4.68 4.13 5.93 3.92 4.78 6.77 7.32e-14

A3C 3.80 4.58 7.70 4.65 3.82 5.55 3.45 5.39 6.06 1.11e-16

A3L 3.87 4.17 8.77 3.79 3.08 6.46 4.34 4.76 5.75 1.11e-16

A3R 3.62 3.92 8.87 3.79 3.06 6.21 4.73 4.92 5.89 1.11e-16

C1C 2.89 4.63 6.54 3.86 3.27 5.93 4.15 6.92 6.80 1.11e-16

C1L 2.06 3.68 8.82 2.48 2.54 7.55 7.42 4.89 5.56 1.11e-16

C1R 3.59 2.87 8.94 4.41 1.97 7.18 6.01 4.61 5.41 1.11e-16

C2C 4.72 4.34 6.59 5.31 3.32 6.23 3.07 4.63 6.79 1.11e-16

C2L 3.30 4.79 4.68 3.87 3.48 6.14 3.82 7.42 7.51 1.11e-16

C2R 4.83 4.15 6.51 5.24 3.34 5.97 3.23 5.38 6.35 1.11e-16

C3C 4.25 3.72 7.73 4.55 3.06 6.10 3.51 5.42 6.66 1.11e-16

C3L 3.14 3.68 8.82 2.97 2.42 7.75 7.38 3.77 5.07 1.11e-16

C3R 4.48 2.93 8.99 5.11 2.00 6.86 5.79 3.92 4.93 1.11e-16

P1C 3.23 4.66 6.27 3.82 3.42 5.62 4.01 7.25 6.72 1.11e-16

P1L 3.48 4.48 5.63 4.11 3.68 5.59 3.94 7.35 6.75 1.11e-16

P1R 2.51 3.94 7.54 3.83 3.60 6.14 4.07 6.91 6.46 1.11e-16

P2C 4.46 4.44 6.62 5.27 4.05 4.86 2.66 6.39 6.24 1.11e-16

P2L 3.30 4.63 5.51 3.85 3.70 5.75 3.99 7.35 6.93 1.11e-16

P2R 3.54 4.56 5.52 4.05 3.80 5.63 3.90 7.11 6.89 1.11e-16

P3C 3.14 4.65 6.33 3.81 3.33 5.76 4.20 7.08 6.70 1.11e-16

P3L 3.32 4.56 5.95 4.20 3.41 5.70 3.86 7.12 6.87 1.11e-16

P3R 2.55 3.93 7.67 3.97 3.35 6.23 4.15 6.80 6.35 1.11e-16

Mean rank 3.52 4.26 7.12 4.09 3.38 6.13 4.32 5.82 6.37 –
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Table 4.4: Wins, draws and losses per environment of each heuristic. The notation W-D-L

indicates the number of wins, draws, and losses for each heuristic in each environment. Bold

values indicate the best performers.

Environment A
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A1C 6-2-0 2-4-2 0-3-5 5-3-0 4-4-0 0-4-4 4-3-1 0-4-4 0-3-5

A1L 6-2-0 3-4-1 0-0-8 5-3-0 5-3-0 1-2-5 3-2-3 1-4-3 1-2-5

A1R 5-3-0 4-4-0 0-0-8 5-3-0 5-3-0 1-2-5 3-2-3 1-3-4 1-2-5

A2C 1-6-1 1-6-1 0-1-7 1-6-1 1-6-1 1-6-1 8-0-0 1-6-1 0-7-1

A2L 5-3-0 1-6-1 1-6-1 3-5-0 2-6-0 0-4-4 3-5-0 0-5-3 0-2-6

A2R 3-5-0 1-7-0 0-5-3 1-7-0 3-5-0 0-5-3 3-5-0 1-7-0 0-2-6

A3C 4-4-0 2-6-0 0-0-8 2-6-0 4-4-0 1-4-3 4-4-0 1-4-3 1-2-5

A3L 3-5-0 3-5-0 0-0-8 3-5-0 4-4-0 1-1-6 3-5-0 2-5-1 1-2-5

A3R 3-5-0 3-5-0 0-0-8 3-5-0 5-3-0 1-2-5 2-5-1 1-6-1 1-3-4

C1C 5-3-0 3-3-2 0-3-5 4-4-0 5-3-0 0-4-4 4-4-0 0-3-5 0-3-5

C1L 6-2-0 4-3-1 0-0-8 5-3-0 5-3-0 1-1-6 1-1-6 3-2-3 3-1-4

C1R 4-3-1 6-2-0 0-0-8 3-3-2 7-1-0 1-1-6 1-2-5 3-3-2 2-3-3

C2C 3-3-2 3-5-0 0-3-5 1-5-2 5-3-0 0-3-5 6-2-0 3-4-1 0-2-6

C2L 5-3-0 2-5-1 3-4-1 3-5-0 3-5-0 1-2-5 3-5-0 0-2-6 0-1-7

C2R 2-4-2 3-5-0 0-4-4 0-6-2 6-2-0 0-5-3 6-2-0 0-6-2 0-4-4

C3C 3-5-0 4-4-0 0-1-7 3-4-1 5-3-0 1-2-5 4-4-0 1-4-3 0-3-5

C3L 4-4-0 4-4-0 0-1-7 4-4-0 5-3-0 0-2-6 1-1-6 3-4-1 3-1-4

C3R 2-4-2 6-2-0 0-0-8 2-4-2 7-1-0 1-1-6 1-4-3 3-4-1 2-4-2

P1C 5-3-0 3-4-1 0-3-5 4-4-0 4-4-0 1-3-4 4-4-0 0-2-6 0-3-5

P1L 4-4-0 2-6-0 1-3-4 4-4-0 4-4-0 1-3-4 4-4-0 0-1-7 0-3-5

P1R 6-2-0 4-3-1 0-2-6 4-4-0 4-4-0 1-2-5 4-3-1 0-3-5 0-3-5

P2C 3-4-1 3-4-1 0-3-5 0-7-1 3-4-1 3-4-1 8-0-0 0-3-5 0-3-5

P2L 4-4-0 2-6-0 2-2-4 4-4-0 4-4-0 1-3-4 4-4-0 0-1-7 0-2-6

P2R 4-4-0 2-6-0 2-2-4 4-4-0 4-4-0 1-3-4 4-4-0 0-1-7 0-2-6

P3C 5-3-0 3-4-1 0-3-5 4-4-0 4-4-0 0-4-4 4-4-0 0-3-5 0-3-5

P3L 4-4-0 3-5-0 0-3-5 4-4-0 4-4-0 1-3-4 4-4-0 0-2-6 0-3-5

P3R 7-1-0 4-3-1 0-2-6 4-3-1 4-4-0 1-2-5 4-3-1 0-3-5 0-3-5

Mean wins 4.15 3 0.33 3.15 4.3 0.78 3.7 0.89 0.56

Mean draws 3.52 4.48 2 4.41 3.63 2.89 3.19 3.52 2.67

Mean losses 0.33 0.52 5.67 0.44 0.07 4.33 1.11 3.59 4.78
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Figure 4.12: Sankey diagram [156] of the proportions of wins, draws, and losses for each stand-

alone heuristic over all 27 environments resulting from all Friedman tests and all associated

Shaffer post hoc tests (at α = 0.05). The thickness of flows represent the number of hypothesis

in the post hoc test where a heuristic either won, drew, or lost against another heuristic.

tic converged quickly and subsequently had no ability to diversify the population

of entities.

• APSO had fewer charged particles than CPSO, but the two methods were iden-

tical otherwise. Section 4.3.2 expressed the hope that the higher concentration of

charged particles in CPSO would result in higher diversity. The ADSC values in

figures 4.9, 4.10, and 4.11 confirm that CPSO generally maintained higher average

levels of diversity in each environment than APSO, as would have been expected

if more charged particles ended up repelling each other more often.

APSO showed slightly better performance than CPSO in many of the 27 envi-

ronments in figures 4.6, 4.7, and 4.8. Tables 4.3 and 4.4 show that APSO beat
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CPSO in all progressive environments, and that CPSO performance was similar

to or better than APSO in a number of abrupt and chaotic environments. This

is consistent with the findings of [12][14] as discussed in section 4.3.2. The ranks

in table 4.3 corroborate the visual plots by showing that APSO had better ranks

for most (but not all) environment types.

• QPSO1 and QPSO25 had remarkably similar Pr values in almost every environ-

ment. Exceptions were C1R and C3R, where QPSO25 performed much better.

Generally, QPSO25 had the same or tighter Pr distributions (with lower values)

than QPSO1 in all abrupt and chaotic environments. This trend was reversed in

the majority of progressive environments. The ranks in table 4.3 corroborate the

observations.

Figures 4.9, 4.10, and 4.11 indicate that QPSO25 had much greater average di-

versity levels than QPSO1 in every environment. Note that the ADSC values of

QPSO25 were comparable to the ADSC values of CPSO in all environments.

This shows that the Q, Rp, and Rc parameter values that were set for CPSO

yielded diversity that was roughly the same as QPSO25, as hoped for in section

4.3.2.

• The Gaussian mutation heuristics performed noticeably worse than the meta-

heuristic-based algorithms in most environments. Tables 4.3 and 4.4 show that

Gauss1 and Gauss10 generally had the worst mean ranks and lowest mean wins

across all environments (apart from DEBest1Bin). Both Gauss1 and Gauss10

performed relatively well in chaotic environments. A noteworthy example was

C3R, where Gauss1 was ranked well compared to the other heuristics.

The ADSC value distributions of Gauss1 and Gauss10 were markedly different:

Gauss1 maintained a highly diverse population with a tight diversity spread, while

Gauss10 showed a wide range of diversity. Gauss1 consistently had the highest

diversity of any heuristic in every environment, which was probably due to entities

being initialized uniformly across the entire search space (yielding high ADSC

values) that subsequently only searched their local neighborhoods without moving

much in the search space (yielding a tight spread in ADSC values).
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• Figure 4.12 corroborates the mean wins, mean draws, and mean losses presented

in table 4.4. QPSO25 had the highest number of wins and the least losses of any

of the stand-alone heuristics. DEBest1Bin, on the contrary, had the lowest wins

and draws, and the largest losses score against other heuristics. The high number

of wins versus draws indicate that the collection of heuristics was relatively well-

balanced, with many environments where certain heuristics readily excelled over

others.

The results confirm that the collection of heuristics show a wide variety of different

diversity management strategies and different performance characteristics across different

types of environments. The results serve as a baseline against which the performance of

any hyper-heuristic can subsequently be compared.

4.4.4 Research Question 3

What is the performance of each speciated heuristic?

This research question performs the same analysis as used for research question 2 in

section 4.4.3 above using the nine speciated versions of each heuristic and the two fixed

heuristic allocation configurations, as explained in section 4.3.6. The corresponding

results are presented in figures 4.13 through 4.19 and tables 4.5 and 4.6.

The following noteworthy observations pertaining to the current research question

are drawn from the figures and tables listed above:

• Table 4.5 confirms that the speciated heuristics showed significant differences in

performance. No single algorithm was consistently the top performer across all 27

environments, as indicated by the alternating wins, draws, and losses in table 4.6

and the ranks in table 4.5.

• The speciated heuristics showed more uniformity in diversity across environments,

in contrast to the wide spread of ADSC values across the stand-alone heuristics

in figures 4.9, 4.10, and 4.11. The speciated heuristics showed a higher degree of

overlapping ADSC value ranges than the stand-alone heuristics.
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Figure 4.13: Pr values achieved by the speciated heuristics in all abrupt environments over

71 repeat runs.
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Figure 4.14: Pr values achieved by the speciated heuristics in all chaotic environments over

71 repeat runs.
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Figure 4.15: Pr values achieved by speciated heuristics in all progressive environments over

71 repeat runs.
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Figure 4.16: ADSC values of speciated heuristics in each abrupt environment.
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Figure 4.17: ADSC values of speciated heuristics in each chaotic environment.
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Figure 4.18: ADSC values of speciated heuristics in each progressive environment.
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Table 4.5: Average ranks per environment for each speciated heuristic using the Friedman

test, as well as the resulting p-value. Bold values indicate the best performers.

Environment IF
ix

G
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ix

S
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P
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S
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ss
1
0

p
v
a
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e
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A1C 4.76 3.34 2.87 5.52 10.70 3.72 4.23 7.49 5.85 8.45 9.07 1.11e-16

A1L 4.17 2.80 3.90 5.27 10.98 3.66 3.72 8.10 6.58 7.75 9.07 1.11e-16

A1R 3.89 2.65 5.61 4.76 10.99 3.21 3.30 8.27 6.69 7.81 8.83 1.11e-16

A2C 4.44 3.93 4.30 5.42 10.83 4.56 3.85 7.49 5.38 7.15 8.65 1.11e-16

A2L 4.58 3.34 3.25 5.46 10.36 3.83 3.87 7.58 6.10 8.35 9.28 1.11e-16

A2R 4.46 4.13 3.86 5.44 10.44 4.28 3.96 7.45 5.44 7.29 9.25 1.11e-16

A3C 4.08 3.96 3.54 5.45 10.91 3.93 3.90 7.45 6.03 7.91 8.85 1.11e-16

A3L 4.24 3.46 4.14 5.14 10.98 3.77 3.72 8.10 6.49 7.19 8.76 1.11e-16

A3R 3.66 3.55 5.58 4.32 10.99 3.75 3.35 8.08 6.75 7.42 8.55 1.11e-16

C1C 4.62 2.94 3.17 5.01 10.91 4.89 3.65 7.34 5.86 8.84 8.77 1.11e-16

C1L 3.54 2.04 6.94 4.08 10.99 2.83 3.07 9.41 9.23 6.61 7.27 1.11e-16

C1R 3.63 2.38 7.72 3.73 11.00 4.20 2.30 8.70 8.08 6.70 7.55 1.11e-16

C2C 3.55 3.48 3.66 4.70 10.75 4.42 3.54 8.32 6.34 7.72 9.52 1.11e-16

C2L 4.51 2.28 3.73 5.32 10.07 5.15 3.42 7.30 5.66 9.24 9.31 1.11e-16

C2R 3.93 3.37 3.80 5.10 10.72 4.61 3.34 8.01 5.76 8.13 9.24 1.11e-16

C3C 3.62 3.52 3.58 5.24 11.00 4.37 3.30 7.86 6.21 7.97 9.34 1.11e-16

C3L 3.59 2.69 7.01 3.68 10.99 3.24 2.45 9.41 9.37 6.37 7.21 1.11e-16

C3R 3.73 2.48 8.25 3.39 11.00 4.69 2.13 8.83 7.83 6.46 7.20 1.11e-16

P1C 4.86 3.31 3.30 4.99 10.70 5.34 3.46 6.86 5.25 9.15 8.77 1.11e-16

P1L 4.90 3.52 3.51 5.13 9.94 5.51 3.34 6.92 5.10 9.27 8.86 1.11e-16

P1R 4.86 2.75 3.80 4.70 10.75 4.72 3.36 7.38 6.00 8.96 8.72 1.11e-16

P2C 4.68 3.96 4.24 5.28 10.50 5.49 3.32 6.66 4.52 8.60 8.75 1.11e-16

P2L 4.92 3.63 3.51 5.01 9.92 5.02 3.35 6.87 5.56 9.34 8.87 1.11e-16

P2R 4.93 3.41 3.25 5.25 10.11 5.23 3.44 7.10 5.14 9.07 9.07 1.11e-16

P3C 4.86 3.04 3.34 5.07 10.79 5.10 3.56 7.03 5.42 9.05 8.75 1.11e-16

P3L 5.01 3.30 3.28 5.07 10.02 5.24 3.32 7.01 5.54 9.18 9.03 1.11e-16

P3R 5.04 2.85 3.51 4.68 10.70 4.74 3.50 7.46 5.87 9.01 8.65 1.11e-16

Mean rank 4.34 3.19 4.32 4.90 10.67 4.43 3.40 7.72 6.22 8.11 8.71 –



Chapter 4. Estimation of Performance Baselines for Control Groups 164

Table 4.6: Wins, draws and losses per environment for each speciated heuristic. The notation

W-D-L indicates the number of wins, draws, and losses for each heuristic in each environment.

Bold values indicate the best performers.

Environment IF
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A1C 4-5-1 6-4-0 7-3-0 4-3-3 0-1-9 6-4-0 4-6-0 1-3-6 3-4-3 1-2-7 0-3-7

A1L 5-5-0 6-4-0 5-5-0 4-5-1 0-0-10 5-5-0 5-5-0 1-3-6 2-3-5 1-3-6 1-2-7

A1R 6-4-0 7-3-0 4-2-4 5-4-1 0-0-10 6-4-0 6-4-0 1-3-6 2-3-5 1-3-6 1-2-7

A2C 4-6-0 4-6-0 4-6-0 4-6-0 0-0-10 4-6-0 4-6-0 1-2-7 4-6-0 1-2-7 1-2-7

A2L 4-6-0 6-4-0 6-4-0 4-4-2 0-1-9 5-5-0 5-5-0 2-2-6 3-3-4 1-2-7 0-2-8

A2R 4-6-0 4-6-0 4-6-0 4-6-0 0-1-9 4-6-0 4-6-0 2-1-7 4-6-0 2-1-7 0-1-9

A3C 5-5-0 5-5-0 6-4-0 4-5-1 0-0-10 5-5-0 5-5-0 1-3-6 3-2-5 1-2-7 1-2-7

A3L 5-5-0 5-5-0 5-5-0 4-6-0 0-0-10 5-5-0 5-5-0 1-3-6 2-3-5 1-3-6 1-2-7

A3R 6-4-0 6-4-0 4-2-4 5-5-0 0-0-10 6-4-0 6-4-0 1-3-6 2-3-5 1-3-6 1-2-7

C1C 4-5-1 8-2-0 7-3-0 4-4-2 0-0-10 4-4-2 5-5-0 1-3-6 3-4-3 1-2-7 1-2-7

C1L 6-4-0 7-3-0 3-2-5 6-3-1 0-1-9 6-4-0 6-4-0 0-2-8 1-1-8 3-2-5 3-2-5

C1R 6-4-0 7-3-0 1-4-5 6-4-0 0-0-10 6-2-2 7-3-0 1-3-6 1-4-5 2-3-5 1-4-5

C2C 5-5-0 5-5-0 5-5-0 4-6-0 0-1-9 5-5-0 5-5-0 1-2-7 3-2-5 2-2-6 0-2-8

C2L 4-5-1 8-2-0 5-5-0 4-4-2 0-2-8 4-4-2 7-3-0 3-1-6 3-4-3 0-2-8 0-2-8

C2R 5-5-0 6-4-0 5-5-0 4-4-2 0-1-9 4-6-0 6-4-0 1-2-7 4-2-4 1-2-7 0-3-7

C3C 5-5-0 6-4-0 5-5-0 4-4-2 0-1-9 5-5-0 6-4-0 1-3-6 3-2-5 1-2-7 0-3-7

C3L 6-4-0 6-4-0 3-2-5 6-4-0 0-2-8 6-4-0 6-4-0 0-2-8 0-2-8 3-2-5 3-2-5

C3R 6-4-0 7-3-0 1-3-6 6-4-0 0-0-10 6-2-2 7-3-0 1-3-6 1-4-5 3-2-5 1-4-5

P1C 4-6-0 7-3-0 7-3-0 4-4-2 0-1-9 3-4-3 6-4-0 3-2-5 3-4-3 0-2-8 1-1-8

P1L 4-6-0 5-5-0 5-5-0 4-5-1 0-2-8 3-4-3 7-3-0 3-1-6 4-5-1 0-2-8 0-2-8

P1R 4-5-1 8-2-0 5-5-0 4-5-1 0-0-10 4-5-1 5-5-0 1-3-6 3-4-3 1-2-7 1-2-7

P2C 4-6-0 4-6-0 4-6-0 3-6-1 0-0-10 3-6-1 6-4-0 3-2-5 4-6-0 1-1-8 1-1-8

P2L 4-6-0 5-5-0 5-5-0 4-6-0 0-2-8 4-6-0 5-5-0 3-1-6 3-4-3 0-2-8 0-2-8

P2R 4-5-1 7-3-0 8-2-0 4-3-3 0-2-8 4-3-3 7-3-0 3-0-7 4-3-3 0-2-8 0-2-8

P3C 4-5-1 8-2-0 7-3-0 4-4-2 0-0-10 4-4-2 5-5-0 3-1-6 3-4-3 1-1-8 1-1-8

P3L 4-3-3 8-2-0 8-2-0 4-3-3 0-2-8 4-3-3 8-2-0 3-1-6 3-4-3 0-2-8 0-2-8

P3R 4-5-1 8-2-0 5-5-0 4-5-1 0-0-10 4-5-1 5-5-0 1-3-6 3-4-3 1-2-7 1-2-7

Mean wins 4.67 6.26 4.96 4.33 0 4.63 5.67 1.59 2.74 1.11 0.74

Mean draws 4.96 3.74 3.96 4.52 0.74 4.44 4.33 2.15 3.56 2.07 2.11

Mean losses 0.37 0 1.07 1.15 9.26 0.93 0 6.26 3.7 6.81 7.15
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Figure 4.19: Sankey diagram [156] of the wins, draws and losses for each speciated heuristic

over all 27 environments resulting from all Friedman tests with all associated Shaffer post hoc

tests (at α = 0.05). The thickness of flows represent the number of hypothesis in the post hoc

test where a heuristic either won, drew, or lost against another heuristic.

• Similar to the results for the stand-alone heuristics, the speciated version of DE,

namely S DEBest1Bin, performed distinctly worse than the other heuristics.

This pattern was noticeable in all 27 environments in figures 4.13, 4.14, and 4.15.

A notable difference between DEBest1Bin and S DEBest1Bin was the ADSC

values of each heuristic. DEBest1Bin converged and maintained very low ADSC

values in each of the 27 environments. In contrast, S DEBest1Bin showed the

highest diversity values of all the speciated methods, as can be seen in figures 4.16,

4.17, and 4.18. Closer inspection reveals that all entities in each S DEBest1Bin

sub-population converged to yield low ADSC values. The majority of ADSC

values across all iterations for all algorithm runs were effectively zero for each

environment, indicating that convergence occurred for that sub-population. Ev-
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ery sub-population of S DEBest1Bin showed exactly the same pattern across

all types of environments. The high overall diversity of S DEBest1Bin in fig-

ures 4.16, 4.17, and 4.18 suggests that each sub-population converged to separate

points in the search space, yielding a high overall diversity for the S DEBest1Bin

population as a whole. Each DE sub-population was, however, unable to adapt to

changing environments, as the poor Pr performance across all environments shows.

• S APSO and S CPSO showed almost identical diversity values in figures 4.16,

4.17, and 4.18, where S CPSO generally had slightly elevated lower bounds than

S APSO. This is in stark contrast with CPSO that had noticeably larger diversity

values than APSO in figures 4.9, 4.10, and 4.11. The use of speciation substantially

increased the diversity of both S APSO and S CPSO compared to their stand-

alone counterparts. Similar to APSO and CPSO, the performance values of

S APSO and S CPSO varied across environments, as can be seen in table 4.5,

and no single method dominated the other consistently across all 27 environments.

• Both S QPSO1 and S QPSO25 had similar Pr values in almost every environ-

ment, similar to their stand-alone counterparts QPSO1 and QPSO25. Table 4.5

shows that S QPSO25 had a better overall mean rank than S QPSO1. Fig-

ures 4.16, 4.17, and 4.18 show that S QPSO1 and S QPSO25 exhibited almost

identical ADSC behavior for each of the 27 environments, in contrast to their

stand-alone counterparts that showed distinctly different ADSC behavior between

QPSO1 and QPSO25.

• Figures 4.13, 4.14, and 4.15 show that S Gauss1 and S Gauss10 performed no-

ticeably worse than the other heuristics (excluding S DEBest1Bin) in most en-

vironments (the exceptions were C1L, C1R, C3L, and C3R). The ranks in table

4.5 corroborate the visual findings, where S Gauss1 and S Gauss10 were ranked

the worst (after S DEBest1Bin). S Gauss10 always had a much tighter spread

of Pr values than S Gauss1 in every environment. S Gauss1 showed a higher

and much tighter spread of ADSC values than S Gauss10 in each environment,

which was consistent with the stand-alone versions of the respective heuristics.

• IFix and GFix showed competitive performance across all 27 environments in
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figures 4.13, 4.14, and 4.15, where GFix showed a tighter distribution of Pr values

that was visually the same as or better than IFix in almost every environment.

Table 4.5 confirms this visual finding where it can be observed that GFix always

had a better Friedman rank than IFix in every environment. GFix had the best

rank of all speciated heuristics overall. Table 4.6 shows that GFix had the same

or more wins than IFix in every environment. GFix also showed noticeably lower

ADSC values than IFix in each environment, as illustrated in figures 4.16, 4.17,

and 4.18.

• Figure 4.19 illustrates the mean wins, mean draws, and mean losses shown in table

4.6. GFix had the highest number of wins and draws with no losses followed

closely by S QPSO25. S DEBest1Bin was the worst performer. The overall

order of the speciated heuristics was roughly similar to the stand-alone heuristics

in figure 4.12, except for S RIGA B and S Gauss1 that both fell lower in the

standings than their RIGA B and Gauss1 counterparts, respectively.

The results in this section confirm that HMHH variations utilizing homogeneous

speciation (where multiple sub-populations are independently managed by the same

heuristic) show a range of different performance and diversity characteristics. The IFix

and GFix versions of HMHH configurations using heterogeneous speciation (where sub-

populations are managed by different heuristics) show competitive behavior.

The stand-alone heuristics, the speciated heuristics, and the fixed allocation HMHH

variations (IFix and GFix) form control groups that any intelligent HMHH selection

operators need to outperform.

4.5 Summary

It is important that any heuristic pool consists of a varied collection of different types of

heuristics. A key goal of a hyper-heuristic is to perform better than any of the heuristics

in isolation. The experimental approach and control groups laid out in this chapter are

used to conduct all experimentation in this thesis.

Control groups were proposed in section 4.3 that will be used in chapter 6 to ob-

jectively measure if any increase in performance by any hyper-heuristic is due to in-
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telligent heuristic selection, or due to chance. Specifically, control groups were defined

to determine if a hyper-heuristic performs better than any of the underlying individual

heuristics, if any increased performance is due to the population of entities being split

up into multiple sub-populations (speciation), and if intelligent heuristic allocation by

any hyper-heuristic indeed performs better than simple random allocation.

A new performance measure, called the relative error distance, Pr, was proposed in

section 4.2 that considers the sustained performance of any DOP-focused algorithm in

a more holistic way. The Pr measure jointly compares the normalized performance of

an algorithm in each search landscape over all change periods against the best possible

performance score.

The performance and diversity of the stand-alone and speciated versions of each

heuristic were systematically explored in section 4.4. The Pr and ADSC values of the

stand-alone and speciated versions of each heuristic were computed and analyzed. Rigor-

ous nonparametric statistical tests were used to demonstrate how the performance of all

algorithms in each environment differed significantly. It was shown that various heuris-

tics excelled in different types of environments, which justifies each of their inclusion

into the heuristic pool. The results of this chapter serve as a baseline against which the

performance of any hyper-heuristic can subsequently be compared to in later chapters.

The next chapter investigates the effect that different combinations of heuristic

change triggers and HMHH topologies have on the performance of any given hyper-

heuristic.



Chapter 5

Performance Sensitivity of HMHH

Under Varying Parameter Values

“Don’t mistake activity with achievement.”

– John Wooden

This chapter explores the effect that various mechanisms to trigger heuristic change

combined with different neighborhood topologies have on the performance of selection

operators in the HMHH framework. The frequency parameter of each trigger is sys-

tematically varied to ascertain the effect, if any, that each trigger has on performance.

This process is repeated for 27 different types of DOPs across a wide variety of hyper-

heuristics, as detailed in section 5.2.2. The entire procedure is repeated across two

HMHH neighborhood topologies and contrasted against each other.

The term hyper-heuristic is used interchangeably with “HMHH selection operator”

in this chapter, and the term heuristic refers to a meta-heuristic algorithm that has been

configured with specific parameter values.

5.1 Introduction

The aim of a parameter sensitivity analysis is to determine how strong the effect of a

parameter is on the outcomes of a system. The analysis is conducted by systematically

varying a parameter’s values in a controlled manner, and determining if the change in the

169
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parameter’s value yields a statistically significantly different outcome in performance. In

this thesis the HMHH framework was extended with alternative heuristic change trigger-

ing mechanisms that each have a frequency parameter, namely k. Two different heuristic

neighborhood topologies were also motivated. Different combinations of the three trigger

mechanisms with different values for the parameter k, together with the two neighbor-

hood topologies, may significantly alter the operation of any given hyper-heuristic. This

chapter systematically explores the performance sensitivity of various hyper-heuristics

with respect to the proposed trigger and neighborhood topology extensions.

Different heuristic change triggering mechanisms for HMHH were proposed in section

3.4.4, namely a periodic trigger as presented in the original HMHH algorithm, a stagna-

tion trigger that signals a heuristic change for an entity if the entity’s fitness does not

steadily improve over a specific period, and a random trigger that probabilistically sig-

nals a heuristic change for an entity. Each type of trigger takes a frequency parameter, k,

that defines the number of algorithm iterations between heuristic changes. Larger values

of k increase the number of algorithm iterations before the hyper-heuristic is invoked to

perform heuristic selection for the triggered entity.

Section 3.4.2 extended HMHH with alternative neighborhood topologies. Various

topologies stipulate different ways in which entities are visible across heuristics. The

global topology, the topology used in the original HMHH algorithm, allows each heuristic

to view the information of all entities across the entire HMHH parent population, but

each heuristic may only modify those entities that are assigned to the heuristic. The

newly proposed island topology allows each heuristic to view and modify only those

entities that are assigned to the heuristic.

Section 5.2 outlines the experimental procedure in detail, including an overview of

the experimental method, the benchmark problem settings, and the parameterization

strategy used to define heuristic and hyper-heuristic algorithm instances. Section 5.3

shows the results of experimentation as a series of three distinct research questions that,

respectively, investigates the sensitivity of each type of trigger to different values for k,

examines the impact that different types of triggering mechanisms have on the hyper-

heuristics, and directly compares the performance of the global and island topologies

when using all variations of triggers and values for k. Section 5.4 concludes the chapter.
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5.2 Experimental Procedure

The experiments in this chapter only compare different versions of each hyper-heuristic

against themselves. At no point is the effectiveness of one hyper-heuristic directly com-

pared against the effectiveness of any other hyper-heuristic (this is left for chapter 6).

Instead, a range of different hyper-heuristics are set up with different trigger and neigh-

borhood topology configurations. The analysis is restricted to determining the following:

1. Whether the parameter k (i.e. the frequency with which heuristic selection is

triggered) has a strong influence on the performance of each trigger. Are there

any identified trends in performance sensitivity that are sustained across different

hyper-heuristics, neighborhood topologies, and DOP types?

2. Whether different trigger choices result in noticeably different performance across

hyper-heuristics, and whether different hyper-heuristics have strong tendencies to

perform better with certain types of triggers. All hyper-heuristics share the same

pool of heuristics, because testing the effectiveness of each trigger under varying

heuristic pool compositions is out of scope for this thesis, and is left for future

studies (as explained in section 4.3.5).

3. If either the island or global topology is always superior to the other, or if there are

certain triggers, environments, or hyper-heuristics that each topology excels in.

The overall experimental approach is based on the benchmark problems, heuristic

implementation choices, and overall design decisions outlined in section 4.3. The exper-

imental method is reiterated in section 5.2.1, along with any additional design decisions

used in this chapter. Section 5.2.2 discusses the applicable parameter values used for all

HMHH selection operators, neighborhood topologies, and triggering mechanisms used in

experiments.

5.2.1 Experimental Method

The same experimental method outlined in section 4.3 is used for the experimental

analysis in this chapter, which is briefly summarized below along with the following

minor modifications:
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• Benchmark problems: The same MPB function generator is used, and the same

71 landscape samples are generated randomly for each of the 27 different DOP

types.

• Performance measures: The Pr performance measure is used to capture the

performance of each algorithm as a scalar value.

• Control groups: The control groups outlined in section 4.3 are not used in this

chapter. Variations of the same hyper-heuristic are compared to themselves to de-

termine if changes in trigger configurations yield statistically significant differences

in performance. The goal is not to compare any performance improvements of any

of the configurations against control groups.

• Support for specific DOP-focused algorithm capabilities: Section 2.5 dis-

cussed the different “building blocks” identified in the literature that modern DOP

algorithms should cater for. Section 4.3.1 outlined how the experiment supports

the incorporation of the various components. The experiments in this chapter use

the same implementation decisions.

• Heuristic algorithm and parameter value choices: Section 4.3.2 outlined a

selection of representative meta-heuristics from the SI and EC fields that make

up a pool of nine heuristics. Suitable parameter choices were motivated for each

heuristic. The same algorithms, parameter values, and implementation decisions

for each heuristic are used in all experiments in this chapter.

• Heuristic pool choices: The same pool of nine heuristics is made available to all

hyper-heuristics in every experiment run. The HMHH parent population consists

of 50 entities that are assigned to specific heuristics across the pool. Initially, all

50 entities are distributed across all heuristics in the pool in a uniform random

manner.

Each heuristic maintains a minimum number of assigned entities to avoid the situa-

tion where a heuristic with zero assigned entities produces no feedback information.

A lack of feedback could result in the heuristic never being chosen by certain hyper-

heuristics, as discussed in section 3.4.6. Consequently, each heuristic always has a
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minimum entity count of one in the global topology, and four in the island topol-

ogy. Each heuristic can only view those entities that are assigned to it when the

island topology is used. Since DEBest1Bin forms part of the heuristic pool, and

DE requires a minimum of four individuals to be effective (as discussed in section

4.3.2), a minimum of four entities is used in island topology configurations.

The experiment design decisions above yield a controlled set of problem instances,

a performance measure that allows for an apples-to-apples comparison of performance

across algorithms and problem instances, and common algorithm components for use by

all hyper-heuristics.

5.2.2 Hyper-heuristic Selection Operator Choices

Section 3.4 presented two HMHH neighborhood topologies, three heuristic change trig-

gering mechanisms, and numerous selection operator algorithms for HMHH. Many selec-

tion operators and all of the heuristic change triggering mechanisms require parameter

values. The passages below outline in more detail how each component is added to the

experiment:

• Selection operators: Section 3.4.6 described the algorithmic layout and param-

eter requirements (if applicable) of each selection operator in detail. Table 5.1

summarizes the HMHH selection operator design and applicable parameter deci-

sions that are used in the experiments.

• HMHH neighborhood topologies: Each selection operator is set up to use

both the island and global neighborhood topologies, respectively.

• Heuristic change triggers: Each hyper-heuristic is configured to use each of

the three heuristic change triggers outlined in section 3.4.4, namely a periodic

trigger (PT), stagnation trigger (ST), and a random trigger (RT). The trigger-

ing mechanisms are used in combination with each of the selection operators and

neighborhood topologies above.

• Heuristic change frequency (k): Each trigger requires a frequency parameter,

k, that controls the number of algorithm iterations before triggering a heuristic
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Table 5.1: Selection operator algorithms labels and parameters.

Selection Operator Label Parameter Notes

Fixed IFix GFix Parameterless

Simple Random Rand Parameterless

Permutation Perm Parameterless

Roulette Wheel
RoulM Using equation (3.3)

RoulX Using equation (3.4)

Heuristic Tournament

HTour2M
Minimum tournament size is 2,

uses equation (3.3)

HTour2X
Minimum tournament size is 2,

uses equation (3.4)

HTour5M
Tournament size is 50% of nh,

uses equation (3.3)

HTour5X
Tournament size is 50% of nh,

uses equation (3.4)

Entity Tournament
ETour2 Minimum tournament size is 2

ETour25 Tournament size is 50% of ns

Ant-inspired Rank-based ARank Parameterless

Normalized Ant-inspired Rank-based NARank Parameterless

Ant-inspired Fitness Proportional AProp Parameterless

Normalized Ant-inspired Fitness Proportional NAProp Parameterless

Frequency Improvement (k = 10)
Freq2 Minimum tournament size is 2

Freq5 Tournament size is 50% of nh

Frequency Improvement Reinforcement Learning RLFreq Parameterless, see rank ranges

Fitness Proportional Reinforcement Learning RLProp Parameterless, see rank ranges

Difference Proportional DProp β = 5

Competitive Population Comp Parameterless

Softmax Soft τ = 1

change for an entity. The parameter k is interpreted by each triggering mechanism

to yield roughly the same frequency of heuristic changes per trigger for correspond-

ing values of k. The value of k is set to different percentages of the landscape change

frequency of every environment type, namely k ∈ {20%, 40%, 60%, 80%, 100%}.
For example, if the length of a change period of an environment such as C3R is

20 iterations (refer to table 2.2), then a choice of k = 40% results in 20 ∗ 0.4 = 8

iterations before each triggering event.
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The combination of three triggering mechanisms with five parameters values for k

results in 15 variations per hyper-heuristic. The same setup is repeated across the two

neighborhood topologies to yield a total of 30 variations for each hyper-heuristic. All

variations are executed for 1000 algorithm iterations on 71 random (but reproducible)

instances of each of the 27 problem types.

5.3 Experimental Results

All variations of each hyper-heuristic were configured and executed as explained in section

5.2 above. The results of all experiments are organized into distinct research questions

which are listed in section 5.3.1 and answered in the subsequent sections below.

5.3.1 Research Questions

The following research questions drive the experimental analysis:

1. Does the parameter k make a significant difference to the performance of each

type of trigger? How sensitive is each type of trigger to different values for k

across different hyper-heuristics? Are similar trends in sensitivity to changes in k

visible across hyper-heuristics? How does the choice between an island or global

neighborhood topology affect performance sensitivity with respect to k?

2. Does the type of trigger significantly alter performance of the same hyper-heuristic?

How does the performance of each hyper-heuristic vary when different types of trig-

gers are used? Is any trigger consistently better across different hyper-heuristics?

How does the performance of the same combination of hyper-heuristic and trigger

differ between the global and island topology?

3. When is the global or island neighborhood topology significantly better? Is either

topology consistently (and significantly) superior across different hyper-heuristics,

different environment types, and different trigger configurations?
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5.3.2 Research Question 1

Does the parameter k make a significant difference to the performance of each

type of trigger?

A trigger can be considered sensitive to the value of the parameter k if gradually

differentiated values of k (based on a percentage of the period of time between envi-

ronment changes) yield significantly different results when keeping all other variables

constant. Conversely, if various values of k (all other variables being equal) yield statis-

tically insignificant differences in performance, then the trigger type is not sensitive to

the parameter k. Different hyper-heuristics might show different behaviors in this regard

across different environments and trigger types.

For this research question, each hyper-heuristic is configured to use each of the three

heuristic change triggers outlined in section 3.4.4. For each trigger, the values for k

were set to k ∈ {20%, 40%, 60%, 80%, 100%} of the length of the change period of each

environment, as outlined in section 5.2.2. A separate Friedman test was used for each

hyper-heuristic and each environment to compare the Pr values of the five k-value con-

figurations. The test was repeated independently for each trigger. The analysis was

repeated using both the island and global topologies. Figure 5.1 illustrates the bound-

aries of each Friedman test and all associated Shaffer post hoc tests in this research

question.

The following outcomes were possible per environment:

1. If a Friedman test did not show a significant difference (i.e. p-values were greater

than α = 0.05), then all five configurations of k immediately received zero wins

and zero losses each, because their performances were statistically indistinguishable

from each other.

2. If a Friedman test showed that there were significant differences in performance

between the five configurations of k, then a full pairwise comparative analysis was

conducted between all ten possible comparisons of the five configurations using a

Shaffer post hoc test. The post hoc test determined which configurations were

superior, inferior, or similar to each other. Wins and losses were assigned to each

configuration using the method described in section 2.7.4.
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Figure 5.1: Focus of the Friedman test and associated Shaffer post hoc tests for research ques-

tion 1. The process was repeated for each triggered hyper-heuristic, and the entire experiment

was repeated using the global and the island topologies, respectively. The value n represents

the number of algorithm runs underpinning each level.

Contrasting the number of wins and losses achieved by a hyper-heuristic and trigger

configuration at different values for k yields insight into how sensitive that configuration

was to changes in values for k. The net number of wins minus losses is a scalar value that

expresses how well a configuration ranked against all other configurations. A positive

wins minus losses value shows that the configuration recorded more wins than losses

against other configurations. A negative wins minus losses value indicates that the

configuration lost against more configurations than what the configuration won against.
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The process was repeated for every combination of trigger type and neighborhood

topology. For each combination of hyper-heuristic, trigger type, and neighborhood topol-

ogy, the above procedure resulted in 27 sets of wins, draws, and losses for the five different

values of k. The mean number of wins minus losses (across all 27 environments) for every

value of k was then computed for each hyper-heuristic. The highest possible mean wins

minus losses value was four, which indicates total dominance by one configuration of

k across every environment. The lowest possible value was minus four, indicating that

all other configurations of k performed better across every environment. A mean wins

minus losses value of zero for any value of k indicates that the performance of the hyper-

heuristic was not significantly different from configurations of the same hyper-heuristic

using other values of k.

Table 5.2 shows the Pearson correlation between values for k and wins minus losses per

hyper-heuristic, individually per trigger and topology variation (across all environments).

Figures 5.2, 5.3, and 5.4, respectively show the output of the analysis for the RT, ST,

and PT triggers for individual hyper-heuristics using the global neighborhood topology.

Figures 5.5, 5.6, and 5.7, respectively show the same information for the same experiment

carried out using the island topology.

The correlation analysis in table 5.2 confirms the presence of predominantly negative

correlations: For the majority of hyper-heuristics, regardless of the type of trigger or

topology that was used, lower values for k generally yielded higher wins minus losses val-

ues. Four noteworthy positive correlations where found that were larger than 0.1, namely

Perm when using the Global PT, DProp and RLFreq when using the Global RT con-

figuration, and ETour2 when using the Island ST configuration. Isolated exceptions

exist in the table where correlations were found to be in the range of [−0.1, 0.1], i.e.:

1. Comp, NARank, Rand and Soft when using Global PT configurations,

2. NARank and RLProp when using the Global RT trigger,

3. DProp, ETour2, Freq2, HTour5M, NAProp, and RoulX when using Is-

land RT configurations.

The negative correlations for the majority of hyper-heuristics, topology, and trigger

combinations confirm that better performance resulted at lower values for k. Each hyper-
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Table 5.2: Pearson correlation between values for k and wins minus losses per hyper-heuristic,

individually per trigger and topology variation.

Global topology Island topology

HH

G
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P
T
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l
S
T
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R
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n
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P
T
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n
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S
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n
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R
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AProp -0.36 -0.59 -0.33 -0.53 -0.23 -

ARank -0.05 -0.58 -0.46 -0.54 -0.40 -0.32

Comp 0.08 -0.51 -0.20 -0.60 -0.61 -0.17

DProp -0.69 -0.59 0.22 -0.53 -0.29 -0.09

ETour2 -0.69 -0.53 -0.47 -0.17 0.13 -0.04

ETour25 -0.72 -0.64 -0.12 -0.33 -0.32 -

Freq2 -0.56 -0.62 -0.31 -0.62 -0.33 -0.09

Freq5 -0.75 -0.64 -0.30 -0.66 -0.55 -0.34

HTour2M -0.63 -0.61 -0.42 -0.48 -0.35 -0.29

HTour2X -0.64 -0.57 -0.43 -0.58 -0.49 -0.22

HTour5M -0.78 -0.67 -0.29 -0.66 -0.50 -0.04

HTour5X -0.81 -0.66 -0.37 -0.65 -0.57 -0.24

NAProp -0.45 -0.51 -0.28 -0.51 -0.20 -0.04

NARank -0.08 -0.59 -0.06 -0.51 -0.44 -0.33

Perm 0.19 -0.47 -0.41 -0.49 -0.43 -0.3

RLFreq -0.69 -0.67 0.13 -0.63 -0.54 -0.17

RLProp -0.66 -0.60 0.06 -0.48 -0.51 -

Rand 0.03 -0.48 -0.31 -0.57 -0.36 -0.21

RoulM -0.53 -0.60 -0.26 -0.48 -0.46 -0.13

RoulX -0.48 -0.58 -0.18 -0.33 -0.44 0.02

Soft -0.06 -0.56 -0.22 -0.63 -0.46 -0.22

heuristic, however, showed different sensitivities to k for different topology and trigger

combinations.

The following observations, with regard to the stated research question, can be made

for the configurations that use the global topology:

• Random trigger under the global topology: Figure 5.2 sheds more light on

the relatively weaker correlation coefficients in table 5.2 for the Global RT con-

figuration. The low number of wins minus losses in figure 5.2 imply that the RT

trigger overall was relatively insensitive to different values of k. Those hyper-

heuristics with strong negative correlation in the table (namely ARank, ETour2,

HTour2M, HTour2X, and Perm) all show positive wins minus losses values for
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Figure 5.2: Mean wins minus losses across all 27 environments achieved by each hyper-

heuristic for five possible values of k for the RT trigger using the global topology.

k = 20% and decreasing (mostly negative) values at higher values for k in figure

5.2.

The other hyper-heuristics that had correlation values that were closer to zero

followed the same pattern, where larger values of k yielded lower performance.

For these hyper-heuristics, however, the difference in performance gain was almost

negligible, i.e., these hyper-heuristics were relatively insensitive to the value of k
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Figure 5.3: Mean wins minus losses across all 27 environments achieved by each hyper-

heuristic for five possible values of k for the ST trigger using the global topology.

when using the Global RT configuration.

There is evidence that there was a correlation between the tournament size pa-

rameter and the value of k in those hyper-heuristics that employ tournament selec-

tion. There were large discrepancies visible in the performances of ETour2 versus

ETour25, Freq2 versus Freq5, HTour2M versus HTour5M, and HTour2X

versus HTour5X. For each instance, the variation of the hyper-heuristic with the
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Figure 5.4: Mean wins minus losses across all 27 environments achieved by each hyper-

heuristic for five possible values of k for the PT trigger using the global topology.

greatest sensitivity to k had a tournament size parameter value of two.

• Stagnation trigger under the global topology: Visually, the wins minus losses

distribution patterns in figure 5.3 appear nearly identical for every hyper-heuristic.

Configurations with k = 20% dominated in every hyper-heuristic and had notice-

ably better mean win minus losses values than other configurations. The visual



Chapter 5. Performance Sensitivity of HMHH Under Varying Parameter Values 183

findings reflect the strong negative correlations in table 5.2.

The ST trigger performed better for all of the investigated hyper-heuristics when

lower values of k were used. This implies that lower tolerances for what was deemed

to be stagnating behavior of entities generally had a positive effect on any hyper-

heuristic compared to higher (more lenient) tolerances. It is clear that k = 20%

was the most beneficial setting for k for all investigated hyper-heuristics that used

a stagnation trigger combined with a global topology. In this thesis, the value of

k was systematically varied across the range of k ∈ {20%, 40%, 60%, 80%, 100%}
relative to the length of the change period of each environment, as outlined in

section 5.2.2. Future studies should focus on even shorter stagnation periods such

as k ∈ {5%, 10%} to determine if performance can be improved even more, and

whether or not performance degrades if stagnation tolerances are too short.

Tournament size had an influence on performance for those hyper-heuristics that

employ tournament selection: Freq2 versus Freq5, ETour2 versus ETour25,

HTour2M versus HTour5M, and HTour2X versus HTour5X all show that

larger tournament sizes performed better. The general shape of the mean wins

value distribution remained the same across different tournament sizes for each

hyper-heuristic. This behavior is the opposite of what was observed for the RT

results, where lower tournament sizes yielded better performance.

• Periodic trigger under the global topology: Table 5.2 shows large discrep-

ancies where some hyper-heuristics had very strong negative correlation values,

but a sizable group of hyper-heuristics showed weak negative (and even positive)

correlation values. Figure 5.4 echos this finding and shows that hyper-heuristics

configured with PT triggers had more diversified mean wins minus losses histogram

shapes than the RT and ST triggers. Most hyper-heuristics had histograms shapes

similar to the ST variants in figure 5.3, where the highest number of net wins oc-

curred at k = 20% and win rates gradually declined as the value of k increased.

A number of hyper-heuristics deviated from this trend, namely Rand, ARank,

Comp, NARank, Perm, and Soft. These hyper-heuristics showed low sensitiv-

ity to different values for k. Perm showed a positive correlation between k and

wins minus losses values in table 5.2, which is also visible in figure 5.4.
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Similar to the ST results, tournament size had an influence on performance for

those hyper-heuristics that employed tournament selection: Freq2 versus Freq5,

ETour2 versus ETour25, HTour2M versus HTour5M, and HTour2X versus

HTour5X all show that larger tournament sizes performed better.

The same analysis was performed on the same set of hyper-heuristic algorithms and

values of k on identical problem instances, but using the island neighborhood topology.

The following observations, with regard to the stated research question, can be made

about the results of the island topology:

• Random trigger under the island topology: Figure 5.5 shows that most

hyper-heuristics had very low value counts across the different values for k. A

noteworthy departure from the global topology was ETour2, which showed no

significant differences between configurations in figure 5.5, but showed strong per-

formance at k = 20% in figure 5.2. Similar trends were observed for HTour2X

and (to a lesser degree) for HTour5X, Freq2, and Rand.

Generally, the same conclusions can be made for the RT trigger for the island

topology as for the global topology: lower values of k ≈ 20% tended to perform

the same or better than higher values of k, and the performance difference of the

majority of the investigated hyper-heuristics were mostly unaffected by the value

of k.

• Stagnation trigger under the island topology: Figure 5.6 shows that the

strongest performance occurred at k = 20% across half of the hyper-heuristics.

Notable exceptions were Freq2, HTour2M, and HTour2X, where k = 20% still

yielded the best performance, but faced stronger competition from configurations

where k = 40%. A noteworthy difference for the island topology compared to the

global topology was the lack of sensitivity to changing values of k shown by the

following hyper-heuristics: ETour2 and ETour25, DProp, and AProp.

Generally, low values of k = 20% yielded the same or better performance than

higher values of k across the majority of investigated hyper-heuristics when the ST

trigger and an island topology were used. Similar to the global topology cases, fu-

ture studies should focus on even shorter stagnation periods such as k ∈ {5%, 10%}
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Figure 5.5: Mean wins minus losses across all 27 environments achieved by each hyper-

heuristic for five possible values of k for the RT trigger using the island topology.

to determine if performance can be improved even more, and whether or not a point

exists where performance degrades if stagnation tolerances are too short.

• Periodic trigger under the island topology: Figure 5.7 shows distinctly dif-

ferent distributions of values for nearly every hyper-heuristic compared to their

global topology counterparts in figure 5.4. This observation is echoed in table 5.2
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Figure 5.6: Mean wins minus losses across all 27 environments achieved by each hyper-

heuristic for five possible values of k for the ST trigger using the island topology.

where the difference in correlation coefficients were large for nearly every hyper-

heuristic. However, for the majority of hyper-heuristics, those configurations that

used k = 20% yielded noticeably better performance. Both ETour2 and ETour25

were almost totally invariant to the value of k for the island topology, which was

not the case for the global topology.

The addition of multiple types of trigger mechanisms yielded noticeably varied results
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Figure 5.7: Mean wins minus losses across all 27 environments achieved by each hyper-

heuristic for five possible values of k for the PT trigger using the island topology.

pertaining to the frequency with which heuristic selection was performed by each hyper-

heuristic. Various triggers showed different sensitivities to the value of the parameter

k. The same trigger also performed differently with alternate sensitivities to values of k

when a global versus an island neighborhood topology was used.

Every trigger type, for the global or island topology alike, generally showed better

performance at lower values of k = 20% for nearly all the investigated hyper-heuristics.
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Table 5.2 support the visual observations in the respective figures by showing mostly

negative correlations between values for k and good performance. More frequent heuristic

selection for entities was more beneficial than less frequent heuristic changes. Even under

a random trigger, more frequent heuristic changes are beneficial, implying that simple

algorithmic diversity is effective at improving performance.

However, these insights resulted from an aggregate study across all 27 environments.

Future studies need to determine if performance sensitivity to the value of k is strongly

problem dependent or not.

5.3.3 Research Question 2

Does the type of trigger significantly alter performance of the same hyper-

heuristic?

The original HMHH algorithm relies on the periodic trigger mechanism to determine

when heuristic changes are required for entities. Two additional HMHH triggers, namely

random and stagnation triggers, are adapted from heterogeneous PSO behavior sched-

ules for use as heuristic selection triggers (as explained in section 3.4.4). This research

question expands the analysis of the previous research question by comparing the perfor-

mance of each type of trigger that each use different values of k (independently for each

hyper-heuristic). Key questions come to mind when considering the effect of different

triggers on HMHH:

1. Were there any broadly observable visually identifiable trends across triggers?

2. Was the performance of any hyper-heuristics sensitive or insensitive to trigger

changes?

3. Did ST or RT configurations ever outperform PT configurations?

4. Did any hyper-heuristics perform noticeably better with specific trigger choices?

5. Were any trigger configurations sensitive to different DOP types?

6. Was any one trigger always the best performer across all hyper-heuristics?
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These questions above were answered as follows. A Friedman test and Shaffer post

hoc test was performed to compare the Pr measurements of all 15 trigger variations (i.e.,

three triggers, each with five different values for k) of each hyper-heuristic individually.

This test was performed independently for each environment. The island and global

topology configurations were compared and ranked independently as well. Figure 5.8

illustrates the boundaries of each Friedman test and all associated Shaffer post hoc tests

in this research question. Similar to the previous research question, the resulting ranks

and wins, draws, and losses were only compared to the variations of the same hyper-

heuristic. Individual Friedman and Shaffer post hoc tests for each environment yielded

the number of pairwise wins, draws, and losses for each of the 15 trigger configurations

against the 14 other trigger configurations.

The aim in this research question is to determine, for each hyper-heuristic, which

trigger configurations yielded more wins than losses against other trigger configurations

more often across environments. The net number of wins minus losses is a scalar value

that expresses how well a configuration ranked against all other configurations in an envi-

ronment. Higher wins minus losses values reveal trigger configurations that outperformed

most other configurations while simultaneously not being outperformed by many others

configurations. The lower the wins minus losses value for a configuration, the greater the

number of other configurations that performed better than the configuration. Wins mi-

nus loss values are symmetrical around zero, since the sum of all wins, draws, and losses

is zero. In a test with a large number of draws between configurations, the wins minus

losses value of each configuration will be close to zero (since most methods will, mostly,

record zero wins and zero losses). For a test where most configurations had significantly

different performance value distributions, the wins minus loss value distribution spanned

the nearly entire range from [−14, 14].

Aggregated across all 27 environments, the wins minus losses values of each trig-

ger configuration forms a distribution of integer values. The shape and location of the

distribution expresses the tendency each configuration had to perform better or worse

than other configurations. Narrow distributions indicate that a configuration tended

to be ranked the same way against other configurations, regardless of the environment

at hand. Wider distributions show that the configuration was prone to perform well

against other configurations in certain environments, while being outperformed by the
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Figure 5.8: Focus of the Friedman test and associated Shaffer post hoc tests for research ques-

tion 2. The process was repeated for each triggered hyper-heuristic, and the entire experiment

was repeated using the global and the island topologies, respectively. The value n represents

the number of algorithm runs underpinning each level.

other methods in certain environments. Distributions with predominantly positive val-

ues reveal configurations that always tend to outperform other configurations in most

environments, while distributions with predominantly negative values highlight configu-

rations that perform worse than other configurations, regardless of the environment at

hand.

Figures 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15 show the distributions of Friedman

ranks and net wins minus losses achieved by different trigger configurations for each
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individual hyper-heuristic. The global and island topology results are shown separately.

The ranks of each trigger configuration were aggregated across the 27 environments as

box whisker plots.

The wins minus losses values for each configuration are shown as a heat map, where

the y-axis indicates the net number of wins achieved, as discussed in the paragraphs

above. The darkness of each cell indicates the number of environments in which specific

wins minus losses values were achieved. For example, in figure 5.9, the ARank (Island)

heat map shows that RT configurations yielded a high proportion of net wins for roughly

half of all environments, and approximately zero values for the remainder of the envi-

ronments. Similarly, AProp (Island) shows a dark band across the zero value cells for

the RT configuration, indicating that most configurations yielded zero wins minus losses

values against the other configurations for approximately 25 of the 27 environments.

The sum of each column in each heat map is equal to the total number of environments,

namely 27.

Table 5.3 summarizes the wins minus losses values for each hyper-heuristic by cal-

culating the average values across all 27 environments, for each of the 15 trigger and

topology configurations. The average and standard deviation of the wins-minus-losses

across all hyper-heuristics (i.e., columns) are also shown for each configuration. Table

5.4 shows the Pearson correlation [162] between the Friedman ranks and k, as well as

the correlation between the wins minus losses values and k for each hyper-heuristic, for

all trigger configurations and topologies.

The following observations, with regard to the stated research question, can be made

when considering the results in figures 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15 and

tables 5.3 and 5.4:

Were there any broadly observable visually identifiable trends across triggers?

At a glance, nearly every hyper-heuristic showed a wide array of both positive and neg-

ative wins minus losses values in their respective heat maps, for the island and global

topologies alike. Isolated exceptions resulted when the island topology was used, namely

ETour2, ETour25, and DProp, which yielded mostly zero or approximately zero wins

minus losses values across environments. Such a large proportion of environments show-
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Figure 5.9: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 1 of 7).
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Figure 5.10: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 2 of 7).
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Figure 5.11: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 3 of 7).
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Figure 5.12: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 4 of 7).
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Figure 5.13: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 5 of 7).
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Figure 5.14: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 6 of 7).
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Figure 5.15: Distribution of Friedman ranks and wins minus losses across all DOPs for each

hyper-heuristic (part 7 of 7).
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Table 5.3: Average wins minus losses per hyper-heuristic for each trigger and value of k for

both topologies. Averages were computed across the 27 environments. Bold values indicate

the best configurations.
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AProp (Global) -0.67 -0.78 -1.52 -3.22 -3.11 3.52 2.44 1.30 -0.37 0.41 0.41 0.81 0.59 0.44 -0.26

AProp (Island) 0.15 -0.19 -0.19 -0.15 -1.26 0.48 0.67 0.48 0.19 0.19 0.15 0.07 -0.26 -0.22 -0.11

ARank (Global) -0.11 -0.30 -0.44 -0.37 -0.63 3.56 1.04 0.59 -0.19 -0.74 0.44 -0.41 -0.48 -0.74 -1.22

ARank (Island) 0.30 -0.59 -0.89 -1.07 -1.96 0.70 -0.11 -0.37 -0.63 -0.81 2.37 1.30 0.89 0.85 0.04

Comp (Global) -1.26 -0.93 -1.37 -2.52 -1.67 4.15 3.22 2.11 0.85 0.81 -0.52 -0.78 -0.81 -0.59 -0.70

Comp (Island) 1.04 0.11 -0.78 -1.96 -3.04 2.11 0.56 -0.26 -1.15 -1.48 1.52 1.44 0.85 0.63 0.41

DProp (Global) 1.33 1.93 -0.52 -1.41 -3.78 0.15 -0.07 -2.59 -2.89 -5.07 2.15 2.63 2.22 3.11 2.81

DProp (Island) 0.07 0.07 -0.07 -0.04 -0.70 0.07 0 -0.04 -0.26 -0.67 0.15 0.07 0.19 0.70 0.44

ETour2 (Global) 1.44 -0.37 -1.04 -1.93 -3.30 -0.78 -1.22 -1.70 -2.96 -3.74 4.74 3.11 2.89 2.41 2.44

ETour2 (Island) 0.04 -0.04 -0.04 0 -0.04 -0.04 0 0 -0.04 -0.22 0.22 0.11 -0.04 0.07 0

ETour25 (Global) 2.70 2.07 0.56 -2.44 -5.52 0.89 -0.41 -1.00 -4.56 -5.33 2.52 2.44 2.41 2.85 2.81

ETour25 (Island) 0.11 0.04 0.04 -0.04 -0.33 0 0 0 -0.15 -0.70 0.26 0.26 0.11 0.22 0.19

Freq2 (Global) 0.67 0.96 -0.19 -1.56 -3.63 2.22 0.89 -0.63 -2.19 -2.81 1.96 1.63 0.93 0.89 0.85

Freq2 (Island) 0.67 -0.63 -1.30 -1.89 -3.59 0.44 1.22 -0.04 -0.67 -2.19 2.07 2.74 1.33 0.81 1.00

Freq5 (Global) 2.63 1.81 0.15 -2.96 -4.89 0.63 -0.15 -3.30 -4.59 -5.07 3.63 3.19 3.48 2.89 2.56

Freq5 (Island) 0.63 -0.07 -0.26 -1.44 -4.26 0.81 0.26 -0.52 -1.44 -2.89 3.11 2.22 1.44 1.26 1.15

HTour2M (Global) 1.67 1.15 -0.59 -2.52 -3.11 1.48 0.11 -1.00 -2.78 -3.37 2.48 2.19 1.89 1.44 0.96

HTour2M (Island) 0.30 -0.70 -1.26 -2.04 -2.70 0.07 0.33 -0.04 -1.19 -1.89 3.00 2.56 1.63 0.93 1.00

HTour2X (Global) 1.26 1.19 -0.56 -1.59 -3.30 1.19 0.56 -0.78 -3.00 -3.22 2.93 1.93 1.19 1.37 0.85

HTour2X (Island) 0.22 -1.07 -0.63 -1.59 -2.85 0.33 0.52 -0.33 -1.59 -2.41 2.78 2.81 1.52 0.93 1.37

HTour5M (Global) 2.70 2.37 -0.33 -3.81 -4.67 0.22 -1.22 -3.26 -4.81 -5.19 3.93 3.89 3.59 3.33 3.26

HTour5M (Island) 1.22 -0.04 -0.41 -1.22 -3.81 0.67 -0.48 -1.56 -2.22 -3.48 3.07 3.30 1.63 1.93 1.41

HTour5X (Global) 2.85 2.19 -0.26 -3.04 -4.70 0.63 -1.04 -3.33 -4.59 -4.85 3.74 3.67 3.07 2.78 2.89

HTour5X (Island) 0.67 0.19 -0.41 -1.26 -3.26 0.63 -0.59 -1.19 -1.89 -3.11 3.15 2.85 1.56 1.04 1.63

NAProp (Global) -0.19 -0.52 -0.93 -2.81 -3.04 3.30 2.26 1.19 -0.22 0.04 -0.04 0.59 0.22 0.33 -0.19

NAProp (Island) 0.04 -0.11 -0.19 -0.70 -1.22 0.59 1.22 0.37 0.33 0.30 0 0.22 -0.48 -0.11 -0.26

NARank (Global) -0.52 -0.15 -0.26 -0.78 -1.00 2.59 1.85 0.78 0.22 -0.70 -0.67 -0.19 -0.30 -0.41 -0.48

NARank (Island) 0.52 -0.56 -0.96 -1.74 -1.96 0.44 0.93 0.44 -0.74 -1.26 2.11 1.15 0.63 0.52 0.48

Perm (Global) -0.81 -0.33 -0.93 0.04 0.30 3.07 1.26 0.70 0.41 0.37 -0.22 -0.70 -1.04 -0.96 -1.15

Perm (Island) 0.07 -0.56 -0.67 -1.00 -1.48 0.48 0.63 0.41 -0.30 -0.81 1.41 1.37 0.33 0.11 0

RLFreq (Global) 1.52 1.22 0.33 -1.41 -4.67 1.74 0.19 -2.04 -4.00 -4.48 2.00 2.04 2.48 2.52 2.56

RLFreq (Island) 2.67 0.63 -0.89 -2.04 -1.96 1.11 -1.33 -2.96 -3.15 -3.48 3.11 2.56 2.44 2.26 1.04

RLProp (Global) 0.96 1.15 -0.74 -3.15 -4.70 1.04 0.56 -0.67 -2.15 -3.04 1.74 2.26 2.63 2.11 2.00

RLProp (Island) 0.22 0.07 -0.15 -1.00 -0.89 0.48 0.04 -0.11 -0.56 -0.74 0.93 0.41 0.48 0.30 0.52

Rand (Global) -0.41 0.22 -0.07 -0.67 -0.41 2.74 1.30 1.07 0.37 -0.41 -0.63 -1.00 -0.74 -0.74 -0.63

Rand (Island) 0.74 -0.48 -0.78 -1.26 -1.52 0.44 0.56 0.19 -0.41 -0.67 1.30 0.96 0.33 0.07 0.52

RoulM (Global) 1.11 0.74 0.26 -2.74 -3.00 1.56 0.63 -0.33 -2.37 -2.41 1.41 1.59 1.41 1.41 0.74

RoulM (Island) -0.04 -0.22 -0.22 -0.37 -0.85 0.93 0.56 0.56 0.19 0.11 0.19 -0.11 -0.41 -0.22 -0.07

RoulX (Global) 0.70 0.19 -0.04 -1.85 -2.30 2.22 0.89 0.30 -1.67 -1.74 0.37 0.85 0.96 0.93 0.19

RoulX (Island) -0.04 -0.15 -0.22 -0.48 -0.67 0.67 0.85 0.52 0.37 0.22 0 -0.33 -0.44 -0.15 -0.15

Soft (Global) -0.26 0.04 -0.07 -0.44 -1.07 2.41 1.56 0.93 -0.11 -0.78 -0.37 -0.52 -0.63 -0.19 -0.48

Soft (Island) 0.37 -0.33 -1.00 -0.93 -2.04 0.78 0.26 -0.37 -0.67 -0.52 1.44 1.48 0.44 0.81 0.26

µ (Global) 0.83 0.66 -0.41 -1.96 -2.96 1.83 0.70 -0.56 -1.98 -2.44 1.52 1.39 1.24 1.20 0.94

µ (Island) 0.47 -0.22 -0.54 -1.06 -1.92 0.58 0.29 -0.23 -0.76 -1.26 1.54 1.31 0.68 0.61 0.52

σ (Global) 1.24 1.02 0.53 1.06 1.63 1.28 1.16 1.61 1.86 2.06 1.64 1.51 1.49 1.41 1.49

σ (Island) 0.60 0.37 0.40 0.67 1.18 0.45 0.60 0.80 0.88 1.20 1.18 1.14 0.80 0.65 0.56
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Table 5.4: Pearson correlation between Friedman ranks and k, as well as between wins minus

losses and k per hyper-heuristic, across all trigger and topology variations.

Correlation between ranks and k Correlation between wins minus losses and k
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AProp 0.18 0.11 0.34 0.61 0.25 0.42 0.32 0.16 -0.29 -0.07 -0.31 -0.31 -0.11 -0.09 -0.20 0.11

ARank 0.00 0.21 0.43 0.62 0.29 0.46 0.34 0.20 -0.07 -0.18 -0.46 -0.41 -0.29 -0.26 -0.28 0.13

Comp 0.04 0.02 0.38 0.69 0.15 0.57 0.31 0.26 -0.10 -0.01 -0.33 -0.54 -0.21 -0.46 -0.27 0.19

DProp 0.69 -0.17 0.46 0.68 -0.11 0.54 0.35 0.35 -0.61 0.10 -0.51 -0.29 0.22 -0.32 -0.24 0.30

ETour2 0.66 0.29 0.26 0.29 -0.02 0.09 0.26 0.21 -0.57 -0.22 -0.36 -0.07 -0.15 -0.13 -0.25 0.17

ETour25 0.78 -0.09 0.54 0.58 -0.06 0.54 0.38 0.33 -0.68 0.06 -0.55 -0.32 -0.04 -0.32 -0.31 0.26

Freq2 0.48 0.18 0.56 0.74 0.23 0.43 0.44 0.19 -0.50 -0.19 -0.56 -0.61 -0.22 -0.33 -0.40 0.16

Freq5 0.79 0.27 0.57 0.78 0.20 0.51 0.52 0.23 -0.69 -0.13 -0.56 -0.64 -0.29 -0.42 -0.45 0.20

HTour2M 0.63 0.38 0.59 0.69 0.26 0.42 0.50 0.15 -0.59 -0.22 -0.56 -0.51 -0.27 -0.27 -0.40 0.15

HTour2X 0.71 0.40 0.59 0.66 0.26 0.48 0.52 0.15 -0.58 -0.29 -0.54 -0.52 -0.25 -0.39 -0.43 0.13

HTour5M 0.77 0.26 0.53 0.78 0.32 0.56 0.54 0.20 -0.71 -0.09 -0.51 -0.66 -0.28 -0.56 -0.47 0.22

HTour5X 0.81 0.23 0.54 0.83 0.33 0.65 0.56 0.22 -0.70 -0.12 -0.52 -0.63 -0.29 -0.52 -0.46 0.20

NAProp 0.20 0.08 0.37 0.59 0.13 0.42 0.30 0.18 -0.35 -0.03 -0.33 -0.40 -0.10 -0.12 -0.22 0.14

NARank 0.07 0.01 0.44 0.65 0.26 0.48 0.32 0.23 -0.09 0.01 -0.41 -0.46 -0.24 -0.27 -0.24 0.16

Perm -0.11 0.15 0.36 0.59 0.38 0.46 0.30 0.23 0.18 -0.11 -0.31 -0.33 -0.25 -0.20 -0.17 0.17

RLFreq 0.77 -0.21 0.61 0.77 0.30 0.58 0.47 0.34 -0.61 0.09 -0.58 -0.59 -0.25 -0.49 -0.40 0.25

RLProp 0.75 -0.09 0.50 0.67 0.06 0.52 0.40 0.31 -0.65 0.02 -0.52 -0.38 -0.11 -0.43 -0.34 0.23

Rand 0.02 0.07 0.40 0.65 0.13 0.42 0.28 0.22 -0.05 0.01 -0.36 -0.43 -0.17 -0.23 -0.20 0.16

RoulM 0.53 0.13 0.56 0.61 0.16 0.46 0.41 0.19 -0.51 -0.11 -0.51 -0.26 -0.08 -0.13 -0.27 0.18

RoulX 0.28 0.02 0.44 0.55 0.14 0.45 0.31 0.18 -0.44 -0.02 -0.51 -0.23 -0.01 -0.11 -0.22 0.20

Soft 0.11 0.06 0.40 0.67 0.18 0.49 0.32 0.22 -0.13 0.01 -0.41 -0.46 -0.22 -0.26 -0.25 0.16

µ 0.44 0.11 0.47 0.65 0.18 0.47 0.39 0.18 -0.42 -0.07 -0.46 -0.43 -0.17 -0.30 -0.31 0.14

σ 0.32 0.16 0.10 0.11 0.13 0.11 0.15 0.08 0.26 0.11 0.09 0.15 0.12 0.14 0.15 0.06

ing zero and near-zero values indicate that different trigger configurations yielded little

to no significant changes in performance. The narrow distributions indicate that this be-

havior was consistent across environments. Table 5.3 corroborates these visual findings

by showing how ETour2, ETour25, and DProp consistently had near-zero average

wins minus losses across most island topology configurations.

There was a strong visual trend among the trigger configurations for most hyper-
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heuristics where rank values tended to increase as values of k increased. The trend is

more visibly prevalent in the global topology results than in the island topology results.

The implication is that higher values of k yielded worse Friedman rank values for a

trigger configuration (i.e., worse performance). This observation is validated by the

correlation coefficients in table 5.4, which shows that the overwhelming majority of

hyper-heuristic configurations had a positive correlation between Friedman ranks and k.

Negative correlations were found in isolated cases only, and were mostly close to zero

(the exception was DProp using Global RT which had a stronger negative correlation

coefficient of -0.17). These results were consistent with the findings of the previous

research question in section 5.3.2 that examined each type of trigger separately.

Similarly, there was a strong negative association between increasing values for k

and lower wins minus losses values for each hyper-heuristic configuration. This inverse

relationship shows that higher wins minus losses values occurred at lower values for k,

which is visible in the plots as positive values at low values for k, and progressively

smaller (even negative) values at larger values for k. Table 5.4 corroborates these vi-

sual findings with strong negative correlation coefficients for nearly every hyper-heuristic

configuration. Isolated exceptions exist, such as DProp using the Island RT configu-

ration with a 0.22 correlation value, and Perm using the Global PT configuration at

0.18. These results show that statistically significant increases in performance resulted

for most hyper-heuristics by using lower values for k.

Was the performance of any hyper-heuristics sensitive or insensitive to trigger

changes?

Generally, a hyper-heuristic was insensitive to a change in the type of trigger if, for

each commensurate value of k, the three triggers had wins minus losses distributions

(across all environments) that mostly overlapped each other. In other words, if a change

in trigger yielded comparable levels of performance for the hyper-heuristic, then that

hyper-heuristic was not sensitive to the type of trigger. On the other hand, a hyper-

heuristic was sensitive to the type of trigger if, for each commensurate value of k, the wins

minus losses distributions were non-overlapping. Differences in performance occurred

depending on which trigger was used in conjunction with such a hyper-heuristic.
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A visual inspection of figures 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15 reveals that

not all hyper-heuristics showed the same sensitivity to perform differently with alter-

nate trigger configurations. Hyper-heuristics that were insensitive to the type of trigger

tended to show similar-looking rank plots for each trigger type, where the blue, orange,

and green groups of ranks had similar distribution sizes and value ranges (across com-

parable values of k). In these cases, the wins minus losses sub-plots also tended to show

relatively uniform patterns across triggers (at comparable values for k). On the other

hand, many sensitive hyper-heuristics showed larger differences in rank value distribu-

tions across triggers at comparable values of k, with the respective wins minus losses

sub-plots displaying large discrepancies between triggers.

A Friedman test was performed on the three wins minus loss distributions across the

27 environments for each trigger (at each specific value for k) to provide insight into

whether the performance of the three triggers overlapped, or if the three distributions

were, in fact, different. Three-way comparisons were conducted between the PT, ST

and RT trigger configurations for each value of k. Independent tests were conducted for

the global and island topologies. Table 5.5 shows the Friedman test p-values for each

hyper-heuristic at each value for k and each topology. At a significance level of α = 0.05,

over half of the table entries show significant differences were present between the wins

minus losses value distributions of the three triggers. For the global topology, 15 of the 21

hyper-heuristics showed significant differences between triggers at k = 20% (the island

topology only showed 9). A number of hyper-heuristics never showed any significant

differences in performance between triggers, most notably Freq2 and RoulX when the

global topology was used, and AProp, ETour2, ETour25, RoulM, RoulX and (to a

degree) DProp when the island topology was used.

By and large, however, the choice of trigger significantly affected the performance of

most hyper-heuristics.

Did ST or RT configurations ever outperform PT configurations?

Visually, the wins minus losses plots for a large proportion of hyper-heuristics show that

the ST and RT trigger configurations tended to have higher wins minus loss values than

the PT trigger configurations (at comparable values for k). The RT configurations also
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Table 5.5: Friedman test p-values of wins minus losses per hyper-heuristic, where comparisons

were conducted between PT, ST and RT triggers for each value of k. Independent tests were

conducted for the global and island topologies. Bold values indicate p-values less than α = 0.05.

The notation X-Y-Z stipulates the best-to-worst ranking of the triggers per hyper-heuristic and

value for k using the p-values and α = 0.05.

Global topology Island topology
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AProp 0.004 0.0356 0.1001 0.1751 0.0386 0.6264 0.1592 0.7781 0.9394 0.0594
ARank 0.0016 0.4385 0.6436 0.9394 0.3646 0.0415 0.0427 0.0312 0.0163 0.0057
Comp 0.0 0.0076 0.0153 0.0322 0.0776 0.268 0.0815 0.0247 0.0047 0.0086
DProp 0.0119 0.0032 0.0004 0.0002 0.0 0.9736 0.8983 0.5771 0.0415 0.0589
ETour2 0.0 0.0 0.0001 0.0001 0.001 0.7994 0.9649 0.9736 0.8903 0.7046
ETour25 0.0312 0.0006 0.0 0.0 0.0 0.5985 0.7046 0.8287 0.4896 0.1561
Freq2 0.0589 0.3926 0.2241 0.2606 0.0732 0.0315 0.0001 0.0112 0.001 0.0
Freq5 0.0 0.0001 0.0 0.0 0.0 0.0006 0.0014 0.0103 0.0 0.0
HTour2M 0.1264 0.0322 0.0026 0.0067 0.0042 0.0029 0.0007 0.0076 0.0047 0.0032
HTour2X 0.0063 0.0086 0.0059 0.004 0.0155 0.0005 0.0001 0.0436 0.0011 0.0004
HTour5M 0.0 0.0 0.0 0.0 0.0 0.0002 0.0008 0.0004 0.0 0.0
HTour5X 0.0006 0.0 0.0 0.0 0.0 0.0 0.0001 0.0011 0.0003 0.0
NAProp 0.0024 0.0891 0.2606 0.2394 0.1592 0.1686 0.3231 0.4305 0.0746 0.0053
NARank 0.0015 0.0954 0.3926 0.2372 0.8437 0.0315 0.0356 0.0644 0.0078 0.0014
Perm 0.0009 0.3612 0.3926 0.7781 0.7046 0.1104 0.0124 0.5033 0.1339 0.1751
RLFreq 0.5771 0.2372 0.0002 0.0 0.0 0.0119 0.0002 0.0 0.0001 0.0004
RLProp 0.3231 0.5033 0.0002 0.0 0.0 0.4036 0.8437 0.3714 0.0891 0.0303
Rand 0.0063 0.3748 0.1313 0.5667 0.8287 0.7574 0.1193 0.3646 0.0216 0.0014
RoulM 0.6264 0.1686 0.041 0.0268 0.0589 0.1592 0.8667 0.5464 0.4807 0.0792
RoulX 0.3084 0.7994 0.5173 0.3646 0.4385 0.146 0.5033 0.5464 0.4385 0.1264
Soft 0.0312 0.0436 0.3748 0.9394 0.4677 0.3926 0.0015 0.0589 0.0067 0.0008
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AProp S-R-P S-R-P - - S-R-P - - - - -
ARank S-R-P - - - - R-S-P R-S-P R-S-P R-S-P R-S-P
Comp S-R-P S-R-P S-R-P S-R-P - - - R-S-P R-S-P R-S-P
DProp R-P-S R-P-S R-P-S R-P-S R-P-S - - - R-P-S -
ETour2 R-P-S R-P-S R-P-S R-P-S R-P-S - - - - -
ETour25 P-R-S R-P-S R-P-S R-P-S R-S-P - - - - -
Freq2 - - - - - R-P-S R-S-P R-S-P R-S-P R-S-P
Freq5 R-P-S R-P-S R-P-S R-P-S R-P-S R-S-P R-S-P R-P-S R-S-P R-S-P
HTour2M - R-P-S R-P-S R-P-S R-P-S R-P-S R-S-P R-S-P R-S-P R-S-P
HTour2X R-P-S R-P-S R-P-S R-P-S R-S-P R-S-P R-S-P R-S-P R-S-P R-S-P
HTour5M R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-S-P
HTour5X R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-P-S R-S-P
NAProp S-R-P - - - - - - - - S-R-P
NARank S-P-R - - - - R-P-S R-S-P - R-S-P R-S-P
Perm S-R-P - - - - - R-S-P - - -
RLFreq - - R-P-S R-P-S R-S-P R-P-S R-P-S R-P-S R-P-S R-P-S
RLProp - - R-S-P R-S-P R-S-P - - - - R-S-P
Rand S-P-R - - - - - - - R-S-P R-S-P
RoulM - - R-P-S R-S-P - - - - - -
RoulX - - - - - - - - - -
Soft S-P-R S-P-R - - - - R-S-P - R-S-P R-S-P
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tended to outperform both the PT and ST configurations, which is generally visible as a

larger proportion of orange entries above the zero line for the RT configurations than the

PT or ST configurations. A general pattern was also visible across many hyper-heuristics

where the ST configurations tended to outperform their PT counterparts at low values

of k, but had worse performance at higher values of k.

The lower section of table 5.5 confirms the visual findings above. The notation X-

Y-Z stipulates the best-to-worst ranking of the triggers where significant differences

were found in wins minus losses value distributions. The best-to-worst ranking (where

significant differences were found to exist) were performed using the mean wins minus

losses from table 5.3. For example, the tuple “R-S-P” indicates that the RT trigger

outperformed both the ST and PT triggers, the ST trigger only outperformed the PT

trigger, and the PT trigger did not perform better than any of the other triggers. For the

global topology at k = 20%, the RT always ranked higher than the PT configurations

for all hyper-heuristics except ETour25, NARank, Rand, and Soft (when significant

differences were found – six hyper-heuristics showed no differences between the results

for the triggers). For larger values of k, the RT trigger always outperformed the PT

trigger when significant differences were present. The sole exception was Soft when

using k = 40%. The RT trigger was always the best trigger when the island topology

was used and significant differences were present.

For the global topology, the PT configurations outperformed the ST configurations for

those hyper-heuristics that made use of tournament selection (when significant differences

were present), the only exceptions being ETour25 and HTour2X at k = 100%. This

observation holds for all values for k. All configurations of DProp also saw PT triggers

outperform ST triggers, for all versions of k. All other hyper-heuristics saw the ST trigger

perform on par with or better than the PT trigger at all values of k, except for RLFreq

at k = 60% and k = 80%, and RoulM at k = 60%. For the island topology, the various

trigger configurations for hyper-heuristics showed different proclivities to perform better

with either ST or PT.

Figure 5.16 graphically shows the information from table 5.3. The plots corroborate

the visual findings above by showing how the RT trigger consistently had higher mean

wins minus losses values than the PT trigger for nearly every hyper-heuristic. Isolated

exceptions are visible where the RT curve drops below the PT curve, most notable Perm
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Table 5.6: Significant wins per trigger, by hyper-heuristic, using the best-to-worst ranking of

triggers in table 5.5.
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PT wins (Global) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PT wins (Island) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RT wins (Global) 0 0 0 5 5 4 0 5 4 5 5 5 0 0 0 3 3 0 2 0 0

RT wins (Island) 0 5 3 1 0 0 5 5 5 5 5 5 0 4 1 5 1 2 0 0 3

ST wins (Global) 3 1 4 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 2

ST wins (Island) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

when using the Global 80 or Global 100 configurations, and Rand using the Global 40

or Global 60 configurations. The performance of all RT configurations was always the

same or better than corresponding PT configurations when the island topology was used.

These visuals need to be considered in conjunction with the results in table 5.5 to account

for significant differences, since the curves only show the averages of each distribution

for each hyper-heuristic.

Did any hyper-heuristics perform noticeably better with specific trigger choices?

Table 5.6 summarizes the best-to-worst ranking of triggers in table 5.5 by listing how

many configurations each trigger was ranked as being the best, broken down by each

hyper-heuristic and each topology. Notable patterns that are visible in tables 5.5 and

5.6 include:

• Freq2 and RoulX showed no significant differences in performance between trig-

gers when using the global topology, at any value of k. These two hyper-heuristics

were relatively insensitive to changes in triggering mechanisms. When using the

island topology, AProp, ETour2, ETour25, RoulM, and RoulX showed no

significant differences between triggers.

• Under the global topology, AProp, ARank, Comp, NAProp, NARank, Perm,

Rand, and Soft significantly outperformed the other triggers when using the ST

trigger. All these hyper-heuristics had the roulette wheel selection strategy in
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Figure 5.16: Average wins minus losses per hyper-heuristic for each trigger and value of k for

both topologies, as shown in table 5.3.
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common. Table 5.5 confirms that at least one win of each of the total listed wins

for each hyper-heuristic always occurred when k was set to k = 20%. It is clear

that the ST trigger is the most viable choice for a number of hyper-heuristics under

the global topology.

The ST trigger did not perform as well against the other triggers when the island

topology was used, and the only hyper-heuristic that performed best using the ST

trigger was NAProp.

• The RT trigger was a strong performer across a large proportion of hyper-heuristics,

both when the island or global topology was used. Under the global topology,

the RT trigger performed on par with or better than other triggers across those

hyper-heuristics that relied on tournament selection. Exceptions were ETour25,

which lost against PT at k = 20%, and Freq2, which never showed any significant

differences between any triggers. The remaining tournament selection-based hyper-

heuristics, namely Freq5, HTour2M, HTour2X, HTour5M, and HTour5X

performed best with the RT trigger, at all values for k. In contrast, RLFreq

and RLProp performed best using the RT trigger only at k = 60%, k = 80%,

and k = 100% (with no significant differences between triggers at lower values for

k). DProp also always performed best when using an RT trigger, while RoulM

showed significant improvements using RT only when k = 60% and k = 80%.

When using the island topology, the RT trigger was always the best trigger choice

across all values for k for Freq2, Freq5, HTour2M, HTour2X, HTour5M, and

HTour5X (all tournament selection-based methods), as well as for ARank and

RLFreq. Perm only performed best using the RT trigger at k = 40%. Comp,

Dprop, Rand, and Soft showed no significant differences at low values for k, but

performed best using the RT trigger at higher values for k = 80% and/or k = 100%.

• Under both the island or global topology, the PT trigger configurations were always

matched or outperformed by configurations that used either the RT trigger or

the ST trigger for all hyper-heuristics except ETour25 (when using the global

topology). For the remaining hyper-heuristics, one of the other triggers was always

a better choice, regardless of k or topology.
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Were any trigger configurations sensitive to different DOP types?

For any given trigger and value of k, a wide distribution of wins minus losses values

(across the 27 environments) indicates that the performance of a hyper-heuristic was

influenced by which type of DOP was being solved. The vertical range of the cells in the

heat maps combined with cell intensity, as visible in figures 5.9, 5.10, 5.11, 5.12, 5.13,

5.14 and 5.15, indicate the sensitivity of performance for each hyper-heuristic to different

environments. Narrower distributions indicate configurations where performance was

invariant across DOPs, while wider spreads indicate volatility based on changing DOPs.

Statistically, this sensitivity of a hyper-heuristic to different DOPs can be expressed using

the standard deviation across the distribution of wins minus losses values (per trigger

and value for k).

Figures 5.17 and 5.18 show the range of wins minus losses values across every trigger

configuration for every hyper-heuristic, for both for the island and global topology, re-

spectively. The red curve in each plot reports the mean wins minus losses value for each

hyper-heuristic, as reported in table 5.3. The shaded part of each plot shows the area

covering twice the standard deviation of the wins minus losses values. The shaded area

therefore represents approximately 95% of the distribution of values [162]. The various

hyper-heuristics show different likelihood ranges for wins minus losses values, visible as

expansions and contractions of the shaded area across the x-axis. Different topology,

trigger, and values for k also impact the size of the distributions, which are shown as

different plot panels in figures 5.17 and 5.18.

Under the global topology, the PT trigger configurations had narrower distributions

than the RT or ST trigger configurations when k = 20%, k = 40%, and k = 60%.

The distributions became wider as the value of k increased to k = 80% and k = 100%.

The bulk of the shaded area lies above the zero line when k = 20% and k = 40%,

but as the value of k increases the majority of the area falls below the zero line. The

wider distributions and low-valued shaded area indicate that higher values of k were

detrimental to the performance of PT triggers. The same trends are visible when the

island topology was used, except that the distributions for each value of k were much

narrower compared to their global topology counterparts. Another notable deviation

from the global topology plots is the fact that DProp, ETour2, and ETour25 always
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Figure 5.17: Range of the wins minus losses per hyper-heuristic for each trigger and value of

k for the global topology. The middle red curve represents the mean wins minus losses value

for each hyper-heuristic across all 27 environments. The upper and lower curves, respectively,

represent double the standard deviation above and below the mean.
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Figure 5.18: Range of the wins minus losses per hyper-heuristic for each trigger and value of

k for the island topology. The middle red curve represents the mean wins minus losses value

for each hyper-heuristic across all 27 environments. The upper and lower curves, respectively,

represent double the standard deviation above and below the mean.
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showed a net wins minus loss value of roughly zero when using the island topology at

nearly every value for k, regardless of the environment.

The ST trigger showed the same tendencies as the PT trigger for both topologies,

where progressively more of the shaded area fell below the zero line and the width of the

distribution increased as values of k increased. Beyond k = 40% the red mean curve for

the majority of hyper-heuristics indicates that net losses occurred. DProp, ETour2,

and ETour25 showed practically the same behavior as for the PT trigger when the

island topology was used.

The RT trigger showed the opposite behavior to the ST and PT triggers, in that

the width of distributions got smaller as values for k increased. The red mean curve

remained relatively stable and on the positive side of the zero line as k varied. Overall,

the bulk of the shaded area remained above the zero line as well, which indicates that

the RT trigger yielded positive wins minus loss values more frequently than net losses.

Under the global topology and for k = 20%, the PT trigger yielded the most pre-

dictable range of performance, regardless of the environment type or hyper-heuristic.

This is visible in the plot as the shaded area being the thinnest and least jittery across

the x-axis. Table 5.3 corroborates this finding by showing how the overall deviation of

the averages across all hyper-heuristics for the PT trigger was the lowest of all three

triggers. The ST trigger showed relatively similar behavior, but with slightly wider dis-

tributions than the PT trigger. The RT trigger had the highest mean wins minus loss

values of the three triggers, but the widest shaded area, which indicates high volatility in

performance across different environments. However, most of the shaded area for the RT

trigger lies above the zero line for those hyper-heuristics located between DProp and

HTour5X in the plot, as well as RLFreq and RLProp. On the other hand, the nega-

tive portion of the shaded area for the RT trigger configurations of these hyper-heuristics

were at similar levels as for the PT or ST triggers configurations. This illustrates how

the highlighted hyper-heuristics were more likely to perform the same as or better than

the PT or ST triggers.

Under the island topology and for k = 20%, similar observations hold in that the

PT and ST had the lowest deviation in performance across environments and hyper-

heuristics (the exceptions being DProp, ETour2, and ETour25). The RT trigger also

had the widest distributions of the three triggers, and the majority of the shaded area
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was in the positive part of the plot. However, the negative shaded area of the ST and

PT triggers were smaller than the RT trigger equivalents, so the likelihood that an ST

or PT configuration could perform better than the corresponding RT configuration was

higher than under the global topology.

Overall, good performance across multiple types of environments was influenced by

the choice of trigger and value of k.

Was any one trigger always the best performer across all hyper-heuristics?

The trigger mechanisms proposed in this thesis (i.e., ST and RT) performed well com-

pared to the original HMHH trigger (i.e., PT). Table 5.5 shows that either S or R

was ranked higher than P in nearly every cell except ETour25 at k = 20% using the

global topology. Table 5.6 confirms that the PT trigger recorded significantly better wins

against the RT or ST triggers in just that one highlighted configuration.

The RT trigger was the outright best choice in six hyper-heuristics under the global

topology, with good performance in another five hyper-heuristics. Under the island topol-

ogy, the RT trigger held complete dominance over other trigger for eight hyper-heuristics,

with another seven hyper-heuristics showing configurations with good performance rel-

ative to the other triggers.

The ST trigger tended to be superior to both the PT and RT triggers for eight hyper-

heuristics when k = 20% under the global topology. At higher values for k the ST trigger

performed worse than PT for nearly every hyper-heuristic, the only exceptions being

AProp, Comp, and RLProp, and isolated configurations for ETour25, RLFreq, and

RoulM. Under the island topology when k = 20%, the ST trigger only outperformed

the PT trigger when using ARank, Freq5, or HTour2X. The PT trigger outperformed

the ST trigger in six of the hyper-heuristics. At higher values for k the ST trigger

outperformed the corresponding PT trigger configurations for most hyper-heuristics,

with isolated cases where the PT trigger performed better (notably RLFreq, HTour5X,

HTour5M, and DProp).

Overall, table 5.6 clearly shows that the RT trigger performed either on par with or

better than the other triggers for the majority of hyper-heuristic configurations (apart

from AProp, ARank, Comp, NAProp, NARank, Perm, Rand, and Soft where
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ST was better), and especially when k = 20%.

It is clear that the type of trigger had a profound impact on the performance of most

of the investigated hyper-heuristics. Almost every hyper-heuristic, for both the island

and global topologies alike, showed a pattern where either all three or two of the three

trigger types displayed significantly different performance. Most triggers showed their

best performance at lower values for k, and the RT trigger frequently performed on par

with or better than the other triggers.

5.3.4 Research Question 3

When was the global or island neighborhood topology significantly better?

Consider two sets of samples of runs of two versions of the same hyper-heuristic,

where both algorithms have been configured with the exact same context. Specifically,

the same triggers are configured with the same values for k, the same heuristic pool is

used by hyper-heuristics, the same set of DOP problem instances are solved, the same

entity starting positions are used, and even the same stream of pseudo-randomness is

employed. Both algorithms are identical other than that they differ in only one design

choice: the one algorithm uses a global neighborhood topology while the other uses an

island topology. The question is, all other factors being equal, when (and if) either one

of the global or island topologies is ever significantly better than the other.

A comparison of the (significant) differences in performance between the sets of re-

sults of the two algorithms indicates if there are noteworthy differences between the

algorithms as a result of swapping the neighborhood topology configurations. If a non-

parametric test shows no significant difference between the results, then both topologies

yield similar performance. Alternatively, the choice of topology has a direct impact on

the performance of the hyper-heuristic.

The experiment outlined in section 5.2.1 described all possible combinations of 21

triggered hyper-heuristics and 15 different trigger configurations using either the island

or global topology. Each configuration produced 71 run samples for each of the 27

different DOP types. The result was 27× 15× 21 = 8505 individual run sample sets for

the island or global topology, respectively to yield a total result set of 17010 sample sets.
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The total number of algorithm runs for each topology was 8505 × 71 = 603855, which

aligns with the experiment totals described in figure 4.3.

A Wilcoxon signed ranks test, as explained in 2.7.4, was used to individually compare

each of the 8505 matched pairs of island and global samples. The goal was to determine

if there was a significant difference between each pair of samples at a significance level of

α = 0.05. If a significant difference was detected between the island and global results in

an individual test of one pair of samples, the topology with the highest number of pairwise

wins was awarded a win. If no significant difference was detected then both methods

received a draw. Figure 5.19 illustrates how the Wilcoxon tests were conducted.

The 8505 pairwise comparisons yielded an overall count of draws, wins for global, and

wins for island. The aggregated results across all environments, hyper-heuristics, and

trigger configurations were as follows:

Count Percent

Draws 5766 67.8%

Global wins 1839 21.6%

Island wins 900 10.6%

The table above shows that roughly two out of every three overall comparisons did

not yield statistically significant differences between the island and global topologies.

In the cases where significant differences did exist, the global topology performed better

twice as often. The numbers in the table can, however, be broken down further as follows:

figure 5.20 shows the draws and wins aggregated per hyper-heuristic, figure 5.21 shows

the results aggregated per trigger type (and k value), and figure 5.22 shows the results

broken down by individual environment. Figure 5.23 shows a heat map of the difference

between the wins of the global and island topologies per hyper-heuristic, DOP type, and

trigger type for the cases where significant differences exist (draws are not represented

in the heat map). Positive values in the heat map indicate that the global topology was

superior, zero values indicate the same number of wins for both topologies, and negative

values indicate that the island topology was superior.

The following observations, with regard to the stated research question, can be made

about the island and global topologies:
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Figure 5.19: Focus of the Wilcoxon signed ranks tests for research question 3. The process

was repeated for each triggered hyper-heuristic, each trigger type and the corresponding values

for k, and the comparison was made between the global and the island topologies variations.

The value n represents the number of algorithm runs underpinning each level.
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Figure 5.20: Pairwise wins and draws of the island versus the global topology by hyper-

heuristics (across all DOPs and trigger configurations.)

• Which topology was better across different hyper-heuristics? Figure 5.20 shows

that the global topology generally yielded more significant wins than the island

topology for the majority of hyper-heuristics, the only exceptions being RLFreq,

RLProp, HTour5M, and HTour5X and (to a smaller extent) Freq5. Figure

5.23 confirms these findings by revealing that the majority of cells were either

white (zero values) or shades of blue (leaning towards global having more wins).
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Figure 5.21: Pairwise wins, draws, and losses of the island versus the global topology in each

trigger configuration (across all hyper-heuristics and DOPs.)

The columns for RLFreq, RLProp, HTour5M, and HTour5X show a large

number of red values in all three heat maps across all three trigger types, which

indicates that these hyper-heuristics showed a strong tendency to perform better

when using the island topology.

Figure 5.20 shows that the various hyper-heuristics had different sensitivity profiles

for the island and global topologies. ETour2 is an example where the number of

draws was approximately equal to the number of wins for the global topology, while

the island topology had substantially fewer wins. In this case, the global topology

was clearly a better choice, with comparable or better performance than the island
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Figure 5.22: Pairwise wins, draws, and losses of the island versus the global topology in each

environment (across all hyper-heuristics and trigger configurations.)
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Figure 5.23: Heat map of the difference in pairwise wins between the island or global topology

achieved by each hyper-heuristic in each environment, shown per trigger type. Positive numbers

(blue) indicate that the global topology wins more times than the island topology and negative

numbers (red) indicate the opposite.



Chapter 5. Performance Sensitivity of HMHH Under Varying Parameter Values 220

topology. Similar trends can be seen in Rand, ARank, NARank, Perm, and

Soft and (to a lesser degree) in ETour25, Comp, HTour2M, and HTour2X.

Another example is Freq5, which had a large proportion of draws and an equal

number of wins for the island and global topologies. The fact that both topologies

had the same (and non-zero) number of wins suggests that good performance for

Freq5 may depend on the specific DOP being solved. Figure 5.23 corroborates

this interpretation by showing how the best topology for Freq5 tended to vary

across different environments (illustrated by the various shades of red, blue, and

white).

• Which topology was better across different triggers? Figure 5.21 displays a clear

trend that the global topology was often a better choice for the PT trigger, across

all values of k. The same is true for the RT trigger, although the difference was less

pronounced. In contrast, the ST trigger showed similar wins for both topologies,

with the global topology eventually becoming superior as the value of k increased.

The heat maps in figure 5.23 reinforce the observations above:

– The PT trigger performed best in the global topology (i.e. blues), where

almost all island topology wins (red values) were restricted to the intersec-

tion of just four environments (i.e. C2R, C2C, A2R, and A2C) with seven

hyper-heuristics (i.e. HTour5M, HTour5X, ETour2, ETour25, RLFreq,

RLProp, and DProp).

– The RT trigger results were similar to the PT trigger, where similar intersec-

tions of environments and hyper-heuristics performed better with the island

topology. Freq5 combined with RT showed a noticeable deviation from Freq5

that used PT.

– The ST trigger heat map shows that most of the abrupt environments favored

the island topology (i.e. red shades). Four chaotic environments (i.e. C3L,

C3C, C2R, and C2C) performed noticeably better under the island than the

global topology, while the exact opposite trend was visible for C2L, C1R, C1L.

The ST trigger was sensitive to the which topology was better suited for a
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given environment, as indicated by many rows being nearly all red, all blue,

or all white.

• Which topology was better across different environment types? Figure 5.22 shows

that the efficacy of both the island and global topologies was impacted by the

type of environment. Abrupt and progressive environments had a high number of

draws. However, the cases that were not draws show a clear split between environ-

ments: progressive environments tended to perform better with the global topology

(visually visible as predominantly orange bars) and abrupt environments mostly

favored the island topology (indicated by predominantly green bars). Chaotic en-

vironments showed high volatility: the global topology was a clear winner for C1C,

C1L, C2L, C1R, and C3R, while the island topology dominated for C2C and C2R.

The heat maps in figure 5.23 echo these patterns: progressive environments have

mostly white and blue patterns across rows, indicating a preference for the global

topology. On the other hand, abrupt environments show a high number of white

and red cells, indicating a tendency that the island topology performed the same

or better than the global topology. Chaotic environments show both strong blue

and strong red bands, indicating that good performance in these environments was

highly dependent on the choice of topology.

At first glance, each heat map in figure 5.23 looks similar. Closer inspection reveals

that the PT trigger had 12 out of 21 hyper-heuristics where the global topology

dominated across all 27 environments. All of the hyper-heuristics that relied on

roulette wheel selection showed this pattern. On the other hand, eight hyper-

heuristics showed high volatility across different environments where the island

topology was clearly superior. The common trend among the strongest four exam-

ples is that they all contained type II1 environment dynamics and that most of the

hyper-heuristics employed tournament selection. The RT trigger showed similar

trends, but with abrupt environments leaning more towards the island topology

(indicated by more light shades of red and less deep hues of blue).

The ST trigger showed completely different behavior than the RT and PT triggers.

1Per Eberhart’s DOP classification as presented in section 2.3.1
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Each environment always (without exception) performed better with just one of

the topologies, as indicated by all rows having the same color. The broadest

observable pattern is that almost all progressive environments showed a tendency

to perform better in the global topology while most abrupt environments performed

better in the island topology. Chaotic environments were volatile and individual

environment types strongly excel in either the one or the other topology. There

was not a single hyper-heuristic that clearly performed better using one or the

other topology, and performance was strictly dependent on the specific type of

DOP being solved.

It is clear that the choice of neighborhood topology, all other factors being equal,

had a distinct and noticeable influence on hyper-heuristic performance. Overall, the

island and global topologies showed insignificant differences in roughly two thirds of

the comparisons. If significant differences in performance were detected, then the global

topology tended to perform better twice as often as the island topology.

That said, the difference in performance depended greatly on the combination of the

type of DOP and hyper-heuristic. By excluding just four of the 27 environments (i.e.

C2R, C2C, A2R, and A2C) or five of the hyper-heuristics (i.e. ETour2, ETour25, RL-

Freq, RLProp, and DProp), the global topology would have received an overwhelming

majority of wins. This can be seen visually in figure 5.23: excluding the identified en-

vironments and hyper-heuristics would have eliminated the majority of red in the heat

maps.

5.4 Summary

The original HMHH framework uses a periodic trigger to trigger changes every k al-

gorithm iterations. Clear statistically significant differences in performance were found

between different types of heuristic change triggers. The research questions in this chap-

ter clearly showed that the stagnation and random triggers regularly outperformed the

periodic trigger more often than not across different hyper-heuristics and across multiple

types of DOPs.

The parameter that controls the frequency of heuristic change, namely k, had a
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strong impact on the performance of each trigger. Most hyper-heuristics showed better

performance at lower values for k rather than at higher values. This trend was noticeable

across all three triggers, across all hyper-heuristics, and across both types of the HMHH

framework neighborhood topologies.

The choice between the island versus global topology had a strong influence on the

trade-offs between the best triggers and the best values of k. Different values of k showed

higher volatility in both rank and win distribution patterns across most hyper-heuristics.

The general trend across most hyper-heuristics, however, showed that lower values of k

tended to yield better performance with smaller performance variance than larger values

of k. The global topology tended to be a stable choice when using the PT and RT

triggers when combined with any hyper-heuristic that relied on roulette wheel selection,

regardless of the problem being solved. The ST trigger on the other hand was extremely

sensitive to the choice of topology depending on the environment that was being solved,

regardless of hyper-heuristic.

A fundamental difference between the original periodic trigger and the newly proposed

stagnation and random triggers is the manner in which entities were triggered. All

entities were triggered simultaneously when the periodic trigger was used (i.e. every k

iterations), which forced the HMHH selection to potentially reassign the heuristics of

all entities at the same time. The proposed triggers considered each entity individually,

and 100% of the population was not forced to undergo heuristic selection together. This

chapter shows that the newly proposed trigger types clearly influenced hyper-heuristic

performance positively in most cases, possibly due to greater stability in heuristic sub-

populations along with a more regular stream of incoming information.

The availability of various types of heuristic selection triggers makes the HMHH

framework more flexible and allows richness in how heuristic selection is performed. The

next chapter compares the performance and behavior of various hyper-heuristics against

each other and against various control groups.



Chapter 6

Performance and Behavior Analysis

of Selection Hyper-heuristics

“It is not a question of how well each process works, the question is how well

they all work together.”

– Lloyd Dobens

This chapter compares and analyzes the performance of various HMHH selection op-

erators against each other. The heuristic space diversity and entity reassignment behav-

ior of a variety of exemplary HMHH selection operators are investigated to characterize

their behavior and performance.

6.1 Introduction

Chapter 5 examined how distinct combinations of different HMHH neighborhood topolo-

gies and heuristic change triggers (with varying triggering frequencies k) affected the

performance of HMHH selection operators. The term hyper-heuristic will be used to

refer to a HMHH selection operator in this chapter. Different research questions in

section 5.3.1 systematically examined the sensitivity of a number of hyper-heuristics to

variation across different trigger and topology choices. The investigation found that

statistically significant differences in performance exist for any hyper-heuristic, given

different neighborhood topology and trigger choices. Specifically, the majority of the in-

224
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vestigated hyper-heuristics (for all topology and trigger configurations) generally tended

to yield better performance at lower values of k ≈ 20%, i.e., when the hyper-heuristic

was allowed to modify entity-to-heuristic assignments more often.

However, the performance comparisons of hyper-heuristics in chapter 5 were always

inwardly focused, that is, each hyper-heuristic was only compared to different versions

of itself using alternative trigger and neighborhood topology configurations. As such,

no conclusions could be drawn about which hyper-heuristics outperformed each other,

or if any hyper-heuristic performed better than any of the control methods. In this

chapter the performance and behavior of various hyper-heuristic choices for HMHH are

compared. The aim is to

• determine whether each hyper-heuristic raises performance above that of the indi-

vidual heuristics or speciated heuristics,

• establish whether each hyper-heuristic performs better or worse than the fixed or

random selection control methods,

• understand which hyper-heuristics perform better than other hyper-heuristics,

• learn more about how different hyper-heuristics operate by examining the heuristic

space diversity and entity reassignment rates of select hyper-heuristics.

Section 6.2 describes the experimental procedure, analysis techniques, and measures

used to explore the goals above. The results are organized into distinct research questions

that are presented in section 6.3. Section 6.4 concludes the chapter.

6.2 Experimental Procedure

Chapter 5 compared different architectural variations of each hyper-heuristic against

themselves. The experiments in this chapter directly compare the performance of dif-

ferent hyper-heuristics (all sharing the same architectural configurations) against each

other. Additionally, each hyper-heuristic is compared against both fixed and random

heuristic selection, so as to provide comparisons against a common baseline.

To make this analysis tractable, the focus of this chapter is on a smaller representative

subset of hyper-heuristic configurations. Specifically, the heuristic change frequency
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parameter of each trigger, k, is set to k = 20%, i.e., 20% of the landscape change period

length. The value of k = 20% is used based on the findings in chapter 5 that showed

how lower values of k performed better in general across most hyper-heuristics, trigger

types, and topologies.

Section 6.2.1 summarizes the experimental method as presented in section 5.2.1, and

discusses any additional experimental design decisions.

6.2.1 Experimental Method

The same experimental procedure as described in section 4.3 and section 5.2.1 is used in

the experiments in this chapter. The following points of clarification supersede the prior

design decisions:

• Heuristic algorithm and parameter value choices: Section 4.3.2 outlined a

selection of representative meta-heuristics from the SI and EC fields that make

up a pool of nine heuristics. Suitable parameter choices were motivated for each

heuristic. The same algorithms, parameter values, and implementation decisions

for each heuristic are used in all experiments in this chapter. The parameter

decisions for any given heuristic algorithm are the same across the heuristic pools

of all hyper-heuristics as well as for the individual and speciated heuristic control

groups.

• Hyper-heuristic choices: The same hyper-heuristic design decisions and param-

eter values are used as outlined in section 5.2.2. The parameters values for each

hyper-heuristic are kept the same as was outlined in table 5.1. Each hyper-heuristic

is set up to use both the island and global neighborhood topologies, respectively.

The three heuristic change triggers outlined in section 3.4.4, namely a periodic

trigger (PT), stagnation trigger (ST), and a random trigger (RT), are used in

combination with each of the selection operators and neighborhood topologies.

For each trigger configuration the heuristic change frequency parameter, k, was set

to k = 20%.

• Entity assignment counts: The number of entities assigned to each heuristic by

any hyper-heuristic is recorded at every iteration of every algorithm run. The entity
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count of each heuristic is used to calculate heuristic space diversity (as outlined

in section 3.4.3) for each hyper-heuristic. The entity reassignment rates of each

hyper-heuristic are also calculated and analyzed, as explained below in section

6.3.5.

6.3 Experimental Results

All hyper-heuristics and control group algorithms were configured and executed as out-

lined in section 6.2 above. The results are organized into distinct research questions

which are listed in section 6.3.1 and answered in the subsequent sections below.

6.3.1 Research Questions

The following research questions are investigated:

1. How does each hyper-heuristic perform relative to the pool of stand-alone heuristics?

What is the performance of each hyper-heuristic when configured with different

triggers under the global and island topology, respectively?

2. How does each hyper-heuristic perform relative to the pool of speciated heuristics?

The same investigation as in research question 1 above is repeated, but focusing

on the speciated heuristics.

3. How do the hyper-heuristics perform relative to each other, fixed heuristic selec-

tion, and random heuristic selection? Which hyper-heuristics perform statistically

significantly better than others across a variety of different types of DOPs? Which

hyper-heuristics manage to outperform the random and fixed heuristic selection

control groups? How do the results differ across different combinations of triggers

and topologies?

4. What are the entity reassignment characteristics of each hyper-heuristic? How do

different hyper-heuristics manage entity-to-heuristic assignments across all itera-

tions of an algorithm run? How does the heuristic space diversity change over
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time, as measured by N (t) using equation (3.2)? How is the heuristic space diver-

sity behavior of each hyper-heuristic affected across different environment types?

How strongly does the choice of topology and trigger affect the behavior of each

hyper-heuristic?

Each of the above research questions are addressed as separate sections below.

6.3.2 Research Question 1

How does each hyper-heuristic perform relative to the pool of stand-alone

heuristics?

A key question in this thesis is whether the investigated hyper-heuristics perform sig-

nificantly better than the individual heuristics that are managed by each hyper-heuristic.

An effective hyper-heuristic should be able to raise performance above what any of the

individual heuristics would have achieved on their own.

The performance of each hyper-heuristic was assessed collectively relative to the

performance of each one of the individual heuristics. For each individual environment,

a Friedman test was used to compare the result set of an individual hyper-heuristic to

the nine result sets of the nine standalone heuristics running in isolation. Subsequently,

a Shaffer post hoc test was used to perform a pairwise comparison between the hyper-

heuristic and all individual heuristics, as explained in section 2.7.4. Wins, draws, and

losses were assigned using a significance level of α = 0.05. This process was repeated for

each individual hyper-heuristic using each of the six different combinations of trigger and

topology. The outcome of this process is a set of tables that show the number of wins,

draws, and losses of each hyper-heuristic versus the nine heuristics for each environment,

for each of the six combinations of trigger and topology. Tables A.1, A.2, A.3, A.4,

A.5, and A.6 in appendix A show the detailed results for each hyper-heuristic for each

environment, for each configuration.

The results of the analysis above are shown in aggregate form, since the sheer volume

of algorithms, hyper-heuristic configurations, and environment types makes it difficult

to view in tabular form. Figure 6.1 shows multiple heat maps that aggregate (across

all environments) the specific win counts achieved by each hyper-heuristic configuration.
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Columns in each heat map represent different hyper-heuristic configurations that used

either the global or island topology combined with the RT, PT, and ST triggers. Row tick

values represent the number of individual heuristics a given hyper-heuristic configuration

managed to record significant wins against. Darker shades of green represent a larger

number of environments where the hyper-heuristic achieved each specific number of

wins. For example, ETour25 achieved wins against eight individual heuristics across

18 different environments when using the Global RT configuration. The sum of the

intensities of each column is always equal to 27, i.e. each hyper-heuristic configuration

always had to record between zero to nine wins for each of the 27 environments.

Figure 6.2 shows the same type of chart as for wins, but illustrates the draws (in blue)

for each hyper-heuristic. Note that there is no figure for losses, since no hyper-heuristic

ever recorded a loss against any individual heuristic.

The following observations below, with regard to the stated research question, are

noteworthy in figures 6.1 and 6.2.

A striking observation is that none of the 21 hyper-heuristics ever recorded a loss

against any individual heuristic for any environment, as tables A.1, A.2, A.3, A.4, A.5,

and A.6 in appendix A show. This definitively shows that none of the investigated

hyper-heuristics ever yielded worse performance than any of the individual heuristics

they managed. Each hyper-heuristic was able to either match the performance of the

heuristics (i.e. draws) or raise performance in a statistically significant manner (i.e.

wins) compared to simply using any of the low-level heuristics in isolation.

Since no losses were ever recorded (and wins, draws and losses must sum up to nine),

figure 6.2 is a mirror image of figure 6.1 for each hyper-heuristic. For every hyper-

heuristic respectively, the intensity of the shades of blue for each draw count in figure

6.2 corresponded exactly to the intensity of the shades of green for nine minus that draw

count in figure 6.1. As an example, ETour25, when using the Global RT configuration,

achieved wins against eight heuristics for 18 different environments (dark green cell in

figure 6.1) and, subsequently, recorded draws against one heuristic for 18 environments

(dark blue cell in figure 6.2). This symmetrical relationship between wins and draws

is only prevalent here, since there were zero losses overall (and wins, draws and losses

must sum up to nine). The presence of non-zero losses would not necessarily yield such

a symmetrical relationship between wins and draws.
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Figure 6.1: Heat map of the number of environments for which each hyper-heuristic managed

to achieve specific win counts against the stand-alone heuristics, organized by trigger and

topology type. Deeper shades of green indicate more environments for which the hyper-heuristic

achieved a specific number of wins.
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Figure 6.2: Heat map of the number of environments for which each hyper-heuristic managed

to achieve specific draw counts against the stand-alone heuristics, organized by trigger and

topology type. Deeper shades of blue indicate more environments for which the hyper-heuristic

achieved a specific number of draws.
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Every hyper-heuristic recorded at least four wins against the individual heuristics

in every environment, regardless of the topology or trigger configuration. This can be

seen graphically in figure 6.1 where no rows with tick values of three or less showed any

non-zero values. Every hyper-heuristic had at least one environment where that hyper-

heuristic recorded nine wins against all nine underlying heuristics (and by implication

zero draws).

Overall, roughly half of the hyper-heuristics have the majority of their darker shades

near the top of their respective heat maps, indicating that those hyper-heuristics had

eight or nine wins against heuristics across the majority of environments. The other half

of the hyper-heuristics show a more balanced gradient of green across the upper half of

the heat map, where those hyper-heuristics recorded between five and nine wins against

heuristics. The balanced shades of green indicate that these hyper-heuristics were more

sensitive to the environment under consideration.

For many hyper-heuristics, the three global topology configurations show darker

shades of green near the top of their heat maps in figure 6.1 than the corresponding

island configurations do. This indicates that many hyper-heuristics configured with the

global topology showed a greater propensity to outperform a larger number of heuris-

tics than the island topology did. Figure 6.2 corroborates this finding by showing how

the majority of environments yielded fewer draws between the hyper-heuristic and the

heuristics (i.e. blue shades are deeper at lower row values) when using the global topology

than the island topology.

Many hyper-heuristics using the Global RT configuration achieved eight or nine wins

for the majority of environments (with, respectively, either one or zero corresponding

draws and zero losses). The implication is that these hyper-heuristics had a high propen-

sity to outperform the majority of their constituent heuristics in most environment types

that may be encountered. Examples include Freq5, RLFreq, RLProp, HTour2M,

HTour5M, HTour2X, HTour5X, ETour2, ETour25, and DProp.

In contrast, a number of hyper-heuristics showed a more balanced blend of roughly

the same shade of green across win counts, regardless of the topology or trigger type.

Good examples are RoulM, RoulX, Freq2, ARank, NARank, AProp, NAProp,

Comp, Soft, and Perm. The implication is that the ability of these hyper-heuristics to

outperform their constituent heuristics was highly problem dependent. In other words,
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the number of wins achieved by these hyper-heuristics against their constituent heuristics

were sensitive to the specific environment at hand, which resulted in a wider spread of

wins and, by implication, a wider spread of draws.

No hyper-heuristic, using any combination of trigger or topology, ever recorded any

losses against any single individual heuristic. Tables 6.1 and 6.2 show the wins, draws,

and losses of the RT, PT, and ST configurations for each hyper-heuristic against the

individual stand-alone heuristics in direct 1× 1 comparisons, respectively, for the global

and island topology. For example, against APSO, the tuple “15-12-0” for ETour25

(using the Global RT configuration) recorded wins in 15 environments, draws in 12

environments, and had losses in zero environments.

Overall, a significant portion of hyper-heuristics showed a high proclivity to outper-

form the majority of their constituent heuristics across most of the environments. The

remaining hyper-heuristics showed a more balanced blend of performance results, where

the ability to outperform more than half of their constituent heuristics was problem

dependent. Regardless, none of the hyper-heuristics ever recorded a loss against any of

the standalone heuristics for any environment. It is clear that each of the investigated

hyper-heuristics either performed on par with, or statistically significantly outperformed

each of the individual heuristics running in isolation.

The choice of topology and trigger made a noticeable impact on the ability of each

hyper-heuristic to outperform the individual heuristics. Hyper-heuristics using the global

topology generally had a higher number of wins for more environments than the same

hyper-heuristics using the island topology. The Global RT configuration showed the

strongest ability to yield the highest number of wins across the most environments for

nearly half of the hyper-heuristics.

6.3.3 Research Question 2

How does each hyper-heuristic perform relative to the pool of speciated heuris-

tics?

The same analysis used in research question 1 above is applied to the nine homoge-

neous speciated heuristics, as described in section 4.3.5. Figures 6.3 and 6.4 show the

same type of information as in research question 1. Note that losses were recorded by a
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Table 6.1: Hyper-heuristics versus stand-alone heuristics (global topology). The notation

W-D-L indicates the wins, draws, and losses of each hyper-heuristic.
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Table 6.2: Hyper-heuristics versus stand-alone heuristics (island topology). The notation

W-D-L indicates the wins, draws, and losses of each hyper-heuristic.
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number of hyper-heuristics during this analysis, and figure 6.5 presents this information

in the same format as the wins and draws are presented in the figures 6.3 and 6.4. Tables

A.7, A.8, A.9, A.10, A.11, and A.12 in appendix A show the detailed results for each

environment.

The following observations below, with regard to the stated research question, can

be gleaned from the results in figures 6.3, 6.4, and 6.5.

In contrast to the results for the stand-alone heuristics, roughly half of the hyper-

heuristics recorded a handful of losses against the speciated heuristics. Losses were

isolated, where the hyper-heuristics in question were outperformed by just one or two

speciated heuristics. Such losses were generally localized to one or two of the 27 environ-

ments. Exceptions were RoulM, ETour25, and AProp which recorded a single loss

for three or four environments when the Global RT configuration was used. Regardless,

the overwhelming number of cases yielded zero losses.

The majority of hyper-heuristics scored four or more wins against the speciated

heuristics in all environments. Isolated exceptions exist where hyper-heuristics showed

only two or three wins in one environment. No hyper-heuristics ever managed to achieve

more than seven wins against the nine speciated heuristics in any environment.

For the previous research question, the shades of green were relatively spread out

for each of the individual heuristic cases in figure 6.1. In contrast, a greater number of

hyper-heuristics in figure 6.3 show individual cells that have notably darker shades of

green than other cells. This indicates that more hyper-heuristic configurations yielded

predictably similar results against the speciated heuristics for a large number of environ-

ments. In other words, most hyper-heuristic variations tended to yield the same number

of wins against the speciated heuristics for the majority of environments. Different hyper-

heuristics show this stable number of wins across environments at different win counts.

For many hyper-heuristics, the precise win count where this same number of wins occur

differs depending on the trigger and topology configuration that was used. For exam-

ple, ETour2 yielded four wins for 15 environments when using either the Island PT

or Island ST configuration, while Freq2 yielded seven wins in most environments only

when using the Global RT configuration. Fourteen of the 21 hyper-heuristics using the

Global RT configuration recorded wins against seven heuristics for a sizable number of

environments. A similar pattern is noticeable for the Island RT configuration, but in
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Figure 6.3: Heat map of the number of environments for which each hyper-heuristic managed

to achieve specific win counts against the speciated heuristics, organized by trigger and topology

type. Deeper shades of green indicate more environments for which the hyper-heuristic achieved

a specific number of wins.
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Figure 6.4: Heat map of the number of environments for which each hyper-heuristic man-

aged to achieve specific draw counts against the speciated heuristics, organized by trigger and

topology type. Deeper shades of blue indicate more environments for which the hyper-heuristic

achieved a specific number of draws.
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Figure 6.5: Heat map of the number of environments for which each hyper-heuristic achieved

specific loss counts against the speciated heuristics, organized by trigger and topology type.

Deeper shades of orange indicate more environments for which the hyper-heuristic suffered a

specific number of losses.
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only eight of the hyper-heuristics.

Three weak patterns were observed that differentiate the performance of the global

topology from that of the island topology:

• Rand, ETour2, ETour25, DProp, NARank, Soft, and Perm exhibited a

higher concentration of environments where these hyper-heuristics achieved more

wins using the global topology than the island topology configurations.

• However, Freq5, RLFreq, HTour5M, HTour2X, and HTour5X show the op-

posite pattern where the island topology shows more wins in more environments.

• The remaining hyper-heuristics show a relative balance between the global and

island topologies.

Figure 6.3 shows that RLFreq is the only hyper-heuristic that has a dark shaded

band of green across the seven wins row in the heat map. Figure 6.4 shows a matching

bottom row of dark blues at the two draws row tick, while figure 6.5 shows a single

environment where two speciated heuristics managed to outperform RLFreq (and that

in only the Global RT configuration). This indicates that RLFreq managed to match

or outperform seven of the nine speciated heuristics in the majority of environments,

regardless of the trigger or topology configuration. In that sense, RLfreq is one of the

most stable hyper-heuristic algorithms with respect to trigger and topology choices.

The hyper-heuristics recorded losses against the speciated heuristics in a handful

of environments. Tables 6.3 and 6.4 show the wins, draws, and losses of each hyper-

heuristic against the speciated heuristics in direct one-to-one comparisons, respectively,

for the global and island topology. For example, against APSO, the tuple “6-20-1” for

ETour25 (using the Island RT configuration) recorded wins in six environments, draws

in 20 environments, and had losses in one environment.

The investigated hyper-heuristics were able to either outperform or match the per-

formance of the homogeneous speciated heuristics in a statistically significant manner.

Isolated losses were recorded by a small number of hyper-heuristics across a handful of

environments. Superior performance of the hyper-heuristics over that of the speciated

heuristics was not as clear-cut as for the stand-alone heuristics, and no hyper-heuristic

ever managed to outright beat all nine speciated heuristics. Isolated cases exist where
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Table 6.3: Hyper-heuristics versus speciated heuristics (global topology). The notation W-D-L

indicates the wins, draws, and losses of each hyper-heuristic.
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Table 6.4: Hyper-heuristics versus speciated heuristics (island topology). The notation W-

D-L indicates the wins, draws, and losses of each hyper-heuristic.
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a number of hyper-heuristics suffered a small number of losses for two or three of the

27 environments (in sharp contrast to the stand-alone heuristic analysis where no loss

was ever recorded by any hyper-heuristic in any environment). Overall, however, the

use of any of the investigated hyper-heuristics yielded performance that is either compa-

rable or superior for the majority of environments compared to simply using speciation

(regardless of neighborhood topology or heuristic change trigger scheme).

6.3.4 Research Question 3

How do the hyper-heuristics perform relative to each other, fixed heuristic

selection, and random heuristic selection?

This research question considers the performance of each hyper-heuristic compared

to the performance of all the other hyper-heuristics. The goal is to determine which

hyper-heuristics are consistently better than other hyper-heuristics across multiple en-

vironments. Each hyper-heuristic is also compared against the two remaining control

groups, namely fixed heuristic selection and random heuristic selection, as defined in

section 4.3.5.

A Friedman test and the associated Shaffer post hoc test was conducted between

all 22 algorithms (i.e. 21 hyper-heuristics and fixed heuristic selection) for each of the

27 environments. Wins, draws, and losses were assigned using a significance level of

α = 0.05. The analysis was repeated independently for all six configuration combinations

comprising of global and island topologies together with the three types of triggers,

namely random triggers (RT), periodic triggers (PT), and stagnation triggers (ST). Note

that GFix and IFix (as defined in section 4.3.5) were, respectively, used in conjunction

with the global and island topology as the fixed heuristic selection method (to ensure a

fair apples to apples comparison in each instance).

Figure 6.6 shows, for each of the six possible hyper-heuristic configurations, the re-

sulting wins and losses of each algorithm versus each one of the other algorithms using a

22× 22 heat map. The darkness of each cell represents the number of environments for

which the winning algorithm (i.e., a row on the y-axis) achieved a win against the losing

algorithm (i.e., a column on the x-axis). Algorithms that show a combination of mostly

white rows and white columns did not manage to record wins or losses against the other
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methods, which indicates draws. On the other hand, an algorithm that has mostly dark

shades along a row and white shades along a column managed to record wins against

other methods across many environments without incurring losses. Similarly, an algo-

rithm that shows white rows and darker columns indicates that the algorithm recorded

few wins and many losses against the other methods. For example, in sub-figure 6.6b,

RLFreq managed to achieve statistically significant wins against RoulX for 20 of the

27 possible environments, while (in the same sub-figure) RLFreq never recorded losses

against any hyper-heuristic for any environments.

Figure 6.7 shows the mean number of wins and losses for each algorithm for each

configuration (averaged over all 27 environment types). Figure 6.6 and 6.7 are deeply

related: any hyper-heuristic’s mean wins score (i.e. green diamond in figure 6.7) is equal

to the row-wise average of the given hyper-heuristic wins in figure 6.6. Similarly, losses

in figure 6.7 (i.e. the red stars) correspond to column-wise averages in figure 6.6. For

example, the row for DProp in sub-figure 6.6d shows how most cells have a value of

one and a roughly equal number of cells with values of either zero or two (yielding a

row-wise average of roughly 1.0). Sub-figure 6.7d shows a corresponding mean wins value

of approximately 1.0 and mean loss value of approximately 0.9 for DProp.

Appendix A contains additional tables A.14, A.16, A.18, A.20, A.22, and A.24 which

show the detailed wins, draws, and losses of each of the six comparisons in each environ-

ment, while tables A.13, A.15, A.17, A.19, A.21, and A.23 show the associated Friedman

ranks and p-values.

The following noteworthy observations below, with regard to the stated research

question, can be seen in figures 6.6 and 6.7.

Overall visual observations

At a glance, the pair of sub-figures 6.6a and 6.6c as well as the pair 6.6b and 6.6d have rel-

atively similar color distribution patterns across hyper-heuristics. For each pair, over half

the number of rows contain a large number of darker shaded cells. The presence of rows

with so many dark shaded cells indicates the presence of hyper-heuristics that outper-

formed numerous other hyper-heuristics in multiple environments. In a similar fashion

there are numerous columns that contain multiple darker shaded cells, indicating that
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(a) Global + RT (b) Island + RT

(c) Global + PT (d) Island + PT

(e) Global + ST (f) Island + ST

Figure 6.6: Heat map of wins achieved by all hyper-heuristics against each other. Darker cells

indicate more environments where the y-axis hyper-heuristic beat the x-axis hyper-heuristic.



Chapter 6. Performance and Behavior Analysis of Selection Hyper-heuristics 246

(a) Global + RT (b) Island + RT

(c) Global + PT (d) Island + PT

(e) Global + ST (f) Island + ST

Figure 6.7: Number of wins (green diamonds) and losses (red stars) of each hyper-heuristic,

averaged across all 27 environments.



Chapter 6. Performance and Behavior Analysis of Selection Hyper-heuristics 247

those hyper-heuristics suffered significant losses against numerous other hyper-heuristics

for many environments.

In contrast, sub-figures 6.6e and 6.6f are much sparser, showing a high number of

white or very light gray cells. There are virtually no rows in sub-figures 6.6e or 6.6f

that contain darkly shaded cells in any great quantities. The general lack of darkly

shaded rows indicates that fewer algorithms managed to significantly outperform each

other using the ST trigger (using either the global or island topology). Similarly, there

are almost no columns with any significantly darker shades present across the majority

of rows. Two exceptions are IFix and ETour2 in figure 6.6f that completely defy this

pattern by exhibiting moderate to very dark cells across nearly the entire column.

The high-level visual findings in figure 6.6 are echoed in figure 6.7. The pairs of sub-

figures 6.7a and 6.7c as well as the pair of sub-figures 6.7b and 6.7d show high degrees

of visual similarity. The pair of sub-figures 6.7e and 6.7f also show visual similarities,

and show mean wins and loss values that are noticeably smaller than the other four

sub-figures. The findings indicate the absence of any hyper-heuristics that dominated

the other algorithms.

Performance against fixed heuristic selection

Each topology and trigger configuration yielded discernibly varied performance of all

hyper-heuristics versus the fixed heuristic allocation control group (i.e. GFix and IFix

for the global and island topologies respectively).

Arguably the most visually striking observation in figure 6.6 related to fixed heuristic

selection is the dark left-most column in sub-figures 6.6b, 6.6d, and 6.6f. The dark column

indicates that practically all hyper-heuristics using either the RT, PT, or ST trigger in

conjunction with the island topology recorded wins against IFix for the majority of

environments. Correspondingly, the three rows for IFix in each of the three listed

sub-figures contains mostly white or very light gray cells, showing that IFix almost

never recorded any wins against any hyper-heuristic. RLFreq, HTour5X, HTour2X,

HTour5M, HTour2M, Freq5, and Freq2 were among the top performers, and yielded

wins against IFix for approximately 20 of the 27 environments. Most of the other hyper-

heuristics also showed high numbers of wins against IFix across all three trigger types,
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with nearly no losses.

GFix managed to record wins against nearly every hyper-heuristic in sub-figures 6.6a,

6.6c, and 6.6e for a small number of environments. This is visible as a light gray row

for the GFix entry in each sub-figure. AProp, NAProp, and Comp were among the

hyper-heuristics in sub-figures 6.6a and 6.6c that recorded the highest number of losses

against GFix. These three hyper-heuristics virtually never recorded any wins against

GFix when using the global topology and RT or PT triggers. However, the leftmost

columns in the three heat maps show that roughly two thirds of all hyper-heuristics

recorded wins against GFix for a sizable number of environments, with many hyper-

heuristics recording more wins than losses against GFix (the remainder of environments

yielded draws). A hand-full of hyper-heuristics achieved relatively high number of wins

against GFix across all three sub-figures 6.6a, 6.6c, and 6.6e, most notably ETour25,

HTour5X, HTour5M, and Freq5.

It is apparent that hyper-heuristics using the island topology have a clear tendency

to outperform fixed selection across the majority of environment types, regardless of

whether RT, PT, or ST triggers are used. The hyper-heuristics using the global topology

are more sensitive to the type of environment under consideration, showing both wins

and losses against fixed heuristic selection for a number of environments.

Performance against random heuristic selection

Random selection, as another control group, rarely yielded wins in many environments

against any of the hyper-heuristics, regardless of their topology or trigger configuration.

This is discernible from the fact that Rand shows nearly all-white rows in each of the

six heat maps in figure 6.6.

Roughly half of all hyper-heuristics configured with the RT trigger recorded wins

against Rand in many different environments, as indicated by the high number of darker

shaded cells in the Rand columns of sub-figures 6.6a and 6.6b. Hyper-heuristics con-

figured with the global topology showed a slightly stronger tendency (i.e. had a larger

number of darker shaded cells) than the island topology to perform better across dif-

ferent environments. Virtually no hyper-heuristics using the RT trigger (regardless of

topology) ever recorded losses against Rand for any environment.
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Hyper-heuristics using the PT trigger yielded a varied number of wins against Rand,

depending on the topology that was employed. Many hyper-heuristics using the Global PT

configuration managed to win against Rand across numerous environments. Rand al-

most never recorded any notable wins against any of the hyper-heuristics except ETour25,

RLFreq, DProp, and Comp where Rand managed a small number of wins. In con-

trast, virtually no hyper-heuristics using the Island PT configuration managed to either

win or lose against Rand for the majority of environments, indicating that there is no

real significant difference between random heuristic selection and hyper-heuristics using

the PT trigger and an island topology. The only possible exception is RLFreq that

outperformed Rand for roughly five of the 27 environments and recorded draws in the

remainder of the environments. Rand never recorded wins against RLFreq.

Rand almost never recorded any noteworthy numbers of wins or losses against any

hyper-heuristics that employed the ST trigger, regardless of whether the global or island

topology was used. The interpretation is that every hyper-heuristic that used the ST

trigger showed statistically indistinguishable differences from using random heuristic

selection.

Observations about hyper-heuristics that employed tournament selection

A distinct pattern that is visible in figure 6.6 was the tendency for most hyper-heuristics

that rely on tournament selection (refer to section 3.4.6) to show a strong correlation with

darker shaded cells. In particular, larger tournament sizes resulted in noticeably more

wins for each particular approach (compare HTour5X with HTour2X, HTour5M

with HTour2M,and Freq5 with Freq2). The pattern where larger tournament sizes

dominated is less noticeable between ETour25 and ETour2, but is present nonetheless

(the pattern is, however, absent in sub-figure 6.6a). These observations are corrobo-

rated by the fact that figure 6.7 shows that HTour5X, HTour5M, and Freq5 were

consistently among the top performing hyper-heuristics.

In sub-figures 6.6a, 6.6b, and 6.6c, the methods that were based on tournament se-

lection a recorded sizable numbers of wins against both fixed as well as random heuristic

selection. Note that larger tournament sizes yielded wins for more environments com-

pared to smaller tournament sizes. In contrast, sub-figures 6.6d, 6.6e, and 6.6f show
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that the methods based on tournament selection showed strong performance against

fixed heuristic selection, but did not manage to raise performance over that of random

heuristic selection.

Observations about hyper-heuristics that employed roulette wheel selection

A number of methods (including random heuristic selection itself) relied on roulette

wheel selection, as explained in section 3.4.6, specifically RoulM, RoulX, ARank,

NARank, AProp, NAProp, Comp, and Soft. These methods generally yielded

mostly white or light gray cells across the rows of figure 6.6 (indicating no noteworthy

wins against other hyper-heuristics), and exhibited mostly dark gray cells in each relevant

column (indicating strong losses against other hyper-heuristics). Figure 6.7 echoes these

findings by showing how the roulette-based methods mostly showed low mean wins and

high mean losses against the other methods in all six sub-figures.

All of the roulette-based hyper-heuristics that were configured with the island topol-

ogy showed some level of success against fixed heuristic selection, generally showing

darker shades of gray in the respective wins rows than in the matching losses columns.

This pattern is not evident in the sub-figures for the global topology results, where the

roulette-based hyper-heuristics almost never show wins and show a fair number of losses

against GFix.

The roulette-based methods did not manage to significantly outperform random

heuristic selection in any of the sub-figures in figure 6.6, but Rand never managed any

wins against the roulette-based methods either. This indicates that the performance

of roulette-based methods were indistinguishable from random heuristic selection, irre-

spective of whether mean or max feedback signals were used (as per equations (3.3)

and (3.4), respectively, in section 3.4.6), whether ant-based learning was used or not,

whether feedback was normalized using a soft-max function (see equation (3.20)), or

whether competitive populations were used.

The overall best hyper-heuristics

At a minimum, any individual hyper-heuristic can only be considered good if it managed

to outperform both the fixed and random selection control groups. This requirement
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alone eliminates many topology and trigger combinations, as well as certain types of

hyper-heuristics:

• Nearly half of the hyper-heuristics configurations that used the RT trigger and

global topology managed to show strong performance against both control groups,

as can be seen in sub-figure 6.6a. ETour25, ETour2, HTour5X, HTour5M,

and Freq5 were among the top performers in sub-figures 6.6a and 6.7a. A number

of other hyper-heuristics showed comparably strong performance, namely DProp,

RLProp, RLFreq, ETour25, HTour2X, and HTour2M. Sub-figure 6.7a sup-

ports these findings by showing how the listed hyper-heuristics had, on average,

more wins than losses (compared to the other methods that shows sharply more

losses than wins).

• The performance of the hyper-heuristics that used the Global PT configuration,

at a glance, showed similar visual patterns in sub-figure 6.6c compared to the cor-

responding Global RT configuration in sub-figure 6.6a. Only a handful of hyper-

heuristics can be considered superior to both control groups, namely Etour25,

HTour5X, HTour5M, and Freq5. Sub-figure 6.7c confirms that these four

hyper-heuristics were, on average, noticeably better than the other hyper-heuristics.

Larger tournament sizes greatly increased the propensity for wins compared to

smaller tournament sizes.

• Sub-figure 6.6e shows that most hyper-heuristics that used the Global ST con-

figuration did not perform well against either of the control groups. Only two

hyper-heuristics, namely ETour25, and HTour5X, managed to achieve a notable

number of wins against both GFix and Rand, but both hyper-heuristics also suf-

fered a comparable number of losses against these control groups (indicating these

methods were sensitive to the type of environment).

• Most hyper-heuristics that used the Island RT configuration (see sub-figure 6.6b)

show strong performance against IFix and, for most hyper-heuristics, inferior

performance against Rand. However, RLFreq, HTour5X, HTour5M, and

Freq5 managed to outperform both control groups and showed strong performance

against the other hyper-heuristics (but not necessarily each other). Sub-figure 6.7b
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corroborates these findings: the four named hyper-heuristics had the four highest

mean win scores and the among the lowest mean loss scores compared to all other

hyper-heuristics.

• Similarly, hyper-heuristics using the Island PT configuration showed strong per-

formance against IFix in sub-figure 6.6d, but did not manage to appreciably out-

perform Rand. RLfreq is perhaps the only noteworthy exception, and achieved a

high number of wins against IFix and a moderate number of wins against Rand

while never losing to either IFix or Rand. None of the other hyper-heuristics

that used the Island PT configuration raised performance above the random se-

lection control group, and cannot be considered as contenders for the overall best

hyper-heuristic.

• Nearly every hyper-heuristic in sub-figure 6.6f (the exception being ETour2 and

ETour25) managed to outperform IFix across multiple environments, but were

almost completely unable to yield wins against Rand. Neither IFix nor Rand

ever recorded any wins against any hyper-heuristics either (with the exception

of ETour2). Effectively, the Island ST configuration failed to yield any hyper-

heuristics that simultaneously performed better than both of the control groups.

Conclusions

The contenders for the best overall hyper-heuristic choice can therefor be constrained

to the following options: RLFreq, HTour5x, HTour5M, and Freq5, when configured

with the Global RT, Global PT, or Island RT configurations, raised performance above

both fixed and random selection control methods. These methods also managed to match

or outperform most other hyper-heuristics. ETour25 also raised performance above the

control groups and other hyper-heuristics when using either the Global RT or Global PT

configurations. The performance of ETour25 was more susceptible to the type of envi-

ronment at hand, and fixed heuristic allocation sometimes performed significantly better

than ETour25 for certain environments. ETour2 configured with the Global RT con-

figuration outperformed both control groups and most other hyper-heuristics in many

environments, while showing few losses against fixed heuristic selection. ETour2 did

not perform well with any other trigger or topology configurations.
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In summary, the different hyper-heuristics showed varied performance relative to each

other, fixed heuristic selection, and random heuristic selection. The choice of heuristic

change trigger and neighborhood topology had a strong influence on the relative per-

formance of hyper-heuristics. None of the hyper-heuristics that were configured with

the ST trigger, regardless of neighborhood topology, raised performance above that of

random selection.

RLFreq is an example of a hyper-heuristic that showed strong performance against

both the fixed and random heuristic selection control methods, regardless of topology

or trigger choices. RLFreq using the island topology and any trigger type consistently

outperformed IFix in the majority of environments, while never losing to IFix. Similarly,

RLFreq either outperformed or matched the performance of Rand when configured with

the island topology and any trigger. RLFreq configured with the global topology was

consistently among the top performers by always showing improved performance over

both Rand and GFix across a fair number of environments. In these cases, RLFreq

almost never lost to Rand, but was still susceptible to a small number of losses to GFix

for a few environments. All in all, RLFreq was one of the investigated hyper-heuristics

that consistently yielded good performance across many environments, regardless of

neighborhood topology or heuristic change trigger type.

6.3.5 Research Question 4

What are the entity reassignment characteristics of each hyper-heuristic?

How a hyper-heuristic makes entity assignments over time is key to understand how

computational resources are distributed across the pool of available heuristics. Different

heuristic change triggers and neighborhood topologies may affect how a hyper-heuristic

distributes entities. The assignment of entities to heuristics by any hyper-heuristic needs

to be analyzed along a number of dimensions, namely

• the balance of entity assignments across the pool of heuristics over the entire algo-

rithm run,

• the number of entities that are reassigned by the hyper-heuristic, and
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• the frequency with which each hyper-heuristic configuration reassigns any entities

to new heuristics.

The balance of entity assignments is measured using the heuristic space diversity

(HSD) measure, or N (t), as discussed in section 3.4.3. The value N (t) is calculated

after every algorithm iteration using equation (3.2). Values of N (t) ≈ 1 indicate perfect

heuristic diversity, i.e. entities are spread out equally across all heuristics in a balanced

fashion. On the other hand, values of N (t) ≈ 0 indicate that the majority of entities are

assigned to a single heuristic in an unbalanced manner. A hyper-heuristic’s HSD score

can change every algorithm iteration as entities are reassigned between heuristics. Equa-

tion (3.2) yields a series of HSD values over time that may or may not vary depending

on the actions taken by the hyper-heuristic.

As outlined in section 3.4.6, each heuristic in the pool had a minimum entity count

of one for global topology configurations, and four when the island topology was used.

Consequently, since all experiments were set up with 50 entities and nine heuristics,

the minimum possible value for N (t) that could be achieved by any hyper-heuristic

was N (t) = 0.3515 for the global topology. This value resulted whenever all 41 free

entities were assigned to any single heuristic while the remaining nine heuristics each

had only one assigned entity. Similarly, the minimum possible value for N (t) that could

be achieved when using the island topology was N (t) = 0.9031, which occurred when

all 14 free entities are assigned to any single heuristic.

The number of entities that are reassigned to different heuristics at time t expresses

the magnitude of entity reassignments that occur. The subset E∗(t) ⊂ E contains those

entities in the parent population E that are triggered to be assigned new heuristics at

time t, as explained in section 3.4.6. The hyper-heuristic may reassign any number

of triggered entities in E∗ to new heuristics, and may choose to leave many entity-

to-heuristic assignments unchanged. Different hyper-heuristics do the reassignments in

various ways, depending on the selection logic employed. The subset E∗∗ ⊆ E∗ ⊆ E

contains those entities that are assigned a different heuristic at time t. The number of

entities that are reassigned to new heuristics at time t, υ(t), is simply the size of the

subset E∗∗(t), i.e.

υ(t) = |E∗∗(t)| (6.1)
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The minimum value for υ(t) is zero, which occurs when no triggered entities are reas-

signed to new heuristics. The maximum value for υ(t) is ns − nf , where ns = |E| is

the total number of entities in the HMHH parent population E, and nf is the sum of

the minimum entity counts across all nh heuristics. Note that nf = nh for the global

topology where the minimum entity count is one, and nf = 4×nh for the island topology

where the minimum entity count is four.

The balance and number of entity assignments, as measured by N (t) and υ(t), re-

spectively, needs to be considered independently. It is possible for any given group of

hyper-heuristics to have similar N (t) values over a period of time, yet have vastly differ-

ent entity reassignment numbers. Figure 6.8 illustrates how N (t) and υ(t) are related.

Both N (t) and υ(t) can change in different ways every algorithm iteration t. Consider

any two hyper-heuristics that both have similar N (t) values across the entire algorithm

run (i.e. where N (t) ≈ 1 over time). One hyper-heuristic could maintain relatively static

entity-to-heuristic assignments, i.e., υ(t) ≈ 0, ∀t. The other hyper-heuristic might show

large numbers of entity reassignments between heuristics, i.e., υ(t) ≈ ns, ∀t. Since both

of these hypothetical hyper-heuristics have the same HSD values where N (t) ≈ 1, ∀t,
most of the entity reassignments “cancel each other out” from a HSD perspective (equal

numbers of immigration and emigration of entities occur in a sense).

The frequency with which a hyper-heuristic reassigns entities to new heuristics is

simply the proportion of all algorithm iterations t ∈ T where entities were reassigned

to new heuristics (regardless of the number of entities). In other words, the entity

reassignment frequency, δ, is defined as

δ =
|T ′|
|T |

(6.2)

where T ′ ⊆ T represents the subset of algorithm iterations in T where at least one entity

reassignment occurred (i.e. where υ(t) > 0). A hyper-heuristic cannot reassign an entity

if the entity is not first triggered by the heuristic trigger (the trigger thus sets an upper

bound on δ). Once an entity is triggered, however, the hyper-heuristic selection logic may

stipulate that the entity should not be reassigned to a new heuristic (which may yield

variance in δ values across different algorithm runs). High variance in δ values across

multiple algorithm run samples is indicative of selective behavior by a hyper-heuristic.

The measure ϕ reports the mean number of entities that were reassigned in an algo-
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(a) The hyper-heuristic reassigns entities diverse across heuristics. N (t) and υ(t) change

every iteration.

(b) The hyper-heuristic reassigns entities, but never changes the balance of entities between

heuristics. N (t) remains constant while υ(t) changes every iteration.

Figure 6.8: Illustrative example of measuring heuristic space diversity using N (t) and the

entity reassignment rate using υ(t) for four heuristics, h1, h2, h3, and h4, and 32 entities over

three time steps t, t+ 1, and t+ 2. White blocks represent reassigned entities at time t.
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rithm run, where the mean was computed relative to the proportion of iterations where

entity reassignments occurred (i.e. T ′) as follows:

ϕ =

∑
t′∈T ′

υ(t′)

|T ′|
(6.3)

In other words, algorithm iterations that did not contain any entity reassignments (i.e.,

υ(t) = 0) do not skew the mean calculation. The value of ϕ depends on υ(t), which has

different maximum possible values depending on whether the island or global topology is

used, as explained above. Consequently, ϕ values are proportionately smaller for island

configurations compared to the corresponding global configurations (all other variables

being equal).

This research question characterizes the balance, number, and frequency of entity

assignments of a number of exemplary hyper-heuristics. Figure 6.9 outlines howN (t) and

υ(t) values were recorded at every iteration of each algorithm run. The median and inter-

quartile range (IQR) of all N (t) values were subsequently computed for each individual

algorithm run to provide a measure of centrality and spread for HSD values across the

entire algorithm run. Median and IQR values were used since these statistical measures

are less affected by outliers than mean and standard deviation values [162]. The process

outlined in figure 6.9 was repeated for each of the 71 sample runs for each hyper-heuristic

for each of the 27 environments. This yielded 1 917 median and IQR values for N (t) and

1 917 δ and ϕ values per hyper-heuristic, for each of the six possible configurations of

global and island topologies together with random triggers (RT), periodic triggers (PT),

and stagnation triggers (ST).

The sub-sections below present and discuss summary charts of HSD and entity re-

assignment rates for a number of exemplary hyper-heuristics. Each chart comprises of

12 scatter-plot panels that collectively present information for the different trigger and

topology combinations for a specific hyper-heuristic. Each scatter-plot panel contains

nine subplots that show sample values for the 27 different environment types. Each point

in a scatter-plot represents a single algorithm run. Circular, linear, or random environ-

ments are represented across columns, Type I, Type II, or Type III environments are

represented across rows, and abrupt, progressive, or chaotic environments are shown as

different color and marker symbol combinations. The top six plots highlight the median
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Figure 6.9: Focus of the HSD and entity reassignment analysis for each hyper-heuristic.

and IQR values of N (t) for each individual run, while the bottom six plots show the

relationship between δ and ϕ (the bottom six plots are drawn with a white background

for easy differentiation from the top six plots).

The goal of the approach above is to:

• Illustrate how different combinations of neighborhood topology and heuristic change

triggers can drastically alter the operation of certain hyper-heuristics, while not

necessarily having any measurable effect on other hyper-heuristics.

• Show how each hyper-heuristic may or may not behave differently across different

samples for the same environment, i.e., investigate the variance of problem samples
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for the same type of environment.

• Reveal how certain hyper-heuristics may show highly varied behavior across dif-

ferent environments, while other hyper-heuristics may show predictable behavior

across all problems for all environments. In other words, the goal is to investigate

the variance of problem samples between different environment types.

• Bring to light how parameters value choices (such tournament size for example)

affects the behavior of a hyper-heuristic.

The goal is not to exhaustively discuss the behavior of every investigated hyper-

heuristic, nor to identify the detailed behavior patterns for each of the individual 27

different environments – this is left as future work.

The behavior of the following hyper-heuristics, for all combinations of triggers and

topologies, are examined in more detail in the subsections below:

1. Rand, where the aim is to study the behavior of a control group approach that

does not rely on intelligence.

2. RLFreq, to showcase the behavior of a hyper-heuristic that employs intelligent

selection and learning.

3. Hyper-heuristics with HSD and entity reassignment behavior that is similar to

Rand.

4. ETour2 and ETour25, that both rely on entity tournament selection.

5. Comp, which did not perform well relative to the other methods or the control

groups.

The behavior of random heuristic selection

Rand applies no intelligence to reassign triggered entities to new heuristics. Conse-

quently, since all heuristics always have an equal probability of being selected, the ex-

pectation is that Rand would maintain nearly perfect heuristic space diversity over

time (i.e., N (t) ≈ 1,∀t ∈ T ). Since no intelligence is used to make assignments, another
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expectation is that entity reassignment rates would be relatively uniform over time, sim-

ilar between problem instances, and similar across different environments. That is, ϕ

variance would be small between samples within each environment and across different

environments.

Figure 6.10 shows that the actual behavior for Rand matches both these expecta-

tions. All six HSD plots show high median and low IQR values forN (t) values, indicating

that Rand maintained very balanced heuristic assignments throughout each algorithm

run. Five of the six HSD plots look identical, while the sixth plot (for the Global ST

configuration) strongly resembles the other five plots.

The six entity reassignment plots each show different δ and ϕ values across configura-

tions, which indicates that alternative topology and trigger configurations yielded very

different behavior in terms of the frequency and volume of entity reassignments. For

each configuration, there was a noticeable difference in the entity reassignment behavior

for the abrupt versus the progressive and chaotic environments. The similarity of the

subplots for each configuration show that, for each environment, Rand was impartial

to the particular problem instance under consideration. The ST configurations are an

exception, and will be discussed in more detail below.

The behavior of different topology and trigger configurations for Rand, as visible in

figure 6.10, is described in more detail in the subsections below.

Rand using the Global RT configuration: The HSD plot shows how the median

N (t) values were approximately 1 for every sample, while the IQR spread values of N (t)

were close to 0 for all samples. These observations hold for all environments. This

highlights a very narrow distribution of N (t) values over time that rarely deviated from

the median value of 1, which indicates balanced and impartial heuristic assignments

throughout each algorithm run in every problem instance in every environment.

The entity reassignment plot reveals that δ values were very high for all samples across

all environments, indicating that entities were reassigned to new heuristics practically

every algorithm iteration. Values for ϕ reveal that different numbers of entities were

reassigned for the abrupt versus the progressive and chaotic environments. The heuristic

change frequency parameter was set to k = 20% of the environment change frequency,

which yielded more frequent opportunities for heuristic changes to be made for progressive
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Figure 6.10: HSD and entity reassignment rate analysis for Rand
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and chaotic environments (i.e. 20% of 20 iterations) than for the abrupt environments

(i.e. 20% of 100 iterations)1. Consequently, each entity had a higher probability to be

triggered by the RT trigger for progressive and chaotic environments than for abrupt

environments, causing higher ϕ values for the former environments.

Rand using the Island RT configuration: The HSD behavior was identical to

the Global RT configuration, which shows that the choice of topology did not affect the

heuristic space diversity behavior for Rand when the RT trigger was used.

Values for ϕ were lower for all environments compared to that of the Global RT

configuration, since the island topology had fewer free entities to reassign, as discussed

above. The difference in ϕ values between the abrupt and the progressive and chaotic

environments were, again, due to the choice of k = 20% yielding different triggering

probabilities for the RT trigger. Values for δ were identical as for the Global RT configu-

ration for all progressive and chaotic environment samples, but the abrupt environment

samples, however, showed noticeably lower δ values. The abrupt environment had a

lower probability of triggering each entity, and only 14 of the 50 entities that could be

triggered were free for reassignment. In aggregate, slightly fewer opportunities to move

slightly fewer entities resulted in a lower δ values for the abrupt versus the progressive

and chaotic environments.

Rand using the Global PT and Island PT configurations: The HSD behavior

of each configuration was exactly the same as that of the Global RT and Island RT

configurations, respectively. This confirms that the choice between PT or RT trigger did

not affect the heuristic space diversity behavior for Rand.

In contrast, the entity reassignment plots for both the Global PT and Island PT

configurations show much lower δ values than their respective RT counterparts. This is

a result of the fact that the PT trigger periodically triggered all entities simultaneously

at specific algorithm iterations (i.e. based on k = 20% of the environment change

frequency). This subsequently yielded much lower δ values compared to the RT trigger

that tended to trigger a small number of entities nearly every iteration. Similar to the

RT cases, a discrepancy is visible between the δ values of the samples for the chaotic

1Refer to Table 2.2
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and progressive environments and the abrupt environment. This was, again, due to the

fact that abrupt environments had longer change periods, which resulted in less frequent

heuristic changes. The size of the difference in δ values is identical for the Global PT and

Island PT configurations, since the PT trigger was unaffected by the choice of topology.

Values for ϕ were higher than for the corresponding RT trigger configurations, which

is to be expected given that all entities were triggered simultaneously by the PT trig-

ger. The ϕ values for the Island PT configurations were lower than the corresponding

Global PT configuration, which was due to the hyper-heuristic enforcing the larger mini-

mum entity count of four entities per heuristic for the island topology. Values for ϕ were

approximately 37 for the Global PT configuration (the maximum was 41) and 14 for the

Island PT configuration (where the maximum was 14). This resulted since Rand used

a uniform probability of assignment over nine heuristics, which caused roughly 88% of

triggered entities to be reassigned (on average).

Rand using the Global ST configuration: The Global ST HSD plot is roughly

similar to the other five HSD plots, but shows a number of departures from the otherwise

steadfast trends that are present in the other plots:

• Increased variance is visible in the abrupt environment data in all nine subplots

(visible as red circles), which indicates that the Global ST configuration was more

prone to create imbalanced heuristic assignments across different samples for abrupt

environments. In contrast, the tight groupings of progressive and chaotic values

across all samples in all nine subplots show that the Global ST configuration con-

sistently yielded similar behavior for these environments.

• The median N (t) values for all samples were closer to 0.85 than 1, while the

corresponding IQR spread ofN (t) values were closer to 0.15 than 0. These readings

indicate a wider distribution ofN (t) values for each environment, which shows that

the Global ST configuration created more imbalanced heuristic assignments within

each individual algorithm run.

• The entity reassignment plot for Global ST shows noticeably higher variance in δ

values across samples than is present for the other configurations. Most variation

was contained inside a relatively defined range for each environment.
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• All δ values for abrupt environments were low, in sharp contrast to the high δ

values for progressive and chaotic environments. The heuristic change frequency

parameter was set to k = 20% of the environment change frequency, which resulted

in a much lower tolerance of what was deemed stagnating behavior for entities in

progressive and chaotic environments. For the ST trigger, this yielded more fre-

quent entity reassignments for progressive and chaotic environments and relatively

fewer entity assignments for abrupt environments.

• The ϕ values were always very low and relatively consistent for all samples for each

environment, as well across different environments. This shows that a consistently

small number of entities were reassigned during iterations that saw reassignments,

regardless of the type of environment or specific problem instance.

Rand using the Island ST configuration: The HSD plot strongly resembles the

HSD plots for the Global RT, Global PT, Island RT, and Island PT configurations.

There is a very weak indication of higher variance of N (t) values for abrupt environment

samples (reminiscent of the Global ST configuration). However, the majority of samples

for all environments were tightly grouped, indicating that the Island ST configuration

had the same HSD behavior regardless of the type of environment.

Similar to the Global ST configuration, the entity reassignment plot shows a discrep-

ancy between progressive and chaotic environment δ values and abrupt environment δ

values. This difference was, again, due to shorter stagnation tolerances for progressive

and chaotic environments, which affected entity reassignment frequencies. However, the

δ values for progressive and chaotic environment samples were much lower than for the

Global ST configuration. The variance of δ between abrupt environment samples was

also noticeably lower than for the corresponding Global ST configuration. Both these

observations indicate that there was significantly less stagnation of entities when using

the Island ST configuration compared to using the Global ST configuration.

Similar to the Global ST configuration, ϕ values were always very low for all samples

across all environments, which indicates that the configuration had the same entity

reassignment volume and frequency for any sample in any environment.
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Conclusions about Rand: As one of the control group methods, the behavior of

Rand epitomizes the overall operation of a hyper-heuristic that does not apply any

intelligence in selecting new heuristics for entities. With the exception of the ST trigger

configurations (which, arguably, apply intelligence in deciding how to trigger heuristic

changes based on observed fitness values), Rand yields predictable and consistent HSD

and entity reassignment behavior for every problem sample across all 27 environment

types. Hyper-heuristics that apply alternative selection logic may or may not show

similar behavior to Rand, which is explored further in the next sections.

The behavior of frequency improvement reinforcement learning selection

As described in section 3.4.6, RLFreq increases or decreases a rank score for each heuris-

tic based on the observed frequency of improvements made by entities assigned to each

heuristic. RLFreq subsequently assigns all triggered entities to the highest ranked

heuristic, while always honoring the minimum entity counts of each heuristic (one for

the global topology and four for the island topology).

Previous research questions showed how RLFreq was consistently among the top

performing hyper-heuristics across multiple trigger and topology configurations. While

the hyper-heuristic was not the outright best for all environments at all times, RLFreq

did manage to match or outperform Rand across the majority of environments. RL-

Freq also consistently matched or outperformed the majority of other hyper-heuristics

(particularly when using the island topology), recording almost no losses in any envi-

ronments. RLFreq also showed a strong proclivity in section 6.3.2 and 6.3.3 to raise

performance above using the stand-alone or speciated versions of the heuristics that

make up the heuristic pool, across most trigger and topology configurations. As such,

RLFreq provides good insights into the HSD and entity reassignment behavior of a

generally successful hyper-heuristic strategy.

Figure 6.11 shows the heuristic space diversity and entity reassignment behavior for

RLFreq across all environment samples for all six topology and trigger configurations.

At a glance, the plots in figure 6.11 appear substantially different to the correspond-

ing plots for Rand in figure 6.10. The HSD plots show drastically different behaviors

across different trigger and topology types. Entity reassignment rates were also highly
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varied based on the configuration. Sample variance was much more noticeable in almost

every plot in figure 6.11, and sample variances and value ranges were different across

environments in many configurations.

The following observations below about the behavior of different trigger and topology

configurations for RLFreq are visible in figure 6.11.

RLFreq using the Global RT configuration: A striking pattern in the HSD plot

is the vertical line where the median N (t) value was approximately 0.35 (the minimum

possible HSD value). This shows that the configuration assigned all available entities

to the single top-ranked heuristic at least 50% of the time. The IQR spread of N (t)

values ranged between [0, 0.5], which indicates that the configuration alternated between

assigning all triggered entities to the single top-ranked heuristic all of the time (low IQR

values) versus yielding more varied heuristic assignments with balanced HSD behavior

(higher IQR values). Each HSD subplot shows a number of outliers along relatively

predictable paths. In that sense, it is clearly visible from the HSD plot that the Global RT

configuration showed adaptive behavior based on the problem instance at hand.

The entity reassignment plot shows that the sample variance for δ values was high in

every environment, and that the variance pattern was different across environments. For

many environments, ϕ values, however, remained largely unchanged as δ values varied,

visible as flat horizontal lines in the entity reassignment plot. Exceptions exists among a

handful of environments, i.e. P3R that shows variance in both δ and ϕ values at the left

side of the subplot (visible as a grouping of points compared to the straight lines of other

environments). One pattern stands out clearly, namely the clear differentiation between

the ϕ values for abrupt, progressive, and chaotic environment samples. Similar to Rand,

this variation is explained by how the different change period of the landscape affects

the heuristic selection triggering frequency at k = 20%. The relatively constant ϕ trend

for each environment type reveals how the Global RT configuration often reassigned

the same number of entities, whether that happened frequently (i.e. high δ values) or

infrequent (i.e. low δ values).

The vertical and horizontal lines that are visible in, respectively, the HSD and en-

tity reassignment plots raises the question of whether there was any positive or negative

correlation between increased δ values and increased IQR spreads for N (t). Figure 6.12
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Figure 6.11: HSD and entity reassignment rate analysis for RLFreq
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Figure 6.12: Median N (t) versus δ values for each environment for RLfreq using the global

topology and RT trigger.

shows a clear positive correlation between the entity reassignment frequency and more

diversified HSD behavior. Higher δ values were, generally, associated with constant N (t)

behavior up until roughly δ ≈ 0.3, after which there was a clear positive linear relation-

ship between increasing δ values and wider IQR ranges for N (t). Since the median N (t)

value was approximately 0.35 (the minimum possible value) for the majority of samples,

the wider IQR ranges with δ > 0.3 clearly shows that RLFreq using the Global RT

configuration exhibited adaptive, exploratory behavior for some problem samples, and

not for others. These observations are testimony to the fact that the Global RT con-

figuration employed intelligent selection behavior. The configuration exhibited unique

behavior depending on the type of environment as well as the particular problem instance

under consideration.

Another key question is whether the Global RT configuration could re-diversify enti-

ties across heuristics after all entities had been assigned to a single heuristic (i.e. escape

from local minima in heuristic space). In other words, did N (t) values ever increase

again once values hit the minimum value of 0.35? Figure 6.13a and 6.13b show the N (t)

and normalized υ(t) values over all 1000 iterations for 14 random samples of the A3R
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(a) A3R

(b) P3R

Figure 6.13: N (t) and normalized υ(t) for RLFreq using the global topology and RT trigger.

and P3R environments, respectively, for the Global RT configuration. The plots visually

show that N (t) values did rise and fall constantly over time, indicating adaptive HSD

behavior by the hyper-heuristic. The plots also show how progressive environment sam-

ples had higher numbers of entity reassignments than abrupt environments, illustrating

the higher ϕ values presented in figure 6.11.

RLFreq using the Island RT configuration: The Island RT configuration showed

variance across the entire spectrum of possible N (t) values: the bulk of median N (t)

values were approximately 0.9 (the minimum possible value for the island topology),
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while the IQR spread was approximately 0.1. This reveals that, even though the value

ranges were much smaller, the Island RT configuration behaved similar to the Global RT

configuration by mostly assigning all free entities to a single heuristic, yet still managing

to periodically diversify entities across multiple heuristics when needed. Using the island

topology greatly impacted the ability of the hyper-heuristic to exploit any single heuristic.

The entity reassignment plot shows a wide range of δ values across samples for each

type of environment, indicating very adaptive behavior in deciding whether or not trig-

gered entities should be reassigned or not. The lower ϕ variance compared to the

Global RT configuration was, again, attributable to the fact that the island topology

has fewer available entities. Similar to the Global RT configuration, the samples for the

abrupt, progressive, and chaotic environments were separated into horizontal lines in the

entity reassignment plot, although the variance was noticeably lower than for the the

Global RT configuration.

As another illustrative example, figure 6.14 shows the N (t) and normalized υ(t)

values over all 1000 iterations for 14 random samples of the A3R and P3R environments,

respectively, for the Island RT configuration. The plots visually show how HSD values

were repeatedly able to escape local minima in heuristic space. A comparison of the

plots with figure 6.13 gives a visual understanding of how both N (t) and normalized

υ(t) values were much more restricted when using the island topology compared to

using the global topology.

RLFreq using the Global PT and Island PT configurations: All samples across

all environments always yielded medianN (t) values of approximately 0.35 (the minimum

possible HSD value). Contrary to the Global RT configuration, however, the IQR spread

values for N (t) of all samples were always close to 0. These results indicate an extremely

narrow distribution of HSD values where all available entities were always and predictably

assigned to a single heuristic the majority of the time during each individual run. Similar

to the Global PT configuration, the Island PT configuration yielded a very narrow HSD

distribution: median N (t) values were always near the minimum possible value (0.9030

for the island topology) and the IQR spread was approximately 0. This reveals that

RLFreq showed similar HSD behavior for both the island and global topologies when

using the PT trigger.
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(a) A3R

(b) P3R

Figure 6.14: N (t) and normalized υ(t) for RLFreq using the island topology and RT trigger.

Since all entities were triggered together on a periodic basis, the maximum possible

δ value was approximately 0.25 (for progressive and abrupt environments) and approx-

imately 0.1 (for abrupt environments). The horizontal lines visible for δ values in the

entity reassignment plot show that entity reassignment frequencies varied across the

entire possible range. This indicates selective behavior by the hyper-heuristics: if the

entities were already assigned to the top ranked heuristic, no reassignments would occur

that particular iteration. In that sense, the Global PT configuration was reactive to the

particular problem instance at hand. The high entity reassignment rates, where ϕ were
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in the range [35, 41], reveal that the majority of entities were reassigned every time re-

assignments occurred. The low HSD values combined with infrequent but severely large

entity reassignments show that Global PT alternated between rarely changing heuristic

assignments for some algorithm runs, to always reassigning all entities to a single new

heuristic every change period. The entity reassignment behavior for the Island PT con-

figuration was also similar to that of the Global PT configuration in that entity reassign-

ment frequencies varied across the entire possible range of values for each environment,

and similar conclusions can be made.

Figure 6.15 shows the N (t) and normalized υ(t) values over all 1000 iterations for

14 random samples of the A3R environment for the global and island topologies, respec-

tively. The HSD values remain constant at N (t) ≈ 0.35 over all iterations. High entity

reassignment rates show that all entities were reassigned every time a new heuristic was

selected. Large periods of inactivity (visible as horizontal blue and red lines) clearly

show where the hyper-heuristic did not change heuristic assignments (despite all entities

being triggered periodically).

RLFreq using the Global ST and Island ST configurations: The HSD plot

shows a wide spectrum of behavior. Visually, the samples appear to form a crude rect-

angular shape in the HSD plot. The progressive and chaotic environment samples are

clearly separated from the abrupt environment samples. All environments samples have

IQR spread values for N (t) that varied widely across the approximate range [0, 0.4].

This reveals how the Global ST configuration showed every possible behavior along two

dimensions. The first dimension ranged between well-balanced entity assignments across

heuristics (high N (t) values) versus complete dominance by a single heuristic (low N (t)

values), while the second dimension ranges between consistent HSD behavior over time

(low IQR values for N (t)) versus alternating HSD behavior over time (high IQR values

for N (t)).

Considering that the minimum possible value for N (t) was 0.9030 for the island

topology, the HSD plot for the Island ST configuration shows comparable behavior to

the Global ST configuration. Median N (t) values varied across the entire viable range,

as visibly indicated by the spread of samples across the x-axis along with corroborating

IQR values of approximately 0.1.
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(a) Global topology

(b) Island topology

Figure 6.15: N (t) and normalized υ(t) for RLFreq using the PT trigger (both topologies).

The entity reassignment plot shows that δ values varied widely for each environment.

A clear pattern is visible where abrupt environments yielded lower δ values (as a result

of a higher tolerance for stagnation) while progressive and chaotic environment samples

showed higher and more varied δ values (as a result of lower tolerances for stagnation).

The corresponding ϕ values were low, with a tendency to increase slightly as δ values

decreased (this was especially prominent in Type I environments).

The entity reassignment behavior for the Island ST configuration was similar to the

Global ST configuration, although δ values did not vary quite as widely. The lower
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variance for δ values reveals that the ST trigger was activated less frequently when

using the island topology than when using the global topology. Further study is needed

to determine if the lower stagnation rate was due to slower, steadier convergence of

entities in each heuristic’s disjoint sub-population compared to the sub-populations of

the Global ST configuration that had purview across the entire global population.

Figure 6.16a and 6.16b show the N (t) and normalized υ(t) values over all 1000

iterations for 14 random samples of the A3R and P3R environments, respectively, for the

Global ST configuration. HSD and entity reassignment behavior within each sample and

across different samples match the wide range of behaviors described in the paragraphs

above. The corresponding plots for the island topology (not illustrated here) appear

similar, albeit with smaller N (t) and υ(t) ranges.

For the Global ST configuration, the question arises whether there was any correla-

tion between the highly varied HSD behavior and the stratified variance pattern that was

visible in δ values. Figure 6.17 shows scatter-plots for the median N (t) values versus δ

values for each environment for the Global ST configuration. There was noticeably less

linear correlation between the variables compare to the Global RT configuration data

in figure 6.12, and many subplots show a distinctive inverted “U”-shaped relationship.

This reveals that there was no clear-cut linear relationship between increased entity

reassignment frequency and heuristic space diversity.

Conclusions about RLFreq: The RLFreq hyper-heuristic showed markedly differ-

ent behavior for every choice of topology and trigger compared to the corresponding

results for Rand. Overall, RLfreq showed a strong tendency to adapt to the particu-

lar problem instance under consideration. Future work should focus on correlating the

behavior of RLFreq with environment change characteristics.

Hyper-heuristics with similar behavior to random heuristic selection

A number of hyper-heuristics showed nearly identical behavior to Rand with respect to

HSD and entity reassignment rates, namely Perm, Soft, NARank, and ARank (refer

to figures A.1, A.2, A.11 and A.12 in appendix A, respectively). These hyper-heuristics

all maintained HSD scores, entity reassignment frequencies, and entity reassignment vol-

umes that were approximately equal to the values recorded for Rand for corresponding
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(a) A3R

(b) P3R

Figure 6.16: N (t) and normalized υ(t) for RLFreq using the global topology and ST trigger.

topology and trigger configurations.

Section 3.4.6 outlines how each hyper-heuristic employed decidedly different types of

selection logic to reassign entities. This means that, even though these hyper-heuristics

exhibited similar N (t), δ, and ϕ values to that of Rand, the fundamentally different se-

lection logic ensured that the specific entities being reassigned would be different between

methods. The HSD and entity reassignment plots cannot express this information, and

further study is needed to track the individual trajectories of entities across heuristics

and correlate these behaviors between different hyper-heuristics.
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Figure 6.17: Median N (t) versus δ values for each environment for RLfreq using the global

topology and ST trigger.

However, none of the four hyper-heuristics recorded wins or losses against Rand in

any environment, as visible in figure 6.6. Figure 6.7 shows that Rand and these four

hyper-heuristics also had comparable mean wins and losses for each different trigger and

topology configuration. As such, both the performance and behavioral findings suggest

that there was no statistically significant difference in performance or behavior between

these hyper-heuristics.

The results for various tournament selection-based hyper-heuristics (as outlined in

section 3.4.6) reveal how progressively larger tournament sizes resulted in steadily lower

median N (t) values with wider IQR spreads, as well as larger variances between problem

samples. The specific groups of hyper-heuristics that showed this trend are

• Rand, HTour2X, and HTour5X (see figures A.13 and A.14),

• Rand, HTour2M, and HTour5M (see figures A.15 and A.16), and

• Rand, Freq2, and Freq5 (see figures A.17 and A.18).
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Engelbrecht [60] remarks that random selection is logically equivalent to tournament

selection with a tournament size of one. In that sense, the results of Rand can also

be compared against these various groups of hyper-heuristics that employed tournament

selection.

In each respective group outlined above, higher tournament sizes created greater

imbalances between the number of entities that were assigned to each heuristic over

time (i.e. lower N (t) values). This is a direct measurement indicating that the selection

pressure of the hyper-heuristic increased with larger tournament sizes, driving the hyper-

heuristic from balanced assignments across heuristics towards favoring one heuristic over

others. The pattern was only present when the global topology was used, and the HSD

plots for the island configurations appear identical across different tournament sizes in

each group. Entity reassignment frequencies, δ, remained nearly identical for each group

across all trigger and topology combinations except for the Global ST configuration,

where progressive and chaotic environment samples steadily yielded lower δ values as

the tournament size increased. Values for ϕ remained relatively unchanged.

Figure 6.18 shows illustrative examples of N (t) and normalized υ(t) values over all

1000 iterations for 14 random samples of the A3R environment for Rand, HTour2X,

and HTour5X, respectively, using the Global RT configuration. It is clear how the

median N (t) value decreases and variance increases as the tournament size increases.

Entity reassignment volumes were largely unaffected by tournament size.

The behavior of entity tournament selection (ETour2 and ETour25)

The previous subsection outlined how HTour2X, HTour5X, HTour2M, HTour5M,

Freq2, and Freq5 were similar to Rand, and how larger tournament sizes influenced

HSD behavior in configurations that used the global topology. In contrast, entity tour-

nament selection (as discussed in section 3.4.6), exhibited completely different behavior.

ETour2 and ETour25 conducted tournaments between individual entities as opposed

to conducting tournaments between heuristics. Figures 6.19 and 6.20 show the HSD and

entity reassignment rates for ETour2 and ETour25, respectively.

A holistic glance at each figure shows that there are noteworthy differences between

the HSD and entity reassignment behaviors of ETour2 and ETour25. Both hyper-
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(a) Rand

(b) HTour2X

(c) HTour5X

Figure 6.18: N (t) and normalized υ(t) for Rand, HTour2X, and HTour5X using the

Global RT configuration.
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Figure 6.19: HSD and entity reassignment rate analysis for ETour2
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Figure 6.20: HSD and entity reassignment rate analysis for ETour25
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heuristics depart substantially from the behavior of Rand, in stark contrast to the

hyper-heuristics that are based on heuristic tournament selection. The HSD and entity

reassignment charts reveal that each trigger and topology configuration had clearly de-

fined ranges of sample variation. This is especially visible for ETour25 in figure 6.20,

for example the triangular areas that are visible for the Global RT configuration.

Figures 6.6 and 6.7 show the erratic performance of entity tournament selection,

depending on the tournament size that was used. ETour2 was only a top performer

when using the Global RT configuration, but yielded mediocre results when using ei-

ther the Global PT or Global ST configurations. ETour2 was among the worst per-

forming hyper-heuristics whenever the island topology was used. On the other hand,

ETour25 was consistently among the top performing hyper-heuristics in the Global RT

and Global PT configurations, and performed substantially better than ETour2 in all

island topology configurations (but was not among the top hyper-heuristics).

The following observations below about the behavior of different trigger and topology

configurations for ETour2 and ETour25 are visible in figures 6.19 and 6.20, respectively.

ETour2 and ETour25 using the Global RT and Global PT configurations:

The HSD subplots for the Global RT and Global PT configurations are readily compa-

rable (for ETour2 and ETour25 individually). However, the samples in the HSD plots

for ETour2 were more concentrated than in the corresponding plots for ETour25, de-

pending on the type of environment. This shows that the tournament size parameter

had a visible impact on the variance of N (t) values for entity tournament selection. Both

ETour2 and ETour25 show comparable HSD plots for all Type I and Type III environ-

ments. However, ETour2 and ETour25 show completely different behavior for Type

II environments. ETour25 had a triangular variance pattern for Type II environments,

where the width of the possible range of IQR spread values for ETour25 decreased lin-

early as the median N (t) value increased. The IQR value was highest when the median

N (t) value was approximately 0.65. On the other hand, ETour2 had a very narrow

HSD distribution compared to ETour25.

The entity reassignment plots for the Global RT and Global PT configurations are

distinctly different from one another. However, the corresponding plots for the same

configuration bear a degree of resemblance in shape between ETour2 and ETour25.
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The Global RT configurations showed high variance in δ values, but low ϕ values. This

observation is visible as horizontal lines in the respective entity reassignment plots. In

contrast, the Global PT configurations show low δ values and high variance in ϕ values,

which is visible as vertical lines in the respective entity reassignment plots. Values for ϕ

and variances were noticeably higher for ETour25 than ETour2 (especially for Type II

environments), but the general shape of each subplot was comparably similar.

Figure 6.21 shows illustrative examples of N (t) and normalized υ(t) values over all

1000 iterations for 14 random samples of the A3R and P3R environments for ETour2.

Figure 6.22 shows the corresponding plots for ETour25. The ETour25 plots clearly

show how progressive environment samples have more frequent entity reassignments with

slightly higher volumes compared to abrupt environment samples. ETour25 clearly

had the ability to adapt to the environment and the exact problem instance under

consideration. In contrast, ETour2 showed more uniform HSD behavior over time and

much smaller entity reassignment volumes, as expected.

ETour2 and ETour25 using the Island RT and Island PT configurations:

The HSD plots for both trigger configurations were almost identical for ETour2 and

ETour25, respectively. The ETour2 plots show a wide range of N (t) values across the

entire range of possible values. The ETour25 plots indicate that most N (t) values were

concentrated around approximately 0.9 (the minimum value for the island configuration).

The entity reassignment behaviors for the Island RT configurations were almost iden-

tical for ETour2 and ETour25, showing high variance for δ values and very low ϕ values.

In contrast, the Island PT configurations showed the same δ pattern between ETour2

and ETour25, but ETour25 (similar to the global topology case) had much higher

sample variance for ϕ than ETour2 had.

ETour2 and ETour25 using the Global ST configuration: The HSD plots for

the Global ST configuration for both ETour2 and ETour25 depart from the trends

visible in the RT and PT trigger configurations. Both HSD plots are visually similar to

the corresponding plot of RLFreq, as visible in figure 6.11. Each subplot shows how

HSD behavior was mainly differentiated by the presence of abrupt, progressive, or chaotic

environment dynamics, and was relatively consistent across other types of environment
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(a) A3R

(b) P3R

Figure 6.21: N (t) and normalized υ(t) for ETour2 using the global topology and RT trigger.

dynamics. Both ETour2 and ETour25 clearly showed a higher propensity to yield

higher median N (t) values for abrupt environments (which saw less frequent heuristic

changes) than for progressive or chaotic environments. The entity reassignment plots

for both ETour2 and ETour25 confirm that both hyper-heuristics rarely reassigned

entities for abrupt environments (i.e. low δ values) compared to when the hyper-heuristics

operated on progressive or chaotic environments.

Figures 6.23 and 6.24 show illustrative examples of N (t) and normalized υ(t) values

over all 1000 iterations for 14 random samples of the A3R and P3R environments for
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(a) A3R

(b) P3R

Figure 6.22: N (t) and normalized υ(t) for ETour25 using the global topology and RT trigger.

ETour2 and ETour25 (both using the Global ST configuration). At first glance, both

ETour2 and ETour25 show seemingly similar behavior in each respective environment.

However, closer inspection reveals that theN (t) values for ETour25 were generally more

responsive. This is also expressed in the HSD plots in figures 6.19 and 6.20, where the

“rectangular”-like block of median N (t) values and IQR range values for ETour25 are

situated more towards the left of the subplot than for values of ETour2. The difference

is subtle in figures 6.19 and 6.20, but the plots in figures 6.23 and 6.24 clearly show

how individual algorithm runs for ETour25 have decidedly varied behavior compared
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(a) A3R

(b) P3R

Figure 6.23: N (t) and normalized υ(t) for ETour2 using the global topology and ST trigger.

to that of ETour2. Figure 6.7 shows that, for the Global ST configuration, ETour25

performed better than random selection and was comparable to fixed selection, while

ETour2 fared substantially worse against both fixed and random selection. Clearly, the

different HSD behavior is reflected in the performance results.

ETour2 and ETour25 using the Island ST configuration: The HSD plots for

both ETour2 and ETour25 reveal similar behavior patterns to that of the Global ST

configuration, in that median N (t) values and IQR spread values for N (t) fluctuated

across the full spectrum of possible values. The entity reassignment plots reveal that
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(a) A3R

(b) P3R

Figure 6.24: N (t) and normalized υ(t) for ETour25 using the global topology and ST trigger.

δ and ϕ values also bear some resemblance to those for the Global ST configuration.

The ϕ sample variance is, however, higher for ETour25. However, both ETour2 and

ETour25 failed to significantly outperform any other hyper-heuristics when using the

Island ST configuration and ETour2, in fact, was among the worst performing methods.

Figures 6.25 and 6.26 show illustrative examples of N (t) and normalized υ(t) values

over all 1000 iterations for 14 random samples of the A3R and P3R environments for

ETour2 and ETour25 (both using the Island ST configuration). Visually there is

almost no difference between samples, environments, or between ETour2 and ETour25.
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(a) A3R

(b) P3R

Figure 6.25: N (t) and normalized υ(t) for ETour2 using the island topology and ST trigger.

The use of the ST trigger and the island topology did not yield varied behavior across

environments, problem instances, or tournament sizes when entity tournament selection

was employed. Figure 5.18 confirms that neither ETour2 nor ETour25 showed any

significant differences in performance. Further analysis is required in future studies to

determine why ETour2 and ETour25 do not perform well under the island topology

with an ST trigger configuration.
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(a) A3R

(b) P3R

Figure 6.26: N (t) and normalized υ(t) for ETour25 using the island topology and ST trigger.

Conclusion about Entity tournament selection: Entity tournament selection be-

haved noticeably different than the other tournament selection-based hyper-heuristics

that conducted tournaments between heuristics. Tournament size directly affected the

volume and frequency of entity reassignments, but the choice of topology and trigger

affected the efficacy of the hyper-heuristic.
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The behavior of competitive population heuristic selection

The analysis in figures 6.6 and 6.7 shows that Comp never outperformed Rand or

GFix when using either the Global RT or Global PT configurations, and barely man-

aged to outperform GFix in a few environments when using the Global ST configuration.

When configured with the island topology, Comp showed strong performance against

IFix regardless of trigger type, but never managed to outperform Rand. Comp showed

extremely weak performance against most of the other hyper-heuristics by never record-

ing any wins and logging a number of losses against the majority of other methods

(especially in the Global RT or Global PT configurations). The question arises whether

the HSD and entity reassignment behaviors of Comp depart greatly from the other

hyper-heuristics as well.

Figure 6.27 shows the HSD and entity reassignment plots for Comp. It is imme-

diately apparent that the HSD plots for all three global topology variations strongly

resemble each other (Comp is the only hyper-heuristic with this characteristic, as can

be seen in appendix A). Within each HSD plot, the subplots for each environment appear

similar. The shape of the HSD plots are unique when compared to the HSD plots of the

other hyper-heuristics as found in appendix A.

The following observations below about the behavior of different trigger and topology

configurations for Comp are visible in figure 6.27.

Comp using the Global RT configuration: The entity reassignment behavior was

nearly identical to that of Rand. High δ values reveal that entities were triggered for re-

assignment nearly every algorithm iteration, while low and consistent ϕ values show that

each type of environment experienced similar volumes of entity reassignment. Similar

to Rand, the variance between samples for δ was extremely low for each environment,

which indicates that the average number of reassigned entities never varied, regardless

of the exact problem instance under consideration. Sample variance for ϕ values was

slightly higher than for Rand.

However, contrary to Rand, the sample variance in the HSD plot shows that the

Global RT configuration exhibited algorithm runs with a wider gamut of different bal-

ances of entities across heuristics. A unique feature that is visible in the HSD plot for
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Figure 6.27: HSD and entity reassignment rate analysis for Comp
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Comp is that none of the IQR spread values for N (t) ever dropped below approximately

0.15 (for any environment). This reveals that wide distributions were the norm for N (t)

values within each individual algorithm run, and that no problem instance ever experi-

enced constant HSD behavior throughout the run. This is not the case for the majority

of the other hyper-heuristics, which all showed a number of samples with very low IQR

spread values for N (t).

The entity reassignment plot reveals that the Global RT configuration reassigned

at least some entities to new heuristics every iteration. Since ϕ values were nearly

identical to that of Rand (i.e. at the maximum rate of the RT trigger), the conclusion

is that all triggered entities almost always got reassigned to new heuristics. In other

words, the Global RT configuration rarely maintained the original assignments of any

triggered entities. Unlike Rand, entity reassignment was done in a non-uniform way

across entities (as indicated by the lower N (t) values over time along with a wider

variance). Ultimately, however, these reassignments were not fruitful, since the hyper-

heuristic failed to outperform GFix or Rand in the end.

Figure 6.28 shows illustrative examples of N (t) and normalized υ(t) values over all

1000 iterations for 14 random samples of the A3R and P3R environments for Comp

using the Global RT configuration. It is immediately apparent that the HSD behavior is

different to the other hyper-heuristics discussed above: within any given sample the HSD

values seem erratic, alternating unpredictably between highs and lows. The N (t) values

rarely (if ever) hit values of 1.0 and constantly fluctuated across a range of 0.25, which

illustrates why the IQR in figure 6.27 never approached 0. Outliers are present, visible as

spikes in HSD values, but these outliers typically tend to return to the existing range of

variance HSD values. Similarly, υ(t) values show that entity assignments occurred every

iteration and that volumes fluctuated predictably in a well-defined range, providing visual

confirmation for the δ and ϕ values in figure 6.27.

Comp using the Island RT configuration: The HSD plot is identical to that

of Rand, in stark contrast to the Global RT configuration. Median N (t) values are

approximately 1 and low IQR values indicate that most entities were balanced across all

heuristics for the entire algorithm run. The low variance shows that this was the case

throughout each sample in every environment.
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(a) A3R

(b) P3R

Figure 6.28: N (t) and normalized υ(t) for Comp using the global topology and RT trigger.

The entity reassignment plot suggests selective entity reassignment frequency behav-

ior, in that different environments showed different spreads of δ values between samples

(this is noticeable as a horizontal red line for abrupt environments). Triggered entities

displayed a wide range of behavior in different algorithm runs, ranging from always be-

ing reassigned (i.e. δ ≈ 1) to being reassigned only two out of three times the entities

were triggered (i.e. δ ≈ 0.66). The ϕ values were similar to those for the corresponding

configuration for Rand.

Figure 6.29 shows illustrative examples of N (t) and normalized υ(t) values over all
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(a) A3R

(b) P3R

Figure 6.29: N (t) and normalized υ(t) for Comp using the island topology and RT trigger.

1000 iterations for 14 random samples of the A3R and P3R environments for Comp using

the Island RT configuration. Considering the smaller HSD ranges for the island topology

compared to the global topology, the N (t) behavior in figure 6.29 is readily comparable

to the values in figure 6.28 in the sense that N (t) fluctuated almost unpredictably across

the range of possible values, and large outliers are present that always tended back

towards the general pattern of variance. The υ(t) values in sub-figure 6.29a frequently

hit values of 0, in concert with the low ϕ values and fluctuating δ values present in figure

6.27.
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Comp using the Global PT configuration: The HSD plot for the Global PT con-

figuration is similar to the plot for the Global RT configuration. Similar conclusions can

be made about HSD behavior. The entity reassignment plot resembles that of Rand,

but the variance of ϕ is visibly higher. This behavior reveals that the Global PT con-

figuration moderated the number of entities that were reassigned based on the specific

sample under consideration.

Figure 6.28 shows illustrative examples of N (t) and normalized υ(t) values over all

1000 iterations for 14 random samples of the A3R and P3R environments for Comp using

the Global PT configuration. Similar to the Global RT configuration, HSD behavior

seems erratic and inconsistent (which explains the high IQR values for N (t) that never

approach zero). Entities were reassigned every iteration that experienced a PT trigger

event, but the varied normalized υ(t) values confirm the inconsistency of the number of

reassigned entities, as highlighted by the high variance in ϕ values.

Comp using the Island PT configuration: The HSD and entity reassignment

plots are similar in shape to the corresponding plots for the Global PT configuration,

but at the smaller value ranges imposed by using the island topology. Similar conclusions

can be made. Figure 6.29 shows illustrative examples of N (t) and normalized υ(t) values

over all 1000 iterations for 14 random samples of the A3R and P3R environments for

Comp using the Island PT configuration. The observations and conclusions are similar

as for the Global PT configuration results in figure 6.30, albeit at reduced value scales.

Comp using the Global ST configuration: The HSD plot is similar to the plots

for the Global RT and Global PT configurations, indicating that the Global ST config-

uration exhibited algorithm runs with a wider gamut of different balances of entities

across heuristics. However, there is one major difference compared to the HSD plots

of the Global RT and Global PT configurations: the minimum IQR spread values were

noticeable lower (i.e. closer to zero) for many samples. This shows that the Global ST

configuration yielded tightly distributed HSD values across entire algorithm runs for a

subset of samples, where the the Global RT and Global PT configurations failed to do

so.

The entity reassignment plot bears a strong resemblance to that of Rand, and similar
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(a) A3R

(b) P3R

Figure 6.30: N (t) and normalized υ(t) for Comp using the global topology and PT trigger.

conclusions can be made. The variance patterns for δ were, however, wider and values

were slightly lower (especially for progressive and chaotic environments).

Comp using the Island ST configuration: The HSD and entity reassignment plots

are similar to those for Rand, and similar conclusions can be made. One deviation in the

entity reassignment plot is the slightly wider variance patterns, as well as the“L”-shaped

variance for abrupt environments.
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(a) A3R

(b) P3R

Figure 6.31: N (t) and normalized υ(t) for Comp using the island topology and PT trigger.

Conclusions about Comp: Comp showed unique behavior compared to the other

hyper-heuristics, but, however, was unable to outperform random or even fixed heuristic

selection for a number of configurations. Inspection of the behavior of Comp showed

complex patterns of transitioning entities between heuristics, with the HSD values alter-

nating widely over time within individual algorithm runs. Deeper analysis in a future

study is needed to determine how the intelligent selection logic behind the Comp se-

lection operator affected entity assignments, and why that intelligence did not bear any

fruit.
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6.4 Summary

This chapter analyzed the performance and behavior of a number of well-known hyper-

heuristics that were configured to operate as part of the HMHH framework. Key ques-

tions were whether any of the hyper-heuristics could raise performance above that of

simply using the individual heuristics or speciated heuristics, to establish whether any

hyper-heuristics performed better than either fixed or random selection, and to under-

stand which hyper-heuristics performed better than others.

Each of the hyper-heuristics performed either on par with or statistically significantly

better than all of the standalone heuristics. None of the hyper-heuristics ever recorded a

loss against any of the standalone heuristics for any environment. The choice of topology

and trigger impacted the ability of each hyper-heuristic to yield a higher number of

wins the standalone heuristics for more environments (as opposed to draws for those

environments). Hyper-heuristics that used a global topology generally yielded a higher

number of wins across more environments than those same hyper-heuristics that used

the island topology. The Global RT configuration showed the strongest ability to yield

the highest number of wins across the most environments for nearly half of the hyper-

heuristics.

All hyper-heuristics either matched or outperformed the homogeneous speciated

heuristics in a statistically significant manner for the majority of environments. Iso-

lated losses were recorded by certain hyper-heuristics for a handful of environments, in

sharp contrast to the stand-alone heuristic outcome where no losses were ever recorded.

No hyper-heuristic managed to record nine wins against all nine speciated heuristics,

which resulted in more draws in a higher number of environments (in addition to the

handful of losses). There was no clear link between topology or trigger combinations that

systemically yielded increased wins by hyper-heuristics against the speciated heuristics.

The hyper-heuristics had varying degrees of success against fixed heuristic selec-

tion, depending on the exact trigger and topology configuration that was used. Hyper-

heuristics that used the island topology had a clear tendency to outperform fixed selec-

tion across the majority of environment types, regardless of whether the RT, PT, or ST

triggers were used, while yielding hardly any losses (the small remainder were draws).

In contrast, hyper-heuristics that used the global topology were influenced by the trigger
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choice. Every combination of trigger with the global topology resulted in the region of

2-5 losses for practically every hyper-heuristic (with isolated hyper-heuristics yielding up

to 10 losses). The Global RT configuration showed strong wins for those hyper-heuristics

that did not rely on roulette wheel selection (those hyper-heuristics predominantly only

showed losses and draws). This trend is even more pronounced for the Global PT con-

figuration, where only hyper-heuristics based on heuristic tournament-based selection

showed high numbers of wins and all other hyper-heuristics only recorded draws and

losses. Lastly, the Global ST trigger saw mostly draws for most hyper-heuristics with a

small number of wins and losses. Those hyper-heuristics based on tournament selection,

when configured with larger tournament sizes, yielded a more noteworthy number of

wins.

No hyper-heuristic, regardless of topology or trigger, ever recorded noteworthy losses

against random heuristic selection (ETour2 being the only exception). When the island

topology was used, only RLFreq showed strong wins against random selection, and

only when using the Island RT configuration. All other hyper-heuristics that used the

island topology yielded mostly draws against Rand. The hyper-heuristics that relied on

roulette wheel selection never managed to record any wins against Rand when the global

topology was used. In contrast, the remaining methods showed relatively strong wins

when using the Global RT configuration (with the remainder of environments being

draws). For the Global PT configuration, only those hyper-heuristics that relied on

tournament selection yielded a higher number of wins, and more so for higher tournament

sizes. The remainder of cases were, again, draws. All hyper-heuristics yielded mostly

draws against Rand when using the Global ST configuration.

To be deemed a good hyper-heuristic overall, the hyper-heuristic needed to either

match or outperform both random and fixed selection, as well as the other hyper-

heuristics. A number of hyper-heuristics managed to achieve this across multiple topol-

ogy and trigger configurations, notably RLFreq, HTour5X, HTour5M, and Freq5.

RLFreq was the clear top performer in the Island RT, and Island PT configurations,

followed closely by HTour5X and HTour5M. Both HTour5X and HTour5M as well

as ETour25 were top contenders when the Global RT and Global PT configuration were

used. Those same three hyper-heuristics, together with RLfreq, showed the strongest

tendency to yield wins (as opposed to draws) when the Global ST configuration was
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used.

The heuristic space diversity and entity reassignment rates of select hyper-heuristics

were also investigated to learn more about their modes of operation. The entity reassign-

ment behavior of all hyper-heuristics (even random selection) were affected by the choice

of trigger and topology. Many hyper-heuristics had different styles of entity reassignment

behaviors for various environments when using different types of triggers or topologies.

Hyper-heuristics with similar HSD and entity reassignment behavior to Rand had sim-

ilar performance to Rand. The hyper-heuristics that relied on tournament selection be-

tween heuristic populations showed similar behavior to Rand by keeping very balanced

entity-to-heuristic assignments at low tournament sizes. These same hyper-heuristics

showed more definitive and assertive heuristic selection as tournament sizes increased.

In contrast, the hyper-heuristics that relied on tournaments between individual entities

tended to converge on a single heuristic when a small tournament size was used, and

better adjusted the balance of entities across heuristics with a larger tournament size.

Entity reassignment behavior is a very complex area, and future studies are needed to

unpack and correlate different behaviors in more detail.



Chapter 7

Conclusions

This chapter presents the principal findings of this thesis. The investigation centered

around hyper-heuristic approaches that manage various population-based SI and EC

meta-heuristics that are specialized at solving continuous dynamic optimization prob-

lems. Section 7.1 briefly summarizes the main subject matter of each chapter. Section

7.2 discusses how the objectives of the thesis were achieved. Lastly, a body of future

work arising from the research in the thesis is presented in section 7.3.

7.1 Summary

This thesis reviewed the use of a hyper-heuristic to manage which candidate solutions

should be improved by which meta-heuristic over time. The overarching goals were to

determine whether hyper-heuristic approaches could perform significantly better than

their constituent heuristics on DOPs, to characterize how sensitive the performance

of various hyper-heuristics are to hyper-heuristic framework parameter values, and to

characterize the behavior of various hyper-heuristic selection operators in order to better

understand their operation.

The concepts behind dynamic optimization for real-valued environments were briefly

discussed in chapter 2. The DOP classification of Duhain and Engelbrecht [53] that

combines the classifications of Angeline [4] and Eberhart et al. [56][84] with spatial and

temporal change severity classes to uniquely define 27 environment types was presented.

Parameter guidelines provided by Duhain and Engelbrecht were examined in concert with

300
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the permissible parameter value ranges of the original scenario 2 settings [19][64][127]

to yield 27 unique MPB environment definitions that are comparable to the majority of

the DOP literature.

Comparison of the performance of stochastic CI optimization algorithms is a com-

plex task which requires careful thought. The facets that influence the trustworthiness

and quality of performance measures for DOPs were distilled from the literature. Good

performance measures balance these facets to yield a faithful representation of an al-

gorithm’s performance on DOPs over time. Critique was also given on the common

analysis practices used in CI studies to perform statistical significance testing of perfor-

mance results. Critique was given on the common analysis practices used in CI studies

to perform statistical significance testing of performance results. It was discussed how

nonparametric statistical procedures are highly recommended in the literature, since

these procedures have less restrictive assumptions than their parametric counterparts,

and offer more resilient analysis capabilities that avoids false discoveries.

Chapter 3 discussed the field of hyper-heuristics as an approach to solve optimization

problems. Hyper-heuristics were also contrasted against other existing control adapta-

tion approaches from the fields of SI and EC. The HMHH framework by Grobler et

al. [75][76] [74] was presented (using the terminology from the classification of hyper-

heuristic approaches by Burke et al. [24]) as an example of a multi-point search selection

hyper-heuristic that supports on-line learning and utilizes perturbative heuristics.

HMHH was extended with neighborhood topologies that control the extent to which

the information of population members are visible across heuristics. The original HMHH

scheme which allows information of all entities to be visible to all heuristics at all times

was designated as the global topology. The proposed island topology restricts each

heuristic to operate independently on only those entities that are assigned to the heuris-

tic. The concept of heuristic selection triggers for HMHH was also proposed. The original

HMHH periodic trigger (PT) performs heuristic selection simultaneously for all entities

every k algorithm iterations. The newly proposed stagnation trigger (ST) changes an

individual entity’s heuristic if the entity’s performance did not improve over k itera-

tions. The random trigger (RT) probabilistically changes an individual entity’s heuristic

approximately every k iterations.

A critical discussion was provided that focused on the static parameter tuning prob-
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lem and the dynamic parameter control problem for meta-heuristic methods. It was

shown how static parameter tuning of SI and EC approaches is generally deemed to be

an impossible task [46][97][103][?]. On the other hand, mixing together multiple self-

adaptive parameter control methods in an ad hoc fashion is typically sub-optimal as well

[97]. An outline was given of how hyper-heuristics address this conundrum by combining

well-proven heuristics for a problem domain together with adaptable resource allocation

logic to exploits the most suitable heuristic at the right time.

An overview was provided of how the necessary conditions for the no free lunch

(NFL) theorems of Wolpert and Macready [184] are simply too restrictive to be found in

practical continuous domain problems. The assessments of Schumacher et al. [157], Igel

and Toussaint [88], Auger and Teytaud [5], Alabert et al. [3], Poli and Graff [149], and

Kerschke et al. [98] imply the possibility that, in any practical situation, an intelligent

selection hyper-heuristic could improve performance over using heuristics in isolation.

Various control groups were defined in chapter 4 that serve as an objective set of

baselines to ground the analysis of all investigated hyper-heuristics against. The con-

trol groups addressed concerns around whether increased performance by any hyper-

heuristics resulted from intelligent heuristic selection, or was simply due to the use of

multiple sub-populations (speciation), simultaneously applying multiple methods using

fixed entity allocations, or random heuristic selection. An experimental approach was

laid out to systematically conduct all experimentation in this thesis while keeping the

control groups in mind. The performance and diversity of the stand-alone and speci-

ated versions of each heuristic were systematically explored in experiments. Rigorous

nonparametric statistical tests demonstrated that the performance of the algorithms dif-

fered significantly across environments. It was shown how various heuristics excelled in

different types of environments, which justified each of their inclusion into the heuristic

pool.

A new performance measure called the relative error distance, Pr, was proposed that

reports the normalized performance of an algorithm across search landscapes that result

from environment changes relative to the best possible performance score. The outcome

of the Pr measure is a single scalar value that faithfully reflects both the average perfor-

mance over time, as well as the variance in performance values over time. The proposed

measure does not assume normally distributed performance data across an algorithm
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run, is resilient against fitness landscape scale changes, better incorporates performance

variance across fitness landscape changes, and allows easier algorithm comparisons using

established nonparametric statistical methods. An assessment was performed to illus-

trate that these conditions that the Pr measure aims to address were indeed present in

the measured performance data of over 1 200 000 algorithm runs.

Chapter 5 explored the effect that different combinations of heuristic change triggers,

heuristic change frequencies (k), and HMHH topologies had on the performance of vari-

ous hyper-heuristics. The majority of investigated hyper-heuristic topology and trigger

combinations generally performed on par with or better when k = 20% compared to

configurations that used larger values for k. A strong correlation was found across most

hyper-heuristic configurations where more frequent heuristic selection yielded a higher

number of statistically significant wins than less frequent heuristic selection yielded. The

newly proposed ST and RT triggers statistically either matched or exceeded the perfor-

mance of the original PT trigger for nearly every investigated hyper-heuristic. However,

per topology, certain hyper-heuristics performed better with one type of trigger than

other triggers. Even under a random trigger, more frequent heuristic changes are bene-

ficial, implying that simple algorithmic diversity is effective at improving performance.

Correlations were presented that show how certain hyper-heuristics, when operating

on specific environments, performed better with one of the topologies than the other.

The exact DOP at hand also had a strong influence on which topology was more suit-

able, regardless of the exact hyper-heuristic that was used. The island topology showed

dramatically increased wins for 9 of the 27 environments, while the global topology was

more suitable for 15 environments.

Chapter 6 directly compared the performance of various hyper-heuristics against each

other and the control groups identified in chapter 4. The heuristic space diversity and

entity reassignment rates of select hyper-heuristics were also investigated to learn more

about their modes of operation. The following observations and conclusions were drawn:

• Every hyper-heuristic either matched or exceeded the performance of all of the

standalone heuristics in every environment, never recording a single loss against any

heuristic. Trigger and topology choices impacted the ability of each hyper-heuristic

to yield a higher number of wins than draws against the standalone heuristics

across more environments. The global topology showed the highest win count
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across the most environments for half of the hyper-heuristics, while yielding similar

performance to the island topology for the remainder of the hyper-heuristics.

• The hyper-heuristics recorded a high number of wins or draws against the homoge-

neous speciated heuristics across the majority of environments. No hyper-heuristic

managed to record nine wins against all nine speciated heuristics, which resulted

in a larger number of draws for a higher number of environments. Half of the

hyper-heuristics recorded isolated losses against one or two speciated heuristics in

a handful of environments, but the overwhelming majority of environments saw the

hyper-heuristics either match or exceed the performance of the speciated heuristics.

• Most hyper-heuristics that used the island topology had a clear tendency to out-

perform fixed selection across the majority of environments, regardless of trigger

choice, while yielding hardly any losses (the small remainder were draws).

• In contrast, every combination of trigger with the global topology resulted in losses

against fixed heuristic selection for approximately one to five environments (de-

pending on the exact hyper-heuristic), with isolated hyper-heuristics recording

losses for up to 10 environments. The Global RT and Global PT configurations

showed strong wins against fixed selection for those hyper-heuristics that did not

rely on roulette wheel selection. Those hyper-heuristics based on tournament se-

lection, when configured with larger tournament sizes, yielded wins for a more

noteworthy number of environments.

• Almost no hyper-heuristic ever recorded losses against random heuristic selection in

any noteworthy numbers of environments, regardless of topology or trigger choice.

However, only RLFreq showed wins against random selection for a large number

of environments, and that only when using the Island RT configuration.

• In contrast, half of the hyper-heuristics recorded wins across roughly half of the

environments when using either the Global RT or Global PT configurations. All

hyper-heuristics yielded draws for most environments against random heuristic

selection when using the Global ST configuration.
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• The entity reassignment behavior of all hyper-heuristics (even random selection)

were affected by the choice of trigger and topology. Hyper-heuristics with simi-

lar HSD and entity reassignment behavior to Rand had similar performance to

Rand. The hyper-heuristics that relied on tournament selection between heuristic

populations showed similar behavior to Rand by keeping very balanced entity-to-

heuristic assignments at low tournament sizes. These same hyper-heuristics showed

more definitive and assertive heuristic selection as tournament sizes increased.

• In contrast, the hyper-heuristics that relied on tournaments between individual

entities tended to converge on a single heuristic when a small tournament size was

used, and better adjusted the balance of entities across heuristics with a larger

tournament size.

7.2 Achievement of Objectives

Section 1.3 outlined the objectives of this thesis. The main goal of this thesis was to

investigate how well various hyper-heuristic selection operators could continually balance

computational resources across different population-based meta-heuristics in order to

solve a DOP better than the individual meta-heuristics could. This overall goal and the

listed sub-objectives in section 1.3 were achieved as follows:

• Existing hyper-heuristic algorithms, frameworks, and approaches that aim to solve

DOPs were identified and reviewed. Emphasis was placed on population-based

approaches and selection hyper-heuristics.

• The moving peaks benchmark (MPB) [19] was extended to support all 27 environ-

ment types as proposed by Duhain and Engelbrecht [53], and suitable parameters

were identified that ensure the resulting environments complied with the generally

accepted scenario 2 settings for the MPB as found in literature.

• The HMHH framework was applied to manage meta-heuristic algorithms that are

specialized to solve DOPs, and was found to perform well against control group

algorithms.
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• The HMHH framework was extended with multiple neighborhood topologies, and

their effectiveness was investigated across multiple hyper-heuristics and multiple

types of DOPs.

• The HMHH framework was extended with different types of heuristic change trig-

gers, and their effectiveness was investigated across multiple hyper-heuristics and

multiple types of DOPs.

• A new measure called the relative error distance, or Pr, was proposed that does

not assume normally distributed performance data, is resilient against fitness land-

scape scale changes, better incorporates performance variance across multiple fit-

ness landscape changes, and allows easier algorithm comparisons using established

nonparametric statistical methods.

• An extensive sensitivity analysis was performed that shows how sensitive different

hyper-heuristics were to changes in the neighborhood topology and heuristic trigger

(including different values for the heuristic change frequency parameter, namely k).

• The performance of various hyper-heuristics was compared against each other as

well as various control groups comprising of individual heuristic, random heuristic

selection, and fixed heuristic allocations.

• The heuristic space diversity and heuristic allocation behavior of various hyper-

heuristics were explored to better understand the modes of operation of each

method.

7.3 Future Work

A number of areas of future work were identified as part of the investigation of this

thesis. The sections below outline a number of promising areas of further research.

7.3.1 (Self-)Adaptive Heuristic Pools

A control adaptation approach such as HMHH fundamentally operates by modifying

the allocation of entities in the population to specific meta-heuristics. The majority
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of investigated meta-heuristics were not necessarily designed to have members added

or removed from their populations during their normal modes of operation. While the

experiments in this thesis showed how HMHH was able to raise performance above using

the meta-heuristics in isolation, additional performance gains may be possible if HMHH

were able to “smooth over” heuristic reassignments in a more streamlined manner.

One promising avenue of research, as discussed in section 4.3.1, is to better integrate

(self-)adaptive meta-heuristics into the heuristic pool. The goal would be to integrate

(self-)adaptive methods in such a way that simultaneously maximizes the effectiveness of

each heuristic after entities have been added or removed, while preventing (or managing)

the (self-)adaptive mechanisms of the heuristics from “competing with” or counteracting

the operation of the hyper-heuristic. In the case of PSO, a large body of theoreti-

cal studies have investigated the relationship between PSO parameter values (including

population sizes) and convergence. Harrison et al. [78] investigated a number of self-

adaptive PSO algorithms and whether algorithms with modified parameters respected

certain well-known convergence criteria. They showed that over half of the algorithms

exhibited divergent behavior while many others converged too soon. Cleghorn and En-

gelbrecht [33] showed how particle instability nearly always yielded performance that was

worse than random. Numerous different types of meta-heuristics exist [60], and various

methods will have their own specifics in how their control parameters could be adapted as

the population size increases or decreases dynamically over time. Future studies should

investigate the trade-off and synergies between the two levels of hyper-heuristics and

meta-heuristic (self-)adaptation, especially in the management of which parameters are

adapted, and in what manner.

Different types of meta-heuristics may also be sensitive to disturbances to their pop-

ulations in different ways and at different times during the search. As an anecdotal

example, it may possibly be better to reassign a particle that has approximately zero

velocity than a particle with non-zero velocity, or to reassign a particle that has similar

particles in its immediate area than a particle out on its own in a unique part of the

search space. Future work should investigate different types of heuristic change trig-

gers that are, perhaps, more cognizant of the inner working of each heuristic. Such

insight could subsequently be valuable to help determine the most appropriate moment

to trigger heuristic changes for entities.
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7.3.2 Heuristic Allocation Behavior versus Performance Im-

provements

Chapter 6 investigated the heuristic space diversity, entity reassignment frequency, and

entity reassignment rate behavior of a number of example hyper-heuristics. The en-

tity assignment behavior of a hyper-heuristic is a complex time-dependent interaction

between the optimization logic of each heuristic, the actual performance achieved by

each entity using a specific heuristic, the (estimated) potential performance that an en-

tity could potentially achieve using a heuristic, the detrimental and turbulent effect of

heuristic reassignment, among many other factors. Different types of search landscapes

and landscape change dynamics may also deeply affect all of these aspects. Much more

future research should be devoted to understanding the interactions between these and

other aspects to allow performance to be increased even further. The paragraphs below

outline a number of possible ideas.

The trajectories of entities over time, i.e., a multi-dimensional vector that captures

the behavioral aspects outlined in the previous paragraph, may be useful to design

better heuristic change triggers. Future research should explore triggers that use such

nuanced information, compared to simpler triggers which rely only on, for example,

a fixed duration of time or stagnation of performance. Such multivariate trajectory

information could also be helpful as another type of richer feedback that the hyper-

heuristic could reason about (yielding a more elaborate version of Qδm(t) if you will,

as outlined in section 3.4.6). Research into such areas would be aligned to more recent

trends in the hyper-heuristic field as identified by Swan et al. [168].

Another body of work should address the correlation between increased performance

and certain types of behaviors. The incorporation of search landscape analysis features

may play a role in the analysis, where the goal would be to jointly correlate the presence

of certain search landscape characteristics at time t, the internal state of heuristics, the

quality of the entities in the population, and the affect that different heuristic selection

actions have on increased performance. Similar to late acceptance strategies in single-

point search hyper-heuristics [24], insight into such correlations in population based

selection hyper-heuristics would allow the creation of new hyper-heuristic methods that

can react better to detected correlations between the problem space and heuristic space
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states.

As discussed by Swan et al. [168], modern hyper-heuristics are starting to incorporate

more of what the authors call “analytic information” to allow better entity-to-heuristic

allocation. Change detection (both in temporal and spatial terms) was out of scope in

this thesis to avoid biased results, as explained in section 4.3.1. Future work should

focus on the incorporation of this information into the hyper-heuristic layer to allow the

hyper-heuristic to make better informed decisions about entity allocation. For example,

a hyper-heuristic could pertinently assign more entities to exploratory heuristics after

a change is detected, and might do so in different ways depending on how severe those

changes are.

The computational complexity of HMHH as a whole is influenced by the computa-

tional complexity of the underlying pool of heuristics. Allocating more entities to com-

putationally complex heuristics could heavily influence the efficacy of HMHH as time

goes on. For example, it is well-known that CPSO suffers from quadratic complexity

[16], and continually allocating more entities to CPSO could result in HMHH becoming

quadratically more expensive to run. Future work should focus on ways to make the

hyper-heuristic layer more aware of the complexity of the underlying heuristics, both in

the general sense as well as in combination with the current entity allocations at any

given point in time of algorithm execution. Entity allocation decisions can then be made

while taking the computational burden of the decision into account.

Lastly, the selection pressure of a hyper-heuristic and the consequent effect on heuris-

tic space convergence (where all entities are operated upon by a single heuristic) and

heuristic space diversity is complex. In this thesis, each heuristic maintained a fixed

number of minimum entities (essentially, sentinels in heuristic space) to ensure that

each heuristic always maintained a valid feedback score. The results in chapter 6 showed

an intuitive correlation between higher selection pressure and increased performance.

For example, almost every hyper-heuristic based on tournament selection showed bet-

ter performance at higher tournament sizes (which is known to yield stronger selection

pressure in these types of selection operators [60]). Future work should investigate this

link more thoroughly, and perhaps even define new ways of enforcing the right level

of selection pressure. Intuitive examples could include using more complex sources of

feedback (as discussed above) to more accurately trigger entities, or to select the most
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appropriate heuristics that would optimize selection pressure, or to use more determin-

istic approaches of allocating entities that enforce known selection pressure quotients by

using the gradient of heuristic reassignment rate.

7.3.3 Complementary Heuristics

Chapter 3 outlined what the informal definition of “complementary heuristics” is, and

how each heuristic in the heuristic pool should compensate for each other’s weaknesses.

A number of studies were highlighted that show how a complementary set of heuristics

can be built to solve static optimization problems.

DOPs are more nuanced than static optimization problems in that the characteristics

of the problem may change over time. Consequently, the complementary nature of the

pool of heuristics may also change over time. Methods that worked well together for cer-

tain types of search landscapes and/or dynamics (in the same instance of a DOP) may

not work well in subsequent search landscapes. Further research should be performed to

formally define what a set of “complementary” heuristics looks like for hyper-heuristics

that solve DOPs, and ways to automatically (or at least through a rigorous manual pro-

cess) find the right number and set of complementary heuristics to include in a heuristic

pool of a hyper-heuristic.

7.3.4 Comparative studies of Pr and existing DOP measures

Section 2.7.2 discussed the shortcomings and challenges faced by the most often-used

DOP-focused performance measures. Section 4.4.2 highlighted how many of the listed

shortcomings were present in the measurement data of over 1 200 000 experiment runs.

The newly proposed Pr measure improves on existing measures by not assuming nor-

mally distributed performance data across an algorithm run, being resilient against fit-

ness landscape scale changes, better incorporating performance variance across multiple

fitness landscape changes, and allowing easier algorithm comparisons using established

nonparametric statistical methods.

Future studies should focus on comparing Pr against the most-often used existing

DOP performance measures. Specifically, comparative studies should explore the corre-

lation between existing measures and Pr, and investigate where and how discrepancies
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occur. Secondly, studies should be performed to determine if the outcome of perfor-

mance assessments of various DOP-focused algorithms would be significantly impacted

if Pr were to be used instead of other existing measures.
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hyper-heuristic for dynamic environments. In Anna I. Esparcia-Alcázar, editor, Ap-
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Appendix A

Additional Results – Chapter 6

This chapter presents additional results that were omitted from chapter 6 due to space

constraints. The following tables are listed:

• Research question 1 focused on how each hyper-heuristic performs relative to the

pool of stand-alone heuristics. Tables A.1, A.2, A.3, A.4, A.5, and A.6 show

the detailed results for each hyper-heuristic for each environment and for each

configuration.

• Research question 2 performed the same analysis as used in research question 1

to compare the hyper-heuristics against the nine homogeneous speciated heuristics

Tables A.7, A.8, A.9, A.10, A.11, and A.12 in appendix A show the detailed results

for each environment.

• Research question 3 compared how well the hyper-heuristics perform relative to

each other, fixed heuristic selection, and random heuristic selection. Tables A.14,

A.16, A.18, A.20, A.22, and A.24 which show the detailed wins, draws, and losses

of each of the six comparisons in each environment, while tables A.13, A.15, A.17,

A.19, A.21, and A.23 show the associated Friedman ranks and p-values.

• Research question 4 explored the entity reassignment characteristics of each hyper-

heuristic. Figures A.1 through to figure A.21 present the detailed results for the

measures introduced in the research question.
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Table A.1: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of nine heuristics. Each hyper-heuristic used the global topology

and the RT trigger (where k = 20%). The notation W-D-L indicates the wins, draws, and

losses against each heuristic.
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Table A.2: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of nine heuristics. Each hyper-heuristic used the global topology

and the PT trigger (where k = 20%). The notation W-D-L indicates the wins, draws, and

losses against each heuristic.
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Table A.3: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of nine heuristics. Each hyper-heuristic used the global topology

and the ST trigger (where k = 20%). The notation W-D-L indicates the wins, draws, and

losses against each heuristic.
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Table A.4: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of nine heuristics. Each hyper-heuristic used the island topology

and the RT trigger (where k = 20%). The notation W-D-L indicates the wins, draws, and

losses against each heuristic.
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Table A.5: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of nine heuristics. Each hyper-heuristic used the island topology

and the PT trigger (where k = 20%). The notation W-D-L indicates the wins, draws, and

losses against each heuristic.
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Table A.6: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of nine heuristics. Each hyper-heuristic used the island topology

and the ST trigger (where k = 20%). The notation W-D-L indicates the wins, draws, and

losses against each heuristic.

E
n
v

Rand

RoulM

RoulX

Freq2

Freq5

HTour2M

HTour5M

HTour2X

HTour5X

ARank

NARank

AProp

NAProp

ETour2

ETour25

RLFreq

RLProp

DProp

Comp

Soft

Perm

A
1
C

6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
5
-4

-0
5
-4

-0
6
-3

-0
6
-3

-0
5
-4

-0
6
-3

-0
6
-3

-0
6
-3

-0

A
1
L

6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0

A
1
R

6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0

A
2
C

8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
8
-1

-0
8
-1

-0
9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
9
-0

-0

A
2
L

8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
6
-3

-0
8
-1

-0
8
-1

-0
8
-1

-0
7
-2

-0
8
-1

-0
8
-1

-0
7
-2

-0
6
-3

-0
8
-1

-0
8
-1

-0
5
-4

-0
8
-1

-0
8
-1

-0
8
-1

-0

A
2
R

9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0

A
3
C

9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
8
-1

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0

A
3
L

9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
8
-1

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
9
-0

-0
8
-1

-0

A
3
R

9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0

C
1
C

5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
5
-4

-0
4
-5

-0
5
-4

-0
4
-5

-0
4
-5

-0
6
-3

-0
6
-3

-0
5
-4

-0
5
-4

-0
6
-3

-0
5
-4

-0

C
1
L

6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0
6
-3

-0

C
1
R

8
-1

-0
7
-2

-0
7
-2

-0
8
-1

-0
8
-1

-0
8
-1

-0
7
-2

-0
8
-1

-0
8
-1

-0
7
-2

-0
8
-1

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
8
-1

-0
7
-2

-0
7
-2

-0
8
-1

-0
8
-1

-0
7
-2

-0

C
2
C

9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0

C
2
L

4
-5

-0
5
-4

-0
4
-5

-0
5
-4

-0
5
-4

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0
3
-6

-0
4
-5

-0
5
-4

-0
5
-4

-0
3
-6

-0
5
-4

-0
4
-5

-0
5
-4

-0

C
2
R

9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0

C
3
C

9
-0

-0
9
-0

-0
8
-1

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0
9
-0

-0

C
3
L

8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
8
-1

-0
8
-1

-0
8
-1

-0
9
-0

-0
8
-1

-0

C
3
R

8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0
8
-1

-0

P
1
C

5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
6
-3

-0
5
-4

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0

P
1
L

4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0

P
1
R

6
-3

-0
6
-3

-0
5
-4

-0
6
-3

-0
6
-3

-0
5
-4

-0
6
-3

-0
6
-3

-0
6
-3

-0
7
-2

-0
6
-3

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
7
-2

-0
6
-3

-0
4
-5

-0
6
-3

-0
6
-3

-0
6
-3

-0

P
2
C

7
-2

-0
7
-2

-0
7
-2

-0
8
-1

-0
8
-1

-0
7
-2

-0
8
-1

-0
8
-1

-0
8
-1

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
8
-1

-0
8
-1

-0
8
-1

-0
7
-2

-0
7
-2

-0
8
-1

-0
8
-1

-0

P
2
L

5
-4

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0

P
2
R

5
-4

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0

P
3
C

5
-4

-0
5
-4

-0
5
-4

-0
6
-3

-0
5
-4

-0
6
-3

-0
6
-3

-0
5
-4

-0
6
-3

-0
6
-3

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
5
-4

-0
6
-3

-0
6
-3

-0
4
-5

-0
6
-3

-0
6
-3

-0
5
-4

-0

P
3
L

5
-4

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
5
-4

-0
4
-5

-0
4
-5

-0
4
-5

-0
5
-4

-0
5
-4

-0
4
-5

-0
5
-4

-0
5
-4

-0
5
-4

-0

P
3
R

7
-2

-0
7
-2

-0
6
-3

-0
6
-3

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
7
-2

-0
6
-3

-0
5
-4

-0
4
-5

-0
4
-5

-0
7
-2

-0
7
-2

-0
4
-5

-0
7
-2

-0
7
-2

-0
7
-2

-0

µ
w
in

s
6
.8
5

6
.7

6
.5
6

6
.8
9

6
.9
3

6
.9
3

6
.8
9

7
7

6
.9
6

6
.8
5

6
.5
6

6
.5
2

6
.1
9

6
.3

7
.0
7

6
.9
3

6
.2
2

6
.8
9

7
6
.8
5

σ
w
in

s
1
.7
5

1
.7
9

1
.8
3

1
.6
5

1
.6
2

1
.6
6

1
.5
3

1
.6
2

1
.5
4

1
.6

1
.7
7

1
.8
3

1
.8
5

2
.0
4

2
.0
2

1
.4
9

1
.4
9

2
.0
3

1
.6
3

1
.7
3

1
.6
6

µ
d
ra

w
s

2
.1
5

2
.3

2
.4
4

2
.1
1

2
.0
7

2
.0
7

2
.1
1

2
2

2
.0
4

2
.1
5

2
.4
4

2
.4
8

2
.8
1

2
.7

1
.9
3

2
.0
7

2
.7
8

2
.1
1

2
2
.1
5

σ
d
ra

w
s

1
.7
5

1
.7
9

1
.8
3

1
.6
5

1
.6
2

1
.6
6

1
.5
3

1
.6
2

1
.5
4

1
.6

1
.7
7

1
.8
3

1
.8
5

2
.0
4

2
.0
2

1
.4
9

1
.4
9

2
.0
3

1
.6
3

1
.7
3

1
.6
6

µ
lo
ss

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

σ
lo
ss

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0



Appendix A. Additional Results – Chapter 6 342

Table A.7: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of eleven speciated heuristics. Each hyper-heuristic used the

global topology and the RT trigger (where k = 20%). The notation W-D-L indicates the wins,

draws, and losses against each heuristic.
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Table A.8: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of eleven speciated heuristics. Each hyper-heuristic used the

global topology and the PT trigger (where k = 20%). The notation W-D-L indicates the wins,

draws, and losses against each heuristic.
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Table A.9: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of eleven speciated heuristics. Each hyper-heuristic used the

global topology and the ST trigger (where k = 20%). The notation W-D-L indicates the wins,

draws, and losses against each heuristic.
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Table A.10: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of eleven speciated heuristics. Each hyper-heuristic used the

island topology and the RT trigger (where k = 20%). The notation W-D-L indicates the wins,

draws, and losses against each heuristic.
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Table A.11: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of eleven speciated heuristics. Each hyper-heuristic used the

island topology and the PT trigger (where k = 20%). The notation W-D-L indicates the wins,

draws, and losses against each heuristic.
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Table A.12: Wins, draws and losses per environment for each hyper-heuristic as compared

individually against the pool of eleven speciated heuristics. Each hyper-heuristic used the

island topology and the ST trigger (where k = 20%). The notation W-D-L indicates the wins,

draws, and losses against each heuristic.
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Table A.13: Friedman ranks and p-values achieved by each investigated hyper-heuristic in

each environment. Each hyper-heuristic used the global topology and the RT trigger (where

k = 20%). Bold values indicate the best configurations.
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Table A.14: Wins, draws, and losses achieved by each investigated hyper-heuristic in each

environment using the Shaffer post hoc test (at α = 0.05). Each hyper-heuristic used the global

topology and the RT trigger (where k = 20%). The notation W-D-L indicates the wins, draws,

and losses for each hyper-heuristic. Bold values indicate the best configurations..
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Table A.15: Friedman ranks and p-values achieved by each investigated hyper-heuristic in

each environment. Each hyper-heuristic used the global topology and the PT trigger (where

k = 20%). Bold values indicate the best configurations.
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Table A.16: Wins, draws, and losses achieved by each investigated hyper-heuristic in each

environment using the Shaffer post hoc test (at α = 0.05). Each hyper-heuristic used the global

topology and the PT trigger (where k = 20%). The notation W-D-L indicates the wins, draws,

and losses for each hyper-heuristic. Bold values indicate the best configurations.
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Table A.17: Friedman ranks and p-values achieved by each investigated hyper-heuristic in

each environment. Each hyper-heuristic used the global topology and the ST trigger (where

k = 20%). Bold values indicate the best configurations.
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Table A.18: Wins, draws, and losses achieved by each investigated hyper-heuristic in each

environment using the Shaffer post hoc test (at α = 0.05). Each hyper-heuristic used the global

topology and the ST trigger (where k = 20%). The notation W-D-L indicates the wins, draws,

and losses for each hyper-heuristic. Bold values indicate the best configurations.
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Table A.19: Friedman ranks and p-values achieved by each investigated hyper-heuristic in

each environment. Each hyper-heuristic used the island topology and the RT trigger (where

k = 20%). Bold values indicate the best configurations.
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Table A.20: Wins, draws, and losses achieved by each investigated hyper-heuristic in each

environment using the Shaffer post hoc test (at α = 0.05). Each hyper-heuristic used the island

topology and the RT trigger (where k = 20%). The notation W-D-L indicates the wins, draws,

and losses for each hyper-heuristic. Bold values indicate the best configurations.
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Table A.21: Friedman ranks and p-values achieved by each investigated hyper-heuristic in

each environment. Each hyper-heuristic used the island topology and the PT trigger (where

k = 20%). Bold values indicate the best configurations.
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Table A.22: Wins, draws, and losses achieved by each investigated hyper-heuristic in each

environment using the Shaffer post hoc test (at α = 0.05). Each hyper-heuristic used the island

topology and the PT trigger (where k = 20%). The notation W-D-L indicates the wins, draws,

and losses for each hyper-heuristic. Bold values indicate the best configurations.
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Table A.23: Friedman ranks and p-values achieved by each investigated hyper-heuristic in

each environment. Each hyper-heuristic used the island topology and the ST trigger (where

k = 20%). Bold values indicate the best configurations.
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Appendix A. Additional Results – Chapter 6 359

Table A.24: Wins, draws, and losses achieved by each investigated hyper-heuristic in each

environment using the Shaffer post hoc test (at α = 0.05). Each hyper-heuristic used the island

topology and the ST trigger (where k = 20%). The notation W-D-L indicates the wins, draws,

and losses for each hyper-heuristic. Bold values indicate the best configurations.
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Appendix A. Additional Results – Chapter 6 360

Figure A.1: HSD and entity reassignment rate analysis for Perm



Appendix A. Additional Results – Chapter 6 361

Figure A.2: HSD and entity reassignment rate analysis for Soft



Appendix A. Additional Results – Chapter 6 362

Figure A.3: HSD and entity reassignment rate analysis for Comp



Appendix A. Additional Results – Chapter 6 363

Figure A.4: HSD and entity reassignment rate analysis for DProp



Appendix A. Additional Results – Chapter 6 364

Figure A.5: HSD and entity reassignment rate analysis for RLProp



Appendix A. Additional Results – Chapter 6 365

Figure A.6: HSD and entity reassignment rate analysis for RLFreq



Appendix A. Additional Results – Chapter 6 366

Figure A.7: HSD and entity reassignment rate analysis for ETour2



Appendix A. Additional Results – Chapter 6 367

Figure A.8: HSD and entity reassignment rate analysis for ETour25



Appendix A. Additional Results – Chapter 6 368

Figure A.9: HSD and entity reassignment rate analysis for NAProp



Appendix A. Additional Results – Chapter 6 369

Figure A.10: HSD and entity reassignment rate analysis for AProp



Appendix A. Additional Results – Chapter 6 370

Figure A.11: HSD and entity reassignment rate analysis for NARank



Appendix A. Additional Results – Chapter 6 371

Figure A.12: HSD and entity reassignment rate analysis for ARank



Appendix A. Additional Results – Chapter 6 372

Figure A.13: HSD and entity reassignment rate analysis for HTour2X



Appendix A. Additional Results – Chapter 6 373

Figure A.14: HSD and entity reassignment rate analysis for HTour5X



Appendix A. Additional Results – Chapter 6 374

Figure A.15: HSD and entity reassignment rate analysis for HTour2M
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Figure A.16: HSD and entity reassignment rate analysis for HTour5M
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Figure A.17: HSD and entity reassignment rate analysis for Freq2
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Figure A.18: HSD and entity reassignment rate analysis for Freq5
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Figure A.19: HSD and entity reassignment rate analysis for RoulX
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Figure A.20: HSD and entity reassignment rate analysis for RoulM
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Figure A.21: HSD and entity reassignment rate analysis for Rand



Appendix B

Acronyms

ACO-MH Ant colony optimization meta-heuristic

ADSC Average distance to swarm center

AMP Adaptive multi-population framework

AOS Adaptive operator selection

APSO Atomic particle swarm optimization

CI Computational Intelligence

CDE Competing differential evolution

CPE Competitive population evaluation

CPSO Charged particle swarm optimization

DE Differential evolution

dEAs Distributed evolutionary algorithms

DOP Dynamic optimization problem

DynDE Dynamic DE

EA Evolutionary algorithm

EC Evolutionary Computation

EDEV Ensemble of DE variants

EDO Evolutionary dynamic optimization

FP-HPSO Frequency-based heterogeneous particle swarm optimization

FWER Family-wise error rate
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GA Genetic algorithm

GMO Gaussian mutation operator

HMHH Heterogeneous meta-hyper-heuristic

HSD Heuristic space diversity

IQR Interquartile range

MA Memetic algorithm

MMEO Multi-phase multi-individual extremal optimization

MPEDE Multi-population ensemble DE

MPB Moving peaks benchmark

NFL No free lunch

PAP Population based algorithm portfolio

PBIL Population based incremental learning

PC Parameter control

PH-PSO Partitioned hierarchical particle swarm optimization

PSO Particle swarm optimization

PT Periodic trigger

QPSO Quantum particle swarm optimization

RIGA Random immigrant genetic algorithm

RT Random trigger

SADE Self-adaptive differential evolution

SI Swarm Intelligence

SIDO Swarm intelligence dynamic optimization

ST Stagnation trigger



Appendix C

Symbols

Chapter 2: Dynamic Optimization

ail Acceleration coefficient between particles i and l

Bn nx-dimensional sphere of radius rcloud centered the gbest particle

BPD(t) Population diameter

BPR(t) Population radius

BADSC(t) Average distance around swarm center

BADP (t) Mean of the average distance around all population members

BMI(t) Moment-of-inertia

Bstab(t) Stability

Brob(t) Robustness

Bsat(Θ) Satisficability

Breact(t, ε) Reactivity

Barr Absolute recovery rate

C(t) A collection of entities at time t

E The objective function error

ε Relative accuracy threshold for the reactivity measure

f, F The objective function to be optimized

fp Cone function for the MPB function generator
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hp Height of MPB peak p at time t

hs Height severity of the MPB

i Entity counter

j Dimension counter

k Periods before a heuristic change

l Entity counter

l(t) Step length

lp(t) Location of MPB peak p at time t

λ Correlation coefficient of the MPB peak trajectories

Mi Number of algorithm iterations before an MPB function change

MC The cycle length of a full function landscape rotation

Mφ Peak growth type

MC MPB function rotation period

nc Number of landscape changes

nfe Number of function evaluations

np Number of peaks

ns Total number of entities in the population

nx Number of dimensions of the objective function

N(0, 1) A normal distribution with a mean of 0 and standard deviation of 1

P Population size

PBOG(t) Best-of-generation fitness

PCMF Collective mean fitness

PCME Collective mean error

POF On-line performance

PMOE Modified off-line error

PMOF Modified off-line performance

PABEBC Average best error before change

PLBEBC Lowest best error before change

PHBEBC Highest best error before change
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PRE(t) Optimization accuracy

PWA(t) Window accuracy

PMTE Mean tracking error

PDmin Average minimum distance of population to optimum

Pnorm Normalized scores

q(t) Search direction vector

Qi Charge of particle i

Rc Core radius of CPSO and APSO

rcloud Radius of QPSO quantum particle

Rp Perception limit of CPSO and APSO

Rab(θ) Rotation matrix from axis a to axis b through angle θ

pr Random vector normalized to length s

s Spatial severity of the MPB

sv The MPB shift vector

Θ Minimum fitness level required for the satificability measure

t time, time step counter

tc time of landscape change c

T The total number of iterations

vi(t) Velocity of particle i

wp(t) Width of MPB peak p at time t

ws Width severity of the MPB

ω(t) Time dependent control parameters of f at time t

x The nx dimensional position vector representing a solution

xtij The j-th dimension of the i-th candidate solution at time step t

xtbest The best position vector at time t

xtcbest The best position vector at time tc just before an environment change

xe The position vector evaluated during function evaluation e

x∗ The global optimum

xtopt The global optimum at time t
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ŷi Neighborhood best position of particle i

yi Personal best position of particle i

Chapter 3: Selection Hyper-heuristics

E Parent population of all entities in HMHH

E∗(t) ⊆ E Entities in E that are to be assigned new heuristics at time t

ej A single entity in E

fj(t) Fitness of any entity ej at time t

fk Optimization problem in set of problems F

H Pool of heuristics

H(t) Heuristic space diversity measure, by Grobler and Engelbrecht [76]

hi A single heuristic i

k Algorithm iterations before a heuristic change occurs

sm(t) ⊆ E Entities that have been uniquely assigned to heuristic hm at time t

µm(t) The mean fitness of all entities in the subset sm

nm(t) = |sm(t)| Number of entities assigned to heuristic hm at time t

nh = |H| Total number of heuristics in H

ns = |E| Total number of entities in E

N (t) Heuristic space diversity based on Shannon entropy

φm(t) Mean change in fitness of entities ej ∈ sm
Pm(t) The performance of hm at time t for CPE

Qδm(t) Problem space measure that serves as feedback for the selection operator

ρm(t) Pheromone concentration og heuristic hm at time t

Υm(t) The maximum fitness of all entities in the subset sm

ς(ej, Qδm(t)) The selection operator that assigns entity ej to a heuristic

Θ(t) Probabilities of assigning an entity to each heuristic at time t

χm(t) Frequency of improvement for heuristic hm
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Chapter 4: Estimation of Control Group Performance

Baselines

β Scaling factor

b Vector of nc performance measures values

d Vector of perfect performance values

Cr Crossover rate

Mr Mutation rate

M Mutation strategy

nc Number of search landscapes

nv Number of difference vectors for DE

oi Offspring i

Pr Relative error distance

Pr,L1 Relative error distance using the L1 norm

Q Charge value for charged PSO particles

Rr Replacement rate

ra Rejection vector of a from the vector d

Rc Core limit of CPSO

Rp Perception limit of CPSO

rcloud Quantum radius

Chapter 6: Performance and Behavior Analysis of Se-

lection Hyper-heuristics

δ Entity reassignment frequency

ϕ Entity reassignment volume

υ(t) Number of entities that are reassigned to new heuristics at time t

E∗∗ Subset of entities in E∗ that are reassigned to new heuristics
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