

A Digital Forensic Readiness Approach for

 Ransomware Forensics

By

Avinash Singh

Submitted in fulfilment in accordance with the requirements for the degree of

MASTER OF SCIENCE (COMPUTER SCIENCE)

in the

Faculty of Engineering, Built-Environment and Information Technology

at the

UNIVERSITY OF PRETORIA

SUPERVISOR:

Prof. H.S. Venter

CO-SUPERVISOR:

 Dr A.R. Ikuesan

November 2019

i

Declaration

I, Avinash Singh, hereby declare that this dissertation, “A Digital Forensic Readiness

Approach for Ransomware Forensics” is submitted in accordance with the

requirements for the Master of Science in Computer Science at the University of

Pretoria, is my own original work and has not previously been submitted to any other

institution of higher learning. All sources cited or quoted in this research paper are

indicated and acknowledged with a comprehensive list of references. One

international journal and two international conferences were published from this

dissertation.

November 2019

ii

“The only truly secure system is one that is powered off, cast in a block of concrete

and sealed in a lead-lined room with armed guards.”

— Gene Spafford

“The more you know, the more you realize you know nothing.”

— Socrates

“Programming can be fun, so can cryptography; however they should not be

combined.”

— Kreitzberg and Shneiderman

iii

Acknowledgements

To have achieved this milestone in my life, I would like to express my sincere

gratitude to the following people:

• My revered Gods (Saraswathi, Hanuman and Shiva), who provided me with the

strength, knowledge and perseverance to complete this research;

• Dr. Adeyemi R. Ikuesan and Prof. Hein S. Venter, my supervisors, for their

invaluable advice, supervision and inspiring motivation during trying times

throughout this research. For this I am eternally grateful;

• Langauge Editor, Issabel Classen for a great language editing experience;

• The staff in Department of Computer Science, for guiding me through my

academic career, especially Mr Stallmann, Prof. Pillay, Ms Barror;

• The members from my research group DigiForS, I thank you all – Stacey, Kofi,

Werner, Pierre, Ivans and Victor for all the input and encouragement that each

of you has given me;

• Without the support of my family this would have never been possible, and I am

blessed to have such loving and caring people in my life. Meena (Mom), Mothie

(Dad), Asmita (Sister) and Princess (Doggie Sister) thank you all for everything

you have done, you have no idea how important each of you are in my life;

• My colleagues – George, Pula and Frederick for brainstorming and sharing

ideas;

• A special thanks to the ASN research group and their CCI program for providing

me with some financial assistance.

• Last, but not the least, I would like to thank the Universal Forces and anybody

whom I have left out mentioning.

iv

Abstract

Computers play a vital role in the automation of tedious tasks in our everyday lives.

With the adoption of the advances in technology, there is a significant increase in

the exploitation of security vulnerabilities, particularly in Windows computing

environments. These exploitations are mostly carried out by malicious software

(malware). Ransomware, a variant of malware which encrypts user files and retains

the decryption key for ransom. Ransomware has shown its dominance over the

years wreaking havoc to many organizations and users. This global digital epidemic

is continuously on the rise with no signs of being eradicated. The current method of

mitigation and propagation of malware and its variants, such as anti-viruses, have

proven ineffective against most ransomware attacks. Theoretically, Ransomware

retains footprints of the attack process in the Windows Registry as well as volatile

memory of the infected machine. With the adoption of Digital Forensic Readiness

(DFR) processes organizations can better prepare for these types of attacks. DFR

provides mechanisms for pro-active collection of digital artifacts. These artifacts play

a vital role when a digital investigation is conducted where these artifacts may not

be available post-incident. The availability of such artifacts can be attributed to the

anti-forensic properties of the ransomware itself cleaning up all the evidence before

it can be investigated. Ransomware investigation often to a lengthy process

because security researchers need to disassemble and reverse engineer the

ransomware in order to find a inherit flaw in the malware. In some cases, the

ransomware is not available post-incident which makes it more difficult. Therefore,

study proposed a framework with the integration of DFR mechanisms as a process

to mitigate ransomware attacks whilst maximizing Potential Digital Evidence (PDE)

collection. The proposed framework was evaluated in compliance with the ISO/IEC

27043 standard as well as expert review using two prototype tools. These prototype

tools realize the framework by providing a proof of concept implementation of such

a framework within an organization. The evaluation revealed that the proposed

framework has the potential to harness system information prior to, and during a

ransomware attack. This information can then be used to help forensic investigators

to potentially decrypt the encrypted machine, as well as providing automated

analysis of the ransomware relieving the burden of complicated analysis. The

implementation of the proposed framework can potentially be a major breakthrough

in mitigating this global digital endemic that has plagued various organizations.

v

Declaration from Language Editor

DECLARATION

I herewith declare that I,

Isabel M Claassen (APSTrans (SATI)),

full-time freelance translator, editor and language consultant

of

1367 Lawson Avenue, Waverley, Pretoria

(cell 082 701 7922)

and

accredited member (No. 1000583) of the South African Translators’ Institute (SATI)

completed the language editing* of the dissertation entitled

A Digital Forensic Readiness Approach for Ransomware Forensics

submitted for the degree

Master of Science - Computer Science

in the

Faculty of Engineering, Built-Environment and Information Technology

University of Pretoria

by

Avinash Singh

E-mail: asingh@cs.up.ac.za

Date completed: 03-12-2019

*Please note that no responsibility can be taken for the veracity of tatements or

arguments in the document concerned or for changes made subsequent to the

completion of language editing. Also remember that content editing is not part of a

language editor’s task and is in fact unethical.

mailto:asingh@cs.up.ac.za

vi

List of abbreviations

PC Personal Computer

MPCU Model of PC Utilisation

GUI Graphical User Interface

CAT Context-Aware Trigger

NIST National Institute of Standards and Technology

PE Portable Executable

OS Operating System

DFI Digital Forensic Investigator

DFR Digital Forensic Readiness

POC Proof of Concept

DFRWS Digital Forensic Research Workshop

PKI Public Key Infrastructure

RSA Rivest Shamir Adleman

SSL Secure Socket Layer

MD Medical Doctor

SHA Secure Hash Algorithm

RAID Redundant Array of Inexpensive Disks

IP Internet Protocol

DDOS Distributed Denial of Service

VOIP Voice over Internet Protocol

PUP Potentially Unwanted Product

XSS Cross-Site Scripting

DNS Domain Name Service

DDNS Dynamic Domain Name System

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

NSA National Security Agency

SMB Server Message Block

TCP Transmission Control Protocol

UDP User Datagram Protocol

MBR Master Boot Record

AES Advanced Encryption Standard

VM Virtual Machine

MFA Multi-Factor Authentication

RFF Ransomware Readiness Framework

EM Entropy Monitoring

CFTT Computer Forensic Tool Testing

MVC Model View Controller

REST REpresentational State Transfer

TOTP Time-base One-Time Password

AM API Monitoring

RM Registry Monitoring

VPS Virtual Private Server

SOC Security Operations Center

vii

Table of Contents

PART I 1

1. CHAPTER 1: INTRODUCTION ... 2

1.1 Introduction ... 2

1.2 Problem statement .. 4

1.3 Limitations of the research .. 5

1.4 Goals and objectives .. 6

1.5 Motivation .. 7

1.6 Methodology .. 7

1.7 Layout .. 8

PART II .. 12

2. CHAPTER 2: DIGITAL FORENSIC SCIENCE 13

2.1 Introduction ..13

2.2 Forensic science ..13

2.2.1 Digital forensic science ... 14

2.2.2 Cyber forensic services .. 14

2.2.2.1 Confidentiality .. 15
2.2.2.2 Integrity .. 16
2.2.2.3 Availability .. 16
2.2.2.4 Authentication .. 17
2.2.2.5 Authorization .. 17
2.2.2.6 Non-repudiation ... 17

2.3 Digital forensic investigation ..17

2.3.1 Digital investigation lifecycle ... 18

2.3.1.1 Planning ... 18
2.3.1.2 Acquisition ... 19
2.3.1.3 Preservation ... 19
2.3.1.4 Analysis ... 19
2.3.1.5 Reporting and dissemination ... 20

2.3.2 Digital investigation tools ... 20

2.4 Digital forensic readiness ..21

2.4.1 Digital forensic readiness processes .. 22

2.5 Conclusion ...25

3. CHAPTER 3: MALWARE FORENSICS .. 26

3.1 Introduction ..26

viii

3.2 An overview of malware ..29

3.2.1 Types of malware ... 29

3.2.2 Method of propagation .. 32

3.2.3 Adaptive techniques used by malware ... 33

3.3 Malware analysis ..34

3.3.1 Reverse engineering ... 34

3.3.2 Controlled environment .. 35

3.3.3 Signatures .. 36

3.3.4 Static analysis .. 36

3.3.5 Dynamic analysis ... 36

3.3.6 Exploitation techniques .. 37

3.3.7 Obfuscation .. 37

3.3.8 Encryption methods .. 37

3.3.9 Communication protocols .. 38

3.3.10 Attribution ... 38

3.3.11 Categorisation .. 38

3.3.12 Memory analysis .. 39

3.4 Ransomware ...39

3.5 Conclusion ...43

PART III.. 44

4. CHAPTER 4: RANSOMWARE READINESS FRAMEWORK 45

4.1 Introduction ..45

4.2 Ransomware Readiness Framework (RRF)45

4.2.1 Identification... 46

4.2.1.1 Network.. 46
4.2.1.2 Computing devices .. 48
4.2.1.3 Operating Systems .. 48
4.2.1.4 Evidence sources .. 48
4.2.1.4.1 Memory ... 48
4.2.1.4.2 Registry... 49
4.2.1.4.3 Storage media .. 50

4.3 Collection..50

4.3.1 Dynamic information ... 52

4.3.1.1 Potential evidence collection from memory.. 52
4.3.1.2 Process memory .. 53
4.3.1.3 Registry.. 54
4.3.1.4 Network.. 54

4.3.2 Static information .. 55

4.4 Secure storage ...55

4.4.1 Security ... 56

ix

4.4.1.1 Two-factor authentication... 56
4.4.1.2 Sandboxing .. 56
4.4.1.3 Access control ... 57

4.4.2 Data ... 57

4.5 Conclusion ...57

5. CHAPTER 5: WINDOWS REGISTRY AND RAM COLLECTOR (W2RC)
... 60

5.1 Introduction ..60

5.2 Windows Registry and RAM Collector (W2RC)60

5.2.1 DLL monitoring .. 63

5.2.2 API call monitoring .. 65

5.2.3 Windows Registry monitoring .. 66

5.2.4 Entropy monitoring ... 67

5.2.5 Context-Aware Trigger .. 67

5.2.6 Investigative procedure .. 68

5.3 W2RC system requirements specification68

5.3.1 Secure Collection Core Requirements (SC-CR) 69

5.3.2 Secure Collection Optional Requirements (SC-OR) 69

5.4 Architectural design ..70

5.5 W2RC system implementation ..72

5.6 Conclusion ...75

6. CHAPTER 6: WINDOWS REGISTRY AND RAM READINESS STORAGE
(W3RS) .. 76

6.1 Introduction ..76

6.2 Windows Registry and RAM Readiness Storage (W3RS)76

6.2.1 Data ingestion process ... 77

6.2.2 Forensic soundness assurance process 79

6.2.3 PDE storage process ... 80

6.2.4 Forensic soundness verification process 81

6.3 W3RS system requirements specification84

6.3.1 Secure Storage Core Requirements (SS-CR) 84

6.3.2 Secure Storage Optional Requirements (SS-OR) 84

6.4 W3RS system implementation ..84

6.5 Conclusion ...91

PART IV ... 92

x

7. CHAPTER 7: RESULTS AND INTERPRETATION OF THE PROTOTYPE
SYSTEM .. 93

7.1 Introduction ..93

7.2 Results obtained from the testing phase93

7.2.1 DLL monitoring results ... 94

7.2.2 API monitoring results .. 95

7.2.3 Registry monitoring results .. 96

7.2.4 Entropy monitoring results ... 98

7.2.5 Context-Aware Trigger results ... 101

7.3 Conclusion ... 103

8. CHAPTER 8: REAL-WORLD CASE STUDIES 104

8.1 Introduction .. 104

8.2 Real-world case studies .. 104

8.2.1 Case study 1: WannaCry ... 104

8.2.1.1 WannaCry scenario definition .. 105
8.2.1.2 WannaCry detection and results .. 105
8.2.1.3 WannaCry discussion .. 106

8.2.2 Case study 2: Dharma ... 107

8.2.2.1 Dharma scenario definition .. 107
8.2.2.2 Dharma detection and results .. 108
8.2.2.3 Dharma discussion .. 108

8.2.3 Case study 3: RobbinHood ... 109

8.2.3.1 RobbinHood scenario definition ... 109
8.2.3.2 RobbinHood detection and results ... 110
8.2.3.3 RobbinHood discussion ... 110

8.3 Conclusion ... 111

9. CHAPTER 9: CRITICAL EVALUATION ... 112

9.1 Introduction .. 112

9.2 Software verification and validation process 112

9.2.1 Secure collection validation ... 113

9.2.1.1 Secure Collection Core Test Assertions (SC-CA) 114
9.2.1.2 Secure Collection Test Cases (SC-TC) ... 114
9.2.1.3 Secure Collection Compliance Matrix (SCCM) 115

9.2.2 Secure storage validation ... 117

9.2.2.1 Secure Storage Core Test Assertions (SS-CA) 117
9.2.2.2 Secure Storage Test Cases (SC-CA) .. 117
9.2.2.3 Secure Storage Compliance Matrix (SSCM) .. 117

9.3 Expert review process ... 119

9.3.1 Respondent identification ... 120

9.3.2 Measurement item development .. 121

9.3.3 Data analysis and presentation .. 122

xi

9.3.4 Results of the model of PC utilisation ... 123

9.3.4.1 MPCU complexity .. 123
9.3.4.2 MPCU job fitness ... 124
9.3.4.3 MPCU long-term consequence .. 125

9.4 Mapping of the proposition to a Digital Forensic Standard 127

9.4.1 Mapping of the proposed framework to ISO/IEC 27043:2015 ... 127

9.5 Related literature .. 128

9.5.1 Digital Forensic Readiness ... 130

9.5.2 Ransomware investigation ... 131

9.5.3 Summary of the findings from related literature 131

9.6 Conclusion ... 132

PART V .. 134

10. CHAPTER 10: CONCLUSION .. 135

10.1 Summary of chapters... 135

10.2 Addressing the problem statement .. 136

10.3 Contributions made by the current research 137

10.4 Limitations of this research... 137

10.5 Future work .. 138

10.6 Final words ... 139

PART VI ... 140

Appendix A ... 141

Appendix B ... 142

A. Setting up the environment ... 142

B. Setting up Virtual Box .. 142

C. Setting up Cuckoo Framework .. 145

D. Setting up Storage (W3RS) .. 148

E. Setting up Collection (W2RC) .. 150

Appendix C ... 153

Bibliography ... 159

xii

List of Figures

Figure 1-1. The layout of the dissertation ...11

Figure 2-1. Investigation lifecycle ...18

Figure 2-2. Digital forensic investigation process model ...22

Figure 2-3. Readiness processes groups ...23

Figure 2-4. DFR planning processes group ..24

Figure 2-5. DFR implementation process group ...25

Figure 2-6. DFR assessment process group ..25

Figure 3-1. Microsoft advanced threat analytics infographic [65]27

Figure 3-2. A decade’s statistics of malware trends [67] ..27

Figure 3-3. Signature-based detection ...28

Figure 3-4. Behaviour-based detection ..29

Figure 3-5. Ransomware statistics compiled by 24BY7 Security40

Figure 4-1. A high-level overview of RRF ...45

Figure 4-2. Part A - Overview of identification phase ...46

Figure 4-3. Client-server architecture ...47

Figure 4-4. Peer-to-Peer architecture ...47

Figure 4-5. Common network topologies..47

Figure 4-6. Memory structure ...49

Figure 4-7. Part B – Overview of the collection phase ..51

Figure 4-8. Part C - Overview of Secure Storage Phase ..56

Figure 4-9. Second layer high-level view of RRF ...59

Figure 5-1. RRF mapped to the prototype system ..60

Figure 5-2. Model for ransomware forensics ..61

Figure 5-3. Architectural design of the proposed system ..71

Figure 5-4. Lifecycle of W2RC ...73

Figure 5-5. W2RC GUI view ...74

Figure 5-6. W2RC new process detected ...74

Figure 5-7. W2RC displaying analysed sample with CAT value74

Figure 6-1. High-level process model of W3RS ..77

Figure 6-2. W3RS data ingestion process ..78

Figure 6-3. W3RS forensic soundness assurance process ..79

Figure 6-4. W3RS PDE storage process ..80

Figure 6-5. W3RS forensic soundness verification process..81

Figure 6-6. W3RS detailed process model ...83

Figure 6-7. High-level lifecycle of W3RS ..86

xiii

Figure 6-8. W3RS user password standards ..87

Figure 6-9. W3RS user permissions assignment ...88

Figure 6-10. W3RS adding 2FA ...88

Figure 6-11. W3RS user interface ..89

Figure 6-12. W3RS redacted view of stored PDE ..89

Figure 6-13. PDE sample showing process memory ..90

Figure 6-14. PDE sample showing network activity ..90

Figure 9-1. NIST validation cycle ... 113

Figure 9-2. MPCU complexity graph .. 124

Figure 9-3. MPCU job fitness graph ... 125

Figure 9-4. MPCU Long-term Consequence .. 126

Figure 9-5. Mapping of the Ransomware Readiness Framework to the ISO/IEC 27043:2015

International Standard .. 128

Figure 0-1. PDE snippet showing detected signature ... 153

Figure 0-2. PDE snippet showing delay operations .. 153

Figure 0-3. PDE snippet showing PE sections and entropy.. 154

Figure 0-4. PDE snippet showing process memory .. 154

Figure 0-5. PDE snippet showing buffer information location ... 155

Figure 0-6. PDE snippet showing network activity .. 155

Figure 0-7. PDE snippet showing loaded DLLs .. 156

Figure 0-8. PDE snippet showing cryptographic key information 156

Figure 0-9. PDE snippet showing API calls .. 157

Figure 0-10. PDE snippet showing various signatures ... 158

xiv

List of Tables

Table 2-1. A taxonomy of forensic science ...13

Table 2.2. Comparison of digital forensic tools ...20

Table 3.1. A summary of trending ransomware ..41

Table 5-1. DLL cryptographic commonalities for ransomware ..64

Table 7-1. DLL monitoring results ..94

Table 7-2. API monitoring results ...95

Table 7-3. Windows Registry monitoring results ..97

Table 7-4. Authentic vs non-authentic encryption using entropy analysis99

Table 7-5. Entropy monitoring results .. 100

Table 7-6. Experimental results from well-known applications and ransomware 101

Table 7-7. A Summary of thresholding values .. 102

Table 8-1. WannaCry sample information .. 105

Table 8-2. WannaCry case study ... 106

Table 8-3. Dharma sample information .. 108

Table 8-4. Dharma case study ... 108

Table 8-5. RobbinHood sample information ... 110

Table 8-6. RobbinHood case study .. 110

Table 9-1. W2RC SCCM .. 115

Table 9-2. W3RS SSCM .. 118

Table 9-3. Measurement instrument for tool evaluation .. 121

Table 9-4. Response statistics of MPCU complexity .. 123

Table 9-5. Response statistics of MPCU job fitness ... 125

Table 9-6. Response statistics of MPCU long-term consequence 126

Table 9-7. Summary of related literature findings (2019/11/28) 132

Table 10-1. Limitations of this research ... 137

1

PART I

INTRODUCTION

2

1. CHAPTER 1: INTRODUCTION

1.1 Introduction

With the advancements in technology and easy access to the internet, more users

are moving towards the digital world. Smart devices such as smartphones, tablets,

laptops and desktop computers are bringing more interconnectedness to everyday

human life. By using these devices, more people are creating and sharing

information, thus opening the landscape to security attacks [1]. Hackers exploit the

vastness of the internet by exploiting unpatched vulnerabilities and inexperienced

and over-trustworthy users. While technology is enhancing life and making the

internet more accessible, many people are still not familiar with the risks introduced

by these technologies. For example, mobile devices have become an integral part

of our life, and many people cannot go without them. People store most of their

essential information on these devices, such as passwords, emails, sensitive data,

and even social media information. With all this information kept in one place,

attackers are gifted a central point and a huge incentive to attack and extract private

information about individuals – even up to the extent of being able to impersonate

them (pretending to be another person) [2].

Malware (Malicious Software) is the common term used for a piece of program code

that is used to cause harm [3]. Attackers use malware to exploit vulnerabilities that

exist on electronic devices. These vulnerabilities come from incorrect configurations,

security flaws in applications and improper or lousy use of code in applications.

Cybersecurity is a field that combines the digital world with security to protect

systems against outside threats. Effective cybersecurity reduces the risk of

cybercrime by finding flaws and vulnerabilities in the cyberspace and releasing

patches to prevent hackers from exploiting these vulnerabilities. Research is still

ongoing in this area where new challenges and problems surface every day, thereby

widening the gap and attack vectors of malicious activities [4]–[6].

Ransomware is one of the most dangerous forms of malware that encrypts user

data on a system, leaving many users and organisations crippled by its effects. This

form of malware can spread rapidly over a network to render the system

inaccessible and the end-user helpless. However, there are two types of

ransomware, namely Locker and Crypto. Locker ransomware aims to make an

operating system inaccessible until the ransom has been paid. Crypto ransomware

is the most common form of ransomware today. It uses strong encryption to encrypt

files on a system and then withholds the decryption keys of these files for a ransom.

Such ransom is usually demanded in untraceable currency, with cryptocurrency

such as Bitcoin being the most prevalent. Ransomware commonly occurs in the

Windows Operating System (OS) due to the exploitation of unpatched vulnerabilities

and the system’s large user base [7]. Based on recently reported events [8], this

trend is gradually seeing a drift towards Android devices, particularly mobile phones.

3

This drift is further prompted by the ubiquitous nature, sensitive contents and

attached importance of mobile devices, which compels an individual to urgently pay

such ransom. Till date, Anti-Virus (AV) software and tools that are used to detect

malicious software have proven to be ineffective to detect new variants of

ransomware [9]. This ineffectiveness can be attributed to the limitations of the

signature-based detection approach, as well as the mitigation techniques employed

by sophisticated ransomware [4]. However, the point of attack and methods

employed in the exploitation caused by this ransomware malware can potentially be

uncovered using Digital Forensics and investigation processes.

Digital forensics involves the recovery and investigation of data acquired from digital

devices related to computer crime [10][11]. Encrypted devices pose a significant

challenge to digital forensics due to the difficulty of retrieving potential evidential

information for litigation [12]. In digital forensics, the use of a cryptographic

mechanism such as BitLocker as well as advanced encryption standards to protect

the system/information poses a significant problem for an investigator. If a drive has

been encrypted, an investigator would need the decryption keys to investigate the

drive. Most of the time, however, the decryption keys are unknown, and an

investigator would have to use a brute-force approach to decrypt the drive and

perform an investigation. The Windows Operating System (OS), being the most

widely used OS [7] [13] is a central target for attackers who exploit the vulnerabilities

of each version of the OS. Therefore, to investigate a ransomware attack, it is often

difficult for a Digital Forensic Investigator (DFI) to recover the system from the attack

as well as to find any potential digital evidence that can be used in a court of law.

However, upon investigation, the method of exploitation can be found by dissecting

the ransomware executable on a lower level, which involves tracing the execution

of the program and monitoring the changes in the behaviour of each instance [14]

[15].

Since the use of ransomware is so widespread, it is almost impossible to trace the

source. However, it is possible to pinpoint the country in which it was first reported.

Research has been done to trace the payment endpoints by tracking cryptocurrency

addresses such as Bitcoin wallets. So far, this is the only method that provides some

information on where the ransom money is flowing to [16] [17]. The process of a

traditional investigation would involve an incident to occur and be reported so that

an investigation can be triggered. Unfortunately this is a manual process that can

be delayed by several unforeseen factors [18]. The data that is needed by an

investigator might also not have been collected, which further delays the

investigation and renders the entire process slightly inefficient.

The remainder of this chapter is structured as follows: First, the problems addressed

by this research are identified and defined, followed by a discussion of the limitations

4

of the research, the research goals and objectives, the motivation for this research

and lastly the layout and structure of the dissertation.

1.2 Problem statement

Cybercriminals are frightfully active in the digital world. Most attackers gain access

through leaked or unchanged administrator passwords and even through social

engineering or spear-phishing attacks. Social engineering is one of the common

tactics used by attackers to exploit the ignorance of a user – the latter is tricked into

divulging sensitive information such as bank account details and passwords.

Malware on the other hand adopt a more advanced technical approach by using

malicious code to perform criminal activities. More dangerous than ever is

ransomware that relies on the widespread distribution of the malware. This

distribution can happen as a result of an array of causes and effects, such as

infected Microsoft Office files, unpatched vulnerable systems, unsolicited emails,

and poor user education.

Most ransomware leaves traces/footprints on the machine, particularly in the

Windows Registry, which could provide an evidentiary source for mitigation and

litigation of such attacks. Furthermore, this potential evidence source can be

incorporated into the forensic process required to trace the propagation path and

method of the ransomware. This could help to classify ransomware to find probable

behavioural consistencies (also referred to as the behavioural signature). However,

the current investigation process for ransomware forensics (the forensic domain

saddled with investigating ransomware incidents) has primarily neglected to

leverage the potential of the Windows Registry in combination with volatile memory.

In addition, the process of corroborating evidence from the Windows Registry using

data from the Random-Access Memory (RAM) has been widely overlooked [19]–

[21]. This lapse can be attributed to the unavailability of RAM information upon

investigation, and the complexity of extracting evidential information from the

Windows Registry and RAM [19] [22] [23].

To address some of these challenges faced during investigation and detection, this

dissertation breaks down the main research problem into subproblems, where a

more robust solution can be used for each of the challenges. Together, they can

then provide a complete solution to the main research problem. The subproblems

are further distinguished as follows:

• There is no framework, model or standard for collecting potential digital

evidence (PDE) for ransomware forensics. Most investigators do not have a

standard process to follow when investigating ransomware. Attempts to

uncover any evidence may potentially inadvertently destroy the evidence.

This can be due to negligence, for example, putting the computer off instead

of capturing the volatile memory, or working on the system, which affects the

5

memory without a prior memory dump, can invalidate the potential digital

evidence, as it will legally be seen as tampering with evidence.

• The use of Digital Forensic Readiness (DFR) in malware investigation,

specifically ransomware forensics, has been overlooked [24]–[26] in many

organisations and has therefore, induced a higher cost of incident response.

Furthermore, incident response elicits excessive waiting times for analysing

and uncovering any corroborating evidence.

• Ransomware continues to plague the internet by rendering systems

unusable through the encryption of user/company data for ransom.

Consequently, it causes business downtime, delayed operations and

(eventually) considerable costs to be incurred by the user/organisation.

• To the best of the author’s knowledge, there are no automated processes for

the detection and investigation of ransomware. Static analysis of malicious

samples has been ineffective in detecting newer variants and types of

ransomware attacks. Given that automation has significantly improved the

way we live and perform tasks, neglecting the effectiveness of using

automation in a ransomware investigation indeed constitutes a research gap

in the digital forensic community.

Each of the problems listed above can be converted into short research questions.

Therefore, the current research attempted to answer the following questions.

Q1) To what degree can a framework/model be created to aid digital forensic

investigators to perform a ransomware investigation?

Q2) What potential digital evidence can be collected from a ransomware attack

using Digital Forensic Readiness?

Q3) Can such a framework reduce costs and improve incident response?

Q4) To what degree can ransomware be detected before it causes permanent

damage?

Q5) Is there a way to automate the digital forensic process for investigating

ransomware?

Some aspects of the above research questions go beyond the scope of this

dissertation. These limitations are presented in the next section.

1.3 Limitations of the research

The following are the restrictions and limitations of this research, as the aspects

listed have not been included in the scope of this research.

• The impact of human behaviour has not been fully incorporated into this

study. This means that any user-temperament or user-imposed restrictions

to the prototype tools were not considered in their development. Due to

negligence and poor user education, a significant issue that affects the

security of a system is the human factor. Man is often the weakest part of any

6

system, which is why this research attempts to automate this process as

much as possible.

• Virtual environments used in this study were assumed to be safe and secure;

any current/future exploits or vulnerabilities exposed by these environments

were not considered.

• The prototype tools developed relied on correct setup, and configurations

with the results obtained extracted from ideal environments. It was assumed

that every service and process are running as intended; otherwise, an

unexpected conclusion might be reached.

• Industry standards were used for securing and extracting information, and

this study did not attempt to improve or reinvent these standards.

With these limitations laid out, the goals and objectives of this research are

presented in the next section.

1.4 Goals and objectives

The main goal of this research was to create a system that can detect, prevent and

potentially recover from ransomware attacks. This system has to help users and

organisations to gather critical information that can be used to quickly and cost-

effectively conduct forensic investigations. Forensic investigators can use the

system to trace and investigate the detected anomalies, based on the information

that has been collected from the time when the incident was detected. In addition,

the research in hand has the following objectives:

• Review the best practices and techniques and improve the current state of

research by improving the collection, preservation, and investigation of PDE.

• Ensure the forensic soundness of the PDE collected from volatile memory

and Windows registry – from the point of collection to the point of

investigation. This is extremely important for the authenticity of the PDE

collected.

• Take advantage of the massive data repositories that exist in the Windows

computing environment to leverage more PDE, and to collate and

corroborate the collected information.

• Design a conceptual model to address the limitations of existing literature,

solve the primary goal of this research, and reduce the costs of litigation and

investigation.

• Evaluate and apply real-world, use-case scenarios to verify the viability and

usefulness of the prototype.

The next section outlines the motivation as to why this research was conducted and

why it is relevant.

7

1.5 Motivation

Ransomware is on the rise, with trends predicting that the problem will not go away

anytime soon [27]–[29]. Therefore, novel and effective ways need to be researched

on how to mitigate ransomware attacks, as well as how to potentially trace the origin,

prevent attacks and gather information when an attack has been detected. AV

programs are continually becoming more sophisticated, but unfortunately, they

cannot keep up with the rate of exploits and threats. Having an effective AV program

running on a system does not mean that the system is secure and not susceptible

to exploits and attacks. The rate at which ransomware spreads is faster than the

rate at which AV programs can develop updates to prevent the exploit; thus,

ransomware can do enough damage to cause havoc across organisations.

Incorporating DFR processes within an organisation better prepares the

organisation for such attacks, as is gathering information and potentially preventing

the attacks from occurring, while improving incident response times. In order to

properly implement these processes within an organisation, an appropriate research

methodology needs to be formulated.

The research methodology presented in the next section explains how this research

was planned and carried out.

1.6 Methodology

The research methodology entails the method of scientific investigation that is used

to solve the problem on hand in such a way that the study can be reproduced and

achieve the same result. The current research adopted a systematic approach to

solve the research problem and the following scientific methods were used:

(i) Conducting a literature review by exploring various related and current

literature – extending from malware to ransomware – as well as the

background of digital forensics and digital forensic investigations.
(ii) Discovering existing standards that have or could have been used to

further structure and create a standardised viable solution. Reviewing the

digital forensic readiness process models stemming from the ISO/IEC

27043 [30] and how they can be applied.
(iii) Conceptualising a model to verify and illustrate the functioning of the

proposed prototype system. Looking into potential digital evidence

collection and preservation through digital forensic soundness in order for

PDE to be admissible in a court of law.
(iv) Developing the prototype systems while abiding by software

requirements, engineering and specifications through best practices.

Finding the correct programming language to build a scalable and

updateable system that can be used by organisations to demonstrate the

proof of concept (POC).

8

(v) Performing critical evaluation by analysing and interpreting results to

further improve or correlate the workings of the system in terms of digital

evidence collection, preservation and secure storage. Evaluating the

usefulness of the prototype system and performing software verification,

validation, as well as expert reviews. Evaluating the proposed framework

by mapping it to the ISO/IEC 27043 international standard.

The above methods were incorporated to find a viable solution to the problems that

this research identified. The next section discusses the dissertation structure and

what each chapter will entail. It also provides a visual representation of the chosen

structure.

1.7 Layout

The layout of this dissertation as depicted in Figure 1-1 shows that it consists of six

parts and ten chapters. An overview is given of each part and chapter, after which

it is further discussed:

PART I: Introduction

• Chapter 1 – Introduction

This first chapter of the dissertation presents the introduction, problem

background, limitations, goal, motivation, methodology and layout. Chapter 1

constitutes the entire Part I and lays out the scene and scope of the research.

PART II: Background

• Chapter 2 – Cybersecurity

This chapter focuses on what cybersecurity entails, and what the fundamental

challenges are that people and organisations face in the current digital age.

Chapter 2 presents the challenges and shortcomings of the cyber domain as well

as the difficulties thereof.

• Chapter 3 – Digital Forensics

The background to digital forensics is presented in this chapter, together with

related literature and existing methods and frameworks that were developed to

counter criminal activities. Chapter 3 also discusses the concept of digital

forensic readiness, how it plays a vital role in incident response, and how an

entity can easily prepare before a cyberattack can even occur.

PART III: Model and Prototype

• Chapter 4 – Ransomware Readiness Framework

Chapter 4 presents the research framework – Ransomware Readiness

Framework (RRF) – which comprises a number of subcomponents and systems

that are further explained in Chapters 5 and 6. This chapter gives a high-level

9

overview of the research and indicates how the forensic readiness processes

are incorporated into the design.

• Chapter 5 – Windows Registry and RAM Collector (W2RC)

This is the core component of the research monitoring the RAM and Registry.

Together, Windows Registry and RAM collector (W2RC) play the vital role of

monitoring all the processes by using a scientifically derived formula called

Context Aware Trigger (CAT) to determine if a process is malicious.

• Chapter 6 – Windows Registry and RAM Readiness Storage (W3RS)

Due to digital forensic readiness requirements, potential digital evidence is

collected on the fly and needs to be stored in a safe and secure manner. The

system W3RS (Windows Registry and RAM Readiness Storage) securely stores

the collected information by utilising access control with multifactor

authentication so that no unauthorised parties can access sensitive information.

PART IV: Evaluation

• Chapter 7 – Results and Interpretation of the Prototype System

In order to show the impact of the developed prototypes, several real-world case

studies were selected and simulated in this chapter. The developed prototype

tools were used to see if they are able to detect and potentially prevent a

ransomware attack. The collected information was analysed to see if potential

digital evidence is admissible and can hold up in a court of law.

• Chapter 8 – Real-World Case Studies

The prototype tools were tested in this chapter by using various malicious and

benign samples. The prototype was also tested and used within organisations

with surveys and reporting. Chapter 8 groups the result in various ranks or

categories so that threats can be detected more easily, and automated incident

response can occur.

• Chapter 9 – Critical Evaluation

This chapter evaluates the proposed framework based on expert reviews and

benchmarking. Expert reviews were conducted to determine the usefulness of

the tools, whereas benchmarking was used to validate the usefulness of the

proposed framework by mapping it to an international standard.

PART V: Conclusion

• Chapter 10 – Conclusion and Future Work

This chapter wraps up the dissertation and discusses what further research

outputs can be achieved by extending on the current research. It concludes that

10

the research questions were answered, the developed tools are viable, and they

meet the requirements that were set.

PART VI: Appendices

The different appendices contain the screenshots and additional information that

was not included in the core of the dissertation. They serve as a reference point for

extensive reporting and raw result postings.

• Appendix A

A list of publications originating from this dissertation is presented in this

appendix.

• Appendix B

This appendix provides the installation and user guide for the prototype tools

(W2RC and W3RS).

• Appendix C

Sample PDE snippets are presented in this appendix showing key findings and

information that was collected showing the usefulness of DFR by providing an

investigator with a data repository of information.

11

Figure 1-1. The layout of the dissertation

12

PART II

BACKGROUND

13

2. CHAPTER 2: DIGITAL FORENSIC SCIENCE

2.1 Introduction

This chapter presents a broad overview of forensic science and digital forensics,

cyber forensics services, digital forensic investigations, digital forensic

investigations, and digital forensic readiness. The next section provides some

background information on forensics.

2.2 Forensic science

Forensic science is known as the application of science to law enforcement to aid

the processing and investigations of criminal offences [31][32]. There are several

fields within forensic science, which include anthropology, chemistry, DNA analysis,

pathology and digital forensics [33]. A brief taxonomy of each field within forensic

science is further discussed in Table 2-1. Forensic science investigators are

specially trained professionals and follow strict procedure and protocol when

collecting, preserving, analysing and storing physical evidence [30] [33]. This is to

ensure that the physical artefacts are not contaminated, and the integrity of the

artefacts are safeguarded and maintained. In order for the evidence to hold in a

court of law, the entire process needs to be documented as well have a well-

documented chain of custody (list of persons in contact with the evidence). In this

dissertation, however, only the digital aspect of forensic science is considered. The

next subsection discusses digital forensic sciences.

Table 2-1. A taxonomy of forensic science

Field of forensic

science

Description Examples

Anthropology The application of

anatomical science to

forensics.

Identification of deceased

humans based on their remains

at a crime scene.

Chemistry The application of

chemistry to forensics.

Identifying illicit drugs and

chemicals at a crime scene.

DNA Analysis The process of

determining DNA

characteristics based on

certain individuals.

Identifying an individual from the

blood sample obtained from a

crime scene.

Pathology The application of medical

science to forensics.

Identifying the cause of the

death of a person.

Entomology The application of studying

insects to aid forensics.

Identifying and examining

insects around a human

remains to predict the time and

location of death.

14

Field of forensic

science

Description Examples

Digital Forensics The application of

scientific methods and

techniques in order to

recover data from

electronic media.

Identifying and analysing

evidentiary sources to prove

cyber-crime activity.

2.2.1 Digital forensic science

Digital forensics is a field within the scope of forensic science that focusses on the

scientific investigation of cases associated with any digital media or digital devices.

The Digital Forensic Research Workshop (DFRWS) in 2001, defined digital

forensics as “The use of scientifically derived and proven methods toward the

preservation, collection, validation, identification, analysis, interpretation,

documentation and presentation of digital evidence derived from digital sources for

the purpose of facilitating or furthering the reconstruction of events found to be

criminal, or helping to anticipate unauthorized actions shown to be disruptive to

planned operations.” [34]. From this definition, it can be asserted that there are two

approaches to digital forensics; proactive and reactive. Proactive digital forensics

involves the application of digital forensics before the occurrence of digital crime

[35]. Potential digital evidence is collected on the fly and detects when a digital crime

is being committed and triggers an investigation which is synonymous to digital

forensic readiness [30]. Reactive digital forensics entails the application of digital

forensics after a digital crime is committed, post-incident, which is the current

traditional investigative process [32]. Reacting to a crime that has already occurred

encompasses the complexity of using digital forensics to collect and gather evidence

post-mortem. Digital forensics also has standardised processes and methodologies

that have been tested and peer-reviewed and accepted [30]. The purpose of these

processes is to ensure the same result can be obtained each time the process is

repeated, thus, making it scientific. To ensure the integrity of the collected

information from the processes employed, cyber forensic services needs to be

followed. These cyber forensics services are presented in the proceeding

subsections.

2.2.2 Cyber forensic services

Information security focuses on securing both digital assets within a computing

system and non-digital assets, which could contain information [36]. These digital

assets are the most sensitive information that needs to be secured to prevent

unauthorised access. Therefore, best practices must be used, ranging from access

control to encryption. Information security is built around three objectives;

Confidentiality, Integrity and Availability, which commonly referred to as the CIA triad

[37]. The traditional CIA triad can further be enhanced by adding more objectives to

it, consequently, encapsulating cyber forensic services. Such service includes

15

authentication, availability and non-repudiation. Taken together, the cybersecurity

services can, therefore, be defined as CIAAN, which now stands for Confidentiality,

Integrity, Availability, Authentication, Authorization, and Non-repudiation. These are

further discussed.

2.2.2.1 Confidentiality

Dealing with sensitive information with personal identifiers like identity numbers,

home addresses, credit card information and cell numbers need to be kept secure

and confidential. This triad focusses on the confidentiality of information [38].

Confidentiality of information can be kept by using best practices when dealing with

data. Having access control will preserve confidentiality to a certain extent.

However, it can still be exposed to untrustworthy users. To fully ensure

confidentiality, encryption is generally used as only the person holding the

decryption key has the ability to gain access to the information. There are two

commonly found types of encryption, mainly symmetric and asymmetric encryption

[39]. The main difference between them is that symmetric encryption only makes

use of one key, meaning that one key is used for encryption, and the same key is

used for decryption [39].

Asymmetric encryption makes use of two keys one key to decrypt and the other to

encrypt [40] [41]. When data is being transported from a sender to a receiver, an

infrastructure is needed to ensure secure key generation and distribution. This

infrastructure is called PKI (Public Key Infrastructure) [42]. The Rivest–Shamir–

Adleman (RSA) encryption is the most common form of encryption used today for

transporting data over the internet [43]. RSA allows for secure key exchange and

uses clever cryptography to ensure confidentiality. When a message is being sent

is encrypted using the receivers public key. Thus, only the receivers private key can

decrypt the encrypted message, ensuring non-repudiation (non-deniability of

receipt). Ransomware abuses this triad by using confidentiality against a user. This

is done by encrypting user files and holding these files decryption as a ransom [44].

In the developed tools, potential digital evidence is confidentiality kept using secure

channels like SSL for transport, access control, and two-factor authentication. While

having encryption securing digital evidence, it preserves confidentiality but causes

overhead in the investigation. This is because the evidence or acquired device

would have to be decrypted first in order to perform any analysis, making it a lengthy

process [45] [46].

In digital forensics, confidentiality is maintained through restricted access and non-

disclosure agreements. Due to sensitive information being collected and analysed

by investigators, confidentiality is key in order not to defame a person or criminal

and to protect user privacy. The next subsection discusses what integrity is and how

it can be maintained.

16

2.2.2.2 Integrity

The integrity of digital data is a measure of the authenticity and originality of the data

[37]. Integrity is used to determine if the data was modified or tampered in any way.

Cryptographic hash functions are used as a measure of integrity; these hash

functions are mathematical computations that are performed on the data to generate

a fixed number of characters referred to as a hash. With a small change in the data,

the hash of the data can significantly change. There are different types of hashing

algorithms, each being an improvement to the other.

The main hashing algorithms that are used for integrity checks are MD5 (Message

Digest version 5) and SHA-1 (Secure Hashing Algorithm version 1) [47]. These

hashing algorithms are used for their speed in calculating a hash. Hash functions

are used for a one-way operation, meaning that data can only go one way, resulting

in an irreversible process. In other words, a hash cannot be converted back to the

original data. However, MD5 and SHA-1 have a few vulnerabilities that allow them

to be cracked (obtain the real unhashed data). This is because hashes length is not

significantly longer, with MD5 only having 128 bits (16 bytes) and SHA-1 having 160

bits (20 bytes). This means it is easier to perform a brute force attack as what can

be seen from password cracking.

Although, password cracking is generally short length strings, hashing an entire file

and attempting to get the original file back is near impossible with current

computation limitations. Since integrity of the information is at question and not the

security of the information these cryptographic algorithms perform their roles as an

integrity verifier. In digital forensics the integrity of potential digital evidence is

always questioned in a court of law this is to ensure that evidence was not tampered

with and that the evidence came from a credible source. Data needs to be available

in order to ensure its integrity, therefore the availability of data is one of the vital

aspects of cyber forensic services.

2.2.2.3 Availability

The availability of data is ensured by the maintenance of the machine on which the

data is stored on [37]. Data is available on-demand at any time giving a user having

24/7 access to the data on the machine. In disaster recovery, for example, when the

host machine fails to access to the data is therefore lost and thus making the data

unavailable. Backups can be used to prevent the loss of availability of data when

there are dire situations. Redundancy mechanisms like RAID (Redundant Array of

Inexpensive Disks) is used to ensure data is always available if a disk drive fails the

data is still available on another drive as opposed to the data only being available

on the failed disk [48].

Communication channels also have a role in the availability of the data and must be

functional at all times. DDoS (Distributed Denial of Services) is one attack that in

17

great lengths attempts to bring down the availability of any rendered services [49].

This is one of the biggest attacks that many companies have to face and avert in

order to keep their services running as well as their reputation. In digital forensics,

the availability of information is what investigators use to determine or uncover any

incriminating evidence. Therefore, potential digital evidence (PDE) must be

available to an investigator at all times in order to perform timeous investigations.

2.2.2.4 Authentication

Authentication is performed by a user supplying a user identity as well as a

password or key phrase in order to prevent unprecedented access. Having secure

channels and secure validation mechanisms in place help preserve the secure

transfer of the authentication information. Once a user is authenticated, they have

to be authorized to perform certain operations as discussed in the next subsection.

2.2.2.5 Authorization

Once a user is authenticated, their access roles are then looked up and based on

the access roles a user is then allowed to perform certain operations. In digital

forensics only, authorized parties may access PDE due to the sensitivity of the

information as well as the integrity of the information. PDE that is collected and

stored is only available to authorized users with 2-factor authentication, this further

ensures that the data confidentiality, integrity, availability (CIA) is preserved. Once

a user accesses the PDE, all processes are logged, ensuring non-repudiation as

discussed next.

2.2.2.6 Non-repudiation

The goal of non-repudiation is that a user cannot deny being a part off or receiving

a transaction [50] [51]. In digital forensics, a user cannot deny having accessed PDE

and thus obeying the law as well as a chain of custody further safeguarding the

PDE’s integrity. Therefore, in order to achieve non-repudiation authentication and

integrity cannot be violated. The use of 2-factor authentication eliminates the user

from claiming that their password was hacked due to the uniqueness of the second

phase of authentication [52]. It is near impossible for an attacker to gain access to

a system with 2-factor authentication without any knowledge derived from the user.

Thus, non-repudiation is achieved, and a digital signature is logged as well as the

IP for traceability purposes. The next section focusses on digital forensic

investigations and how cases are processed and conducted whilst following strict

procedures.

2.3 Digital forensic investigation

Digital forensic investigation (for convenience sake referred to as digital

investigation) is the process of uncovering incriminating evidence that can be

18

admissible and used in a court of law [33]. Digital investigation is a subset within

digital forensics that focuses on the process performed to carry out an investigation

as well as to discover evidence that can prove that a crime was committed. Several

digital forensic investigation processes were followed by various authors, with each

presenting their own framework or model [53] [54]. A study by Salamat et al. [55]

who mapped the various frameworks together to get a bigger picture, integrated

these frameworks to get a more robust investigation lifecycle. This lifecycle is

discussed in more detail.

2.3.1 Digital investigation lifecycle

From the mapping done by Salamat et al. [55], it can be concluded that the digital

investigation lifecycle consists of five main phases that are to be conducted to

maintain standardisation. An overview of the investigation lifecycle is presented in

Figure 2-1. The different phases are discussed in the proceeding subsections.

Figure 2-1. Investigation lifecycle

2.3.1.1 Planning

The planning phase of the investigation lifecycle involves identifying and locating

computing devices that need to be acquired [56] [57]. These devices must be linked

to probable cause, and a warrant is needed to seize the required devices. An

investigator would need to study the case at hand and know what crime was

committed in order to better collect information from potential sources. For example,

an investigator would need to identify the case as being either civil or criminal, and

whether the environment where potential digital evidence may be found is controlled

or uncontrolled. From there, the investigator would need to prepare how to deal with

the case and identify the computing devices to acquire for forensic imaging. The

investigator would also need to identify any tools or hardware needed to extract the

data for analysis.

19

2.3.1.2 Acquisition

Only items specified in a warrant are allowed to be collected in a legal manner. The

collection of items (in this case, information) needs to admissible in a court of law

[30]. Therefore, the integrity and originality of the data must be proved. During

acquisition, a chain of custody needs to be maintained, a log must be kept of all the

processes performed, as well as the timestamps of each item [54]. Seizing a digital

device can only be allowed if it does not affect day-to-day business operations [30].

An image of the devices is normally obtained through imaging software. Before the

imaging device is connected, a hardware write-blocker is used to prevent any

information being written to the original device and thus violating its integrity. Any

evidence found thereafter is consequently inadmissible. The original data is never

touched and should never be altered or modified in any way (this serves as an

integrity check [37]). When an investigator arrives on the scene, a hash is obtained

of the original data. Then a copy is made, and the hashes of the copy and original

are compared to ensure that integrity of the data has been preserved.

2.3.1.3 Preservation

The copy of the original is subsequently securely stored and transported in an

enclosure, making sure that the data does not get corrupted or incurs any physical

damage that may invalidate the collected data [58]. The enclosure is intended to

protect the data from extreme weather such as direct sunlight and electromagnetic

fields, which may damage the storage device [59]. It is also important to maintain

the chain of custody when the data is transported. The data is next transported to a

digital forensic lab where analysis of the stored data can be performed.

2.3.1.4 Analysis

Traditionally, data analysis would be done on a copy of the original copy. In other

words, the copy obtained and preserved from the above-mentioned phases is

copied again and care is taken to ensure that the integrity is the same between the

two copies. One copy will now serve as the original. This is done because the

original device may need to be used again by the target and to allow business

operations to resume as normal. This image copy is safely stored and write-

protected, and it is not used for any analysis due to it being equivalent to the original.

The second copy is now used for analysis, but it is also mounted as read-only to

ensure further analysis is unbiased and the integrity of the data remains intact. The

analysis is performed by mapping all data obtained, for example log files, timelines,

event logs, and event reconstruction. Several tools that can be used to perform

analysis are further explained in Section 2.3.2. After the analysis has been

completed, the final reporting phase is reached.

20

2.3.1.5 Reporting and dissemination

This phase serves as the conclusion of the investigation where all the findings from

the analysis phase are documented in detail, forming a report. This report needs to

be thorough and describe all processes explored and analysed. The report can

serve as evidence and be admissible in a court of law, depending on the nature of

the case and the processes followed. The author of the report may also need to

testify in court. After a case was closed, the data and reports need to be safely

stored or securely destroyed, depending on the sensitivity of the case. This process

still needs to maintain the chain of custody and only the report and evidence may

be destroyed. Thus, the original unprocessed data still needs to be kept, in the event

that the case is re-opened. This phase also serves as remediation for the other

phases on how to improve the investigation lifecycle by being better prepared. Tools

were created to assist with the investigation lifecycle, thereby reducing the burden

for forensic investigators to perform analysis and ensure evidence admissibility.

2.3.2 Digital investigation tools

Several tools that exist in the digital forensic community help investigators with their

day-to-day jobs and reduce the complexity and dynamics of investigations. Some of

the main tools that are used in the investigation lifecycle are listed below.

Table 2.2. Comparison of digital forensic tools

Tool Description Licence Lifecycle

phase

FTK Imager Dumps and previews recoverable data

from a disk of any format. FTK Imager

can also acquire live memory dumps

and paging files on 32bit and 64bit

systems.

Free Acquisition

Encase Provides the ability to image disks and

perform analysis and evidence

identification with the disk image.

Provides an investigator with a guided

process of investigation lifecycle.

Yes Acquisition,

Preservation,

Analysis and

Reporting

DumpIt Capture volatile memory in a live

Windows computing environment.

Free Acquisition

DD A simple command-line tool that is

usually found in Unix systems, enabling

the investigator to disk dump an entire

disk into an image. This tool does not

automate anything or verify the image

integrity, making it a manual process.

Open

Source

Acquisition

FTK Analyses disk images in a distributed

manner and speeds up the processing

of data.

Yes Preservation,

Analysis and

Reporting

21

Tool Description Licence Lifecycle

phase

Autopsy Enables parallel processing with Open

Source plugin functionality, making it

extensible and effective for non-

technical investigators.

Open

Source

Preservation,

Analysis and

Reporting

Volatility The leading Open Source memory

analysis platform that provides powerful

packages to analyse volatile content in

memory from a memory dump.

Open

Source

Acquisition

The investigation lifecycle is a reactive approach to digital forensics. It is performed

post-incident when more unknowns are at play and potential digital evidence may

be lost due to the volatility of memory and the nature of the digital artefacts. In order

to address this limitation, the Digital Forensic Readiness (DFR) approach, a

proactive approach of digital forensics, has been developed [60] [61]. The DFR and

its corresponding processes are further discussed in Section 2.4.

2.4 Digital forensic readiness

Digital Forensic Readiness (DFR) is the ability of an organisation to maximise

evidence collection whilst minimising costs (as defined by Tan [60]). DFR has two

main objectives. The first is to maximise the ability of an environment to collect

credible digital evidence. The second is to minimise the cost of conducting an

investigation in an incident-response scenario. This means that to achieve DFR,

potential digital evidence collection needs to occur prior to an incident. DFR is a

proactive approach to digital forensics that is more robust and cost effective. The

implementation of a DFR in any organisation requires an in-depth understanding of

business operations and may differ from company to company. Therefore,

Rowlingson [61] proposed a ten-step process of implementing DFR. These

processes help organisations better identify and prepare for evidence collection.

However, the processes are not standardised, and to this effect, some organisations

cannot follow this implementation. The ISO/IEC 27043 [30] provides a more robust

guideline about digital investigation processes as well as readiness processes.

A high-level overview is depicted in Figure 2-2 that shows the readiness,

initialisation, acquisitive and investigative processes whilst having concurrent

processes [30]. The initialisation process deals with the procedure followed by first

responders, including the planning and preparation phases of the investigative

lifecycle. Acquisitive processes provide criteria on how potential digital evidence is

identified, acquired, transported and stored. Investigative processes deal with the

conducting of forensic analysis, the reporting and presentation of a case, as well as

the dissemination thereof. The concurrent processes are the operations that occur

22

side by side with the other process classes, which include documentation,

authorisation, preserving the chain of custody and digital evidence preservation. The

readiness processes are the main class, where the other processes can be

simplified by gathering potential digital evidence prior to the incident, as well as pre-

analysis, thus making the other processes easier to achieve [35] [44].

The next section discusses the ISO 27043 readiness processes in more detail.

Figure 2-2. Digital forensic investigation process model

2.4.1 Digital forensic readiness processes

In order to assist forensic investigators and reduce the costs of an investigation, an

organisation would need to implement some readiness processes. These processes

have four main aims [30]:

1. Maximising the potential use of digital evidence

2. Minimising the cost of digital investigations

3. Minimising interference with business processes

4. Preserving or improving the current level of information security systems

In order to achieve these, three readiness processes groups were created, planned,

implemented, and assessed, as is illustrated in Figure 2-3. The planning processes

group consists of planning activities for scenario definition, identification of potential

23

digital evidence sources, pre-incident collection and storage, pre-incident analysis

and defining the system architecture. The implementation processes group involves

implementing all the planned activities. The assessment processes determine the

effectiveness of the implementation and indicate if any adjustments are needed.

Figure 2-3. Readiness processes groups

The planning processes group consists of six stages, as shown in Figure 2-4. The

scenario definition encapsulates all the probable scenarios for the examination of

digital evidence. This defines the area and details of the aspects examined by the

planning phase. The next step is the identification of potential digital evidence

sources. This step looks into identifying probable sources that may have evidentiary

information that could aid an investigation. It focuses on the larger picture by

identifying generic sources like network or activity logs, which may have evidentiary

value.

Planning pre-incident collection, storage and handling of data that may constitute

potential digital evidence, forms the third phase, during which planning is done on

how potential digital evidence should be collected. There also needs to be a criteria

on how this collected potential evidence should be stored, represented and

preserved, such that it can be used in a court of law, while ensuring forensic

soundness processes.

Planning pre-incident analysis of data that represents potential digital evidence

revolves around how data collected prior to the incident is analysed and what

artefacts or patterns are being looked for in the data. Based on this analysis, the

procedures for incident detection are planned as well as the steps that should be

taken when an incident is detected. The last phase involves defining the appropriate

24

system architecture. In this system-planning phase, the best architecture is chosen

to meet all the requirements of the previous phases. The phase focuses on the

specific technologies and methods that are to be used in the next process group,

namely the implementation process group.

Figure 2-4. DFR planning processes group

The implementation processes group comprises four stages, as is shown in Figure

2-5. This group focuses on implementing the planning processes and starts off by

implementing the system architecture that was defined in the planning process

group. This first stage revolves around the technologies and topologies that will be

used to realise the planned system. In the second stage – the pre-incident data

collection, storage and handling stage – the implementation of the actual collection

of data is performed. Storing the collected information can be seen as a buffer that

will be used to implement the third stage – pre-incident analysis – which will then

determine if an incident actually occurred and therefore trigger the rest of the

investigation lifecycle.

The assessment processes group entails assessing whether more information

needs to be collected and analysed. Figure 2-6 depicts the two stages in the

assessment process group. They mainly serve as verification for the implementation

group to determine whether they need to implement more changes in order that the

proposed framework can be more refined and robust.

25

Figure 2-5. DFR implementation process group

Figure 2-6. DFR assessment process group

2.5 Conclusion

In this chapter, digital forensics was discussed in detail, with the focus on digital

investigation and digital forensic readiness. In summary, it not only provides the

background to this research, but also paints the picture of why digital forensic

readiness can help the forensic community when conducting investigations.

Chapter 3 discusses malware forensics and what it entails. A brief overview of

malware and malware analysis is presented in this chapter.

26

3. CHAPTER 3: MALWARE FORENSICS

3.1 Introduction

This chapter provides an overview of malware, types of malware, types of

propagation methods, adaptive techniques and ransomware. To better understand

the scope of this research, Chapter 3 provides the necessary background to fully

understand the proposition presented and modelled by this dissertation.

Cybersecurity involves the protection of computers, networks and data from

unauthorised access [5], as well as securing systems from exploitation and

exfiltration by internal and external parties [5]. Cybersecurity is one of the major

research areas in the current digital age, owing to the ongoing interconnectedness

of the internet [5] [62]. Since the internet is so vast, it is almost impossible to ensure

that every one of its users is protected against threats [1] [28]. These threats mostly

appear in the form of malware that exploits vulnerabilities within a system or

resulting from user behaviour. Malicious software, also known as malware, is a

piece of software code that is written with the intention to cause harm [5] [63].

According to the report by Symantec in 2017 [64], one in every 131 emails contains

malware. The report further states that malware is one of the biggest promoters of

system infection and that ransomware is mostly distributed through malicious emails

[64]. According to the CSIS-McAfee Report, the potential cost of cybercrime to the

global economy could be as high as US $500 billion (see Figure 3-1) [65]. As a

median value shown in Figure 3-1, an attacker stays in a network undetected for

approximately 146 days. Furthermore, approximately 43% of cyberattacks are

targeted at small businesses [66]. Users continue to have insecure passwords with

statistics showing that at least 63% of all passwords in an organisation are

compromised [65].

Recent statistics from AV-Test have indicated an exponentially growing trend of

malware-based cybercrime over the time span of one decade, as depicted in Figure

3-2 [67]. This further affirms that malware can be expected to rise in years to come.

In 2018, AV-Test reported a total of 856.62 million malware samples, in comparison

to May 2019 when an increase of 48.29 million samples was observed in under six

months. The rapid growth of malware can generally be attributed to the increase in

computing devices, lack of software updates, unpatched systems and email

infections [5] [64].

27

Figure 3-1. Microsoft advanced threat analytics infographic [65]

Figure 3-2. A decade’s statistics of malware trends [67]

28

Fortunately, anti-virus software has improved significantly over the years, providing

quick updates and defensive measures to prevent malicious activity [68]. However,

despite having these measures in place, organisations are still vulnerable to new

attacks and have proven to be ineffective against ransom-based type of malware

[69]. This is attributed, in part, to the limitations of the traditional signature-based

detection methods that simply extract the signature of an executable and then

compare it to known malicious signatures [70]. Figure 3-3 next depicts the lifecycle

of the malware detection process for traditional anti-virus software in a typical

operating system (OS).

Figure 3-3. Signature-based detection

In an OS, a process is an execution of a program or executable code that performs

a specific task. Signature-based detection is normally performed by taking the

process or program and extracting patterns in terms of the byte sequences and

actions performed. Malware has significantly progressed in recent years and now

has adaptation techniques in place to avoid detection [17] [44]. Ransomware has

many variants, with each being an improvement on the preceding variant, thus

enhancing the effectiveness of subsequent variants. Due to the unpredictability of

program execution, anti-virus software is rendered ineffective in detecting newer

variants of malware.

The advancement of artificial intelligence has given rise to more models of detection

using machine-learning techniques, for instance neural networks and decision tree

classifiers [71]. Other models also looked at using the idea of honey files (files that

are likely to be attacked) as a means for malware detection [72]. Event-based

approaches looked at patterns and sequences that occurred to help detect malware

activity [73]. These models and techniques recorded significant successes in

detecting variants of malware. However, novel variants of malware tend to evade

detection, while the existing techniques could be biased or limited towards a given

variant [69]. Behavioural-based detection methods are more limited in capabilities

as they induce higher overhead costs and cause degraded performance, yet added

security. A typical process of behavioural detection can be seen in Figure 3-4.

29

Several factors are considered when analysing the behaviour of an executable –

from the type of operations or sequences the executable follows to the patterns that

are preloaded in AV databases.

The next section provides an overview of malware and presents the necessary

background to understand how malware works and how their activities differ from

one another.

Figure 3-4. Behaviour-based detection

3.2 An overview of malware

Given the enormous volume of existing malware samples, each type of malware

can be further classified, based on its characteristics. These characteristics help to

determine the severity level of a specific malware. Some of the most common types

and most recent malware types are further discussed in the proceeding subsection.

3.2.1 Types of malware

The types of malware commonly encountered include viruses, trojans, spyware,

worms, adware, botnets, rootkits, and more recently, ransomware. A brief

description and example of each malicious type are given below.

• Virus – Similar to the common definition of the English word, a virus is a type of

malware that infects specific files within a computer system. These files can be

program files, data or personal files. Viruses can spread themselves throughout

the system, causing more havoc. Viruses is a misnomer as they are not

necessarily intended to cause harm, but rather to make a user feel that their

system is compromised. When a computer is infected with a virus, a range of

strange effects may become evident, for example decreased performance,

frequent pop-ups, crashes, browser homepage changes and the installation of

unknown programs. The effects of a virus can sometimes be reversed easily [74].

30

One of the most virulent computer viruses was the ILOVEYOU virus [75]. This

malware would infect the system and send itself to all the contacts in the

computer’s mailing list, followed by overwriting files in the system. This could lead

to a complete compromise to the extent that a computer could become

unbootable.

• Worms – Designed to quickly spread over a local network or the internet, a worm

would infect a computer and spread to the next computer on the network,

essentially infecting all the computers on the network. Morris worm was the first

computer worm that was distributed over the internet [76]. This worm worked by

exploiting Unix Sendmail and other vulnerabilities, thus slowing down the system.

Furthermore, once a system had been infected, it could get infected again and

further degrade performance, similar to the effect of a fork bomb (a process

continuously replicating itself) [77].

• Trojans – This is a kind of malware that seems legitimate or is a part of the

legitimate software that has been tampered with. The main purpose of a trojan is

to gain backdoor access to the system [78]. With this backdoor, maximum

information is extracted and used to plan an attack or breach into systems. A user

is often unaware of these backdoors and oblivious to what is happening in the

background of the system. This is because attackers run stealthy tools in the

background. The different types of trojans, namely backdoor trojans, download

trojans, remote access trojans and distributed denial of service (DDOS) trojans

are each designed with a specific task. ANIMAL, believed to be the first example

of a trojan, dates back to early 1975 [79]. This trojan was portrayed as a game to

guess what animal the user was cognitively considering by asking a set of 20

questions. Inside the ANIMAL game was an additional software program called

PERVADE, which scanned through all directories in a system replicating the

program. Although there was no malicious intent in the replication, it introduced

the fundamental idea of how a trojan works by creating backdoors into systems.

• Spyware – The sole purpose of spyware is to spy on the user. It runs in the

background, tracking everything the user does on the computer – from web

browsing to activity on the machine. Spyware provides an easy way for attackers

to get hold of the user’s passwords and banking information [78]. Some attackers

use spyware to lay hands on highly classified information from high-profile targets

like high government dignitaries, high-profile lawyers, and government security

agents. A good example of spyware software is Pegasus, created by the NSO

Group. Once installed, it had root and remote control of any mobile device [80]. A

more recent case seen in May 2019 was the case of spyware that exploited the

WhatsApp application; a commonly used messaging application. The exploit was

executed by sending specially crafted Secure Real-Time Transport Control

Protocol (SRTCP) packets through the application’s Voice Over Internet Protocol

31

(VOIP) causing a buffer overflow. This gave Pegasus the ability to install and take

over a mobile device without user notification [81].

• Adware – This malware is spread through online ads by downloading free games

and software. It is not particularly malicious but creates backdoors or

vulnerabilities in systems that other malware can exploit [74]. Adware mostly uses

catchphrases to trick users into downloading and installing the software. This

phenomenon is also known as Potentially Unwanted Programs (PUP). Frequently,

other forms of malware like Trojans are used in conjunction with adware to

compromise systems. Attacks usually originate from web browsers when users

visit malicious sites, where the attacker tricks the user into downloading and

installing malicious software. One of the types of adware most available today is

1ClickDownloader [82]. It claims to download any file with the fastest speed, but

actually changes configurations in the system that cause problems and degrade

performance.

• Botnets – These are a group of infected computers on a network that an attacker

has control of. The computers usually work together towards a common goal that

the attacker wishes to achieve. One such application of botnets is to cause a

DDOS attack on a system to take it offline or to breach the system to steal some

confidential information [25] [83]. An example of how a botnet can be infected

occurred with Mirai malware. This malware scanned the network and infected all

Linux-based machines to be used as part of a botnet. Mirai went even further by

targeting all IoT (Internet of Things) devices with an ARC processor [84]. This

made it easy for the attacker who controlled the botnet to target websites and

launch DDOS attacks.

• Rootkit – This is the most dangerous and advanced form of malware that gives

the attacker full administrator access to the system [74]. Rootkit generally masks

its existence in a system so that the attacker can gain maximum time within the

network or computer. It goes without saying that since rootkits are masked, they

are more difficult to detect, and traditional anti-virus software would not be able to

detect them easily. Different levels of infection can occur, namely user mode,

kernel mode, and hypervisor mode [85]. The more common level is user mode,

due to the ease of implementation and simplicity of infection. Kernel mode is a bit

more difficult to achieve as it involves infection at a low level, but it is often

extremely difficult to detect. Hypervisor mode is the most damaging, as this is an

infection on the firmware level. It tricks the kernel and creates the illusion that it is

interacting with the hardware directly and not with some malicious firmware, thus

further compromising virtual machines [85].

• Browser hijacking – This is malicious software that infects your web browser and

gives the attacker access to your online accounts and history [86]. The hijacking

attack, which usually attempts to inject the browser with JavaScript, is also known

32

as Cross-Site Scripting (XSS). Once the browser has been infected through a

malicious script, the attacker can gain access to the cookies in the browser. This

allows the attacker to use these cookies that contain the user’s session keys to

websites that were logged into. In this way, the attacker gains access to logged in

websites. The browser “Ask Toolbar” is a good example of browser hijacking as it

changes the default toolbar and default homepage [87].

• Ransomware – Being a form of malware that affects a huge number of systems,

mostly in organisations and institutions, ransomware encrypts the user files and

holds the decryption key as a ransom for huge amounts of untraceable money,

like cryptocurrencies [16]. This ransom money is usually paid through bitcoin

because the payment is done anonymously, and it is very difficult to trace where

the funds are being withdrawn from. The first known ransomware attack that

occurred in 1989 used the so-called AIDS trojan and targeted the healthcare

industry. From then onwards, the healthcare industry remained the top target of

ransomware reports [17] [88]. This is due to the sensitive information and systems

that are needed on demand. Since it is vital for the systems to be online, the only

suitable solution is to pay the ransom and decrypt the systems so that operations

can resume as normal [16]. A more detailed explanation of ransomware is

discussed in Section 3.4.

The next subsection discusses the way in which malware can replicate itself within

a network in order to fulfil its purpose and cause the biggest amount of harm.

3.2.2 Method of propagation

Different malware uses specific methods of propagation or replication to perform or

cause maximum damage as intended. Some of the most common methods of

propagation include social engineering, wired/wireless networks, file sharing,

virtualised systems, and email. A brief description of each method of propagation

follows next.

• Social engineering – In this method, attackers exploit human trust and

behaviour. They manipulate people to perform a certain activity or to provide

important information by using deception and the reputation of trusted

friends/partners. This can be as easy as asking someone to download and install

malicious software under the pretence that it could speed up the computer [74].

• Wired/Wireless networks – Integrated networks are the most vulnerable target

if vulnerabilities exist on the network and a malicious payload manages to enter

the network. This essentially means that all computers on that network could be

infected. This is typically how a worm spreads and causes the most damage whilst

using polymorphic functionality to change itself to remain undetected [89].

33

• File sharing – Peer-to-peer distributed file sharing is an easy way to store items

on a public or private network. It also provides easier and cheaper file storage as

opposed to using a central storage facility. However, it introduces security

concerns, because if one computer is infected and uses file sharing, there is the

potential that other computers on the network can also get infected [74]. A chain

reaction is caused when someone accesses the infected file. For example, an

attacker could attach malware to a newly screened movie or piece of music, and

when people download and run it, the malware is allowed to run in the

background. Another method of file sharing involves the traditional copying of files

from one disk to another through an electronic medium [90], for example, using a

flash disk or an external drive.

• Virtualised systems – Nowadays, many hosting providers use virtualisation in

order to reduce hardware costs. If security is not a priority, the malware could

infect one virtual system on the server and cause all virtual systems running on

that server to be infected [88]. The reason for this is that virtual systems run on

the same underlying hardware leveraged by the malware.

• Email – Most attacks originate from email spam and malicious emails that entice

users to click on links or to download and install applications that open backdoors

into systems. Attackers take advantage of inexperienced users by tricking them

to do something that can benefit the attacker [74] [88] [91].

Each of the identified methods has a peculiar evasion technique that enhances its

effectiveness as a malware. The various types of adaptive techniques used by

malware are discussed further in the next section. These techniques are used to

evade detection by anti-virus and other malware detection tools.

3.2.3 Adaptive techniques used by malware

Over the years, malware started to get more advanced by adapting and

counteracting security mechanisms that prevent them from propagating. These

techniques adopted by malware render it hard to detect, as each technique brings

in a new aspect to consider. Some of the common techniques used are

polymorphism, metamorphism, obfuscation, DDNS, and fast flux.

• Polymorphism – This technique employs a modification mechanism to avoid

signature-based detection. The malware simply changes itself without completely

changing the code or changing its execution structure [92] [93]. However, some

parts of the malware remain the same, making it easier to be identified by using

adaptive detection algorithms [94].

• Metamorphism – This technique completely rewrites the malware so that it is

extremely difficult to be identified by anti-malware software. With each

34

propagation, the malware is changed (undergoes metamorphosis) that further

adds to its unique behaviour and makes it almost impossible for anti-malware

software to identify it [94] [95].

• Obfuscation – By using archive files such as .zip, .rar, .tar or .cab, the malware

pretends to be an archive. This method encrypts the core (malicious) code so that

it cannot be detected through an anti-virus. For example, base64 encoding is

commonly used to sneak malware into the system using HTTP/HTTPS channels

[94].

• DDNS – The Dynamic Domain Name Service (DDNS) is used where domain

name resolutions (converting domain names to IP addresses) are performed

dynamically in real-time. Compromised IP addresses can easily be moved

anywhere, as domain caching is limited to short periods of time. This leaves a

small gap for attackers to send through malicious payloads without easily being

detected, owing to the small window created when domains are moved [93].

• Fast Flux – This technique is mostly used to control large networks through DNS.

A botnet can use DNS records to hide malicious websites and phishing attacks by

swapping IP addresses in and out at high frequencies [96].

It is not enough to know the basics of malware propagation methods. In order to

understand how ransomware works and how it can be analysed, one first needs to

understand how, from a security perspective, malware can be analysed. The next

section presents several malware analysis techniques.

3.3 Malware analysis

Malware analysis revolves around breaking down and analysing malicious software.

Several methods can be used to analyse malware and are further discussed in the

subsections that follow.

3.3.1 Reverse engineering

Reverse engineering involves breaking down an executable on a low level in order

to analyse it in an attempt to reconstruct or determine its construction and

composition [97]–[99]. The process of understanding a program or executable is not

as easy as it seems, especially when nothing is known about the executable. This

process of reverse engineering is a manual discovery process where the dissection

of an executable is done on a low level by converting byte code into assembly code

to better understand what logic was used in the program. After disassembling the

code, the next phase of reverse engineering is to attach a debugger to the

executable while it is being executed in order to step into the executable and

determine what part of the code is executing.

35

In order to determine countermeasures and possible defence and recovery

mechanisms, security researchers often make use of reverse engineering to

understand better how malware works and what makes it so unique. Whilst this

technique is beneficial to identify criminals, it poses a threat to enterprise and paid

services. It makes it easier to crack paid programs by bypassing the authentication

process or restricted features. Malware analysis is a field in which continued

research is done [4] [14] [100]. It uses a huge amount of reverse engineering to

uncover weaknesses within the malware sample and determine the plausibility of its

effects to be reversed. To improve security and prevent the temperament of benign

paid software from being reverse engineered, obfuscation techniques and

encryption mechanisms are used. However, reverse engineering also introduced a

double-sided sword effect, where attackers now use these techniques to prevent

malware samples from being reverse engineered [63] [74]. This causes a huge

challenge to a security researcher to find weak points in the malware.

Some of the fundamental concepts/approaches to reverse engineering and

analysing malicious samples are further discussed in the proceeding subsections.

3.3.2 Controlled environment

In order to reverse engineer a malicious executable, the environment in which the

executable is running needs to be controlled [101]. This adds a layer of security to

prevent the malware from infecting the host machine and doing something that

cannot be undone. The use of sandboxes is a necessary precaution when a

malware sample is analysed. Often, the first step in reverse engineering a malware

sample is to outright run the executable and to observe what is happening and what

the target or outcome is.

More advanced malware like ransomware needs to be run in a sandbox, due to the

encryption of files and the irreversible nature of the effects of the ransomware. Many

online sandboxing services such as VirusTotal [102] and Hybrid-Analysis [103] work

out of the box by just uploading a malware sample. However, the samples submitted

are publicly available and require an active internet connection, which is not optimal

for larger files. A localised sandbox environment is more robust and performs better

because it can be manually controlled – as opposed to the cloud versions. The

popular open-source localised sandbox framework called Cuckoo [104] has built-in

support for signature detection, both for static and dynamic analysis, which helps

with malware analysis as it is easily integrated with popular tools.

Signatures and static and dynamic analysis are discussed in greater detail in the

next subsection.

36

3.3.3 Signatures

An important aspect of understanding an executable is its signature [105]. There are

many ways in which a executable’s signature can be defined, but the main aspect

of a signature is that it is some sort of pattern (string matching) that can categorically

or uniquely identify the executable. This pattern can be a static signature, for

example taking the hash (generally MD5 or SHA-1) of the executable that is normally

used as an integrity measure but can uniquely identify the executable [106].

A behavioural signature is a more advanced form of pattern matching that involves

matching certain distinguishable characteristics of an executable and looking at the

behaviour of the executable to determine what category or family the malicious

sample belongs too. Taking a worm for example, some of its key characteristics

would be replication over the network using a certain structure or protocol.

Performing in-depth analysis of the executable can take place in two ways – either

by means of static analysis or dynamic analysis. A brief overview of the types of

analysis follows.

3.3.4 Static analysis

Performing static analysis revolves around disassembling the byte code of an

executable and translating it into an assembly language to further determine the

logic and patterns that can be extracted [107]. Static analysis focuses on information

that can be extracted from the executable without running it. Information that could

be extracted includes searching for strings, calculating the entropy of the

executable, examining the file signature, and determining the PE (Portable

Executable) headers as well as any encryption [24]. Although static analysis works

well for a quick overview of what the executable entails, it is still subject to evasion

techniques like obfuscation and encryption, thus making the static analysis more

limited. With the advances of malware samples, a static analysis approach is not

enough to determine key characteristics of an executable. Therefore, the runtime

execution needs to be analysed to determine the behaviour of the executable.

3.3.5 Dynamic analysis

Analysing the runtime behaviour of an executable can be a trial-and-error tedious

process. One would need to determine the nature of the executable by analysing

several factors, including (but not limited to) network communication, I/O operations,

memory, system operations as well as functional call analysis. It is important to know

the nature of the executable, and therefore it is suggested that when performing

dynamic analysis, a controlled environment should be used [101]. This is a

precautionary measure to prevent the executable from doing something that cannot

be undone. Analysing the memory can determine any key operations and potential

passwords or decryption keys. More advanced malware can detect when it is being

executed in a virtual environment, thus making dynamic analysis a bit more

37

cumbersome [108]. Determining the method by which a malicious executable is

transferred or replicated can help to improve the results from analysis.

The next subsection briefly discusses exploitation techniques used by malware.

3.3.6 Exploitation techniques

Some malware uses existing exploitation techniques or even unknown/unaddressed

vulnerabilities, also known as zero-day vulnerabilities [109], to get executed. One

popular exploit developed by the NSA but later leaked by the Shadow Brokers

hacker group is called Eternal Blue [110] [111]. This technique exploited Microsoft’s

SMB protocol, where the server mishandled specially crafted packets that allowed

arbitrary code execution [110]. This meant that with this exploit, the attackers could

deliver and execute their malware with ease. Thus, by determining that an

executable uses SMB, it could mean that it is attempting to propagate over the

network and support the assumption that it could be a worm.

3.3.7 Obfuscation

To protect and hide the operations of an executable in an attempt to make it more

difficult to reverse engineer or detect, obfuscation techniques are employed [74].

These techniques help protect the integrity of enterprise applications and paid

services. However, attackers may also adopt these techniques to prevent their

malware from being detected. Some of the techniques they use are defined below:

• Rename obfuscation – renaming variable names to make the aim of the variable

less obvious by using different schemes, for example single-letter alphabets.

• String encryption – hiding some signatures and hard coded strings by using

encryption instead of plain text.

• Binary linking – converting parts of the code into separate libraries and linking

the object code to the executable, which makes the file size smaller as well as

more difficult to reverse engineer.

• Anti-debugging – detecting when a debugger is attached to the process to

prevent the executable from being altered through debug stepping (going through

the execution of code line by line), which is one of the vital processes used for

reverse engineering.

Another major way of obfuscation is by encrypting parts of the code. The next

subsection discusses what encryption methods are used and how they can help to

determine the nature of the executable.

3.3.8 Encryption methods

Executables use several types of encryption: symmetric key encryption, asymmetric

key encryption and even key-pair public-private key encryption [69] [112]. Most

executables use pre-existing encryption schemes in order to have a form of

38

standardisation, as well as to ensure that nothing abnormal will occur during

encryption or decryption. Malicious executables use well-known standards of

encryption, often as a combination of two or more encryption standards. This is to

ensure a robust encryption process that will make it difficult – if not impossible – to

reverse engineer. By determining that an executable performs encryption, it can

further be isolated as to the specific encryption schemes that are being used. For

example, if RC4 encryption standard is used, we know that the executable might be

contacting a command-and-control server, as RC4 encryption is generally used for

its simplicity and speed [4].

The next subsection discusses the communication protocols in which a malware

executable can be transferred or dropped.

3.3.9 Communication protocols

Executables often have some form of communication with a server, using client-

server architecture with the standard TCP/UDP control protocols. By establishing

what external servers, the executable is contacting, it is easier to determine what

information the executable is collecting and potentially to find out whether or not the

executable is from malicious origin. Further analysis can determine what data is

being sent and potentially trick the executable by altering the data it. For example,

in the case of ransomware, if the SMB protocol is being used, we can make the

assumption that the protocol is used to spread or get arbitrary code execution using

an EternalBlue exploit [113]. In digital forensics, it is often a complicated problem to

trace the origins of an attack as well as to find any incriminating evidence; therefore,

criminal attribution poses a major challenge.

3.3.10 Attribution

Determining the origin of an executable is usually not difficult for benign

executables. This is because an executable often carries metadata with it, providing

some background of the executable as well as the author and company it belongs

to. However, tracing the origin of a malicious executable can be a difficult process

[114]. Malicious executables do not have this information set and usually carry the

details of an anonymous hacker group that is known just by its name [63]. The aim

of such a hacker is to offer competition and simply to grab attention. Some hacker

groups even embed their signature within the executable to take ownership of the

attack. Unfortunately, this signature is not enough to identify a culprit and does not

carry enough weight to incriminate someone in a court of law. Using some of the

factors mentioned in the previous subsections, executables can be grouped into

certain categories.

3.3.11 Categorisation

By categorising executables, reverse engineering becomes a bit easier because a

more specific process can be followed to analyse the executable [115]. For example,

39

if after performing some static analysis it is determined that the executable is

malicious and resembles ransomware, it would reduce the scope for dynamic

analysis and make it more specific to certain aspects that would be related to

ransomware. This helps with the grouping of malware and with identifying the

families the variants belong to.

3.3.12 Memory analysis

Analysing memory can prove beneficial with passwords extraction, loaded libraries

and buffer data [116]. A deep understating of memory management and memory

mapping is needed to perform memory analysis, since it is random access. This is

due to the complexity of the address space and the ability to link/look up the place

where data is stored in memory. Tools like Volatility [117] that help with memory

forensics can also help an investigator to analyse memory and extract dynamically

loaded libraries and file locks. Buffers can also be inspected for potential passwords

and data flow, and they are useful for editing settings within memory for the

executable to change how it behaves. In a ransomware scenario, it is possible that

the decryption keys are available within memory for a limited period of time, thus

allowing potential recovery from a ransomware attack.

The next section offers an in-depth discussion of ransomware, proving some

statistics of ransomware as well as a comparison of various ransomware.

3.4 Ransomware

Ransomware is a form of malware that affects vast numbers of systems, mostly in

organisations and institutions. As indicated earlier, this form of malware encrypts

the user files and then withholds the decryption key as a ransom for huge amounts

of untraceable money, usually paid through Bitcoin [88] [118]. One of the fastest and

widespread propagation of malware is through ransomware. Ransomware uses a

combination of different types of malware, for instance a worm that replicates and

transfers itself over a network and that can be attached to a trojan or adware to enter

the system.

As highlighted in Figure 3-5, global ransomware attacks increased by 36% in 2017,

with more than 100 more variants used by hackers. A total of 34% of entities globally

were willing to pay the ransom and about 64% of such entities involved American

companies [64]. The FBI estimates that 4000+ ransomware attacks have occurred

globally every day since 2016 [119]. The amount of ransom demanded per attack

has increased to an average of $1077, which is an increase of 266% [64].

Ransomware uses scare tactics to trick people into paying by using threatening

messages and setting a time limit to pay before the ransom increases. Ransomware

can appear in different shapes and sizes, some being more harmful than others;

40

however, all have the same goal. Common types of ransomware include crypto-

malware, lockers, scareware, RaaS, and leakware.

Figure 3-5. Ransomware statistics compiled by 24BY7 Security

• Crypto malware/encryptors is the most commonly seen form of ransomware

today. Crypto ransomware has the capability to cause significant damage within

a short time, as it simply encrypts as many files as possible matching the file

extensions that the attacker chooses. These file extensions differ for each

ransomware. After the files have been encrypted, the attacker extorts money in

return for their decryption. An example of crypto ransomware was seen in the

recent outbreak of the devastating WannaCry ransomware in 2017 [120] [121].

• Lockers infect the operating system in such a way that the legitimate user is

locked out of the system. By modifying the bootloader of the OS, the attacker then

holds an unlock key until the user pays the ransom. Modifying the bootloader is

a tricky task and requires the Master Boot Record (MBR) to be changed. This is

usually achieved by rootkits or trojans. After the bootloader has been modified,

the attacker loads their own program/OS instead of having the system boot

normally. Lockers in their true form have not been used much lately, because

they are relatively easy to remove by reloading the bootloader [118]. However,

more advanced crypto ransomware makes use of locker ransomware as well. An

example of this is Not(Petya), where files are encrypted on the disk, and the

bootloader is modified to not let the OS boot normally [88].

• Scareware is a form of ransom disguised as a genuine application. It claims to

have discovered security vulnerabilities in a system but demands money to fix

them. When the user refuses to pay, the software will display ads and pop-ups

41

that will cause the user to think the computer is infected and eventually convince

them to pay [122]. Scareware is usually not widespread as it relies on a user to

install the application rather than to merely click on a malicious link or email. These

applications are generally used to steal user information like the sites your

browse, personal files, and banking information. SpySheriff is an example of

scareware posing as anti-spyware software [123]. What this scareware does, is

to scan the disk and pretend that spyware has been installed, thus prompting the

user to pay for the spyware to be removed.

• RaaS (Ransomware as a Service) is like a middleman for a ransomware attack.

RaaS provides a ransomware service where malware is hosted and distributed

anonymously by a group of skilled attackers. It is a service that is available to

people to buy/rent on the dark web. The service providers of the ransomware take

care of everything – from developing the ransomware, injecting it into the targets

and spreading it on the network. They also manage the ransom payments and

decryption process [88] [124]. An example of RaaS is Cerber, which has

Command and Control (C2) servers that the ransomware would contact for

remote execution and control [27].

• Leakware/Doxware is a form of ransomware that steals personal images and/or

information from a computer and then demands a ransom as a form of blackmail.

Leakware turns a user’s personal data against them, intimidating the user to pay

as soon as possible so as to avoid their reputation from being tarnished.

Each of the above variants leverages a different method or builds on the flaw of

another variant to make it more harmful and widespread. A descriptive summary of

existing ransomware is presented in Table 3.1.

Table 3.1. A summary of trending ransomware

Name
Encryption

algorithm

Method of

propagation

Vulnerability exploited

WannaCry
AES-128,

RSA-2048

EternalBlue Windows Server Message Block

(SMB) protocol

Remark: WannaCry exploits the SMB protocol by using the EternalBlue

exploit developed by the NSA. It misuses the way Microsoft Windows

handles specifically crafted packets, which enable the execution of

certain code from the payload. WannaCry encrypts each file with a

different AES-128 key, which is further encrypted with an RSA key pair

and then added to the header of each file. The private key of the

Command and Control (C2) server is needed to decrypt the encrypted

AES-128 decryption key. WannaCry also has a control mechanism

called the kill-switch to stop the ransomware from propagating and

spreading through networks.

42

Name
Encryption

algorithm

Method of

propagation

Vulnerability exploited

(Not)Petya
AES-128,

RSA-2048

EternalBlue,

Ukrainian tax

software update

SMB, Master Boot Record (MBR)

Remark: Similar to WannaCry, but more harmful. The infection process

does not stop upon infecting system files, but also changes the

bootloader to load the malware. This process bypasses the booting of

the OS and uses the CHKDSK process where, instead of loading the

OS, it loads the Petya ransomware. While this message is shown, it

begins spawning processes in the background to encrypt the user files.

Locky
AES-128,

RSA-2048

Phishing emails Microsoft Word Macro

Remark: Locky ransomware infects the system through social

engineering in the form of a malicious Word macro. This macro then

runs the trojan binary to start the encryption. The encryption used here

adopts the same approach as that of WannaCry and Petya, creating a

new trend. The Locky method of encryption is secure if the private key

of the C2 server is not globally known. Thus, this method is

unbreakable due to the mathematics involved in the RSA encryption

algorithm.

Cerber
RC4, RSA-

2048

Spam emails and

ads

Microsoft Office Documents

Remark: Cerber is a RaaS that provides a toolkit that works even if you

do not have an active internet connection. This ransomware enters

systems through infected office documents that load the malware

through a VBScript. The Cerber form of malware is well controlled since

specific hacker groups are working together to provide this service to

less experienced hackers. They manage to propagate the ransomware

faster by using affiliated programs and social engineering techniques.

The service is for those criminals who lack the technical expertise to

execute such attacks and are looking for quick profits.

Crysis
AES-128 Remote desktop

service, VM

environment

Weak or leaked accounts

Remark: The Crysis attack is based on a user-oriented attack where

remote desktop services are hacked. It gives attackers control of the

machine, allowing them to manually install the ransomware. Crysis also

makes use of a C2 that is used to manage and carry out the attack on a

larger scale.

Grandcrab
RSA-2048,

AES-256,

RC4

JavaScript and

Document Dropper

Phishing, email spam

43

Name
Encryption

algorithm

Method of

propagation

Vulnerability exploited

Remark: Grandcrab has had many versions released – from V1 to

currently V5. This is because each version had a flaw in the encryption

that allowed decryption without paying the ransom. The analysis

showed that Grandcrab is a RaaS with each version improving on the

former. It uses RC4 encryption to communicate with the C2 server and

uses custom packing to avoid detection by anti-malware tools.

Grandcrab also uses commands to stop several important processes

like MySQL and antivirus software from running. Grandcrab relies on

emails and drive-by downloads to spread throughout the network.

The summary in Table 3.1 reveals that most types of ransomware exploit the lack

of user education and the unpatched security vulnerabilities that exist in Microsoft

Windows. Furthermore, it shows that AES-128 encryption is the most common

encryption algorithm used by ransomware. Given that ransomware infects and

hinders access to the system, post-mortem forensics (forensics performed after an

incident has occurred) is not feasible. Consequently, a more pro-active approach is

required to identify and potentially acquire any cryptographic evidence from a

system. The integration of digital forensic readiness into an organisation can

potentially provide a higher probability of successfully decrypting a ransomware-

attacked system, as well as yield crucial information/evidence about the attack.

3.5 Conclusion

This chapter provided some of the necessary background knowledge to understand

the objectives of the current research. Statistics also prove that malware is

expanding continuously while ransomware does not show any signs of subsiding or

dwindling. This is rather concerning, as the complexities of performing ransomware

investigations are increasing. A summary and analysis of common ransomware

were also presented in this chapter and provided some insightful information.

Part II entails the discussion of the proposed framework and prototype. The

proposed framework on ransomware readiness

s is discussed in the next Chapter.

44

PART III

FRAMEWORK AND PROTOTYPE

45

4. CHAPTER 4: RANSOMWARE READINESS FRAMEWORK

4.1 Introduction

This chapter is the first of the contribution chapters and provides an overview of the

framework emanating from this research. A framework, in the field of computer

science, is the approach taken to solve a generic problem by defining the perspective,

procedure or method with which it can be solved, using a high-level representation

[125]. Typically, a framework provides the necessary detail required to create a viable

solution that can address the requirements at a high level. Frameworks are therefore

abstract and cover a much wider problem scope that can comprise one or multiple

outcomes. A model, on the other hand, represents a specific solution, system

architecture or composition of concepts [126]. One of many models can exist within a

framework to instantiate the framework and further show its use. Models and

frameworks are scientific research methods because they involve a proposed,

described and evaluated methodology, which is repeatable, given the same conditions

[125] [126]. The remainder of this chapter explains the proposed ransomware

readiness framework and all of its subcomponents of identification, collection and

secure storage.

4.2 Ransomware Readiness Framework (RRF)

The proposed ransomware readiness framework (RRF) for digital forensics consists

of three main phases or parts: Parts A, B and C. Part A focuses on the identification

of potential evidence sources for the purpose of ransomware forensics. Part B

describes a trigger-based mechanism for the collection of potential digital evidence for

ransomware forensics. Part C elaborates on secure storage of the collected potential

digital evidence for ransomware forensics. The overall high-level view of the RRF is

shown in Figure 4-1. A detailed discussion of this framework is presented in the

subsequent sections.

Figure 4-1. A high-level overview of RRF

46

4.2.1 Identification

Part A of the RRF involves the identification of digital sources that may host evidentiary

information. Such sources can be any digital device from hard drives to cell phones,

but mostly they are computing devices such as personal computers and laptops. As

outlined in Chapter 2, conducting a digital investigation in digital forensics requires

from an investigator to identify the digital media that need to be acquired for an

investigation – which can lead to business disruption and unforeseen costs.

Implementing DFR processes within an organisation can significantly decrease these

costs. Therefore, with the adoption of the RRF, an investigator would beforehand know

the details of the evidence sources to collect. The details of Part A of the RRF are

shown in Figure 4-2. They comprise four main aspects that need to be identified as far

as ransomware is concerned, namely network architecture, computing devices,

operating systems and evidence sources. A description of each component and its

corresponding composition are presented in the subsequent subsections. In each

section, a reference to the component is indicated with a unique number (A1-A6) to

aid the reader’s understanding regarding the part of the framework that is being

discussed.

Figure 4-2. Part A - Overview of identification phase

4.2.1.1 Network

This section relates to the network component (A1) of the proposed RRF. Classically,

the physical and logical design of how computing devices are connected is referred to

as the network architecture. The way in which these devices are physically connected

is referred to as topologies. Network connections can utilise various protocols for

communication like Transmission Control Protocol (TCP) and Internet Protocol (IP).

47

TCP is well known for its reliability of data transfer, while the User Datagram Protocol

(UDP) is known for its speed of data transfer. There are two main types of network

architectures (A2), namely client-server and peer-to-peer (P2P), which are further

depicted in

Figure 4-3 and

Figure 4-4 respectively. These architectures were identified as the most widely used

and they carry the necessary information to and from services rendered on the

internet. It is necessary to understand the way these architectures and topologies work

to know how data can be acquired from the network. For example, with a P2P network,

backups are difficult to achieve as each node may have a different state. For this

reason, backups will require more storage and computation time.

Figure 4-3. Client-server architecture

Figure 4-4. Peer-to-Peer architecture

There are several possible topology (A3) setups in a networking environment, with the

top four commonly used topologies being bus, ring, star, and mesh (see Figure 4-5).

Each topology has an advantage over the other and making a choice depends on the

organisational policies. The topology of the network needs to be known in order to

effectively find devices within the network and to trace where network traffic is going

towards. Knowing the topology is particularly helpful in identifying where network

packet loss and where malware samples could have originated from within the

network. It also helps to define countermeasures in case a network threat has been

detected, because the infected machine needs to be taken off the network to avoid

further infection of other services. For example, if a machine was infected with

malware and was removed from the network following a bus topology, there would be

an open connection on the network and network traffic will not flow correctly.

Figure 4-5. Common network topologies

48

4.2.1.2 Computing devices

A computing device (A4) is anything that can perform computations. It comprises a

Central Processing Unit (CPU) that processes data and performs calculations.

Computing devices are commonly used in modern technology. It is important to

identify the type of computing device on the network as this helps with identifying what

sources of information might be available. For example, with a laptop, the process

architecture type and components can be determined beforehand, rather than to try

and identify the device post-incident. Whilst there is a large list of computing devices,

the most common devices are personal computers (PC), laptops, servers, and mobile

phones. Each computing device uses an underlying Operating System (OS) to

process and organise data so as to achieve a flow and structure of operations.

4.2.1.3 Operating Systems

Operating Systems (A5) play an integral role in any computer architecture [127]. In

order for an application to interface with hardware, an OS is needed to control input-

output process (I/O) as well as communication between components. The OS also

controls the execution of programs as well as resource allocation and management.

The latter is particularly important to be identified as it indicates what analysis and

acquisition processes need to be performed. Microsoft Windows has been around for

more than four decades and it has made an impact on our daily lives [128].

Applications in a Windows environment have to be in certain formats and conform to

certain standards. For example, an executable (.exe) file is the most common file type

for any application in Windows. There are several versions of the Windows OS with

each providing better features and performance than its predecessor. Therefore, it is

important to identify the OS and the version, so that the knowledge base (where

information is stored, the vulnerabilities and features) is known beforehand. Such

knowledge is essential for forensic and security-related exploration, for example the

identification and extraction of evidentiary information.

4.2.1.4 Evidence sources

Identifying evidentiary sources (A6) is a challenge for DFR as it is difficult to pinpoint

what sources will contain the necessary evidentiary value. However, the registry within

a system holds the configurations and metadata about the system as well as its state.

In a Windows OS, the registry holds a plethora of important information that

investigators use to identify and extract evidence from a machine. Sources of digital

evidence in a Windows OS are further discussed in the sections to follow.

4.2.1.4.1 Memory

The dynamic and static memory of a Windows OS contains a vast amount of

information that pertains to the current state of the machine. It can potentially provide

an investigator with significant information about the active user, running processes,

as well as any malicious processes that may be running in the background, unknown

to the user. Most damages that a malicious program can do to a system usually occur

49

in its memory [11] [129]. The memory is a repository for data and program code that

is systematically structured. This structure is similar to a linked-list (see Figure 4-6),

which consists of fixed block sizes where chunks of allocated data are slotted and

stored. The location of these newly allotted data slots is determined by using lookup

tables to find and locate data within this structure, giving direct access to a specific

address for faster access [129].

Figure 4-6. Memory structure

Given that the physical memory of the Windows OS has a limited capacity, virtual

memory is created. Virtual memory is a chunk of allocated memory that exists in

secondary storage, and it extends the amount of data that can be stored [130]. The

process of swapping from virtual memory to main memory is called paging [130]. With

paging, however, gathering potential digital evidence becomes inherently complex due

to the lookup and address mapping that needs to occur before information can be

extracted. One such case is the extraction of cryptographic keys that can potentially

be found in memory [129] [131] [132]. The cryptographic key could be split up and

stored in different pages, and it can possibly be split between several non-contiguous

pages, making it more difficult for an investigator to manually scavenge these pages

for such keys. For instance, using the memory structure, search optimisation can be

performed through virtual address reconstruction. This is achieved by rebuilding

addresses that are paged out of primary memory to secondary storage where virtual

memory is located. Due to the fact that primary memory is volatile and secondary

memory is not, searching through virtual memory would be more effective, since there

would still be a chance of finding potential keys. However, such a search will work

effectively only in a post-incident scenario. This is because the incident needs to have

occurred in order to analyse both the physical and virtual memory space of a process.

Identifying what memory information would be relevant in near real-time, can

significantly help to speed up the investigation and the acquisition processes.

4.2.1.4.2 Registry

The Windows Registry is a hierarchical database that consists mainly of the

configurations and user metadata of the Windows OS [133]. The registry is a

50

structured, complex database that contains entries known as registry key-value pairs.

The registry is a rapidly and constantly growing repository that grows significantly in

size over time. With such rapid growth, it requires significant storage capacity [23].

Searching and identifying information within the registry involves a manual search

process. This process often leads to an array of difficulties for a DFI, especially in

scavenging for evidence during an investigation. Furthermore, the manual process is

vulnerable to the error of omission and commission, while subjecting the investigator

to the complexity of data analysis. Studies have been conducted to attempt to

automate the process of scavenging for potential information from a Windows registry

[23] [134]. By automating the process of identifying evidential registry keys and time

lining of registry events, the amount of data to search through and collect should be

minimised.

4.2.1.4.3 Storage media

Storage media include all devices that have the capacity to store data. This data can

be in any format, depending on the device and the size of storage. Typically, storage

media are mostly available in larger quantities. Identifying where storage devices are

located and how to obtain data dumps or extract information from these media can

significantly help an investigator to reduce the amount of time required to survey the

sources.

The identification of the evidential sources mentioned above constitutes Part A of the

proposed framework. The next section discusses Part B of the ransomware readiness

framework, which involves the collection of digital evidence from the identified sources.

4.3 Collection

The collection of Potential Digital Evidence (PDE) can be a rather complex process.

This difficulty can be attributed to the monitoring of a system while ensuring system

stability and integrity, as well as preventing or reducing the memory footprint that the

collection mechanisms could induce on the system (external modifications to the

system). For example, dumping the contents of memory with a tool like DumpIt [135],

may potentially invalidate the machine’s integrity, as the tool may have some influence

on the memory and affect the state of the machine. Extracting information from a

system to aid the digital forensic process mostly relies on a dynamic data extraction

approach, due to the volatility and constant changing of information.

A diagrammatic depiction of the collection phase appears in Figure 4-7. The collection

phase involves two main types of information, namely dynamic information (B1) and

static information (B9). Dynamic information focuses on the collection of information

that is only obtainable from runtime of a system or executable. Static information on

the other hand is information that is extractable from the executable prior to its

execution. Further details of each of these types are discussed in the subsections that

follow.

51

Figure 4-7. Part B – Overview of the collection phase

52

4.3.1 Dynamic information

When dealing with dynamic information (B1), the first location where this information

can be found would be volatile memory. This is because volatile memory changes

as the OS performs tasks, and as programs and processes are loaded and

executed. This process has however grown increasingly in complexity from the older

versions of the Windows OS to newer ones. This is particularly true for proactive

forensic processes where the access barrier is created by the security restriction

enforced by the OS. Methods and techniques of how information can be extracted

from memory, as well as the approach proposed in this study, are presented next.

4.3.1.1 Potential evidence collection from memory

A proactive approach for the collection of memory information (B2) has been

proposed in recent studies [136]–[138]. More specifically, however, the need for a

trigger-based approach has been identified as a potential technique for effective

proactive information collection [24]. This is because such techniques can reduce

process overheads whilst maintaining system stability and performance, as opposed

to constantly scanning through memory.

A context-aware trigger-based approach to data collection is explored in this study.

This technique is similar to the concept of crowdsourcing where there are several

components that provide information to provide context [139]. Examples include

monitoring different aspects of a computer, such as storage and processor usage,

which, when combined, provide a better understanding of the overall system health.

This trigger can actively monitor the system by using the least amount of processing

power whilst minimising the overhead cost of searching [129]. This is achieved by

registering events within the Windows OS. Alternatively, it can also be done by

scanning through all processes to determine newly created processes in a highly

efficient manner. The signature of a known malware can furthermore be added to

the logic of the trigger mechanism to reduce the unnecessary computation of

searching. The criteria for the trigger mechanism focus on, but are not limited to the

following:

- Entropy changes in files

- Autorun entries added to the registry

- Scanning through files and mounted drives

- Loading of the Windows crypto library

- Detecting the deletion of shadow volume copies

These criteria were met through extensive analysis of the execution of malicious

samples such as WannaCry and Petya ransomware and extracting their key

characteristics. The criteria can also be used for ransomware detection, as

discussed later in Section 5.2. As asserted in findings in [129] [140] [141], volatile

memory represents one of the most reliable sources of forensic evidence pertaining

53

to cryptographic keys and active malicious processes. This is because all the buffer

data and computations are loaded into memory for brief periods of time. A detailed

discussion about how process memory can be useful appears in the next

subsection.

4.3.1.2 Process memory

Collecting process memory (B3) can be useful, particularly when a process is writing

to restricted memory or writing into another process memory space. A process has

access to several memory regions (B5) [130] that contain much evidential

information. Memory regions are used in executing instructions and performing

operations within memory for Windows OS. A process memory region is a region

within memory that is specifically allocated to a process for its execution. In the

collection phase, process information is collected based on three main segments or

regions, namely text, data and stack [136].

Instructions are loaded in the text segment and are to be executed from the byte

code of the executable. This helps with manual tracing of where certain malicious

instructions can be loaded into memory. If this segment is marked as read-only so

that the instructions set cannot be manipulated, the reason for it is usually to prevent

system instability and exploitation.

The data segment consists of data on which the process needs to run. Such data

can be anything from constants to statically allocated memory, or an initialised

memory for global storage throughout the process execution.

The stack segment is used by the process for storage and function call information.

When a process is allocated, each memory region has a start and end address, as

well as a state, offset, type, size and access rights. The start and end address signify

where such memory region is located within memory, while the offset specifies the

number of addresses after the start address of the entry was collected. This offset

may sometimes indicate that the address may be found in the paging table and a

lookup needs to be performed. The type, on the other hand, specifies the type of

memory, which is classically categorised into a heap or stack space.

The state refers to the total paging or frame size, which equates to the virtual

memory per process. Within the process memory, several Uniform Resource

Locators (URL) (B6) can be found, which may have evidential value. For instance,

if a process attempts to download content from the web (e.g. a worm malware

downloading the payload from a URL and then executing it) such information can

be useful for malware forensics. Dumping all the URLs can help an investigator to

detect malicious targets that could potentially be used to determine whether a

process is malicious or not.

54

Buffer information (B4) from a process can be helpful in identifying cryptographic

keys in memory during a ransomware attack. This is possible intuitively, given that

cryptographic functions for creating cryptographic keys store the result in temporary

buffers. This could logically provide the potential to extract the cryptographic keys

from a ransomware attack. While this objective is theoretically possible, there are

some concerns in capturing cryptographic keys from memory in terms of the legal

objection, privacy claim, as well as anti-forensic methods that prevent the plain key

from being stored in a buffer by using encryption. Furthermore, other techniques

that integrate explicit buffer clearance induce greater complexities during the

capturing of buffer information.

The next section focuses on what interaction ransomware has with the registry –

ranging from reading registry information to writing to registry. The details of this

activity are discussed below.

4.3.1.3 Registry

Ransomware leaves traces of itself in the registry (B7) as it uses the registry to query

and modify some system configurations in order to control and manipulate the

system [28]. In most cases, the ransomware creates and modifies a few keys with

one common key (Computer\HKEY_CURRENT_USER\Control

Panel\Desktop\Wallpaper) where the ransomware can set the background image to

elicit a prompt response for the ransom. Advanced ransomware creates registry

entries that can instruct the system to automatically run the malware if the system

is rebooted. The registry can also point to the location of the malware. Therefore,

the registry could be a good non-volatile source of information to successfully

identify ransomware metadata and other evidential information. Collecting

information that was changed by the process can further help identify the malicious

context of the executable.

Several operations that can be performed within the Windows Registry. These

operations are based on what can be done to the keys, for instance, keys opened,

queried, deleted and created. They are also self-explanatory, and each operation

has a specific process. Collecting information on the event-based operations can

help identify the common keys queried and opened. It can also provide a forensic

sequence of events to determine key characteristics. Thus, there is forensic

importance in determining whether certain applications were installed, or certain

information is available within the system.

4.3.1.4 Network

Monitoring and collecting information from the network (B8) provide a better

understanding of what a process is doing. Such knowledge can be used to

corroborate evidence collected to support a claim. Information collected from this

phase encompasses the source IP, destination IP, offset in which it can be located

in the pcap file (a common name for a collation of network packets), the source and

55

destination ports, as well as the time it took to connect and transfer data. This

information is collected for major networking protocols like TLS, UDP, DNS, HTTP,

ICMP, SMTP and TCP. From this, a collation of the various destination IP addresses

can be formed as the connected hosts. It can provide an investigator with a summary

of all the destination resources and the processes contacted or communicated with.

The collation can also be used to identify malicious agents that steal information

from a machine, determine potential criminal machine destinations and thus block

their access to the network.

4.3.2 Static information

Information collected about the executable prior to its execution is referred to as

static information (B9) and can be extracted from the binary of the executable. When

collecting static information, extracting ‘strings’ from the binary can help to find any

signature or pattern in the binary construction of fixed input request. The term

‘strings’ refers to any consecutive number of textual characters that seem to form a

word or phrase. Identifying and collecting Dynamic Link Libraries (DLLs) that are

statically instructed to be loaded can further identify any suspicious libraries.

Patterns of libraries loaded can also be extracted to gather knowledge of DLL load

sequences and determine malicious patterns. However, the limitation of static DLL

collection is that hackers have adapted to dynamically loading DLLs at runtime. This

technique provides the ability to detect malicious DLLs without execution of the

malicious process.

Portable Execution (PE) is a file structure typically followed by a Microsoft

executable. From this structure, the dispatcher (a program within an OS that

schedules process execution) will load the executable into memory. The process

memory segments as mentioned in Section 4.3.1.2 predetermine the size of the

data, virtual address space, name of the segment, virtual size and entropy of the

executable. The entropy of the segment can be used to ascertain if certain segments

consist of random characters. If there is a significant amount of randomness, the

entropy value will be higher, signifying that those segments may be encrypted. The

information to be collected from the various computer device sources using these

techniques, will be stored in conformity with forensic standards. The storage

process, which constitutes Part C of the proposed framework, is presented in the

next section.

4.4 Secure storage

The last phase, Part C, of the proposed framework, is presented in this section.

Structural composition of the phase is further depicted in Figure 4-8. The secure

storage process consists of several security and data integrity mechanisms.

56

Figure 4-8. Part C - Overview of Secure Storage Phase

4.4.1 Security

To ensure security (C1) of the data and the storage process, the integrity of the data

needs to be maintained at all times. For this, the best practices and security

mechanisms have been integrated into the system, using verbose logging and

secure access processes. The composition and discussion of the security setup

adopted for the secure storage phase are presented next.

4.4.1.1 Two-factor authentication

In the current digital age, it has become easier for hackers to phish users and use

social engineering techniques to trick users into divulging their credentials [142]

[143]. This susceptibility, therefore, necessitates the need for a multi-factor

authentication (MFA) process [52] [142]. Enabling Two-Factor Authentication (2FA)

(C2) on the storage system further foils attackers from brute-forcing passwords and

login details. Support for various types of 2FA can be considered, for example, an

authentication token sequence that gets randomly generated after a few seconds

by adding a QR Code to an app like Google Authenticator or Authy [144]. Hardware

authentication can also be factored into the storage process to further protect data

in the system.

4.4.1.2 Sandboxing

By incorporating a sandboxing (C3) strategy, the storage system can be isolated

from the host machine. This is achieved by running the secure storage system in a

virtualised environment, thus making it more stable and improving security because

privileges are more restricted, and the entire system can run in isolation. In addition,

the virtualised platform provides a medium for stable-process implementation

because it is decoupled from the OS itself. Sandbox virtualisation is adopted for this

process. Utilising a sandbox environment prevents unauthorised access from low

privilege escalation attacks and insecure system setup. Therefore, having the

57

storage system run in a virtualised environment provides the ability to remain stable

whilst ensuring a degree of security.

4.4.1.3 Access control

In any system, access control (C4) is necessary to allow for users to have different

privileges and features. For example, since this system is intended only for admins

and investigators, the privileges of an admin will be more than the privileges of an

investigator. The investigator may be a third party and will therefore not be able to

change anything. However, since everything is logged, it is easier to corroborate

evidence in the case of data having been tampered with.

4.4.2 Data

In this phase, the data (C5) that is collected, along with some metadata from the

system, is stored with integrity verification. The detail collected, along with the

integrity measures incorporated is discussed next.

a) Unique source identifier – this identifier is used to determine the source

from which the stored information originated. This can be verified by using

device identifiers such as an API key, MAC address and serial numbers.

b) Username – this is the username of the user account on the system from

which the data originated.

c) Encrypted PDE – the collected information from Part B is collated into a

structured data format and then encrypted with symmetric key encryption to

further protect the data from unauthorised use.

d) Hash – a hash is generated once the data has been added to the secure

storage by calculating the hash value prior to storing the PDE to disk. This

further ensures the integrity of the data.

e) Machine name – this is the name of the machine from which the data

originated, since there can be multiple users on one machine. It is used in

conjunction with the username to identify a person in the case of litigation.

f) Source IP – this is the IP address from the data originated and it ensures

integrity through verification of known IP addresses.

This secure storage phase of the framework provides a baseline for evaluating the

forensic soundness of evidence. It serves as a platform to evaluate the evidential

weight of potential evidence, as well as for un-encrypted ransomware-related

forensic data.

4.5 Conclusion

Chapter 4 presents the various components of the proposed ransomware readiness

framework as a novel approach for ransomware readiness and investigation. To

complete the picture, the entire framework is depicted in Figure 4-9. This

composition begins with the introduction of the identifying scenarios and potential

digital evidences, followed by the methods and items that are to be collected (which

58

may have potential digital evidences). Lastly, this collected information is securely

stored for an investigator to perform further analysis if needed.

This concept of ransomware forensics is a complementary approach to ransomware

investigation and attack prevention. To reflect on the research questions that were

proposed in this study, the RRF framework answers Q1 and Q2. In Q1, it was asked

whether a ransomware readiness framework could be created and to what degree

can it be implemented. The second question enquired what potential digital

evidence can be collected during a ransomware attack. The RRF framework

addresses both questions in detail in the Parts A and B respectively.

The next two chapters focus on the proposed prototype tools and their respective

models that support and implement the proposed RRF framework. For this purpose,

two proof-of-concept tools were developed. The first tool forms part of the

Identification (A) and Collection (C), while the second tool forms part of the Secure

Storage (C).

59

Figure 4-9. Second layer high-level view of RRF

60

5. CHAPTER 5: WINDOWS REGISTRY AND RAM COLLECTOR (W2RC)

5.1 Introduction

In this chapter, a proof-of-concept prototype system was developed to realise the

proposed Ransomware Readiness Framework (RRF). The developed system was

split into two parts (tools): Windows Registry and RAM Collection (W2RC), and

Windows Registry and RAM Readiness Storage (W3RS). The mapping between the

prototype and the ransomware readiness framework is shown in Figure 5-1. W2RC

addresses Part A and B of the ransomware readiness framework and W3RS

addresses Part C.

Figure 5-1. RRF mapped to the prototype system

The next section describes the model and criteria that were employed to

successfully detect a ransomware attack and collect information from identified

sources. This is followed by a discussion of the architectural design of the tool, the

requirements specification for the proposed collection tool, as well as the

implementation details.

5.2 Windows Registry and RAM Collector (W2RC)

The overall model adopted for the tool development process is presented in Figure

5-2. Note that the particular block number, as shown in this Figure 5-2is indicated in

brackets for easy reference to the figure. The tool starts by identifying the computing

device (1), in this case, a personal computer (PC). The next step is to detect a

Windows Operating System (2) in which this tool will run. The tool is developed to

function in any network architecture, by using IP-based communication with a client-

server model that supports many architectural designs. To be able to detect

malicious behaviour, processes (3) are used.

61

Figure 5-2. Model for ransomware forensics

To prevent unnecessary analysis and reduce the time taken to detect malicious

behaviour, only newly instantiated processes (4) are monitored from the time the

tool is installed. This is to ensure that the process is not ignorantly omitted. Such an

62

approach could potentially prove to be inefficient as it involves the continuous

scanning and maintaining of the processes that are to be analysed, thus reducing

the overall performance. However, this approach was used to convey the proof-of-

concept of the prototype and did not necessarily focus on the performance at this

stage. The tool has the ability to create a list of ‘safe’ processes that are taken from

a clean installation of the Windows environment. From the time the tool is installed,

a list of seen processes is also monitored; thus, a process is monitored only if it has

changed. Steps 1 to 4 form part of the identification phase, which maps directly to

Part A of the Ransomware Readiness Framework (RRF). Once a new process has

been identified, it is quickly suspended in the system while the processes executable

is forwarded to a sandbox environment (5).

The model makes use of a sandbox environment to ensure that the process to be

executed does not have permanent effects on the system itself. For example, if it is

a ransomware process that is executing, the encryption of the files will only occur in

the sandboxed environment and the system will be guarded against any infections.

This is possible since the executable is run in a controlled virtual environment with

snapshots (an image of the VM) so that the effects of a potential malware infection

can easily be contained when analysis is performed. Any infections can eventually

be removed by restoring a previous snapshot. To achieve this, the tool makes use

of the Cuckoo sandbox [104], which allows the easy execution of files through an

Application Programming Interface (API) as well as by performing analysis. The

Cuckoo sandbox was chosen to determine the behavioural characteristics of the

process whilst ensuring the integrity of the system. This sandbox also allows custom

analysis to be conducted, as shown by Context-Based Analysis (6).

In order to evaluate, quantify and analyse the behavioural characteristics of a

process, several methods of Context-Based Analysis (CBA) (6) were taken into

consideration. CBA is defined in this study, as the procedure of performing analysis

based on the state of the machine, while exploring different areas of the OS with

respect to a particular malware under investigation [24] [145]. The CBA involves the

monitoring of dynamic link libraries (DLLs), API Calls, the Windows Registry, as well

as process entropy. From this CBA, behavioural signatures from the malware under

analysis are extracted and compared to known malicious activity. The CBA is

explained later in Sections 5.2.1 and 5.2.4. An initial incremental database (a

database that grows over time when each sample is analysed) of the known

signatures is developed through an experimental process that helps prevent

unnecessary analysis of samples that are already marked as safe – such as known

system processes. The experimental process involves close observation of patterns

that can be seen prior to, during and after a ransomware attack. These patterns

include the DLL Monitoring, API Call Monitoring, Windows Registry Monitoring, and

Entropy Monitoring. DLL Monitoring involves monitoring loaded DLLs to find

commonalities in libraries that malicious samples use. API Call Monitoring analyses

function calls to determine what the processes are doing in terms of functionality.

Windows Registry Monitoring performs analysis as to what registry events are

63

occurring and the intent of these registry events. Steps 5 to 6 form part of the

collection phase of the model, which maps to Part B of the RRF.

Steps 5-8 form part of the detection phase of the model. After the CBAs have

completed, an average value is computed and forms the Context-Aware Trigger

(CAT) value that quantifies the result to determine if the process is malicious. In

Step 7, a decision is made based on the CAT value. If the CAT value is less than a

calculated threshold, it would indicate normal behaviour, and the process will be

resumed from the suspend state on the user system and continue executing.

However, if the CAT value is greater than the threshold, it is flagged as abnormal

behaviour (8). From here, two events occur concurrently: the results from the

analysis phase are sent to the Secure Storage (W3RS) (9) prototype for storage,

and the process is terminated. Step 9 maps to Part C of the RFF and is discussed

later in Chapter 5. After the process has been terminated, another concurrent event

happens where the user is notified (11), and a forensic investigation is triggered

(10). From Step 9 onwards, the traditional investigation procedure (12) is carried

out, as explained in Section 2.3.

The main processing of this model comes from the CBA processes. The detail of

each CBA process is explained and the metrics of how it is calculated is presented

in the next subsections. The CBA processes start with DLL Monitoring, then follows

with API Monitoring, Windows Registry Monitoring, and Entropy Monitoring. The

results of each CBA are discussed later in Chapter 7, where the results are

computed and explained in detail.

5.2.1 DLL monitoring

In an OS, when a process is created, several libraries are loaded into the volatile

memory. These libraries are required by the process for successful execution. They

are used to prevent unnecessary code duplication, thereby reducing the size of the

program and the time it takes to operate. Libraries are typically optimised to load

faster and provide optimised code for added efficiency. They are used in conjunction

with the system in order to allow the process to perform the assigned task [146].

The libraries are loaded depending on the requirements and imports defined by the

executable. These requirements are generally found in the executable’s PE section,

which is a specific structure that executables have to aid successful execution by

the OS dispatcher. DLLs are generally protected against reverse engineering using

static analysis. This is because attackers modify libraries to perform malicious tasks

on their behalf by overwriting some libraries. However, it is possible to determine

the names of the loaded libraries at the relevant addresses in memory, as well as

some of the function calls to the library once the process is running (dynamic

analysis). DLLs can also be loaded dynamically by other libraries at runtime or even

from the executable itself. This feature is used by attackers to dynamically inject

malicious libraries into safe executables, thereby corrupting them or giving the

attacker control of the process that is executing.

64

Ransomware developers typically utilise the built-in cryptographic libraries within a

Microsoft OS to reduce the effects of incompatible cryptographic functions and

portability issues that may arise. By monitoring the loaded DLLs, an indication of the

behaviour of the process can be examined and extracted. The common libraries that

are generally used in a ransomware attack are shown in Table 5-1. DLL monitoring

provides little insight towards making a definitive decision to determine the malicious

behaviour of an application. This is because an application will make use of some

Windows-specific libraries that provide the same functionality. For example, a

kernel32.dll allows user-mode access to the kernel. Furthermore, since these

cryptographic libraries can be used by most benign encryption programs, indicators

for the malicious process are difficult to establish. However, it is theoretically

possible to determine whether a program has the potential to perform encryption.

This process can therefore provide some background as to what the process might

be doing.

Table 5-1. DLL cryptographic commonalities for ransomware

DLL Name Explanation

cryptbase.dll Microsoft Cryptographic library that performs the most commonly

used encryption algorithms

kernel32.dll Handles memory management, provides ‘user mode’” access to the

kernel

kernelbase.dll Gains Kernel-level functions and provides the ability to gain

administrator rights to perform restricted operations

wow64cpu.dll Switches the processor from 32-bit to 64-bit and vice versa

advapi32.dll Microsoft Windows package for cryptography

shell32.dll Executes shellcode within the operating system

msvcrt.dll,

msvcp60.dll

Microsoft C Runtime Library module

cyptography.dll Cryptography processes, procedures and extended samples of C

and Visual Basic programs, using CryptoAPI functions and

CAPICOM objects

Bcryptprimitives.dll Crypto library for performing the bcrypt hashing algorithm

CRYPTSP.dll Another crypto library for key generation and verification

From the commonalities shown in Table 5-1, only libraries that contain the word

‘crypt’ generally provide some sort of cryptography. Each of these libraries contains

several cryptographic functions that are made available to the process. Therefore,

Equation (5.1) can be used to characterise the DLL monitoring analysis. DLL

65

monitoring (DM) is the summation of the number of cryptographic functions called,

divided by the summation of the number of cryptographic libraries (cl).

𝐷𝑀 =
 ∑ 𝑐𝑓

∑ 𝑐𝑙

(5.1)

In order to extract the necessary information, the ListDLLs [147] and Cuckoo DLL

analysis package [104] were used. DM proposed in this study provides additional

metadata for detection the level of encryption functionality in a given process. DLL

monitoring maps to the static information of Part B of the proposed framework.

The next subsection expands on API monitoring and how it is achieved. The

monitoring of API’s provides meaningful interpretation to the analysis, as it monitors

the function calls of the process in execution.

5.2.2 API call monitoring

The monitoring of the sequence of function calls can give more information as to

what a program in execution is doing, thereby providing the ability to extract and

compare signatures to known malicious activity [148]. API monitoring can also

provide significant information because all function calls to libraries and operations

can be seen, thus it is possible to detect malicious call sequences. However, API

monitoring is a trivial process, as malware can use detour and trampoline functions

to avoid detection through pattern matching.

Trampoline functions are functions that are used to pass on information to another

function or perform a seemingly redundant operation so as to avoid detection. It can

also be tricky if a program has protection against process hooking, for example

through administrative privileges, thus terminating the API monitoring hook/process

[9]. Jung and Won [9] proposed the monitoring of API sequences in terms of kernel

logs by using the time difference between each log entry to detect detour and

trampoline functions. Since these functions simply pass on the information to the

actual destination function, little processing is needed. Seeing that there is no

human interaction, the time difference could be relatively insignificant. However,

attackers can easily manipulate this time difference by performing unnecessary

computations or sleep functions to increase the time differences. This implies that

the approach suggested by Jung and Won would not be able to detect this. Besides

the difference in the time sequence, this study observed the ratio of the number of

function calls to the number of loaded libraries.

Based on these observations, API monitoring analysis can be redefined as

expressed in Equation (5.2): the total number of function calls (nf), divided by the

change in the time between API calls (∆c), multiplied by the total number of libraries

(N). This gives an overall quantifiable value that can help establish what an

executable is doing to determine its malicious nature. This ratio can also be used to

66

observe the number of functions the process uses for each library and so explain

the operating process through its dynamic behaviour. API monitoring encapsulates

the majority of the dynamic information in Part B of the proposed framework. This

includes monitoring the API calls from memory, as well as analysing and collecting

information from both process memory and memory buffer.

𝐴𝑀 =

𝑛𝑓

∆c × N
 (5.2)

The next CBA process is Windows Registry Monitoring, which involves analysing

Windows Registry function calls and operations that occur related to the registry.

5.2.3 Windows Registry monitoring

The Windows Registry is a vital part of the Windows OS, as it provides a central

data repository for all operations in the OS [23] [149]. Ransomware exploits this by

manipulating and creating registry keys to make the effects permanent [100]. This

is done to prevent ransomware deletion through a user reboot by creating a registry

key that can automatically start the ransomware upon a system start-up. By

monitoring how the registry keys are queried, created and deleted, it gives more

context as to what a given executable is doing [101]. From the frequency of registry

changes that occur over time, a deduction can be made to determine malicious

intent.

Equation (5.3), which can be used to define a context-based windows registry

monitoring process, is defined as the number of registry events per second (reps),

multiplied by the summation of all the keys deleted (kd), divided by the summation

of all the created keys (kr), plus the number of queried keys (kq), multiplied by the

summation of keys closed (kc), divided by the number of keys opened (ko). To the

best of the researcher’s knowledge, no research has so far been done to isolate or

give registry monitoring preference over other forms of monitoring. However,

registry monitoring provides meaningful information as to what a process is doing

and what I/O operations are being performed. In comparison to Jung and Won’s [9]

work, registry monitoring provides a measure of how much system information is

being modified and queried. This is helpful to detect persistence in ransomware as

well as to provide the ability to detect abnormal registry interactions. In the system-

specific analysis of the keys that are related to the system, such information is

generally found in the HKEY_LOCAL_MACHINE hive. Registry monitoring maps

directly to the registry section of Part B of the ransomware framework.

𝑅𝑀 = 𝑟𝑒𝑝𝑠 ×

∑ 𝑘𝑑

1 + ∑ 𝑘𝑟
+ 𝑘𝑞 ×

∑ 𝑘𝑐

1 + ∑ 𝑘𝑜
 (5.3)

The final CBA process involves monitoring the amount of randomness to detect if

information is likely to be encrypted. Further details on entropy monitoring are

discussed in the next subsection.

67

5.2.4 Entropy monitoring

In information theory, entropy is defined as the amount of uncertainty or randomness

in producing information [9]. Entropy has been a major factor in encryption, due to

the amount of random data that a computer can generate. The main disadvantage

from a security point of view is that entropy is probabilistic based and therefore can

be predicted if given a sufficient number of input data samples. Since entropy is

deterministic, it can also be represented mathematically. Generally, entropy is

represented by Shannon’s Entropy, as expressed in (5.4).

𝐻(𝑋) = ∑ 𝑃𝑥𝑖𝐼𝑥1

𝑁

𝑖=1

= ∑ 𝑃𝑥𝑖 log2

1

𝑃𝑥𝑖

𝑁

𝑖=1

= − ∑ 𝑃𝑥𝑖 log2 𝑃𝑥𝑖

𝑁

𝑖=1

(5.4)

In Equation (5.4), H denotes the entropy value, and X is a set with possible values.

Furthermore, N is the number of values, P is the probability of the occurrence of the

value, and I describe the amount of information. When the H(X) results in 0, it implies

there is no uncertainty. Conversely, when the result is at the peak of certainty, it will

result in log2 𝑁. This indicates that the probability that such information exists is only

1/N. High entropy means prediction is less possible.

Encryption has the property to change from low entropy before encrypted to a high

entropy. The entropy value, in this case, represents the minimum number of bits per

character. In order to perform entropy monitoring, two approaches were explored.

The first approach was to generate the entropy value for the entire executable, and

the other was to calculate the entropy value of the PE (Portable Executable)

sections of an executable. The first approach is computationally expensive for larger

file sizes, whilst the other approach is relatively inexpensive. However, the second

approach relates to performing some static analysis. The entropy of each PE section

is considered if the executable is encrypted or has secretly hidden parts. In Equation

(5.5), entropy monitoring (EM) is defined as the sum of the entropy of the executable

(Ex) and the average sum of the entropy of the PE sections (PES).

𝐸𝑀 = 𝐸𝑥 +

∑ 𝑃𝐸𝑆
𝑁𝑝𝑒𝑠
𝑖=0

𝑁𝑝𝑒𝑠
 (5.5)

Now that all the CBA process have been discussed, the notion of a Context-Aware

Trigger is proposed, and its details are presented in the next subsection.

5.2.5 Context-Aware Trigger

Context-aware technology comes from a behavioural analysis and incorporates the

environment and the current working of the system. In a ransomware scenario, the

key aspects that can be used to identify ransomware were earlier discussed in

Sections 5.2.1 to 5.2.4. By combining these monitoring techniques and dividing

them by the number of techniques (Ṅ), the study developed a context-aware trigger

68

(CAT) mechanism for ransomware forensics. This can be represented

mathematically, as expressed in Equation (5.6). The results of this CAT are

presented in Chapter 7.

𝐶𝐴𝑇 =

𝐷𝑀 + 𝐴𝑀 + 𝑅𝑀 + 𝐸𝑀

Ṅ
 (5.6)

The model concludes with the investigative procedure presented in the next

subsection. This process follows the traditional investigation process where an

incident is detected and PDE is provided for an investigator to corroborate evidence

and make it admissible in a court of law.

5.2.6 Investigative procedure

From Step 12, the output of the CAT process is used to evaluate the need for a

forensic investigation. In cases where the forensic investigation is evoked (a positive

detection), the logging and analysis processes will be securely processed and

stored whilst the user and forensic investigator are notified to conduct the traditional

investigative procedure. The process is then terminated. The data collected is

extracted by the investigator to perform analysis and generate a report. For ease of

analysis, the data is structured using a JSON data exchange format suitable for any

application. Depending on the severity of the attack, a recovery plan can be put in

place by the investigator through manual analysis.

In order to evaluate the proposed proof-of-concept tool, a system requirements

specification was drafted based on software engineering principles and forensic

processes. The next section highlights the specifications of the testing processes

following the Computer Forensics Tool Testing (CFTT) Program [150] of the

National Institute of Standards and Technology (NIST) [151].

5.3 W2RC system requirements specification

This section discusses the requirements specifications of the developed collection

tool (W2RC). In order to provide a high-quality and useful proof-of-concept

prototype, it is essential that requirements specific to digital forensics be drafted to

define the integrity and the process of how the tool performs and operates. This also

helps when evidence sourced from this tool is to be used in a court of law, since it

conforms to the requirements of the various forensic processes. These

requirements were derived from the proposed model in Figure 5-2 and are divided

into two categories: Secure Collection Core Requirements (SC-CR) and Secure

Collection Optional Requirements (SC-OR). The SC-CR states the necessary

requirements to develop the system and provide the base functionality and

capability of the prototype. The SC-OR sets additional (optional) requirements that

will add value to the prototype but are not essential for it to work correctly. This

69

method for requirements specifications was derived from the NIST CFTT [150]

program as part of their validation cycle. The validation of the system is presented

in Chapter 8, where more details on the NIST CFTT are discussed, as well as how

the prototype system itself was validated. However, it is necessary to now define

the system requirements prior to the system implementation in order to gauge

whether all the core requirements were satisfied and whether the system does what

it is supposed to do.

5.3.1 Secure Collection Core Requirements (SC-CR)

● SC-CR-01: The tool shall monitor all running processes.

● SC-CR-02: The tool shall perform logging at every action/process that

occurs.

● SC-CR-03: The tool must collect information concurrently.

● SC-CR-04: The tool must show consistency in the collection.

● SC-CR-05: The tool must suspend a new process once detected.

● SC-CR-06: The tool must efficiently collect the executable and send it for

analysis.

● SC-CR-07: The tool shall perform quick data processing and data handling.

● SC-CR-08: The tool must show what processes are currently being analysed.

● SC-CR-09: The tool must provide hashes of the database to ensure integrity.

● SC-CR-10: The tool must distinguish between previously seen processes

and newly created processes.

● SC-CR-11: The tool must list the time and the name of the process it found.

● SC-CR-12: The tool must securely send the collected information to the

storage server.

● SC-CR-13: The tool must work on all Windows NT platforms.

● SC-CR-14: The tool must work on 32-bit and 64-bit systems.

● SC-CR-15: The tool must request administrator privileges.

5.3.2 Secure Collection Optional Requirements (SC-OR)

● SC-OR-01: The tool must allow a user to resume a process.

● SC-OR-02: The tool must allow a user to add safe processes.

● SC-OR-03: The tool must provide the status of the analysis of the process.

● SC-OR-04: The tool must provide an option to separate the storage server

from the analysis server.

● SC-OR-05: The tool must provide the ability to see the CAT value of analysed

processes.

● SC-OR-06: The tool must display notifications when a process is being

analysed.

● SC-OR-07: The tool must remove a process from a seen and whitelisted

database.

70

Now that the requirements have been defined, the next section presents the

architectural design of the entire prototype system. In order for the prototype to have

more value, the architecture needs to be defined in such a way that the steps and

design of the prototype can be repeated, thus rendering the process scientific.

5.4 Architectural design

The architectural design of a system refers to the structure in which a system will

operate, showing all the components that are involved in the system, as well as

some of the technologies used [152]. There are several types of architectures in

which these components interact and are structured. For the proposed prototype

system, a 5-tier layered architecture with Model View Controller (MVC) as well as

pipes and filters were used. A layered system provides separation of concerns and

separates components between the various layers. The MVC was used to connect

the application interfaces to the business logic. This was done so that the application

interfaces would not interact directly with the back-end storage or business logic.

This technique provides additional security as there is a layer in between that

restricts access. Pipes and filters are used when the output of a process is the input

to another process, and this is mostly used for encryption and authentication.

The architectural design of the system is shown in Figure 5-3. For each of these

layers, some technologies are used that are only discussed later in this chapter (see

the implementation phase in Section 5.5). Based on the proposed architecture, the

access layer provides the interfaces that an end user would use to access the

system. In this case the two interfaces were the desktop application of W2RC and

the web interface of the W3RS tools. The next layer is the Security and Logic layer

where the logical processing of information and operations as well as security

processes are conducted. In this layer, there are two services, namely security and

web services.

Security services focus on data sanitisation where the cleaning of the data is

performed and removing basic attacks like SQL and XSS injection. This layer also

provides the HTTPS protocol with session management. The web services are the

web technologies and frameworks that were adopted for this system, namely

Python’s web framework Django, two-factor authentication, as well as RESTful

services. These web technologies are discussed in Section 5.5 at the

implementation stage of the tool. The next layer is the business layer where the

business logic exists, and the context-based analysis takes place in a sandboxed

environment.

71

Figure 5-3. Architectural design of the proposed system

The fourth layer, which comprises the forensic soundness layer in which the forensic

soundness processes exist, is presented and discussed later in Chapter 5. In this

layer, another architecture called ‘pipes and filters’ is used to achieve fernet

encryption and the forensic soundness processes (also discussed in Chapter 5).

The last and final layer of the 5-tier architecture is the persistence layer which

focuses on the storage of data that was collected. This layer encompasses the

secure storage where the data is stored in a MySQL database.

72

Following the description of the requirements and architecture, the next section

presents the system implementation and the technologies used to achieve the

purpose of the prototype W2RC tool. The system was implemented in accordance

with the above requirement specifications, attempting to address all the

requirements proposed whilst ensuring compliance with forensic processes, best

practices, as well as standardisation.

5.5 W2RC system implementation

Given the above requirements, the system was implemented using a modular

approach, by using Python [153], as the coding language of choice. Python was

used because of its ease of usage as well as its ability to be easily packaged. The

tool uses the TkInter library [154] for creating a Graphical User Interface (GUI) of all

of the components. The tool was packaged into a Windows Installation Package file,

also known as an MSI file, for ease of installation. The installation of the OpenSSL

library [155] was required in order to establish a secure connection between the

storage server and the analysis server. (The source code, user and installation

guide can be found in Appendix B.) The installation guide also provides a quick

summary of how to use the tools. The tool allows a user to modify the analysis server

and storage server IP address location in the event that the analysis and storage

servers are not the same. This was done to allow more control of where the data

would be stored in the event that the sandbox server environment had to be

separated from the storage due to organisational policies or security concerns.

The lifecycle of the W2RC tool is shown in Figure 5-4. The user interface of the

W2RC is shown in Figure 5-5. The lifecycle of the tool starts off by checking if the

W2RC system is installed and if OpenSSL is installed. The next step is ‘Initialise

W2RC’, which is where the tool analysis server and storage server IP addresses

need to be specified. Once the user clicks on the “Start monitoring” button, the

monitoring process is initiated (see Figure 5-4). When the system detects new

processes, a thread is created allowing concurrency and preventing the system from

waiting before the process is sent for analysis. This is done so that new processes

can always be detected with faster accuracy. The user interface for this process is

shown in Figure 5-6. The next step, ‘Send the process for evaluation’, will inform the

user that the process has been suspended and that it is being analysed. A view of

the user interface of the tool is presented in Figure 5-7. After the analysis has been

performed, the result is sent back to the tool and it is determined whether the

analysis process is malicious or not. If the process is not malicious, the process is

resumed, and the user is notified that the process is safe. If the process is malicious,

it is terminated, and the user and admin are notified to trigger an investigation.

73

Figure 5-4. Lifecycle of W2RC

74

Figure 5-5. W2RC GUI view

Figure 5-6. W2RC new process detected

Figure 5-7. W2RC displaying analysed sample with CAT value

75

5.6 Conclusion

The implementation process of the proposed ransomware forensic framework was

presented in this chapter. More specifically, the identification and collection phases

of the framework were developed using the proof-of-concept tool W2RC. Novel

techniques and approaches for the development of the proof-of-concept tool were

also detailed in this chapter, but the results of these techniques will only be

presented in Chapter 7. This chapter justified the novel idea proposed for

ransomware forensics through the adoption of a digital forensic readiness approach.

The validation of the implementation and impact of the model and proposed

ransomware readiness framework will be evaluated in Chapter 8.

Chapter 6 constitutes the last section (Part C) of the proposed RRF. A process

model for secure storage, following all security standards, is presented alongside

implementation of the model which maps directly to Part C of the RRF.

76

6. CHAPTER 6: WINDOWS REGISTRY AND RAM READINESS
STORAGE (W3RS)

6.1 Introduction

In this chapter, the second part of the proof-of-concept prototype was developed in

order to realise the proposed framework. This part of the prototype, Windows

Registry and RAM Readiness Storage (W3RS), addresses Part C of the

Ransomware Readiness Framework (RRF). Recall from Figure 4-9 that, as

discussed in detail in Chapter 5, Part A detailed 'Identification' and Part B detailed

'Collection‘ of the proposed RRF. Chapter 6 now makes up Part C and concludes

the proposed RRF. Part C focuses on how the collected information is stored,

abiding by Cyber Forensic Services discussed in Chapter 2. Forensic soundness is

also ensured through integrity checks and backups.

Next follows a discussion of the W3RS part of the prototype and modelling of the

system for secure storage.

6.2 Windows Registry and RAM Readiness Storage (W3RS)

The high-level process model for Part C of the RRF is shown in Figure 6-1. The

storage process consists of smaller subprocesses, namely data ingestion, forensic

soundness assurance, PDE storage, and forensic soundness verification. A brief

overview of these processes is provided first, followed by more detail in each of the

relevant subsections.

The data ingestion process involves consuming structured data from various

sources. The types of sources do not play a role in the ingestion process as the

latter provides a medium for data being received. As long as the data is in a format

that the process can interpret, any data can be consumed.

The data ingested is further parsed for forensic soundness assurance. The forensic

soundness assurance process focuses on gathering and processing the information

in such a way that no evidence is altered in an unauthorised manner. Thus, the

integrity of the collected information is guaranteed, in compliance with evidence

admissibility criteria. The assurance process is conducted in memory before any

information is stored. This is to ensure that the data received that is in memory is

the same before and after it has been stored, so that the integrity of the data remains

intact, making it free from any modifications whatsoever.

The next process focuses on storing the PDE physically on the server in a

forensically sound manner. During the PDE storage process, the data will be

securely stored in an encrypted format within a secure folder on the server. The

corresponding metadata is not yet stored in the database as the PDE needs to go

through the forensic soundness verification process to ensure that its integrity is

maintained.

77

The forensic soundness verification process next validates and confirms the forensic

soundness of the collected PDE. Once this evidence has been verified successfully,

the metadata is inserted into the database together with the location where the PDE

is stored on disk. Since logging is performed during each process, it becomes a

concurrent process. Logs are maintained for assurance and traceability purposes.

Figure 6-1. High-level process model of W3RS

Now that an overview of the entire process has been briefly sketched, each of these

processes is discussed in more technical detail. The technical details of data

ingestion process are presented next.

6.2.1 Data ingestion process

The details of the data ingestion process appear in Figure 6-2. This process makes

use of a secure socket layer (SSL) for encrypted communication between the client

and the server. Using an SSL is considered best practice by security standards in

the sense that if data is intercepted (by a man-in-the-middle attack for example), it

will be potentially unusable to the attacker because it has been encrypted.

There are two typically used HTTP methods for data exchange, namely GET and

POST. The GET method relies on sending parameters through the URL using URL

encoding. This renders the data being transferred clearly visible in the URL and an

easy target for network sniffers (i.e. attackers that monitor the network activity

looking for sensitive data like passwords). However, the POST method sends all the

parameters in the body of the request. Allowing only the HTTP POST method and

using SSL (denoted by ‘HTTPS’, i.e. 'secure' HTTP) ensures that the body of the

request is encrypted.

78

Figure 6-2. W3RS data ingestion process

Typically, Application Programming Interfaces (APIs) are used to expose a

designated route or web URL to which data can be transmitted and received. This

is known as an API endpoint. The endpoint is available on the server so that data

can be ingested and stored securely. In an attempt to make the ingestion process

faster and more standardised, an API endpoint is exposed to the storage tool. An

API key is used to ensure that only authorised parties are able to add data to the

storage engine. This API key is comprised of two parts: a prefix and randomly

generated characters (key). The prefix is used to identify the device from which the

request is derived (i.e. the origin of the request). The randomly generated characters

also act as an identifier. However, the main purpose is to ensure better security

practices by using random characters to make a longer key length that will hold up

against brute-force attacks. This API key has to be registered on the storage system

in order to serve as a unique identifier. The system stores the API key in its two

parts to ensure better security. The key itself is hashed using SHA 256 and stored

in the database; thus, if the database is breached, the API keys are still secure.

When new data is ingested on the API endpoint, the request is first checked to

determine whether the necessary access and authorisation are met (by validating

the API key) and to ensure that the key has not been revoked. The status of the API

key is set to ‘revoked’ if the key has been leaked or is no longer needed. Once an

API key has been revoked, it can no longer be used, and any newly created API key

cannot be the same as any revoked key. Thereafter, the data undergoes sanitisation

to remove any malicious data, SQL or JavaScript injections and to prevent Cross-

Site Scripting (XSS) attacks [87] [156]. This is done to prevent attackers from

sending malicious payloads to the server because the API endpoint is known. Data

sanitisation is a standard practice of any secure web application or server that deals

with data processing [156] [157].

79

After the data has been successfully sanitised, the next process is data validation.

In this process, data is parsed to ensure that the data structure and format is correct.

This is important, as an unexpected runtime error can occur if an invalid character

or structure is processed and the necessary attributes are not present. If the data

does not pass the validation phase, the process is stopped, and error reporting is

triggered. If the data was successfully validated, the data gets sent onto the next

phase for forensic assurance.

6.2.2 Forensic soundness assurance process

The forensic soundness assurance process generates the relevant information to

be used to prove forensic soundness of the data collected (in other words to prove

that the integrity of the data is the same as the original data) [158]. The details of

the forensic soundness assurance process are presented in Figure 6-3

Figure 6-3. W3RS forensic soundness assurance process

At this stage, this process is still conducted in memory, and nothing is stored in the

database or on the disk as yet, because the process is performed to provide

assurance that no data is modified upon receipt. To ensure forensic soundness once

the data has been validated, an in-memory hash (H1) is calculated for the PDE using

any checksum hash algorithm. MD5 and SHA1 are the two hashing algorithms that

are most used as a checksum integrity measure in the industry. This is because of

their efficiency in computing a hash – which is used as an integrity measure and not

for storing passwords in cleartext (the hash function's other frequent use in the

industry). These algorithms, mostly used because they are quick to calculate, are

often called one-way hash algorithms, meaning that it is impossible to reverse the

hashing process to get the original data back from the computed hash digest that

was produced by the algorithm. Therefore, by taking the originally calculated hash

(call it hash 1) and then again calculating another hash (call it hash 2) over data that

was modified, the hashes would be distinctly different (i.e. hash 1 will not be equal

to hash 2). Also, due to the amount of data being hashed, it is practically impossible

for attackers to brute-force the hash, as they will not be able to get the original data

from the hash.

After the hash has been generated, the next process is to secure the data collected

by performing symmetric key encryption. Using symmetric key encryption is more

80

suited when there could be multiple users – in this case, admin users or investigators

– because there is only one key and not multiple key pairs as in the case of

asymmetric encryption. For this purpose, fernet encryption, which also uses AES

encryption, was used based on best practices [159] [160]. The details of fernet

encryption are further discussed in Section 6.4.

Once the PDE has been encrypted, the next step is to generate another in-memory

hash (H2) of the encrypted PDE. This is done to make sure that the encrypted PDE

was not modified at any point and serves as an integrity check. This H2 will be used

as an input to the forensic soundness verification process, to be discussed in

Section 6.2.4.

6.2.3 PDE storage process

In this process, the encrypted PDE is stored to disk. A detailed overview of the PDE

storage process is shown in Figure 6-4.

Figure 6-4. W3RS PDE storage process

First, the encrypted PDE is assigned a unique random filename to ensure that the

system is immune to URL manipulation. If an attacker is aware of the naming

structure used, for example, "report-date-number.json”, it will be easy to try and

download files using this structure by merely changing the number of the report

through a brute-force approach that manipulates the URL. For example, if a report

was named “report-2019_10_11-7.json”, an attacker could brute-force the file name

by trying to download other reports like “report-2019_10_11-9.json”. Furthermore, a

random filename prevents PDE from being easily identified by a system admin who

could be involved in the criminal activity and tamper with the potential evidence. It

also prevents an admin from being negligent, because without the metadata that is

stored in the database, there would just be random file names with no relation to

which user it came from. This metadata is only stored after the forensic soundness

verification process has successfully completed. Permissions are added to the file,

making them read-only on the system so that no process can change them. This

ensures that the file cannot be modified easily and that it remains forensically sound.

After the permissions are set, the encrypted file is securely stored on the disk within

a directory that can be accessed only by an administrator. Although an admin can

81

change the permissions of the file or folder1, this does not have any effect because

the hash integrity and logging measures are in place. Once the encrypted PDE has

been successfully stored, it is ready for verification and integrity confirmation. Details

of the forensic soundness verification process are presented in the next subsection.

6.2.4 Forensic soundness verification process

Following the standard forensic practice of evidence storage and verification – i.e.

maintaining a chain of custody, storing evidence in a secure environment and

providing the original hash to verify that the evidence has not been tampered with –

this subsection presents the forensic soundness verification process. This process

ensures the integrity of the PDE by verifying that the information that was received

in memory is equivalent to what is stored on disk. To confirm that the integrity of the

stored PDE is intact, a hash process (H3) is computed from the stored encrypted

PDE. This is to verify forensic soundness from the Encrypted PDE to the Store

Encrypted PDE process (see Figure 6-5).

Figure 6-5. W3RS forensic soundness verification process

The in-memory hash of the encrypted PDE (H2) is compared to the newly created

hash (H3) to determine if the hashes of H2 and H3 are still the same. If H2 and H3

are identical, no deliberate or accidental manipulation of the PDE occurred, and it is

verified as forensically sound. Thus, this entry is inserted into the database. The

entry contains the metadata and the location to the stored PDE, and not the actual

PDE itself. The storage approach adopted in this study conforms to best practices,

as storing a file in a database as binary data (blob) is extremely inefficient [161]. It

also expands the attack vector (i.e. making it more difficult for an attacker to get

access to the PDE) by separating the stored PDE from its metadata. For example,

if an attacker manages to get unauthorised access to the database, but the PDE

itself is not stored there, only metadata about the PDE can be extracted, which is

not sufficient (on its own) for malicious intent (i.e. further exploitation by an attacker).

If the hashes do not match, it can be assumed that an external party modified the

1 Typically, this is a problem with any system, which is why administrators have to be trusted.

82

PDE during the process or that some other accidental situation (electricity spikes,

bad disk sectors, etc.) occurred, thus invalidating the forensic soundness. Such an

event will trigger an alert to warn system admins to investigate what could have

caused the violation of the PDE’s forensic soundness. This investigation is a manual

process, as the violation would have occurred under unknown circumstances, and

therefore it falls outside the scope of this research. The integrated process model

illustrated from Figure 6-2 to Figure 6-5 for the W3RS proof-of-concept prototype is

presented in Figure 6-6.

The tool was developed using agile software development methodology that

involves an iterative, incremental development process. During the process,

requirements and objectives are broken down into smaller milestones to achieve a

big task effectively [162]. Following an agile software development process, the

development of the requirement specification and usability function for the W3RS

process model (see Figure 6-6) is considered in the subsequent sections. This is to

ensure that the development process adheres to measurability checks, as well as

to objective metrics of tool testing.

In order to evaluate the proposed secure storage proof-of-concept tool, a system

requirements specification was drafted based on good practice software

engineering principles and standard digital forensic processes. The next section

highlights the specifications of the testing processes which follows the Computer

Forensics Tool Testing (CFTT) Program [150] of the National Institute of Standards

and Technology (NIST) [151].

83

Figure 6-6. W3RS detailed process model

84

6.3 W3RS system requirements specification

Following the same process as in Section 5.3, this section defines the requirements

for the storage tool W3RS. The aim is to provide a high quality and useful proof-of-

concept prototype. Just like in Chapter 5, the requirements are drafted based on the

proposed model – in this case, the process model in Figure 6-6. The system

requirements are again partitioned into two categories, namely Secure Storage Core

Requirements (SS-CR) and Secure Storage Optional Requirements (SS-CR).

6.3.1 Secure Storage Core Requirements (SS-CR)

● SS-CR-01: The tool shall ingest data from an API endpoint.

● SS-CR-02: The tool shall perform logging at every action/process that

occurs.

● SS-CR-03: The tool must ingest data concurrently.

● SS-CR-04: The tool must show consistency in data storage.

● SS-CR-05: The tool must hash the ingested data.

● SS-CR-06: The tool must sanitise data ingested.

● SS-CR-07: The tool must perform hashing on the collected data.

● SS-CR-08: The tool must show the hash digest and metadata.

● SS-CR-09: The tool must provide digests of the encrypted PDE to ensure

integrity.

● SS-CR-10: The tool must distinguish between different PDE.

● SS-CR-11: The tool must list the information collected.

● SS-CR-12: The tool must validate the data ingested.

● SS-CR-13: The tool must verify user authentication details.

● SS-CR-14: The tool must securely download PDE.

6.3.2 Secure Storage Optional Requirements (SS-OR)

● SS-OR-01: The tool must encrypt all metadata.

● SS-OR-02: The tool must decrypt PDE on access.

● SS-OR-03: The tool must list all the stored PDE.

● SS-OR-04: The tool must clearly show detected malicious PDE.

● SS-OR-05: The tool must perform 2FA authentication for PDE download.

6.4 W3RS system implementation

Using the stated requirements, the system was implemented based on a modular

approach. Python was used as the coding language because of its ease of use and

ability to be easily packaged. W3RS uses the Django web framework to achieve

this. (The code and installation process can be found in Appendix B.) The tool makes

use of the MD5 hashing algorithm as the integrity checksum and of the Django

REST framework for RESTful API functionality. The term Representational State

Transfer (REST) is a software architectural style that provides constraints on how

85

data is transferred by using a stateless protocol for better performance, reliability

and scalability. Unlike its predecessor, Simple Object Access Protocol (SOAP),

REST also allows for easy updates, redeployments, management and the ability to

structure data without the restrictions of providing a schema (description of the

data). The Django REST framework furthermore provides authentication based on

the API key. A secure API key is generated from the Admin panel, and this unique

key is used when making an HTTP POST request to the API in order to verify the

authenticity of the request. Django models make use of encrypted fields that encrypt

all the metadata of the stored PDE data in the database. This ensures that if the

database was breached through unauthorised access, the data inside the database

is still encrypted.

The Django encrypted file field was chosen to secure the PDE using the Fernet

encryption scheme. Fernet symmetric encryption is a symmetric key algorithm that

makes sure that the encrypted message cannot be manipulated, brute-forced or

read without the key. It also uses URL safe encoding for the keys by using the

Advanced Encryption Standard (AES) 128-bit Cipher Block Code (CBC) mode. This

means that any reserved, unprintable or non-ASCII characters are replaced, so that

no errors occur when handling the keys that an attacker could potentially exploit.

Fernet also makes use of Public Key Cryptographic Standards number 7 (PKCS7),

which is used to encrypt messages under a Public Key Infrastructure (PKI) padded

with Hash-based Message Authentication Code (HMAC). HMAC is used to

simultaneously verify the integrity and authenticity of a message. To ensure better

security, HMAC was used with Simple Hashing Algorithm (SHA) 256-bit hashing.

The W3RS application was also set up to be ready for Docker [163] (a containerised

approach to hosting services), thus making it scalable as well as platform

independent. Using Docker furthermore makes it easier to port between servers and

even provides the ability to perform load balancing and multiple instances. A high-

level flow chart is shown in Figure 6-7 to aid the explanation and show how the

W3RS system lifecycle works.

86

Figure 6-7. High-level lifecycle of W3RS

The lifecycle of W3RS starts off with ensuring that the system is installed

successfully. The next step is to initialise W3RS. This is done in Django by creating

a superuser that provides all admin functionality such as creating users and setting

access roles. In this particular implementation, the admin user is the same as a

Django superuser. Django models are fully customisable to assign permission to

certain functionality, based on the role of a user.

After the W3RS system is initialised, the next step is to create user accounts, set up

two-factor authentication (2FA) and create API keys. It was decided that only an

admin user can create users and API keys in which every activity is logged. The tool

makes use of two-factor authentication (2FA), which is simply adding another factor

to traditional login systems in the form of a second key that is generated dynamically

on the server and sent via email or SMS to the user [52]. 2FA was used to download

a PDE, and currently only supports token generators and Yubi physical keys. These

87

two methods are further discussed in more detail, because they are the common

ways of performing 2FA. Token generators make use of the Time-Based One-Time

Pin (TOTP) algorithm [164] that generates 6-8 unique digits based on the current

time and some secret key that is added when the device is registered. This token is

changed after every 30 seconds to prevent attackers from brute-forcing the token.

Google Authenticator [165] and Authy [144] are the most commonly used

applications to store 2FA codes where a Quick Response (QR) code needs to be

scanned and registered to the device on which the application is installed. A Yubi

key [166] is a physical key that fits into a USB port of a computer to perform

hardware authentication. The system also supports SMS as an additional

authentication factor. User credentials are stored using Django's default password

field that uses strong SHA 256-bit hashing [167]. To increase the difficulty in brute-

forcing the hash, the password is typically hashed multiple times. The algorithm is

performed the default number of 150000 iterations, as specified from Django

documentation [167]. A password salt value (randomly generated characters) is

appended to the password before it is hashed so as to further increase the difficulty

for an attacker to brute-force the password. This process is designed to prevent any

attempt by a system admin or hacker to gain unauthorised access to user passwords

because they are never stored in plain text. The hash as well as the salt is redacted,

as shown in Figure 6-8, further making it impossible for an admin to get access to

user credentials.

Figure 6-8. W3RS user password standards

User permissions can also be set for added security and additional granularity. In

Figure 6-9, a view is shown where an admin can set permissions for a specific user

based on the Django models and functionality. Two-factor authentication can be set

up by scanning a QR code through a token generator app like Authy, as shown in

Figure 6-10.

88

Figure 6-9. W3RS user permissions assignment

Figure 6-10. W3RS adding 2FA

The next step is for an investigator to log in to the W3RS system where the

investigator is presented with a list of users for which the W2RC collection tool has

been installed and configured. Figure 6-11 contains an example of the user interface

after a forensic investigator has logged in successfully. When an investigator selects

a user to investigate or view, the details of each analysed process are displayed to

the investigator. This is shown in Figure 6-12, where a redacted list of all the

scanned processes that were collected is displayed – showing the relevant

metadata such as the machine name, IP address, CAT value, MD5 checksum,

username as well as the time. The IP address in the figure was redacted for

anonymity purposes.

89

Figure 6-11. W3RS user interface

Figure 6-12. W3RS redacted view of stored PDE

When selecting the process that is to be further investigated, the investigator can

click on the download icon to download the PDE. The user session will be validated

by checking if the logged-in user has the required permissions and if the user has

90

an active session. This is done by checking the inactivity time and if 2FA is enabled.

After the session has been validated successfully, the PDE can be downloaded and

an investigator can investigate the collected PDE data to further corroborate the

findings. A PDE file contains detailed information about what was collected, as well

as the details of process memory, buffer information, registry, network, DLL imports,

and other information. An example snippet of the process memory is shown in

Figure 6-13. Another example snippet showing network activity can be seen in

Figure 6-14. More details and snippets of the information collected appear in

Appendix C.

Figure 6-13. PDE sample showing process memory

Figure 6-14. PDE sample showing network activity

91

6.5 Conclusion

Chapter 6 presented the overall model for the secure digital forensic storage

mechanism for the Windows Registry and RAM Readiness Storage (W3RS)

component of the prototype. The interaction, techniques and logical assertions

required for the effective development of the prototype were also presented in this

chapter. Therefore, the developed prototype presents a tool that can be used to

store potential digital artefacts that can be used for ransomware forensics.

Part IV serves as an evaluation of the proposed framework and developed proof-of-

concept tools (i.e. RRF, W2RC and W3RS). The evaluation process involves real-

world case studies, results and interpretation, and finally, critical evaluation.

92

PART IV

EVALUATION

93

7. CHAPTER 7: RESULTS AND INTERPRETATION OF THE PROTOTYPE
SYSTEM

7.1 Introduction

In this chapter, the overall proposed ransomware readiness framework (RRF) was

implemented using the developed proof-of-concept prototype tools. The proposed

framework was evaluated through a testing process where samples identified were

tested to determine reasonable threshold values to accurately detect malicious

behaviour based on the metrics derived from Chapter 5. Recall that these metrics

from Chapter 5, Equations (5.1) – (5.5), were derived from manual experimentation

and observation to determine key characteristics and commonalities between

ransomware samples. Therefore, the results presented in this chapter test and

evaluate these metrics, based on five benign and four malicious samples. Since

every process is monitored, a sample refers to a process executing in memory. The

results of each Context-Based Analysis (CBA) is presented in the subsections

below. Each CBA is presented with its respective result to further provide the

necessary insight that was gained during the testing process.

7.2 Results obtained from the testing phase

The malicious samples considered in this study focused on popular variants of

ransomware that hampered organisations, such as Cerber, WannaCry,

CryptoLocker and TeslaCrypt [27] [88]. The benign samples comprised of

TrueCrypt, VeraCrypt, 7zip, Microsoft Word and Adobe Reader. In order to correctly

measure the behaviour as well as accurately perform testing, two samples, i.e.

TrueCrypt and VeraCrypt, were chosen based on the popularity of the tools as well

as their ease of use [168] [169]. The other three benign samples, 7zip, Microsoft

Word and Adobe Reader, were chosen based on everyday usage statistics as well

as the fact that these programs are often used as a vehicle to deploy malware in a

system [74]. In other words, these programs are often infected with malware.

Ransomware executables were obtained from theZoo [170], Hybrid-Analysis [103]

and VirusTotal [102]. Experimental tests were conducted on a server set up with

Windows 7 Virtual Machine (VM) sandbox using the Cuckoo framework.

Since W2RC works by sending every newly created process to a sandbox for

evaluation, there was no need to draft a baseline of operations in the environment

to get an unbiased result. This baseline refers to what Hampton et al. [100] proposed

when they defined series of tasks to perform to test each sample and determine

normal behaviour. Examples of baseline operations included opening Windows

Explorer, installing MS Office 07, running MS Excel, opening Internet Explorer and

so forth. Every process (whether benign or malicious) was evaluated based on its

characteristics of execution. Each process then underwent a 15-second analysis

using the Cuckoo framework to determine the CBA. The 15 seconds represent a

soft timeout. In other words, if it would be detected that the executable is performing

94

unusual tasks within the first 15 seconds of its execution, analysis will continue for

a little longer, with a max timeout of 60 seconds of total execution time so as to be

more certain whether the process is actually suspicious or not. These execution

times were chosen based on traditional anti-virus software sample scanning to

prevent unnecessary waiting and high resources usage while analysis continues in

the sandbox. The maximum timeout used was also the minimum recommended time

by the Cuckoo framework for quick analysis [104]. The results from the testing

process of each CBA metric, DLL monitoring, API monitoring, registry monitoring

and entropy monitoring that was proposed in Chapter 5 are further explained in the

subsections below.

7.2.1 DLL monitoring results

The results of the DLL Monitoring (DM) technique are shown in Table 7-1. Recall

from Equation (5.1) the details on how the DM value is computed. From the

summation of cryptographic libraries (cl), it is observed that benign samples without

any encryption functionality do not contain any cryptographic libraries. The malicious

samples, on the other hand, have an average number of cryptographic libraries

ranging between 2 and 3. This is because most of the cryptographic functionality

that is needed is found in built-in libraries used by these malicious samples.

VeraCrypt had a cl value of 8, due to the various cryptographic functionalities that it

provides, as opposed to TrueCrypt that only exhibits a cl value of 1. The number of

cryptographic functions (cf) used makes a significant contribution to the final DM

calculation. This is because these functions not only perform the encryption of the

files, but also generate key-pairs for the cipher suite used. For example, Cerber and

WannaCry have a significant number of cryptographic functions, as opposed to

TeslaCrypt and CryptoLocker. After TeslaCrypt and CryptoLocker had been

manually analysed, it was observed that TeslaCrypt and CryptoLocker performed

several checks to see if they were executing in a virtual environment and whether

they had a debugger attached or not.

Table 7-1. DLL monitoring results

Samples Benign /

Malicious
∑ 𝑐𝑙 ∑ 𝑐𝑓 DM =

 ∑ 𝑐𝑓

∑ 𝑐𝑙

TrueCrypt Benign 1 1 1

VeraCrypt Benign 8 78 9.75

7zip Benign 0 0 0

Word Benign 0 0 0

Adobe Benign 1 0 0

WannaCry Malicious 2 710 355

CryptoLocker Malicious 3 22 7.33

Cerber Malicious 3 214 71.33

TeslaCrypt Malicious 1 3 3

95

This behaviour shows the evasive techniques that this ransomware employs, as well

as their anti-forensic capabilities. For example, a malicious sample could detect if it

was executing in a virtual environment (by checking the processor version, or VM

libraries present) and then perform another task or even stop the execution, thus

bypassing several sandboxed behavioural analysis processes. Since this is a

limitation of all behavioural-based detection mechanisms, further research needs to

be conducted. A threshold value of 49.712 was computed based on the average DM

value for all samples to determine whether a sample is malicious or not. In other

words, a good range for a DM value would be from 0 – 49.712 and a bad range

anything greater 49.712. However, this would not accurately detect all malicious

behaviour as TeslaCrypt and CryptoLocker would not be flagged as malicious.

Therefore, it is not sufficient to only monitor DLLs, as malicious samples have

become sophisticated enough to bypass certain levels of detection.

The next section comprises the second CBA, API monitoring, which involves

monitoring API function calls from the executable to determine the behaviour of the

function. API monitoring produces much of the dynamic behaviour of the executable

because it involves the actual logic and flow of the executable in terms of what it is

doing and how it is doing it.

7.2.2 API monitoring results

The results of the API Monitoring (AM) technique are shown in Table 7-2. Recall

from Equation (5.2) the details on how the AM value is computed. The values

required to compute the AM value are displayed in Table 7-2, with the last column

reflecting how the AM value was calculated.

Table 7-2. API monitoring results

Samples Benign /

Malicious

∆𝐜 N 𝒏𝒇 AM =
𝒏𝒇

∆𝐜×𝐍

TrueCrypt Benign 15 42 9542 15.1460

VeraCrypt Benign 5.953 39 903 3.8894

7zip Benign 9.516 21 1685 8.4319

Word Benign 9.3280 9 2106 25.0858

Adobe Benign 5.141 13 781 11.6858

WannaCry Malicious 2.25 58 63771 488.6667

CryptoLocker Malicious 16.813 18 127602 421.6380

Cerber Malicious 0.468 58 6525 240.3845

TeslaCrypt Malicious 2.766 29 29163 363.5650

The results show that the total number of function calls (nf) plays a big role when

calculating the AM value, due to the many function calls that happen in a short time.

This makes it easier to detect automated background activity like ransomware,

which is performing numerous I/O operations like reading and writing files as well

as performing encryption functions. Cerber, on the other hand, has the second

96

highest nf but, due to the short time changes, yields a bigger result when compared

to WannaCry. Based on the change in the time between API calls (∆c) given in

seconds, it is observed that the malicious samples have a low time value (i.e. ∆c

value). This means that the malicious samples perform rapid function calls that are

indicative of encryption and excessive CPU utilisation. For instance, Cerber

ransomware has a ∆c value of 0.468 in comparison to 7zip with a ∆c value of 9.516,

which shows that malicious samples perform numerous function calls in a short

period of time. It was also observed that benign samples’ AM value is generally low

(between 3.8894 and 25.0858). Therefore, the average AM value for benign

samples is 12.848. However, Word computed a higher AM value in comparison to

other benign samples. This can be attributed to a large number of function calls from

its total number of libraries (N), which can be due to background functionalities like

macros and utilities loaded by Word, and the mere fact that Word is a large

application. Consequently, the malicious samples differ from the benign samples,

with the malicious samples’ AM value averaging on 378.563. From the results it is

clear that a good range for an AM value is between 0 and 175.388, and a bad range

is greater than 175.388.

The next section presents the third CBA, Windows Registry monitoring, and it

involves monitoring registry calls from the executable to determine what system

configurations are being queried and analyse what information is being requested.

This information is mostly used by malware to determine how to execute by adapting

to the environment it is executing in.

7.2.3 Registry monitoring results

The results of the Registry Monitoring (RM) technique are shown in Table 7-3. Recall

from Equation (5.3) the details on how the RM value is computed. Table 7-3 is

structured in such a way that all the variables needed to calculate the RM value are

represented in the columns of the table. The last column displays how the final RM

value is computed.

From these results, it seems that none of the samples inhibited any registry key

deletion (kd). Deletion of keys shows that an application is attempting to remove

traces and demonstrating destructive behaviour, which could make the system

unstable. The reason why ransomware typically does not perform registry key

deletion is that if the system becomes corrupt or unstable, the decryption application

demanding the ransom payment may not work correctly. To better understand what

is going on in Table 7-3, an example interpretation is now given. From the TrueCrypt

sample, it is known that this sample is benign. The average number of registry

events per second (reps) is calculated by counting the average number of registry

operations that occur in one second.

97

Table 7-3. Windows Registry monitoring results

Samples Benign /

Malicious

𝒓𝒆𝒑𝒔 ∑ 𝒌𝒅 ∑ 𝒌𝒓 𝒌𝒒 ∑ 𝒌𝒄 ∑ 𝒌𝒐 𝑹𝑴

= 𝒓𝒆𝒑𝒔

×
∑ 𝒌𝒅

𝟏 + ∑ 𝒌𝒓

+ 𝒌𝒒

×
∑ 𝒌𝒄

𝟏 + ∑ 𝒌𝒐

TrueCrypt Benign 1197 0 29 55 1851 7727 108.0735

VeraCrypt Benign 139 0 1 71 130 189 189.0789

7zip Benign 21 0 0 0 14 30 21.0000

Word Benign 3 0 0 0 0 4 3.0000

Adobe Benign 10 0 0 0 2 8 10.0000

WannaCry Malicious 18 0 8 33 568 1464 47.7945

CryptoLocker Malicious 13 0 10 0 34 80 1.1818

Cerber Malicious 15 0 6 346 942 1794 529.7206

TeslaCrypt Malicious 99 0 11 0 77 135 8.2500

Each event has a corresponding timestamp, and the reps for TrueCrypt is 1197.

This means that an average of 1197 registry events occur in one second, which is

a relatively high value in comparison to the other benign samples. After manually

analysing the data, it was determined that TrueCrypt performs many registry key

open operations that pertain to the configuration of the system. Most of these

operations had to do with reading the policies of the environment. TrueCrypt has a

sum-of-keys-created (kc) value of 1851. This means that many registry keys were

created, and manual analysis found that most of the keys created involved the

setting of uninstallation configurations within registry and registering the application

in various parts of the system. For example, when an application is installed, many

configurations are set in registry to ensure that the application works correctly. This

behaviour was also seen with Cerber, which tried to make itself persistent in the

system. The keys queried (kq) is a method that Windows Registry provides to read

values from keys. These values are numeric or textual information about the key.

For example, reading the computer name from the registry key

HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion.

VeraCrypt displayed an above-average value of 71. This means that VeraCrypt

queries a lot of registry information. Upon further manual investigation of VeraCrypt,

it was found this queried information aimed to enhance the user experience, such

as querying multiple languages and font types. However, with the other encryption

tool, TrueCrypt, the corresponding value was lower, meaning that it did not require

much registry information in comparison to VeraCrypt. It can be concluded that

encryption tools need to read values from within the registry to operate correctly. An

example of this is reading registry keys to get a list of user profiles, as well as getting

a list of registered file types (such as txt, exe, pdf, etc.) within the system.

98

The benign encryption tools yielded a high RM value. This can be due to reading

settings and metadata from the registry. The malicious samples had lower registry

events per second (reps) but a high number of keys opened (ko), meaning that much

information is being read in registry searching for items like system settings,

installed applications and user profiles. A high number of keys created (kc) implies

that the executable is creating system configurations and trying to instantiate itself

within the system permanently. This relates to the ransom payment demands that

are persistent, even after a system reboot. This is achieved by adding the ransom

demand tool as a start-up application as well as modifying the desktop wallpaper of

the system. The average RM value for all the benign samples is 66.23. Using this

average, a good range would be from 0 to 66.23 and a bad range anything greater

than 66.23. However, based on this range, the detection would be extremely bad,

because neither WannaCry, CryptoLocker nor TeslaCrypt would be detected.

From the above, it can be concluded that RM alone is not sufficient to perform

accurate detection, due to registry events not being fixed for each sample. It solely

depends on the application itself, since Windows registry serves as a repository for

information. It can also be concluded that typical ransomware does not need to read

much of system configurations to perform their task. However, Cerber has a high

RM value because it is a RaaS (Ransomware as a Service). RaaS is so designed

that it can be controlled and managed remotely by attackers in a cloud environment.

This means that more functionality is needed for attackers to control what the

ransomware does, and that more system registry information is needed to

successfully embed itself within the registry and the operating system as a whole.

The next section deals with the fourth and final CBA – entropy monitoring. It involves

monitoring entropy values obtained from the executable to determine the amount of

randomness in the executable and whether it is performing encryption.

7.2.4 Entropy monitoring results

In order to determine the average entropy, a small test was conducted by encrypting

different file types and then performing Shannon’s entropy [171] [172] on each file

to determine the amount of randomness in each. Recall from Section 5.2.4 where

Shannon’s entropy was defined. The file categories chosen for this test was based

on most commonly used file types such as documents, media and archives. File

types selected for documents were PDF and TXT, whereas media files were IMG

and MP4, and archives were ZIP files. To get a better estimate of entropy in certain

file types, ten files were chosen for each file type. These files were chosen at random

to avoid any file type from being biased. A comparison of authentic vs non-authentic

encryption entropy analysis is presented in Table 7-4.

99

Table 7-4. Authentic vs non-authentic encryption using entropy analysis

File

type

Sum file

size

Average

entropy without

encryption

Average

authentically

encrypted

entropy

Average ransomware

(WannaCry) encrypted

entropy

PDF 9.85 MB 7.9434395 7.9992378 7.9992195

TXT 39.80 KB 4.7150093 7.4754678 7.7509205

IMG 4.42 MB 7.8063508 7.9984814 7.998468

MP4 162 MB 7.9726569 7.999988 7.999984

ZIP 10.00

MB

7.9564831 7.9917306 7.989744

Each file was encrypted using standard OpenSSL AES-256-CBC, and the

ransomware encryption process was carried out using WannaCry. The results

showed that the usage of encryption changes the entropy of the file.

Typically, the American Standard Code for Information Interchange (ASCII) values

of a text file is stored in Unicode Transformation Format (UTF) when encrypted. The

maximum number of bits required to represent a byte is 8 bits. However, the average

entropy represents the average number of bits needed to represent one byte.

Therefore, from standard ASCII text data, the average number of bits needed is

4.715 to represent a byte; however, when this text gets encrypted, the average

number of bits needed changes to 7.475. Thus, a text file would have a high entropy

change, as observed in Table 7-4. However, a small change in entropy relative to

the average entropy without encryption was observed from the average

authentically encrypted entropy of the encrypted files. When inspecting the headers

of a normally encrypted file vs a ransomware encrypted file it is clearly

distinguishable, since a ransomware file header is abnormally structured to prevent

the user from recovering the encrypted files. This structure is defined by the authors

of the ransomware itself and is usually kept a secret to prevent security researchers

from finding a way to decrypt the files.

The results of the proposed Entropy Monitoring (EM) techniques appear in Table

7-5. From the entropy of the executable file (Ex) with values generated using

Shannon’s entropy [171], it was observed that the executables of the malicious

samples have high entropy (as seen from WannaCry and CryptoLocker). On the

other hand, some samples that perform encryption like TrueCrypt and VeraCrypt

are in the high 6’s, whereas Adobe and 7zip have an entropy value in the low 6’s.

Adobe and 7zip also perform encryption as one can password-protect an archive as

well as a PDF file. A non-encryption-based sample – Word – has a very low entropy

value. This can be attributed to Word not needing many bits to represent a byte of

information, as Word documents typically contain ASCII textual data that does not

need many bits to store in comparison to UTF.

100

Table 7-5. Entropy monitoring results

Samples Benign /

Malicious

𝑬𝒙

∑ 𝑷𝑬𝑺

𝑵𝒑𝒆𝒔

𝒊=𝟎

𝑵𝒑𝒆𝒔 ∑ 𝑷𝑬𝑺
𝑵𝒑𝒆𝒔
𝒊=𝟎

𝑵𝒑𝒆𝒔

𝑬𝑴

= 𝑬𝒙

+
∑ 𝑷𝑬𝑺

𝑵𝒑𝒆𝒔
𝒊=𝟎

𝑵𝒑𝒆𝒔

TrueCrypt Benign 6.8838 25.7149 4 6.4287 13.3125

VeraCrypt Benign 6.6805 26.8070 5 5.3614 12.0419

7zip Benign 6.1280 26.3258 6 4.3876 10.5156

Word Benign 3.7468 17.4730 7 2.4961 6.2429

Adobe Benign 6.0943 26.3965 5 5.2793 11.3736

WannaCry Malicious 7.9954 25.5234 4 6.3819 14.3773

CryptoLocker Malicious 7.1322 11.3990 3 3.7997 10.9319

Cerber Malicious 5.0923 18.9669 4 4.7417 9.834

TeslaCrypt Malicious 7.1163 19.8661 4 4.9665 12.0828

The average entropy of the Portable Executable Section (PES) describes whether

the executable is trying to run in stealth and avoid anti-virus programs from

analysing the executable. This can be seen in WannaCry having a relatively large

(25.52) PES value relative to Cerber and TeslaCrypt. The EM value therefore

provides the ability to see if an executable contains encrypted parts and avoids its

true execution when performing static analysis. This can be seen with CryptoLocker

where most of the data in the executable is encrypted and the PE sections are

generally not encrypted (as opposed to WannaCry). The number of PE sections

(Npes) shows that malicious samples generally have fewer PE sections between 3

and 4 so as to minimise the number of sections to load into memory and prevent

early detection.

The average entropy of the PE sections as represented in the second-last column

shows that the entropy of malware is not that much different to the entropy of benign

samples. This is largely due to some PE sections not being encrypted in malware

to enable anti-virus to just scan those sections and not flag it as harmful. However,

when adding the entropy of the executable to the sum of the PE sections entropy, it

is observed that most encryption-like tools have an EM value greater than 10. This

means that there is more randomness of the data, which is indicative that the data

is encrypted. The average entropy for benign samples is 10.697; however, this

includes the two benign encryption tools. With this average Cerber would not be

classified as malicious and Adobe would be classified as malicious. Therefore, by

removing the two encryption tools when calculating the average, a value of 9.377 is

obtained; however, this induced a higher number of false positives, as 7zip and

Adobe would be classified as malicious. Therefore, a good range would be between

0 and 10.697, and a bad range would be greater than 10.697.

Now that all the CBAs have been discussed, the next section evaluates how the

Context-Aware Trigger value is calculated to determine if an executable may be

101

harmful. A discussion follows on how the CBAs provide insight into an executable

and on how stealthy malware has become.

7.2.5 Context-Aware Trigger results

The results of all the Context-Based Analyses (CBAs) are shown inTable 7-6.

Table 7-6. Experimental results from well-known applications and ransomware

 Context-aware analysis techniques

Samples Benign /

Malicious

DM AM RM EM CAT Result

TrueCrypt Benign 1 15.1460 108.0735 13.313 34.383 Normal

VeraCrypt Benign 9.75 3.8894 189.0789 12.042 53.6901 Normal,

High

7zip Benign 0 8.4319 21.0000 10.516 9.98688 Normal

Word Benign 0 25.0858 3.0000 6.2429 8.58218 Normal

Adobe Benign 0 11.6858 10.0000 11.374 8.26485 Normal

WannaCry Malicious 355 488.667 47.7945 14.377 226.460 Abnormal,

High

CryptoLocker Malicious 7.33 421.638 1.1818 10.932 110.270 Abnormal

Cerber Malicious 71.33 240.385 529.721 9.834 212.817 Abnormal,

High

TeslaCrypt Malicious 3 363.565 8.2500 12.081 96.7245 Abnormal

Since DM and RM do not accurately distinguish between benign and malicious

samples, the combination of other forms of analysis in conjunction with DM and RM

provides a better result. Therefore, an average value is computed from these CBAs

to determine the Context-Aware Trigger (CAT) value. This value produces a

quantifiable result to identify samples as being benign or malicious. Furthermore,

more information and insight can be obtained from each CBA. For example, the DM

and EM values can give a good estimation of whether the process (sample) is

performing some encryption. A process that performs encryption on a large scale

would likely generate higher values, as the entropy change would be significantly

greater.

Furthermore, the number of cryptographic libraries loaded helps an investigator to

decide whether the executable is performing any form of encryption and therefore

requires further manual analysis. The DM and EM analyses mostly focus on static

analysis as this information can be extracted from the executable prior to its

execution. This is done so that a quick understanding of the executable can be

gained. Complementarily, the AM and RM focus mainly on behavioural analysis, as

it is dynamic and involves the process execution in a sandbox virtual machine.

Analysing its behaviour provides additional information about the processes in near

real-time. Based on such information, the combination of the static and behavioural

(dynamic) analysis can then be used to formulate a threshold for determining normal

102

or abnormal behaviour. From the phases of the different CBAs, it can be determined

that TrueCrypt and VeraCrypt are encryption tools based on their DM and EM

values, while the DM and RM values indicate that 7zip and Word samples are not

encryption tools and have an average RM compared to the others. WannaCry,

Cerber, TrueCrypt and VeraCrypt have high RM values. This is because they query,

create and open keys rapidly to make samples persistent in the system.

Furthermore, WannaCry and Cerber have a high AM value, which implies that

several function calls are initiated within a short duration of time.

Based on the experimental result as presented in Table 7-7, an average CAT value

of all samples equated to 84.575. It was observed that abnormal behaviour has a

CAT value greater than this average of 84.575. The average CAT value of the

benign samples was 22.98 and forms a baseline for defining a threshold. The

current study therefore asserts that a given sample is defined as abnormal if the

CAT value is greater than 84.575, while samples with CAT value lower than 22.98

are considered normal. A CAT value between 22.98 and 84.575 is considered

“Normal, High”. The average CAT value for malicious samples is 161.568.

Therefore, a value greater than 161.568 is considered “Abnormal, High”. A summary

of the threshold values for each CBA is presented in

Table 7-7. Based on these thresholds, the proposed CAT technique achieved a

significant accuracy of 100%, since all samples that were malicious were detected

as abnormal and all benign samples were classified as normal. Therefore, the

proposed CAT technique can be used to evaluate ransomware. If the CAT value of

a given process is higher than the pre-defined threshold, the process can be

considered malicious. This observation is used as the requisite trigger mechanism

for incident response and forensic investigation as it alerts a system admin and user

of an incident. It also forms part of the pre-analysis phase for digital forensic

readiness that can be integrated as a pro-active security mechanism against a

ransomware (or other forms of malware) attack.

Table 7-7. A Summary of thresholding values

 DM AM RM EM CAT

Average of all Samples 49.712 175.3881 102.011 11.19028 84.575

Average Benign Samples 2.15 12.84778 66.2305 10.6973 22.981

Average Malicious

Samples

109.165 378.5636 146.737 11.8065 161.57

Abnormal Threshold (>) 49.712 175.3881 66.2305 10.6973 84.575

103

7.3 Conclusion

After rigorous testing of the overall framework and prototype tools, significant

prowess was shown in collecting PDE as well as performing ransomware incident

detection. Hence, if this framework can be adopted and implemented within an

organisation, it will better prepare the organisation to be ready for and potentially

prevent ransomware attacks. The framework also lays the groundwork for other

malware types, as it can be applied for worm malware detection and incident

response using digital forensics.

The study found that ransomware is becoming more advanced and that attackers

use evasive techniques to detect virtual environments as well as debuggers to hide

the malware's intent. Fortunately, these evasive techniques limit the widespread use

of the ransomware. For example, if a malware detects that it is in a virtual

environment, it might not execute. However, many enterprise architectures rely on

virtualisation for rendering their services, which could be a major setback for

malware authors.

This chapter presented the analysis and detection part of the framework as a whole

and provided insights based on the CBAs performed. It offered the digital forensic

investigator with a guideline on what further manual investigation may need to be

conducted. For example, when the DM value is higher than the threshold, encryption

functions are called that are indicative of encryption and that prompt the investigator

to see what function calls were made. Further investigation can be carried out on

the collected PDE by analysing it on a lower level to determine the intent of the

malware as well as whether it was flagged as a false positive. This result can be

used in future to tweak the thresholds to minimise the number of false positives that

might occur.

The next chapter in this Part (Chapter 8) contains real-world case studies and shows

how the proposed framework and its supporting tools could have been used by

organisations to avert crisis.

104

8. CHAPTER 8: REAL-WORLD CASE STUDIES

8.1 Introduction

This chapter focuses on real-world case studies by referring to known ransomware

attacks on organisations and companies. It provides insight into real-world cases

and further shows the usefulness of the proposed ransomware readiness framework

(RRF). The chapter is divided into three chosen case studies with a brief discussion

of how ransomware attacks could have been detected and potentially prevented

with the adoption of the proposed RRF. In each case study, the method of attack is

replicated as far as possible and the two prototype tools are used to gauge how the

situations would have been averted. This is predicated on the assumption that the

framework – if implemented within an organisation – could have detected and

potentially prevented attacks.

8.2 Real-world case studies

Three case studies were taken into consideration in this section. The case studies

were chosen based on the large amount of damage they caused and the

ransomware that was used in the attack. The damage was measured in terms of the

amount of downtime, and the amount of cost required to recover the systems after

the attack. Cases were chosen to demonstrate different ransomware (i.e. not just

cases involving WannaCry, but also other variants of ransomware) and to show the

robustness of the proposed framework and developed process model, as well as

the capabilities of the prototype. All scenarios were tested in a Windows 7 Service

Pack 1 (SP1) computing environment. This was chosen because most of these

organisations used Windows 7 and Windows 7 has a large user base [13]. There

are also several exploits available for Windows 7 since it has been in use for many

years [97] [173]. Organisations often have trouble updating their systems as some

legacy systems are not compatible with later versions of Windows. The analysis

configuration server used Windows 7 SP1 and each malware sample was executed

and analysed for 15 seconds with a soft timeout, as explained before. Sample PDE

snippets in Appendix C show the signatures that are matched and some of the

information that is calculated and stored to aid an investigator when conducting an

investigation. These signatures are based on the samples' behaviour and were

taken from Cuckoo’s community [174] of signatures.

Each of the three case studies is structured under three headings, namely scenario

definition, ransomware detection and results, and discussion.

8.2.1 Case study 1: WannaCry

This specific case study explored WannaCry ransomware.

105

8.2.1.1 WannaCry scenario definition

Sourced from the National Audit Office [175]:

“On Friday 12 May 2017 a global ransomware attack, known as WannaCry, affected

more than 200,000 computers in at least 100 countries. In the UK, the attack

particularly affected the National Health Service (NHS), although it was not the

specific target. At 4 pm on 12 May, NHS England declared cyber-attack as a major

incident and implemented its emergency arrangements to maintain health and

patient care. On the evening of 12 May, a cyber-security researcher activated a kill-

switch so that WannaCry stopped locking devices. According to NHS England, the

WannaCry ransomware affected at least 80 out of the 236 trusts across England,

because they were either infected by the ransomware or turned off their devices or

systems as a precaution. A further 603 primary care and other NHS organisations

were also infected, including 595 General Practitioners (GP) practices. Prior to the

WannaCry attack, the Department of Health (the Department) and its arms-length

bodies, had work underway to strengthen cyber-security in the NHS. For example,

NHS Digital was broadcasting alerts about cyber threats, providing a hotline for

dealing with incidents, sharing best practice and carrying out on-site assessments

to help protect against future cyber-attacks. The NHS England had also embedded

the 10 Data Security Standards (recommended by the National Data Guardian) in

the standard NHS contract for 2017-18 and was providing training to its Board and

local teams to raise awareness of cyber threats. In light of the WannaCry attack, the

Department announced further plans to strengthen NHS organisations’ cyber-

security.”

8.2.1.2 WannaCry detection and results

The WannaCry ransomware sample was retrieved from Hybrid-Analysis [103], and

information about this sample appears in Table 8-1. When the ransomware was run

on the system, it was immediately detected and suspended by the W2RC prototype

tool and sent to the analysis server for investigation. After the sample was analysed,

it was determined that it was indeed malicious by providing a Context-Aware Trigger

(CAT) value of 1439.21, which is extremely high.

Table 8-1. WannaCry sample information

Sample Information

SHA256 ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa

Type PE32 executable (GUI) Intel 80386, for MS Windows

Size 3.35 MB

Source theZoo [170]

The results of calculating the CAT value are shown in Table 8-2 and discussed in

the section that follows.

106

Table 8-2. WannaCry case study

Trigger Computation Result

DLL

Monitoring

(DM)

 ∑ 𝑐𝑓

∑ 𝑐𝑙
=

710

2

355

API

Monitoring

(AM)

𝑛𝑓

∆c × N
=

63771

2.25 ∗ 58

488.6667

Registry

Monitoring

(RM)

𝑟𝑒𝑝𝑠 ×
∑ 𝑘𝑑

1 + ∑ 𝑘𝑟
+ 𝑘𝑞 ×

∑ 𝑘𝑐

1 + ∑ 𝑘𝑜

= 18 ∗
0

8
+ 33 ∗

568

1464

47.7945

Entropy

Monitoring

(EM)

𝐸𝑥 +
∑ 𝑃𝐸𝑆

𝑁𝑝𝑒𝑠
𝑖=0

𝑁𝑝𝑒𝑠
= 7.9954 +

25.5234

4

14.3773

Context-

Aware Trigger

(CAT)

𝐷𝑀 + 𝐴𝑀 + 𝑅𝑀 + 𝐸𝑀

𝑁

226.4597

8.2.1.3 WannaCry discussion

If it had adopted and implemented a readiness framework, the NHS would have

been better prepared for this WannaCry ransomware attack. The NHS had no way

of containing the ransomware attack, and if not for a cybersecurity researcher who

initiated the global kill switch, the WannaCry ransomware attack would have been

significantly worse. Ransomware attacked the operation of the NHS as a health care

organisation, as research has shown that health care and schools are the first attack

points [62] [176] [177]. The health care sector deals with sensitive and vital data that

should always be available, thus making them a prime target. Life support and other

medical equipment need to be online in order for medical services to be rendered.

The extent of the WannaCry attack even crippled general practitioner (GP)

practices, which was a major problem because a massive 595 practices were

rendered unavailable. Investigating such a huge attack vector would be an

extremely lengthy process and can lead an investigator into dead ends with

information. Having a digital forensics readiness process in place would have

allowed for faster case processing and the potential detection of a ransomware

attack before major business disruption occurred.

Implementation of the RRF would have rendered the NHS better prepared for this

attack. Firstly, the results in Table 8-2 show that the DLL Monitoring (DM) value of

WannaCry is 355 which is fairly large and above the defined threshold of 28.27,

which shows that there is definitely some encryption happening. The API Monitoring

107

(AM) value achieved a score greater than 488, which suggests many function calls,

which are indicative of I/O operations – the usual behaviour of large-scale

encryption. The second highest value was for Registry Monitoring (RM) with a

computed value greater than 47. From looking at the calculations for RM, it was

evident that the number of keys opened (ko) was relatively high in comparison to

the keys read (kr). This is due to the keys-opened function call that maintains a

handle to the registry key itself for faster and multiple operations that can be

performed on the opened registry key. It can be concluded that a vast number of

keys were opened, and some operations were performed on it, which is indicative

of malicious behaviour (cf. Chapter 7). Further manual investigation of the collected

PDE revealed that WannaCry contained shellcode, console writing, system config

checks, memory check, and packers (i.e. hiding an executable within another

executable). It even started up a server on several ports, which is not normal for a

benign process. The malicious executable would immediately have been killed and

blacklisted by W2RC, preventing the system from being compromised and infecting

other users over the network.

8.2.2 Case study 2: Dharma

This specific case study explored Dharma ransomware.

8.2.2.1 Dharma scenario definition

Sourced from ZDNet [178]:

“The Altus Baytown Hospital (ABH) has revealed a ransomware outbreak, which

may have led to the leak of patient data. In a statement on its website, the Texas-

based hospital said that ABH discovered an unauthorised threat actor rifling through

the organisation's systems on roughly September 3rd, 2018. The "unauthorised

party" deployed malicious code and infected the hospital's systems with a strain of

ransomware. The ransomware at fault for the infection is known as Dharma. As with

most strains, the malware was able to encrypt files and then demanded a ransom

payment in return for access. Many of the hospital's records were encrypted due to

the attack, and these included files containing patient information such as names,

home addresses, dates of birth, social security numbers, driver license numbers,

credit card information, phone numbers, and medical data. It would be unusual for

ransomware to encrypt and then exfiltrate information should the malware's purpose

be simply to secure a blackmail payment. However, as the threat actor was present

on ABH servers and details are thin on the ground, it is possible this data has made

its way into the wrong hands. ABH has not revealed how many patients may be

affected. In addition to the hospital itself, affiliate parties including Altus Women's

Center of Baytown, Oprex Surgery (Baytown), Clarus Imaging (Baytown), LP,

Clarus Imaging (Beaumont), Zerenity Baytown, and Altus Radiation Oncology

Baytown are involved in the incident as information from these entities was stored

on the same systems. After the ransomware executed, the hospital chose not to pay

the ransom; instead, ABH hauled in external cybersecurity help, which was able to

108

decrypt backup files and restore ABH's servers. Dharma was then eradicated from

the compromised systems.”

8.2.2.2 Dharma detection and results

The RobbinHood ransomware sample was retrieved from VirusTotal [102], and

information about this sample is provided in Table 8-3. The ransomware was

subsequently run on the system, suspended by W2RC and sent to the analysis

server for investigation. On analysis, the sample was found to be somewhat

malicious as it provided a CAT score of 85.7319, which is not significantly higher

than the threshold of 84.575. However, it was still detected as abnormal, because

Dharma does not rely much on using API function calls to perform the encryption.

The detailed results of calculating the CAT score are shown in Table 8-4.

Table 8-3. Dharma sample information

Sample Information

SHA256 315fbebc706c3445ab51140be348c51761a3556f5c473b92f03c135fa82e070a

Type PE32 executable (GUI) Intel 80386, for MS Windows

Size 0.09 MB

Source VirusTotal [102]

Table 8-4. Dharma case study

Trigger Computation Result

DM ∑ 𝑐𝑓

∑ 𝑐𝑙
=

271

2

135.5

AM 𝑛𝑓

∆c × N
=

188516

61.688 ∗ 27

113.1837

RM
𝑟𝑒𝑝𝑠 ×

∑ 𝑘𝑑

1 + ∑ 𝑘𝑟
+ 𝑘𝑞 ×

∑ 𝑘𝑐

1 + ∑ 𝑘𝑜
= 87 ∗

1

1
+ 0 ∗

4

8

87

EM
𝐸𝑥 +

∑ 𝑃𝐸𝑆
𝑁𝑝𝑒𝑠
𝑖=0

𝑁𝑝𝑒𝑠
=

21.7317

3

7.2439

CAT 𝐷𝑀 + 𝐴𝑀 + 𝑅𝑀 + 𝐸𝑀

𝑁

 85.7319

8.2.2.3 Dharma discussion

In this scenario, the ransomware attack was somewhat contained, but the

confidentiality of the encrypted data was not known. If the ransomware stole the

information from the hospital's databases and sold this data to third parties, the

matter would have been significantly worse as it targeted the confidentiality and

availably of the hospital's data. A ransomware sample was executed on the host

machine, and the API monitoring was relatively low for a ransomware attack,

109

probably due to the evasive techniques that the ransomware employed. On deeper

introspection, the number of function calls was found to be excessive; however, the

time difference between each function call was larger, thus making the AM metric

of evaluation less effective. The ransomware used a delay in API function calls to

avoid detection. A portion of the time delay could be attributed to the process of

encrypting ransomware files, making it inefficient but more subtle to avoid detection.

Dharma ransomware did not have a high RM value because this ransomware does

not modify and query the Windows registry as much. The number of registry events

made a major contribution to the RM value. Therefore, many registry operations

were performed, but none had a major effect on the integrity of the registry

repository.

8.2.3 Case study 3: RobbinHood

This specific case study explored the RobbinHood ransomware.

8.2.3.1 RobbinHood scenario definition

Sourced from Vox Recode [179]:

“Hackers targeted the city of Baltimore on May 7, 2019, using ransomware called

RobbinHood, which, as NPR explains, makes it impossible to access a server

without a digital key that only the hackers have. The Baltimore hackers’ ransom

notes, obtained by the Baltimore Sun, demanded payment of three bitcoins per

system be unlocked, which amounts to 13 bitcoins to unlock all the seized systems.

The note threatened to increase the ransom if it wasn’t paid in four days and said

the information would be lost forever if it wasn’t paid in 10 days. The city government

refused to pay, meaning that the government email systems and payment platforms

that were attacked remained offline. The attack has also harmed Baltimore’s

property market because officials weren’t able to access systems needed to

complete real estate sales. Baltimore Mayor Jack Young, who’s officially been in his

office less than a month, said in a statement that city officials are “well into the

restorative process” and have “engaged leading industry cybersecurity experts who

are on-site 24-7 working with us.” The FBI is also involved in the investigation.

“Some of the restoration efforts also require that we rebuild certain systems to make

sure that when we restore business functions, we are doing so in a secure manner,”

Young said. He did not offer a timeline for when all systems will come back online.

The Baltimore City Council president also plans to form a special committee to

investigate this latest attack and try to ensure it doesn’t happen again. A similar

attack using RobbinHood hit government computers in Greenville, North Carolina,

in April. A spokesperson for Greenville told the Wall Street Journal that the city never

wound up paying and that while its systems aren’t entirely restored, “all of our major

technology needs are now being met.” More than 20 municipalities in the US have

been hit by cyberattacks this year alone. And such attacks can be expensive,

perhaps especially if targets say they won’t pay. In 2018, hackers demanded that

Atlanta pay about $50,000 in bitcoins as part of a ransomware attack. The city

110

refused, and according to a report obtained by the Atlanta Journal-Constitution and

Channel 2 Action News, the attack wound up costing the city $17 million to fix.”

8.2.3.2 RobbinHood detection and results

The RobbinHood ransomware sample was retrieved from Hybrid-Analysis [103],

and information about this sample is presented in Table 8-5. The ransomware was

run on the system, suspended by W2RC and sent to the analysis server for

investigation. After the sample was analysed, it was determined that it was indeed

malicious, providing a CAT score of 96.93973, which is above the abnormal

threshold. However, it is not higher than other strains of ransomware like Cerber

and WannaCry. The results of calculating the CAT score are shown in Table 8-6.

Table 8-5. RobbinHood sample information

Sample information

SHA256 3bc78141ff3f742c5e942993adfbef39c2127f9682a303b5e786ed7f9a8d184b

Type PE32 executable (console) Intel 80386 (stripped to external PDB), for MS

Windows

Size 2.72 MB

Source Hybrid-Analysis [103]

Table 8-6. RobbinHood case study

Trigger Computation Result

DM ∑ 𝑐𝑓

∑ 𝑐𝑙
=

38

1

38

AM 𝑛𝑓

∆c × N
=

581

0.266 ∗ 12

182.0175

RM
𝑟𝑒𝑝𝑠 ×

∑ 𝑘𝑑

1 + ∑ 𝑘𝑟
+ 𝑘𝑞 ×

∑ 𝑘𝑐

1 + ∑ 𝑘𝑜
= 160 ∗

1

1
+ 1 ∗

16

34

161.4571

EM
𝐸𝑥 +

∑ 𝑃𝐸𝑆
𝑁𝑝𝑒𝑠
𝑖=0

𝑁𝑝𝑒𝑠
=

87.97974

14

6.2843

CAT 𝐷𝑀 + 𝐴𝑀 + 𝑅𝑀 + 𝐸𝑀

𝑁

96.93973

8.2.3.3 RobbinHood discussion

RobbinHood ransomware seems to be fairly new as it was first encountered in early

May 2019. The above scenario suggests that the majority of the city’s infrastructure

was brought to its knees – a situation that could have been averted. Security firms

and researchers propose that victims of ransomware attacks should not pay the

ransom and so mitigate the ransomware attacks and incidents. However, reports on

the above scenario indicate that the cost of recovering from a ransomware attack is

111

significantly higher than merely paying the ransom. This is because loading backups

is a timeous process. Care must be taken to ensure that all systems are properly

operating, and the ransomware has to be investigated and removed from the

network. By adopting and implementing a ransomware readiness framework, the

cost of investigation is significantly reduced. The framework could also prevent

ransomware attacks, which further increases system hardening and security.

When RobbinHood was executed on the host machine with the implemented

framework, the ransomware was detected as malicious because it scored a CAT

value of more than 70. The contributing factors to this ransomware were the AM and

RM. The API monitoring revealed a relatively low number of function calls, while the

RM showed a fairly large number of registry events. This was due to the system

configurations that RobbinHood queried from registry to determine the control set

architecture. This particular ransomware (RobbinHood) performed rigorous

querying to check if it was executing in a VM, thus implementing anti-forensics to

avoid reverse engineering. Another trademark of all ransomware executables is that

they always attempt to delete backups on the system through a command (cmd)

prompt. The RobbinHood ransomware also attempted to encrypt other drives

available on the computer.

8.3 Conclusion

The capability of the proposed approach for ransomware forensics was

demonstrated in this chapter. Using three real-life case studies, the chapter revealed

the potential of the developed prototype to detect and prevent a ransomware attack,

as well as to limit the spread of a ransomware attack. The study found that the

proposed framework could be leveraged to address ransomware investigation

challenges (by providing a data repository for an investigator) and that it actively

produced insights into the ransomware through the defined CBAs.

The next chapter describes the evaluation process that was adopted to evaluate the

ransomware readiness framework, as well as the developed prototype system.

112

9. CHAPTER 9: CRITICAL EVALUATION

9.1 Introduction

Chapter 9 discusses how the framework and prototype system were evaluated. For

this, several approaches were identified to be used for proof-of-concept tool

evaluation. These approaches generally fall in the category of formal laboratory-

controlled experimentation, focus groups evaluation, field study for experimental

data acquisition, benchmarking to standardised processes, and expert reviews [180]

[181]. Chapter 7 reported on the controlled experimental process to evaluate the

probability of identifying useful information for ransomware detection and

investigation. Furthermore, the results obtained from the experimental process

support the fundamental principle of digital forensic readiness. In this chapter, three

approaches to evaluation are considered: software verification and validation;

expert review and benchmarking. Each approach is discussed in detail in the

sections that follow.

9.2 Software verification and validation process

In this section, the software verification and validation processes were conducted

based on the NIST Computer Forensics Tool Testing Program [150], which

comprises five phases in the validation cycle (see Figure 9-1). The phases include

defining requirements, defining test assertions, defining test cases, defining test

methodology and finally validation testing.

• First, the defining requirements phase has two components, namely core

requirements and optional requirements, and they define the software in terms

of functionality and features. The core requirements specify the components that

the software needs and must contain, whereas the optional requirements are

elements that will be nice to have.

• The second phase involves defining test assertions. This means that tests are

defined on what functionality to check and what the expected outcome should

be to ensure the correctness of the software. Test assertions also comprise two

components for optional and core test assertions and map to the core and

optional requirements.

• Once it is known what should be tested, the third phase is to define test cases

that specify the testing conditions, environment and how these assertions will be

tested.

• The fourth phase is defining test methodology, in other words the method used

for conducting the tests.

• The last phase is validation testing, where the reflection of the testing process is

validated by checking to see if the test assertions are satisfied and the core

requirements have been met.

113

Since the prototype system was separated into two parts (Collection and Storage),

the validation of each part is presented with Secure Collection (SC) mapping to the

collection tool (W2RC) and Secure Storage (SS) mapping to the storage tool

(W3RS). The validation criteria are further explained in the subsections to follow.

Figure 9-1. NIST validation cycle

9.2.1 Secure collection validation

This section was validated based on the NIST validation cycle and is structured as

follows: Secure Collection Core Test Assertions (SC-CA); Secure Collection Test

114

Cases (SC-TC); and the Secure Collection Compliance Matrix (SCCM). Recall that

the collection requirements specifications were defined in Section 5.3 prior to the

implementation phase of the tool.

9.2.1.1 Secure Collection Core Test Assertions (SC-CA)

● SC-CA-01: The tool shall hash each database as well as log and display

these hashes each time the tool is run.

Justification: This ensures the verifiability, reliability and integrity of the

databases to prove that they have not been modified in any way.

● SC-CA-02: The tool shall detect when the storage and analysis server is not

online.

Justification: This ensures that the analysis and storage can be performed,

and that no unexpected circumstances will arise.

● SC-CA-03: The tool shall log any user actions as well as internal processes

that the tool is performing.

Justification: This ensures the repeatability as well as verifiability of an

incident where the authenticity of the analysis is required.

● SC-CA-04: The tool shall verify the collected information before the storage

process occurs.

Justification: This ensures the reliability, verifiability as well as authenticity

of the collected information that is going to be sent to the server. Identifiers

are also added to the collected information to ensure trackability.

9.2.1.2 Secure Collection Test Cases (SC-TC)

● SC-TC-01: Start the monitor normally and see if processes are being monitored.

● SC-TC-02: Verify the logs and the hashes present to ensure the integrity of

databases.

● SC-TC-03: Modify the storage server destination to see if it can store elsewhere.

● SC-TC-04: Check if monitoring does not continue if the server cannot be reached.

● SC-TC-05: Resume a process that was sent for analysis.

● SC-TC-06: Remove a process from the seen database and check if it is monitored

again.

● SC-TC-07: Verify the timestamps and task identifier.

● SC-TC-08: Check if the analysis is performed and stored successfully.

● SC-TC-09: Run the tool on different versions of Windows OS to see if it works.

● SC-TC-10: Perform analysis on network architectures.

● SC-TC-11: Test using running benign programs and determine the result.

● SC-TC-12: Test using running ransomware programs and determine the result.

● SC-TC-13: Run more than one program and determine if the tool can detect and

process concurrently.

● SC-TC-14: Add a safe process and check if it is analysed.

115

The testing methodology adopted was to install the collection tool on a Windows 10

and Windows 7 machine and perform the test cases that were defined. To perform

validation testing, a compliance matrix was adopted from Zareen et al. [182] where

the authors mapped the requirements to the test cases and compared the results of

the testing process to the test assertions (defined in a tabular format). This

compliance matrix is further discussed in the next section.

9.2.1.3 Secure Collection Compliance Matrix (SCCM)

The compliance matrix provides a tabulated result to see if the test assertions were

met and complied with the requirements that had been defined, and to determine

how the implementation compared to the specified requirements. Recall that the

requirements for Secure Collection were defined in Section 5.3. For convenience,

the requirements are duplicated in Table 9-1 to avoid looking back and forth. This

compliance matrix serves to identify limitations as well as to verify that a viable

implementation is presented. The results for the compliance matrix are presented in

Table 9-1, and each requirement defined has an associated test case.

For each test case performed, a test assertion provides validation and verification

that the requirement was met. This is represented in the table by providing the test

assertion label or by performing a manual check operation. For example, the first

row (number 1) in Table 9-1 checks if the requirement SC-CR-01 is satisfied by the

associated test assertion for the corresponding test case SC-TC-01. In this specific

case, no test assertion was defined because this was a simple manual check to see

if the requirement is met. The ‘Result of Test Assertion’ column can have three

feasible outcomes, the label of the test assertion, ‘check’ and ‘non-compliant’, where

‘check’ means that a manual test was conducted, and the conditions were satisfied.

‘Non-compliant’ means that the test was not satisfied, and the requirement was

therefore not met. From this table, there were no ‘non-compliant’ test assertions,

which suggests that all the requirements defined have been fulfilled.

Table 9-1. W2RC SCCM

Number Requirement Test Case Result of Test

Assertion

1 SC-CR-01 - The tool shall monitor all

running processes.

SC-TC-01 --check--

2 SC-CR-02 - The tool shall perform

logging at every action/process that

occurs.

SC-TC-02 SC-CA-01

3 SC-CR-03 - The tool must collect

information concurrently.

SC-TC-13 --check--

4 SC-CR-04 - The tool must show

consistency in the collection.

SC-TC-02,

SC-TC-08,

SC-TC-04

SC-CA-01, SC-CA-

02, SC-CA-03, SC-

CA-04

5 SC-CR-05 - The tool must suspend a

new process once detected.

SC-TC-11 SC-CA-02

116

Number Requirement Test Case Result of Test

Assertion

6 SC-CR-06 - The tool must efficiently

collect the executable and send it for

analysis.

SC-TC-08 SC-CA-04

7 SC-CR-07 - The tool shall perform

quick data processing and data

handling.

--check-- --check--

8 SC-CR-08 - The tool must show what

processes are currently being analysed.

SC-TC-01 SC-CA-03

9 SC-CR-09 - The tool must provide

hashes of the database to ensure

integrity.

SC-TC-02 SC-CA-01

10 SC-CR-10 - The tool must distinguish

between previously seen processes

and newly created processes

SC-TC-05,

SC-TC-06

SC-CA-03, --

check--

11 SC-CR-11 - The tool must list the time

and the name of the process it found.

SC-TC-01 --check--

12 SC-CR-12 - The tool must securely

send the collected information to the

storage server.

SC-TC-02,

SC-TC-03,

SC-TC-07,

SC-TC-08

SC-CA-03, SC-CA-

04

13 SC-CR-13 - The tool must work on all

Windows NT platforms.

SC-TC-09 --check--

14 SC-CR-14 - The tool must work on 32-

bit and 64-bit systems.

SC-TC-01 --check--

15 SC-CR-15 - The tool must request

administrator privileges.

SC-TC-01 --check--

16 SC-OR-01 - The tool must allow a user

to resume a process.

SC-TC-05 --check--

17 SC-OR-02 - The tool must allow a user

to add safe processes.

SC-TC-14 SC-CA-03

18 SC-OR-03 - The tool must provide the

status of the analysis of the process.

--check-- --check--

19 SC-OR-04 - The tool must provide an

option to separate storage server from

the analysis server.

SC-TC-03 SC-CA-02

20 SC-OR-05 - The tool must provide the

ability to see the CAT value of analysed

processes.

SC-TC-08 --check--

21 SC-OR-06 - The tool must display

notifications when a process is being

analysed.

--check-- --check--

22 SC-OR-07 - The tool must remove a

process from seen and whitelisted

database.

--check --check--

117

9.2.2 Secure storage validation

This section was also validated using the NIST validation cycle and is structured as

follows: Secure Storage Core Test Assertions (SS-CA), Secure Storage Test Cases

(SS-TC) and the Secure Storage Compliance Matrix (SSCM). Recall that the

requirements specifications for Secure Storage were defined in Section 6.3 before

the implementation phase of the tool.

9.2.2.1 Secure Storage Core Test Assertions (SS-CA)

● SS-CA-01: The tool shall encrypt the PDE.

Justification: This ensures confidentiality and circumvents acts of

unauthorised access to the PDE.

● SS-CA-02: The tool shall hash the PDE before and after the encryption

process.

Justification: This ensures the integrity of the PDE before and after the

encryption process.

● SS-CA-03: The tool shall log any user actions as well as internal processes

that the tool is performing.

Justification: This ensures reliability as well as verifiability in an incident

where the authenticity of the analysis is required.

● SS-CA-04: The tool shall sanitise the data ingested.

Justification: This ensures the stability of the system and reduces the attack

vectors from a system compromise through injection attacks like SQL and

XSS injection.

9.2.2.2 Secure Storage Test Cases (SC-CA)

● SS-TC-01: Send a POST request with the relevant data and verify that a successful

entry was added.

● SS-TC-02: Send XSS strings with SQL and JS injection and see if they are sanitised.

● SS-TC-03: Send an incorrect API token and check if the POST request is denied.

● SS-TC-04: Send invalid data to see if the validation process works.

● SS-TC-05: Perform hashing on the stored PDE and check if it matches the stored

hash digest.

● SS-TC-06: Download the PDE and see if it matches the database hash digest.

● SS-TC-07: Verify the timestamp of the database and the file timestamp.

● SS-TC-08: Perform URL manipulation to attempt to download PDE.

● SS-TC-09: Try to download PDE without 2FA authentication enabled.

● SS-TC-10: Verify if 2FA works as expected.

9.2.2.3 Secure Storage Compliance Matrix (SSCM)

The compliance matrix for secure storage is structured in the same way as the

compliance matrix for secure collection. (Recall that the requirements for Secure

Storage were defined in Section 6.3.) Table 9-2 presents the compliance matrix for

118

secure storage, which was also compliant (like the matrix for secure collection),

because all the results of the test assertions have been satisfied. This implies that

all the requirements defined for the secure storage have been met.

Table 9-2. W3RS SSCM

Number Requirement Test Case Result of Test Assertion

1 SS-CR-01 - The tool

shall ingest data from

an API endpoint.

SS-CR-03 - The tool

must ingest data

concurrently.

SS-TC-01 SS-CA-04

2 SS-CR-02 - The tool

shall perform logging at

every action/process

that occurs.

SS-TC-01, SS-

TC-02

SS-CA-03

3 SS-CR-04 - The tool

must show consistency

in data storage.

SS-CR-05 - The tool

must hash the ingested

data.

SS-TC-05 SS-CA-02

4 SS-CR-06 - The tool

must sanitise data

ingested.

SS-TC-02 SS-CA-04

5 SS-CR-07 - The tool

shall perform hashing

on the collected data.

SS-CR-08 - The tool

must show the hash

digest and metadata.

SS-CR-09 - The tool

must provide digests of

the encrypted PDE to

ensure integrity.

SS-CR-10 - The tool

must distinguish

between different PDE.

SS-TC-01, SS-

TC-05

SS-CA-01, SS-CA-02

6 SS-CR-11 - The tool

must list the information

collected.

--check-- --check--

7 SS-CR-12 - The tool

must validate the data

ingested.

SS-CR-13 - The tool

must verify user

authentication details.

SS-TC-03, SS-

TC-04, SS-TC-

07, SS-TC-08

SS-CA-02

119

Number Requirement Test Case Result of Test Assertion

SS-CR-14 - The tool

must securely

download PDE.

8 SS-OR-01 - The tool

must encrypt all

metadata.

SS-TC-01 SS-CA-01

9 SS-OR-02 - The tool

must decrypt PDE on

access.

SS-TC-06 SS-CA-02

10 SS-OR-03 - The tool

must list all the stored

PDE.

SS-OR-04 - The tool

must clearly show

detected malicious

PDE.

--check-- --check--

11 SS-OR-05 - The tool

must perform 2FA

authentication for PDE

download.

SS-TC-09, SS-

TC-10

SS-CA-03, --check--

Now that the prototype system has been validated from a software perspective, it is

necessary to get experts in the field to review the system and pass judgment. As

part of this evaluation process, expert reviews were conducted to gauge how

industry-leading professionals would react to the prototype system and the notion in

general. The next section discusses how the expert review process was conducted.

9.3 Expert review process

Expert review or opinion has been widely used in proof-of-concept tool evaluation,

particularly in the forensic domain where actual application knowledge and usability

processes are essential. This logic is also supported by studies that observed that

a smaller group of experts in a given discipline provides a more insightful evaluation

than do larger groups of randomly sampled participants [180]. In this context, the

expert review can be compared to the classical process of content validity. The

expert review provides a means to evaluate the usefulness and significance of the

proposed framework and the proof-of-concept tools developed in this study. The

current study therefore adopted expert review as one of the approaches for

evaluating the developed proof-of-concept tools. The observation in [181] asserts

that the evaluation process comprises essentially of two principles: ‘understanding

the problem environment’ (that the tool must address) and ‘understanding the tool’.

The developed prototype tools attempt to address the problem of volatile potential

digital evidence in a ransomware investigation (which generally falls within the digital

120

forensic environment). Therefore, the first principle can be used to identify relevant

experts who can participate in the evaluation process. These participants will

provide an evaluation of the relevance and potential usefulness of the developed

tool, which addresses the second principle of “understanding the tool”.

In order to develop a systematic approach towards the expert review process, a

system science approach to tool evaluation was adopted [183]. The latter is a

theory-based evaluation process that considers the holistic composition and

formative design of a given proof-of-concept tool within the context of the discipline.

Therefore, a system science approach is a systematic evaluation model [183] [184]

that considers each component of a system and how each component interacts to

achieve the overall intended goal of the tool. The detailed process used in the

evaluation of the tool is presented in the rest of this section. First is the process of

identifying appropriate respondents for the evaluation, followed by the process of

adapting the measurement instrument for expert review. Data collection and result

analysis constitute the last subsection of this section.

9.3.1 Respondent identification

Respondents considered for this study include digital forensics experts and security

experts in digital forensics and security organisations who are based in South Africa.

The purposive convenient sampling technique [185] that was used in this study, is

based on choosing a participant that possesses all the necessary qualities,

knowledge or experience. Given the limited expertise in the field of digital forensics

and security in South Africa, the expected sample size for the study was projected

to range from 5 to 20. This projection considers the logic that some organisation

may not provide support for such evaluation as a result of time constraints, potential

legal and policy concerns, as well as non-response. However, an expert review size

of five experts or more were considered in this study – as in other studies [180] [184]

– on the use of an expert review for tool evaluation.

In order to enhance the ease of use of the developed tool and to aid the evaluation

process, an installation guideline was developed. An automated approach towards

tool utilisation was also considered to minimise the manual process required for the

usage of the developed tool. Details of the installation are given in Appendix B. To

simplify the setup involved for the expert reviewers to go through the W3RS, an

analysis server was set up and hosted on a VPS. Therefore, only the W2RC tool

needed to be installed, which was already preconfigured to connect to the relevant

server. The tool and the measurements were sent to the organisation that had

initially indicated their potential to participate in the evaluation process. The expert

response was terminated after the fifth response was received and lasted for four

weeks, between July and August 2019. The respondents included two cybersecurity

specialists working with the Security Operation Centres (SOCs) of two banks in

South Africa, one cybersecurity analysist at the SOC of a global cybersecurity

121

company with headquarters in Israel, a security software developer, and a security

analyst at a digital security and forensics company.

The respondents were asked to provide an unbiased evaluation based on their

experience of security and forensic tools such as classical end-point intrusion

detection and response systems, and knowledge of SOCs. The current study

assumes that such knowledge is leveraged by the respondents to evaluate the

relevance and potential of the developed tools (W2RC and W3RS).

9.3.2 Measurement item development

In information system research, measurement items that comprise responding to

questionnaires are rooted in theories and are often used to yield knowledge and

perform evaluation. The measurement items considered in this study were based

on two information system constructs: the constructs from the theory of PC

utilisation [186] and computer self-efficacy theory [187]. These constructs were

considered relevant and suitable for the evaluation of the tool. However, the

instruments from each construct were further modified to reflect the context and

content of the W2RC evaluation process. A summary of the original and adapted

measurement instruments for the study is presented in Table 9-3.

Table 9-3. Measurement instrument for tool evaluation

S/N Orignal item Adaptation

Computer Self-Efficacy: I could complete the job using the software package (I could

perform ransomware investigation using the investigation tools)

Q1 if there was no one around to tell me what to

do

if there was no one around to tell

me what to do

Q2 if I had never used a package like it before. if I had never used a package like

it before.

Q7 if I had a lot of time to complete the job for

which the software was provided.

if I had a lot of time to perform

ransomware investigation on the

infected system.

Model of PC Utilisation (MPCU)

C1

C
o

m
p

le
x

it
y

Using a PC takes too much time

away from my normal duties.

The use of the proof-of-concept

(POC) tools to perform digital

investigation can help to reduce

the time taken for an investigation.

C2 Working with PCs is so

complicated, it is difficult to

understand what is going on.

Working with the POC tools is

complicated, as I don’t seem to

understand what is going on.

C3 Using a PC involves too much

time doing mechanical operations

(e.g. data input).

Using the POC tools consumes too

much time (i.e. doing the

installation and manual inputting).

JF1

P
e

rc
e

iv
e
d

jo
b

 f
it

 Using a PC will have no effect on

my performance of my job

(reverse scored).

Using the tools will have no effect

on the process of ransomware

investigation.

122

S/N Orignal item Adaptation

JF2 Using a PC can decrease the time

needed for my important job

responsibilities.

The use of the tools can reduce

the time required for me to conduct

a ransomware investigation.

JF3 Using a PC can significantly

increase the quality of output of

my job.

The use of the tool can improve

the efficiency of my investigation

process.

JF4 Using a PC can increase the

effectiveness of performing job

tasks (e.g. analysis).

The use of the tool can increase

the potential of recovery from a

ransomware attack without paying

the ransom.

JF5 A PC can increase the quantity of

output for the same amount of

effort.

The use of the W3RC tool can

generate potential digital evidence

that can be used to conduct a

ransomware investigation.

JF6 Considering all tasks, the general

extent to which the use of PC

could assist on the job.

Considering all tasks, the general

extent to which the use of the tool

can assist in ransomware

investigation.

LT1

L
o

n
g

-t
e

rm
 c

o
n

s
e

q
u

e
n

c
e

Use of a PC will increase the level

of challenge on my job

Using this tool will complicate the

investigation into a ransomware

attack.

LT2 Use of a PC will increase the

opportunity for preferred future job

assignments.

The use of the tool could create an

opportunity for the prevention of

future ransomware attack.

LT4 Use of a PC will increase the

opportunity for more meaningful

work.

The use of the tool will increase

the potential to gather more digital

artefacts for ransomware

investigation.

LT6 Use of a PC will increase the

opportunity to gain job security.

The use of the tool will strengthen

the security of the system against

a ransomware attack.

*The instructions to the respondents for these items were: "In this section, we wish to

determine how useful you believe a personal computer could be for your current job

responsibilities. Please tell us how much you agree or disagree with each of the

following statements (1 = strongly disagree; 2= somewhat disagree; 3= neither agree

nor disagree; 4= somewhat agree; 5= strongly agree)." (Note: The instructions and

scale anchors differed for other constructs.)

Demographic variables that represent the type of organisation and technical

competency of the respondent were also included in the measurement instrument.

9.3.3 Data analysis and presentation

A total of five expert reviews were received and used for the evaluation process.

Descriptive statistics were used to analyse the results based on the construct of the

PC utilisation model. Structural equation modelling could be considered for a sample

123

size smaller than 200 instances by using a bootstrapping technique. However, given

the relatively smaller sample size and the nature of expertise of the respondents, a

descriptive statistic of the response in relation to the constructs was considered.

This suggested that the summary of the descriptive statistics, in accordance with

the theoretical underpinning of the constructs, can express the response of the

respondents. To this effect, the analysis process was further categorised based on

two constructs: a model of PC utilisation, and a model of computer self-efficacy.

9.3.4 Results of the model of PC utilisation

Three subconstructs from the model of PC utilisation (MPCU) theory were

considered relevant to the evaluation process adopted in this study, based on the

applicability of the measurement items to the tool and the context of the study. As

highlighted in Table 9-4, Table 9-5 and Table 9-6, the MPCU subconstructs include

complexity, job fit and long-term consequence of the tool. A brief description is given

of the concept of each subconstruct, after which the statistical description of the

response for each subconstruct will be discussed in the subsequent subsections.

9.3.4.1 MPCU complexity

Complexity, in the context of this study, is conceptually defined as the degree of

success with which the developed W2RC and W3RS tools are perceived. This

ranges from relatively difficult to easy to understand and use the tools to perform

digital forensic investigations. Intuitively, complexity is indirectly proportional to

acceptance. This implies that the higher the perceived complexity of the W2RC and

W3RS, the lower or more restricted their adoption and utilisation. As highlighted in

Table 9-4, three measurement items were selected to evaluate the complexity of the

proposed tools. The items measured the impact of the complexity of the proposed

tools on conducting a ransomware investigation. A summarised version of the expert

review is presented in Table 9-4. Items C2 and C3 are reverse scales. A reverse

scale (R) implies that the observed response should be interpreted in the reverse

order of magnitude as seen in Figure 9-2.

Table 9-4. Response statistics of MPCU complexity

Items Description Mean score

C1 Using the W2RC tools to perform digital investigation can help

to reduce the time needed for the investigation

3.4

C2 Working with the W3RC tools is complicated, as I don’t seem

to understand what is going on (R)

1.8 (3.2)

C3 Using the tools consume too much time doing installation and

coding (R)

1.6 (3.4)

124

Figure 9-2. MPCU complexity graph

As shown in Table 9-4, the average mean score for each measurement item is

greater than 3.0 out of 5. This implies that the experts agree that the use of the

proposed tools can potentially (positively) influence the time required for a

ransomware investigation. For instance, a mean score of 3.4 for C1 indicates that,

on average, each expert agrees that the W2RC tool can reduce the investigation

time required to perform ransomware forensics. Similar inferences can be made

with the other two items. Thus, with respect to time complexity and investigation

time, the proposed tool has the potential to improve the ransomware investigation

process.

9.3.4.2 MPCU job fitness

Six measurement items were used to form the job fitness subconstruct. A job fitness

subconstruct is defined, in the context of this study, as a measure of the extent to

which a forensic (and or security) expert believes that using the developed W2RC

and W3RS tools can enhance their performance in conducting an investigation. A

job fit subconstruct provides metrics for the evaluation of the appropriateness and

effectiveness of the proposed tool. In the context of a ransomware investigation, job

fit evaluates the potential of the proposed tool to prevent a ransom payment. This

perception is particularly captured by the JF4 measurement item (see Table 9-5).

There was consensus among the experts that the current state of the tool presents

little probability of preventing ransom payment. This consensus is captured by the

unanimous rating of “somewhat disagree” for item JF4 (average rating of 2, as

shown in Table 9-5). However, the responses in respect of items JF5 and JF6

support the proposition that the integration of a readiness approach to ransomware

forensic has the potential to enhance ransomware investigation. This logic is

supported by all the experts with a rating of “agree” (averaged rating of 4). Item JF2

further extends the efficiency expectations of the proposed study. A graphical

representation of this MPCU Job Fitness can be seen in Figure 9-3. The expert

opinion supports the assertion that the proposed approach is fit for the job of a digital

forensic investigator and can significantly improve the investigation process.

3,4 3,2 3,4

0

5

MPCU Complexity

C1 C2 C3

125

Table 9-5. Response statistics of MPCU job fitness

Items Description Mean score

JF1 Use of the tools will have no effect on the process of ransomware

investigation (R) 2

JF2 Use of the tools can reduce the time required for me to conduct a

ransomware investigation 3.6

JF3 Use of the tool can improve the efficiency of my investigation

process 3.8

JF4 Use of the tool can increase the potential of recovering from

ransomware without paying the ransom 2.8

JF5 Use of the W3RC tool can generate potential digital evidence that

can be used to conduct a ransomware investigation 3.6

JF6 Considering all tasks, the general extent to which the use of the

tool can assist in ransomware investigation 4

Figure 9-3. MPCU job fitness graph

9.3.4.3 MPCU long-term consequence

One approach used in evaluating technological innovation is the long-term effect of

a given technology. The long-term consequence subconstruct measures the

potential of the W2RC and W3RS tools for ransomware investigation in the long

term. In addition, this subconstruct attempts to evaluate the potential of the

proposed tools to address future forensic challenges. Naturally, the long-term

consequence is suggested to have a positive relationship with technology utilisation.

Item LT2 (as shown in Table 9-6) captured the futuristic tendency of the proposed

tool. The average response of the respondents shows that the proposed tool has

the capacity to address future ransomware attacks. A graphical representation for

this is shown in Figure 9-4. Consequently, the use of the proposed approach as part

of ransomware forensics has the potential to reduce the risk of a ransomware attack.

2

3,6
3,8

2,8

3,6

4

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

JF1 JF2 JF3 JF4 JF5 JF6

MPCU Job Fitness

126

Table 9-6. Response statistics of MPCU long-term consequence

Items Description Mean score

LT1 Use of this tool will complicate the investigation of a ransomware

attack (R) 3.4

LT2 Use of the tool could create an opportunity for the prevention of

future ransomware attacks 4.2

LT4 Use of the tool will increase the potential to gather more digital

artefacts for ransomware investigation 2.8

LT6 Use of the tool will strengthen the security of the system against

a ransomware attack 2.8

However, the experts assert that the use of the proposed tool could potentially

introduce forensic analysis complexities. Data storage constitutes a major concern

that emerged from the expert review. Furthermore, an increase in the rate of false

positives and the tendency to store evidence with potentially no forensic value

constitute the main reason for this assertion.

Figure 9-4. MPCU Long-term Consequence

The responses on items LT1 and LT4 reveal that the experts believe that the

proposed tool could generate excessive data over a long period of time. Logically,

the combination of the potential of a big data challenge and induced complexities

will negatively affect the potential for strengthening data security in the long run.

This problem is indicated by the response to item LT6. Whilst such complexities and

the big data problem might not significantly affect the forensic process, they can

potentially have a negative effect on security. Given that security strengthening

constitutes one of the major applications of forensics, there is a need to address this

as a potential future challenge of the proposed approach.

In summary, the developed W2RC and W3RS tools satisfied the evaluated criteria

for forensic readiness solution for ransomware investigation.

3,4

4,2

2,8 2,8

0

1

2

3

4

5

MPCU Long-term Consequence

LT1 LT2 LT4 LT6

127

9.4 Mapping of the proposition to a Digital Forensic Standard

A benchmarking approach towards framework evaluation is presented in this

section. In order to benchmark the developed framework and tool, the

ISO27043:2015 standard was considered [188]. This approach can be compared to

external and criterion validity. The discussion begins with the benchmarking of the

developed framework to the ISO/IEC 27043:2015 standard, followed by evaluation

of the propositions made in this study, as well as of existing digital forensic readiness

frameworks and process models.

9.4.1 Mapping of the proposed framework to ISO/IEC 27043:2015

ISO/IEC 27043:2015 is an internationally standardised digital forensic readiness

process model that suggests the process to be followed by an investigator (and or

any security-related information technologist) to ensure the availability of potential

digital evidence. Furthermore, the model simplifies the process of proactive forensic

practice and the need for a readiness approach towards information acquisition and

preservation, specifically in a volatile environment. A logical mapping of the

proposed framework to the ISO/IEC 27043:2015 standard is presented in Figure

9-5. Recall that the readiness processes from the ISO/IEC 27043:2015 were

discussed in Section 2.4, and that the relation to each process was mapped to the

Ransomware Readiness Framework (RRF). A brief example of how this mapping is

interpreted shows that the Scenario Definition of the ISO 27043 maps to the Network

Architecture and Computing Devices phase of the RRF, represented as (1) Figure

9-5. Another example is that the Identification of Potential Digital Evidence Sources

is mapped to the Operating Systems and Evidence Sources of the RRF framework,

represented as (2). Further mappings of each process in the ISO 27043 can be

interpreted in a similar fashion. The mapping shows that the proposed framework

satisfied the requirement for a digital forensic readiness mechanism. Particularly, a

mechanism is provided for the evaluation and potential extraction of a ransomware

decryption key in a malware investigation.

This subsection further evaluates the suitability of the developed tool towards

realising the proposed framework.

128

Figure 9-5. Mapping of the Ransomware Readiness Framework to the ISO/IEC 27043:2015 International
Standard

The next section discusses works that are related to the proposed idea and

framework. It serves as part of an evaluation to see how this research relates to

existing literature and how it differs for the betterment of the body of knowledge.

9.5 Related literature

The aim of the research in hand was to provide a novel approach to ransomware

detection as well as to collect forensically relevant information to aid digital forensic

investigators in conducting timeous investigations. Since nothing specific to

ransomware and digital forensic readiness had been proposed at the time, this

section compares related literature to gauge the importance of this research and the

gap that it fills in respect of ransomware detection.

Significant contributions have been made towards detecting ransomware by using

Artificial Intelligence (AI), behavioural signatures, API call graphs and network

activity [189]–[192]. Using artificial intelligence provides a competitive advantage as

dynamic behaviour can be detected in real time. However, this is very limiting as

these intelligence mechanisms can easily be fooled. For example, a well-known

129

anti-virus company Cylance [193] who boasts that they are the leading AI-driven

anti-virus, was bypassed by researchers fairly easily by just adding random data at

the end of the malicious executable file, thereby changing some of the detection

characteristics [194] [195]. Another bypass was achieved when researchers masked

malware by using video game code and the malware embedded within, and Cylance

was not able to detect it [196]. Other works used deep learning as proposed by

Tseng et al. [197], in which the authors used deep learning AI algorithms to detect

malicious behaviour based on network traffic. This approach had merit, however, it

did not cater for infections that happen off-network, for example if a user deliberately

ran or was tricked into running ransomware through a USB device. The proposed

Ransomware Readiness Framework (RRF) caters for both physical execution or

network execution, as somewhere along the line the ransomware needs to be

executed and that has to be done through an executable file. Therefore, by capturing

all new processes, the current research caters for various ways of attack. A survey

on deep learning and AI was conducted by Kwon et al. [198] where the authors

looked at some of the techniques and algorithms used to detect anomalies and

proposed a generic template of how anomaly classification can be achieved. This

template consisted of various factors for intelligence which included neural

networks, fuzzy logic, genetic algorithms, support vector machines and decision tree

classifiers. Neural networks focused both on supervised and unsupervised learning

for the neural networks.

Other methods of detection involved the work of Jung and Won [9], who proposed

the idea of context-aware entropy – similar to the Entropy Monitoring (EM) context-

based analysis proposed in this research. This method by Jung and Won calculates

the entropy of each file before any operations (e.g. read/write) are performed on it,

backs up the file in a safe file system and again performs the entropy of the file after

any operation was carried out. If the entropy changed significantly, it would imply

that the file underwent encryption. Thereafter, the headers of the file were analysed

to determine whether abnormal or normal encryption occurred, where abnormal

encryption is most likely to be ransomware. While this approach is good for detecting

ransomware attacks using context-aware technology, it is very intensive in

processing and data storage. This is because each file would need to be backed up.

With the W2RC tool, this does not become a problem as analysis and storage are

happening at a centralised place within the organisation with a specific focus on

Digital Forensic Readiness (DFR). The work by Jung and Won furthermore does not

provide any mechanism for automated incident response or collect any data that

might have forensic value.

Related literature that used entropy [9] [63] [199] as a means of detection managed

to achieve good accuracy for ransomware detection; however, they rely on backing

up files. Therefore, entropy is by far the best method that can be used to detect

encryption, which is the major objective of ransomware attacks. The proposed

research also asserts that entropy is a good indication of encryption; however, when

130

combined with other metrics like registry and API calls, it provides more insight into

performing accurate detection.

The next section provides an overview of what works have used DFR to enable

timeous investigations and to provide investigators with a data repository to

corroborate the evidence that might have not been present post-incident.

9.5.1 Digital Forensic Readiness

Digital Forensic Readiness (DFR) aims to minimise the cost of an investigation while

maximising the amount of Potential Digital Evidence (PDE) that is collected [60].

Many frameworks for DFR have been used to address challenges faced during

investigation and litigation, for instance behavioural biometrics [200], public key

infrastructure systems [201], cloud [202] and IoT [203]. Unfortunately, at the time

this research was conducted, there were no DFR frameworks relating to

ransomware. Due to the fact that it is the most dangerous form of malware, several

detection methods exist for ransomware; however, nothing has been done to collect

PDE that can be used during litigation. Related literature on DFR frameworks can

be compared to make the idea behind each framework and the usefulness of DFR

clear. For example, the work by Adeyemi and Venter [35] designed a DFR

framework to incorporate behavioural biometrics within an organisation. This

framework consisted of four phases: data acquisition, preservation, user

authentication, and user pattern attribution phase, and each phase was

subsequently evaluated with the ISO/IEC 27043 international standard.

Another work – by Valjarevic and Venter [42] – created a framework for Public Key

Infrastructure (PKI) to aid organisations with integrating PKI systems. This

framework provided guidelines on how PDE can be maximised to preserve and

improve the level of information security within the PKI. Wireless devices have

become an integral part of our daily lives, and the work by Mouton and Venter [204]

presented a prototype to achieve DFR for wireless sensor networks. Their prototype

also presented requirement specifications for its implementation so that the

prototype tool could be reproduced. These requirements were drafted from real-

world demonstrations of sensor networks. In a similar fashion, W2RC and W3RS in

the current study also presented requirements specification and architectural

requirements, based on real-world requirements of tools. All the DFR frameworks

reviewed were evaluated in line with the ISO 27043 international standard.

Therefore, each framework reviewed from related literature provides a cornerstone

guide to successfully implement DFR within an organisation.

The next section focuses on ransomware investigation and on some of the key

findings that support the fact that ransomware investigation is a fairly complex

procedure.

131

9.5.2 Ransomware investigation

Several dissections have been made of different ransomware samples over the

years, such as Locky, WannaCry, CryptoLocker and others [16] [62]. The work by

MacRae and Franqueria [205] provided a detailed analysis of Locky ransomware to

understand how it works. MacRae and Franqueria [205] also agreed that performing

ransomware investigation is a difficult feat as the information left behind does not

leave any traces of the origin of the attack or of ransomware payment tracking. Their

work also proposed methods that can be used to track ransomware payment, such

as tracking the Bitcoin [206] transactions for the suspected ransomware wallets.

This is generally how law enforcement tracks the flow of ransomware payments,

and somewhere down the line, it may lead them to the perpetrators when the Bitcoin

is exchanged back to fiat currency.

WannaCry hit 2017 by storm leaving many organisations a victim of this attack. The

work by Kumar et al. [207] found upon investigation that a key characteristic of

ransomware is the ransom note that is always left behind. Secondly, the encryption

process always checks a C&C server to determine if there are any updates or if the

kill switch is active. This is usually done so that ransomware authors can have

control of where the malware should spread. Another commonality is to ensure

anonymity of the attacker's host services on the TOR [16] [207] network. This makes

it more difficult for law enforcement to shut the attacker down, due to the design of

anonymity on the TOR network. Another fundamental characteristic of ransomware

is logging or tracing the network activity to determine what external resources the

ransomware is contacting. This is why the proposed RRF collects network

information. Kumar et al. [207] conducted an investigation by extracting ‘strings’

from the ransomware executable and determined traces of WannaCry ransomware

in the executable itself. Their work [207] therefore proves that the information

collected in the RRF provides an investigator with the necessary evidence, as it

might not have been there at the time the first responders were present. More

comparisons and motivations for each item collected in the RRF were presented in

Section 4.3, outlining why the collected information was chosen and why it was

relevant.

The next section presents a summary of the related literature that was available by

late November 2019 to provide the necessary statistics of how much research has

been done. It also indicates the gaps where more research still needs to be

conducted.

9.5.3 Summary of the findings from related literature

This section presents a summary of the related literature and indicates the amount

of literature based on keywords and various literature repositories. Repositories

include IEEE Xplore, Springer Link, Tailor and Francis, Science Direct and Scopus.

The results of these findings are presented in Table 9-7. The values in brackets

represent an exact match, for example for the keyword “Digital Forensic Readiness”,

132

the IEEE Xplore repository found 59 results and for the keyword’s exact match, only

30 results were found.

The results in Table 9-7 reveal that little to no research has been conducted on DFR

and ransomware detection/investigation. Some of the results in the table come from

published papers that emanated from this dissertation. Some research has been

done on digital forensics; however, not many of the studies proposed any digital

forensics frameworks – as shown by the keyword “Digital Forensic Readiness

Framework” with the exact match in brackets. Ransomware investigation and

detection is a research area that is not new. However, DFR has not been applied to

these areas in detail. This could be a major drawback for the forensic community

when trying to find perpetrators.

Table 9-7. Summary of related literature findings (2019/11/28)

Keywords Articles found in repository

IEEE

Xplore

Springer

Link

Tailor and

Francis

Science

Direct

Scopus

Digital Forensic Readiness 59 (30) 491 (43) 957 (5) 433 (65) 158 (87)

Ransomware Investigation 7 (0) 420 (4) 97 (0) 443 (1) 29 (3)

Ransomware Detection 101 (35) 737 (43) 86 (0) 432 (27) 238 (62)

Digital Forensic Readiness +

Ransomware Detection

0 16 (1) 11 (0) 15 (0) 3 (1)

Digital Forensic Readiness +

Ransomware Investigation

0 14 (1) 13 (0) 16 (0) 5 (3)

Digital Forensic Readiness

Framework

17 (4) 364 (6) 477 (1) 266 (2) 44 (10)

Digital Forensic Readiness

Framework + Ransomware

Investigation

0 13 (1) 10 (0) 14 (0) 3 (2)

Digital Forensic Readiness

Framework + Ransomware

Detection

0 15 (1) 9 (0) 13 (0) 1 (0)

The next section concludes this chapter and makes a final comment with regard to

what was achieved by means of the evaluation processes.

9.6 Conclusion

The proposed framework and developed tools were critically evaluated in this

chapter. Two approaches to evaluation were considered: expert review and

benchmarking to international standards. Cybersecurity experts from cybersecurity-

related organisations were identified as respondents for the study. Constructs from

information systems theory, which criticises technology competency and utilisation,

were used to develop measurement items for the evaluation process. The result

133

supports the underlying findings from the previous chapters, which all attest to the

effectiveness of the proposed framework. Furthermore, the benchmarking process

reveals that the proposed framework aligns with international best practice,

specifically the ISO/IEC 27043:2015 international standard. Therefore, the

evaluation process supports the external validity of the developed tools and the

proposed framework.

The current research was also compared to the related literature to determine its

usefulness and relevance. The summary of related literature clearly indicates that

DFR has not been incorporated in organisations when it comes to ransomware. This

is an area that needs further research to contribute to the existing body of knowledge

and reduce the number of cybercrime attacks that occur every day.

The next chapter concludes the current study by providing an overview of the

research performed. It also presents a holistic view of what has been achieved

through this research and how it has expanded the body of knowledge to aid the

forensic community.

134

PART V

CONCLUSION

135

10. CHAPTER 10: CONCLUSION

This chapter serves as the conclusion to the dissertation and makes general remarks

on how this research has improved the body of knowledge that is relevant to the

forensic community. First, a summary of all the chapters is presented and next the

problem statement is revisited to show the extent to which it has been addressed.

After that follow a discussion of the limitations of this study, the future research work

suggested in this field, and finally, a number of final remarks about this research.

10.1 Summary of chapters

Chapter 1 served as the introduction to this research and presented the problem that

it intended to solve, as well as the methodology used to solve the research problems.

Chapter 2 presented the necessary background literature about digital forensics, the

science involved, as well as the traditional investigative process of conducting a

digital forensic investigation. Next followed digital forensic readiness and all the

processes that it entails. Chapter 3 discussed malware forensics and malware

analysis by presenting background to ransomware and the information that is

typically needed to perform ransomware forensics successfully. Together these two

chapters made up PART II of this dissertation.

Chapters 4, 5, and 6 constituted PART III of the dissertation. Chapter 4 introduced

the research framework that was created during the course of this research and that

provided the necessary structure and details for collection of relevant information to

aid digital forensic investigators to perform timeous investigations. Chapter 5

introduced the W2RC part of the proposed prototype system, which focused on

collecting and analysing every newly created process. This part introduced the main

model for ransomware forensics and proposed the metrics that were used to actively

detect a ransomware attack through Context-Based Analysis (CBA). Furthermore,

architectural design and system implementation were also presented in Chapter 5.

Chapter 6 introduced the second part of the prototype system (W3RS), which

revolved around secure storage of the collected information received from the

collection tool. This chapter also presented a process model for secure storage that

aided digital forensic readiness storage issues by ensuring forensic soundness of

the collected information as well as abiding by information security services.

Chapters 7, 8 and 9 constituted the evaluation part (PART IV) of the dissertation.

Chapter 7 provided the results and interpretation of this research in which a series

of tests was conducted to obtain an average thresholding value for each CBA and

to determine a good range to actively distinguish between abnormal and normal

behaviour. Chapter 8 proposed real-world case studies where the scenario of each

study was replicated with the proposed prototype installed to determine the real-

world use and implications of this research. Chapter 9 comprised a thorough process

to evaluate this research through expert review, software verification and validation,

136

as well as to map the proposed framework to the ISO/IEC 27043 international

standard.

Chapter 10 now concludes this report and suggests the future work that should stem

from the current research. The limitations of this research are also presented in this

chapter.

The section below revisits the problem statement to determine to what extent the

current research has addressed the problems presented in Chapter 1.

10.2 Addressing the problem statement

This research aimed to solve the complexities of detecting a ransomware attack and

providing digital forensics investigators with the necessary information to conduct

timeous investigations. As a result, investigators were provided a data repository to

work with, thus making investigation easier and simplifying the corroboration of

evidence. The extent to which the proposed subproblems are addressed is further

discussed:

- Q1) To what degree can a framework/model be created to aid digital forensic

investigators to perform a ransomware investigation?

o This problem has been addressed because the proposed framework was

evaluated and tested. A model for ransomware forensics was derived that

provides the detail to collect relevant information before, during and after

a ransomware attack. This aid digital forensic investigators by providing

them with a data repository to perform an investigation.

- Q2) What potential digital evidence can be collected from a ransomware

attack using Digital Forensic Readiness?

o Based on the background literature presented in Chapter 3, the necessary

information was extracted from the various malware analysis phases and

processes used to conduct an investigation. This information was then

formulated and built into the proposed framework. It formed part of the

groundwork by indicating what information is relevant for collection and

what information can be seen as potential digital evidence.

- Q3) Can such a framework reduce costs and improve incident response?

o The extensive evaluation of the proposed framework and prototype shows

that this problem has been addressed. Expert reviews confirmed that the

implementation of such a framework will allow for better incident detection

and response.

- Q4) To what degree can ransomware be detected before it causes any

permanent damage?

o Although partly addressed, this problem still requires more research

because newer ransomware has an increasingly sophisticated ability to

avoid detection. This research was nevertheless able to accurately detect

137

ransomware attacks and prevent any permanent damage from being done

to the system.

- Q5) Is there a way to automate the digital forensic process for investigating

ransomware?

o The proposed framework provided support to automated incident

response and investigation by detecting when an incident takes place and

alerting a system admin that an incident took place. It prompted an

investigator to investigate the matter and provided the necessary data and

information about the incident at hand.

The next section discusses the limitations of this research and their implications.

10.3 Contributions made by the current research

A summary of the contributions that stemmed from this research follows below:

1. Developed a framework for ransomware forensics.

2. Developed a model for ransomware forensics.

3. Developed a process model for secure readiness storage.

4. Developed a proof-of-concept tool (W2RC) for the collection of Potential

Digital Evidence (PDE).

5. Developed a proof-of-concept tool (W3RS) for secure storage of PDE.

6. Implemented an automated incident detection and response framework.

7. Designed a data repository with PDE to aid investigators in conducting a

timeous investigation.

8. Presented a digital forensically sound process model for integrity verification

and assurance.

9. Developed a novel approach to ransomware detection through Context-

Aware Trigger (CAT) technology.

10.4 Limitations of this research

This research does not have many limitations as far as the proposed framework is

concerned. However, the developed prototype does have some limitations. These

limitations are attributed to the scope of the work, since the objective was to provide

a proof-of-concept prototype and not to offer a full-fledged solution. The limitations

of the developed tools are listed in Table 10-1.

Table 10-1. Limitations of this research

Item Reason

Speed and efficiency Speed and efficiency were not major requirements of the

tool. Since it is a proof of concept, time optimisation was

not a core requirement, and there might be more efficient

ways to do what the proposed tools perform. Despite the

138

Item Reason

approach not being the most efficient in terms of

performance, it was able to accurately perform the task at

hand.

Sandboxing The reason for having an analysis server is that there is

no true sandbox with an API that is open source and that

provides the ability to be run alongside the machine with

limited resources. At the time of starting this research,

Windows 10 Sandbox was not released yet, and it is

currently available only on Enterprise and Professional

versions. However, the proposed Cuckoo sandbox

environment can be replicated on the host machine,

though it requires a lengthy installation process.

Accuracy As the proposed tool and framework were developed to

collect potential digital evidence (PDE), the accuracy of

detection was not a major priority. A few complications

arose with regard to certain applications that run only on

specific versions of Windows. These were not catered for

as they fall beyond the scope of the research and can be

attributed to the incompatibility of the executable at hand.

More metrics of ransomware protection may be useful to

add in the near future.

Detection evasion While the W2RC tool was able to detect ransomware with

high accuracy, there are still limitations to what the tool

can do. For example, if the ransomware employs delay

tactics where it might know about the 15-second scan at

the start of the process, it could just delay execution by 1

minute to prevent the ransomware from being flagged as

malicious. However, with some of the static analysis

performed, there is a possibility that it can still be

detected. The chances of this happening are slim as

ransomware already employs evasive techniques (as

mentioned in the results).

The next section suggests the future work that may emanate from the current

research so as to extend its scope and broaden its coverage.

10.5 Future work

Further analyses of ransomware samples are needed to find more unique

characteristics and patterns that can be used to create better detection and collection

mechanisms. More robust metrics are needed to provide better incident detection

and response for PDE collection. The research conducted provides the groundwork

for newer studies of ransomware investigation. More automation of digital evidence

processing can be performed to further simplify the investigation process. Other

research that should be conducted involves the dissection of malware propagation

139

and the attack vectors to deduce how the expansion of ransomware can be

contained. This research explored these aspects on a high level but did not focus on

them as they did not fall within the scope of this research. With the advances in

malware, it has become more difficult to accurately detect ransomware. Therefore,

further research needs to be conducted to improve detection rates, especially of

malware evasion tactics. Context-aware technology can significantly enhance the

detection of a ransomware attack and the collection of PDE, which closely relates to

behavioural analysis and signatures. Instead of focusing on one thing, context-

awareness technology focuses on a series of components to be more accurate,

based on the current machine’s working. While this is an ideal outcome, it is often

very difficult to achieve, and further research needs to be conducted in this area.

Finally, some concluding remarks are made about this research and what it has

achieved.

10.6 Final words

This research proposed a digital forensic readiness framework that can be deployed

for purposes of ransomware investigation. The implementation of such a framework

within a system can significantly produce near real-time potential evidence, in

contrast to pieces of post-mortem evidence (after the incident has occurred, when

potential evidence may have been deleted or encrypted). Moreover, compared to

post-mortem forensics, the proposed framework can potentially generate more

evidential information during a ransomware incident. Based on this framework, a

model was designed for automated ransomware incident detection and response

for ransomware forensics. The results presented in Chapter 7 confirmed the

usefulness of such a framework.

From a forensic perspective, the Ransomware Readiness Framework presents a

mechanism to minimise the cost of legal prosecution and offers protection against

ransom payment. Furthermore, this framework also provides a mechanism to better

understand how ransomware works and propagates on a granular level.

“Ransomware is not only about weaponizing encryption, it’s more

about bridging the fractures in the mind with a weaponized message

that demands a response from the victim.”

James Scott

140

PART VI

APPENDICES

141

Appendix A

Derived Publications and Conference Papers

The following is a list of all the publications and conference papers that were derived

from this research.

✓ Singh, H. S. Venter, and A. R. Ikuesan, “Windows registry harnesser for

incident response and digital forensic analysis,” Australian Journal of Forensic

Science, vol. 00, no. 00, pp. 629–638, 2018.

✓ Singh, A. R. Ikuesan, and H. S. Venter, “Digital Forensic Readiness

Framework for Ransomware Investigation,” in Digital Forensics and Cyber

Crime, 2019, pp. 91–105.

✓ A. Singh, A. Ikuesan, and H. Venter, “A context-aware trigger mechanism for

ransomware forensics,” 14th International Conference on Cyber Warfare

Security, ICCWS 2019, pp. 629–638, 2019.

There are two more papers that will be submitted from the content of this

dissertation.

142

Appendix B

W2RC & W3RS installation guide 2019

A. Setting up the environment

 Requirements

• Python 3.7 (sudo apt-get install python3.7 python3.7-venv)

• Virtual Box (Windows VM) (https://www.virtualbox.org/wiki/Downloads)

• MongoDB (https://docs.mongodb.com/manual/installation/)

• Cuckoo Framework (https://cuckoosandbox.org/) – Guided in Step 3

It is recommended that a Linux system should be used for the analysis server in

order to ensure better performance and added security. Ensure all system packages

are up to date prior to installation. It is not recommended to install the systems in a

Virtual machine due to degraded performance and having virtualization within

virtualization which is not recommended and has many limitations. Installing python

is essential for the system to work as well as the above-mentioned packages.

Following this guide will give you the basics on how to setup cuckoo and prepare

the system for the Ransomware Readiness Framework (RRF). A detailed guide on

how to setup cuckoo is available on their doc’s page

(https://cuckoo.readthedocs.io/en/latest/installation/). However, step 3 of this guide

will help you install and configure the necessary requirements to get the system

working. The next step will focus on creating a VM and configuring it.

B. Setting up Virtual Box

 Create a Windows VM for automated sandbox analysis

In order to analyse executables, a Windows VM needs to be created. Other Virtual

Box other platforms like VMWare, QEMU and KVM are supported. For the sake of

simplicity and open-source nature of these prototypes, Virtual Box will be used. Due

to Window Licensing, you will need to create this VM on your own using an ISO or

preconfigured VM obtainable from Microsoft. The system specifications are up to

you to decide. It is recommended to use at least 2GB of memory however with an

increase in memory there is also an increase in the time it takes to analyse a sample.

In order to allow the VM to communicate to the analysis engine, the agent needs to

be run in the VM. Download and install python on the VM and ensure you install the

pillow python package $> pip install pillow this allows the agent the ability to take

screenshots of the VM which help an investigator to see what is happening in the

background. After python is installed download the agent

(https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/agent/agent.p

https://www.virtualbox.org/wiki/Downloads
https://docs.mongodb.com/manual/installation/
https://cuckoosandbox.org/
https://cuckoo.readthedocs.io/en/latest/installation/
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/agent/agent.py

143

y) and run it with using Administrator privileges with $> python agent.py no output

will be shown once the agent is running.

Take a snapshot of the machine while the agent is running. This is important as this

snapshot will be used for performing analysis. More information on how to correctly

configure the agent is available here

(https://cuckoo.readthedocs.io/en/latest/installation/guest/agent/). Ensure that your

VM uses the Host-Only adapter and that the adapter is configured on the same

subnet as the physical machine.

Setting the IP address of the host can be found on the setting of the VM under the

network tab. Furthermore, setting the VirtualBox Host manager can be done from

the main Virtual Box Menu -> File -> Host Network Manager. The screenshot

below shows how to correctly set up the manager. Ensure that the gateway IP

address matches that of cuckoo (note down the IP address so it can be added to

the cuckoo configuration in step 3) and it matches vboxnet0 system, network

manager. Please make sure that the DHCP Server is unchecked, this prevents

Virtual Box from trying to assign an IP address using the NAT adapter from the

system. This is because the cuckoo framework does not support DHCP.

https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/agent/agent.py
https://cuckoo.readthedocs.io/en/latest/installation/guest/agent/

144

It is recommended that other general software is also installed and configured

appropriately such as Adobe Reader, Microsoft Office, etc. Be sure to disable auto-

updates of this software. Disable the firewall and anti-virus in the VM as well as any

auto-updates.

This is vital otherwise this may hinder analysis and block the agent from

communicating with the server. In order to correctly allow your VM to communicate

with the cuckoo server, the network adapter inside the VM in Windows needs to

change to be a static IP instead of DHCP as this is not supported by cuckoo and will

break the entire analysis process. Navigate to “Control Panel\Network and

Internet\Network Connections” right-click on the network adapter -> properties ->

navigate to the IPv4 -> properties and change from “Obtain an IP address

automatically” to “Use the following IP address” as indicated in the screenshot

below. Assign the machine the IP address you want and note it down as this will be

the same IP address you provide to the cuckoo configuration in step 3

145

C. Setting up Cuckoo Framework

 Cuckoo framework is a bit tedious to setup but once everything is configured correctly it provides a powerful

platform. Please ensure you follow these instructions carefully

It is recommended that you run cuckoo under its own user and therefore you must

create a user called cuckoo. You can find the installation process for that here

(https://cuckoo.readthedocs.io/en/latest/installation/host/installation/). Create a

python virtual environment for cuckoo to run in it. This is to prevent harm to the

system. It also ensures that cuckoo remains compatible even if system packages

are updated. To sum it up run the following commands:
#Creating a cuckoo user

$ sudo adduser cuckoo

$ sudo usermod -a -G vboxusers cuckoo

$ sudo usermod -a -G libvirtd cuckoo

#Installing cuckoo in a venv

$ virtualenv venv # This creates a virtualized environment

$ source venv/bin/activate # This enters into python virtual environment

(venv)$ pip install -U pip setuptools

(venv)$ pip install -U cuckoo

(venv)$ cuckoo -d # This will now create cuckoo configuration files

https://cuckoo.readthedocs.io/en/latest/installation/host/installation/

146

After cuckoo configurations have been created they can be found in the CWD of

cuckoo which is ~/.cuckoo

Open the file ~/.cuckoo/config/cuckoo.conf and ensure the information there is correct

and matches the config below:

 machinery = virtualbox

 ip = 192.168.56.1 # IP address of Windows VM gateway (same as system adapter

vboxnet0)

For larger processing of analysis, you can use your own database and can configure

it in the [database] section, otherwise, a default SQLite DB will be created.

Open the file ~/.cuckoo/config/auxilary.conf and ensure the information there is correct

and matches the config below:

[sniffer]

enabled = yes # Ensure that tcpdump is installed

 tcpdump = /usr/sbin/tcpdump # Path to tcpdump installation binary

This is to monitor network connections and any outgoing requests are logged for

trackability as well as investigative processes.

Open the file ~/.cuckoo/config/memory.conf and ensure the information there is correct

and matches the config below:

 NB: ensure that volatility is installed ((venv)$ pip install volatility) or

https://github.com/volatilityfoundation/volatility/wiki/Installation

Ensure that all the plugins are enabled in this configuration as this analysis’s

memory information one of the vital parts for the framework and potential recovery

from a ransomware attack. Set the “guest_profile” variable to the profile that

matches your Windows VM to prevent wasting time identifying the profile. A list of

profiles can be found here (https://github.com/volatilityfoundation/volatility/wiki/2.6-

Win-Profiles).

Open the file ~/.cuckoo/config/processing.conf and ensure the information there is correct

and matches the config below:

[analysisinfo]

enabled = yes

[behavior]

enabled = yes

[buffer]

enabled = yes

 [strings]

enabled = yes

 [static]

enabled = yes

 [procmemory]

enabled = yes

https://github.com/volatilityfoundation/volatility/wiki/Installation
https://github.com/volatilityfoundation/volatility/wiki/Installation
https://github.com/volatilityfoundation/volatility/wiki/2.6-Win-Profiles
https://github.com/volatilityfoundation/volatility/wiki/2.6-Win-Profiles

147

Open the file ~/.cuckoo/config/reporting.conf and ensure the information there is correct

and matches the config below:

 [jsondump]

enabled = yes

indent = 4

calls = yes

[mongodb]

enabled = yes

host = 127.0.0.1

port = 27017

db = cuckoo

store_memdump = yes

paginate = 100

MongoDB authentication (optional).

username = root

password = password

Ensure that a database is created in MongoDB and that the login details are correct.

Open the file ~/.cuckoo/config/virtualbox.conf and ensure the information there is correct

and matches the config below:

[virtualbox]

mode = headless

path = /usr/bin/VBoxManage # Path to the local installation of the VBoxManage utility.

interface = vboxnet0

machines = cuckoo1

[cuckoo1]

label = Win 7 # Specify the label name of the current machine as specified

in your

 platform = windows

ip = 192.168.56.102 # Specify the IP address of the current virtual machine. Make

sure that the IP address is valid and that the host machine is

able to reach it. If not, the analysis will fail.

snapshot = Snapshot 1 # Name of the snapshot taken in step 2

More details on how to configure other services and configurations can be found on

the cuckoo config docs page

(https://cuckoo.readthedocs.io/en/latest/installation/host/configuration/).

To ensure that everything is correctly setup within the (venv) run the cuckoo

command “(venv)$ cuckoo” you should see something similar to the screenshot below:

https://cuckoo.readthedocs.io/en/latest/installation/host/configuration/

148

The cuckoo server is now ready to receive analysis tasks. In order to make cuckoo

accessible to other clients (W2RC), the cuckoo API needs to be executed in a

different terminal tab with the command (venv)$ cuckoo api -H 0.0.0.0 -p 8080

NB. Note that it serves on 0.0.0.0 this means that is accessible by the systems

IP assigned through the network. To test that it works check your IP from

“ifconfig” and perform a curl request on the path “/cuckoo/status” like in the

screenshot below:

This provides the status of the machine as well as some statistics if you get output

similar to the screenshots above that means the API is running successfully. The

next step is to set up a secure storage engine W3RS.

D. Setting up Storage (W3RS)

 Ensure that the relevant python packages are installed

149

If not done already clone or download the repository

https://github.com/AvinashSingh786/W3RS. It is recommended to create a separate

python virtual environment and run the W3RS server it in the directory

/srv/W3RS/venv using the same commands listed in Step 3. You will then also have

to install any python packages from the requirements.txt file. Since this application

uses Django, it can also be configured using uwsgi. However, for simplicity, we will

use Django's inbuilt server functionality. In the virtual environment run the following

commands:
#Installing W3RS in a venv

$ virtualenv venv -p python3 # This creates a virtualized environment

$ source venv/bin/activate # This enters into python virtual environment

(venv)$ pip install -r requirements.txt

(venv)$ python manage.py makemigrations # This sets up the storage engine and databases

(venv)$ python manage.py makemigrations pde # This sets up the storage engine and databases

(venv)$ python manage.py migrate # This creates the databases and interfaces

(venv)$ python manage.py createsuperuser # Create a super user that you will use as the admin

(venv)$ python manage.py runsslserver 0.0.0.0:8082

The last command will run a secure SSL server on port 8000, note that this will use

a self-signed certificate and will not be shown as safe in the browser. In order to

prevent that you will need to get an SSL certificate from a Certificate Company. If

you don’t want the unsafe https to be displayed in the browser, you can obtain an

SSL certificate from Let’s Encrypt CA (https://letsencrypt.org/). You will get crt or

pem files and you can just supply the path to these files with the following flags --

certificate and --key when running the SSL server. Once the server is running to

ensure that the setup has completed correctly navigate to the link provided from the

command and check if you get a screenshot similar to the one below. Having an

SSL server protects the traffic being transferred from clear text attacks and network

sniffing. Navigate to (https://0.0.0.0:8000) got to advanced and proceed to site.

Problems:

• If you get the error of host is not allowed, please add the hostname to the W3RS/settings.py file at

the ALLOWED_HOSTS.

• If you get TypeError: get_available_name() got an unexpected keyword argument

'max_length’ please navigate to /srv/W3RS/venv/lib/python3.6/site-

packages/django/core/files/storage.py in save, line 48 and remove the max_length parameter.

• Reverse for '' not found. '' is not a valid view function or pattern name. navigate to

/srv/W3RS/venv/lib/python3.6/site-packages/django_encrypted_filefield/fields.py and insert the following

“return FETCH_URL_NAME” line 42.

In order to download PDE, you will need to enable 2-factor authentication. In order

to do that you will need to be logged in. After you have logged in with the superuser

https://github.com/AvinashSingh786/W3RS
https://letsencrypt.org/
https://0.0.0.0:8000/

150

details you can choose your method of 2FA for simplicity, take the default option.

Use the mobile app Authy or Google Authenticator to scan the QR code presented

on the next screen and enter in the 6-digit token from the app and 2FA will be

enabled. You can visit your profile page and create backup tokens however this is

not advised. In order to enable email notifications, navigate to W3RS -> settings.py

and replace the EMAIL details section with the relevant information. Once you are

done setting up you will see a blank screen but once the W2RC is set up you will

see something similar to the screenshot below and once the desired user is clicked

the collection of analysed samples will be shown:

When analysing the information about the executable we see the machine

name (“LAPTOP-533JBVFF”) and the IP address of the machine on the top

right as well as the executable name in the center. The CAT value is shown

in the middle with the download PDE button that will allow the JSON encoded

PDE to be downloaded and further analysed. The user of the machine and

the date and time appear at the bottom in case the machine has multiple users

and the date and time it for reliability purposes.

After the storage engine has been setup the next step will be to setup the client on

the user machines.

E. Setting up Collection (W2RC)

 Requirement:

- OpenSSL – this is used for the https connection to the storage server W3RS

This tool is packaged in an MSI file to ease the installation process on the client-side and removes the need

to install additional libraries, etc.

W2RC can be downloaded from the releases page

(https://github.com/AvinashSingh786/W2RC/releases) and installed on the user pc

that wishes to be monitored using this framework. Run the executable and follow

the instructions. Once the tool is installed an icon will be displayed on the desktop,

edit this shortcut to “Run as Administrator”. The tool needs to run as an

https://github.com/AvinashSingh786/W2RC/releases

151

administrator because it will be collecting information and sending executables for

analysis. Run the tool and you should get a GUI interface like the screenshot below:

In order to start the monitoring and collection tool W2RC, you will need to enter in

the correct IP address or domain name of the server. The analysis machine IP is for

the cuckoo API that was set up in step 3 and the storage machine IP is for the W3RS

system. Ensure the ports are correct otherwise monitoring will not start and an error

message will be shown. Logs are collected for the tool and can be found in the

installation directory in program files. Once the tool detects that the 2 servers are

online it will begin monitoring all processes on the system. Since this is just a

prototype too there are some inefficiencies and bugs. For start, once the monitoring

has started the GUI may become a bit unresponsive this is because of python not

truly having concurrency but rather simulated. This, therefore, relies on the main

thread to switch between child threads which takes some time due to the constant

monitoring of the processes. In order to ensure the integrity of the databases for

seen processes, whitelisted and blacklisted the MD5 sum of each database is

shown at the bottom as well as in the logs further ensuring integrity when

questioned. Once the monitor has started it will find processes that have not been

seen before and send the executable to the analysis machine.

The tool relies on both static and dynamic analysis, therefore if the behaviour of the

executable cannot be determined at this stage the tool will report that it failed to

determine the behaviour of the executable and will perform calculations and analysis

using static methods. Once a process has been analysed and the CAT value

determined it will be alerted to the user as in the screenshot below:

152

All unseen processes will be quickly suspended, and the process will undergo

analysis to determine if it is benign or malicious once the result comes back the

process is resumed or killed.

 THANK YOU 😊

W2RC – https://github.com/AvinashSingh786/W2RC

W3RS – https://github.com/AvinashSingh786/W3RS

Installation guide created by Avinash Singh

Date: 2019/07/18

Contact: asingh@cs.up.ac.za

https://github.com/AvinashSingh786/W2RC
https://github.com/AvinashSingh786/W3RS
file:///C:/Users/Avinash/AppData/Roaming/Microsoft/Word/asingh@cs.up.ac.za

153

Appendix C

Since PDE for ransomware samples can be fairly long sample snippets are

presented in this Appendix. For a full PDE sample please visit

(https://github.com/AvinashSingh786/W2RC/tree/master/sample)

A. Sample Snippets of PDE information

Figure 0-1. PDE snippet showing detected signature

Figure 0-2. PDE snippet showing delay operations

https://github.com/AvinashSingh786/W2RC/tree/master/sample

154

Figure 0-3. PDE snippet showing PE sections and entropy

Figure 0-4. PDE snippet showing process memory

155

Figure 0-5. PDE snippet showing buffer information location

Figure 0-6. PDE snippet showing network activity

156

Figure 0-7. PDE snippet showing loaded DLLs

Figure 0-8. PDE snippet showing cryptographic key information

157

Figure 0-9. PDE snippet showing API calls

158

Figure 0-10. PDE snippet showing various signatures

159

Bibliography

[1] L. A. Gordon, M. P. Loeb, and W. Lucyshyn, “Sharing information on computer
systems security: An economic analysis,” Journal of Accounting and Public
Policy, vol. 22, no. 6, pp. 461–485, 2003.

[2] M. F. Vilardo, “Online impersonation in securities scams,” IEEE Security &
Privacy Magazine, vol. 2, no. 3, pp. 82–85, May 2004.

[3] A. Idika, Nwokedi and Mathur and N. Idika, “A Survey of Malware Detection
Techniques,” Purdue University, pp. 1–48, 2007.

[4] J. P. Tailor and A. D. Patel, “A Comprehensive Survey: Ransomware Attacks
Prevention, Monitoring and Damage Control,” International Journal of
Research and Scientific Innovation, vol. IV, pp. 2321–2705, 2017.

[5] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,”
Journal of Computer and System Sciences, vol. 80, no. 5, pp. 973–993, 2014.

[6] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, “MalInsight: A systematic
profiling based malware detection framework,” Journal of Network and
Computer Applications, vol. 125, pp. 236–250, Jan. 2019.

[7] S. J. Vaughan-Nichols, “Today’s most popular operating systems,” 2017.
[Online]. Available: http://www.zdnet.com/article/todays-most-popular-
operating-systems/. [Accessed: 12-Apr-2018].

[8] K. Cabaj et al., “Experimental Analysis of Ransomware on Windows and
Android Platforms: Evolution and Characterization,” IEEE Network, vol. 94,
no. 6, pp. 465–472, 2016.

[9] S. Jung and Y. Won, “Ransomware detection method based on context-aware
entropy analysis,” Soft Computing, 2018.

[10] R. A. Ikuesan, “Online psychographic model for insider identification,”
Universiti Teknologi Malaysia, 2015.

[11] S. Logen, H. Höfken, and M. Schuba, “Simplifying RAM forensics: A GUI and
extensions for the volatility framework,” Proceedings - 2012 7th International
Conference on Availability, Reliability and Security, ARES 2012, pp. 620–624,
2012.

[12] C. Hargreaves and H. Chivers, “Recovery of encryption keys from memory
using a linear scan,” ARES 2008 - 3rd International Conference on Availability,
Security, and Reliability, Proceedings, no. March, pp. 1369–1376, 2008.

[13] Statista, “Global market share held by the leading mobile operating systems
from 2010 to 2015,” 2015. [Online]. Available:
https://www.statista.com/statistics/218089/global-market-share-of-windows-
7/. [Accessed: 12-Apr-2018].

[14] P. Faruki, V. Laxmi, M. S. Gaur, and P. Vinod, “Behavioural detection with API
call-grams to identify malicious PE files,” ACM International Conference
Proceeding Series, no. August, pp. 85–91, 2012.

[15] A. Zimba, Z. Wang, and H. Chen, “Multi-stage crypto ransomware attacks: A
new emerging cyber threat to critical infrastructure and industrial control
systems,” ICT Express, vol. 4, no. 1, pp. 14–18, 2018.

[16] V. Kotov and mantej S. Rajpal, “Understanding Crypto-Ransomware,”
Bromium.com, pp. 1–35, 2014.

[17] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware threat
success factors, taxonomy, and countermeasures: A survey and research

http://www.zdnet.com/article/todays-most-popular-operating-systems/
http://www.zdnet.com/article/todays-most-popular-operating-systems/
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

160

directions,” Computers and Security, vol. 74, pp. 144–166, 2018.
[18] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated

Dynamic Analysis of Ransomware: Benefits, Limitations and use for
Detection,” 2016.

[19] K. Hausknecht, D. Foit, and J. Buric, “RAM data significance in digital
forensics,” in 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO),
2015, pp. 1372–1375.

[20] Monika, P. Zavarsky, and D. Lindskog, “Experimental Analysis of
Ransomware on Windows and Android Platforms: Evolution and
Characterization,” Procedia Computer Science, vol. 94, pp. 465–472, 2016.

[21] D. Morato, E. Berrueta, E. Magaña, and M. Izal, “Ransomware early detection
by the analysis of file sharing traffic,” Journal of Network and Computer
Applications, vol. 124, pp. 14–32, 2018.

[22] A. Singh, A. R. Ikuesan, and H. S. Venter, “Digital Forensic Readiness
Framework for Ransomware Investigation,” in Digital Forensics and Cyber
Crime, vol. 259, F. Breitinger and I. Baggili, Eds. Cham: Springer International
Publishing, 2019, pp. 91–105.

[23] A. Singh, H. S. Venter, and A. R. Ikuesan, “Windows registry harnesser for
incident response and digital forensic analysis,” Australian Journal of Forensic
Sciences, vol. 00, no. 00, pp. 1–17, Dec. 2018.

[24] A. Singh, A. Ikuesan, and H. Venter, “A context-aware trigger mechanism for
ransomware forensics,” 14th International Conference on Cyber Warfare and
Security, ICCWS 2019, pp. 629–638, 2019.

[25] V. R. Kebande and H. S. Venter, “A Cloud Forensic Readiness Model Using
a Botnet as a Service,” in The International Conference on Digital Security
and Forensics (DigitalSec2014), 2014, pp. 23–32.

[26] P. M. Trenwith and H. S. Venter, “Digital forensic readiness in the cloud,” in
2013 Information Security for South Africa, 2013, pp. 1–5.

[27] A. Adamov and A. Carlsson, “The state of ransomware. Trends and mitigation
techniques,” in Proceedings of 2017 IEEE East-West Design and Test
Symposium, EWDTS 2017, 2017.

[28] K. Savage, P. Coogan, and H. Lau, “Information Resources,” Research-
Technology Management, vol. 54, no. 5, pp. 59–63, 2011.

[29] S. Mansfield-Devine, “Ransomware: the most popular form of attack,”
Computer Fraud and Security, vol. 2017, no. 10, pp. 15–20, 2017.

[30] ISO 27043, “INTERNATIONAL STANDARD ISO / IEC 27043: Information
technology — Security techniques — Incident investigation principles and
processes,” vol. 2015, 2015.

[31] A. R. Ikuesan and H. S. Venter, “Digital behavioral-fingerprint for user
attribution in digital forensics: Are we there yet?,” Digital Investigation, 2019.

[32] E. Casey, Digital Evidence and Computer Crime, 3rd ed. Academic Press,
2011.

[33] S. L. Garfinkel, Digital Forensics., vol. 101, no. 5. American Scientist, 2013.
[34] DFRWS, “A Road Map for Digital Forensic Research,” 2001.
[35] A. R. Ikuesan and H. S. Venter, “Digital forensic readiness framework based

on behavioral-biometrics for user attribution,” in 2017 IEEE Conference on
Application, Information and Network Security (AINS), 2017, no. 1, pp. 54–59.

[36] R. Von Solms and J. Van Niekerk, “From information security to cyber
security,” Computers and Security, 2013.

161

[37] A. Shabtai, Y. Elovici, and L. Rokach, “Introduction to Information Security,”
in SpringerBriefs in Computer Science, 2012.

[38] A. Refsdal, B. Solhaug, and K. Stølen, “Cybersecurity,” in SpringerBriefs in
Computer Science, 2015.

[39] G. J. Simmons, “Symmetric and Asymmetric Encryption,” ACM Computing
Surveys (CSUR), vol. 11, no. 4, pp. 305–330, 1979.

[40] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Journal of Cryptology, 2013.

[41] Microsoft, “Description of Symmetric and Asymmetric Encryption,” Microsoft,
2018. [Online]. Available: https://support.microsoft.com/en-
za/help/246071/description-of-symmetric-and-asymmetric-encryption.
[Accessed: 12-Aug-2019].

[42] A. Valjarevic and H. S. Venter, “Towards a Digital Forensic Readiness
Framework for Public Key Infrastructure systems,” in 2011 Information
Security for South Africa, 2011, pp. 1–10.

[43] R. Bhanot and R. Hans, “A review and comparative analysis of various
encryption algorithms,” International Journal of Security and its Applications,
2015.

[44] K. K. Sindhu and B. B. Meshram, “Digital Forensics and Cyber Crime
Datamining,” Journal of Information Security, vol. 03, no. 03, pp. 196–201,
2012.

[45] B. Kaplan, “RAM is Key: Extracting Disk Encryption Keys From Volatile
Memory,” Carnegie Mellon University, 2007.

[46] J. A. Lewis, D. E. Zheng, and W. A. Carter, The Effect of Encryption on Lawful
Access to Communications and Data, vol. 2. 2017.

[47] L. Chi and X. Zhu, “Hashing Techniques: A Survey and Taxonomy,” ACM
Computing Surveys (CSUR), 2017.

[48] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of
inexpensive disks (RAID),” in High Performance Mass Storage and Parallel
I/O: Technologies and Applications, 2001, pp. 3–14.

[49] I. Agrafiotis, “Biggest-ever DDoS attack takes down high-profile web
services,” Computer Fraud & Security, vol. 2016, no. 11, pp. 1–3, 2016.

[50] J. L. Hernandez-Ardieta, A. I. Gonzalez-Tablas, J. M. De Fuentes, and B.
Ramos, “A taxonomy and survey of attacks on digital signatures,” Computers
and Security, 2013.

[51] J. Zhou and D. Gollmann, “Evidence and non-repudiation,” Journal of Network
and Computer Applications, 1997.

[52] B. Schneier, “Two-factor authentication: Too little, too late,” Communications
of the ACM, vol. 48, no. 4, p. 136, 2005.

[53] P. Stephenson, “A comprehensive approach to digital incident investigation,”
Information Security Technical Report. 2003.

[54] M. Kohn, M. S. Olivier, and J. H. P. Eloff, “Framework for a Digital Forensic
Investigation.,” Communications, 2006.

[55] S. R. Selamat, R. Yusof, and S. Sahib, “Mapping Process of Digital Forensic
Investigation Framework,” Journal of Computer Science, vol. 8, no. 10, pp.
163–169, 2008.

[56] E. Casey, Handbook of Digital Forensics and Investigation. Elsevier, 2010.
[57] B. Carrier and E. H. E. H. Spafford, “An event-based digital forensic

investigation framework,” Proceedings of the 4th Digital Forensic Research
Workshop (DFRWS), 2004.

https://support.microsoft.com/en-za/help/246071/description-of-symmetric-and-asymmetric-encryption
https://support.microsoft.com/en-za/help/246071/description-of-symmetric-and-asymmetric-encryption

162

[58] E. Casey, “Error, Uncertainty, and Loss in Digital Evidence,” International
Journal of Digital Evidence, 2002.

[59] I. Xie and K. K. Matusiak, “Digital preservation,” in Discover Digital Libraries,
Elsevier, 2016, pp. 255–279.

[60] J. Tan, “Forensic readiness,” Cambridge, pp. 1–23, 2001.
[61] Robert Rowlingson Ph, “A Ten Step Process for Forensic Readiness,”

International Journal, vol. 2, no. 3, pp. 1–28, 2004.
[62] J. M. Ehrenfeld, “WannaCry, Cybersecurity and Health Information

Technology: A Time to Act,” Journal of Medical Systems, vol. 41, no. 7, p.
104, 2017.

[63] M. Wojnowicz, G. Chisholm, B. Wallace, M. Wolff, X. Zhao, and J. Luan,
“SUSPEND: Determining software suspiciousness by non-stationary time
series modeling of entropy signals,” Expert Systems with Applications, vol. 71,
pp. 301–318, 2017.

[64] D. O’Brien, Symantec, and D. O’Brien, “2017 Internet Security Threat Report,”
Symantec, vol. 20, no. April, p. 35, 2017.

[65] Microsoft, “Microsoft Advanced Threat Analytics,” 2015. [Online]. Available:
https://www.microsoft.com/en-us/cloud-platform/advanced-threat-analytics.
[Accessed: 27-Apr-2018].

[66] Matt Mansfield, “Cyber Security Statistics,” 2017. [Online]. Available:
https://smallbiztrends.com/2017/01/cyber-security-statistics-small-
business.html. [Accessed: 23-Apr-2018].

[67] Av-test, “Malware,” 2018. [Online]. Available: https://www.av-
test.org/en/statistics/malware/. [Accessed: 25-Apr-2018].

[68] M. I. Sobol, “Anti-Virus software,” Information Systems Security, vol. 3, no. 2,
pp. 24–29, 1994.

[69] Q. Chen and R. A. Bridges, “Automated behavioral analysis of malware: A
case study of wannacry ransomware,” Proceedings - 16th IEEE International
Conference on Machine Learning and Applications, ICMLA 2017, vol. 2018-
Janua, no. July, pp. 454–460, 2018.

[70] Y. Ding, X. Xia, S. Chen, and Y. Li, “A malware detection method based on
family behavior graph,” Computers and Security, vol. 73, pp. 73–86, 2018.

[71] A. Cohen, N. Nissim, L. Rokach, and Y. Elovici, “SFEM: Structural feature
extraction methodology for the detection of malicious office documents using
machine learning methods,” Expert Systems with Applications, vol. 63, pp.
324–343, 2016.

[72] J. A. Gómez-Hernández, L. Álvarez-González, and P. García-Teodoro, “R-
Locker: Thwarting ransomware action through a honeyfile-based approach,”
Computers and Security, vol. 73, pp. 389–398, 2018.

[73] M. Baykara and B. Sekin, “A novel approach to ransomware: Designing a safe
zone system,” 2018 6th International Symposium on Digital Forensic and
Security (ISDFS), pp. 1–5, 2018.

[74] M. Damshenas, A. Dehghantanha, and R. Mahmoud, “A Survey on Malware
propagation, analysis and detection,” International Journal of Cyber-Security
and Digital Forensics (IJCSDF), vol. 2, no. 4, pp. 10–29, 2013.

[75] M. Bishop, “Worm targets children,” Computer Fraud & Security, vol. 2000,
no. 10, pp. 4–5, Oct. 2000.

[76] P. Denning, “The Internet Worm,” in Computers Under Attack: Intruders,
Worms and Viruses, 1990, pp. 193–200.

[77] H. Orman, “The Morris worm: A fifteen-year perspective,” IEEE Security and

https://www.microsoft.com/en-us/cloud-platform/advanced-threat-analytics
https://smallbiztrends.com/2017/01/cyber-security-statistics-small-business.html
https://smallbiztrends.com/2017/01/cyber-security-statistics-small-business.html
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

163

Privacy. 2003.
[78] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification:

A Survey,” Journal of Information Security, vol. 05, no. 02, pp. 56–64, 2014.
[79] kaspersky, “A Brief History of Computer Viruses & What the Future Holds.”

[Online]. Available: https://www.kaspersky.co.za/resource-center/threats/a-
brief-history-of-computer-viruses-and-what-the-future-holds. [Accessed: 10-
May-2019].

[80] kaspersky, “Pegasus: The ultimate spyware for iOS and Android,” 2017.
[Online]. Available: https://www.kaspersky.co.za/blog/pegasus-
spyware/14604/. [Accessed: 11-May-2019].

[81] M. Dimitrova, “CVE-2019-3568 in WhatsApp Exploited Using Pegasus
Spyware,” 2019. [Online]. Available: https://sensorstechforum.com/cve-2019-
3568-whatsapp-pegasus/. [Accessed: 18-May-2019].

[82] Malwarebytes, “Adware.” [Online]. Available:
https://www.malwarebytes.com/adware/. [Accessed: 12-May-2019].

[83] B. Stone-Gross, M. Cova, B. Gilbert, R. Kemmerer, C. Kruegel, and G. Vigna,
“Analysis of a botnet takeover,” IEEE Security and Privacy, vol. 9, no. 1, pp.
64–72, Jan. 2011.

[84] Cloudlfare, “What is the Mirai Botnet?” [Online]. Available:
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/. [Accessed:
14-May-2019].

[85] Malwarebytes, “Rootkit.” [Online]. Available:
https://blog.malwarebytes.com/detections/rootkit/. [Accessed: 17-May-2019].

[86] F. Li et al., “Remedying Web Hijacking,” in Proceedings of the 25th
International Conference on World Wide Web - WWW ’16, 2016, pp. 1009–
1019.

[87] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen,
“SessionShield: Lightweight protection against session hijacking,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2011.

[88] D. O’Brien, “Internet Security Threat Report - Ransomware 2017,” Symantec,
p. 35, 2017.

[89] B. Stone-Gross, M. Cova, B. Gilbert, R. Kemmerer, C. Kruegel, and G. Vigna,
“Analysis of a Botnet Takeover,” IEEE Security Privacy, vol. 9, no. 1, pp. 64–
72, Jan. 2011.

[90] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic, “Malware propagation
in large-scale networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 1, pp. 170–179, 2015.

[91] United States Government, “How to Protecting Your Networks from
Ransomware,” pp. 2–8, 2016.

[92] E. H. Spafford, “The internet worm incident,” in ESEC ’89, 1989, pp. 446–468.
[93] B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in Malware : from

Encryption to Metamorphism,” International Journal of Computer Science and
Network Security, vol. 12, no. 8, pp. 74–83, 2012.

[94] P. Okane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden malware,”
IEEE Security and Privacy, vol. 9, no. 5, pp. 41–47, 2011.

[95] B. Bashari Rad, M. Masrom, and S. Ibrahim, “Camouflage In Malware: From
Encryption To Metamorphism,” International Journal Of Computer Science
And Network Security (IJCSNS), vol. 12, no. 8, pp. 74–83, 2012.

[96] S. Campbell, S. Chan, and J. R. Lee, “Detection of fast flux service networks,”

https://www.kaspersky.co.za/resource-center/threats/a-brief-history-of-computer-viruses-and-what-the-future-holds
https://www.kaspersky.co.za/resource-center/threats/a-brief-history-of-computer-viruses-and-what-the-future-holds
https://www.kaspersky.co.za/blog/pegasus-spyware/14604/
https://www.kaspersky.co.za/blog/pegasus-spyware/14604/
https://sensorstechforum.com/cve-2019-3568-whatsapp-pegasus/
https://sensorstechforum.com/cve-2019-3568-whatsapp-pegasus/
https://www.malwarebytes.com/adware/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://blog.malwarebytes.com/detections/rootkit/

164

Conferences in Research and Practice in Information Technology Series, vol.
116, pp. 57–66, 2011.

[97] E. Eilam, Reversing : secrets of reverse engineering. Wiley, 2013.
[98] Q. Le, O. Boydell, B. Mac, and M. Scanlon, “Deep Learning at the Shallow

End : Malware Classification for Non-Domain Experts,” Digital Investigation,
2018.

[99] A. Gazet, “Comparative analysis of various ransomware virii,” Journal in
Computer Virology, vol. 6, no. 1, pp. 77–90, 2010.

[100] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural analysis on
windows platforms,” Journal of Information Security and Applications, vol. 40,
pp. 44–51, 2018.

[101] A. Pektaş and T. Acarman, “Classification of malware families based on
runtime behaviors,” Journal of Information Security and Applications, vol. 37,
pp. 91–100, 2017.

[102] “VirusTotal,” 2019. [Online]. Available: https://www.virustotal.com/.
[Accessed: 20-Jun-2019].

[103] “Hybrid-Analysis,” 2019. [Online]. Available: https://www.hybrid-
analysis.com/. [Accessed: 20-Jun-2019].

[104] C. Guarnieri, “Cuckoo Sandbox,” 2014. [Online]. Available:
https://cuckoosandbox.org/. [Accessed: 04-Oct-2018].

[105] A. Patcha and J. M. Park, “An overview of anomaly detection techniques:
Existing solutions and latest technological trends,” Computer Networks, 2007.

[106] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware
analysis and mitigation techniques,” Computer Science Review, vol. 32, pp.
1–23, 2019.

[107] J. Bergeron et al., “Static Detection of Malicious Code in Executable
Programs,” Int. J. of Req. Eng, pp. 184–189, 2001.

[108] A. Cohen and N. Nissim, “Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile
memory,” Expert Systems with Applications, vol. 102, pp. 158–178, 2018.

[109] R. Kaur and M. Singh, “A survey on zero-day polymorphic worm detection
techniques,” IEEE Communications Surveys and Tutorials, vol. 16, no. 3, pp.
1520–1549, 2014.

[110] M. Mimoso, “Leaked NSA Exploit Spreading Ransomware Worldwide,”
Threatpost, 2017. .

[111] L. H. Newman, “How Leaked NSA Spy Tool ‘EternalBlue’ Became a Hacker
Favorite | WIRED,” Wired, 2018. .

[112] D. E. Denning and W. E. Baugh, “Hiding Crimes in Cyberspace,” Information,
Communication & Society, vol. 2, no. 3, pp. 251–276, 1999.

[113] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic Protocol Reverse
Engineering from Network Traces,” USENIX Security, no. 2, pp. 199–212,
2007.

[114] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, “Software-defined networking-
based crypto ransomware detection using HTTP traffic characteristics,”
Computers and Electrical Engineering, vol. 66, pp. 353–368, 2017.

[115] E. Gandotra, D. Bansal, and S. Sofat, “Malware Threat Assessment Using
Fuzzy Logic Paradigm,” Cybernetics and Systems, vol. 48, no. 1, pp. 29–48,
2017.

[116] J. Urrea, “An Analysis of Linux RAM Forensics,” pp. 1–89, 2006.
[117] “Volatility,” 2019. [Online]. Available: https://www.volatilityfoundation.org.

https://www.virustotal.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://cuckoosandbox.org/
https://www.volatilityfoundation.org/

165

[Accessed: 26-Jun-2019].
[118] K. Savage, P. Coogan, and H. Lau, “Information Resources,” Research-

Technology Management, vol. 54, no. 5, pp. 59–63, 2011.
[119] United States Government, “How to Protecting Your Networks from

Ransomware,” 2016. [Online]. Available: https://www.justice.gov/criminal-
ccips/file/872771/download. [Accessed: 26-Apr-2018].

[120] J. M. Ehrenfeld, “WannaCry, Cybersecurity and Health Information
Technology: A Time to Act,” Journal of Medical Systems, vol. 41, no. 7, p.
104, 2017.

[121] V. Kotov and M. S. Rajpal, “Understanding Crypto-Ransomware,”
Bromium.com, p. 35, 2015.

[122] Sophos, “Stopping Fake Antivirus: How to Keep Scareware Off Your
Network,” 2011.

[123] Symantec, “SpySherrif.” [Online]. Available:
https://www.symantec.com/security-center/writeup/2005-122910-4625-99.
[Accessed: 17-May-2019].

[124] Kaspersky, “Overall Statistics for 2017,” Kaspersky, 2017. [Online]. Available:
https://kasperskycontenthub.com/securelist/files/2017/12/KSB_statistics_20
17_EN_final.pdf. [Accessed: 04-Apr-2018].

[125] T. Halpin and T. Morgan, “Information Levels and Frameworks,” in Information
Modeling and Relational Databases, 2008.

[126] T. Halpin and T. Morgan, Information Modeling and Relational Databases.
2008.

[127] R. Finkel, “Operating systems,” in Computers, Software Engineering, and
Digital Devices, 2005, pp. 18-1-18–18.

[128] P. C. Monali Chim, Vasundhara Rathod, “Linux & Windows Operating
Systems,” Journal of Engineering, Computers & Applied Sciences (JEC&AS),
2013.

[129] B. Kaplan, “RAM is Key: Extracting Disk Encryption Keys From Volatile
Memory,” p. 20, 2007.

[130] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient virtual
memory for big memory servers,” in Proceedings - International Symposium
on Computer Architecture, 2013, pp. 237–248.

[131] H. Pomeranz, “Detecting Malware With Memory Forensics Why Memory
Forensics ? Everything in the OS traverses RAM,” pp. 1–27, 2012.

[132] F. Olajide and N. Savage, “On the Extraction of Forensically Relevant
Information from Physical Memory,” IEEE World Congress on Internet
Security (WorldCIS), pp. 248–252, 2011.

[133] K. A. Alghafli, A. Jones, and T. A. Martin, “Forensic Analysis of the Windows
7 Registry,” JDFSL, vol. 5, no. 4, pp. 5–30, 2010.

[134] L. W. Wong, “Forensic Analysis of the Windows Registry | Forensic Focus -
Articles,” Digital Forensics Articles and Research Papers, 2011.

[135] M. Gruhn and F. C. Freiling, “Evaluating atomicity, and integrity of correct
memory acquisition methods,” Digital Investigation, vol. 16, pp. S1–S10,
2016.

[136] R. B. van Baar, W. Alink, and A. R. van Ballegooij, “Forensic memory analysis:
Files mapped in memory,” Digital Investigation, vol. 5, no. SUPPL., pp. 52–
57, 2008.

[137] G. Andriana Mutiara and R. Wijaya, “Digital Forensics Random Access
Memory Using Live Technique Based On Network Attacked,” vol. 0, no. c,

https://www.justice.gov/criminal-ccips/file/872771/download
https://www.justice.gov/criminal-ccips/file/872771/download
https://www.symantec.com/security-center/writeup/2005-122910-4625-99
https://kasperskycontenthub.com/securelist/files/2017/12/KSB_statistics_2017_EN_final.pdf
https://kasperskycontenthub.com/securelist/files/2017/12/KSB_statistics_2017_EN_final.pdf

166

2017.
[138] S. Vömel and F. C. Freiling, “A survey of main memory acquisition and

analysis techniques for the windows operating system,” Digital Investigation,
vol. 8, no. 1, pp. 3–22, 2011.

[139] G. Adomavicius and A. Tuzhilin, “Context-aware recommender systems,” in
Recommender Systems Handbook, Second Edition, 2015, pp. 191–226.

[140] K. Hausknecht, D. Foit, and J. Burić, “RAM data significance in digital
forensics,” 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO 2015
- Proceedings, no. May, pp. 1372–1375, 2015.

[141] D. N. Patil and B. B. Meshram, “Extraction of forensic evidences from windows
volatile memory,” in 2017 2nd International Conference for Convergence in
Technology (I2CT), 2017, pp. 421–425.

[142] R. C. Dodge, C. Carver, and A. J. Ferguson, “Phishing for user security
awareness,” Computers and Security, vol. 26, no. 1, pp. 73–80, 2007.

[143] S. Abraham and I. S. Chengalur-Smith, “An overview of social engineering
malware: Trends, tactics, and implications,” Technology in Society, vol. 32,
no. 3, pp. 183–196, 2010.

[144] “Authy.” [Online]. Available: https://authy.com/. [Accessed: 19-Aug-2019].
[145] M. Alaeiyan, S. Parsa, and M. Conti, “Analysis and classification of context-

based malware behavior,” Computer Communications, vol. 136, no. January
2018, pp. 76–90, 2019.

[146] X. Wang, D. Feng, and P. Su, “Reconstructing a packed dll binary for static
analysis,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009.

[147] Microsoft, “ListDLLs,” 2016. [Online]. Available:
https://docs.microsoft.com/en-us/sysinternals/downloads/listdlls. [Accessed:
05-Oct-2018].

[148] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on
API call sequence analysis,” International Journal of Distributed Sensor
Networks, vol. 2015, 2015.

[149] B. Dolan-Gavitt, “Forensic analysis of the Windows registry in memory,”
Digital Investigation, vol. 5, no. SUPPL., pp. 26–32, 2008.

[150] NIST, “Computer Forensics Tool Testing Program,” 2014. [Online]. Available:
http://www.cftt.nist.gov/disk_imaging.htm. [Accessed: 12-Oct-2017].

[151] NIST, “NIST,” 2019. [Online]. Available: https://www.nist.gov/. [Accessed: 12-
Oct-2019].

[152] V. R. Kebande, N. K. Menza, and H. S. Venter, “Functional Requirements for
Adding Digital Forensic Readiness as a Security Component in IoT
Environments,” International Journal on Advanced Science, Engineering and
Information Technology, vol. 8, no. 2, p. 342, 2018.

[153] P. S. Foundation, “Python,” 2019. [Online]. Available:
https://www.python.org/. [Accessed: 05-Nov-2019].

[154] “TkInter.” [Online]. Available: https://wiki.python.org/moin/TkInter. [Accessed:
08-Oct-2019].

[155] “OpenSSL.” [Online]. Available: https://wiki.openssl.org/index.php/Binaries.
[Accessed: 17-Jun-2019].

[156] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic creation of
SQL injection and cross-site scripting attacks,” in Proceedings - International
Conference on Software Engineering, 2009.

https://authy.com/
https://docs.microsoft.com/en-us/sysinternals/downloads/listdlls
http://www.cftt.nist.gov/disk_imaging.htm
https://www.nist.gov/
https://www.python.org/
https://wiki.python.org/moin/TkInter
https://wiki.openssl.org/index.php/Binaries

167

[157] M. L. Das and N. Samdaria, “On the security of SSL/TLS-enabled
applications,” Applied Computing and Informatics, 2014.

[158] S. Omeleze and H. S. Venter, “Proof of concept of the online neighbourhood
watch system,” in Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, 2016, vol.
171, pp. 78–93.

[159] S. Pandey and M. Farik, “Best Symmetric Key Encryption - A Review,”
International Journal of Scientific & Technology Research, vol. 6, no. 6, pp.
310–312, 2017.

[160] D. S. Abd Elminaam, H. M. A. Kader, and M. M. Hadhoud, “Evaluating the
performance of symmetric encryption algorithms,” International Journal of
Network Security, vol. 10, no. 3, pp. 213–219, 2010.

[161] R. Sears, C. Van Ingen, and J. Gray, “To BLOB or Not To BLOB: Large Object
Storage in a Database or a Filesystem?,” Microsoft Research, pp. 1–11, Jan.
2007.

[162] T. D. Morgan et al., “On the Extraction of Forensically Relevant Information
from Physical Memory,” Digital Investigation, vol. 2, no. 12, pp. 1–28, 2008.

[163] “Docker,” 2019. [Online]. Available: https://www.docker.com/. [Accessed: 14-
Sep-2019].

[164] J. R. D. M’Raihi, S. Machani, M. Pei, “TOTP: Time-Based One-Time
Password Algorithm,” Journal of Chemical Information and Modeling, 2013.

[165] Google, “Google Authenticator,” 2019. [Online]. Available:
https://github.com/google/google-authenticator. [Accessed: 02-Nov-2019].

[166] Yubico, “YubiKey.” [Online]. Available: https://www.yubico.com/. [Accessed:
18-Oct-2019].

[167] DjangoProject, “Django Auth.” [Online]. Available:
https://docs.djangoproject.com/en/2.2/topics/auth/passwords/. [Accessed:
04-Oct-2019].

[168] Q. X. Miao, “Research and analysis on Encryption Principle of TrueCrypt
software system,” in 2nd International Conference on Information Science and
Engineering, ICISE2010 - Proceedings, 2010, pp. 1409–1412.

[169] E. Spero, M. Stojmenović, and R. Biddle, “Helping Users Secure Their Data
by Supporting Mental Models of VeraCrypt,” in International Conference on
Human-Computer Interaction, 2019, pp. 211–218.

[170] L. L. Yuval Nativ, “theZoo,” 2015. [Online]. Available:
https://github.com/ytisf/theZoo. [Accessed: 12-Sep-2018].

[171] S. Vajapeyam, “Understanding Shannon’s Entropy metric for Information,” 24-
Mar-2014. [Online]. Available: http://arxiv.org/abs/1405.2061. [Accessed: 10-
Feb-2019].

[172] Whitewood Encryption Systems, “Understanding And Managing Entropy,”
Whitewood Encryption Systems, pp. 1–7, 2015.

[173] K. A. Alghafli, A. Jones, and T. A. Martin, “Forensic Analysis of the Windows
7 Registry,” JDFSL, vol. 5, no. 4, pp. 5–30, 2010.

[174] C. Framework, “Cuckoo Community.” [Online]. Available:
https://github.com/cuckoosandbox/community. [Accessed: 02-Nov-2019].

[175] Comptroller and Auditor General, “Investigation: WannaCry cyber attack on
the NHS,” Hc, vol. 414, no. April 2018, p. 6, 2017.

[176] C. Sienko, “InfosecInstitute.” [Online]. Available:
https://resources.infosecinstitute.com/category/healthcare-information-
security/healthcare-attack-statistics-and-case-studies/ransomware-case-

https://www.docker.com/
https://github.com/google/google-authenticator
https://www.yubico.com/
https://docs.djangoproject.com/en/2.2/topics/auth/passwords/
https://github.com/ytisf/theZoo
http://arxiv.org/abs/1405.2061
https://github.com/cuckoosandbox/community
https://resources.infosecinstitute.com/category/healthcare-information-security/healthcare-attack-statistics-and-case-studies/ransomware-case-studies-hollywood-presbyterian-and-the-ottawa-hospital/
https://resources.infosecinstitute.com/category/healthcare-information-security/healthcare-attack-statistics-and-case-studies/ransomware-case-studies-hollywood-presbyterian-and-the-ottawa-hospital/

168

studies-hollywood-presbyterian-and-the-ottawa-hospital/.
[177] 24by7security, “Ransomware Statistics,” 2018. [Online]. Available:

https://24by7security.com/have-you-scheduled-your-first-cybersecurity-task-
in-2018-here-are-some-interesting-2017-statistics/. [Accessed: 01-May-
2018].

[178] C. Osborne, “Texas hospital becomes victim of Dharma ransomware,” 2018.
[Online]. Available: https://www.zdnet.com/article/texas-hospital-becomes-
victim-of-ransomware-patient-data-potentially-leaked/. [Accessed: 15-Aug-
2019].

[179] Emily Stewart, “Hackers have been holding the city of Baltimore’s computers
hostage for 2 weeks,” 2019. [Online]. Available:
https://www.vox.com/recode/2019/5/21/18634505/baltimore-ransom-
robbinhood-mayor-jack-young-hackers. [Accessed: 14-Aug-2019].

[180] M. Tory and T. Möller, “Evaluating Visualizations: Do Expert Reviews Work?,”
IEEE computer graphics and applications, vol. 25, no. 5, pp. 8–11, 2005.

[181] A. Powell, A. Vickers, E. Williams, and B. Cooke, “A practical strategy for the
evaluation of software tools,” in Method Engineering, Springer
Science+Business Media Dordrecht 1996, 1996, pp. 165–185.

[182] M. S. Zareen, B. Aslam, and M. Akhlaq, “Criteria for validating secure wiping
tools,” in IFIP Advances in Information and Communication Technology, 2015.

[183] P. Jokela, P. Karlsudd, and M. Östlund, “Theory, method and tools for
evaluation using a systems-based approach,” Electronic Journal of
Information Systems Evaluation, vol. 11, no. 3, pp. 197–212, 2008.

[184] H. Chang fu, L. Rong kwei, K. He yau, and L. Amy HI, “A systematic evaluation
model for solar cell technologies,” Mathematical Problems in Engineering, vol.
2014, pp. 1–16, 2014.

[185] I. Etikan, “Comparison of Convenience Sampling and Purposive Sampling,”
American Journal of Theoretical and Applied Statistics, vol. 5, no. 1, p. 1,
2016.

[186] R. L. Thompson, C. A. Higgins, and J. M. Howell, “Personal Computing:
Toward a Conceptual Model of Utilization,” MIS Quarterly, 2006.

[187] C. A. Compeneau, D. R.Higgins, “Development of a measure and initial test,”
Management Information Systems, vol. 19, no. 2, pp. 189–211, 2012.

[188] A. Valjarevic, H. Venter, and R. Petrovic, “ISO/IEC 27043:2015 - Role and
application,” 24th Telecommunications Forum, TELFOR 2016, pp. 1–4, 2017.

[189] D. Nieuwenhuizen, “A behavioural-based approach to ransomware
detection,” MWR Labs Whitepaper, 2017.

[190] P. Raunak and P. Krishnan, “Network detection of ransomware delivered by
exploit kit,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no.
12, pp. 3885–3889, 2017.

[191] R. Brewer, “Ransomware attacks: detection, prevention and cure,” Network
Security, vol. 2016, no. 9, pp. 5–9, 2016.

[192] G. Cusack, O. Michel, and E. Keller, “Machine learning-based detection of
ransomware using SDN,” in SDN-NFVSec 2018 - Proceedings of the 2018
ACM International Workshop on Security in Software Defined Networks and
Network Function Virtualization, Co-located with CODASPY 2018, 2018, pp.
1–6.

[193] BlackBerry, “Cylance.” [Online]. Available: https://www.cylance.com/.
[Accessed: 05-Oct-2019].

[194] S. Boulevard, “A universal bypass tricks Cylance AI antivirus.” [Online].

https://resources.infosecinstitute.com/category/healthcare-information-security/healthcare-attack-statistics-and-case-studies/ransomware-case-studies-hollywood-presbyterian-and-the-ottawa-hospital/
https://24by7security.com/have-you-scheduled-your-first-cybersecurity-task-in-2018-here-are-some-interesting-2017-statistics/
https://24by7security.com/have-you-scheduled-your-first-cybersecurity-task-in-2018-here-are-some-interesting-2017-statistics/
https://www.zdnet.com/article/texas-hospital-becomes-victim-of-ransomware-patient-data-potentially-leaked/
https://www.zdnet.com/article/texas-hospital-becomes-victim-of-ransomware-patient-data-potentially-leaked/
https://www.vox.com/recode/2019/5/21/18634505/baltimore-ransom-robbinhood-mayor-jack-young-hackers
https://www.vox.com/recode/2019/5/21/18634505/baltimore-ransom-robbinhood-mayor-jack-young-hackers
https://www.cylance.com/

169

Available: https://securityboulevard.com/2019/07/a-universal-bypass-tricks-
cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-
attack-surface-for-machine-learning-based-security/. [Accessed: 05-Oct-
2019].

[195] Skylight, “Cylance, I Kill You!,” 2019. [Online]. Available:
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/. [Accessed: 05-Oct-
2019].

[196] SCMagazine, “Researchers bypass Cylance’s AI-based AV solution by
masking malware with video game code,” 2019. [Online]. Available:
https://www.scmagazine.com/home/security-news/researchers-bypass-
cylances-ai-based-av-solution-by-masking-malware-with-video-game-code/.
[Accessed: 05-Oct-2019].

[197] A. Tseng et al., “Deep Learning for Ransomware Detection,” IEICE Technical
Report; IEICE Tech. Rep., vol. 116, no. 282, pp. 87–92, 2016.

[198] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of deep
learning-based network anomaly detection,” Cluster Computing, pp. 1–13,
2017.

[199] A. Continella et al., “ShieldFS : A Self-healing , Ransomware-aware
Filesystem,” Proceedings of the 32nd Annual Conference on Computer
Security Applications - ACSAC ’16, 2016.

[200] M. Mohlala, I. R. Adeyemi, and H. S. Venter, “User Attribution based on
Keystroke Dynamics in Digital Forensic Readiness Process,” in IEEE
Conference on Applications, Information and Network Security (AINS), 2017,
pp. 124–129.

[201] A. Valjarevic and H. S. Venter, “Towards a Digital Forensic Readiness
Framework for Public Key Infrastructure systems,” 2011 Information Security
for South Africa, pp. 1–10, 2011.

[202] V. R. Kebande and H. S. Venter, “On digital forensic readiness in the cloud
using a distributed agent-based solution: issues and challenges,” Australian
Journal of Forensic Sciences, vol. 50, no. 2, pp. 209–238, 2018.

[203] V. R. Kebande, N. M.Karie, and H. S. Venter, “Functional requirements for
adding digital forensic readiness as a security component in IoT
environments,” International Journal on Advanced Science, Engineering and
Information Technology, vol. 8, no. 2, pp. 342–349, 2018.

[204] F. Mouton and H. S. Venter, “A prototype for achieving digital forensic
readiness on wireless sensor networks,” IEEE AFRICON Conference, no.
September, pp. 1–6, 2011.

[205] J. MacRae and V. N. L. Franqueira, “On locky ransomware, Al Capone and
Brexit,” in Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, LNICST, 2018.

[206] T. Haigh, F. Breitinger, and I. Baggili, “If I Had a Million Cryptos: Cryptowallet
Application Analysis and a Trojan Proof-of-Concept,” in Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST, 2019, vol. 259, pp. 45–65.

[207] M. Satheesh Kumar, J. Ben-Othman, and K. G. Srinivasagan, “An
Investigation on Wannacry Ransomware and its Detection,” Proceedings -
IEEE Symposium on Computers and Communications, vol. 2018-June, pp.
1199–1204, 2018.

https://securityboulevard.com/2019/07/a-universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-learning-based-security/
https://securityboulevard.com/2019/07/a-universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-learning-based-security/
https://securityboulevard.com/2019/07/a-universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-learning-based-security/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://www.scmagazine.com/home/security-news/researchers-bypass-cylances-ai-based-av-solution-by-masking-malware-with-video-game-code/
https://www.scmagazine.com/home/security-news/researchers-bypass-cylances-ai-based-av-solution-by-masking-malware-with-video-game-code/

