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Abstract: We present fixed points results of multivalued Prešić type k-step iterative mappings
satisfying generalized weakly contraction conditions in metric spaces. An example is presented to
support the main result proved herein. The stability of fixed point sets of multivalued Prešić type
weakly contractive mappings are also established. Global attractivity result for the class of matrix
difference equations is derived as application of the result presented herein. These results generalize
and extend various comparable results in the existing literature.
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1. Introduction and Preliminaries

A Banach contraction principle [1] is the simplest and useful tool having a variety of scientific
applications such as proving the existence of the solution of linear, nonlinear, differential, integral,
and difference equations. Several extensions and generalizations of Banach contraction principle are
present in the current literature. Kannan [2] established fixed point theorem on certain type of contraction
mappings that are independent of the Banach contraction principle. Boyd and Wong [3] extended the
Banach contraction and derived a φ-generalized contraction mapping in metric spaces. Rhoades [4]
obtained fixed point results for weakly contractive maps. Dutta and Choudhury [5] established
(ψ, φ)-contraction mappings and proved fixed point results of these mappings. Choudhury et al. [6]
proved fixed points of multivalued α- admissible mappings and stability of fixed point sets in metric
spaces. Latif and Beg obtined [7] the geometric fixed points for single and multivalued mappings.

We begin with Banach contraction principle, its extensions, some definitions and results that are
used in the sequel.

Theorem 1. Let (X, d) be a complete metric space and f : X → X . If for any x, y ∈ X, the following condition holds:

d( f x, f y) ≤ α d(x, y),

where a constant α ∈ [0, 1). Then, there exists at most one point x∗ ∈ X having x∗ = f (x∗). In addition, for
any x0 ∈ X, given iterative sequence xn+1 = f (xn) converges to x∗.
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Definition 1. In a given metric space (X, d), self-mapping f : X → X is called weakly contractive if for any
x, y ∈ X, we have

d( f x, f y) ≤ d(x, y)− ϕ(d(x, y)),

where a continuous and non-decreasing function ϕ : [0, ∞)→ [0, ∞) is satisfying ϕ(0) = 0 and lim
t→∞

ϕ(t) = ∞.

For a positive integer k ≥ 1, consider a mapping f : Xk → X. An element x∗ ∈ X is called a fixed point of
f if x∗ = f (x∗, x∗, . . . , x∗).

The kth order nonlinear difference equation is given by

zn+k = f (zn, xn+1, . . . , zn+k−1), n = 0, 1, 2, . . . (1)

with the initial values z1, z2, . . . , zk ∈ X.

The problem related to Equation (1) becomes the problem of fixed point theory in the sense that an
element x∗ in X solves Equation (1) if and only if x∗ is the fixed point of mapping S : X → X defined as

S(x) = f (x, x, . . . , x), for all x ∈ X.

Prešić [8] obtained very useful result in this direction given as follows:

Theorem 2 ([8]). Let (X, d) be a complete metric space. If a mapping f : Xk → X, for a positive integer k
satisfies that

d( f (z1, z2, . . . , zk), f (z2, . . . , zk, zk+1)) ≤ r1d(z1, z2) + r2d(z2, z3) + . . . + rkd(zk, zk+1),

for all z1, z2, . . . , zk+1 ∈ X, where constants r1, r2, . . . , rk ≥ 0 such that r1 + r2 + . . . + rk < 1. Then,
there exists at most one point z∗ ∈ X such that f (z∗, z∗, . . . , z∗) = z∗. Moreover, for any arbitrary points
z1, z2, . . . , zk ∈ X, the sequence {zn+k} given in Equation (1) converges to z∗.

Observe that, by taking k = 1, Theorem 2 becomes the Banach contraction principle.
Ćirić and Prešić [9] extended Theorem 2 in the following way.

Theorem 3 ([9]). Let (X, d) be a complete metric space. If a mapping f : Xk → X, for a positive integer k
satisfies that

d( f (z1, z2, . . . , zk), f (z2, . . . , zk, zk+1)) ≤ r max{d(z1, z2), d(z2, z3), . . . , d(zk, zk+1)},

for all z1, z2, . . . , zk+1 ∈ X, where 0 ≤ r < 1. Then, there exists a point z∗ ∈ X such that f (z∗, z∗, . . . , z∗) =
z∗. Moreover, for any arbitrary points z1, z2, . . . , zk ∈ X, the sequence {zn+k} given in Equation (1) converges
to z∗ and

lim
n→∞

zn = f ( lim
n→∞

zn, lim
n→∞

zn, . . . , lim
n→∞

zn).

If, in addition,
d( f (z1, z1, . . . , z1), f (z2, z2 . . . , z2)) < d(z1, z2)

holds for all z1, z2 ∈ X, with z1 6= z2, then z∗ is the unique point in X with f (z∗, z∗, . . . , z∗) = z∗.

The significance of Theorems 2 and 3 lies in the study of global asymptotic stability of the
equilibrium problem for the nonlinear difference Equation (1) were obtained in [10,11].

Pǎcurar [12] established a result for Prešić–Kannan operators in the following way.
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Theorem 4 ([12]). Let (X, d) be a complete metric space. If a mapping f : Xk → X, for a positive integer k
satisfies that

d( f (z1, z2, . . . , zk), f (z2, z3, . . . , zk+1)) ≤ a
k+1

∑
i=1

d(zi, f (zi, zi, . . . , zi)),

holds for all (z1, z2, . . . , zk+1) ∈ Xk+1, where a constant a ∈ R with 0 < ak(k + 1) < 1, then:

(i) f has at most one fixed point z∗ ∈ X.
(ii) For arbitrary points z1, z2, . . . , zk ∈ X, the sequence {zn+k} defined by Equation (1) converges to z∗.

Recently, Abbas et al. [10] obtained the iterative approximation of fixed points of generalized weak Prešić
type operators.

Theorem 5 ([10]). Let (X, d) be a complete metric space. If a mapping f : Xk → X, for a positive integer k
satisfies that

d( f (z1, z2, . . . , zk), f (z2, z3, . . . , zk+1)) ≤ max{d(zi, zi+1) : 1 ≤ i ≤ k}
−φ(max{d(zi, zi+1) : 1 ≤ i ≤ k}),

for all (z1, z2, . . . , zk+1) ∈ Xk+1, where φ : [0, ∞) → [0, ∞) is a lower semi-continuous function with
φ(t) = 0 if and only if t = 0. Then, for any arbitrary points z1, z2, . . . , zk ∈ X, the sequence {zn+k} defined by
Equation (1) converges to u ∈ X such that u = f (u, u . . . , u). Moreover, if

d( f (x1, x1, . . . , x1), f (x2, x2 . . . , x2)) ≤ d(x1, x2)− φ(d(x1, x2)),

holds for all x1, x2 ∈ X with x1 6= x2, then fixed point of f is unique.

Various other useful results of generalized Prešić type operators and its applications in various
spaces are presented in [11,13–20]. Recently, Alecsa [21] introduced Prešić convex contraction and
obtained the unique fixed point in the setup of metric spaces. Ali et al. [22] obtained the best proximity
results of nonself operators in the metric space structure. Babu et al. [23] proved the fixed point results
of Prešić type mapping in b-Dislocated metric spaces. Common fixed point of Prešić type mappings
were established in [24].

For a metric space (X, d), we set:

N(X) = {A : A is a non-empty subset of X},
B(X) = {A : A is a non-empty bounded subset of X},

CB(X) = {A : A is a non-empty closed and bounded subset of X} and

C(X) = {A : A is a non-empty compact subset of X}.

For A ∈ N(X) and x ∈ X, the distance d(x, A is given as

d(x, A) = inf{d(x, z) : z ∈ A}.

For A, B ∈ N(X), define

δ(A, B) = sup{d(x, B) : x ∈ A}, and

H(A, B) = max{δ(A, B), δ(B, A)}.

Then, H is called Pompeiu–Hausdorff metric on CB(X). Furthermore, (CB(X), H) is complete
metric space if (X, d) is compete metric space.
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Nadler [25] extended the Banach contraction mapping principle to multivalued functions and
established the following result.

Theorem 6. Let (X, d) be a complete metric space and T : X → CB(X). If for any x1, x2 ∈ X, the following holds:

H(Tx1, Tx2) ≤ λd(x1, x2),

where, 0 ≤ λ < 1. Then, there exists u in X such that u ∈ T (u) , that is, T has a fixed point.

We state the following Lemma given by Nadler in [25].

Lemma 1. Let (X, d) be a metric space. If A, B ∈ C(X) and h ≥ 1. Then, for each x1 ∈ A, there exists x2 ∈ B
such that

d(x1, x2) ≤ hH(A, B).

From Lemma 1, we can obtain the following result.

Lemma 2. Let (X, d) be a metric space. If A, B ∈ C(X), T : X → C(X) and h ≥ 1. Then, for any a, b ∈ A
and x1 ∈ T (a), there exists x2 ∈ T (b) such that

d(x1, x2) ≤ hH(T (a) , T (b)).

Several useful fixed point results for multivalued mappings were established after the work
of Nadler.

Recently, Shulka et al. [20] introduced the notion of set-valued Prešić type contraction mapping
in product spaces.

Definition 2. Let (X, d) be a metric space. A mapping T : Xk → CB(X) is known as a set-valued Prešić type
contraction if it satisfies

H(T(x1, x2, ..., xk), T(x2, x3, ..., xk+1)) ≤
k

∑
i=1

αi d(xi, xi+1),

for all (x1, x2, ...,xk+1) ∈ Xk+1, where nonnegative constants αi satisfies
k
∑

i=1
αi< 1.

For the mapping T : Xk → N(X), a point u ∈ X is called a fixed point of T if u ∈ T(u, u, ..., u).
By Fix(T), we denote the collection of all fixed points of mapping T.

The associate operator τ of mapping T is defined as τ : X → N(X) by τ(z) = T(z, z, ..., z) for
all z ∈ X.

The aim of this paper is to introduce the concept of Prešić type weakly contractive multivalued
mappings and then to study the fixed point result for such mappings in metric spaces. We also give
an example to support the results presented herein. Furthermore, the stability of fixed point sets of
multivalued Prešić type weakly contractive mappings is also obtained.

2. Main Results

In this section, several fixed point results for multivalued Prešić type mappings are established.
First, we prove the following main result.
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Theorem 7. Let (X, d) be a complete metric space, k a positive integer and T : Xk → C(X). Suppose that

H(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk+1)) ≤ max{d(xi, xi+1) : 1 ≤ i ≤ k}
−φ(max{d(xi, xi+1) : 1 ≤ i ≤ k}) (2)

holds for all (x1, . . . , xk+1) ∈ Xk+1, where φ : [0, ∞)→ [0, ∞) is lower semi-continuous and φ(α) = 0 if and
only if α = 0. Then, for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn+k} defined by

xn+k ∈ T(xn, xn+1, ..., xn+k−1), n = 1, 2, . . .

converges to u ∈ X and u ∈ Fix(T). Moreover, if

H(T(x, x, ..., x), T(y, y, ..., y)) ≤ d(x, y)− φ(d(x, y)), (3)

satisfies for all x, y ∈ X with x 6= y, then Fix(T) = {u}.

Proof. Let x1, ..., xk be arbitrary k elements in X. Define the sequence {xn} in X by

xn+k ∈ T(xn, xn+1, ..., xn+k−1), n = 1, 2, . . . with n ≥ k.

If xi = xi+1 for all i = n, n + 1, ..., n + k− 1, then xi ∈ T(xi, xi, ..., xi), that is, xi is the fixed point of
T. Thus, we assume that xi 6= xi+1 for some i = n, n + 1, ..., n + k− 1. Let n ≤ k. Using Equation (2)
and Lemma 1, we have

d(xk+n, xk+n+1) ≤ H(T(xn, . . . , xk+n−1), T(xn+1, . . . , xk+n))

≤ max {d(xi, xi+1) : n ≤ i ≤ k + n− 1}
−φ (max {d(xi, xi+1) : n ≤ i ≤ k + n− 1})

< max {d(xi, xi+1) : n ≤ i ≤ k + n− 1} ,

d(xk+1, xk+2) ≤ H(T(x1, . . . , xk), T(x2, . . . , xk+1))

≤ max {d(xi, xi+1) : 1 ≤ i ≤ k} − φ (max {d(xi, xi+1) : 1 ≤ i ≤ k})
< max {d(xi, xi+1) : 1 ≤ i ≤ k} ,

d(xk, xk+1) ≤ H(T(x0, . . . , xk−1), T(x1, . . . , xk))

≤ max {d(xi, xi+1) : 0 ≤ i ≤ k− 1}
−φ (max {d(xi, xi+1) : 0 ≤ i ≤ k− 1})

< max {d(xi, xi+1) : 0 ≤ i ≤ k− 1} ,
...

Thus, we conclude that {d(xn+k−1, xn+k)} is monotone non-increasing and bounded below.
Hence, a real number c ≥ 0 exists such that

lim
n→∞

d(xn+k−1, xn+k) = lim
n→∞

max {d(xn+i, xn+i+1) : 0 ≤ i ≤ k− 1} = c.
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We now claim that c = 0. It follows that, on taking upper limits as n→ ∞ on both sided of the
given inequality,

d(xk+n, xk+n+1) ≤ H(T(xn, . . . , xk+n−1), T(xn+1, . . . , xk+n))

≤ max {d(xi, xi+1) : n ≤ i ≤ k + n− 1}
−φ (max{d(xi, xi+1) : n ≤ i ≤ k + n− 1}) ,

we obtain that
c ≤ c− φ (c) ,

which gives, φ (c) ≤ 0 and so φ (c) = 0 by the property of φ. Hence,

lim
n→∞

d(xn+k−1, xn+k) = 0. (4)

Next, we prove that {xn} is Cauchy sequence. Suppose that n, m ∈ Nwith m > n. From Equation (2),
it follows that

d(xk+n, xk+m) ≤ H(T(xn, . . . , xk+n−1), T(xm, . . . , xk+m−1))

≤ H(T(xn, . . . , xk+n−1), T(xn+1, . . . , xk+n))

+H(T(xn+1, . . . , xk+n), T(xn+2, . . . , xk+n+1))

+... + H(T(xm−1, . . . , xk+m−2), T(xm, . . . , xk+m−1))

≤ max {d(xi, xi+1) : n ≤ i ≤ k + n− 1}
−φ (max{d(xi, xi+1) : n ≤ i ≤ k + n− 1})
+max {d(xi, xi+1) : n + 1 ≤ i ≤ k + n}
−φ (max{d(xi, xi+1) : n + 1 ≤ i ≤ k + n})
+... + max {d(xi, xi+1) : m− 1 ≤ i ≤ k + m− 2}
−φ (max{d(xi, xi+1) : m− 1 ≤ i ≤ k + m− 2}) .

On upper limiting as n, m→ ∞ , we have

lim
n→∞

d(xk+n, xk+m) = 0.

It follows that {xn} is a Cauchy sequence in complete metric space (X, d). Thus, an element u in
X exists such that

lim
n,m→∞

d(xn, xm) = lim
n→∞

d(xn, u) = 0. (5)

Now, for any n ∈ N, we obtain

d(u, T(u, u, . . . , u)) ≤ d(u, xn+k) + d(xn+k, T(u, u, . . . , u))

≤ d(u, xn+k) + H(T(xn, xn+1, . . . , xn+k−1), T(u, u, . . . , u))

≤ d(u, xn+k) + H(T(u, u, . . . , u), T(u, u, . . . , xn))

+H(T(u, u, . . . , xn), T(u, . . . , xn, xn+1))

+ . . . + H(T(u, xn, xn+1, . . . , xn+k−2), T(xn, xn+1, . . . , xn+k−1))

≤ d(u, xn+k) + d(u, xn)− φ (d(u, xn))

+max{d(u, xn), d(xn, xn+1)} − φ (max{d(u, xn), d(xn, xn+1)})
+ . . . + max{d(u, xn), d(xn, xn+1), . . . , d(xn+k−2, xn+k−1)}
−φ (max{d(u, xn), d(xn, xn+1), . . . , d(xn+k−2, xn+k−1)}) .



Mathematics 2019, 7, 601 7 of 14

On upper limiting as n→ ∞ on both sides of the above inequality and employing Equation (5),
we get

d(u, T(u, u, . . . , u)) ≤ 0,

and so u ∈ T(u, u, . . . , u), that is, u is a fixed point of T.
Now, we prove that T has a unique fixed point. Contrary suppose that another element v ∈ X

exists with v 6= u, satisfying v ∈ T(v, v, . . . , v). From Equation (3), we obtain

d(u, v) ≤ H(T(u, u, . . . , u), T(v, v, . . . , v))

≤ d(u, v)− φ (d(u, v))

< d(u, v),

a contradiction. Hence, fixed point of T is unique, that is, a unique point u in X exists that is satisfying
u ∈ T(u, u, . . . , u).

Example 1. Let X = [0, 2] and d be a usual metric on X. For k ≥ 1 a positive integer, define the mapping
T : Xk → C(X) by

T(x1, x2, ..., xk) = [0,
max{x1, x2, ..., xk}

4k2 ] for all x1, ..., xk ∈ X.

Define φ : [0, ∞)→ [0, ∞) as:

φ(α) =


α
5 , if α ∈ [0, 5

2 ),

22n(2n+1α−3)
22n+1−1 , if α ∈ [ 22n+1

2n , 22(n+1)+1
2n+1 ], n ∈ N

Note that φ is lower semi-continuous on [0, ∞) and φ(α) = 0 if and only if α = 0.
For all x1, x2, ..., xk+1 ∈ X, we have

H(T(x1, x2, ..., xk), T(x2, x3, ..., xk+1))

≤ 1
4k
|x1 − xk+1|

≤ 1
4

max{|xi − xi+1| : 1 ≤ i ≤ k}

≤ 4
5

max{d(xi, xi+1) : 1 ≤ i ≤ k}

= max{d(xi, xi+1) : 1 ≤ i ≤ k} − φ(max{d(xi, xi+1) : 1 ≤ i ≤ k}).

In addition, for all x1, x2 ∈ X, we have

H(T(x1, x1, ..., x1), T(x2, x2, ..., x2)) ≤
1
8
|x1 − x2|

≤ 4
5

d(x1, x2)

= d(x1, x2)− φ(d(x1, x2)).

Hence, T satisfies Equations (2) and (3). All the conditions of Theorem 7 are satisfied. In addition, for
any arbitrary points x1, x2, ..., xk ∈ X, the sequence {xn} defined by xn+k ∈ T(xn, xn+1, ..., xn+k−1), n =

1, 2, . . . converges to u = 0, a unique fixed point of T.

If we take φ(t) = (1− λ)t for all t ∈ [0, ∞) in Theorem 7, then we obtain the following immediate
consequence of Theorem 7.
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Corollary 1. Let (X, d) be a complete metric space, k a positive integer and T : Xk → C(X). If there exists
λ ∈ [0, 1) such that

H(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk+1)) ≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ k}, (6)

for all (x1, x2, . . . , xk+1) ∈ Xk+1. Then, for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn+k}
defined by

xn+k ∈ T(xn, xn+1, ..., xn+k−1), n = 1, 2, . . .

converges to u ∈ X and u ∈ Fix(T). Moreover, if

H(T(x, ..., x), T(y, ..., y)) ≤ λd(x, y), (7)

holds for all x, y ∈ X with x 6= y, then Fix(T) = {u}.

Corollary 2. Let (X, d) be a complete metric space, k a positive integer and T : Xk → CB(X). Suppose that
there exists λ1, λ2, ..., λk non-negative constants with λ1 + λ2 + ... + λk < 1 such that

H(T(x1, . . . , xk), T(x2, . . . , xk+1)) ≤ λ1d(x1, x2) + λ2d(x2, x3) + ... + λkd(xk, xk+1), (8)

for all (x1, . . . , xk+1) ∈ Xk+1. Then, for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn+k} defined by

xn+k ∈ T(xn, xn+1, ..., xn+k−1), n = 1, 2, . . .

converges to u ∈ X and u ∈ Fix(T). Moreover, if

H(T(x, ..., x), T(y, ..., y)) ≤ (λ1 + λ2 + ... + λk) d(x, y), (9)

holds for all x, y ∈ X with x 6= y, then Fix(T) = {u}.

Proof. Clearly, the condition in Equation (6) implies the condition in Equation (8) with λ = λ1 + λ2 +

. . . + λk. Now, let x1, x2 ∈ X with x1 6= x2. From Equation (9), we have

H(T(x1, x1, . . . , x1), T(x2, x2, . . . , x2)) ≤ H(T(x1, x1, . . . , x1), T(x1, . . . , x1, x2))

+H(T(x1, . . . , x1, x2), T(x1, . . . , x1, x2, x2))

+ . . . + H(T(x1, x2, . . . , x2), T(x2, x2, . . . , x2))

≤ (λk + λk−1 + . . . + λ1)d(x1, x2) = λd(x1, x2),

where λ = λk + λk−1 + . . . + λ1 ∈ [0, 1). Thus, the conditions of Corollary 1 are satisfied and the
result follows.

From Theorem 7, we get the following fixed point result for single-valued mapping.

Theorem 8. Let (X, d) be a complete metric space, k a positive integer and T : Xk → X. If there exists
φ : [0, ∞)→ [0, ∞), a lower semi-continuous function with φ(α) = 0 if and only if α = 0 such that

d(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk+1)) ≤ max{d(xi, xi+1) : 1 ≤ i ≤ k}
−φ(max{d(xi, xi+1) : 1 ≤ i ≤ k}) (10)

holds for all (x1, . . . , xk+1) ∈ Xk+1. Then, for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn+k}
defined by

xn+k = T(xn, xn+1, ..., xn+k−1), n = 1, 2, . . .
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converges to u ∈ X and u is the fixed point of T. Moreover, if

d(T(x1, x1, ..., x1), T(x2, x2, ..., x2)) ≤ d(x1, x2)− φ(d(x1, x2)), (11)

holds for all x1, x2 ∈ X with x1 6= x2, then Fix(T) = {u}.

3. Stability of Prešić Type Multivalued Fixed Point Problems

We study the stability of fixed point sets of Prešić type weakly contractive multivalued mappings.
First, we obtain the following result.

Theorem 9. Let (X, d) be a complete metric space and Ti : Xk → C(X) for i = 1, 2 be two multivalued
mappings. Suppose that there exists a lower semi-continuous function φ : [0, ∞)→ [0, ∞) with φ(α) = 0 if
and only if α = 0, such that

H(Ti(x1, . . . , xk), Ti(x2, . . . , xk+1)) ≤ max{d(xi, xi+1) : 1 ≤ i ≤ k}
−φ(max{d(xi, xi+1) : 1 ≤ i ≤ k}), (12)

for all (x1, . . . , xk+1) ∈ Xk+1 and

H(Ti(x1, . . . , x1), Ti(x2, . . . , x2)) ≤ d(x1, x2)− φ(d(x1, x2)) (13)

for all x1, x2 ∈ X hold. Then, φ(H(Fix(T1), Fix(T2))) ≤ K, where

K = sup
x∈X

H(T1 (x, ..., x) , T2 (x, ..., x)).

Proof. From Theorem 7, the set of fixed points of Ti is non-empty, that is, Fix(Ti) 6= ∅ for i = 1, 2.
Let y0 ∈ T1 (y0, ..., y0). Then, by Lemma 1, there exists a y1 ∈ T2 (y0, ..., y0) such that

d(y0, y1) ≤ H(T1(y0, ..., y0), T2(y0, ..., y0)). (14)

Since y1 ∈ T2 (y0, ..., y0), again by Lemma 1, there exists a y2 ∈ T2 (y1, ..., y1) such that

d(y1, y2) ≤ H(T2(y0, ..., y0), T2(y1, ..., y1)).

We construct a sequence {yn} such that, for all n ≥ 0 with yn+1 ∈ T2(yn, ..., yn), we have

d(yk+1, yk+2) ≤ H(T2(yk, . . . , yk), T2(yk+1, . . . , yk+1))

≤ d(yk, yk+1)− φ (d(yk, yk+1)) .

In addition,

d(yk, yk+1) ≤ H(T(yk−1, . . . , yk−1), T(yk, . . . , yk))

≤ d(yk−1, yk)− φ (d(yk−1, yk)) ,
...

Thus, for n ≤ k, we have

d(yk−n, yk−n+1) ≤ H(T(yk−n−1, . . . , yk−n−1), T(yk−n, . . . , yk−n))

≤ d(yk−n−1, yk−n)− φ (d(yk−n−1, yk−n)).
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Following similar arguments to those given in the proof of Theorem 7, we obtain that {yn} is a
Cauchy sequence X and there exists a u ∈ X such that yn → u as n→ ∞. Let u be the fixed point of T2,
that is, u ∈ T2(u, ..., u). It follows that

d(y0, y1) ≤ H(T1(y0, ..., y0), T2 (y0, ..., y0))

≤ sup
x∈X

H(T1 (x, ..., x) , T2 (x, ..., x)) = K (say).

Note that

d(y0, u) ≤ d(y0, y1) + d(y1, u)

≤ K + H (T2 (y0, ..., y0) , T2 (u, ..., u))

≤ K + d (y0, u)− φ (d (y0, u)) ,

that is,
φ (d (y0, u)) ≤ K.

Thus, given an arbitrary y0 ∈ Fix(T1), we can find a u ∈ Fix(T2) for which

φ (d(y0, u)) ≤ K.

Similarly, it follows that, for arbitrary z0 ∈ Fix(T2), an element w ∈ Fix(T1) exists such that

φ (d(z0, w)) ≤ K.

Thus, we obtain
φ (H(Fix(T1), Fix(T2))) ≤ K.

Lemma 3. Let (X, d) be a complete metric space and {Tn : Xk → C(X) : n ∈ N} a sequence of multivalued
mappings, uniformly convergent to T : Xk → C(X). If Tn satisfies Equations (12) and (13) for each n ∈ N,
then T also satisfies Equations (12) and (13), where the lower semi-continuous function φ : [0, ∞)→ [0, ∞) is
satisfying φ(α) = 0 if and only if α = 0.

Proof. As Tn satisfies Equations (12) and (13) for every n ∈ N, so that for x1, x2, . . . , xk+1 ∈ X, we have

H(Tn(x1, . . . , xk), Tn(x2, . . . , xk+1)) ≤ max{d(xi, xi+1) : 1 ≤ i ≤ k}
−φ(max{d(xi, xi+1) : 1 ≤ i ≤ k})

and
H(Tn(x1, . . . , x1), Tn(x2, . . . , x2)) ≤ d(x1, x2)− φ(d(x1, x2)).

As the sequence {Tn} is uniformly convergent to T and φ is lower semi-continuous, taking the
upper limit as n→ ∞ on both sides of the above two inequalities, we obtain that

H(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk+1)) ≤ max{d(xi, xi+1) : 1 ≤ i ≤ k}
−φ(max{d(xi, xi+1) : 1 ≤ i ≤ k})

and
H(T(x1, . . . , x1), T(x2, . . . , x2)) ≤ d(x1, x2)− φ(d(x1, x2)).

This shows that T satisfies Equations (12) and (13).
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Now, we present the following stability result.

Theorem 10. Let (X, d) be a complete metric space, and {Tn : Xk → C(X) : n ∈ N} a sequence of multivalued
mappings, uniformly convergent to T : Xk → C(X). Suppose that Tn satisfies Equations (12) and (13) for each
n ∈ N, where the mapping φ is the same as in the statement of Theorem 9. Then

lim
n→∞

H(Fix(Tn), Fix(T)) = 0;

that is, the fixed point sets of Tn are stable.

Proof. By Lemma 3, T satisfies Equations (12) and (13). Let Kn = sup
x∈X

H(Tnx, Tx). Since the sequence

{Tn} is uniformly convergent to T on X, we have

lim
n→∞

Kn = lim
n→∞

sup
x∈X

H(Tnx, Tx) = 0.

Using Theorem 9, we obtain that

φ (H(Fix(Tn), Fix(T))) ≤ Kn for every n ∈ N.

Since φ is lower semi-continuous, we have

lim inf
n→∞

φ (H(Fix(Tn), Fix(T))) ≤ lim inf
n→∞

Kn = 0;

that is,
lim

n→∞
H(Fix(Tn), Fix(T)) = 0.

Hence, the proof is complete.

4. Global Attractivity Results

Let P(n) denote an open convex cone of all n × n Hermitian positive definite matrices.
We investigate the weak asymptotic stability and global attractivity of the nonlinear matrix recursive
sequence {Un} in P(n) defined by

Un+k = Q +
1
k

k−1

∑
i=0

A∗η(Un+i)A, n = 1, 2, . . . , (15)

where k is the positive integer, Q is the n× n Hermitian positive semidefinite matrix, A the n× n
nonsingular matrix, and A∗ is a conjugate transpose matrix of A and the mapping η : P(n)→ P(n).

Definition 3. Let U be a non-empty set, k be a positive integer and T : Uk → U. For given u1, u2, . . . , uk ∈ U,
consider the recursive sequence {un} in U defined by

un+k = T(un, un+1, . . . , un+k−1), n = 1, 2, . . .. (16)

The solutions of Equation (16) are functions ω : N→ U, that is, for every n ∈ N, ω(n + k) = ωn+k =

T(ωn, ωn+1, ..., ωn+k−1).

A point u in U is called equilibrium point of Equation (16) if it satisfies

u = T(u, . . . , u).
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In addition, the equilibrium point u of Equation (16) is known as the global attractor if for arbitrary
u1, u2, . . . , uk ∈ U, we have d(un, u)→ 0 as n→ ∞.

The point u of Equation (16) is called weakly stable if, given ε > 0, there exists δ > 0 such that
for at least one solution of Equation (16) with initial values u1, u2, ..., uk and ‖u1 − u‖+ ‖u2 − u‖+
... + ‖uk − u‖ < δ implies that ‖un − u‖ < ε for all n ∈ N. In addition, the weakly stable point u of
Equation (16) is called weakly asymptotically stable if, in addition limn→∞ un = u.

We say that η : U → U is φ-contraction, if there exists a lower semi-continuous function φ :
[0, ∞)→ [0, ∞) with φ(α) = 0 if and only if α = 0 such that

d(η(u), η(v)) ≤ d(u, v)− φ (d(u, v)) ,

for all u, v ∈ U.
We endow P(n) with the Thompson metric [26,27] by property of inverse matrix and congruence

transformations, that is,

d(U, V) = d(U−1, V−1) = d(W∗UW, W∗VW), (17)

where W is any nonsingular matrix.
Now, we present the following global attractivity result.

Theorem 11. Let A be n× n nonsingular matrix and Q be an n× n Hermitian positive semidefinite matrix.
Suppose that η : P(n) → P(n) is a φ-contraction with respect to the Thompson metric d, then for a positive
integer k and for given U1, U2, . . . , Uk ∈ P(n), the sequence {Un} in P(n) defined by Equation (15) has a
unique equilibrium point U in P(n). Moreover, U is weakly asymptotically stable and a global attractor.

Proof. Define the mapping T : P(n)k → P(n) by

T(U1, U2, . . . , Uk) = Q +
1
k
[A∗η(U1)A + A∗η(U2)A + . . . + A∗η(Uk)A],

for all U1, U2, . . . , Uk ∈ P(n). Then, we have

d(T(U1, U2, . . . , Uk), T(U2, U3, . . . , Uk+1)

= d

(
Q +

1
k

k

∑
i=1

A∗η(Ui)A, Q +
1
k

k+1

∑
j=2

A∗η(Uj)A

)

≤ d

(
1
k

k

∑
i=1

A∗η(Ui)A,
1
k

k+1

∑
j=2

A∗η(Uj)A

)

= d

(
k

∑
i=1

(
1√
k

A)∗η(Ui)(
1√
k

A),
k+1

∑
j=2

(
1√
k

A)∗η(Uj)(
1√
k

A)

)
.

Denote V =
1√
k

A. Then, we obtain

d(T(U1, U2, . . . , Uk), T(U2, U3, . . . , Uk+1)

≤ d

(
k

∑
i=1

V∗η(Ui)V,
k+1

∑
j=2

V∗η(Uj)V

)
= d (V∗η(U1)V + . . . + V∗η(Uk)V, V∗η(U2)V + . . . + V∗η(Uk+1)V)

≤ max {d(V∗η(U1)V, V∗η(U2)V), . . . , d(V∗η(Uk)V, V∗η(Uk+1)V)}
= max {d(V∗η(Ui)V, V∗η(Ui+1)V) : i = 1, 2, . . . , k} .
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The nonsingularity of matrix A implies that V is a nonsingular matrix. By using Equation (17),
for all i = 1, 2, . . . , k,

d(V∗η(Ui)V, V∗η(Ui+1)V) = d(η(Ui), η(Ui+1)).

Since η is φ-contraction, so that for all i = 1, 2, . . . , k, we have

d(T(U1, U2, . . . , Uk), T(U2, U3, . . . , Uk+1)

≤ max{d(η(Ui), η(Ui+1)) : i = 1, 2, ..., k}
= max {d(Ui, Ui+1) : i = 1, 2, . . . , k} − φ (max {d(Ui, Ui+1) : i = 1, 2, . . . , k})

for all U1, U2, . . . , Uk+1 ∈ P(n).
By employing Corollary 1, it follows that a global attractor equilibrium point U ∈ P(n) exists.
Further, if we assume that, for U, V ∈ P(n) with U 6= V, we have

d(T(U, U, . . . , U), T(V, V, . . . , V)) = d(Q + A∗η(U)A, Q + A∗η(V)A)

≤ d(A∗η(U)A, A∗η(V)A)

= d(η(U), η(V))

≤ d(U, V)− φ
(
d(U, V)

)
.

Again, by employing Corollary 1, we obtain that the global attractor equilibrium point in P(n)
is unique.

5. Results and Discussion

The convergence of multivalued Prešić type k-step iterative process for operators T : Xk → C (X)

that are satisfying Prešić type generalized weakly contractive conditions is studied in the setup of
metric spaces. An example is presented in support of our main theorem. We also establish the stability
of fixed point sets of multivalued Prešić type weakly contractive mappings. Furthermore, the results
of global attractivity for a collection of matrix difference equations are established. For further work
in this direction, various new results of multivalued Prešić type contractions can be obtained such
as fixed point results for multivalued Prešić type F-contractions and multivalued Prešić type convex
contractions. These results extend and generalize the results presented by Abbas et al. [28] and
Alecsa [21], respectively. Moreover, the multivalued Prešić type k-step iterative process can be derived
for flour beetle population model, generalized Beddington–Holt stock recruitment model, and the
delay model of a perennial grass [29]. In addition, the variety of problems related to dynamical systems,
fixed points and equilibrium points dealing with multivalued mappings can be solved.
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iterative method for a class of operators. Filomat 2015, 29, 713–724. [CrossRef]
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Acta Math. Univ. Comen. 2010, 79, 77–88.
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method. An. Stiint. Univ. Ovidius Constanţa Ser. Mat. 2009, 17, 153–168.
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