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Preface  

Pines are of substantial economic importance. Pitch canker disease caused by Fusarium 

circinatum represents a significant threat to many parts of the world. Research has shown that 

certain Pinus spp. are particularly susceptible to this phytopathogen, predominantly as 

seedlings. Unfortunately, the commercial pine species grown most extensively in South Africa, 

Pinus patula, is highly susceptible. Post-planting survival of Pinus patula seedlings has been 

severely reduced due to the seedling form of this disease; Fusarium-wilt. Presently, there is no 

effective way to control infections by F. circinatum, but hybridisation of P. patula with other 

relatively Fusarium-tolerant species, such as Pinus tecunumanii, has shown promise. However, 

the mechanisms, which underlie P. tecunumanii’s relative resistance, remains uncertain. 

Chapter 1 is a literature review, putting the research chapter into the context of existing 

knowledge. The review includes a description of the importance of Pinus spp., the products 

supplied by these species, and their defensive mechanisms. The defence induced synthesis of 

secondary metabolites in Pinus spp. is discussed, focusing on the productions of terpenes by 

terpene synthase enzymes. This chapter outlines the issues faced by commercial Pinus patula 

plantations in Southern Africa as a result of the phytopathogen Fusarium circinatum. 

Chapter 2 is a research chapter, which describes the differences observed in induced 

transcriptional responses to infection by two Pinus species with contradistinctive susceptibility 

to infection by Fusarium circinatum. The partial characterisation of the terpene synthase genes 

which are differentially regulated in Pinus patula and Pinus tecunumanii, are assessed for their 

possible contribution toward F. circinatum susceptibility.  

Chapter 3 is the concluding remarks, a review of what was observed during this research, as 

well as describing the future research prospects which could augment the findings of this study.  

 

The outcomes of this research were presented as the following conference poster:  

Smith, R., Visser, E., Coetzee, M., and Naidoo, S., 2018. The terpene synthase genes implicated in the 

defence response by Pinus patula and Pinus tecunumanii to Fusarium circinatum. Joint South African 

Society for Bioinformatics (SASBi) South African Society for Genetics (SAGS) Congress 2018. 16 – 

18 October. Golden Gate Hotel, Golden Gate Highlands National Park, South Africa.
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Pitch canker disease, caused by Fusarium circinatum (teleomorph Gibberella circinata) 

Nirenberg and O’Donnell 1998, is regarded as one of the most significant species affecting 

commercial Pinus plantations worldwide (Wingfield et al. 2008; Reynolds and Gordon 2019). 

Herein we review the ecological and agricultural importance of pines, and consider the 

conjecture surrounding Pine spp. with varying levels of susceptibility to F. circinatum. 

Particularly, we consider the impact of this on South African agriculture, where Pinus patula 

has been the predominant commercial Pine spp. for many decades due to its propensity to grow 

in a cooler climate  (Hodge and Dvorak 2007; Mitchell et al. 2011). Unfortunately, P. patula 

is particularly susceptible to F. circinatum, and this disease has resulted in major seedling 

losses since its introduction in the 1990s (Wingfield et al. 1999; Coutinho et al. 2007). 

Research has implicated quantitative and qualitative characteristics of the terpene profile as a 

determinants of the susceptibility of Pinus spp. to Fusarium infection (Bohlmann and Way 

2012; Bullington et al. 2018; Neis et al. 2018). A complex combination of terpene molecules 

form the predominant constituents of conifer volatile emissions, as well as serving as 

antimicrobial and antiherbivory components in oleoresin (Abbas et al. 2017; Celedon and 

Bohlmann 2019). Terpene biosynthesis has been shown to be induced by herbivore damage, 

pathogen recognition, and environmental stimuli (Nagegowda 2010; Zulak and Bohlmann 

2010).   

While the production of terpenes is regulated by many factors, it is principally dependant on 

the transcriptional regulation of terpene synthase genes (Fäldt et al. 2003; Nagegowda 2010; 

Trindade et al. 2016). The involvement of terpenes in various physiological and ecological 

functions requires the regulation of expression of numerous genes, though the terpene 

synthases are the focus of this study. The comparison of gene expression between two Pinus 

spp. with contradistinctive susceptibility to F. circinatum infection should elucidate whether 

there is evidence to believe that the hosts terpene profile are valuable as a contributing factor 

to susceptibility. 
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1.1 Pinus spp. and the significance of Fusarium circinatum  

 

Pines are conifers of substantial global economic importance because of their wood properties, 

and compatibility to grow within large-scale plantations (Burgess and Wingfield 2001). Several 

species of conifers have lifespans of up to a few thousand years, which suggests that the success 

of these trees is supported by considerable phenotypic plasticity and robustness (Loehle 1987; 

Hammerschmidt 2006). This is because, during their exceptionally long lifetime, these trees 

are exposed to numerous pests and pathogens. These pathogens have far shorter generation 

times than their long-established hosts, and are theoretically at an advantage over the host in 

the evolutionary arms-race of defence (Achotegui-Castells et al. 2016; Slinski et al. 2016). In 

response, conifers have evolved a unique collection of diverse physical and chemical defences 

to tolerate threats (Trapp and Croteau 2001b; Celedon and Bohlmann 2019). 

 

1.1.1 Global consequences of Fusarium circinatum infection 

 

Pitch canker represents a significant threat to pines in many parts of the world, two recent 

articles cover this in detail; Lombardero et al. (2019) and Reynolds and Gordon (2019). As is 

clear, Fusarium infections are a particular issue in regions where natural forests and plantations 

are composed of susceptible Pinus spp., such as in Australia and New Zealand (Barnard and 

Blakeslee 1987; Wingfield et al. 2008; Summerell et al. 2011). Additionally, F. circinatum has 

been reported in Mexico, Japan, Chile, Spain, as well as in the west of the USA (Viljoen 1994; 

Pfenning et al. 2014; Reynolds and Gordon 2019; Yang et al. 2019). 

Characteristically, mature trees respond to infection by this pathogen by producing large 

quantities of terpene-rich oleoresin, or so-called ‘pitch’, as well as by forming cankerous 

lesions in the woody tissue (Dwinell 1985; Barnard and Blakeslee 1987; Bezos et al. 2017). 

Consequently, a common symptom of this disease in plantations is canopy dieback. Occurring 

as a result of obstruction of the vascular tissue, by large girdling lesions in the tissue adjoining 

the branch tip (Dwinell 1985). As the disease progresses lesions merge, cutting entire branches 

off from the vascular tissue, and in some cases, lesions within the main vascular bundle cause 

mortality of mature trees (Hodge and Dvorak 2000; Bezos et al. 2017).  
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Crucially, the degree of susceptibility to F. circinatum varies considerably among Pinus 

species (Dwinell 1985; Hodge and Dvorak 2000). Species such as P. patula and P. radiata are 

acutely susceptible to this phytopathogen, whereas other species, such as P. tecunumanii, are 

much less vulnerable (Eguiluz et al. 1996; Hodge and Dvorak 2000; Hongwane et al. 2018). 

Susceptibility to F. circinatum also differs within species, for instance, P. tecunumanii from 

high elevations is significantly less resistant than P. tecunumanii from lower elevations (Hodge 

and Dvorak 2000, 2007; Mitchell et al. 2014). However, symptoms differ depending on the F. 

circinatum genotype,  climatic conditions, as well as being influenced by regional insects (Nel 

et al. 2014; Gordon and Reynolds 2017; Fru et al. 2018; Quesada et al. 2019). 

 

1.1.2 Pinus patula in South African forestry  

 

First introduced into South Africa in 1907, subsequent selections have resulted in P. patula 

having been developed more than any other Pinus species, optimising growth and wood quality 

(King 1938; Burgess and Wingfield 2001). Previously, this species was the most prolifically 

grown in the country, with roughly 50% of the softwood forestry area in South Africa 

composed of P. patula (Wingfield et al. 1999; Mitchell et al. 2012). Recently, the productivity 

of this species is increasinly being negatively affected by fungal pathogens, with significant 

financial consequences (Mitchell et al. 2011, 2012; Forestry 2017). Although still a principal 

plantation species, there is mounting reluctance to use pure P. patula (Mitchell et al. 2011; 

Forestry 2017; Hongwane et al. 2018). Other species grown commercially in South Africa 

include those which are relatively frost tolerant; Pinus radiata, Pinus taeda and Pinus elliottii, 

though these species are also susceptible to Pitch canker disease (Dvorak 2001; Mabaso et al. 

2019).  

A possible alternative species, pure P. tecunumanii low elevation (LE), does not perform well 

in Southern Africa due to its poor cold tolerance, it is grown throughout Colombia and northern 

Mozambique (Eguiluz et al. 1996; Hodge and Dvorak 2000; Hongwane et al. 2018). 

Importantly, members of this species are particularly resistant to infection by F. circinatum, 

and are being used in South Africa as hybrids, combined with frost-tolerant P. patula (Kanzler 

et al. 2012, 2014; Mitchell et al. 2013; Hongwane et al. 2018). While P. patula x P. 

tecunumanii (LE) hybrids exhibit higher levels of F. circinatum resistance (Hodge and Dvorak 

2000; Roux et al. 2007; Mitchell et al. 2013; Ford et al. 2014),  P. patula x P. tecunumanii 
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(HE) are significantly less susceptible to the cold  (Granados et al. 2013; Kanzler et al. 2014; 

Hongwane et al. 2018).  

Presently, there is no effective way to control infections by F. circinatum (Martínez-Álvarez 

et al. 2016; Amaral et al. 2019). However, the implementation of an integrated management 

approach has been shown to lessen the economic impact of the disease. This involves 

quarantine, as well as the selection for clones and hybrids that are more resistant (Gordon et al. 

2015; Iturritxa et al. 2017; Lombardero et al. 2019). Improving P. patula’s tolerance to this 

phytopathogen will be a major consideration when selecting future clones (Mitchell et al. 2012, 

2013; Gordon et al. 2015; Mabaso et al. 2019). 

 

1.1.3 Fusarium circinatum as a seedling wilt disease 

 

The seedling form of this disease is known as F. circinatum-wilt,  and was first discovered in 

South Africa in 1990 (Viljoen 1994; Wingfield et al. 1999). Currently, P. patula’s survival 

within nurseries and after field establishment has been drastically reduced due to the young 

trees increased susceptibility to F. circinatum (Crous 2005; Jones et al. 2014; Swett et al. 

2015). This form of the disease is of concern as it causes wilting, chlorosis, and ultimately 

extensive losses of P. patula seedlings (Wingfield et al. 1999; Aegerter and Gordon 2006; 

Mitchell et al. 2011, 2012). 

Fusarium circinatum has been shown to be hemibiotrophic, and not strictly necrotrophic as 

previously thought, and accordingly can colonise hosts without causing any visible symptoms 

(Swett et al. 2015, 2018). This fungal pathogen can cryptically infect the roots of seedlings, 

often only becoming symptomatic post infection by the stress associated with transferral of 

young trees into plantations (Swett et al. 2015, 2018). These losses could be mitigated by 

selecting seedlings with greater resistance to infections, as well as the development of 

improved detection methods (Morris et al. 2014; Gordon et al. 2015; Hongwane et al. 2018).  
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1.2 Plant defence  

 

When a plant is confronted by an antagonist, be it insect or pathogen, there is a continuum of 

possible outcomes, from acute susceptibility to comprehensive resistance (Eyles et al. 2010). 

An important determinant of the interaction between plants and their challengers is that these 

organisms must be capable of overcoming the plants diverse defence strategies (Pearce 1996; 

Hammerschmidt 2009). This includes multiple chemical and physical defences utilised by the 

plant to inhibit infection by pathogens (Pearce 1996; Fu and Dong 2013; Pusztahelyi et al. 

2015). Constitutive defences represent the first line of protection, incorporating sequestered 

metabolites such as phenolics and terpenoids, and lignified tissues which form physical barriers 

(Shestibratov; Witzell and Martín 2008; Pusztahelyi et al. 2015). When a microbe is able to 

overcome these defences and cause infection, the tree’s induced defences are prompted 

(Agrawal 1999; Eyles et al. 2010).   

Ideally, the pathogen is recognised by cells of a host plant, allowing the induction of a highly 

coordinated defence response to prevent colonisation and disease progression (Kovalchuk et 

al. 2013; Liang et al. 2014; Arango-Velez et al. 2016). Rapid pathogen recognition by the host, 

which triggers a defence response early on, increases the chances that the host will successfully 

subdual it (Liang et al. 2014; Arango-Velez et al. 2016; Amaral et al. 2019). This would be an 

“incompatible” interaction, as the host is able to resist the establishment of infection. 

Conversely, a “compatible” interaction occurs if the host is susceptible, and either does not 

recognise, or responds inadequately to the intruder, allowing the infection to spread (Grewal et 

al. 2012; Oliveira-Garcia and Valent 2015).   

 

1.2.1 Induced resistance 

 

Induced defence involves various compounds, the major ones being; terpenoids, phenolics, 

alkaloids, pheromones, phytoalexins, phytohormones, Anti-Microbial Peptides (AMPs), 

Pathogenesis-Related (PR) proteins, as well as those which contribute to the Hypersensitive 

(HR) and Hypersensitive-like Responses (Pearce 1996; Conrath et al. 2002; Eyles et al. 2010). 

PR proteins are either antimicrobial or act to strengthen the host’s cell walls through cross-

linking reactions and lignification (van Loon et al. 2006; Visser et al. 2018). Certain hydrolytic 

enzymes which degrade fungal cell walls, such as chitinases and B-1,3-glucanases, are classic 
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examples of PR proteins utility in defence (Liu et al. 2005; Naidoo et al. 2013). Alternatively, 

recognition of a pathogen can lead to HR, which is the rapid death of affected cells; this is most 

effective in the containment of biotrophic pathogens (Kinloch and Dupper 2002; Glazebrook 

2005). However, the most diverse range of defences are inevitably offered by the most 

heterogenous molecules produced, the terpenes (Bohlmann et al. 1998a; Chen et al. 2011).  

Numerous metabolic pathways contribute to defence within Pinus spp., and their activation is 

highly coordinated with the development of disease (Hammerschmidt 2006; Fraser et al. 2015). 

Orchestrating a successful defence requires the induction, and simultaneous repression of 

pathways, which contribute to resistance qualitatively or quantitatively (Bonello et al. 2006; 

Hammerschmidt 2006; Witzell and Martín 2008; Kovalchuk et al. 2019). To achieve this, each 

pathway is controlled by various mechanisms of transcriptional, translational and post-

translational modification (Grewal et al. 2012).  

 

1.2.2 Plant secondary metabolites  

 

Plant secondary metabolites do not directly participate in the primary processes of life, such as 

photosynthesis, respiration, solute transport, or in the formation of primary metabolites 

(Fraenkel 1959). However, research has shown that plant secondary metabolites play vital 

ecological functions, and consequently, plant evolutionary fitness is greatly influenced by the 

ecological range of functions of their secondary metabolites (Lichtenthaler 1999; Moore et al. 

2014; Singh and Sharma 2015). Therefore, contradictory to the idea of these compounds as by-

products, the selective pressures on plants for greater reproductive fitness has contributed to 

the evolution of this array of metabolic pathways, through which plants manufacture chemicals 

that can be detrimental or beneficial to other organisms (Fraenkel 1959; Padovan et al. 2014). 

This divergent part of plant evolution can also be regarded as “specialised” metabolism because 

it is an instance of phenotypic adaptations to particular environments, and thus not necessarily 

found throughout all plant lineages (Lichtenthaler 1999; Chen et al. 2011). So, in addition to 

being vital to plant defence and signalling, this attribute of secondary metabolite distribution 

and evolution makes them of phylogenetic relevance too (Moore et al. 2014).  

While all spore-bearing and seed plants are able to produce terpenoids, polyphenols have such 

a broad distribution that they are thought to have been produced by ancient multicellular algae 

(Ashour et al.; Lichtenthaler 1999; Wink 2014). As secondary metabolism is so fundamental 
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to plant defence, it is thought that these pathways must be at least as old as land plants are 

(Lichtenthaler 1999; Wink 2014). The terpene synthase gene family is thought to have 

originated from an ancestral bifunctional Copalyl-Diphosphate/ Kaurene synthase enzyme 

(Yahyaa et al. 2015). This would suggest the basal pathways leading to phenolics and 

terpenoids must be at least 450 million years old (Padovan et al. 2014; Wink 2014; Celedon 

and Bohlmann 2019).  

 

1.2.3 Plant terpenes 

 

Terpenes form the most abundant group of plant secondary metabolites, and are immensely 

structurally diverse, at present around 50,000 individual compounds have been identified  

(Vranová et al. 2012; Padovan et al. 2014; Muhlemann et al. 2014). Terpenes are hydrocarbons 

with the general formula (C5H8)n, while terpenoids can be described as “modified” terpenes, 

to which a functional group that typically contain oxygen atoms added (Yadav et al. 2014; 

Ludwiczuk et al. 2016). However, in practice, the term "terpenes" is used to include terpenes 

as well as their derivatives.  

The value of plant terpenes in nature, and to humans, is difficult to overstate. Terpenes 

contribute to the responses prompted by both biotic and abiotic stresses, as well as forming 

volatile signals to attract or deter other organisms (Dorman and Deans 2000; Moore et al. 

2014). Over and above the physiological, and ecological functions terpenes play in plants, there 

is an enormous application of these compounds in the pharmaceutical, agricultural, and 

cosmetic industries, particularly for their aromatic qualities (Singh and Sharma 2015; Abbas et 

al. 2017). The polyterpene we use most extensively is rubber, but some other common terpene-

based products include camphor, methanol, detergents, solvents, limonene, antiallergenic 

agents, as well as the nepetalactone in catnip (Croteau et al. 2000; Thimmappa et al. 2014; 

Ludwiczuk et al. 2016).  

Plant terpenes are used extensively for their antiseptic properties, as being reactive open-chain 

or cyclic unsaturated compounds (Cowan 1999; Yadav et al. 2014). The antimicrobial activity 

of terpenes is of particular interest as a potential alternative to antibiotics, as we face a global 

increase in bacterial resistance (Singh and Sharma 2015; Abbas et al. 2017). Terpenes have 

been used in traditional remedies for centuries, and yet are being applied in novel 
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pharmaceutical instances, such as the treatment of cancer with antineoplastic terpenes; 

paclitaxel, and ingenol mebutate (Thormar 2010; Mafu and Zerbe 2018; Seca and Pinto 2018). 

There are terpenes that can be found in all vascular plants. These are those which perform 

crucial functions, such as sterols in membrane structures, carotenoid pigments, and 

phytohormones such as abscisic acid and gibberellins (Gershenzon and Dudareva 2007; Abbas 

et al. 2017). Additional research has revealed many mono-, sesqui- and diterpenes that are 

fundamental to the environmental interactions of plants, as well as the interactions that take 

place between plants (Gershenzon and Dudareva 2007; Yu and Utsumi 2009; Abbas et al. 

2017) .  

Each plant species has had to evolve the ability to produce a particular complement of terpenes 

that are most advantageous in its unique ecological niche (Tholl 2006; Gershenzon and 

Dudareva 2007; Chen et al. 2011). Accordingly, terpene diversity is enhanced by the process 

of adaptive selection; as other organisms evolve responses to plant metabolites, selection 

pressures lead to the acquisition of novel compounds (Fraenkel 1959; Moore et al. 2014; 

Pusztahelyi et al. 2015; Achotegui-Castells et al. 2016). As a result, plants are known to be 

able to synthesise thousands of distinct metabolites, and that number continues to grow 

(Hartmann 2007; Wink 2010). However, each individual plant species is able to produce only 

a subset of these compounds (Hartmann 2007; Chen et al. 2011; Moore et al. 2014; Wink 

2014).  

As defence is vital to evolutionary success, it is possible that each individual interaction 

between the host and its aggressor has driven the diversification of terpene profiles within, and 

between species (Padovan et al. 2010; Naidoo et al. 2014). This would be consistent with the 

significant quantitative and qualitative variations observed between, and even within species 

of Eucalyptus (Padovan et al. 2014) and Pinus (Ro and Bohlmann 2006; Zerbe and Bohlmann 

2014; Trindade et al. 2016). The intraspecific diversity of terpenes implicates this metabolic 

pathway as an adaptive response, optimising fitness in diverse ecological instances (Moore et 

al. 2014). 

Plants interact with their environment through the emission of volatile terpenoid compounds 

(Das et al. 2013; Zerbe and Bohlmann 2014). A low-level of volatiles are continually released 

by all plants, however, large volumes are released in response to damage or infection 

(Gershenzon and Dudareva 2007; Das et al. 2013). Due to their low molecular weight, mono- 

and sesquiterpenes vaporise at relatively low temperatures, ideally suited for conveying 
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information over as wide as possible a range (Yadav et al. 2014; Muhlemann et al. 2014; 

Ludwiczuk et al. 2016). Another advantage of using these lipophilic molecules to communicate 

is their enormous structural diversity, which allows messages to be fairly specific (Das et al. 

2013; Abbas et al. 2017). However, the complexity of these combinations is such that it is 

difficult to associate any particular attribute to any one species of terpene  (Huber et al. 2004; 

Degenhardt et al. 2009; Boutanaev et al. 2015; Green et al. 2017). 

 

Terpene biosynthesis and diversity 

 

Although this class of compounds includes many which are extremely variable from one 

another in chemical structure, all of them originate from two biosynthetic pathways, as is 

outlined in Figure 1.1 (Dudareva et al. 2013; Abbas et al. 2017). In vascular plants, the 

plastidial Methyl-Erythritol-Phosphate (MEP) and classical cytosolic Mevalonic-Acid (MVA) 

pathways generate distinct collections of terpenes (Figure 1.1, (Zulak and Bohlmann 2010; 

Abbas et al. 2017). These two pathways occur in distinct subcellular compartments and 

typically function independently from one another, although interaction between them has been 

observed (Hemmerlin et al. 2003; Dudareva et al. 2005). These two related, but distinct 

biosynthetic pathways result in the production of two inter-convertible C5 monomers (Figure 

1.1), which are the universal precursors of all isoprenoid compounds, including terpenes. These 

monomers are isopentenyl-diphosphate (IPP), and its allelic isomer dimethylallyl-diphosphate 

(DMAPP) (Yadav et al. 2014). 
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Figure 1.1: The iso-, mono-, sesqui-, and diterpene biosynthetic pathways in conifers. The plastidial 

MEP pathway starts with the condensation of pyruvate and GA-3P, while the MVA pathway spans the 

cytosol, peroxisomes and endoplasmic reticulum and starts with the condensation of acetyl-CoA. The 

result is various terpenoid molecules; listed are examples formed by Monoterpene Synthases (Mono-

TPS), Sesquiterpene Synthases (Sesqui-TPS), and Diterpene Synthases (Di-TPS) in conifers. 3-

Hydroxy-3-methylglutaryl (HMG-CoA), isopentenyl diphosphate (IPP), dimethylallyl diphosphate 

(DMAPP), deoxyxylulose-5-phosphate (DXOP), and methylerythritol-4-phosphate (MEP). 

 

The MVA pathway operates primarily in the cytosol and mitochondria (Luskey and Stevens 

1985; Basson et al. 1988; Igual et al. 1992; Rodwell et al. 2000), beginning with the 

condensation of Acetyl-CoA  to form 3-Hydroxy-3-MethylGlutaryl-CoA (HMG-CoA). This is 

converted to mevalonate, which through sequential phosphorylation and decarboxylation 

events, results in the production of IPP (Tholl et al. 2005; Chen et al. 2011). The IPP molecules 

derived from the MVA pathway (Figure 1.1) can then be converted, by the action of enzyme 

isopentenyl diphosphate isomerase, to DMAPP (Chappell 1995; McGarvey 1995). The 

predominant products of the MVA pathway are sterols, sesquiterpenes, and ubiquinones (Singh 

and Sharma 2015).   
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In the plastid, the MEP pathway (Figure 1.1), also referred to as the mevalonate-independent 

pathway, biosynthesises both IPP and DMAPP (Hemmerlin et al. 2003). The products of this 

pathway go on to form monoterpenes, diterpenes, certain phytohormones, carotenoids, as well 

modifications to photosynthesis-related compounds, tocopherols, chlorophyll, phylloquinones, 

and plastoquinones (Singh and Sharma 2015). All the enzymes of the MEP pathway are 

contained within the plastids (Suire et al. 2000; Hsieh et al. 2008). 

The MEP pathway is initiated by the condensation of pyruvic acid and glyceraldehyde-3-

phosphate (GAP), synthesising 1-deoxy-d-xylulose-5-phosphate (DOXP), which is converted 

to MEP. Two MEP molecules fuse to form hydroxy-methyl-butenyl-4-diphosphate (HMBPP), 

and with additional modifications, both DMAPP and IPP are produced, though not in equal 

proportions (Baker 1992; Cunningham et al. 2000; Rohdich et al. 2003; Tritsch et al. 2010; 

Thimmappa et al. 2014). Once formed, DMAPP and IPP monomers are condensed to form the 

precursors to all terpenes (Figure 1.1; Nagegowda 2010; Singh and Sharma 2015). Terpenes 

are grouped according to the monomers they are made up of. Though, it can be difficult to 

discern the original five-carbon residues due to extensive metabolic modifications. Terpenes 

containing two C5 units are monoterpenes (C10), while terpenes with three monomers are 

sesquiterpenes (C15), and diterpenes (C20) contain four monomers. Accordingly, we have 

triterpenes (C30) and tetraterpenes (C40), while anything larger is broadly classified as a 

polyterpenoid (Nagegowda 2010; Chen et al. 2011). 

This diversity can be attributed to two classes of enzymes belonging to multiple large gene 

families; the cytochrome P450-dependent mono-oxygenases (CyP450s), and the terpene 

synthases (Zulak and Bohlmann 2010). Several of the CyP450s enzymes are known to be 

promiscuous, often responsible for adding the extremely variable modifications observed 

within an entire group of functionally or structurally related diterpenoids (Zulak and Bohlmann 

2010; Wen et al. 2018). Terpene synthases are a large family of enzymes that synthesise 

thousands of terpene products from very few substrates (Nagegowda 2010; Zulak and 

Bohlmann 2010; Padovan et al. 2014). While some terpene synthases are highly restricted in 

their product profiles, many of them catalyse the reactions for multiple products (Steele et al. 

1998; Fäldt et al. 2003; Martin 2004). These enzymes are categorised according to their 

substrate specificity and phylogeny (Bohlmann et al. 1998a).   

All plant terpene synthase enzymes belong to a family with diverged but related functions and 

are thought to have arisen from a common evolutionary origin, the duplication of an ancestral 
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gene (Hayashi et al. 2006; Degenhardt et al. 2009).  This is consistent with the fact that the 

moss, Physcomitrella patens, only includes one functional terpene synthase gene, a 

bifunctional kaurene synthase, which is homologous with both angiosperm and gymnosperm 

terpene synthase genes (Trapp and Croteau 2001a; Keeling et al. 2010).  

Plant terpene synthases fall into one of two classes; I; kaurene synthase-type, and II; copalyl-

diphosphate synthase-type, according to the reactions in which they participate (Degenhardt et 

al. 2009; Chen et al. 2011). Mono- and sesquiterpene synthases typically have class I domains 

(Dudareva 1996), while diterpene synthases can exist as either monofunctional or bifunctional 

enzymes, retaining either, or both class I and II functional domains (Peters et al. 2000). All 

terpene synthases contain an aspartate-rich, metal-binding domain, allows substrate binding by 

the coordination of divalent metal ions (Lesburg 1997). The functional promiscuity of these 

enzymes is due to the stochastic bond rearrangements that occur within their active sites, 

forming unusual combinations of carbocation intermediates (Steele et al. 1998; Degenhardt et 

al. 2009). 

Terpene synthases are further grouped into clades (Bohlmann et al. 1998a; Dudareva 2003). 

Previous phylogenetic analyses have defined representative clades of terpene synthase 

sequences from gymnosperms and angiosperms (Chen et al. 2011). Currently, seven terpene 

synthase clades are recognised, as seen in Table 1.1, adapted from  Chen et al. (2011). 

However, more recent phylogenetic analysis has suggested that the conifer-specific clade TPS-

d (Table  1.1) is polyphyletic and could be adapted to accommodate more subsections in future 

(Hall et al. 2013a). This clade contains a significant proportion of the enzymes of conifer 

terpene synthesis (Bohlmann et al. 1998b; Pazouki and Niinemets 2016). Therefore, it is 

imperative to gain insight into the diversity within this clade. The rest of the conifer terpene 

synthases fall into the TPS-c and TPS-e/f subfamilies (Table  1.1), which have corresponding 

orthologs within angiosperms (Keeling et al. 2010; Chen et al. 2011; Boutanaev et al. 2015). 

However, while terpene synthase genes fall into seven distinct clades, plant lineages have the 

majority of their terpene synthases in one or two clades, having been derived through lineage-

specific expansion (Trapp and Croteau 2001a; Degenhardt et al. 2009; Chen et al. 2011).  
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Table 1.1: Function and taxonomic distribution of terpene synthase clades in plants, as 

defined by Chen et al. (2011): 

Subfamily Groups Functions Distribution 

TPS-a 

TPS-a-1 Sesqui-TPS Dicots 

TPS-a-2 Sesqui-TPS Monocots 

TPS-b   Mono-TPS, IspS Angiosperms 

TPS-c   CPS/KS, CPS, Di-TPS Land plants 

TPS-d 

TPS-d-1 Mono-TPS, Sesqui-TPS Gymnosperms 

TPS-d-2 Sesqui-TPS Gymnosperms 

TPS-d-3 Di-TPS, Sesqui-TPS Gymnosperms 

TPS-e/f   KS, Di-TPS, Mono-TPS, Sesqui-TPS Vascular plants 

TPS-g   Mono-TPS, Sesqui-TPS, Di-TPS Angiosperms 

TPS-h   Putative bifunctional Di-TPS Selaginella moellendorffii 

* SesquiTPS, sesquiterpene synthase; MonoTPS, monoterpene synthase; IspS, isoprene synthase; CPS, copalyl synthase; 

KS, kaurene synthase; DiTPS, diterpene synthase. 

 

In silico annotation of terpene synthases is problematic, because of the reactions catalysed by 

these enzymes and their primary structures are not exhibitive of their product profiles. An 

example of this is the extensive, yet distinct products produced by two terpene synthases with 

similar primary structures; γ -selinene synthase and γ-humulene synthase (Steele et al. 1998; 

Little and Croteau 2002). Although the mechanisms behind the extraordinary product plasticity 

of these enzymes are not predictable, the production of specific terpenes has been shown to be 

associated with particular amino acids sequences at sites of catalytic activity (Katoh et al. 

2004).  

Terpene synthase genes are well characterised in a wide variety of plants. This includes 

Arabidopsis thaliana, Cucumis sativus, Nicotiana attenuate, Eucalyptus grandis, and  

Santalum album (Facchini and Chappell 1992; Chen 2003; Mercke 2004; Jones et al. 2008; 

Degenhardt et al. 2009; Külheim et al. 2015). Most of our knowledge of terpene synthases in 

conifers comes from studies on Picea abies, Picea sitchensis, Picea glauca, Abies grandis, 

Pinus taeda, Pseudotsuga menziesii, and Taxus media ( Byun-McKay et al. 2006; Ralph et al. 

2006, 2008; Ro and Bohlmann 2006; Zulak et al. 2009; Zulak and Bohlmann 2010; Keeling et 

al. 2010, 2011; Bohlmann and Way 2012; Hall et al. 2013a). 
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Terpenes in conifers 

 

Oleoresin is a viscose blend of volatile terpenes (terpenoids) and non-volatile diterpene resin 

acids, and is an important constituent for defence in conifers (Bohlmann et al. 1998a; Fäldt et 

al. 2003; Witzell and Martín 2008; Abbott et al. 2010; Zulak and Bohlmann 2010). The 

antimicrobial and antiherbivory component of conifer oleoresin is the volatile turpentine 

fraction, which includes a variable range of structurally diverse volatile mono- and 

sesquiterpenes (Zulak and Bohlmann 2010). In addition to being toxic to predators, the 

turpentine fraction acts as a solvent, carrying non-volatile diterpenes to where they are needed 

to form mechanical barriers or seal wounds (Bohlmann et al. 1998a). 

 Traumatic ducts, which are formed in Picea and other conifers, are specialised anatomical 

structures which accumulate and store oleoresin (Zulak and Bohlmann 2010; Singh and Sharma 

2015). The epithelial cells lining the interiors of these structures are understood to be where 

terpene biosynthesis occurs (Franceschi et al. 2005; Zulak and Bohlmann 2010; Kshatriya et 

al. 2018). Although these resin ducts exist constitutively, recognition of a potential threat or 

treatment with methyl jasmonate prompts their de novo formation (Krokene et al. 2008a; Zulak 

and Bohlmann 2010; Keeling et al. 2011; Bohlmann and Way 2012).   

Methyl jasmonate is a lipophilic phytohormone which is implicated in defensive signalling 

(Creelman and Mullet 1997; Abbas et al. 2017). Topical application of this phytohormone 

induces the biosynthesis of terpene rich oleoresin and volatile terpenoids, similar to that 

typically initiated by pathogen recognition, thereby enabling the examination of the traumatic 

resin response in conifers (Barnard and Blakeslee 1987; Krokene et al. 2008b; Zulak and 

Bohlmann 2010; Reglinski et al. 2017).  

In conifers, the production of defence-related terpenes is dynamic, allowing it to be adaptable 

in fluctuating environmental conditions, and to evolving biotic threats (Ro and Bohlmann 2006; 

Achotegui-Castells et al. 2016). In addition, terpene profiles have been shown to vary 

extensively between species (Bohlmann et al. 1998b; Trapp and Croteau 2001b; Martin and 

Bohlmann 2005). The efficiency with which the trees chemical defence can guard against 

pathogens is largely dependent on the composition and quantity of oleoresin terpenes  (Köpke 

et al. 2010; Keeling et al. 2011; Buschiazzo et al. 2012).  

Importantly, the emission of certain volatile monoterpenoids, such as pinenes and limonenes, 

has been shown to be under such strong genetic control that it can be used to distinguish 
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different genotypes  (Forrest 1980; Kinloch et al. 1986). In particular, volatile terpenoids make 

reliable chemo-taxonomic markers because their biosynthesis is primarily under the control of 

gene expression, and therefore not significantly influenced by environmental factors (Erbilgin 

and Colgan 2012; Mitić et al. 2017a, 2018).  

Many of the conifer terpene synthases that have been functionally characterised are described 

in an inclusive review by Keeling and Bohlmann (2006a). Despite their enormous size, the 

genomes of Picea glauca, Pinus lambertiana, and Pinus taeda have been sequenced (Birol et 

al. 2013; De La Torre et al. 2014; Neale et al. 2014; Zimin et al. 2014; Wegrzyn et al. 2014; 

Warren et al. 2015; Stevens et al. 2016). However, the identification of these genes within 

economically important conifer species has been augmented by transcriptome sequencing 

projects, such as that performed in Pinus monticola, Pinus flexilis, and Pinus albicaulis (Lorenz 

et al. 2012; Celedon and Bohlmann 2017; Cai et al. 2018; Shalev et al. 2018).  

Non-volatile terpenes of conifer oleoresin are not known to be further biochemically modified 

by CyP450 enzymes, the diterpene compounds can be further oxidised into resin acids by multi-

substrate CyP450s (McGarvey 1995; Keeling and Bohlmann 2006b). Genes from within the 

CYP720B superfamily have been shown to be responsible for at least two of the three 

successive oxidation steps required to modify diterpenoids (Ro and Bohlmann 2006; 

Hamberger and Bohlmann 2006). Therefore, it is possible that relatively few diterpene 

synthases and CyP450s are able to produce the extensive biochemical variability and plasticity 

of the host’s terpene profile (Martin 2004; Zulak and Bohlmann 2010; Bathe and Tissier 2019; 

Celedon and Bohlmann 2019).  

Hamberger and Bohlmann (2006) revealed that terpene synthase genes belong to a large a 

conifer-specific gene family, CYP720B, which is comparable in size to that of the terpene 

synthase gene families in conifers. The first CyP450 gene to be functionally characterised in 

conifers, CYP720B1, was identified from loblolly pine and implicated in the synthesis of 

diterpenoids (Ro et al. 2005; Ro and Bohlmann 2006). Since then, many more CyP450 

enzymes have been described, as has been comprehensively reviewed by Bathe and Tissier 

(2019). 
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Prospects for metabolic engineering of terpenes 

 

The importance of terpenes in planta, as well as commercially, makes their potential for 

manipulation through metabolic engineering attractive. The synthesis of terpenes is regulated 

at multiple levels, therefore any form of perturbation, particularly early on in the pathway, can 

lead to broad-spectrum changes in observed phenotype (Capell and Christou 2004). Previously, 

the transcription of monoterpene, sesquiterpene, and carotenoid pathway genes have been 

enhanced by overexpression of the rate-limiting enzymes responsible for producing precursor 

molecules (Figure 1.1) such as DXR, DXS, and HMGR (Dalla Costa et al. 2018; Henke et al. 

2018; Zhang et al. 2018). However, the modulation of principal regulatory enzymes results in 

the indiscriminate alteration of metabolite concentrations (Zerbe and Bohlmann 2015; 

Abdallah and Quax 2017; Bian et al. 2017; Mewalal et al. 2017). 

Metabolic engineering could augment plant resistance on multiple fronts including altering the 

timing, composition, or magnitude of the defence response mounted against a pest or pathogen 

(Tholl 2015). It has been shown that the overexpression of certain terpene synthase genes is a 

promising technique of terpene profile manipulation when addressing the abovementioned 

issues in transgenic plants (Krasnyanski et al. 1999; Aharoni et al. 2005; Zerbe and Bohlmann 

2015; Bian et al. 2017; Neis et al. 2018). Recently, it was shown that the downregulation of d-

limonene synthase increases the resistance of citrus crops to the phytopathogenic fungus 

Phyllosticta citricarpa (Rodríguez et al. 2018). 

Research in Pinus species has revealed that in mature trees, as in seedlings, it is possible to 

induce alterations in the concentration and composition of monoterpenes and that this response 

is consistent within genotypes regardless of the trees age (Erbilgin and Colgan 2012). Although 

an observed increase in total monoterpene concentrations can provide an indication of the trees 

defence response to pathogen infection, this does not necessarily correspond to increased 

resistance (Heijari et al. 2005; Wen et al. 2018). It has been suggested that individual 

compounds within the terpenome contribute more strongly to a successful response than others, 

making their specific concentrations more indicative of observed resistance than the total 

terpene concentration (Zhao et al. 2011; Erbilgin and Colgan 2012; Schiebe et al. 2012; 

Trindade et al. 2016; Green et al. 2017; Reglinski et al. 2017; Mitić et al. 2018).  

In the future, research should also be done to assess the correlation between terpene synthase 

gene translation and the corresponding terpenome of conifers (Zhang et al. 2018). Furthermore, 
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detailed knowledge of the particular expression profiles associated with certain diseases, 

infections, or stresses could eventually be used for diagnostic and taxonomic purposes (Abbas 

et al. 2017; Mitić et al. 2017b). It is worth noting that the positive results achieved by the 

overexpression of genes of terpene biosynthesis, which prompted the ample supply of 

isoprenoid precursors, can impose a cost on plant growth and fitness (Aharoni et al. 2005). 

This is due to the reduced supply of precursors to pathways of primary metabolism, as well as 

the potential toxicity of the compounds produced in excess within plant cells (Capell and 

Christou 2004; Bian et al. 2017; Owen et al. 2017; Dowd et al. 2018; Zhang et al. 2018). 

Therefore, before the true environmental and economic potential can be recognised, a more 

holistic approach is necessary to elucidate the complex genetic circuitry which underlies the 

terpenome (Mewalal et al. 2017).  

Finally, endophyte research shows potential as a biological control against phytopathogenic 

fungi (Wingfield et al. 2008; Naik 2018). In Pinus spp., the application of beneficial 

microorganisms is being investigated to reduce the severity of F. circinatum infection 

(Martínez-Álvarez et al. 2016; Iturritxa et al. 2017; Bullington et al. 2018), further 

corroborating that sustainable resistance will require a wide-ranging understanding of the 

multicomponent defence of Pinus spp. by numerous interconnected mechanisms (Amaral et al. 

2019).  

 

1.3 Conclusions 

 

The fitness of forest and plantation tree populations is expected to decline rapidly as a result of 

the observed average increase in global temperatures. Studies modelling future conditions, 

show that approximately 60% of tree species adapted to temperate regions will be 

disadvantaged by the warmer climates forecast, and conifers are predicted to be amongst the 

most negatively affected (Hamann and Wang 2006; Alberto et al. 2013; Prunier et al. 2016; 

Simon and Adamczyk 2019; Celedon and Bohlmann 2019).  

To address these issues, it is necessary to better understand the phenotypic plasticity within 

conifer terpenomes. Conifers produce a large array of phenolic and other chemical defence 

compounds, a considerable portion of the molecules within their defensive repertoire are 

terpenes (Trapp and Croteau 2001b; Krokene et al. 2008a).  The sheer quantity and diversity 
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of terpene molecules hints at their importance; they are known to facilitate numerous plant 

interactions, as well as being vital to defence (Mitić et al. 2017b; Celedon and Bohlmann 2019). 

Pitch canker on mature trees manifests as resinous lesions, further implying the involvement 

of terpenes in this defensive response (Dwinell 1985; Ploetz 2006; Hodge and Dvorak 2007; 

Martín-Rodrigues et al. 2013). Previous research by Seeve (2010) on the putative defence-

related genes undergoing differential expression in Pinus taeda infected with Fusarium 

circinatum has highlighted the potential involvement of terpene synthase genes in this 

interaction. This is consistent with the known capability of particular terpenes to inhibit 

phytopathogenic fungi growth in vitro (Cowan 1999; Keeling and Bohlmann 2006b; Bakkali 

et al. 2008; Slinski et al. 2015).  

The differences in induced responses to infection between the two Pinus species, with 

contradistinctive susceptibility, could help to elucidate the mechanisms which underlie the 

relative resistance of P. tecunumanii (Trindade et al. 2016; Arango-velez et al. 2018). The aim 

of this study is the identification and comparative expression analysis of various terpene 

synthase genes in P. patula and P. tecunumanii (Visser et al. 2018). Although our focus is on 

the transcriptional regulation, we believe that this is a sufficient indication of terpene 

production, as multiple studies have shown that transcriptional levels are a good proxy for the 

level of terpene biosynthesis (Wang et al. 2010; Kovalchuk et al. 2019).  

Above all, insight into the terpenome could help mitigate fungal infections in long-living 

conifer species, which are predicted to become more prevalent as a consequence of climate 

change (Lindner et al. 2010; Dudareva et al. 2013; Garrett et al. 2015; Iturritxa et al. 2017; 

Singh et al. 2018). 
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2.1 Abstract 

 

Pitch canker, caused by Fusarium circinatum (teleomorph Gibberella circinata), is regarded 

as one of the most severe phytopathogenic diseases affecting commercial Pinus plantations 

worldwide, and is anticipated to be aggravated by the increase in temperature and humidity 

associated with climate change. In South Africa, the preferred commercial pine species has 

been Pinus patula. The fungus causes Fusarium-wilt on seedlings and has drastically decreased 

the post-planting survival of seedlings. Hybridisation of P. patula with Fusarium-tolerant 

species such as Pinus tecunumanii, has led to the development of an alternative planting stock. 

However, the mechanisms underlying P. tecunumanii’s relative resistance remains 

inconclusive. Previous research has highlighted the putative involvement of terpene synthases 

in defence against Fusarium spp., as their regulation is significantly altered early in response 

to this pathogen. RNA-seq reference transcriptomes for P. patula and P. tecunumanii have 

provided the much-needed genetic resources necessary to interrogate the putative defence 

related genes undergoing differential expression due to F. circinatum infection. The aim of this 

study was to determine whether observed differences in resistance between these two hosts, is 

correlated with induced terpene synthase gene expression profiles, and to resolve the implicated 

orthologs. The differential expression patterns of genes identified as terpene synthase orthologs 

was assessed for their potential to contribute to resistance. While the two host species, P. patula 

and P. tecunumanii, did appear to respond dissimilarly, this is not indicative of terpene 

synthesis playing a causal role in defence.  

Keywords: transcriptomics, defence response, host–pathogen interaction, pitch canker, 

Fusarium-wilt, differential gene expression, Pinus patula, Pinus tecunumanii, terpene 

synthases 
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2.2 Introduction 

 

Forest trees, particularly conifers, are vulnerable to climate change because their long lifespans 

do not allow for quick adaptation to changes in  environmental conditions  (Lindner et al. 2010; 

Raitelaitytė et al. 2016). This is exacerbated by the fact that phytopathogenic fungal infections 

are characteristically dependent on humidity and temperature (Garrett et al. 2015). In 

particular, the potential impact of climate change on F. circinatum could increase the damage 

caused by pitch canker to plantations of susceptible Pinus spp. (Watt et al. 2011; Nier and 

Dobrza 2018; Quesada et al. 2019). Therefore, analysis of defensive genes in conifer species 

could reveal sequence variants contributing to susceptibility. This should help to elucidate the 

characteristics of a successful defence response, as a potential focus for genetic improvement 

through genetic engineering and breeding.  

Fusarium circinatum (Nirenberg and O’Donnell 1998) poses one of the most significant and 

costly threats to Pinus and other conifer species, in both commercial and natural pine forests 

(Barnard and Blakeslee 1987; Wingfield et al. 2008; Raitelaitytė et al. 2016; Gordon and 

Reynolds 2017). The pathogen causes pitch canker on mature trees and Fusarium-wilt on 

seedlings (Iturritxa et al. 2011; Mitchell et al. 2014). Fusarium infection reduces the growth of 

the tree and increases its susceptibility to biotic and abiotic stresses (Seeve 2010; Jones et al. 

2014; Mitchell et al. 2014).  Infected seedlings have a high mortality rate, especially in 

nurseries, where cryptic root infections can be extensive (Martín-Rodrigues et al. 2015; Swett 

et al. 2015, 2018). 

The typical defensive response to infection by F. circinatum in mature trees is the accumulation 

of oleoresin, or “pitch”, at the site of infection (Dwinell 1985; Wingfield et al. 1999).  Oleoresin 

is produced, and stored in dedicated anatomical structures; the cortical and xylem trauma-

associated resin ducts (Trapp and Croteau 2001; Martin 2002; Krokene et al. 2008). When a 

tree’s defences are triggered, the accumulated oleoresin “pitches out” of these structures to 

inundate the antagonist (Zulak and Bohlmann 2010). In addition, volatile constituents within 

the resin act as airborne signalling molecules, alerting neighbouring trees or predators of the 

attack (Abbas et al. 2017). Terpenes within the oleoresin have known antimicrobial properties 

for instance, α-pinene disrupts the integrity of fungal cell membranes, while other 

monoterpenes have been shown to inhibit vital fungal enzymes (Uribe et al. 1985; Marei et al. 

2012; Slinski et al. 2015; Iturritxa et al. 2017). 
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The efficiency with which a host tree activates its terpene defensive responses has been 

proposed as a reliable indication of its resistance (Zhao et al. 2011; Schiebe et al. 2012; Flø et 

al. 2018; Wen et al. 2018). Constitutive and induced terpene profiles are under strong genetic 

control and can differ greatly in both their composition and quantity, depending on tree 

provenance, population, or variety (Keeling et al. 2010; Bohlmann and Way 2012; Pham et al. 

2014; Wen et al. 2018).  However, mediating a suitable response requires a substantial expense 

of energy to coordinate modifications to numerous metabolic and signalling processes, 

therefore it is detrimental to the growth and development of the host (Hu et al. 2018). 

Fusarium circinatum is thought to have originated in Mexico, and was first recorded in North 

Carolina (USA) in the 1940s (Barnard and Blakeslee 1987; Gordon et al. 2001; Porter 2010). 

The pathogen has also been reported in Haiti, South Africa, Japan, Korea, Mexico, Chile, 

Uruguay, Spain, France, Italy, and Portugal (Barnard and Blakeslee 1987; Wingfield et al. 

2008; Hodge and Jetton 2010; Mead 2013; Bezos et al. 2017; Iturritxa et al. 2017). Further 

spread poses a significant threat to many countries were Pinus spp. are found naturally or grown 

commercially. In South Africa, Pinus patula has been the most prolifically grown commercial 

pine species (Mitchell et al. 2011; Fru et al. 2017). However, in the last few decades, cultivation 

and establishment of this species in plantations has been severely hampered by Fusarium wilt. 

In this country, F. circinatum was first reported in the 1990s, followed by several publications 

dealing with its biology, population structure and genomics (Viljoen 1994; Wingfield et al. 

1999, 2008; Crous 2005; Fru et al. 2017; Gordon and Reynolds 2017; Van Wyk et al. 2018; 

Hongwane et al. 2018). Due to the importance of  F. circinatum to South African commercial 

forestry, it was the first fungal pathogen genome to be sequenced (Wingfield et al. 2012). 

Hybrids between P. patula and Fusarium-tolerant pine species have been suggested as 

alternative planting stock (Hodge and Dvorak 2007; Mitchell et al. 2011, 2012). Hybridisation 

of resistant P. tecunumanii low elevation (LE) with P. patula has shown promise for producing 

less susceptible hybrids, while maintaining wood properties (Roux et al. 2007; Mitchell et al. 

2011, 2013; Ford et al. 2014; Kanzler et al. 2014; Fru et al. 2017; Hongwane et al. 2017). 

Unfortunately, pure P. tecunumanii is not a viable replacement for P. patula because it is prone 

to stem breakage in South Africa’s climate; particularly the low elevation ecotypes (Hodge and 

Dvorak 2000; Granados et al. 2013; Leibing et al. 2013).  

This study aimed to elucidate the diversity and differential expression of terpene synthase genes 

in conifers, with the intention to determine whether the observed genotypic differences in 
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resistance correlate with induced terpene synthase gene expression profiles. The quantitative 

and qualitative characteristics of a host’s terpene profile are hypothesised to be an important 

determinant of its susceptibility to infection. The differences in induced responses to infection 

between P. patula and P. tecunumanii, with contradistinctive susceptibility could elucidate the 

contribution of these genes. As there are no reference genomes currently available for these 

two Pinus spp., assembled RNA-sequence reference transcriptomes for P. patula and P. 

tecunumanii (Visser et al. 2018), allowed transcriptomic analysis of these non-model 

organisms. Identification of orthologous groups of protein sequences between related Pinus 

spp. enabled the clustering of genes of related structure, and thereby function which lead to the 

putative annotation of genes via their homology with characterised ones. In addition, 

differential expression was assessed from RNA isolated from a similar inoculation trial (Visser 

2015; Visser et al. 2018). Finally, an in-silico analysis was done with the aim to identify terpene 

synthase diversity in these two Pinus spp. in order to elucidate whether genotypic differences 

in resistance correlate with differences in the induced terpene synthase gene expression 

profiles.  

 

2.3 Materials and methods 

 

2.3.1 Plant material and Fusarium circinatum infection trial 

 

Six-month-old P. patula (4 individual families), P. tecunumanii (mixed families), as well as 

multiple open-pollinated families of P. patula x P. tecunumanii hybrid seedlings were obtained 

from Dr. Nicky Jones (Sappi Forests, Shaw Research Centre, Howick, KZN, Table 2.1). Before 

the inoculation, seedlings were allowed to acclimatise for two weeks. At the end of the 

acclimatisation period, the total number of surviving seedlings was 1708. Table 2.1, Table S1.2 

The total number of pure family Pinus patula seedlings was 748, and Pinus tecunumanii 746, 

which allowed a statistically significant number of seedlings to be allocated to each biological 

replicate (BR), within both mock-inoculated and inoculated groups. This allowed for >50 

seedlings per BR at each of the four time points, from which tissue was harvested, and the plant 

discarded. (Table S1)2 
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The experimental design had to be adapted due to constraints introduced by the limited number 

of Pinus patula x Pinus tecunumanii hybrid seedlings (Table 2.1 and Table S1).2While there 

was a total of 148 seedlings, they were dispersed over 15 hybrid open-pollinated families. The 

high level of variation within the hybrid group required the families to be grouped, preventing 

formation of balanced BR. To account for this, hybrid seedlings were inoculated (I), but no 

control group was kept for comparison, as in Figure 2.1. Statistical inference allowed for the 

estimation of mock-inoculated Pinus patula x Pinus tecunumanii hybrid control groups at each 

time point (Table S1).2 

Inoculations were conducted following the protocol of Porter (2010) and Nel et al. (2014). This 

involved removing the tip of the apical bud and placing 10μl of either the fungal inoculum, or 

15% (v/v) sterile glycerol, on the wound, depending on whether the seedling is to be inoculated 

or mock-inoculated (Figure 2.1). Fusarium circinatum (isolate CMWF1217) was grown on ½ 

potato dextrose agar (PDA; Merck 1938) at 25°C for ten days. Spores were collected by surface 

washing with 15% (v/v) sterile glycerol. Spore concentration was quantified using a 

haemocytometer and adjusted to 5×104 spores/mL using 15% (v/v) sterile glycerol.  

 

Table 2.1: Six-month-old Pinus seedlings used in the F. circinatum inoculation trial 

   

 

 

 

 

 

 

 

Tissue was harvested at 1, 3, 5, and 7 days post inoculation (dpi) for three BRs per group 

(Figure 2.1), flash frozen using liquid nitrogen and stored at -80°C until use. For each BR the 

top 1 cm of the shoot tissue (stem and needles) of at least three seedlings were harvested. 

Infection by F. circinatum was confirmed based on culture morphology on ½ PDA by re-

P. patula 

(Individual families) 
P. patula x P. tecunumanii 

P. tecunumanii 

(Seed mix) 

P9 P9 x P. tec118 LE P1 x P. tec23 LE P. tec 8 LE 

P17 P17 x P. tec133 LE P16 x P. tec323 LE P. tec 33 LE 

P38 P32 x P. tec133 LE P40 x P. tec233 LE P. tec 323 LE 

P42 P38 x P. tec323 LE P41 x P. tec33 LE  

 P38 x P. tec133 LE P42 x P. tec233 LE  

 P25 x P. tec23 LE P5 x P. tec33 LE  

 P8 x P. tec23 LE P5 x P. tec233 LE  

 P8 x P. tec33 LE   
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isolation using tissue harvested from inoculated plants at 14 dpi (Figure 2.1). Lesion lengths 

were recorded weekly, from a minimum of three plants per group, from one to six weeks post 

inoculation as a measure of disease progression (Figure 2.3). The length of clearly necrotic 

tissue was compared across species, by comparison of the lesioned tissue to percent of live 

seedling stem remaining as in Hodge and Dvorak (2007).  

To test the significance of lesion development at each timepoint, a multivariate analysis of 

variance was carried out. Factors were imbalanced due to the experimental design, there were 

no mock-inoculated samples to compare to inoculated hybrid measurements (Figure 2.1 and 

Figure 2.3). This was necessary due to the limited number of hybrid seedlings available (Table 

S1).2To account for the imbalance in analysis of lesion development, intra-subject models were 

created by collapsing unbalanced factors into group variables, specifically treatment (mock-

inoculated or inoculated) and species (P. patula, hybrid, or P. tecunumanii) at each time point 

(Figure  2.3).  Analysis was conducted using the ‘‘MANOVA’’ function from the car package 

(Fox et al. 2007) in R 3.5.1 (R Core Team 2017), accounting for the intra-subject design. Tukey 

test of interactions was performed using a linear mixed effects model and Benjamini-

Hochsberg false discovery rate correction (p < 0.10). The results of the Tukey are summarised 

in a compact letter table, in which shared letters indicate no significant difference between 

groups (Figure 2.3). 
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Figure 2.1: Outline of infection trial layout. Top: Six-month-old Pinus patula and Pinus tecunumanii 

seedlings were mock-inoculated (M) with sterile glycerol or inoculated (I) with Fusarium circinatum 

spores. Due to technical constraints, Pinus patula X Pinus tecunumanii hybrid seedlings were 

inoculated (I), but no control group was kept for comparison. Tissue was harvested at 1, 3, 5, and 7 dpi 

for 3 biological replicates (BR) per group. Disease progression monitored as lesion development within 

a separate group of seedlings for 6 weeks post-inoculation. Fusarium circinatum was re-isolated to 

confirm the presence of this fungus at 14 days post inoculation (dpi). Bottom 1: Fusarium circinatum 

spores are harvested and the apical meristem removed from the seedling. Bottom 2: Seedlings either 

mock-inoculated or inoculated in the same procedure.  
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2.3.2 RNA extraction and sequencing 

 

Tissue harvested from mock-inoculated and inoculated samples (Figure 2.1) was ground in 

liquid nitrogen using mortar and pestles. Total RNA was extracted using Norgen’s Plant/Fungi 

RNA Purification Kit (Norgen Biotek Corp., Thorold, ON, Canada). Modifications to the 

standard protocol were as follows; 100mg of frozen tissue was added to 1ml of lysis buffer 

preheated to 55°C. To account for additional tissue, samples were centrifuged at 14,000 x g for 

2 minutes, and the resulting supernatant was transferred into filter column, RNA was stored in 

the elution buffer at -80°C. RNA concentration and integrity were analysed using an Agilent 

2100 Bioanalyzer (Figure 2.4). Samples with an RNA Quality Index (RQI/RIN) value below 

7.0 were discarded and re-isolated where possible. 

Although RNA was successfully isolated from all the samples, the -80oC freezer malfunctioned 

prior to processing the RNA and all these samples were lost. Instead, RNA-seq data generated 

by Dr Erik Visser (Visser et al. 2018) was available for P. patula and P. tecunumanii isolated 

at 3 and 7dpi from a similar inoculation trial. With the availability of this data, the investigation 

of the terpene synthase gene families in these pine species could still proceed (Figure 2.2).  

In silico gene expression analysis was determined by Kallisto transcripts per million (TPM) 

abundance values. TPM values for putative terpene synthase genes were imported to R 3.6.1. 

Significant effect of factors was calculated using a two-way analysis of variance (ANOVA, p 

< 0.05) with inclusion of an interaction term between timepoint and treatment, followed by a 

Tukey Honestly Significant Difference (HSD) post hoc test to identify significant differences 

between sample sets (adjusted p < 0.05). The results are shown in  Figure S2.  

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



52 

 

 

 

 

 

Figure 2.2: Summary of in silico annotation process of terpene synthase genes. DE genes 

and reference proteome were obtained from Visser (2015). The differential expression patterns of genes 

identified as putative terpene synthase orthologs was assessed for their potential to contribute to 

resistance. Maximum-likelihood phylogenetic analysis was used to resolve the implicated ortholog. 
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2.3.3 Identification of terpene synthase genes 

 

To elucidate the potential defensive contribution based on the pattern of expression of these 

genes, they were putatively identified. Before performing phylogenetic analysis, the subset of 

transcript sequences belonging to terpene synthase orthogroups in P. patula and P. tecunumanii 

were identified (Figure 2.2). The proteomes of several species were obtained from PLAZA, as 

in Shalev et al. (2018). This included Arabidopsis thaliana, Populus trichocarpa, Oryza sativa 

japonica, various Pinus spp., Picea spp., Gnetum montanum, and Ginkgo biloba. (Figure 2.2 

and Table S1).2Along with proteomes of P. patula and P. tecunumanii (Visser et al. 2015),  

orthogroups across all proteomes were inferred by Orthofinder 1.1.4 (Emms and Kelly 2015). 

Gene families annotated as terpene synthases were confirmed by a reciprocal pBLAST 

approach. Both techniques enabled identification of putative terpene synthase genes within P. 

patula and P. tecunumanii, based on sequence similarity with previously annotated terpene 

synthase proteome sequence data (Aubourg et al. 2002; Keeling and Bohlmann 2006b; Keeling 

et al. 2011; Külheim et al. 2015). 

Through phylogenetic analysis, a total of 156 putative terpene synthase protein sequences, 

including those of P. patula and P. tecunumanii, were putatively identified as belonging to 

gene families of interest and prepared for phylogenetic analysis (Figure 2.2). Sequences were 

aligned using MAFFT v.7 (Katoh et al. 2018). Transcripts were removed if they lacked certain 

conserved protein domains known to be important to the catalytic activity of terpene synthases 

(Figure 2.6) as identified by domains inferred by InterPro (Hunter et al. 2009).  

Sequence alignments were uploaded to the CIPRES Science Gateway (Miller et al. 2010) and 

IQ-TREE (Trifinopoulos et al. 2016) was used to select the most appropriate evolutionary 

protein substitution model (Figure 2.2). RAxML v 8.2.10 (Stamatakis 2014) was used to 

generate a maximum-likelihood phylogeny, implementing the Jones-Taylor-Thornton (JTT) + 

GAMMA amino acid evolution model, with empirical base frequencies determined directly 

from the alignment (+F).  Support for the clustering of sequences were obtained using rapid 

bootstrapping (Figure S1). The tree was rooted to midpoint (Figure 2.2 and Figure S1). 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



54 

 

2.3.4 Differential terpene synthase gene expression 

 

Inoculated samples from each of the two hosts, P. tecunumanii and P. patula, were compared 

against their respective mock-inoculated samples with DESeq2 1.18.1 (Love et al. 2014), to 

identify differentially expressed genes (Figure 2.2; Visser et al. 2018). Genes that were 

significantly upregulated, relative to the control transcriptome of each of the species, were 

identified using a Wald test with the Benjamini & Hochberg false discovery rate correction (p 

< 0.10). For P. patula 323 and 7 453 significantly differentially expressed genes (Inoculated 

vs. Mock-Inoculated) were identified at 3 and 7 dpi respectively, while 735 and 2 499 

significantly differentially expressed genes were identified for P. tecunumanii (Visser et al. 

2018).  

 

2.4 Results 

 

2.4.1 Fusarium circinatum infection trial 

 

Inoculation with F. circinatum produced significantly longer necrotic lesions in P. patula as 

compared to P. tecunumanii and the hybrid seedlings (Figure 2.3). There were no significant 

differences in necrosis lengths between P. tecunumanii and the hybrid seedlings (Figure 2.3). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



55 

 

 

Figure 2.3: Comparative necrotic lesion lengths induced by Fusarium circinatum on inoculated 

Pinus seedlings. A: Lesion development as indicated as percentage live stem, over time for seedlings. 

Error bars represent the standard errors of the means. Compact letter table indicates associations 

between groups based on Tukey results, where shared letters indicate no significant difference between 

groups. B: Representative P. patula (left) and P. tecunumanii (right) inoculated seedlings 42dpi (days 

post inoculation). 
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Figure 2.4: Representative results of RNA integrity assessment by Agilent 2100 Bioanalyzer of 

samples from P. tecunumanii (left) and P. patula (right) harvested at 5dpi.  Both samples were of 

satisfactory integrity, having RQI/RIN values >7.0.  

 

 

2.4.2 Putative terpene synthase gene identification 

 

The alteration of terpene synthase gene expression by each host in response to the pathogen is 

evidently distinct. Figure 2.5 shows a subset of the phylogenetic tree constructed to further 

classify and annotate these transcripts according to characterised conifer terpene synthase 

transcripts. The number of putative terpene synthases responding to F. circinatum infection 

was nine in P. patula, compared to six in P. tecunumanii (Figure 2.5). Most of the genes 

expressed in P. tecunumanii had corresponding orthologs in P. patula. The only gene identified 

as being upregulated in P. tecunumanii for which a corresponding ortholog was not 

differentially regulated in P. patula was transcript ‘Pnte25LSn_DN87317_c0_g2’, annotated 

as a gamma-bisabolene synthase (Figure 2.5). Pinus tecunumanii orthologs were not identified 

for four of the genes differentially expressed as part of the defence response in P. patula. This 

included the downregulation in P. patula of two transcripts ‘Pipt31HSn_DN242281_c0_g’, a 

cineole synthase, and ‘Pipt31HS_DN235878_c0_g1’, a monofunctional pimaradiene synthase. 

Interestingly, this putative pimaradiene synthase is the only diterpene synthase identified as 

being involved in the defence response (Figure 2.5).Two other genes identified exclusively in 
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P. patula, ‘Pipt31HSn_DN207510_c1_g1’ and ‘Pipt25HSn _DN220074_c0_g4’, both being 

putative sesquiterpene synthases, were downregulated at 7- days post inoculation. 

All sets of orthologous transcripts were identified as being differentially regulated in both hosts 

as a result of F. circinatum infection (Figure 2.5). Including, transcripts ‘Pipt25LSn 

_DN279416_c1_g3’ and ‘Pnte31HSn_ DN77088_c0_g5’, which putatively encode 

orthologous alpha-humulene synthases in P. patula and P. tecunumanii, respectively. It is 

worth noting that while P. tecunumanii responded by strongly upregulating the transcription of 

alpha-humulene synthase at both 3- and 7-days post infection, P. patula responded in the 

reverse, downregulating this transcripts expression at the later of the two time points (Figure 

2.5). Although less strongly regulated, another instance of contradistinctive response in P. 

patula and P. tecunumanii is the regulation of another pair of orthologous genes.  These genes 

encoded alpha-pinene synthases and represented by the transcripts 

‘Pipt31HSn_DN236119_c0_g2’ and ‘Pnte25LS_DN112020_c3_g1’ respectively. In this 

study, alpha-pinene synthase gene expression was upregulated in P. tecunumanii but 

downregulated in P. patula (Figure 2.5). 

There were six transcripts identified as encoding putative farnesene synthases, three alpha-

farnesene, and three beta-farnesene synthases (Figure 2.5). This included a pair of alpha-

farnesene synthases within P. patula; ‘Pipt25LS_DN334024_c3_g4’, and 

‘Pipt31HS_DN265815_c0_g3’, a single alpha-farnesene synthase 

‘Pnte31LSn_DN97191_c0_g1’ is identified as being upregulated in P. tecunumanii.  The 

inferred primary structure of two of these putative alpha-farnesene synthases are shown in more 

detail in Figure 2.6. The other triplet of orthologous genes putatively annotated as encoding 

beta-farnesene synthases, included a single transcript,  ‘Pipt31HS_DN278168_c4_g1’ in P. 

patula, and a paralogous pair in P. tecunumanii, ‘Pnte25LSncg_GG_4275_c0_g1’ and 

‘Pnte31HSn_DN82496_c0_g3’ (Figure 2.5 and  Figure S1). 
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Figure 2.5: Phylogenetic analysis of putative terpene synthases response in P. patula and P. 

tecunumanii to allow their partial characterisation. The putative terpene synthase genes significantly 

differentially expressed in the inoculated seedlings at least one of the two timepoints of interest as 

shown as log2(Fold Change) values in boxes next to highlighted terminal nodes (left and right boxes 

showing 3-, and 7 days post inoculation respectively). All internal nodes are supported by >80% 

bootstrapping. 

 

 

Figure 2.6: Primary structures of putative alpha-farnesene synthase orthologs 
Pipt31HS_DN265815_c0_g3 in P. patula and Pnte31LSn_DN97191_c0_g1in P. tecunumanii (top and 

bottom respectively). These orthologs are regulated in opposite directions by each host responding to 

the same pathogen. Conserved protein domains known to be important to the catalytic activity of terpene 

synthases identified by InterPro are shown. 
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2.4.3 Defensive gene expression in P. patula and P. tecunumanii  

 

The variance in expression of putative terpene synthase genes, by the two host species, was 

compared to quantify their defence response when challenged by F. circinatum. Gene 

expression recognised as being incongruent with the respective control expression was 

attributed to the defensive response and was compared between the two hosts (Figure 2.2). 

These genes were those which displayed at least a 0.7 log2(Fold Change) alteration in 

expression, in either direction, when compared to the mock inoculated control group (-0.70 < 

log2(Fold Change) > 0.70). This study found eight putative terpene synthase gene orthogroups 

to be significantly differentially expressed by either host, at 3- and/or 7- dpi with F. circinatum 

(Figure 2.5). 

 

2.5 Discussion 

 

The production of a diverse suite of terpene molecules is a prominent chemical and physical 

defence system of Pinaceae (Keeling and Bohlmann 2006a; Zulak and Bohlmann 2010; Zhao 

et al. 2011). Earlier research has shown that Pinus spp. differ in terpene defensive properties 

that could influence their relative susceptibility, such as constitutive terpenoid composition or 

lower induced terpene production (Arango-Velez et al. 2016). There has been increasing 

research focussing on the transcriptional and phenotypical terpene response by predominant 

Pinus spp. against phytopathogenic fungi colonisation (Storer et al. 1998; Erbilgin and Colgan 

2012; Mead 2013; Wang et al. 2014; Raitelaitytė et al. 2016; Arango-velez et al. 2018; 

Hammerbacher et al. 2019; Woranoot et al. 2019). The defence strategies, which have 

diversified within each lineage, differ in their relative efficacy to resist infection by F. 

circinatum. Specifically, the qualitative and quantitative characteristics of the host’s terpene 

profile is an important determinant of the susceptibility of Pinus spp. to F. circinatum (Dvorak 

et al. 2009; Seeve 2010; Kanzler et al. 2012; Swett et al. 2018, 2014; Carrasco et al. 2017; 

Gordon and Reynolds 2017; Amaral et al. 2019; Chen et al. 2019; Lombardero et al. 2019; 

Reynolds and Gordon 2019).  

In this study, we focused on the transcriptional consequences to terpene synthase gene 

expression in two Pinus spp. initiated by the fungal pathogen F. circinatum (Figure 2.2). The 
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more susceptible of the two species, P. patula, is still of considerable importance to local 

agriculture, although often at huge economic expense due to its acute susceptibility to 

Fusarium-wilt (Figure 2.3). (Mitchell et al. 2011; Wingfield et al. 2012; Fru et al. 2018; 

Hongwane et al. 2018; Mabaso et al. 2019). This pathogen is making commercial reliance on 

this species difficult, so research into resistance breeding is increasingly becoming important. 

The second species that we have included, P. tecunumanii (LE), is currently of little agricultural 

significance in South Africa, but is relatively resistant to F. circinatum (Hodge and Dvorak 

2000; Mitchell et al. 2012; Hongwane et al. 2018). Differences can be observed by comparative 

lesion development between P. patula and P. tecunumanii seedlings that have been colonised 

by F. circinatum (Figure 2.3). The aim of this study was then to determine whether these 

difference in relative susceptibility, is correlated with discrepancies in the transcriptional 

regulation of putative terpene synthase genes.  

It must be noted that terpene synthase product profiles cannot be accurately predicted based on 

sequence analysis alone. Correlation of enzymes with similar structures previously 

characterised, have allowed annotation for of the genes identified in this study. However, there 

is always the possibility that two highly dissimilar terpene synthases share a similar product 

profile. An instance of this was observed by Bohlmann et al. (1997), when comparing the 

limonene synthase of Mentha spicata (spearmint) to that of Abies grandis. The two enzymes 

produced the same terpene products, although they share less than a third of their sequence 

identities with one another (Bohlmann et al. 1997).  Nevertheless, we can gain insight into the 

characteristic response of each host by assessing characterised functions of orthologous 

enzymes. 

 

2.5.1 Comparative necrotic lesion development  

 

The relative seedling tolerances of P. patula and P. tecunumanii, as well as the predicted 

intermediate tolerance of P. patula x P. tecunumanii hybrid families, was initially assessed by 

measuring development of lesions (Figure 2.3). The proportionate progression of the lesioned 

stem was compared statistically to gain insights into each species’ defence responses. 

Significantly longer necrotic lesions were observed in P. patula, when compared to P. 

tecunumanii were observed, as was expected in accordance with previous research (Hodge and 

Dvorak 2000; Kanzler et al. 2014; Visser et al. 2015). Interestingly, while the lesions of P. 
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patula continued to develop throughout the observation period, by 42dpi, P. tecunumanii had 

largely recovered and was beginning to establish new growth (Figure 2.3).   

Instead of the hybrid seedlings having an intermediate susceptibility to F. circinatum, as could 

have been expected (Kanzler et al. 2014), no significant increase in hybrid necrotic lesion 

lengths were observed compared to those in P. tecunumanii (Figure 2.3). This is likely due to 

the hybrid seedlings having been a few months older than the pure parent species. Hybrid 

seedlings were therefore slightly larger, and presumably had more established defence systems. 

However, it is not unusual for the rate of lesion development in hybrid genotypes to be 

equivalent to P. tecunumanii. The severe rate of lesion development in P. patula seedlings is 

seldom observed among hybrid species (Kanzler et al. 2014). 

 

2.5.2 Defensive contribution of terpene synthase gene expression  

 

Two sets of annotated homologs, a pair of alpha-farnesene synthases in P. patula, and beta-

farnesene synthases in P. tecunumanii, were found to contain similar sequences to each other. 

This would suggest that paralogous pairs represent nearly identical allelic variants, or recently 

duplicated genes within each of the host genomes. Interestingly, the alpha-farnesene synthase 

paralogs annotated in P. tecunumanii appear to be more closely related to one of the alpha-

farnesene synthases in P. patula, than the two P. patula paralogs are to each other.  The beta-

farnesene genes identified within P. patula were also sequentially very similar to their 

respective orthologs in P. tecunumanii.  

The monoterpene alpha-pinene synthase has been fully annotated in Pinus taeda, and its 

product profile is understood to predominantly compromise of alpha-pinene (~80%), with 

small amounts of beta-pinene (Phillips et al. 2003). Pinus taeda is relatively closely-related to 

the two species considered in this study (De La Torre et al. 2014; Visser 2015). It can thus be 

assumed that the increased upregulation of alpha-pinene synthase in P. tecunumanii results in 

an increased concentration of alpha-pinene. The other monoterpene, namely cineole synthase, 

has been functionally characterised in spruce (Picea sitchensis and Picea glauca). This enzyme 

has been determined being a multi-product enzyme (Keeling et al. 2011). The importance of 

this enzyme to the contribution of resistance is likely minimal as it was not significantly 

differentially regulated in P. tecunumanii, and only slightly decreased expression in P. patula 

(-0.72 log2(Fold Change)). 
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The potential for significant contribution by the sesquiterpene fraction in pathogen defence is 

interesting  because these molecules constitute less than 10% of the oleoresin (Steele et al. 

1998).  However, sesquiterpene volatiles are known as allelochemicals (Wedge et al. 2000), 

and contribute to both indirect (Schnee et al. 2006), and direct defences against plant pathogens 

(Bohlmann et al. 1998a; Park et al. 2014; Pham et al. 2014). The inducible production of 

sesquiterpenes, via transcriptional upregulation of sesquiterpene synthase, has been shown to 

be significant toward phytopathogenic defence  (Piesik et al. 2011; Park et al. 2014; da Luz et 

al. 2017; Woranoot et al. 2019). Sesquiterpenes include photosensitizers, which once activated, 

enzymatically or by light, produce highly reactive free radicals (Ashour et al.; Burden and 

Kemp 1984; Pearce 1996). In particular, many sesquiterpene lactones have been shown to 

exhibit antifungal activity when introduced to phytopathogenic Fusarium spp. (Wedge et al. 

2000). 

In an earlier study, analysis of alpha-humulene synthase orthologs in Pinus sylvestris and P. 

sitchensis has shown similar product profiles, with the two major products being alpha-

humulene and beta-caryophyllene (Keeling et al. 2011). The alpha-humulene synthase gene is 

seemingly highly significant in the relative susceptibility of P. patula to F. circinatum as these 

orthologs show the most dissimilar expression patterns. Farnesene synthases have been 

characterised in P. sitchensis and P. sylvestris, and their products have been shown to be 

predominantly alpha- and beta-farnesene (Ralph et al. 2006; Köpke et al. 2010). The final 

sesquiterpene that was observed, gamma-bisabolene synthase, has been characterised in Abies 

grandis, and is associated with the synthesis of gamma-bisabolene, as well as the monoterpene 

limonene (Bohlmann et al. 1998b; Steele et al. 1998). These enzymatic product profiles are, 

by reference, relatively similar to those of annotated genes identified within P. patula and P. 

tecunumanii. Monofunctional pimaradiene and iso-pimaradiene synthases, characterised in 

Pinus banksiana and  Pinus contorta, were earlier shown to contribute marginally to the 

diterpene fraction of oleoresin (Hall et al. 2013b). Therefore, in accordance with previous 

research (Byun-McKay et al. 2006), the relative susceptibility of P. patula appears to be 

primarily dependent on the expression of mono- and sesquiterpene genes.  

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



64 

 

2.5.3 Differential gene expression 3- and 7-days post infection (dpi)  

 

Visser et al. (2018) observed greatest defensive transcriptional variation between P. 

tecunumanii and P. patula during the early stages of colonisation by F. circinatum. The defence 

response induced by F. circinatum was distinguished from other influences on gene expression, 

such as by mechanical wounding during inoculation, by comparison with mock-inoculated 

controls of each species (Figure 2.1). Differentially expressed terpene synthase genes that were 

identified in P. patula and P. tecunumanii were split across three orthogroups (Figure 2.5). The 

largest group contained sequences putatively annotated as sesquiterpene synthases. These 

terpene synthase genes grouped into the major TPS-d1, TPS-d2 and, TPS-d3 clades according 

to their likely orthologs (Table 1.1, Chapter 1). Identified mono- and sesquiterpenes belonged 

to TPS-d1 clade, which includes alpha-pinene synthases, and farnesene synthases. The TPS-d2 

clade is composed of enzymes such as longifolene synthases; none of these were identified in 

this study. Finally, the single pimaradiene synthase belongs to the TPS-d3 clade (Figure 2.5 and 

Figure S1).  

The observation is that P. patula differentially regulated nine putative terpene synthase genes 

in comparison to only six in P. tecunumanii. However, it should be considered that while all 

six genes identified in P. tecunumanii are upregulated, only three of the genes in P. patula’s 

nine are upregulated (Figure 2.5 and  Figure S2). Therefore, we could hypothesise that while P. 

patula responds by altering the expression of a wider range of terpene synthases, it is not 

necessarily investing greater resources than P. tecunumanii. Comparison of their constituent, 

and induced terpene concentrations will be important to determine how the altered expression 

builds on the chemistry of the oleoresin (Keeling et al. 2010; Zulak and Bohlmann 2010; Hall 

et al. 2013a; Trindade et al. 2016; Mitić et al. 2017; Bullington et al. 2018; Kshatriya et al. 

2018; Lombardero et al. 2019).   

The putative monoterpene synthase alpha-pinene, was upregulated at 7dpi in inoculated P. 

tecunumanii seedlings (Figure 2.5 and Figure S2). At 7dpi, P. patula responded more 

substantially, altering the expression of all nine putatively annotated genes (Figure 2.5). Starting 

with the upregulation of a single alpha-farnesene synthase gene at 3dpi and augmenting this 

response at 7dpi. This includes downregulating a pair of putative monoterpene synthases, 

alpha-pinene and cineole synthase, altering the expression of numerous sesquiterpene 

synthases, and remarkably, upregulating a putative diterpene, mono-functional pimaradiene 
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synthase. At 7dpi the same genes in P. tecunumanii continued to respond as at 3dpi, an 

additional transcript observed at 7dpi was upregulation of alpha-pinene synthase (Figure 2.5). 

The first two of P. tecunumanii’s four sesquiterpene synthase transcripts could only be 

annotated as putative sesquiterpene synthases, and no orthologous transcripts were identified 

as being altered in P. tecunumanii.  The third and final sesquiterpene gene observed to have 

been downregulated by P. patula at 7dpi, alpha-humulene synthase, is of the most interest. This 

alpha-humulene synthase is the most differently transcriptionally regulated gene by both P. 

patula and P. tecunumanii, though, the two hosts differ in the direction in which they regulate 

its expression (Figure 2.5 and Figure S2).   

 

2.6 Conclusions 

 

This study has allowed the partial characterisation, based on functional genomics, of the 

terpene synthase genes implicated in defence against F. circinatum in two Pinus spp. that are 

important to the local forestry. In conclusion, P. tecunumanii was observed to have upregulated 

the transcription of five putative sesquiterpene synthase transcripts (Figure 2.5), which could 

suggest increased sesquiterpene concentrations (Lombardero et al. 2019). By comparison, it 

can be argued that no significant increase in sesquiterpene concentrations was observed in P. 

patula (Figure 2.5). In fact, P. patula was observed to upregulate three sesquiterpene synthases, 

the same number as downregulated (Figure 2.5). Yet, no direct correlation has been found 

between the terpene constituents of host oleoresin and its susceptibility to F. circinatum (Marei 

et al. 2012; Slinski et al. 2015; Iturritxa et al. 2017; Roth et al. 2018).  
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3.1 Concluding remarks 

 

Comparison of orthologous terpene synthase gene expression induced by infection in P. patula 

and P. tecunumanii indicate that qualitative and/or quantitative variations in terpene profiles 

could contribute to F. circinatum susceptibility. The potential link between defensive terpene 

regulation and F. circinatum susceptibility has been more thoroughly studied in Pinus radiata, 

as this species is of global agricultural importance and is especially susceptible to the pitch 

canker and Fusarium-wilt  (Wingfield et al. 2008; Carrasco et al. 2017).   

Pinus patula’s terpene defensive regulation appears initially inefficient at 3dpi, compared to 

that of P. tecunumanii. Of the nine putative terpene synthase genes identified as differentially 

expressed by P. patula in response to F. circinatum, only one shows altered expression at 3dpi 

(Figure 2.5). This gene, ‘Pipt31HSn_DN236119_c0_g2’, was putatively annotated as an alpha-

farnesene synthase, shows the most upregulation (log2(Fold Change) > 1.0). Inversely, P. 

tecunumanii has responded to F. circinatum at 3dpi by upregulating the expression of four 

genes. Interestingly, all genes identified were upregulated at 3dpi were sesquiterpene synthases 

(Figure 2.5). None of the annotated genes were observed to have been down-regulated 

(log2(Fold Change) <−1) at 3dpi. In disaccord with P. tecunumanii, P. patula’s defensive 

terpene synthase regulation is noticeably latent at 3dpi. Therefore, we hypothesise that the 

terpene metabolomic response by P. patula may be inadequate during the early stages of 

infection, underpinning its susceptibility. 

In a study similar to this one, Lombardero et al. (2019) compared terpene compositions of P. 

radiata to those of relatively resistant Pinus pinaster, to identify potential differences that could 

underly susceptibility. They observed these two species to share similar constituent 

concentrations of monoterpenes and diterpenes (Flø et al. 2018; Lombardero et al. 2019).  

However, the concentrations of mono- and diterpenes induced by F. circinatum were shown to 

be significantly higher in P. radiata than in P. pinaster (Lombardero et al. 2019). Interestingly, 

both constituent and induced sesquiterpene concentrations were notably higher in P. pinaster 

than in  P. radiata, identifying sesquiterpene concentrations as a potential marker of 

susceptibility (Lombardero et al. 2019). Sesquiterpenes observed in significantly higher 

concentrations in P. pinaster were beta-myrcene, camphene, and most remarkably, alpha-

humulene (Lombardero et al. 2019). 
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Each host-pathogen interaction has its own set of complicating variables to consider. For 

instance, it has been observed that downregulation of terpenoid biosynthesis could contribute 

to host resistance, as the non-volatile components of oleoresin could serve as a carbon source 

for the pathogen (Martín-Rodrigues et al. 2013; Gordon et al. 2015; Lo Presti et al. 2015) 

Studies found that quantitative differences in terpenes do not appear to correlate with host 

resistance either, in fact, F. circinatum colonises resin  ducts (Marei et al. 2012; Martín-

Rodrigues et al. 2013; Wen et al. 2018). However, even if the regulation of terpene synthesis 

is not the principal determinant of resistance, the association may indirectly assist with the 

selection of resistant genotypes in the future. This is particularly true as the focus of this study 

has been exclusively the in silico analysis of the terpene synthase genes which are differentially 

regulated in response to infection with F. circinatum, and only the induced defensive response 

prompted by this phytopathogen was observed.  

 

3.2 Future work and significance 

 

In addition to assessing terpene concentrations of P. patula and P. tecunumanii, research into 

the contribution by broader biochemical defences to susceptibility is required (Gordon et al. 

2015; Reglinski et al. 2017; Celedon and Bohlmann 2019).  It is important to build on our 

observations at a transcriptional level by performing metabolic analysis, to determine to what 

extent the biochemistry of these two species differ. The in vivo characterisation of annotated 

terpene synthases identified herein will advance our understanding of their products, and 

ultimately, their contribution to defence against F. circinatum. 

The initiation and regulation of defensive biochemical pathways is complex, and their efficacy 

can affect host susceptibility to colonisation by pathogens (Hu et al. 2018; Neis et al. 2018). 

Understanding this will involve the functional characterisation of numerous upstream enzymes, 

such as cytochrome P450-dependent monooxygenases (Trindade et al. 2016; Wen et al. 2018).   

Further comparative analysis of other important defence pathways in Pinus spp. could reveal 

important transcriptional divergences between P. patula and P. tecunumanii. Visser et al. 

(2018) assessed the contribution of pathogenesis-related genes that are differentially expressed 

by P. patula and P. tecunumanii in response to infection by F. circinatum. 
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Knowledge of terpene-based defence mechanisms that effectively limit F. circinatum infection 

could contribute to the reduction of the impact on P. patula. Genetic engineering and targeted 

breeding have already shown the potential to increase the levels of constitutively produced 

terpenes, yet at a cost to carbon efficiency (Peter 2018). Therefore, it would be preferential to 

target the increased expression of particular terpene synthases, minimising the overall energetic 

investment (Huber et al. 2004; Zerbe and Bohlmann 2014, 2015; Paknikar and Fondekar 2018; 

Celedon and Bohlmann 2019).  
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Supplementary Table 

 

 

Table S1:2Extended list of six-month-old Pinus seedlings, obtained from Dr. Nicky Jones (Sappi 

Forests, Shaw Research Centre, Howick, KZN). Counts post two-week acclimatisation period. 

Seedling Total Count: 1708 

Pinus patula pure families 

P9- P. patula 98 

P17-P. patula 192 

P38- P. patula 146 

P42- P. patula 200 

Total P. patula: 746 

Pinus tecunumanii 

Low-Elevation (LE) seed mix 

PEC 0076- P. tecunumanii 814 

Total P. tecunumanii: 814 

P. patula x P. tecunumanii 

hybrid open-pollinated families 

PPTL024.3-Hybrid 10 

PPTL017.4-Hybrid 10 

PPTL021.1-Hybrid 10 

PPTL027.3-Hybrid 9 

PPTL004.3-Hybrid 10 

PPTL015.2-Hybrid 10 

PPTL026.3-Hybrid 10 

PPTL010.3-Hybrid 10 

PPTL027.2-Hybrid 9 

PPTL025.3-Hybrid 10 

PPTL010.4-Hybrid 10 

PPTL008.2-Hybrid 10 

PPTL022.2-Hybrid 10 

PPTL001.1-Hybrid 10 

PPTL017.3-Hybrid 10 

Total hybrid seedlings:148 
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Supplementary Figures 
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Sesquiterpenes: 

Figure S1: Phylogenetic analysis of putative terpene synthases in numerous Conifer spp. The putative 

terpene synthase genes are significantly differentially expressed in the inoculated seedlings at least one of the 

two timepoints of interest are coloured (red: P. patula, blue; P. tecunumanii). These were those displayed 

altered expression, compared to the mock inoculated control group (-0.70 < log2(Fold Change) > 0.70).   Red 

blocks indicate subset of phylogeny used in final annotation of differentially expressed genes. Other conifer 

genes were previously annotated as terpene synthase genes (Shalev et al. 2018). All internal nodes are 

supported by >80% bootstrapping. Red diamonds indicate the continuum of the phylogeny across the divide.  
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Monoterpenes: 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



91 

 

  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



92 

 

 

 

Diterpenes: 
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Figure S2: Boxplots of expression for putative terpene synthase genes in each sample set. Y-axes 

represent transcripts per million (TPM), X-axes indicate mock-inoculated (mock), and omission 

represent inoculated (inoc) samples at 3- and 7-days post inoculation (dpi). Genes are arranged to 

correspond to the phylogenetic tree in Figure 2.5. Letters represent adjusted p-values from a Tukey 

HSD test, with shared letters representing adjusted p > 0.95. Stars represent significantly differentially 

regulated in the inoculated samples when compared to the mock inoculated. (Pnte, P. tecunumanii: Pipt, 

P. patula). 
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