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INTRODUCTION

Ordaz and Giraldo (2018), further on referred to as O-G, attempt to improve upon the
extended Aki-Utsu maximum likelihood estimator and that given by Kijko and Smit (2012)
for β and λ. Given a seismic catalog that comprises more than one subcatalog with different
levels of completeness (Figure 1), the extended Aki-Utsu estimators are given by the following:
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, with

mi
min the level of completeness of the ith subcatalog, and mmin is the overall chosen minimum

value of magnitude taken into consideration. The number ri is defined as the ratio of the number
ni of events in the ith subcatalog to the total number of events, n, in the entire catalog, that is
ri ¼ ni

n . The estimator λ̂ denotes the rate of seismicity of the whole catalog, and Ti denotes the
time span of the ith subcatalog.

The improvement O-G propose is a joint maximum likelihood estimation of the pair
ðβ, λÞ. This is indeed an improvement, as it uses not only the marginal likelihoods of β
and λ but also their joint (simultaneous) likelihood. In addition, O-G show numerically
that this estimation is superior to the separate, marginal maximum likelihood estimators
as applied by Kijko and Smit (2012). However, it is interesting to note, as we have discov-
ered, that the equations given by O-G turn out to simply be a special instance in the scheme
developed by Kijko and Sellevoll (1989; further on referred to as K-S). If no extreme part of
the catalog was used, and one supposedmmax ¼ ∞, the O-G equations would look exactly the
same as those from the scheme developed by K-S. The derivation of the likelihood functions
differ slightly from K-S in that O-G use every single interval between consecutive earth-
quakes, whereas K-S use the total time span of each complete subcatalog. It turns out
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that these differences in the derivation lead to equivalent likelihood functions. Specifically,
this is because the construction of the likelihood function involves the multiplication of expo-
nential terms, having time as a factor in the exponent. In other words, it is of the following
form:

Q
iðλtiÞ expð�λtiÞ ¼ ðλtiÞn expðλ

P
itiÞ ¼ ðλtiÞn expðλTÞ, where T is the time span of a

catalog or subcatalog, λ is the Poissonian rate, and n is the number of events. This is to be
expected, as the likelihood functions are derived from the same initial distributions of magni-
tude and interevent time distribution. The attentive reader might note that K-S make use of the
likelihood of observing ni earthquakes in a time Ti [Kijko and Sellevoll (1989); Equation 9],
and O-G use the the interevent time distribution. However, from a formal point of view, the
equivalence of the descriptions of the Poisson process (as a counting process or a distribution of
interevent times) tells us that the outcomes should be equivalent. Recall that the Poisson
process as a counting process is characterized by the distribution as follows:
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On the other hand, the distribution of interevent times is given by the following equation:

EQ-TARGET;temp:intralink-;e3;41;193P½interarrival time > t� ¼ e�λt (3)

THE LIKELIHOOD EQUATIONS

In this section, the derivation of the likelihood equations of O-D and K-S will be
reviewed and discussed in more detail. K-S derive the likelihood equation quite briefly
and compactly and do not state the end result, as the reader is expected to be well acquainted
with the procedures the authors are following. These equations will be derived in added detail
here, and the result will be given explicitly. O-G give the full derivation up to the likelihood

Figure 1. A schematic illustration of a seismic event catalog that can be used in the estimation of
the Gutenberg-Richter β-value (after Kijko and Smit 2012).
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equation, but we will restate it here for the sake of completeness and comparison. To simplify
and facilitate easy comprehension of the derivations, some notation borrowed from O-G is
introduced here as follows:
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APPROACH FOLLOWED BY KIJKO AND SELLEVOLL (1989)

Following K-S, let us assume that earthquake magnitudes follow the doubly truncated
Gutenberg-Richter distribution. The likelihood function obtained from this distribution gives
a likelihood in terms of β, and for a specific subcatalog, this is as follows:
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Not providing much motivation, as it is assumed that the reader is familiar with the
Poisson process, the likelihood function involving λ and β, which is, in fact, merely the prob-
ability mass function for a time period Ti, takes the following form:
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where
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and
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The joint likelihood function is obtained by combining functions of Equations 9 and 10 over
the s complete subcatalogs:
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Note that coefficient T
n! does not have any effect on the values of β and λ; therefore, the

likelihood function might well be written as:
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where T� is as defined in the previous section.

APPROACH FOLLOWED BY ORDAZ AND GIRALDO (2018)

Consider the probability density function of interarrival times as follows:
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Therefore, the likelihood of having ni intervals between the events in a subcatalog of duration
Ti is given by the following:
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where tj,i denotes the jth interevent time interval in the ith subcatalog. Note that we are looking
at the likelihood of observing n time intervals. This is, in fact, a counting process and turns
out to be the counting process characterizing the Poisson process. This will reveal similarity
(or stronger even, equivalence) of the likelihood function derived by Ordaz and Giraldo
(2018) and Kijko and Sellevoll (1989). Note that:
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Then, substituting Equation 17 in Equation 16 gives:
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For a given β value, the likelihood of observing ni events in a subcatalog is given by the
following:
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Combining the likelihood functions and considering the entire catalog gives the
following:
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MAXIMUM LIKELIHOOD EQUATIONS

Thus we see that the two likelihood functions, Equations 14 and 20, are the same. Kijko
and Sellevoll (1989) give a general solution, which is rather cumbersome to work with, but
they note that the equations are derived from maximizing the log-likelihood functions by
setting the derivatives of the derivatives of the log-likelihood function with respect to λ
and β equal to zero. Neither K-S nor O-G show the calculations explicitly. The derivation
is not extensive and is given here. First, the log-likelihood function is:
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where logð·Þ denotes a natural logarithm. The derivative of the log-likelihood function with
respect to λ is:
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and the derivative of the log-likelihood function with respect to β is:
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Then, equating these derivatives to zero, the following is obtained:
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Substituting the estimate of λ obtained from Equation 24 in Equation 25, the nonlinear system
of equations given by O-G is obtained:

EQ-TARGET;temp:intralink-;e25;41;454

8<
:

n
λ þ T� ¼ 0

n
β � ðQþ SÞ þ n

T�
Xs

i

ðT�
iΔiÞ ¼ 0

(26)

Considering that K-S also start from the same likelihood equation and use the same
method of maximizing the likelihood, the two solutions must be the same. This shows that
the work of O-G is a special case of the work of K-S.

CONCLUSIONS

Ordaz and Giraldo (2018) give an improved (joint) maximum likelihood estimator for the
parameters β and λ, compared with the extended Aki-Utsu estimator developed by Kijko and
Smit (2012), in Equation 1. It was shown here that the joint maximum likelihood estimator of
O-G is simply a special case of the joint maximum likelihood equation given by Kijko and
Sellevoll (1989).
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