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A technoeconomic optimization problem for a domestic grid-connected PV-battery hybrid energy system is investigated. It
incorporates the appliance time scheduling with appliance-speci�c power dispatch. �e optimization is aimed at minimizing
energy cost, maximizing renewable energy penetration, and increasing user satisfaction over a �nite horizon. Nonlinear objective
functions and constraints, as well as discrete and continuous decision variables, are involved. To solve the proposed mixed-integer
nonlinear programming problem at a large scale, a competitive swarm optimizer-based numerical solver is designed and
employed. �e e�ectiveness of the proposed approach is veri�ed by simulation results.

1. Introduction

Making best use of renewable energies has been a topic that
receives continuous attention [1]. �e photovoltaic (PV)
energy is one of the most concerned renewable energy
because of the ubiquity of solar irradiation and very low
carbon emission [2]. �e PV energy generation is therefore
integrated into power grids in many countries [3]. However,
because of PV energy’s intermittent nature, it is di�cult to
use PV energy alone to support sustained power demands in
the complicated context, such as domestic electrical loads. A
popular paradigm to utilize the PV power source is to in-
tegrate the PV energy into hybrid energy systems, where
multiple power sources are adopted and dispatched co-
operatively [4]. �ere were an enormous number of studies
on hybrid system optimization over the past twenty years.
Advanced technologies have been applied to the economic
power dispatch problem in hybrid energy systems [5–7].
Most of such studies focused on power ¡ow control

strategies where the demand side was rather considered
constraints in the system. �ere were also studies that in-
troduced demand-side management into hybrid energy
system management [8, 9], whereas these studies hardly
explored the potentials of controlling both power ¡ows and
load behaviors. In general, the potentials of incorporating
the power dispatch with demand-side management remain
to be explored at the current stage. Indeed, such a problem is
di�cult because of the complex correlations between power
sources and loads and its large-scale nature.

In this paper, a technoeconomic optimization problem is
extended and improved to investigate further energy e�-
ciency and economic potentials in such a domestic grid-
connected PV-battery hybrid energy system, based on a
series of previous studies by Tazvinga et al. [10–15].�ere are
two parts of the interventions: the power dispatch that
decides which power is to be supplied to which load and
appliance time scheduling that decides when to activate a
speci�c domestic appliance to ful�ll the user requirements.
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(e optimization is implemented over a finite time horizon.
(ere are three objectives involved in the optimization.
Firstly, the overall energy cost over the horizon has to be
minimized. (e energy cost mainly comes from the con-
sumed grid power, based on the time-of-use (TOU) tariff
[16]. (e battery wear cost is also integrated into the overall
cost. Secondly, the usage of renewable energy has to be
maximized. Given that the overall power demand from the
loads is considered constant, this objective is transformed
into the grid power consumption minimization. (irdly, the
user satisfaction has to be maximized. An inconvenience
indicator has been proposed by Setlhaolo and Xia [12] so that
the overall difference between the scheduled appliance
operation and the baseline appliance operation is calculated.
(e objective is thus introduced by minimizing such an
inconvenience indicator. A weighted sum approach is
employed to simultaneously optimize the three objectives,
subject to a series of system constraints.

(emain contributions of this study are listed as follows:
Firstly, the hybrid system design is improved. (e major
improvement from the design perspective is that separate
power dispatch is introduced to each connected appliance,
instead of considering the electrical load (consisting of a
variety of appliances) as a whole. (is is realized by in-
troducing additional power lines between each pair of the
appliances and power sources. (e power dispatch is thus
managed in a more flexible way. In the previous model, all
appliances are compelled to choose the same power source at
one time. In the improved system design, additional power
lines and switches are deployed such that appliances can
choose the power sources themselves. (e supply that
combines various power sources provides the system more
flexible power dispatch choices. For example, at peak hours,
the battery bank cannot support heavy loads independently
because of its capacity limitation. According to the previous
design, the battery bank can only work for a short time in the
late evening; otherwise, the power demands cannot be
matched. In the new design, the battery bank has a much
longer possible working time by only supporting a part of the
loads, which leaves more space for the load scheduling.
Improved flexibility brings more energy efficiency poten-
tials, and thus, more economic benefits can be achieved.

Secondly, the mathematical formulation of the tech-
noeconomic optimization is improved, as the dimension of
decision variables is minimized. (e aforementioned flexi-
bility improves at the cost of additional decision variables,
i.e., the ON/OFF states of the additional switches. (e
number of decision variables grows largely as the problem
scale grows spatially with the number of switches and
longitudinally with the number of control intervals, in
comparison with the previous system design. To reduce the
resulting computational burden, the interplay among the
switch behaviors is identified. Some switch behavior con-
straints are involved; for example, the battery can only
charge or discharge at one time, and the appliance can only
have one active power line connection. (e correlated
switches manifest finite states; as a result, a set of discrete
state variables are introduced. (e values of the discrete
variables indicate the combination of ON/OFF states of the

correlated switches. Given the constraints, the state variables
choose values from a limited range. In this way, the number
of variables to describe the complex and interacting switch
behaviors is minimized. As the ON/OFF states of the
switches are a major part of the decision variables, the di-
mension of the decision variables is largely reduced;
therefore, the computational burden is smaller such that the
problem is more promising to be solved within limited time.

(irdly, an advanced numerical solver is designed for the
proposed problem. A major difficulty to implement the
technoeconomic optimization is the solver. (e investigated
problem involves nonlinear objective functions and con-
straints, as well as continuous and discrete decision vari-
ables. It is thus a mixed-integer nonlinear programming
(MINLP) problem. Furthermore, as mentioned above, the
decision variable can be a large number, e.g., over 700. A
proper solver to such a complicated and large-scale opti-
mization problem is thus required. An intelligent optimi-
zation algorithm, namely, the competitive swarm optimizer
(CSO), is employed to design the numerical solver. Cheng
and Jin firstly proposed the CSO algorithm to solve large-
scale optimization problems [17]. (e CSO algorithm is
designed on the basis of the particle swarm optimization
(PSO) algorithm with a very different searching mechanism.
In the PSO algorithm, the term “particle” is employed to
refer to the individual solutions. (e particles are charac-
terized with two vectors, namely, the position and velocity
vectors. (e position vector describes the value of a solution
and the velocity vector the incremental of the value.(e PSO
updates the position vector with the velocity vector via
interacting with the global best position in the swarm (the
population of individuals) and the personal best position in
history [18]. (e CSO algorithm adopts the position and
velocity vector modelling from PSO but employs a random
pairwise competition mechanism such that the loser particle
can learn from the winner particle to update its position and
velocity. In this way, the CSO algorithm can reduce the
opportunity of convergence to local optimum, thereby
manifesting better and satisfying overall performances than
large-scale PSO algorithms.(e numerical solver is designed
on the pairwise competition concept basis and modified to
better match the investigated scenarios.

A case study is employed to test and verify the effec-
tiveness of the proposed approach, where the power dispatch
and appliance time scheduling on a daily basis are applied to
a typical South African household hybrid system. To
thoroughly investigate the effectiveness, results from three
cases, where different objective functions are applied with
the new flexible power dispatch and the previous dispatch
method, are illustrated and analyzed. For all cases, the CSO-
based numerical solver is employed, and thus, the power
dispatch methods are focused and compared.

(e remainder of this paper is structured as follows:
Section 2 introduces the hybrid system component mod-
elling. Section 3 takes advantage of the component mod-
elling to formulate the technoeconomic optimization
problem. Section 4 describes the CSO-based numerical
solver. Section 5 shows the case study with simulation results
and analysis. Section 6 draws the conclusion.
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2. Domestic PV-Battery Hybrid System

A domestic grid-connected PV-battery hybrid system is
hereby employed as the investigated hybrid system. (e
general layout of the PV-battery hybrid system is illustrated
in Figure 1. (e main purpose of such a system is to supply
the daily activities of a number of domestic appliances, e.g.,
electrical water heater (EWH), stove, television set, and
washing machine. (e involved appliances are connected to
both the power grid and the PV system. A battery bank is
also introduced to facilitate the power dispatch. (e battery
bank is able to charge from the power sources, which in this
case are the power grid and PV system, and discharge to
supply the appliances. In order to make use of all possible
power sources in the system, a power management unit
(PMU) is thereby introduced to implement the energy
conversion and the power dispatch. In this way, the PMU
manages the operation of the system, including (1) the se-
lection of energy flow to support the active appliances, (2)
the time scheduling of the appliances, and (3) the energy
conversion and voltage/current matching. It is clear that the
PMU is the central piece of the hybrid system that manages
from power quality to energy balance. An assumption is
employed that the voltage/current matching is well main-
tained by the PMU. Our investigation focuses on the power
scheduling.

(e power management diagram is depicted in Figure 2.
(ere are several components in the PMU. From the PV
side, there are a solar charge controller and inverter. (e
charge controller integrates a DC/DC converter to tune the
PV output to match the DC loads, including the battery. (e
inverter receives input from the charge controller and
battery and converts the DC power inputs into the AC loads,
which in this case refer to the appliances. From the grid side,
there is an AC charger integrating an AC/DC converter that
allows the battery be charged by the grid. (ere are also a
number of controllable switches to implement switching
control strategies. As Figure 2 depicts, there is one switch for
each power line. (e ON/OFF states of the switches control
the power flows in the system, i.e., the pair of the appliance
and its supplier. For each connected appliance, there are a set
of switches that control whether the appliance is supplied by
the PV, the battery, or the power grid. (e arrows on each
power line indicate the direction of the power flow. As
mentioned above, the additional switches are deployed such
that any connected appliance can choose among multiple
power sources by adjusting the ON/OFF status of switches.
Taking advantage of the developing smart grid and smart
building technologies, appliances are equipped with open
communication interfaces, which allow the PMU to
schedule the activities of the appliances and switches si-
multaneously, in both wired and wireless manners. As a
result, the system design in Figure 2 becomes feasible in
practice.

Remark 1. (ere are more and more domestic loads that
can be made DC in the modern daily life; for example, an
AC light bulb can be replaced with a DC light-emitting
diode (LED) bulb. In the future, it is possible to connect

the DC loads directly to the DC power sources, e.g., the
PV and battery bank. Such a system may reduce the
operational cost of renewable energy resources. How-
ever, currently, most domestic appliances are made AC
for the sake of standardization. Consequently, the system
design mainly focuses on the AC loads at the current
stage; therefore, all involved power sources are tuned to
be AC suppliers. Direct connections between the DC
suppliers and the DC loads can be involved in the future
design.

Assume that there are n appliances connected to the
system. A set of binary variables are employed to denote the
ON/OFF state of the switches. Let k denote the time instant
during operation, g1(k) denotes the ON/OFF state of the
switch between the PV charge controller and the battery,
g2(k) the charge controller and the inverter, g3(k) the AC
charger and the battery, and g4(k) the battery and the in-
verter. g21(k), g22(k), . . . , g2n(k) denote the switches be-
tween the PV and the appliances, g41(k), g42(k), . . . , g4n(k)

the battery and the appliances, and g51(k), g52(k), . . . , g5n(k)

the grid and the appliances. t denotes the time instant over the
operation. P1(k) and P4(k) denote the charging power from
the PV and the grid, respectively. P2(k), P4(k), and P5(k)

denote the power outputs of the respective power sources.
In this system, the operation of appliances is managed

together with the power flows. In this study, the operation
management is actually time scheduling, as the powers of
appliances are considered known a priori and invariable. (e
time scheduling is implemented simultaneously with the
power flow management such that the supply can match the
demand and achieve higher energy efficiency potentials.

(e mathematical formulations of the behavior for each
component in the system are introduced as follows.

2.1. PV Systems. (e PV consists of arrays of solar cells such
that the solar energy is converted into electrical power. (e
converted power is proportional to the solar irradiation and
the size of PV panels. As an alternative power source to the
power grid, the power output is a major concern of the PV
system. It is formulated as follows:

Power grid

Power
management

unit

Energy storage

Photovoltaic
system

Appliance

+–

Figure 1: General layout of the hybrid system.

Complexity 3



Ppv � ηpvIpvAc, (1)

where Ppv denotes the hourly PV power output (kW), ηpv

denotes the efficiency of the solar cells, Ipv denotes the
hourly solar irradiation per unit area (kW/m2), and Ac

indicates the area of the PV panels that receive solar irra-
diation (m2). (ere is an intermittent nature of the PV
system; that is, Ipv can be absent at some sampling instants.
An output profile of the PV system is therefore required.
Usually, the PV outputs over succeeding 24 hours are pre-
dictable [19]. Qpv denotes a time period where Ppv > 0. For
k ∉ Qpv, Ppv is considered to be zero given a very small Ipv. A
PV output profile is usually employed to indicate the hourly
PV power outputs in a day . Qpv can be identified via the PV
output profile.

2.2. Battery Bank. (e battery bank charges from other
power sources and discharges to support electrical load
activities. (e battery bank behaviors are dynamic owing to
the complicated scheduling of both power sources and
appliances. (e state of charge (SOC) is employed to
characterize the battery bank status. (e dynamics of the
SOC can be formulated as follows:

Soc(k + 1) � Soc(k) + ηBg1(k)P1(k) + ηBηcg3(k)P3(k)

− g4(k)P4(k),

(2)

where Soc(k) denotes the SOC at sampling instant k; g1(k),
g3(k), and g4(k) are binary variables that denote the ON/
OFF state of the respective switches at instant k, as depicted
in Figure 2; P1(k), P3(k), and P4(k) are the aforementioned
power outputs; ηc denotes the energy conversion efficiencies
of the AC charger; and ηB denotes the battery charging
efficiency during operation. Given the current-stage battery
system limitations, the simultaneous charging from two

different sources or simultaneous charging and discharging
are considered unpermitted. A constraint of the switches
must be taken into account:

g1(k) + g3(k) + g4(k)≤ 1 (3)

such that only one of the switches g1, g3, and g4 can be
turned on at the same time. Following (2), the SOC at a given
time τ can be formulated as follows:

Soc(τ) � Soc(0) + ηB 􏽘

τ

k�0
g1(k)P1(k) + ηBηc 􏽘

τ

k�0
g3(k)P3(k)

− 􏽘
τ

k�0
g4(k)P4(k),

(4)

where Soc(0) denotes the initial state of the battery bank.
Soc(k) is subject to the following constraint:

C
min ≤ Soc(k)≤C

max
, (5)

where Cmin and Cmax denote the minimum and maximum
available capacity (kWh), respectively.

(e battery wear level is also evaluated. (e wear cost is
formulated as follows:

JB(τ) � φbCD(τ)
BC

TH
, (6)

where CD(τ) � 􏽐
τ
k�0P4(τ) denotes the overall throughput of

the battery bank until instant τ and BC/TH denotes the
battery wear cost per 1 kWh from throughput energy, in
which BC denotes the battery cost and TH denotes the
overall throughput energy. (e calculation of BC/TH can be
found from previous studies [15, 20, 21].

2.3. Power Grid. From the hybrid system viewpoint, the
grid supplies infinite and stable electricity at an alternative
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Figure 2: Schematic of the investigated power management system.
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voltage level of 220 V. (e grid power comes with a price,
which results in the major operational costs. As men-
tioned above, a TOU tariff is introduced such that the
demand response can be implemented. Let ρ(k) denote the
TOU electricity price at time k of a day. ρ(k) changes
according to which period the time k lies within. (e
overall operational cost at a given time τ can be formu-
lated as follows:

Cost(τ) � 􏽘
τ

k�0
ρ(k) P3(k) + P5(k)􏼂 􏼃. (7)

2.4. Appliances. (e electrical loads consist of the load
profiles of all appliances connected to the hybrid system.
(e boundary identification must be conducted before
system design. Given the domestic scenario of the in-
vestigated system, several reasonable simplifications are
made to characterize the demand-side activities. Firstly,
all appliances within the system require standard AC
power. Secondly, each appliance is subject to a respective
constant operation duration. Control strategies can be
involved to determine the operation of such appliances
[22, 23].

According to previous studies [12–14], from the time-
scheduling perspective, domestic appliances can be cate-
gorized into three types: the flexible loads, the shiftable loads,
and the fixed loads. (e flexible loads’ working times can be
scheduled freely, at any favorable working time. (e shift-
able loads’ working times can be scheduled within a pref-
erable but limited time period. (e fixed loads’ working
times are fixed, unchangeable in any case. For an arbitrary
appliance from any type, the operation duration is constant
such that the time scheduling can be characterized as the
selection of the starting instant.

In the investigated system, an appliance is connected to
the PV, battery bank, and grid. An appliance i from the n
appliances is given. As depicted in Figure 2, there is one
switch for each power source connection. (e ON/OFF
states of the three switches at instant k are denoted by g2i(k),
g4i(k), and g5i(k). (e simultaneous supply from multiple
power sources is unpermitted; therefore, a switch constraint
is introduced as follows:

g2i(k) + g4i(k) + g5i(k)≤ 1, i � 1, 2, . . . , n. (8)

Let Sti denote the starting instant of the appliance i and
Di the operation duration. (e appliance continuously
operates until the end instant, denoted by Eni � Sti + Di − 1.
A continuous operation constraint is introduced as Xia and
Zhang proposed [24]:

􏽘

N− Di+1

k�0
ui(k)ui(k + 1)ui(k + 2) . . . ui k + Di − 1( 􏼁 � 1,

i � 1, 2, . . . , n,

(9)

where ui(k) is a binary variable that indicates whether the
appliance i is active at time k, i.e., the time schedule, and N

denotes the length of a finite scheduling period. In this
case, ui(k) � 1 if Sti ≤ k≤Eni, and ui(k) � 0 if otherwise. It
is notable that the continuous operation constraint is
associated with the actual switch behavior in the following
way:

g2i(k) + g4i(k) + g5i(k) � 1, if ui(k) � 1,

g2i(k) + g4i(k) + g5i(k) � 0, if ui(k) � 0.
􏼨 (10)

Let pi(t) with t � 0, 1, 2, . . . , Di − 1 denote the load
profile over the operation period (0, Di − 1) of the appliance
i. Assuming that pi(t) are known a priori, the power demand
pi(k) can thus be determined: if k � Si + t, pi(k) � pi(t);
otherwise, pi(k) � 0.

2.5. System Constraints. A series of constraints must be
introduced to the system such that the operation re-
quirements are all satisfied and none of the physical laws is
violated.

(a) (e energy balance must be fulfilled anytime during
operation, as indicated by the following equation:

ηI2P2(k)

ηI4P4(k)

P5(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 􏽘
n

i�1

g2i(k)

g4i(k)

g5i(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦pi(k), (11)

where P2(k), P4(k), and P5(k) are the power flows
from the PV output, battery bank discharge, and
power grid supply and ηI2 and ηI4 denote the in-
verter efficiency of the PV and battery bank, re-
spectively. For the convenience of calculation, a
logical state variable swi(k) is employed to describe
the combination of g2i(k), g4i(k), and g5i(k). swi(k)

chooses a value from 0, 1, 2, 3{ }. swi(k) � 0 indicates
the state that all switches are turned off and the
switch states equal to 0. swi(k) � 1 indicates that
only g2i(k) � 1, swi(k) � 2 that only g4i(k) � 1, and
swi(k) � 3 that only g5i(k) � 1.

(b) (e capacity constraints must be followed such that
the power flow is kept within the range of the
component capacity. (e power flows in the system
are thus limited. (e power flows P1(k) and P2(k)

are subject to the following constraint:

0≤P1(k) + P2(k)≤ ηsPpv(k), (12)

where Ppv(k), as mentioned above, is the PV output at
time k and ηs denotes the charge controller efficiency.
(e power flows P2(k) and P4(k) as the supplier are
subject to the following constraints:

0≤ ηI2P2(k)≤PI2(k),

0≤ ηI4P2(k)≤PI4(k),
􏼨 (13)
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where PI2(k) and PI4(k) denote the inverter capacity of
the PV and battery bank, respectively. (e power flows
P3(k) and P5(k) are subject to the following constraint:

0≤g3(k)P3(k) + P5(k)≤P
max
G , (14)

where Pmax
G denotes the allocated grid maximum

power for this grid-connected system. (e power
flows P2(k), P4(k), and P5(k) are obtained from the
energy balance equation (11). P1(k) and P3(k) are
decided by the scheduling algorithm, and they are
part of the decision variables.

(c) (e switch control strategies are also subject to
constraints that prevent infeasible switch behaviors.
(ese constraints are formulated in preceding sec-
tions along with the system component modelling,
i.e., constraints (3) and (8)–(10). Some further as-
sociations of the switch behaviors are identified as
follows:

g1(k) � 1, if P1(k)> 0,

g1(k) � 0, if P1(k) � 0,

g3(k) � 1, if P3(k)> 0,

g3(k) � 0, if P3(k)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

g2(k) � 1, if 􏽑
n

i�1
swi(k) − 1( 􏼁 � 0,

g2(k) � 0, if otherwise,

g4(k) � 1, if 􏽑
n

i�1
swi(k) − 2( 􏼁 � 0,

g4(k) � 0, if otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

In this way, the states of g1(k)− g4(k) at time k can be
identified from the values of P1(k), P3(k), and swi(k) with
i � 1, 2, . . . , n.

3. Problem Statement

(e primary management objective of the investigated
optimization problem is cost minimization. Secondly, the
renewable energy penetration is involved; that is, the usage
of grid power should be minimized as well. Owing to the
TOU tariff, the two objectives manifest certain differences
and must be equally considered in scheduling. Furthermore,
the user satisfaction in time scheduling is taken into account.
All these objectives are evaluated on a finite horizon basis.
Let T denote the number of sampling instants. (e opti-
mization problem is formulated as follows.

3.1. Decision Variables. (e involved decision variables
consist of three parts: (1) the switch control strategy decision
variables, (2) the charging power control variables, and (3)
the appliance time-scheduling decision variables. It is given
that i � 1, 2, . . . , n in the following discussion.

(e switch control variables are swi(k), which can
characterize the status of most switches in the system as
constraints (15) and (16) imply. Given constraints (8)–(10), it
is unnecessary to cover the whole finite horizon. For the
appliance i, swi(k)> 0 when Sti ≤ k≤Eni, and swi(k) � 0 if k
lies outside the working period. (erefore, the minimum
required control variables are swi(k) with k ∈ [Sti, Eni]. (e
dimension of this part is 􏽐

n
i�1Di.

(e charging power control variables are P1(k) and
P3(k). Given constraints (3) and (15), P1(k)∗P3(k) � 0 at
any given instant k; therefore, the dimension of this part is
T.

As mentioned above, the appliance time scheduling is
simplified with the known a priori and constant load profile
pi(t) and operation duration Di. Taking advantage of the
knowledge, the scheduling is implemented with decision
variables Sti. (e dimension of this part is n.

(e dimension of the optimization is therefore
􏽐

n
i�1Di + T + n. Comparing with the previous study [15], the

problem is extended to a higher dimension but simplified by
taking advantage of swi(k) and the constraints such that the
dimension of the optimization grows slower than the
problem scale.

3.2. Objectives. (e cost minimization objective is formu-
lated as follows:

Jc � 􏽘
T

k�0
ρ(k) P3(k) + P5(k)􏼂 􏼃 + φbJB(T), (17)

where φb denotes a weight that indicates the preferable
importance of the battery wearout to the decision-maker.

(e renewable energy penetration objective is formu-
lated as follows:

Je � 􏽘
T

k�0
P3(k) + P5(k)􏼂 􏼃. (18)

(e user satisfaction is evaluated via an inconvenience
indicator, which is adopted from the study of Setlhaolo and
Xia [12]:

β � 􏽘
n

i�1
ci 􏽘

T

k�0
u

bl
i (k) − ui(k)􏽨 􏽩

2
, (19)

where ci denotes an importance factor of the appliance i and
ubl

i (k) denotes the baseline time schedule of the appliance i.
(19) quantifies the difference between the baseline time
schedule and the adopted time schedule. Given the system
modelling and constraints in this study, the user satisfaction
evaluation is simplified as follows:

β �

��������������

􏽘
n

i�1
ci St

bl
i − Sti􏽨 􏽩

2

􏽶
􏽴

, (20)

where Stbl
i denotes the baseline starting instant. Such a

difference has to be minimized such that the user remains
happy with the optimized appliance time schedule.
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3.3. Technoeconomic Optimization. Taking advantage of the
preceding objective functions and constraint formulations,
the technoeconomic optimization problem is obtained by
minimizing the following objective function:

J swi(k), P1(k), P3(k), Sti( 􏼁 � λcJc + λeJe + λbβ, (21)

subject to the battery dynamics (2) and constraints (3),
(8)–(10), and (11)–(16).

According to the above formulations, there are
nonlinear objective functions and constraints, as well as
continuous and discrete decision variables in the prob-
lem. (ey result in a mixed-integer nonlinear pro-
gramming (MINLP) problem, at a relatively large scale.
(e general theoretic approach of solving an MINLP
problem remains an open question; as a result, numerical
solvers are widely employed. In the previous study [15],
an OTPI toolbox https://www.inverseproblem.co.nz/
OPTI/index.php/DL/DownloadOPTI/ in MATLAB was
adopted as the numerical solver. (e former solver took
quite a large amount of time for calculation. In this study,
the implementation of intelligent optimization algo-
rithms on such a problem is investigated. A newly pro-
posed algorithm named the competitive swarm optimizer
(CSO) is adopted as the numerical solver. (e in-
troduction to the CSO-based solver comes in the fol-
lowing section.

4. Numerical Solver Design

4.1.Competitive SwarmOptimizer. In the CSO algorithm, let
x denote a particle and w and l the indices of the winner and
loser particles in a pair. Assume that it is the G-th iteration,
and there have been k − 1 competitions. After the k-th
competition, the next-generation winner particle xw,k(G +

1) remains the same as xw,k(G). (e loser particle
xl,k(G + 1), namely, the position vector, is thereby updated
as follows:

xl,k(G + 1) � xl,k(G) + Vl,k(G + 1), (22)

where Vl,k(G + 1) is the next-generation velocity vector,
updated as follows:

Vl,k(G + 1) � rn1(k, G)Vl,k(G) + rn2(k, G) xw,k(G) − xl,k(G)􏽨 􏽩

+ φrn3 xk(G) − xl,k(G)􏽨 􏽩,

(23)

where rn1, rn2, and rn3 are random vectors; xk(G) is the
center of neighborhood filed particles, i.e., a set of par-
ticles that are close enough to xl,k(G); and φ is the
weighting coefficient of xk(G). Such a neighborhood field
is predefined.(ere is a special case that the neighborhood
covers the whole swarm, where xk(G) indicates the global
mean position of the particles at iteration G. (e velocity
and position vectors are employed for the continuous
cases. In a discrete case, e.g., the decision variables swi(k)

in this study, other update mechanisms must be
employed. A crossover mechanism is hereby employed as
follows:

xl,k(rn, G + 1) � xw,k(rn, G),

xl,k(rn, G + 1) � xl,k(rn, G),
􏼨 (24)

where rn denotes randomly generated indices of the com-
ponents in a particle x and rn the unselected indices. (24)
suggests that the winner particle xw,k(G) selects and copies a
part of its components into the next-generation loser particle
xl,k(G + 1). (e unselected components of xl,k(G + 1) re-
main the same as xl,k(G). In this way, the loser particle can
learn from the winner particle.

For an MINLP problem, there are simultaneously
continuous and discrete components in a particle. In this
case, the continuous part and discrete part are separated,
(23) and (22) are implemented on the continuous part, and
(24) is implemented on the discrete part. After the learning
process, the two updated parts are combined again to
obtain the particle of next generation. (e theoretical proof
of the convergence of the CSO algorithm can be referred to
[17].

(e pseudocode of the CSO according to the preceding
introduction is illustrated in Algorithm 1 [25].

Remark 2. (e introduced CSO algorithm is mainly
designed for continuous problems. For discrete decision
variables, e.g., binary variables or integers, the discrete PSO
algorithm [26, 27] can facilitate the algorithm design. (e
pairwise competition can be further introduced to other
evolutionary algorithms, such as differential evolution
(DE).

Remark 3. Given the investigated MINLP problem (21), the
original CSO algorithm cannot be applied in a straight-
forward way. Modifications that match the decision vari-
ables are to be introduced such that satisfying performances
can be achieved.

4.2. Modified CSO-Based Solver. In order to implement the
CSO algorithm on a constrained problem, a penalty function
is introduced to the original objective function (17). Given
that there are NC constraints to a problem, the penalty
function is formulated as follows:

Pen � 􏽘
T

k�0
􏽘

NC

i�0
ωPen,iPen,i(k), (25)

where

Pen,i(k) �
0, if constraint i is obeyed,

M, if constraint i is violated,
􏼨 (26)

where M is a large positive number and ωPen,i is the
weighting factor for constraint i. A fitness function is thereby
formulated with (17), (25), and (26):

f(x) � Jc + Pen. (27)

In this way, for a minimization problem, a particle
becomes much less competitive when any of the constraints
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is violated, given that a large positive will be added to the
objective function.

After competition, the loser particle must learn from the
winner particle. However, the MINLP search space and
constraints in the investigated problem are quite compli-
cated. (e dynamics of the battery bank charging and
discharging invoke further difficulty to search for the op-
timum. Consequently, the performance of Algorithm 1 is
not satisfying. (e following modifications are thereby
employed to improve the performances on this specific
problem.

Firstly, the learning strategies are modified to improve
the searching efficiency. Let f(G) denote the mean fitness of
the current swarm (at the G-th iteration). After competition,
the fitness of both winner and loser particles is evaluated:

(i) If f(xw,k(G))≥f(G), both winner and loser par-
ticles are considered inferior; therefore, the winner
particle must learn from the global best particle
xgbest(G), while the loser particle must learn from
the winner.

(ii) If f(xl,k(G))≤f(G), both winner and loser parti-
cles are considered superior; therefore, the winner
particle is moved into P(G + 1), and the loser
particle implements mutation subject to the genetic
algorithm style.

(iii) If f(xw,k(G))≤f(G)<f(xl,k(G)), the original
CSO learning strategies are applied.

Secondly, constraints (3) and (15) are employed to
generate battery bank charging and discharging states,
namely, the “knowledge-guided solution filter”. ∀k, g4(k) is
firstly identified subject to (16). If g4(k) � 1, then
P1(k) � P3(k) � 0. If g4(k) � 0, then P1(k) is randomly
generated within [0, Ppv(k) − P2(k)). If g4(k) � 0 and
P1(k) � 0, then P3(k) is randomly generated. If the Soc(k)

reaches its upper bound at time k, then P1(k) � P3(k) � 0.
In this way, the charging and discharging decision variables
are guaranteed to be feasible. (e knowledge-guided solu-
tion filter reduces cost of trial and error during optimization
such that the algorithm can persist searching within a
feasible space.

Remark 4. According to simulations, the modified solver
constantly outperforms the original CSO algorithm on the
investigated problem. (ere lacks a theoretical analysis on
the performances, whereas a hypothesis is made that the
superior performances are resulted from the knowledge-
guided solution filter. Wang and Zheng [28] reported that
exploitation of the algorithm is enhanced by knowledge-
based local search. Further details and investigations are
expected in future works.

Definition:
x: the particle;
P: the swarm;
np: the swarm size, i.e., the number of particles;
G: number of iterations;
w and l: the indices of winner and loser particles;
f(·): the fitness function, assuming that this is a minimization problem;
Terminal condition: the maximum number of iteration Mg is reached;

(1) Begin
(2) Initialize population P(1) with np particles;
(3) while G � 1 toMg do
(4) P(G+ 1)�∅;
(5) while P(G)≠∅ do
(6) Generate two random indices r1 and r2 from np;
(7) if f(xr1

)≤f(xr2
) then

(8) w � r1, l � r2;
(9) else
(10) w � r2, l � r1;
(11) end if
(12) put xw(G) into P(G + 1);
(13) If x is coded as continuous variables, update xl(G) with (23) and (22);
(14) If x is coded as discrete variables, update xl(G) with (24);
(15) If x contains both continuous and discrete parts, update the two parts separately;
(16) put the updated loser particle xl(G) into P(G + 1);
(17) remove particles xr1

and xr2
from P(G);

(18) end while
(19) G�G+ 1;
(20) end while
(21) choose xbest the particle with the best fitness 􏽢f(·) from PMg;
(22) Return xbest;
(23) End

ALGORITHM 1: Pseudo code of the CSO algorithm.
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5. Simulation Results and Analysis

5.1. Case Study. (e case study investigates the operation of
a household, grid-connected, PV-battery hybrid energy
system. (e data are retrieved from the South African do-
mestic appliance operation studies [13–15]. (ere are eight
appliances connected in the system. (e usage profile of the
appliances is shown in Table 1 on a daily basis, where there
are 144 time slots, a.k.a., sampling instants. Each time slot
lasts 10minutes. (e scheduling horizon is 24 hours, i.e., a
whole day. (e adopted usage profile and baseline time
schedule are for the working day scheduling for a typical
South African home. To emphasize, the power of the ap-
pliances is measured average power. (e baseline time
schedule reflects the preferable time according to the in-
habitant’s habits. For example, the inhabitant turns on the
electrical water heater (EWH) twice a day for the hot water
demand. In the morning, the EWH is turned on at 5 : 00 am
(the 31-st time slot), operates for two hours, and is turned off
at 7 : 00 am (the 42-nd time slot) such that the user can use
heated water after breakfast. In the afternoon, the EWH is
turned on again at 5 :10 pm (the 104-th time slot) and turned
off at 7 :10 pm (the 115-th time slot) such that the hot water
for the evening can be ready. (is is the most convenient
EWH operation plan for the user. Similarly, the stove must
be turn on twice for the cooking demands. (e other ap-
pliances have to be turned on and off only once daily.

(ere are several further constraints with the given
scenario. Firstly, for the shiftable appliances, a preferable
range of starting time slots are given in Table 1. (e flexible
appliance can start anytime in a day, and the only re-
quirement is that the operation must be finished before the
end of the horizon.(e fixed appliance cannot be scheduled;
therefore, the preferable range is not applicable (N/A).
Secondly, the washingmachine and electrical dryer work in a
sequence; that is, the dryer must start after the washing
machine job is finished. In this case, it results in an addi-
tional constraint to the preceding ones:

St4 ≥ St3 + D3. (28)

(e adopted PV system and battery bank have their
own limitations, as shown in Table 2. (e PV system in-
tegrates 14 solar panels with the rated power of 0.25 kW.
(erefore, the overall capacity, i.e., the rated output, of the
PV system is 3.5 kW. Actually, the PV system output at any
given time slot depends on the solar irradiation profile.
Such a profile is possible to forecast 24 hours ahead of the
scheduling [19]. In the case study, the timely PV output is
identified based on an hourly profile in [29], as shown
in Table 3, where Qpv is k ∈ [39, 144). (e battery bank
consists of 4 lead-acid batteries, each with 12 V rated
voltage and 105Ah rated capacity; that is, the overall ca-
pacity is 5.04 kWh. (e battery cost is calculated in South
African rand (ZAR), which is R5826. (e lifespan of
the battery bank is 1000 cycles at 50% depth of dis-
charge (http://www.trojanbattery.com/markets/renewable-
energy-re/); therefore, the wear cost per 1 kWh throughput
energy is 5826/(1000 ∗ 0.5∗ 5.04) � 2.312R/kWh. φb � 0.1

Table 1: Typical usage profiles and baseline time schedules.

Appliances Power (kW) Duration (min)
Baseline

Preferable range of StiIndex i Sti Eni

Shiftable

(1) EWH 3.0 120 31 42 [19, 31]

120 104 115 [91, 121]

(2) Stove 2.5 30 32 34 [25, 55]

50 113 117 [97, 127]

(3) Washing machine 0.5 60 109 114 [43, 133]

(4) Electric dryer 2.0 30 116 118 [49, 139]

Fixed
(5) Refrigerator 0.1 1440 1 144 N/A
(6) Television set 0.2 180 104 121 N/A
Flexible
(7) Dishwasher 1.8 150 116 130 [1, 130]

(8) Bread maker 1.5 150 118 132 [1, 130]

Table 2: PV system and battery bank parameters.

PV capacity Ppv 3.5 kWp

Battery bank maximum capacity Cmax 5.04 kWh
Battery bank minimum capacity Cmin 2.52 kWh
Battery bank cost (ZAR) R5826
Initial state of the battery bank 60%Cmax

AC charger efficiency ηc 85%
PV charge controller efficiency ηs 90%
PV inverter efficiency ηI2 95%
Battery bank inverter efficiency ηI4 95%
Battery bank charging efficiency ηB 80%

Table 3: Hourly PV output.

Time slot k [0, 39) [39, 45) [45, 51) [51, 57)

Ppv(k) (kWh) 0 0.15 0.85 1.65
[57, 63) [63, 69) [69, 75) [75, 81) [81, 87)

2.35 2.9 3 2.95 2.55
[87, 93) [93, 99) [99, 105) [105, 111) [111, 144)

2 1.45 0.75 0.1 0
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such that the usage of the battery is encouraged. (e im-
portance factors ci � 1 for each i, i.e., involved appliances,
are considered equally important in this case. (e effi-
ciencies of the charge controller, AC charger, and inverters
are given as well.

(e power grid supply is described as follows: (e
maximum household current is 60A, which is limited by the
utility company. (e charging power from the grid is
considered constant in this case, which is 5 kW; that is,P3(k)

can only be 0 or 5 kWh. Furthermore, the TOU tariff is
adopted from the study in [13], as shown in Table 4.

5.2. Simulations. Simulations are programmed in C++ with
the following running environment: the CPU is Inter Core
i3-8100 CPU@3.60GHz, the RAM is 16GB, and the system
isWindows 10× 64.(ree cases are adopted by adjusting the
weighting factors in (21).

(i) λe � 1, λc � 0, and λb � 0 such that the optimization
employs a single objective, i.e., the renewable energy
penetration.

(ii) λe � 0, λc � 1, and λb � 0 such that only the cost
minimization objective is optimized.

(iii) λe � 1, λc � 1, and λb � 1 such that the multi-
objective optimization of (21) is implemented where
Jc, Je, and β are equally considered.

In each case, there are two demonstrated results. One
result is from the proposed approach, and the other one is
from the previous power dispatch model [15] as the com-
parative results. Both results are reported from the average of
20 runs, taking advantage of the proposed CSO-based opti-
mizer. In the CSO algorithm, the swarm size is 1500 and the
iteration number is 10000. (e neighborhood field is defined
to be the nearest superior particle and inferior particle. (e
details of such a neighborhood field can be referred to [30, 31].

5.3. Results andAnalysis. (e results are reported as follows:

(i) In the first case, the grid power supply is mini-
mized to be 14 kWh, at the energy cost of R16.57
and inconvenience indicator of 14.25. (e power
dispatch is depicted in Figure 3. In the com-
parative result, the minimal grid power is
15.07 kWh, at the energy cost of R14.29 and in-
convenience indicator of 14.59. (e power dis-
patch is depicted in Figure 4. (e improvement of
the objective is 7.1%. (e average running time is
18.43 minutes.

(ii) In the second case, the cost is minimized to be
R7.06, while the overall power supply from the grid
is 14.37 kWh. (e inconvenience indicator is 13.89.
(e power dispatch is depicted in Figure 5. In the
comparative result, the minimal cost is R7.72, with

Table 4: TOU tariff.

Time periods Electricity price Hours
Peak hours R2.2225/kWh [08 : 00, 11 : 00)∪ ​ [19 : 00, 21 : 00)
Standard hours R0.6773/kWh [07 : 00, 08 : 00)∪ ​ [11 : 00, 19 : 00)∪ ​ [21 : 00, 23 : 00)
Off-peak hours R0.3656/kWh [00 : 00, 07 : 00)∪ ​ [23 : 00, 24 : 00)
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Figure 3: Power dispatch of the new design in case (i).
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the grid power supply of 15.57 kWh and in-
convenience indicator of 15.03. (e power dispatch
is depicted in Figure 6. (e improvement of the
objective is 8.6%. (e average running time is
18.36minutes.

(iii) In the third case, the weighted sum of all objec-
tives is minimized. (e optimized objective
function value is 34.64, when the energy cost is
R8.29 and the grid power supply is 15.53 kWh,

and the inconvenience indicator is 10.82. (e
power dispatch is depicted in Figure 7. In the
comparative result, the objective function value is
39.97, where the energy cost is 9.53 and grid
power is 18.78 kWh, with the inconvenience in-
dicator of 11.66 as well. (e power dispatch is
depicted in Figure 8. (e improvement of the
objective is 13.3%. (e average running time is
18.37minutes.
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Figure 5: Power dispatch of the new design in case (ii).
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Figure 4: Power dispatch of the previous design in case (i).
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From Figures 3, 5, and 7, overlaps between different
power supplies can be observed especially during peak
hours, while from Figures 4, 6, and 8, none of the time slots
allows multiple power supplies. In these cases, the grid
power outputs are smoothened under the dispatch with the
proposed approach. From the comparative results, supplies
become more intermittent because of the contradiction
between the renewable penetration objective and the supply

constraint. Allowing the combination of multiple power
supplies reduces such an intermittent performance while,
according to the energy and economy performances in case
studies, making better use of the renewable energy sources.

As a conclusion, the proposed approach outperforms the
previous model in all cases. When comparing the results of
the new and previous designs, it appears that the flexible
power dispatch allows more appliances to be scheduled to
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Figure 7: Power dispatch of the new design in case (iii).
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Figure 6: Power dispatch of the previous design in case (ii).
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standard and off-peak hours, resulting in a lower energy
cost. (e objectives Je and Jc manifest a certain level of
trade-off. (is is resulted from the employment of the TOU
tariff, where some off-peak hours may be infeasible for the
PV system because of its intermittent nature. When com-
paring the results among the three cases, it can be found that
the first two cases can achieve lower energy cost and grid
power consumption because of ignoring the inconvenience
indicator β. It invokes an interesting topic for future studies
that how to strike a balance between the conflicted interests
of user satisfaction and energy efficiency in such a hybrid
energy system management.

6. Conclusions

(is paper investigates a technoeconomic optimization
problem for a domestic grid-connected PV-battery hybrid
energy system, via extending and improving a previously
proposed system design. According to the previous design,
the power dispatch is decided for the totality of the elec-
trical loads. In the new model, appliances that comprise the
electrical loads are supplied and managed, respectively, via
additional power lines and switches from each power
source. Furthermore, the appliance time scheduling is
incorporated into such a flexible power dispatch. In this
way, the system achieves better energy efficiency and
economic performances via the technoeconomic optimi-
zation. (e performances are evaluated by three optimi-
zation objectives: minimizing energy cost, maximizing
renewable energy penetration, and increasing user satis-
faction, over a finite horizon. (ere are nonlinear objective
functions and constraints, as well as discrete and contin-
uous decision variables, in such an optimization problem.

As a result, the problem becomes an MINLP one at a large
scale, which is difficult to solve. A competitive swarm
optimizer-based numerical solver is thereby designed and
employed.

In order to verify that the new design does improve the
performances, a case study is investigated, where the power
dispatch and appliance time scheduling on a daily basis are
applied to a typical South African household hybrid system.
(ere are three optimization cases, each with different
objective functions, including only energy cost minimiza-
tion, only renewable energy penetration maximization, and
a weighted sum of the three objectives. Simulations are
applied in these cases, where comparative results are also
obtained via optimization of the previous system design.(e
same solver and system configurations are employed. In all
cases, the results from the new design outperform results
from the previous design. (e improvement ranges from
7.1% to 13.3% and manifests that further energy efficiency
and economic benefits can be achieved by the proposed
approach. Furthermore, the solver generally takes around
18.4minutes to obtain the solution. It verifies that the
proposed approach has the potential for application in a
real-time context.

(ere are several future works to investigate based on the
current-stage results. Firstly, the performance evaluations,
such as the battery wear cost and the renewable energy
penetration, are simplified. More practical indicators can be
introduced in the future. Secondly, uncertainties from the
environment and user demands are inevitable in practice.
(e real-time feedback mechanism can be introduced to
overcome such uncertainties. (irdly, the game theory-
based power dispatch and load scheduling considering
conflicted interests call further study. Lastly, the CSO-based
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numerical solver can be further investigated to improve the
algorithm performance.
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